research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Some thio­ether-ketones and their related derivatives

crossmark logo

aDepartment of Chemistry, Drexel University, 3141 Chestnut St, Philadelphia, PA, 19104-2816, USA, bL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of, Sciences of Ukraine, Prospect Nauki 31, Kyiv, 03028, Ukraine, cDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, 47907-2084, IN, USA, and dChemistry Department Howard University, 525 College St N.W., Washington, DC, 20059, USA
*Correspondence e-mail: shchuk@inphyschem-nas.com.ua

Edited by J. Reibenspies, Texas A & M University, USA (Received 7 January 2025; accepted 6 May 2025; online 13 May 2025)

Structural characteristics are reported for two thio­ether–ketones, Dtdpe and Mtdp [2-({2-[(2-oxo-2-phenyl­eth­yl)sulfan­yl]eth­yl}sulfan­yl)-1-phenyl­ethan-1-one, C18H18O2S2, and 2-[(2-oxo-2-phenyl­eth­yl)sulfan­yl]-1-phenyl­ethan-1-one, C16H14O2S], and for related derivatives, the bis­(pyridyl­hydrazones) Dhpk and Prpsb [2-((2E)-2-{(2Z)-2-phenyl-2-[2-(pyridin-2-yl)hydrazin-1-yl­idene]ethyl­idene}hydrazin-1-yl)pyridine, C18H16N6, and 2-[(2Z,12Z)-3,12-diphenyl-14-(pyridin-2-yl)-5,10-di­thia-1,2,13,14-tetra­aza­tetra­deca-2,12-dien-1-yl]pyridine, C30H32N6S2], as well as for the macrocyclic thio­carbohydrazide derivative Ctrsp [(3E,8Z)-3,9-dimethyl-1,11-di­thia-4,5,7,8-tetra­aza­cyclo­tetra­deca-3,8-diene-6-thione, C10H18N4S3]. Three of the five compounds exhibit conformational enanti­omerism in the solid state. The occurrence of intra- and inter­molecular hydrogen bonding is commented upon through quantum mechanical (DFT) calculations. Weak C—H⋯S inter­actions are noted, while stronger N—H⋯N and N—H⋯S hydrogen bridges are delineated.

1. Chemical context

The rational structural design of coordination compounds is crucial for the accomplishment of the desired properties of such complexes and their further functionality. The main focus in the genesis of targeted coordination compounds is usually concentrated on the creation of a proper donor-atom environment around the central metal atom. Despite the fact that the donor set composition is in most cases determinative for the generation of one or another feature, it has been shown that peculiarities of the spatial organization of coordination units in the solid state may significantly influence such properties (Steed et al., 2007[Steed, J. W., Turner, D. R. & Wallace, K. J. (2007). Core Concepts in Supramolecular Chemistry and Nanochemistry pp. 213-225. Chichester: J. Wiley & Sons, Ltd.]; Mikhalyova et al., 2015[Mikhalyova, E. A., Yakovenko, A. V., Zeller, M., Kiskin, M. A., Kolomzarov, Y. V., Eremenko, I. L., Addison, A. W. & Pavlishchuk, V. V. (2015). Inorg. Chem. 54, 3125-3133.]). Weak inter­actions such as different intra- and inter­molecular ππ inter­actions and hydrogen bonds between some fragments of ligands are important for the crystal packing of coordination complex mol­ecules. While the occurrence of such inter­actions is commonly reported for complexes, such data for non-coordinated ligands are rare. However, the elucidation of details of the mol­ecular and crystal structures of ligands may contribute a significant insight for the understanding of the structural features of the complexes and give important information for the crystal engineering of metal complexes. For instance, the hydrazone N—H entities act as hydrogen-bond donors to perchlorate and triflate anions in the structures of nickel(II) complexes of directly related pyridyl-hydrazone ligands (Pavlishchuk et al., 2024[Pavlishchuk, V. V., O'Connor, M. A., Zeller, M., Butcher, R. J. & Addison, A. W. (2024). Polyhedron 256, 116960.]).

[Scheme 1]

Here we report the synthesis and crystal structures of a new set of some thio­ether-ketones and their derivatives – promising ‘soft' ligands for the stabilization of reduced oxidation states of metal ions. The general synthesis procedure for thio­ether ketones and for the formation of a pyridyl­hydrazone derivative is shown in Fig. 1[link].

[Figure 1]
Figure 1
General synthesis procedure for the thio­ether ketones and for formation of a pyridyl­hydrazone derivative.

2. Structural commentary

Dtdpe, 1,8-diphenyl-3,6-di­thia­octane-1,8-dione or 2-({2-[(2-oxo-2-phenyl­eth­yl)sulfan­yl]eth­yl}sulfan­yl)-1-phenyl­ethan-1-one, the diketone precursor of the dihydrazone Prpse (Pavlishchuk et al., 2024[Pavlishchuk, V. V., O'Connor, M. A., Zeller, M., Butcher, R. J. & Addison, A. W. (2024). Polyhedron 256, 116960.]), crystallized from MeOH as thin, transparent, pale-yellow prisms in the monoclinic space group P21/c. The Dtdpe mol­ecule with the atom numbering is shown in Fig. 2[link]. Potential intra­molecular hydrogen-bond metrics are given in Table 1[link]. Each mol­ecule is conformed so as to possess two ‘steps' between the ends with the phenyl groups parallel to each other. The alkyl carbon atom C9 is 3.229 (3) Å from O1, which meets Steiner & Desiraju's O⋯C distance criterion (3–4 Å (Steiner, 1994[Steiner, T. J. (1994). J. Chem. Soc. Chem. Commun. pp. 2341-2342.], 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.]; Desiraju, 1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.], 1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.], 2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]) for a weak intra­molecular inter­action. However the angular characteristics (Table 1[link], type #1) of the C9—H9B⋯O1 fragment are at best only marginally suitable (Desiraju, 1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.], 2011[Desiraju, G. R. (2011). Angew. Chem. Int. Ed. 50, 52-59.]). A pervasive difficulty with such assignments rests with the arbitrary approximations made for H-atom positions via X-ray crystallography, (Desiraju 1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.], 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.], 2005[Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.]; Bulusu & Desiraju, 2020[Bulusu, G. & Desiraju, G. R. J. (2020). J. Indian Inst. Sci. 100, 31-41.]) as well as the energetics of competing structural/conformational factors, which detract from the clarity of gas-phase calculation results related to potential inter­molecular hydrogen bonds (vide infra).

Table 1
Intra­molecular hydrogen-bond metrics (Å, °) for the compounds

Bridge number Compound Bridge d(D—H) d(H⋯A) d(DA) D—H⋯A
1 Dtdpe C9—H9B⋯O1 0.97 2.61 3.229 (3) 122.1
2 Mtdp C8—H8C⋯O1i 0.99 2.54 3.1981 (16) 123.9
3 Mtdp C6—H6A⋯O1 0.95 2.512 2.807 (2) 98.03
4 Prpsb N2—H2N⋯S1 0.94 (3) 2.73 (3) 3.3599 (15) 126 (2)
5 Ctrsp N4—H4N⋯S3 0.83 (2) 2.864 (19) 3.3218 (13) 116.9 (15)
6 Ctrsp N4—H4N⋯N2 0.83 (2) 2.11 (2) 2.5572 (18) 113.5 (16)
7A Dhpk N2A—H2NA⋯N4A 0.897 (17) 2.018 (16) 2.6687 (14) 128.3 (14)
7B Dhpk N2B—H2NB⋯N4B 0.906 (17) 1.995 (16) 2.6742 (13) 130.6 (14)
7C Dhpk N2C—H2NC⋯N4C 0.877 (17) 2.026 (16) 2.6784 (14) 130.4 (15)
7D Dhpk N2D—H2ND⋯N4D 0.911 (15) 2.008 (15) 2.6810 (13) 129.5 (12)
Symmetry code: (i) −x + [{1\over 2}], y, −z + 1.
[Figure 2]
Figure 2
The Dtdpe mol­ecule, with its atom-numbering scheme. Hydrogen atoms are represented as simple spheres, with only those that are specifically discussed being labelled, and displacement ellipsoids are displayed at the 50% probability level.

The mono­thio-diketone Mtdp, 1,5-diphenyl-3-thia­pentane-1,5-dione or 2-[(2-oxo-2-phenyl­eth­yl)sulfan­yl]-1-phenyl­ethan-1-one, crystallized from methanol as thin, slightly photosensitive colourless laths, belonging to the monoclinic space group I2/a (C2/c), with four asymmetric half-mol­ecule units in the unit cell. The structure, shown in Figs. 3[link], 4[link] and S1, suggests a bridge (‘soribashi') shape for the dissymmetric mol­ecules, with the sulfur at bridge centre, so that crossing the bridge involves carbonyl oxygen atoms on the approach pointing to the left in one conformational enanti­omer, and to the right in the other (Fig. 4[link]). Similarly to Dtdpe, two equivalent potential weak intra­molecular hydrogen⋯O1 inter­actions exist, between O1 and the (more distant) H8C hydrogen, resulting in a six-membered cyclic arrangement O1–C7–C8–S1–C8i–H8Ci [symmetry code: (i) −x + [{1\over 2}], y, −z + 1). The metrics of this weak H8C⋯O1 inter­action (Table 1[link], #2) indicate that this inter­action is again quite marginal. Meanwhile, an intra­molecular inter­action between O1 and phenyl hydrogen H6A (Table 1[link], #3), produces a five-membered ring arrangement, O1–C7–C1–C6–H6A with O1 and C6 2.807 (2) Å apart, but with angular characteristics unsuitable for hydrogen bonding. For the ketonic C7—O1 bond, the length [1.215 (2) Å] is close to those observed in Dtdpe (vide supra), of a value typical for a Ph—C=O moiety (Tanimoto et al., 1973[Tanimoto, Y., Kobayashi, H., Nagakura, S. & Saito, Y. (1973). Acta Cryst. B29, 1822-1826.]; Seth et al., 2011[Seth, S. K., Sarkar, D., Roy, A. & Kar, T. (2011). CrystEngComm 13, 6728-6741.]; Fleischer et al., 1968[Fleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem. 72, 4311-4312.]) and not influenced by the neighbouring hydrogen inter­actions.

[Figure 3]
Figure 3
The Mtdp mol­ecule, with its atom-numbering scheme. Hydrogen atoms are represented as simple spheres, with only those that are specifically discussed being labelled, and displacement ellipsoids are displayed at the 50% probability level.
[Figure 4]
Figure 4
The conformational enanti­omers of Mtdp: crossing the ‘bridge' from front to rear places the front carbonyl to the right in one (upper) enanti­omer, and to the left in the other (lower). Ball-and-stick representations, inverse stereoviews.

The di­thio­ether-dihydrazone Prpsb, 2-[(2Z,12Z)-3,12-diphenyl-14-(pyridin-2-yl)-5,10-di­thia-1,2,13,14-tetra­aza­tetra­deca-2,12-dien-1-yl]pyridine, crystallized from ethanol as golden yellow crystals belonging to the centrosymmetric monoclinic space group P21/n (Z = 2; Fig. 5[link]) with the two half-mol­ecules being mirror images of one another (Fig. S2). The structural results evidence that the mol­ecule has Z,Z-stereochemistry about the C=N bonds, which may well be related to it not readily forming a nickel(II) complex (Pavlishchuk et al., 2024[Pavlishchuk, V. V., O'Connor, M. A., Zeller, M., Butcher, R. J. & Addison, A. W. (2024). Polyhedron 256, 116960.]), as those complexes have the ligands in the E,E-configuration. It has a perhaps surprisingly flat conformation, as suggested by the space-filling diagram (Fig. 6[link]). The average non-H atom distance from the mean plane of the mol­ecule is 0.4 (0.2) Å.

[Figure 5]
Figure 5
Prpsb mol­ecule with the possible N—H⋯S hydrogen bonds shown. The pair of benzene rings are parallel, as are the pyridines. Hydrogen atoms are represented as simple spheres, with only those that are specifically discussed being labelled, and displacement ellipsoids are displayed at the 50% probability level.
[Figure 6]
Figure 6
A space-filling lateral view of the Prpsb mol­ecule. The vertical ‘thickness' is ca. 3.8 Å, compared with the ‘length' of ca. 12.6 Å.

Potentially significant hydrogen-bridging inter­actions occur intra­molecularly (Fig. 5[link], Table 1[link], #4). The N2⋯S1 distance is 3.3599 (15) Å [cf. covalent and van der Waals radii (Housecroft & Sharpe, 2012[Housecroft, C. E. & Sharpe, A. G. (2012). Inorg. Chem. 4th Edn., pp. 1126-1127. Harlow: Pearson Education Ltd.]; Bird & Cheeseman, 1984[Bird, C. W. & Cheeseman, G. W. H. (1984). Structure of Five-membered Rings with One Heteroatom in Comprehensive Heterocyclic Chemistry: the Structure, Reactions, Synthesis, and Uses of Heterocyclic Compounds edited by Katritzky, A. R. & Rees, C. W, pp. 1-38. Oxford & New York: Pergamon Press.]) contact distance of 4.12 Å], while the N—H⋯S angle is 126°. These fit the distance criteria in accordance with spectroscopic and quantum mechanical calculation approaches (Biswal et al., 2015[Biswal, H. S., Bhattacharyya, S., Bhattacherjee, A. & Wategaonkar, S. (2015). Int. Rev. Phys. Chem. 34, 99-160.]), while the observed N2⋯S1 distance [3.3599 (15) Å] is close to those obtained for the formaldehyde-di­methyl­sulfide complex (3.200 Å) by FT microwave spectroscopy (Tatamitani et al., 2015[Tatamitani, Y., Kawashima, Y., Osamura, Y. & Hirota, E. (2015). J. Phys. Chem. A 119, 2132-2141.]) and ab initio calculated for the indole-di­methyl­sulfide complex (3.327 Å) and for the 3-methyl­indole-di­methyl­sulfide complex (3.331Å) (Biswal & Wategaonkar, 2009[Biswal, H. S. & Wategaonkar, S. (2009). J. Phys. Chem. A 113, 12763-12773.]). We are not aware of other crystallographic reports of such N—H⋯S hydrogen bonds.

The atom N2, although formally a hydrazine nitro­gen, is of a relatively planar geometry. The three angles with its surrounding atoms (H2N, N3, C5) sum to 355°, which is more like sp2 hybridization (360°) than the angles in hydrazine itself (321°), while N2 is only 0.126 Å from the N3–H2N–N2–C5 mean plane (for which the sum of squares error, SSE, is only 0.022 Å2). This is slightly more than in a closely related complex [Ni(Prpse)]2+ (Pavlishchuk et al., 2024[Pavlishchuk, V. V., O'Connor, M. A., Zeller, M., Butcher, R. J. & Addison, A. W. (2024). Polyhedron 256, 116960.]) where further adjustment by metal coordination is likely. The broader atom set C6–N3–N2–H2N–C5–C4–N1 also exhibits a fair degree of planarity (SSE = 0.0348 Å2) and DFT calculations support the idea of conjugation extending from the pyridine ring through to the originally ketonic C6, with bonding π-character in both the hydrazone N2—N3 and pyridine α-C to N (C5—N2) bonds (Fig. 7[link]). This planarity compares with a nonetheless incompletely continuous bonding π-system, as indicated by the HOMO's (0, −1, −6, −7) (Fisg. 7[link], S3). A simple pyridyl­hydrazone (acetone pyridyl­hydrazone) model does show through-conjugation (Fig. S4) while by contrast, in some related CoII complexes, anti­bonding π-MO's appear to dominate this moiety (Pramanik et al., 2014[Pramanik, S., Roy, S., Ghorui, T., Ganguly, S. & Pramanik, K. (2014). Dalton Trans. 43, 5317-5334.]), so the electronic structure of such systems is very dependent upon the substituents and metal.

[Figure 7]
Figure 7
Upper, reference diagram of the Prpsb skeleton; lower, the Prpsb HOMO wavefunction (Spartan-20/24) surface in a structurally minimized mol­ecule.

The reaction between thio­carbohydrazide and Dtdkp (4,8-di­thia­undecane-2,10-dione; Pavlishchuk et al., 2024[Pavlishchuk, V. V., O'Connor, M. A., Zeller, M., Butcher, R. J. & Addison, A. W. (2024). Polyhedron 256, 116960.]) yielded a yellow microcrystalline product, for which the mass spectrum suggested the presence of two major components, at m/z = 397.1+ (for C11H24N8S4+H+) and 291.1+ (for C10H18N4S3+H+), corresponding to the values for the 1:2 and 1:1 hydrazones, respectively. Fractional recrystallization from 2-meth­oxy­ethanol gave rise to a low yield of pale-yellow 0.5-1 mm blocks, belonging to the space group P21/c with four mol­ecules in the unit cell. The 1:1 product thus isolated by recrystallization proved to be the macrocyclic di­thio­ether-thio­hydrazone Ctrsp, (3E,8Z)-3,9-dimethyl-1,11-di­thia-4,5,7,8-tetra­aza­cyclo­tetra­deca-3,8-diene-6-thione, for which its mol­ecular structure and atom-numbering scheme are shown in Fig. 8[link]. The Ctrsp mol­ecule possesses E,Z-geometry about the hydrazone imines, with atoms N2 and N3 of each mol­ecule on opposite sides of the N1–C1–N4 unit, reducing the overall mol­ecular symmetry. Indeed, the individual mol­ecules are asymmetric because of conformational isomerism associated with relatively free rotations about the C—C and C—S bonds from C2 to C9 (Fig. S5). They hence relate to one another by inversion, resulting in two mol­ecules of each of the consequent enanti­omers in the unit cell, with the two conformations being arranged in alternating fashion in the crystal.

[Figure 8]
Figure 8
The macrocycle di­thio­ether-thio­hydrazone Ctrsp, with its crystallographic numbering scheme. Hydrogen atoms are represented as simple spheres, with only those that are specifically discussed being labelled, and displacement ellipsoids are displayed at the 50% level. The organic nomenclature positions denoted as 1 and 11 are, respectively, S3 and S2. Potential N—H⋯N and N—H⋯S hydrogen bonds are shown in green.

The existence of some weak intra­molecular hydrogen bridges (#5, #6) inside the macrocyclic cavity of Ctrsp might be suspected of being involved in governing its stereochemistry (Fig. 8[link], Table 1[link]). Notwithstanding the distances between the N2 and N4 nitro­gen atoms [2.5572 (18) Å] and between N4 and S3 [3.3218 (13) Å] being rather short, the small N—H⋯A angles (113–117°, Table 1[link]) mitigate against a hydrogen bond of significant strength.

Crystals of Dhpk, 2-[(2E)-2-[(2Z)-2-phenyl-2-[2-(pyridin-2-yl)hydrazin-1-yl­idene]ethyl­idene]hydrazin-1-yl]pyridine, for diffraction were obtained by (slow thermal) recrystallization of the crude product from N-methyl­pyrrolidinone. They crystallized in the monoclinic space group I2/a (equivalent to C2/c) with a very large unit cell containing 32 Dhpk mol­ecules, of four inequivalent structures (A, B, C and D) and hence 16 of each conformational enanti­omer. Dhpk was obtained unexpectedly in a low yield as a by-product in attempts to synthesize Mtph from Mtdp according to Fig. 1[link], and its formation might be attributable to an alternative pathway of the expected reaction (Fig. 9[link]). A Dhpk mol­ecule is shown in Fig. 10[link]. DFT calculations confirm that associated with its planarity, the Dhpk mol­ecule has substantial π-bonding conjugation extending from C5 through C14 (Figs. 11[link], S6). Components of the MO's contributing to the completion of this π-bonding pathway are depicted in Fig. 11[link], while Fig. 12[link] shows two conformational enanti­omers for Dhpk.

[Figure 9]
Figure 9
The proposed scheme for Dhpk formation.
[Figure 10]
Figure 10
An ellipsoid rendering of an A-mol­ecule of Dhpk. Hydrogen atoms are represented as simple spheres, with only those that are specifically discussed being labelled, and displacement ellipsoids are displayed at the 50% probability level.
[Figure 11]
Figure 11
MO wavefunction surfaces (Spartan-20/24) for Dhpk: (a) reference diagram with the (small) electric dipole moment (0.24 Debye) shown; (b) the HOMO, (c) the HOMO(–1); (d) the HOMO(–7).
[Figure 12]
Figure 12
Stick models (inverse stereoview) of a pair conformational enanti­omers of non-adjacent Dhpk A and D mol­ecules. Note the opposite ‘tilts' of the rear phenyl groups in the upper (A-mol­ecule) vs. the lower (D-mol­ecule) diagram.

Intra­molecular hydrogen bonding between H2N and N4 was found in all conformers of Dhpk, with average N2⋯N4 distances of 2.67 Å (Table 1[link], #7). Despite the marginally favourable 128– 130° N2—H2N⋯N4 angles, the 2.0–2.03 Å H2N⋯N4 distances are substanti­ally less than the ca. 2.67 Å values for a van der Waals (N)H⋯N contact. By the formation of this bridge, a structurally favourable six-membered ring N2–N3–C6–C13–N4–H2N is set. This N—H⋯N inter­action would circumvent any possible C—H⋯N inter­actions.

3. Supra­molecular features

The unit cell of Dtdpe contains two mol­ecules which are pairwise inter­acting via putative C2—H2A⋯O1(2 − x, [{1\over 2}] + y, [{1\over 2}] − z) hydrogen bridges (Table 2[link], Fig. S8). Beyond the edges of the unit cell, each Dtdpe mol­ecule is connected with four others through such inter­actions, with two from inside and two from outside the unit cell. For the crystal packing of the Dtdpe mol­ecules, the phenyl groups are parallel to each other (Figs. S7, S8), with C5 near C7 of a neighbouring mol­ecule, so that the phenyl C5 is against the C7 atom of the carbonyl group of an adjacent mol­ecule at 3.359 (3) Å. Phen­yl–phenyl face-to-face inter­actions are otherwise not significant at 4.54 Å. Phenyl carbon atom C2 is 3.365 (2) Å from oxygen atom O1 belonging to another Dtdpe mol­ecule, so that there is an even weaker C2—H2A⋯O1(2 − x, [{1\over 2}] + y, [{1\over 2}] − z) inter­action with an H⋯O distance of 2.462 Å.

Table 2
Potential inter­molecular hydrogen bridges (Å, °)

Bridge number Compound Bridge d(D—H) d(H⋯A) d(DA) D—H⋯A
8 Dtdpe C2—H2A⋯O1i 0.93 2.46 3.365 (2) 164
9 Mtdp C3—H3A⋯O1ii 0.95 2.77 3.382 (2) 123
10 Prpsb C2—H2B⋯S1iii 0.95 3.02 3.9489 (18) 167
11 Ctrsp N1—H1N⋯S1iv 0.83 (2) 2.73 (2) 3.5178 (14) 160.4 (19)
12 Ctrsp C6—H6A⋯S2v 0.97 2.94 3.7524 (17) 142
13A Dhpk N5A—H5NA⋯N6D 0.916 (14) 2.126 (14) 3.0401 (14) 175.9 (14)
13B Dhpk N5B—H5NB⋯N6C 0.913 (15) 2.126 (14) 3.0371 (14) 175.4 (12)
13C Dhpk N5C—H5NC⋯N6B 0.911 (14) 2.129 (14) 3.0390 (14) 177.0 (14)
13D Dhpk N5D—H5ND⋯N6A 0.938 (14) 2.102 (14) 3.0388 (14) 177.5 (10)
Symmetry codes: (i) 2 − x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) [{1\over 2}] + x, 2 − y, z; (iii) x − 1, y, z − 1; (iv) −x + 1, −y, −z + 1; (v) −x, y + [{1\over 2}], −z + [{3\over 2}].

As it is clear that inter­atomic distances are not complete criteria for the presence of hydrogen bonding (as designated by Mercury or checkCIF), we addressed the question of the energetics of these inter­actions via calculations. Comparison of a hydrogen-bridged dimer with its monomers may reveal any energy advantage (or disadvantage) that might be attributed to such a hydrogen bridge. The DFT calculations (Table 3[link], S1) indicate that at an idealized DA (C⋯O) distance of ∼3.49 Å, this (#8, Table 2[link]) hydrogen bridge is stabilized by ca. 6.8 kJ mol−1. The crystallographic θ angle (163.8°) for C2—H2A⋯O1B(2 − x, [{1\over 2}] + y, [{1\over 2}] − z) is close to appropriate by a prior criterion (Desiraju, 1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]). In summarizing the features of the organization of Dtdpe mol­ecules in the crystal, one may conclude that it is governed by three weak hydrogen—O1 bridges, two intra­molecular and one inter­molecular inter­actions, which leads to creation of a supra­molecular net consisting of Dtdpe mol­ecules.

Table 3
Outcomes from DFT calculations on inter­molecular hydrogen bonds

Compound and bridge type Energy valuea (Eh) Dimer energy advantage (kJ) H⋯A bond order d(D—H), Å d(H⋯A), Å d(DA), Å D—H⋯A
Ctrsp dimer, 11 −3611.363181 38.6 0.3 1.03 1.40 3.41 168
Ctrsp monomerb −1805.674235     1.01      
Dtdpe dimerc, 8 −3287.732002 6.8 0.03 1.08 2.41 3.49 147
Dtdpe monomer −1643.864709     1.08      
Mtdp monomer −1167.000642     1.09      
Mtdp dimer, 9 −2334.005015 9.8 d 1.22 2.76e 3.48e 133e
Prpsb monomer −2286.795468     1.08      
Prpsb dimerc −4573.605938 39.4 0.04 1.09 2.74 3.82 170
Dhpk dimer, 13A −2048.565734 42.3 0.08 1.03 2.05e 3.08e 177
Dhpk monomer −1024.274809     1.02      
Notes: (a) Intra­molecular hydrogen bonds are not specified during the calculations; (b) B3LYP/6–311+G** geometry minimization for a CH—S dimer gave an unrealistic geometry, although an estimate was made using ωB97X-D/6–31G*; (c) B3LYP/6–311+G** geometry minimization failed to converge for Dtdpe or Prpsb, although an estimate was made using ωB97X-D/6–31G*; (d) not calculated; (e) mean of two values.

For the mono­thio-diketone Mtdp, 2-[(2-oxo-2-phenyl­eth­yl)sulfan­yl]-1-phenyl­ethan-1-one, only weak hydrogen-bonding inter­actions are apparent: there are some close π-approaches between mol­ecules, such as a 3.339 (2) Å inter­action of phenyl-C5 with a neighbouring mol­ecule's carbonyl-C7. Although the separation between C3 and O1([{1\over 2}] + x, 2 − y, z) of adjacent Mtdp mol­ecules is only 3.382 (2) Å, the presumed O⋯H distance of 2.769 Å is too long for an appreciable hydrogen bond. In general, the separations between adjacent Mtdp mol­ecules are too great for one to suspect the existence of any inter­molecular O1⋯H bridges or wider ππ inter­actions between them in the crystal. The 100.2° bond angle at sulfur is correlated with the 79.4° intra­molecular angle between phenyl planes, and the complementary inter­molecular inter­planar angles are hence 0°. These essentially orthogonal relationships amongst phenyl groups are apparent in Fig. 13[link], along with the mol­ecules being arranged as alternating anti­parallel sets of chevrons stacked along the b-axis direction (Fig. 13[link]).

[Figure 13]
Figure 13
The chevron arrangement of the Mtdp mol­ecules (stick structure, inverse stereoview).

For the di­thio­ether-dihydrazone Prpsb, no π-stacking is apparent. However, there are inter­molecular C2—H2B⋯S1(x − 1, y, z − 1) contacts that are potential hydrogen bridges. Indeed, these are associated with symmetric pairing in the crystal (Fig. 14[link]). Pairings of the Prpsb mol­ecules occurs via pyridyl β-H inter­actions C2—H2B⋯S1(x − 1, y, z − 1) (#10, Table 2[link]). This pairing or dimerization occurs at the ab inter­face of the unit cell (Fig. 14[link]), and each member of the mol­ecular pair extends above and below an ab face. In a ω97X-D/6-31G* DFT model (Table 3[link], S1) of this Prpsb dimer, it has a dubiously large energy advantage (39 kJ mol−1) over the monomers; the C⋯S and H⋯S distances are slightly less than in the crystallographic case. The inter­action angle is essentially 170° in both instances, which is favourable for an attractive inter­action. These lines of evidence do therefore suggest a significant hydrogen-bonding inter­action.

[Figure 14]
Figure 14
C2—H2B⋯S1(x − 1, y, z − 1) pairing of Prpsb mol­ecules in the crystal (ball-and-stick model).

Meanwhile in Ctrsp, unlike enanti­omeric forms are connected pairwise with what present themselves as two S1(−x + 1, −y, −z + 1)⋯HN1 inter­actions (#11, Table 2[link]), with H⋯S1i distances of 2.73 (2) Å (Fig. 15[link]), which is less than the sum (3.0 Å) of the van der Waals contact radii for S and H, and close to the inter­molecular H⋯S distances (2.537–2.739 Å) found in the thio­benzamide extended network (Rigane et al., 2016[Rigane, I., Walha, S. & Ben Salah, A. (2016). J. Chem. Sci. 128, 1395-1404.]). If the N1⋯S1(x + 1, −y, −z + 1) distance of 3.5178 (14) Å is a more reliable indicator for the possible formation of this bridge, then it does suggest an N—H⋯S hydrogen bridge. Although this is somewhat greater than the average hydrogen-bonded N⋯S distance (3.41–3.42 Å) seen for most thio­amides (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). Other weak and non-conventional hydrogen bonds in The Weak Hydrogen Bond in Structural Chemistry and Biology edited by Desiraju, G. R. & Steiner, T., pp. 122-292. Oxford: Oxford University Press.]), it is close to the 3.521 Å value observed in the thio­benzamide supra­molecular network (Rigane et al., 2016[Rigane, I., Walha, S. & Ben Salah, A. (2016). J. Chem. Sci. 128, 1395-1404.]). It is also significantly smaller than the sum of the appropriate covalent and van der Waals radii of H, N and S (4.12 Å). So, this approach indeed suggests the formation of N1—HN1⋯S1(−x + 1, −y, −z + 1) hydrogen bridges. In addition, DFT calculations (Table 3[link], S1) indicate stabilization of a hydrogen-bonded dimer by 30–40 kJ mol−1. It might be noted that the otherwise somewhat unfavourable eight-membered C/N/H/S ring formed (Fig. 15[link]) is rather planar (SSE = 0.20 Å2).

[Figure 15]
Figure 15
The relationship that casts laterally adjacent Ctrsp mol­ecules as a centrosymmetric pair, showing the N1—HN1⋯S1(−x + 1, −y, −z + 1) hydrogen bonds (ball-and-stick model).

The dipole moment of this mol­ecule (6.65 Debye in vacuo; Fig. S13) substanti­ally opposes such a pairwise alignment, so we conclude that the inter­molecular N—H⋯S inter­action at least matches this electrostatic repulsion, and allows pairwise alignment. The Ctrsp mol­ecules are arranged as double layers (Fig. S14), with each side of the double layer inter­facing the next one via its dihydrazone segments. Atoms N2 and C9 of neighbouring mol­ecules are packed closely [3.288 (2) Å], as are the nitro­gen atoms N4 of adjacent mol­ecules [3.583 (2) Å]. Meanwhile, close inter­molecular C6—H6A⋯S2(−x, y + [{1\over 2}], −z + [{3\over 2}]) contacts (Fig. S15, Table 3[link]) suffuse the crystal within the layers, though no association energy could be estimated (Table S1).

In Dhpk:, the observed intermol­ecular N5⋯N6 distances, essentially 3.04 Å, are much smaller than the 3.67 Å van der Waals contact sums, and both their average H5N⋯N6 distances (2.121 Å) and N5—H5N⋯N6 angles (ca. 176°) also betoken hydrogen bonding (Table 3[link], #13). Four inequivalent mol­ecules A, B, C and D of Dhpk are thusly connected as A–D and B–C pairs by inter­molecular hydrogen bonds with similar geometrical metrics, forming pseudo-centrosymmetric couples of like enanti­omers (Fig. 16[link], Table 3[link]). DFT calculations indicate substantial stabilization (Table 3[link]) of the dimer vs the monomers, with an hydrogen-bond order of ca. 0.08. The further agglomeration of these Dhkp pairs results in the formation of a large achiral unit cell containing 32 mol­ecules (Fig. S16). Corresponding pairs of Dhpk are organized in parallel strata in the crystal (Figs. S15, S17). The pyridines of any given dimer are essentially coplanar, but the inter­planar angles between pyridine moieties of different dimers are near 90°.

[Figure 16]
Figure 16
A depiction (ball-and-stick) of the hydrogen bridging present in Dhpk, showing the hydrogen bonds (solid lines) that form a pseudo-centrosymmetric A—D dimer and the weaker (lower angle value) intra­molecular hydrogen bonds (dashed lines).

4. Synthesis and crystallization

The thio­ether-dihydrazone compounds were prepared by a multi-step procedure (Fig. 1[link]). Their thio­ether-diketone precursors were prepared via the ‘TACO' method of Goldcamp et al. (2000[Goldcamp, M. J., Rosa, D. T., Landers, N. A., Mandel, S. M., Krause Bauer, J. A. & Baldwin, M. J. (2000). Synthesis pp. 2033-2038.]) employing chloro­acetone or phenacyl chloride (2-chloro­aceto­phenone), via reaction of N,N,N-tri­ethyl-N-(propan-2-on­yl)ammonium or N,N,N-triethyl-N-(phenyl­ethan-2-on­yl)ammonium chloride salt with various thiols. The chloride inter­mediates were prepared by the addition of Et3N to the chloro­acetone or phenacyl chloride.

1,8-Diphenyl-3,6-di­thia­octane-1,8-dione (Dtdpe). Di­thia­diphenacyl derivatives were prepared in a similar manner to their acetyl analogues (Pavlishchuk et al., 2024[Pavlishchuk, V. V., O'Connor, M. A., Zeller, M., Butcher, R. J. & Addison, A. W. (2024). Polyhedron 256, 116960.]). As a typical synthesis, 1,2-ethane­dithiol (6.00 mL, 71.5 mol) was treated with NaBH4 (2.74 g, 72.4 mmol) in EtOH under N2 to reduce any di­sulfides. The N,N,N-triethyl-N-(phenyl­ethan-2-on­yl)ammonium chloride inter­mediate was prepared by adding Et3N (14.9 g, 147 mmol) in 30 mL of MeOH to 2-chloro­aceto­phenone (22.1 g, 143 mol) in 100 mL Et2O dropwise over 15 minutes with constant stirring. The solution was allowed to stir for an additional 15 minutes and flushed with N2, followed by the addition of the treated di­thiol over 15 minutes. Some of the Et3NHCl by-product precipitated and was removed by gravity filtration. The remaining solvent was removed via rotary evaporation to afford the white solid product contaminated with the remaining Et3NHCl salt. The reaction mixture was stirred with a portion of Et2O for 1 h to separate the two components. The Et3NHCl was removed through gravity filtration, and the filtrate was refrigerated overnight, after which any precipitated Et3NHCl was filtered off and the remaining Et2O removed via rotary evaporation, yielding a fluffy white solid. A sample was recrystallized from MeOH (charcoal), to gradually yield diffraction-quality crystals. Yield: 8.71 g (37%). CI-MS: 541 ([M+M′]+, 2%), 509 ([M+M′′]+, 30%), 330 ([M]+, 64%), 211 ([M′]+, 8%), 179 ([M′′]+, 100%). Fragmentation designations are given in the ESI. 1H NMR (DMSO-d6): δ 2.50 (t, 4H), 3.33 (s, 4H), 7.53 (m, 4H), 7.64 (m, 2H), 7.98 (m, 4H).

1,5-Diphenyl-3-thia­pentane-1,5-dione (Mtdp) was prepared following a procedure published by Cuthbertson et al. (1975[Cuthbertson, E., Hardy, A. D. U. & MacNicol, D. D. (1975). J. Chem. Soc., Perkin Trans. I pp. 254-262.]). Though many preparative methods for this compound can be found in the literature, this particular synthesis is quite straightforward and produced well-formed colourless plates in high yield: 18.2 g (90%). CI-MS: 271 ([M+H]+, 100%), 165 ([M′]+, 21%), 151 ([M′′]+, 29%). 1H NMR (DMSO-d6): δ 4.13 (s, 4H), 7.53 (m, 4H), 7.66 (m, 2H) 7.98 (m, 4H).

1,10-Diphenyl-3,8-di­thia­decane-1,10-dione (Dtdpb) was prepared in the same manner as Dtdkb and Dtdpp (Pavlishchuk et al., 2024[Pavlishchuk, V. V., O'Connor, M. A., Zeller, M., Butcher, R. J. & Addison, A. W. (2024). Polyhedron 256, 116960.]) using 1,4-butane­dithiol (12.0 mL, 94.2 mmol), NaBH4 (3.45 g, 91.2 mmol), 2-chloro­aceto­phenone (29.1 g, 188 mmol), and Et3N (20.0 g, 198 mmol). The white solid produced was characterized and used without further purification. Yield: 27.8 g (82%). Crude CI-MS: 358 ([M]+, 52%), 239 ([M′]+, 75%), 207 ([M′′]+, 100%). 1H NMR (DMSO-d6): δ 1.62 (q, 4H), 2.53 (t, 4H), 3.76 (s, 4H), 7.47 (m, 6H), 7.93 (m, 4H)].

1,10-Bis(2'-pyridyl­hydrazon­yl)-1,10-diphenyl-3,8-di­thia­dec­ane (Prpsb). A methanol (20 mL) solution of 1.81 g (5.06 mmol) Dtdpb (Pavlishchuk et al., 2024[Pavlishchuk, V. V., O'Connor, M. A., Zeller, M., Butcher, R. J. & Addison, A. W. (2024). Polyhedron 256, 116960.]) and 1.12 g (10.3 mmol) 2-hydrazino­pyridine was refluxed overnight. The reaction mixture was allowed to cool to room temperature, and a yellow solid precipitated. The crude solid was collected, then recrystallized from MeOH to afford a yellow powder. Yield: 1.22 g (45%). CI-MS: 541 ([M+H]+, 23%), 450 ([M′′′]+, 25%), 332 ([M′]+, 26%), 196 ([PM′]+, 100%). 1H NMR (DMSO-d6): δ 2.47 (t, 4H), 3.35 (t, 4H), 4.02 (s, 4H), 6.82 (m, 2H), 7.57 (m, 14H), 8.15 (m, 2H), 10.01 (s, 2H). A sample subsequently recrystallized from ethanol (charcoaled) yielded golden yellow crystals suitable for diffraction. Analysis: calculated % C, 66.6; H, 5.97, N, 15.5; S, 11.9; Found% C, 66.3; H, 5.94, N, 15.2; remainder 12.5.

The pyridyl­hydrazones of Dtdkp: (Ctrsp). In an attempt to prepare the bis­(thio­carbohydrazone) of the di­thio­ether, 2.67 g (12.1 mmol) of Dtdkp were added dropwise to a warm methano­lic solution (343 K) of thio­carbohydrazide (2.58 g, 24.3 mmol). The resulting reaction mixture was allowed to reflux for 30 minutes, and then allowed to cool to room temperature. As the solution cooled, an off-white, granular solid precipitated, which was filtered off, and the filtrate concentrated via rotary evaporation. Off-white crystals precipitated from the filtrate overnight. Both fractions displayed the same species in their mass spectra. The crude solid proved relatively insoluble, making recrystallization difficult, and proved detrimental to metal complex synthesis. Yield: 3.48 g (72.6%). FAB-MS: 397 ([M+H]+, 53%), 291 ([M − M′′′]+, 93%). 1H NMR (DMSO-d6): δ 2.51 (s, 2H), 3.19 (s, 4H), 3.45 (s, 4H), 4.11 (s, 4H). When a sample was recrystallized from hot 2-meth­oxy­ethanol (with charcoaling), light-yellow, diffraction-quality crystals appeared after several days. Analysis: calculated % C, 41.4; H, 6.25, N, 19.3; S, 33.1; Found% C, 41.5; H, 6.19, N, 19.1; remainder 33.2.

1,5-Diphenyl-1,5-bis­(2-pyridyl­hydrazon­yl)-3-thia­penta­ne and 2-[(2E)-2-[(2Z)-2-phenyl-2-[2-(pyridin-2-yl)hydrazin-1-yl­idene]ethyl­idene]hydrazin-1-yl]pyridine (Dhpk). A methanol (20 mL) solution of 2.70 g (10.0 mmol) Mtdp and 4.13 g (37.8 mmol) of 2-hydrazino­pyridine was refluxed overnight. The reaction mixture was allowed to cool to room temperature, and a yellow solid precipitated. The crude solid was collected and recrystallized from MeOH to afford a yellow powder. Yield: 3.56 g (78.7%). CI-MS: 453 ([M+H]+, 2%), 196 ([M′′]+, 100%). 1H NMR (DMSO-d6): δ 3.32 (s, 4H), 6.86 (m, 10H), 7.24 (m, 2H), 7.70 (m, 2H), 8.18 (m, 2H), 10.18 (s, 2H). Generation of diffraction-quality crystals proved difficult. Finally, an aliquot was recrystallized from hot N-methyl­pyrrolidone (with charcoaling), to give a small yield of golden yellow platelets, used for X-ray diffraction. The product obtained was the a­thio-dihydrazone Dhpk; C, H, N calculated for C18H16N6, 68.3%, 5.10%, 26.6%, Found (recrystallized from DMA), 67.8%, 5.02%, 26.2%.

Physical Measurements:

EI-, CI-, APCI-, ESI-, FAB-LSIMS- and FT-mass spectrometries were performed on Thermo Finnigan TSQ70, Thermo-Electron LTQ-FT 7T, VG70SE, Waters AutoSpec Ultima-Q, or Sciex API3000 mass instruments. Proton NMR were obtained on a 300 MHz Varian Unity Inova spectrometer using chloro­form-d or dimethyl sulfoxide-d6 as solvent with TMS as inter­nal standard. Elemental microanalyses were performed by Robertson Microlit Laboratories (Madison/Ledgewood, NJ).

Structure diagrams were generated using CrystalMaker-10/11 (Palmer et al., 2024[Palmer, D., Fernandez, A., Gao, M., Rimmer, L. & Palmer, E. (2024). CrystalMaker Begbroke, England.]), Mercury 2022/2023 (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), Preview-11 (Apple, Inc. 2024[Apple, Inc. (2024). Mac OS 14/15, Cupertino, CA, USA.]) and Photoshop 7 (Knoll et al., 2002[Knoll, T., Hamburg, M., Narayanan, S., Pawliger, M., Schaefer, S., Tam, S., Alves, S., Ault, J., Balakrishnan, V., Bartell, J., Byer, S., Chien, J., Cohen, S., Coven, A., Cox, C., Georgiev, T., Harris, J., Kong, S., Luxon, T., Parent, S., Penn, J. II, Ruark, T., Rys, C., Schneider, D., Williams, R., Wormley, M., Worthington, J., Rau, D., Scarafone, M., Leavy, M., Wulff, R., Howe, D., Gauthier, K. & Weisberg, G. (2002). Adobe Systems, Inc., San Jose, CA, USA.]).

The online engine publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) was used to generate tables of geometric parameters. MO wavefunction and energy calculations employed the Spartan-20 and Spartan-24 software (Deppmeier et al., 2024[Deppmeier, B. J., Driessen, A. J., Hehre, W. J., Hehre, T. S., Johnson, J. A., Ohlinger, W. S. & Klunzinger, P. E. (2024). Spartan. Wavefunction Inc. Irvine, CA, USA.]) on an iMac21,1. Initially, a geometry minimization was performed using a ω97X-D/6-31G* model, followed by a ω97X-D/6-31G* energy minimization. Subsequent calculations used a B3LYP/6-311+G** energy minimization, preceded by a B3LYP/6-311+G** geometry minimization where practical. For probing the potential inter­molecular hydrogen bonding, the ‘monomer' was structurally minimized and the energy of the structure then calculated. The procedure was then repeated on the mol­ecular pair with the suspected hydrogen bond(s). Table S1 shows some additional results. Additional supplementary materials are available at https://researchdiscovery.drexel.edu/esploro/outputs/dataset/Some-thioether-ketones-and-their-related-derivatives/991021955715504721?institution=01DRXU_INST (https://doi.org/10.17918/00010914).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. C-bound H atoms were positioned with idealized geometry, and refined using a riding model.

Table 4
Experimental details

  Dtdpe Mtdp Prpsb Ctrsp Dhpk
Crystal data
Chemical formula C18H18O2S2 C16H14O2S C30H32N6S2 C10H18N4S3 C18H16N6
Mr 330.44 270.33 540.73 290.46 316.37
Crystal system, space group Monoclinic, P21/c Monoclinic, I2/a Monoclinic, P21/n Monoclinic, P21/c Monoclinic, I2/a
Temperature (K) 293 100 102 293 100
a, b, c (Å) 5.1639 (2), 11.1078 (3), 14.8132 (5) 13.1307 (3), 5.0945 (1), 19.2847 (5) 5.3442 (4), 24.9746 (18), 10.3552 (7) 9.1219 (3), 8.6565 (2), 17.7935 (7) 34.4957 (2), 10.4262 (1), 37.9992 (3)
β (°) 92.868 (4) 93.167 (2) 99.789 (3) 92.195 (3) 115.604 (1)
V3) 848.61 (5) 1288.07 (5) 1361.98 (17) 1404.01 (8) 12324.7 (2)
Z 2 4 2 4 32
Radiation type Cu Kα Cu Kα Mo Kα Cu Kα Cu Kα
μ (mm−1) 2.87 2.18 0.23 4.70 0.69
Crystal size (mm) 0.35 × 0.20 × 0.07 0.29 × 0.10 × 0.08 0.32 × 0.26 × 0.12 0.40 × 0.34 × 0.20 0.44 × 0.23 × 0.18
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix Bruker APEXII CCD XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.])
Tmin, Tmax 0.609, 1.000 0.520, 1.000 0.354, 0.746 0.683, 1.000 0.582, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 31356, 1802, 1464 6439, 1325, 1253 19288, 4154, 3484 75253, 2983, 2806 219947, 12730, 8570
Rint 0.050 0.040 0.069 0.053 0.068
(sin θ/λ)max−1) 0.638 0.636 0.715 0.636 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.11 0.031, 0.084, 1.10 0.065, 0.178, 1.03 0.031, 0.087, 1.08 0.041, 0.138, 1.04
No. of reflections 1802 1325 4154 2983 12730
No. of parameters 101 87 176 164 897
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.33 0.31, −0.26 0.90, −0.75 0.22, −0.28 0.20, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.]), APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

2-({2-[(2-oxo-2-phenylethyl)sulfanyl]ethyl}sulfanyl)-1-phenylethan-1-one (Dtdpe) top
Crystal data top
C18H18O2S2F(000) = 348
Mr = 330.44Dx = 1.293 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 5.1639 (2) ÅCell parameters from 12805 reflections
b = 11.1078 (3) Åθ = 5.0–71.9°
c = 14.8132 (5) ŵ = 2.87 mm1
β = 92.868 (4)°T = 293 K
V = 848.61 (5) Å3Needle, colorless
Z = 20.35 × 0.20 × 0.07 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1802 independent reflections
Radiation source: micro-focus sealed X-ray tube1464 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.050
ω scansθmax = 79.4°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 56
Tmin = 0.609, Tmax = 1.000k = 1414
31356 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.1934P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1802 reflectionsΔρmax = 0.31 e Å3
101 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0069 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90030 (15)0.65689 (5)0.41185 (4)0.0972 (3)
O10.9474 (3)0.40238 (13)0.28528 (12)0.0942 (5)
C10.6998 (3)0.54507 (15)0.20170 (12)0.0614 (4)
C20.6625 (4)0.66376 (17)0.17434 (17)0.0782 (6)
H2A0.7712400.7240980.1977040.094*
C30.4623 (5)0.6917 (2)0.11208 (19)0.0959 (8)
H3A0.4377090.7710730.0935200.115*
C40.3009 (5)0.6039 (3)0.07775 (18)0.0982 (8)
H4A0.1666360.6237800.0362370.118*
C50.3357 (5)0.4880 (3)0.10394 (18)0.0938 (7)
H5A0.2250830.4285460.0802880.113*
C60.5327 (4)0.45782 (18)0.16503 (15)0.0761 (6)
H6A0.5550230.3778240.1822430.091*
C70.9099 (4)0.50813 (17)0.26744 (14)0.0686 (5)
C81.0720 (4)0.6011 (2)0.31667 (16)0.0836 (6)
H8A1.1078170.6669590.2761820.100*
H8B1.2359690.5659700.3378780.100*
C90.8729 (4)0.5233 (2)0.48053 (15)0.0811 (6)
H9A0.7617900.5411150.5297040.097*
H9B0.7896860.4605220.4440090.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1327 (6)0.0691 (4)0.0890 (5)0.0111 (3)0.0008 (4)0.0082 (3)
O10.1143 (12)0.0631 (9)0.1051 (12)0.0211 (8)0.0035 (9)0.0079 (8)
C10.0642 (10)0.0494 (9)0.0721 (11)0.0008 (7)0.0177 (8)0.0010 (7)
C20.0802 (13)0.0543 (10)0.1007 (15)0.0007 (9)0.0112 (11)0.0058 (10)
C30.1001 (17)0.0793 (15)0.1091 (18)0.0245 (13)0.0134 (14)0.0244 (13)
C40.0797 (15)0.126 (2)0.0889 (16)0.0098 (15)0.0025 (12)0.0061 (15)
C50.0895 (16)0.1012 (18)0.0905 (16)0.0138 (13)0.0010 (13)0.0110 (13)
C60.0873 (14)0.0603 (10)0.0821 (13)0.0068 (9)0.0169 (11)0.0046 (9)
C70.0727 (11)0.0590 (10)0.0757 (12)0.0051 (8)0.0191 (9)0.0035 (8)
C80.0812 (13)0.0869 (14)0.0827 (13)0.0123 (11)0.0042 (11)0.0109 (11)
C90.0735 (12)0.0924 (15)0.0778 (13)0.0020 (10)0.0091 (10)0.0050 (11)
Geometric parameters (Å, º) top
S1—C91.808 (2)C4—H4A0.9300
S1—C81.812 (2)C5—C61.369 (3)
O1—C71.217 (2)C5—H5A0.9300
C1—C21.390 (2)C6—H6A0.9300
C1—C61.390 (3)C7—C81.496 (3)
C1—C71.479 (3)C8—H8A0.9700
C2—C31.386 (4)C8—H8B0.9700
C2—H2A0.9300C9—C9i1.499 (4)
C3—C41.364 (4)C9—H9A0.9700
C3—H3A0.9300C9—H9B0.9700
C4—C51.354 (4)
C9—S1—C8102.24 (11)C5—C6—H6A119.5
C2—C1—C6118.23 (19)C1—C6—H6A119.5
C2—C1—C7122.79 (18)O1—C7—C1120.94 (19)
C6—C1—C7118.98 (17)O1—C7—C8118.8 (2)
C3—C2—C1119.7 (2)C1—C7—C8120.24 (17)
C3—C2—H2A120.2C7—C8—S1109.39 (14)
C1—C2—H2A120.2C7—C8—H8A109.8
C4—C3—C2120.6 (2)S1—C8—H8A109.8
C4—C3—H3A119.7C7—C8—H8B109.8
C2—C3—H3A119.7S1—C8—H8B109.8
C5—C4—C3120.2 (2)H8A—C8—H8B108.2
C5—C4—H4A119.9C9i—C9—S1114.1 (2)
C3—C4—H4A119.9C9i—C9—H9A108.7
C4—C5—C6120.4 (2)S1—C9—H9A108.7
C4—C5—H5A119.8C9i—C9—H9B108.7
C6—C5—H5A119.8S1—C9—H9B108.7
C5—C6—C1120.9 (2)H9A—C9—H9B107.6
C6—C1—C2—C30.0 (3)C2—C1—C7—O1175.08 (19)
C7—C1—C2—C3179.65 (19)C6—C1—C7—O14.6 (3)
C1—C2—C3—C40.3 (4)C2—C1—C7—C88.0 (3)
C2—C3—C4—C50.3 (4)C6—C1—C7—C8172.39 (18)
C3—C4—C5—C60.0 (4)O1—C7—C8—S195.6 (2)
C4—C5—C6—C10.3 (4)C1—C7—C8—S181.45 (19)
C2—C1—C6—C50.3 (3)C9—S1—C8—C762.91 (17)
C7—C1—C6—C5179.98 (19)C8—S1—C9—C9i66.3 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O10.972.613.229 (3)122
2-[(2-Oxo-2-phenylethyl)sulfanyl]-1-phenylethan-1-one (Mtdp) top
Crystal data top
C16H14O2SF(000) = 568
Mr = 270.33Dx = 1.394 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 13.1307 (3) ÅCell parameters from 4447 reflections
b = 5.0945 (1) Åθ = 4.0–78.5°
c = 19.2847 (5) ŵ = 2.18 mm1
β = 93.167 (2)°T = 100 K
V = 1288.07 (5) Å3Needle, colorless
Z = 40.29 × 0.10 × 0.08 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1325 independent reflections
Radiation source: micro-focus sealed X-ray tube1253 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.040
ω scansθmax = 78.7°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 1616
Tmin = 0.520, Tmax = 1.000k = 36
6439 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0391P)2 + 1.212P]
where P = (Fo2 + 2Fc2)/3
1325 reflections(Δ/σ)max < 0.001
87 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2500000.17578 (8)0.5000000.01674 (15)
O10.20435 (7)0.54273 (19)0.37979 (5)0.0200 (2)
C10.36196 (10)0.7651 (3)0.37252 (6)0.0147 (3)
C20.46477 (10)0.7866 (3)0.39467 (7)0.0179 (3)
H2A0.4929160.6692750.4288950.022*
C30.52617 (10)0.9778 (3)0.36713 (7)0.0199 (3)
H3A0.5958910.9916810.3826740.024*
C40.48543 (11)1.1487 (3)0.31683 (7)0.0195 (3)
H4A0.5271101.2810840.2983680.023*
C50.38376 (11)1.1265 (3)0.29345 (7)0.0191 (3)
H5A0.3564181.2416830.2584250.023*
C60.32204 (10)0.9363 (3)0.32117 (6)0.0163 (3)
H6A0.2524970.9224470.3052200.020*
C70.29217 (10)0.5669 (2)0.40208 (6)0.0149 (3)
C80.33651 (10)0.4024 (3)0.46252 (7)0.0159 (3)
H8C0.3631000.5229340.4994950.019*
H8A0.3951630.3017490.4463110.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0217 (3)0.0119 (2)0.0168 (2)0.0000.00301 (17)0.000
O10.0170 (5)0.0213 (5)0.0211 (5)0.0015 (4)0.0028 (4)0.0021 (4)
C10.0171 (6)0.0137 (6)0.0132 (6)0.0016 (5)0.0013 (5)0.0018 (5)
C20.0187 (7)0.0172 (6)0.0177 (7)0.0011 (5)0.0005 (5)0.0022 (5)
C30.0167 (6)0.0212 (7)0.0219 (7)0.0005 (5)0.0011 (5)0.0013 (5)
C40.0233 (7)0.0168 (6)0.0189 (7)0.0007 (5)0.0070 (5)0.0001 (5)
C50.0236 (7)0.0179 (6)0.0161 (6)0.0046 (5)0.0029 (5)0.0026 (5)
C60.0180 (6)0.0165 (6)0.0142 (6)0.0032 (5)0.0002 (5)0.0011 (5)
C70.0177 (6)0.0137 (6)0.0134 (6)0.0022 (5)0.0009 (5)0.0021 (5)
C80.0163 (6)0.0161 (6)0.0151 (6)0.0007 (5)0.0006 (5)0.0011 (5)
Geometric parameters (Å, º) top
S1—C81.7989 (13)C3—H3A0.9500
S1—C8i1.7990 (13)C4—C51.390 (2)
O1—C71.2145 (16)C4—H4A0.9500
C1—C21.3975 (18)C5—C61.3889 (19)
C1—C61.3998 (18)C5—H5A0.9500
C1—C71.4974 (18)C6—H6A0.9500
C2—C31.3887 (19)C7—C81.5247 (17)
C2—H2A0.9500C8—H8C0.9900
C3—C41.389 (2)C8—H8A0.9900
C8—S1—C8i100.17 (9)C6—C5—H5A119.9
C2—C1—C6119.01 (12)C4—C5—H5A119.9
C2—C1—C7122.52 (12)C5—C6—C1120.23 (12)
C6—C1—C7118.46 (11)C5—C6—H6A119.9
C3—C2—C1120.64 (12)C1—C6—H6A119.9
C3—C2—H2A119.7O1—C7—C1121.50 (11)
C1—C2—H2A119.7O1—C7—C8122.01 (12)
C4—C3—C2119.84 (12)C1—C7—C8116.48 (11)
C4—C3—H3A120.1C7—C8—S1115.90 (9)
C2—C3—H3A120.1C7—C8—H8C108.3
C3—C4—C5120.11 (13)S1—C8—H8C108.3
C3—C4—H4A119.9C7—C8—H8A108.3
C5—C4—H4A119.9S1—C8—H8A108.3
C6—C5—C4120.15 (12)H8C—C8—H8A107.4
C6—C1—C2—C31.1 (2)C2—C1—C7—O1176.36 (12)
C7—C1—C2—C3178.31 (12)C6—C1—C7—O14.20 (19)
C1—C2—C3—C40.3 (2)C2—C1—C7—C85.03 (18)
C2—C3—C4—C50.8 (2)C6—C1—C7—C8174.42 (11)
C3—C4—C5—C61.1 (2)O1—C7—C8—S11.35 (17)
C4—C5—C6—C10.3 (2)C1—C7—C8—S1177.26 (9)
C2—C1—C6—C50.78 (19)C8i—S1—C8—C767.02 (9)
C7—C1—C6—C5178.68 (11)
Symmetry code: (i) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O1i0.992.543.1981 (16)124
Symmetry code: (i) x+1/2, y, z+1.
2-[(2E,12E)-3,12-Diphenyl-14-(pyridin-2-yl)-5,10-dithia-1,2,13,14-tetraazatetradeca-2,12-dien-1-yl]pyridine (Prpsb) top
Crystal data top
C30H32N6S2F(000) = 572
Mr = 540.73Dx = 1.319 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.3442 (4) ÅCell parameters from 8046 reflections
b = 24.9746 (18) Åθ = 2.6–30.4°
c = 10.3552 (7) ŵ = 0.23 mm1
β = 99.789 (3)°T = 102 K
V = 1361.98 (17) Å3Plate, pale yellow
Z = 20.32 × 0.26 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3484 reflections with I > 2σ(I)
φ and ω scansRint = 0.069
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.5°, θmin = 2.2°
Tmin = 0.354, Tmax = 0.746h = 67
19288 measured reflectionsk = 3535
4154 independent reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: mixed
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1212P)2 + 0.2725P]
where P = (Fo2 + 2Fc2)/3
4154 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.75 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75046 (7)0.55513 (2)0.69891 (4)0.01721 (14)
N10.4346 (3)0.57053 (6)0.23082 (14)0.0256 (3)
N20.5016 (3)0.61895 (6)0.42101 (13)0.0204 (3)
H2N0.631 (6)0.5943 (11)0.450 (3)0.047 (8)*
C10.2926 (4)0.55830 (7)0.11510 (18)0.0291 (4)
H1B0.3554840.5319460.0626790.035*
C20.0619 (4)0.58139 (8)0.06730 (17)0.0313 (4)
H2B0.0326630.5710210.0150020.038*
N30.4048 (3)0.64814 (5)0.51246 (13)0.0191 (3)
C30.0285 (4)0.62047 (8)0.14345 (17)0.0310 (4)
H3B0.1874950.6371660.1136290.037*
C40.1141 (4)0.63494 (7)0.26283 (16)0.0249 (4)
H4A0.0578960.6620180.3156610.030*
C50.3441 (3)0.60811 (7)0.30249 (15)0.0199 (3)
C60.5411 (3)0.65214 (6)0.62770 (15)0.0171 (3)
C70.4265 (3)0.68234 (6)0.72588 (15)0.0184 (3)
C80.4766 (3)0.66702 (7)0.85775 (15)0.0226 (3)
H8A0.5940400.6390130.8849420.027*
C90.3552 (4)0.69260 (8)0.94918 (17)0.0273 (4)
H9A0.3871630.6812661.0380360.033*
C100.1887 (4)0.73432 (7)0.91210 (19)0.0290 (4)
H10A0.1075070.7518350.9751680.035*
C110.1408 (4)0.75049 (7)0.78141 (19)0.0287 (4)
H11A0.0274740.7793330.7554380.034*
C120.2582 (3)0.72460 (7)0.68881 (17)0.0234 (3)
H12A0.2236820.7357140.5998220.028*
C130.7972 (3)0.62633 (6)0.66728 (15)0.0180 (3)
H13A0.8898580.6437730.7471750.022*
H13B0.8987790.6304360.5963650.022*
C141.0577 (3)0.52837 (6)0.67878 (15)0.0193 (3)
H14A1.1921370.5528330.7219570.023*
H14B1.0824910.4933470.7239070.023*
C151.0888 (3)0.52097 (6)0.53639 (15)0.0193 (3)
H15A1.2664210.5104430.5336670.023*
H15B1.0573200.5556770.4903020.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0137 (2)0.0168 (2)0.0208 (2)0.00046 (12)0.00214 (14)0.00108 (11)
N10.0299 (8)0.0234 (7)0.0237 (7)0.0001 (6)0.0047 (6)0.0021 (5)
N20.0196 (7)0.0203 (7)0.0207 (6)0.0032 (5)0.0018 (5)0.0009 (5)
C10.0395 (11)0.0247 (8)0.0233 (8)0.0022 (7)0.0059 (7)0.0026 (6)
C20.0365 (10)0.0337 (10)0.0210 (8)0.0083 (8)0.0029 (7)0.0002 (6)
N30.0196 (7)0.0169 (6)0.0200 (6)0.0001 (5)0.0016 (5)0.0010 (4)
C30.0264 (9)0.0407 (11)0.0235 (8)0.0030 (8)0.0026 (7)0.0050 (7)
C40.0248 (8)0.0270 (8)0.0221 (8)0.0035 (7)0.0018 (6)0.0012 (6)
C50.0213 (8)0.0183 (7)0.0197 (7)0.0030 (6)0.0027 (5)0.0019 (5)
C60.0171 (7)0.0136 (6)0.0200 (7)0.0010 (5)0.0018 (5)0.0001 (5)
C70.0167 (7)0.0158 (6)0.0221 (7)0.0030 (5)0.0018 (5)0.0017 (5)
C80.0224 (8)0.0227 (7)0.0211 (7)0.0030 (6)0.0002 (6)0.0020 (5)
C90.0294 (9)0.0291 (9)0.0233 (8)0.0003 (7)0.0041 (7)0.0041 (6)
C100.0303 (9)0.0242 (8)0.0343 (9)0.0000 (7)0.0106 (7)0.0090 (7)
C110.0315 (9)0.0183 (7)0.0372 (10)0.0052 (7)0.0085 (7)0.0023 (6)
C120.0256 (8)0.0155 (7)0.0290 (8)0.0015 (6)0.0047 (7)0.0012 (5)
C130.0144 (7)0.0164 (7)0.0228 (7)0.0013 (5)0.0021 (5)0.0021 (5)
C140.0136 (7)0.0213 (7)0.0218 (7)0.0022 (6)0.0002 (5)0.0031 (5)
C150.0136 (7)0.0209 (7)0.0233 (7)0.0024 (6)0.0031 (5)0.0041 (5)
Geometric parameters (Å, º) top
S1—C141.8172 (16)C7—C81.400 (2)
S1—C131.8329 (16)C8—C91.391 (2)
N1—C51.337 (2)C8—H8A0.9500
N1—C11.340 (2)C9—C101.382 (3)
N2—N31.3647 (19)C9—H9A0.9500
N2—C51.392 (2)C10—C111.394 (3)
N2—H2N0.94 (3)C10—H10A0.9500
C1—C21.375 (3)C11—C121.391 (2)
C1—H1B0.9500C11—H11A0.9500
C2—C31.392 (3)C12—H12A0.9500
C2—H2B0.9500C13—H13A0.9900
N3—C61.292 (2)C13—H13B0.9900
C3—C41.385 (2)C14—C151.523 (2)
C3—H3B0.9500C14—H14A0.9900
C4—C51.399 (2)C14—H14B0.9900
C4—H4A0.9500C15—C15i1.524 (3)
C6—C71.479 (2)C15—H15A0.9900
C6—C131.505 (2)C15—H15B0.9900
C7—C121.397 (2)
C14—S1—C13100.55 (7)C10—C9—C8120.68 (17)
C5—N1—C1116.93 (17)C10—C9—H9A119.7
N3—N2—C5118.16 (14)C8—C9—H9A119.7
N3—N2—H2N118.3 (17)C9—C10—C11119.45 (16)
C5—N2—H2N117.3 (17)C9—C10—H10A120.3
N1—C1—C2124.27 (18)C11—C10—H10A120.3
N1—C1—H1B117.9C12—C11—C10120.30 (17)
C2—C1—H1B117.9C12—C11—H11A119.8
C1—C2—C3117.81 (17)C10—C11—H11A119.8
C1—C2—H2B121.1C11—C12—C7120.42 (16)
C3—C2—H2B121.1C11—C12—H12A119.8
C6—N3—N2117.49 (14)C7—C12—H12A119.8
C4—C3—C2119.83 (18)C6—C13—S1108.60 (10)
C4—C3—H3B120.1C6—C13—H13A110.0
C2—C3—H3B120.1S1—C13—H13A110.0
C3—C4—C5117.34 (17)C6—C13—H13B110.0
C3—C4—H4A121.3S1—C13—H13B110.0
C5—C4—H4A121.3H13A—C13—H13B108.4
N1—C5—N2113.84 (15)C15—C14—S1113.90 (11)
N1—C5—C4123.79 (15)C15—C14—H14A108.8
N2—C5—C4122.36 (15)S1—C14—H14A108.8
N3—C6—C7116.10 (14)C15—C14—H14B108.8
N3—C6—C13124.20 (14)S1—C14—H14B108.8
C7—C6—C13119.64 (13)H14A—C14—H14B107.7
C12—C7—C8118.80 (15)C14—C15—C15i113.63 (17)
C12—C7—C6121.24 (14)C14—C15—H15A108.8
C8—C7—C6119.89 (14)C15i—C15—H15A108.8
C9—C8—C7120.32 (16)C14—C15—H15B108.8
C9—C8—H8A119.8C15i—C15—H15B108.8
C7—C8—H8A119.8H15A—C15—H15B107.7
C5—N1—C1—C20.7 (3)N3—C6—C7—C8145.96 (16)
N1—C1—C2—C30.8 (3)C13—C6—C7—C831.4 (2)
C5—N2—N3—C6171.38 (14)C12—C7—C8—C91.7 (3)
C1—C2—C3—C40.3 (3)C6—C7—C8—C9175.23 (16)
C2—C3—C4—C51.3 (3)C7—C8—C9—C101.7 (3)
C1—N1—C5—N2179.72 (15)C8—C9—C10—C110.5 (3)
C1—N1—C5—C40.5 (3)C9—C10—C11—C120.5 (3)
N3—N2—C5—N1166.76 (14)C10—C11—C12—C70.4 (3)
N3—N2—C5—C414.0 (2)C8—C7—C12—C110.7 (3)
C3—C4—C5—N11.5 (3)C6—C7—C12—C11176.21 (16)
C3—C4—C5—N2179.37 (16)N3—C6—C13—S178.09 (17)
N2—N3—C6—C7177.79 (13)C7—C6—C13—S199.02 (14)
N2—N3—C6—C130.6 (2)C14—S1—C13—C6158.22 (11)
N3—C6—C7—C1230.9 (2)C13—S1—C14—C1579.10 (12)
C13—C6—C7—C12151.77 (15)S1—C14—C15—C15i65.2 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S10.94 (3)2.73 (3)3.3599 (15)126 (2)
C2—H2B···S1ii0.953.023.9489 (18)167
Symmetry code: (ii) x1, y, z1.
(3E,8Z)-3,9-Dimethyl-1,11-dithia-4,5,7,8-tetraazacyclotetradeca-3,8-diene-6-thione (Ctrsp) top
Crystal data top
C10H18N4S3F(000) = 616
Mr = 290.46Dx = 1.374 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.1219 (3) ÅCell parameters from 50347 reflections
b = 8.6565 (2) Åθ = 4.8–78.6°
c = 17.7935 (7) ŵ = 4.70 mm1
β = 92.195 (3)°T = 293 K
V = 1404.01 (8) Å3Block, pale yellow
Z = 40.40 × 0.34 × 0.20 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2983 independent reflections
Radiation source: micro-focus sealed X-ray tube2806 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.053
ω scansθmax = 78.9°, θmin = 4.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 1111
Tmin = 0.683, Tmax = 1.000k = 911
75253 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.3926P]
where P = (Fo2 + 2Fc2)/3
2983 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69762 (4)0.13162 (5)0.53637 (3)0.05242 (13)
S20.03160 (5)0.40185 (5)0.70320 (3)0.05621 (13)
S30.53376 (4)0.64536 (5)0.71956 (2)0.04978 (12)
N10.42456 (13)0.18596 (15)0.57232 (7)0.0421 (3)
H1N0.406 (2)0.098 (2)0.5560 (12)0.061 (6)*
N20.31058 (13)0.28979 (14)0.58268 (7)0.0408 (3)
N30.70338 (13)0.47426 (15)0.57665 (7)0.0434 (3)
N40.57215 (14)0.39538 (15)0.58005 (7)0.0423 (3)
H4N0.497 (2)0.433 (2)0.5967 (11)0.053 (5)*
C10.56086 (15)0.24457 (16)0.56344 (7)0.0378 (3)
C20.18561 (16)0.23626 (18)0.60005 (8)0.0431 (3)
C30.1472 (2)0.0727 (2)0.61565 (12)0.0641 (5)
H3A0.2353850.0144470.6257030.096*
H3B0.0948180.0297940.5727310.096*
H3C0.0867550.0682140.6585720.096*
C40.06794 (17)0.3563 (2)0.60637 (9)0.0486 (4)
H4A0.0215740.3191930.5813140.058*
H4B0.0976870.4496310.5809040.058*
C50.19995 (19)0.4978 (2)0.73331 (9)0.0519 (4)
H5A0.1975190.5169160.7869700.062*
H5B0.2814620.4287580.7249990.062*
C60.22813 (18)0.64884 (19)0.69410 (9)0.0497 (4)
H6A0.1409120.7127430.6954290.060*
H6B0.2476690.6286550.6418060.060*
C70.3568 (2)0.7359 (2)0.73024 (10)0.0557 (4)
H7A0.3403430.7472910.7834890.067*
H7B0.3595410.8386320.7086040.067*
C80.56680 (17)0.70076 (18)0.62292 (9)0.0458 (3)
H8A0.4819770.6750510.5908060.055*
H8B0.5826170.8113840.6201250.055*
C90.69942 (17)0.61676 (17)0.59655 (8)0.0422 (3)
C100.83900 (18)0.7069 (2)0.59552 (10)0.0535 (4)
H10A0.9130130.6463240.5724040.080*
H10B0.8707660.7320080.6461140.080*
H10C0.8228890.8004190.5673730.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0416 (2)0.0428 (2)0.0728 (3)0.00578 (15)0.00102 (17)0.01643 (18)
S20.0541 (2)0.0559 (3)0.0599 (2)0.00071 (18)0.01997 (18)0.00550 (18)
S30.0529 (2)0.0508 (2)0.0451 (2)0.00232 (16)0.00629 (16)0.00093 (15)
N10.0419 (6)0.0334 (6)0.0512 (7)0.0007 (5)0.0045 (5)0.0070 (5)
N20.0404 (6)0.0378 (6)0.0444 (6)0.0041 (5)0.0031 (5)0.0043 (5)
N30.0411 (6)0.0389 (7)0.0499 (7)0.0008 (5)0.0008 (5)0.0034 (5)
N40.0393 (6)0.0355 (6)0.0519 (7)0.0006 (5)0.0022 (5)0.0060 (5)
C10.0424 (7)0.0348 (7)0.0360 (6)0.0024 (5)0.0017 (5)0.0027 (5)
C20.0436 (7)0.0431 (8)0.0429 (7)0.0008 (6)0.0048 (6)0.0054 (6)
C30.0620 (11)0.0471 (10)0.0850 (13)0.0051 (8)0.0263 (9)0.0033 (9)
C40.0416 (8)0.0504 (9)0.0538 (9)0.0029 (6)0.0037 (6)0.0048 (7)
C50.0585 (9)0.0528 (10)0.0447 (8)0.0045 (7)0.0051 (7)0.0026 (7)
C60.0497 (8)0.0459 (9)0.0537 (9)0.0083 (7)0.0022 (7)0.0051 (7)
C70.0647 (10)0.0457 (9)0.0567 (9)0.0047 (8)0.0035 (7)0.0161 (7)
C80.0525 (8)0.0349 (8)0.0496 (8)0.0043 (6)0.0025 (6)0.0012 (6)
C90.0466 (8)0.0356 (7)0.0441 (7)0.0003 (6)0.0044 (6)0.0008 (6)
C100.0516 (9)0.0419 (9)0.0666 (10)0.0049 (7)0.0036 (7)0.0015 (7)
Geometric parameters (Å, º) top
S1—C11.6704 (14)C4—H4A0.9700
S2—C51.8091 (18)C4—H4B0.9700
S2—C41.8104 (17)C5—C61.508 (2)
S3—C71.8109 (18)C5—H5A0.9700
S3—C81.8214 (16)C5—H5B0.9700
N1—C11.3577 (18)C6—C71.517 (2)
N1—N21.3919 (17)C6—H6A0.9700
N1—H1N0.83 (2)C6—H6B0.9700
N2—C21.2794 (19)C7—H7A0.9700
N3—C91.2843 (19)C7—H7B0.9700
N3—N41.3814 (18)C8—C91.502 (2)
N4—C11.3416 (19)C8—H8A0.9700
N4—H4N0.83 (2)C8—H8B0.9700
C2—C31.487 (2)C9—C101.494 (2)
C2—C41.501 (2)C10—H10A0.9600
C3—H3A0.9600C10—H10B0.9600
C3—H3B0.9600C10—H10C0.9600
C3—H3C0.9600
C5—S2—C4101.40 (7)C6—C5—H5B108.6
C7—S3—C899.53 (8)S2—C5—H5B108.6
C1—N1—N2117.78 (12)H5A—C5—H5B107.6
C1—N1—H1N118.5 (14)C5—C6—C7112.15 (14)
N2—N1—H1N119.7 (14)C5—C6—H6A109.2
C2—N2—N1118.37 (13)C7—C6—H6A109.2
C9—N3—N4115.41 (13)C5—C6—H6B109.2
C1—N4—N3122.05 (13)C7—C6—H6B109.2
C1—N4—H4N114.1 (14)H6A—C6—H6B107.9
N3—N4—H4N123.6 (14)C6—C7—S3114.77 (11)
N4—C1—N1113.64 (13)C6—C7—H7A108.6
N4—C1—S1125.54 (11)S3—C7—H7A108.6
N1—C1—S1120.81 (11)C6—C7—H7B108.6
N2—C2—C3127.45 (14)S3—C7—H7B108.6
N2—C2—C4114.43 (14)H7A—C7—H7B107.6
C3—C2—C4118.10 (14)C9—C8—S3109.38 (10)
C2—C3—H3A109.5C9—C8—H8A109.8
C2—C3—H3B109.5S3—C8—H8A109.8
H3A—C3—H3B109.5C9—C8—H8B109.8
C2—C3—H3C109.5S3—C8—H8B109.8
H3A—C3—H3C109.5H8A—C8—H8B108.2
H3B—C3—H3C109.5N3—C9—C10117.74 (14)
C2—C4—S2112.30 (11)N3—C9—C8125.64 (14)
C2—C4—H4A109.1C10—C9—C8116.61 (13)
S2—C4—H4A109.1C9—C10—H10A109.5
C2—C4—H4B109.1C9—C10—H10B109.5
S2—C4—H4B109.1H10A—C10—H10B109.5
H4A—C4—H4B107.9C9—C10—H10C109.5
C6—C5—S2114.76 (12)H10A—C10—H10C109.5
C6—C5—H5A108.6H10B—C10—H10C109.5
S2—C5—H5A108.6
C1—N1—N2—C2171.77 (13)C5—S2—C4—C268.26 (13)
C9—N3—N4—C1177.66 (14)C4—S2—C5—C665.09 (13)
N3—N4—C1—N1177.97 (12)S2—C5—C6—C7170.72 (11)
N3—N4—C1—S10.4 (2)C5—C6—C7—S367.92 (17)
N2—N1—C1—N411.94 (18)C8—S3—C7—C678.04 (15)
N2—N1—C1—S1169.57 (10)C7—S3—C8—C9171.14 (11)
N1—N2—C2—C34.1 (2)N4—N3—C9—C10178.75 (13)
N1—N2—C2—C4177.19 (12)N4—N3—C9—C80.4 (2)
N2—C2—C4—S2103.13 (14)S3—C8—C9—N376.54 (17)
C3—C2—C4—S275.67 (17)S3—C8—C9—C10101.80 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.83 (2)2.73 (2)3.5178 (14)160.4 (19)
N4—H4N···S30.83 (2)2.864 (19)3.3218 (13)116.9 (15)
N4—H4N···N20.83 (2)2.11 (2)2.5572 (18)113.5 (16)
C6—H6A···S2ii0.972.943.7524 (17)142
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+3/2.
2-((2E)-2-{(2Z)-2-Phenyl-2-[2-(pyridin-2-yl)hydrazin-1-ylidene]ethylidene}hydrazin-1-yl)pyridine (Dhpk) top
Crystal data top
C18H16N6F(000) = 5312
Mr = 316.37Dx = 1.364 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 34.4957 (2) ÅCell parameters from 70062 reflections
b = 10.4262 (1) Åθ = 2.9–76.2°
c = 37.9992 (3) ŵ = 0.69 mm1
β = 115.604 (1)°T = 100 K
V = 12324.7 (2) Å3Thick needle, colorless
Z = 320.44 × 0.23 × 0.18 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
12730 independent reflections
Radiation source: micro-focus sealed X-ray tube8570 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.068
ω scansθmax = 76.3°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 4343
Tmin = 0.582, Tmax = 1.000k = 1313
219947 measured reflectionsl = 4745
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0792P)2 + 2.6809P]
where P = (Fo2 + 2Fc2)/3
12730 reflections(Δ/σ)max = 0.001
897 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.38832 (3)1.55230 (8)0.28953 (3)0.0202 (2)
N2A0.35056 (3)1.43696 (8)0.23398 (3)0.0194 (2)
H2NA0.3415 (5)1.3897 (14)0.2487 (5)0.038 (4)*
N3A0.33946 (3)1.41244 (8)0.19619 (3)0.0190 (2)
N4A0.30205 (3)1.23606 (8)0.23274 (3)0.0186 (2)
N5A0.28486 (3)1.14681 (8)0.24767 (3)0.0189 (2)
H5NA0.2673 (4)1.0824 (13)0.2329 (4)0.027 (3)*
N6A0.27820 (3)1.05544 (8)0.29969 (3)0.0193 (2)
C1A0.41346 (3)1.65258 (10)0.30759 (3)0.0216 (2)
H1AA0.4201731.6662780.3343220.026*
C2A0.43024 (3)1.73737 (10)0.28968 (4)0.0225 (2)
H2AA0.4474051.8080950.3035570.027*
C3A0.42120 (4)1.71584 (10)0.25076 (4)0.0228 (2)
H3AA0.4327641.7709050.2377720.027*
C4A0.39530 (3)1.61387 (10)0.23112 (3)0.0202 (2)
H4AA0.3887591.5968350.2045870.024*
C5A0.37900 (3)1.53633 (9)0.25186 (3)0.0182 (2)
C6A0.31404 (3)1.31595 (10)0.17903 (3)0.0179 (2)
C7A0.30655 (3)1.29757 (9)0.13773 (3)0.0187 (2)
C8A0.33945 (3)1.32872 (10)0.12689 (3)0.0241 (2)
H8AA0.3662841.3584820.1461180.029*
C9A0.33336 (4)1.31672 (10)0.08863 (3)0.0267 (2)
H9AA0.3560051.3377380.0817680.032*
C10A0.29409 (4)1.27388 (10)0.06010 (3)0.0236 (2)
H10A0.2897571.2664950.0337300.028*
C11A0.26143 (3)1.24215 (9)0.07046 (3)0.0227 (2)
H11A0.2345951.2129290.0511040.027*
C12A0.26767 (3)1.25277 (9)0.10901 (3)0.0211 (2)
H12A0.2452021.2292540.1158590.025*
C13A0.29491 (3)1.22636 (10)0.19650 (3)0.0188 (2)
H13A0.2768561.1596230.1809770.023*
C14A0.29536 (3)1.15010 (9)0.28698 (3)0.0176 (2)
C15A0.32216 (4)1.24571 (10)0.31184 (4)0.0215 (2)
H15A0.3333691.3125850.3019480.026*
C16A0.33160 (3)1.23925 (10)0.35092 (4)0.0222 (2)
H16A0.3496701.3021520.3684090.027*
C17A0.31470 (3)1.14062 (10)0.36488 (3)0.0216 (2)
H17A0.3211361.1339790.3917800.026*
C18A0.28820 (3)1.05297 (10)0.33793 (3)0.0213 (2)
H18A0.2762230.9862500.3471490.026*
N1C0.63757 (3)0.29748 (8)0.54010 (3)0.0212 (2)
N2C0.59888 (3)0.18330 (8)0.48453 (3)0.0198 (2)
H2NC0.5905 (5)0.1328 (14)0.4994 (5)0.040 (4)*
N3C0.58684 (3)0.15853 (8)0.44649 (3)0.0191 (2)
N4C0.55372 (3)0.02391 (8)0.48561 (3)0.0192 (2)
N5C0.53575 (3)0.11109 (8)0.50049 (3)0.0196 (2)
H5NC0.5169 (4)0.1721 (13)0.4856 (4)0.029 (3)*
N6C0.52555 (3)0.19348 (8)0.55182 (3)0.0192 (2)
C1C0.66273 (3)0.39810 (10)0.55801 (3)0.0221 (2)
H1CA0.6703060.4103000.5849640.026*
C2C0.67835 (3)0.48522 (10)0.53975 (4)0.0228 (2)
H2CA0.6958790.5552650.5536800.027*
C3C0.66754 (3)0.46673 (10)0.50039 (4)0.0221 (2)
H3CA0.6780670.5237370.4870210.027*
C4C0.64143 (3)0.36514 (10)0.48077 (3)0.0201 (2)
H4CA0.6336030.3507450.4538600.024*
C5C0.62684 (3)0.28381 (9)0.50203 (3)0.0184 (2)
C6C0.56252 (3)0.05870 (10)0.43043 (3)0.0189 (2)
C7C0.55180 (3)0.04087 (10)0.38843 (3)0.0199 (2)
C8C0.54561 (3)0.14741 (10)0.36438 (3)0.0234 (2)
H8CA0.5472990.2312060.3747670.028*
C9C0.53700 (3)0.13210 (11)0.32546 (3)0.0272 (2)
H9CA0.5328700.2054950.3094150.033*
C10C0.53438 (4)0.01059 (12)0.30973 (4)0.0286 (3)
H10C0.5284360.0003560.2830380.034*
C11C0.54057 (4)0.09623 (11)0.33357 (3)0.0302 (3)
H11C0.5389740.1797980.3230700.036*
C12C0.54905 (3)0.08167 (10)0.37255 (3)0.0254 (2)
H12C0.5529950.1552340.3884900.030*
C13C0.54529 (3)0.03240 (10)0.44911 (3)0.0192 (2)
H13C0.5273420.0999970.4340040.023*
C14C0.54512 (3)0.10451 (9)0.53950 (3)0.0184 (2)
C15C0.57312 (4)0.01118 (10)0.56450 (4)0.0214 (2)
H15C0.5865070.0505810.5549940.026*
C16C0.58046 (4)0.01232 (10)0.60312 (4)0.0226 (2)
H16C0.5993180.0489570.6207160.027*
C17C0.56027 (3)0.10325 (10)0.61644 (3)0.0220 (2)
H17C0.5647330.1049340.6429150.026*
C18C0.53352 (4)0.19079 (10)0.58964 (3)0.0221 (2)
H18C0.5198520.2533270.5986020.026*
N1B0.35843 (3)0.79933 (8)0.45970 (3)0.0233 (2)
N2B0.40002 (3)0.69341 (8)0.51614 (3)0.0192 (2)
H2NB0.4088 (5)0.6457 (14)0.5020 (5)0.041 (4)*
N3B0.41090 (3)0.66739 (8)0.55379 (3)0.0187 (2)
N4B0.44785 (3)0.49019 (8)0.51685 (3)0.0184 (2)
N5B0.46443 (3)0.39976 (8)0.50175 (3)0.0186 (2)
H5NB0.4815 (4)0.3347 (14)0.5164 (4)0.032 (4)*
N6B0.47035 (3)0.30701 (8)0.44954 (3)0.0191 (2)
C1B0.32985 (4)0.89161 (10)0.44079 (4)0.0267 (3)
H1BA0.3214660.9013910.4136100.032*
C2B0.31182 (4)0.97331 (10)0.45825 (4)0.0267 (3)
H2BA0.2919761.0378960.4436000.032*
C3B0.32361 (4)0.95809 (10)0.49786 (4)0.0256 (3)
H3BA0.3116811.0121850.5107720.031*
C4B0.35278 (3)0.86384 (10)0.51841 (3)0.0216 (2)
H4BA0.3611560.8510010.5454730.026*
C5B0.36959 (3)0.78782 (9)0.49783 (3)0.0190 (2)
C6B0.43606 (3)0.57003 (10)0.57072 (3)0.0182 (2)
C7B0.44320 (3)0.54996 (9)0.61183 (3)0.0184 (2)
C8B0.40987 (3)0.57859 (10)0.62239 (3)0.0238 (2)
H8BA0.3830130.6079480.6030950.029*
C9B0.41565 (3)0.56458 (10)0.66051 (3)0.0265 (2)
H9BA0.3927060.5836420.6671660.032*
C10B0.45486 (4)0.52273 (10)0.68918 (3)0.0232 (2)
H10B0.4589230.5142970.7154450.028*
C11B0.48797 (3)0.49342 (9)0.67915 (3)0.0229 (2)
H11B0.5148560.4649980.6986330.027*
C12B0.48205 (3)0.50541 (9)0.64069 (3)0.0208 (2)
H12B0.5047330.4829980.6340180.025*
C13B0.45480 (3)0.48006 (10)0.55295 (3)0.0186 (2)
H13B0.4725170.4124840.5683140.022*
C14B0.45402 (3)0.40337 (9)0.46254 (3)0.0176 (2)
C15B0.42796 (3)0.50061 (10)0.43773 (3)0.0204 (2)
H15B0.4174630.5689120.4477490.025*
C16B0.41818 (3)0.49377 (10)0.39860 (4)0.0221 (2)
H16B0.4005200.5575430.3811900.027*
C17B0.43421 (3)0.39316 (10)0.38450 (3)0.0214 (2)
H17B0.4275420.3861360.3575590.026*
C18B0.46014 (3)0.30422 (10)0.41127 (3)0.0213 (2)
H18B0.4715400.2363590.4019130.026*
N1D0.10914 (3)0.45502 (8)0.20909 (3)0.0233 (2)
N2D0.15201 (3)0.55943 (8)0.26544 (3)0.0191 (2)
H2ND0.1592 (5)0.6113 (13)0.2499 (4)0.034 (4)*
N3D0.16401 (3)0.58494 (8)0.30346 (3)0.0184 (2)
N4D0.19627 (3)0.76900 (8)0.26387 (3)0.0187 (2)
N5D0.21366 (3)0.85741 (8)0.24885 (3)0.0188 (2)
H5ND0.2330 (4)0.9205 (13)0.2641 (4)0.026 (3)*
N6D0.22285 (3)0.94237 (8)0.19732 (3)0.0190 (2)
C1D0.08078 (4)0.36228 (10)0.19044 (4)0.0264 (3)
H1DA0.0712320.3549340.1630360.032*
C2D0.06448 (4)0.27662 (10)0.20835 (4)0.0261 (3)
H2DA0.0445300.2121550.1937750.031*
C3D0.07822 (4)0.28790 (10)0.24838 (4)0.0252 (3)
H3DA0.0676700.2307920.2616990.030*
C4D0.10731 (3)0.38255 (10)0.26873 (4)0.0210 (2)
H4DA0.1170560.3923470.2960910.025*
C5D0.12196 (3)0.46366 (9)0.24760 (3)0.0188 (2)
C6D0.18802 (3)0.68536 (10)0.31927 (3)0.0180 (2)
C7D0.19845 (3)0.70459 (10)0.36115 (3)0.0198 (2)
C8D0.20520 (3)0.59891 (10)0.38562 (3)0.0232 (2)
H8DA0.2042240.5149040.3755830.028*
C9D0.21331 (3)0.61498 (11)0.42438 (3)0.0272 (2)
H9DA0.2179150.5420930.4407120.033*
C10D0.21475 (4)0.73719 (12)0.43949 (4)0.0287 (3)
H10D0.2202060.7482490.4660390.034*
C11D0.20813 (4)0.84297 (11)0.41537 (3)0.0306 (3)
H11D0.2090480.9267410.4255350.037*
C12D0.20019 (3)0.82762 (10)0.37654 (3)0.0258 (2)
H12D0.1959380.9007690.3603760.031*
C13D0.20478 (3)0.77732 (10)0.30042 (3)0.0188 (2)
H13D0.2224950.8454360.3154550.023*
C14D0.20430 (3)0.85119 (9)0.20987 (3)0.0178 (2)
C15D0.17704 (3)0.75587 (10)0.18506 (3)0.0204 (2)
H15D0.1644770.6922620.1947810.025*
C16D0.16925 (3)0.75805 (10)0.14632 (4)0.0218 (2)
H16D0.1508260.6957760.1288180.026*
C17D0.18838 (3)0.85154 (10)0.13275 (3)0.0221 (2)
H17D0.1835570.8541810.1061830.027*
C18D0.21459 (4)0.94015 (10)0.15945 (3)0.0217 (2)
H18D0.2277021.0039990.1503450.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0224 (5)0.0204 (4)0.0189 (5)0.0015 (3)0.0098 (4)0.0002 (4)
N2A0.0238 (5)0.0189 (4)0.0175 (5)0.0025 (3)0.0107 (4)0.0008 (4)
N3A0.0227 (5)0.0189 (4)0.0171 (5)0.0004 (3)0.0102 (4)0.0000 (4)
N4A0.0198 (4)0.0181 (4)0.0207 (5)0.0015 (3)0.0114 (4)0.0025 (4)
N5A0.0214 (5)0.0174 (4)0.0199 (5)0.0023 (3)0.0108 (4)0.0000 (4)
N6A0.0214 (5)0.0179 (4)0.0193 (5)0.0009 (3)0.0094 (4)0.0017 (4)
C1A0.0225 (5)0.0232 (5)0.0191 (6)0.0018 (4)0.0091 (5)0.0018 (4)
C2A0.0207 (5)0.0202 (5)0.0258 (7)0.0007 (4)0.0093 (5)0.0036 (4)
C3A0.0232 (6)0.0210 (5)0.0265 (7)0.0001 (4)0.0128 (5)0.0024 (4)
C4A0.0208 (5)0.0216 (5)0.0191 (6)0.0013 (4)0.0095 (5)0.0015 (4)
C5A0.0184 (5)0.0173 (5)0.0199 (6)0.0025 (4)0.0092 (5)0.0005 (4)
C6A0.0183 (5)0.0180 (5)0.0186 (6)0.0017 (4)0.0090 (5)0.0004 (4)
C7A0.0229 (5)0.0158 (4)0.0197 (6)0.0012 (4)0.0113 (5)0.0005 (4)
C8A0.0231 (5)0.0272 (5)0.0240 (6)0.0043 (4)0.0122 (5)0.0039 (4)
C9A0.0275 (6)0.0310 (5)0.0279 (6)0.0046 (4)0.0180 (5)0.0040 (4)
C10A0.0303 (6)0.0244 (5)0.0190 (6)0.0005 (4)0.0134 (5)0.0023 (4)
C11A0.0228 (5)0.0223 (5)0.0221 (6)0.0013 (4)0.0089 (4)0.0010 (4)
C12A0.0217 (5)0.0204 (4)0.0235 (6)0.0001 (4)0.0120 (4)0.0010 (4)
C13A0.0188 (5)0.0181 (5)0.0200 (6)0.0005 (4)0.0087 (5)0.0001 (4)
C14A0.0177 (5)0.0177 (5)0.0189 (6)0.0035 (4)0.0092 (5)0.0011 (4)
C15A0.0237 (5)0.0196 (5)0.0243 (7)0.0016 (4)0.0133 (5)0.0004 (4)
C16A0.0220 (5)0.0222 (5)0.0229 (6)0.0013 (4)0.0103 (5)0.0046 (4)
C17A0.0224 (5)0.0233 (5)0.0193 (6)0.0022 (4)0.0091 (5)0.0005 (4)
C18A0.0245 (6)0.0199 (5)0.0210 (6)0.0011 (4)0.0112 (5)0.0028 (4)
N1C0.0231 (5)0.0220 (4)0.0197 (6)0.0014 (4)0.0104 (4)0.0004 (4)
N2C0.0250 (5)0.0204 (4)0.0166 (5)0.0029 (4)0.0113 (4)0.0008 (4)
N3C0.0223 (5)0.0192 (4)0.0178 (5)0.0006 (3)0.0106 (4)0.0001 (4)
N4C0.0214 (5)0.0177 (4)0.0220 (5)0.0005 (3)0.0126 (4)0.0023 (4)
N5C0.0232 (5)0.0184 (4)0.0196 (5)0.0032 (4)0.0116 (4)0.0007 (4)
N6C0.0222 (5)0.0179 (4)0.0187 (5)0.0004 (3)0.0099 (4)0.0010 (4)
C1C0.0218 (5)0.0245 (5)0.0196 (6)0.0018 (4)0.0087 (5)0.0026 (4)
C2C0.0211 (5)0.0210 (5)0.0262 (6)0.0001 (4)0.0100 (5)0.0038 (4)
C3C0.0216 (5)0.0207 (5)0.0273 (6)0.0017 (4)0.0136 (5)0.0015 (4)
C4C0.0216 (5)0.0213 (5)0.0195 (6)0.0024 (4)0.0108 (5)0.0010 (4)
C5C0.0178 (5)0.0180 (5)0.0199 (6)0.0030 (4)0.0086 (5)0.0004 (4)
C6C0.0190 (5)0.0202 (5)0.0190 (6)0.0015 (4)0.0096 (5)0.0014 (4)
C7C0.0171 (5)0.0242 (5)0.0190 (6)0.0005 (4)0.0085 (5)0.0005 (4)
C8C0.0234 (5)0.0253 (5)0.0241 (6)0.0019 (4)0.0126 (5)0.0020 (4)
C9C0.0262 (6)0.0346 (6)0.0230 (6)0.0055 (4)0.0126 (5)0.0071 (4)
C10C0.0265 (6)0.0418 (6)0.0171 (6)0.0038 (5)0.0091 (5)0.0013 (5)
C11C0.0342 (6)0.0310 (6)0.0261 (6)0.0005 (5)0.0137 (5)0.0053 (5)
C12C0.0290 (6)0.0245 (5)0.0229 (6)0.0006 (4)0.0114 (5)0.0000 (4)
C13C0.0214 (5)0.0177 (5)0.0191 (6)0.0001 (4)0.0093 (5)0.0005 (4)
C14C0.0196 (5)0.0171 (5)0.0204 (6)0.0039 (4)0.0104 (5)0.0016 (4)
C15C0.0245 (5)0.0204 (5)0.0223 (6)0.0018 (4)0.0130 (5)0.0007 (4)
C16C0.0251 (6)0.0204 (5)0.0229 (6)0.0012 (4)0.0110 (5)0.0024 (4)
C17C0.0257 (6)0.0233 (5)0.0171 (6)0.0011 (4)0.0095 (5)0.0006 (4)
C18C0.0261 (6)0.0205 (5)0.0217 (6)0.0000 (4)0.0124 (5)0.0022 (4)
N1B0.0301 (5)0.0211 (4)0.0193 (6)0.0013 (4)0.0113 (4)0.0013 (4)
N2B0.0241 (5)0.0188 (4)0.0168 (5)0.0027 (3)0.0107 (4)0.0011 (4)
N3B0.0218 (5)0.0189 (4)0.0164 (5)0.0007 (3)0.0092 (4)0.0004 (4)
N4B0.0190 (4)0.0179 (4)0.0209 (5)0.0015 (3)0.0110 (4)0.0024 (4)
N5B0.0213 (5)0.0175 (4)0.0190 (5)0.0019 (3)0.0107 (4)0.0005 (4)
N6B0.0204 (5)0.0184 (4)0.0190 (5)0.0004 (3)0.0090 (4)0.0017 (4)
C1B0.0336 (6)0.0247 (5)0.0205 (6)0.0036 (4)0.0105 (5)0.0034 (4)
C2B0.0282 (6)0.0232 (5)0.0273 (7)0.0055 (4)0.0105 (5)0.0047 (5)
C3B0.0274 (6)0.0235 (5)0.0283 (7)0.0024 (4)0.0144 (5)0.0016 (5)
C4B0.0234 (5)0.0235 (5)0.0195 (6)0.0001 (4)0.0107 (5)0.0002 (4)
C5B0.0203 (5)0.0175 (5)0.0199 (6)0.0026 (4)0.0092 (5)0.0005 (4)
C6B0.0187 (5)0.0191 (5)0.0176 (6)0.0015 (4)0.0086 (5)0.0006 (4)
C7B0.0222 (5)0.0162 (4)0.0183 (6)0.0009 (4)0.0101 (5)0.0007 (4)
C8B0.0218 (5)0.0281 (5)0.0225 (6)0.0034 (4)0.0105 (4)0.0034 (4)
C9B0.0263 (6)0.0309 (5)0.0279 (6)0.0044 (4)0.0171 (5)0.0034 (4)
C10B0.0294 (6)0.0244 (5)0.0187 (6)0.0011 (4)0.0132 (5)0.0024 (4)
C11B0.0233 (5)0.0217 (5)0.0230 (6)0.0016 (4)0.0094 (4)0.0013 (4)
C12B0.0214 (5)0.0206 (4)0.0226 (6)0.0005 (4)0.0115 (4)0.0001 (4)
C13B0.0201 (5)0.0175 (5)0.0192 (6)0.0000 (4)0.0095 (5)0.0003 (4)
C14B0.0171 (5)0.0182 (5)0.0190 (6)0.0036 (4)0.0092 (5)0.0010 (4)
C15B0.0236 (5)0.0185 (5)0.0228 (6)0.0002 (4)0.0134 (5)0.0001 (4)
C16B0.0227 (6)0.0221 (5)0.0226 (6)0.0002 (4)0.0108 (5)0.0033 (4)
C17B0.0218 (5)0.0248 (5)0.0182 (6)0.0027 (4)0.0090 (5)0.0010 (4)
C18B0.0228 (5)0.0217 (5)0.0204 (6)0.0019 (4)0.0103 (5)0.0032 (4)
N1D0.0300 (5)0.0206 (4)0.0195 (6)0.0006 (4)0.0109 (4)0.0005 (4)
N2D0.0239 (5)0.0186 (4)0.0169 (5)0.0014 (3)0.0109 (4)0.0002 (4)
N3D0.0212 (5)0.0190 (4)0.0170 (5)0.0013 (3)0.0100 (4)0.0001 (4)
N4D0.0194 (4)0.0180 (4)0.0215 (5)0.0012 (3)0.0115 (4)0.0026 (4)
N5D0.0211 (5)0.0188 (4)0.0186 (5)0.0027 (3)0.0105 (4)0.0006 (4)
N6D0.0210 (5)0.0184 (4)0.0186 (5)0.0014 (3)0.0095 (4)0.0020 (4)
C1D0.0347 (6)0.0227 (5)0.0201 (6)0.0025 (4)0.0104 (5)0.0026 (4)
C2D0.0281 (6)0.0217 (5)0.0280 (7)0.0039 (4)0.0116 (5)0.0051 (5)
C3D0.0278 (6)0.0217 (5)0.0311 (7)0.0018 (4)0.0173 (6)0.0007 (5)
C4D0.0228 (5)0.0209 (5)0.0220 (6)0.0013 (4)0.0123 (5)0.0005 (4)
C5D0.0209 (5)0.0171 (5)0.0200 (6)0.0025 (4)0.0103 (5)0.0003 (4)
C6D0.0180 (5)0.0186 (5)0.0188 (6)0.0020 (4)0.0093 (5)0.0009 (4)
C7D0.0176 (5)0.0242 (5)0.0183 (6)0.0003 (4)0.0083 (5)0.0006 (4)
C8D0.0234 (5)0.0250 (5)0.0230 (6)0.0028 (4)0.0118 (5)0.0020 (4)
C9D0.0256 (6)0.0347 (6)0.0232 (6)0.0054 (4)0.0123 (5)0.0068 (4)
C10D0.0277 (6)0.0413 (6)0.0171 (6)0.0029 (5)0.0096 (5)0.0013 (5)
C11D0.0350 (6)0.0308 (6)0.0256 (6)0.0006 (5)0.0128 (5)0.0064 (5)
C12D0.0294 (6)0.0244 (5)0.0246 (6)0.0013 (4)0.0127 (5)0.0007 (4)
C13D0.0190 (5)0.0191 (5)0.0186 (6)0.0004 (4)0.0084 (5)0.0000 (4)
C14D0.0175 (5)0.0169 (5)0.0201 (6)0.0036 (4)0.0092 (5)0.0013 (4)
C15D0.0227 (5)0.0188 (5)0.0228 (6)0.0005 (4)0.0127 (5)0.0000 (4)
C16D0.0232 (6)0.0201 (5)0.0227 (6)0.0008 (4)0.0105 (5)0.0027 (4)
C17D0.0262 (6)0.0229 (5)0.0179 (6)0.0013 (4)0.0101 (5)0.0013 (4)
C18D0.0249 (6)0.0199 (5)0.0223 (6)0.0003 (4)0.0120 (5)0.0031 (4)
Geometric parameters (Å, º) top
N1A—C5A1.3349 (15)N1B—C5B1.3338 (15)
N1A—C1A1.3424 (14)N1B—C1B1.3423 (15)
N2A—N3A1.3410 (13)N2B—N3B1.3405 (13)
N2A—C5A1.3861 (14)N2B—C5B1.3869 (14)
N2A—H2NA0.896 (15)N2B—H2NB0.875 (15)
N3A—C6A1.3085 (14)N3B—C6B1.3095 (13)
N4A—C13A1.2936 (15)N4B—C13B1.2907 (15)
N4A—N5A1.3530 (12)N4B—N5B1.3523 (12)
N5A—C14A1.3768 (15)N5B—C14B1.3743 (15)
N5A—H5NA0.916 (14)N5B—H5NB0.912 (15)
N6A—C18A1.3410 (15)N6B—C18B1.3404 (15)
N6A—C14A1.3433 (13)N6B—C14B1.3458 (13)
C1A—C2A1.3857 (15)C1B—C2B1.3817 (16)
C1A—H1AA0.9500C1B—H1BA0.9500
C2A—C3A1.3914 (17)C2B—C3B1.3883 (17)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.3817 (15)C3B—C4B1.3816 (16)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.4050 (14)C4B—C5B1.4028 (15)
C4A—H4AA0.9500C4B—H4BA0.9500
C6A—C13A1.4586 (14)C6B—C13B1.4596 (14)
C6A—C7A1.4884 (16)C6B—C7B1.4875 (15)
C7A—C12A1.3939 (15)C7B—C12B1.3945 (15)
C7A—C8A1.4024 (14)C7B—C8B1.4039 (14)
C8A—C9A1.3820 (14)C8B—C9B1.3820 (15)
C8A—H8AA0.9500C8B—H8BA0.9500
C9A—C10A1.3929 (16)C9B—C10B1.3905 (16)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.3848 (14)C10B—C11B1.3855 (14)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.3901 (14)C11B—C12B1.3910 (14)
C11A—H11A0.9500C11B—H11B0.9500
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.4092 (15)C14B—C15B1.4115 (15)
C15A—C16A1.3776 (17)C15B—C16B1.3770 (17)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.3951 (15)C16B—C17B1.3961 (15)
C16A—H16A0.9500C16B—H16B0.9500
C17A—C18A1.3823 (16)C17B—C18B1.3817 (16)
C17A—H17A0.9500C17B—H17B0.9500
C18A—H18A0.9500C18B—H18B0.9500
N1C—C5C1.3368 (15)N1D—C5D1.3363 (15)
N1C—C1C1.3441 (14)N1D—C1D1.3397 (15)
N2C—N3C1.3452 (13)N2D—N3D1.3461 (13)
N2C—C5C1.3843 (14)N2D—C5D1.3869 (14)
N2C—H2NC0.907 (15)N2D—H2ND0.909 (15)
N3C—C6C1.3106 (14)N3D—C6D1.3088 (14)
N4C—C13C1.2910 (15)N4D—C13D1.2925 (15)
N4C—N5C1.3541 (12)N4D—N5D1.3530 (12)
N5C—C14C1.3753 (15)N5D—C14D1.3747 (15)
N5C—H5NC0.910 (14)N5D—H5ND0.938 (14)
N6C—C18C1.3416 (15)N6D—C18D1.3410 (15)
N6C—C14C1.3449 (13)N6D—C14D1.3432 (13)
C1C—C2C1.3855 (15)C1D—C2D1.3811 (16)
C1C—H1CA0.9500C1D—H1DA0.9500
C2C—C3C1.3897 (17)C2D—C3D1.3889 (18)
C2C—H2CA0.9500C2D—H2DA0.9500
C3C—C4C1.3816 (15)C3D—C4D1.3814 (16)
C3C—H3CA0.9500C3D—H3DA0.9500
C4C—C5C1.4057 (14)C4D—C5D1.4021 (15)
C4C—H4CA0.9500C4D—H4DA0.9500
C6C—C13C1.4574 (14)C6D—C13D1.4576 (14)
C6C—C7C1.4861 (16)C6D—C7D1.4860 (16)
C7C—C8C1.3950 (15)C7D—C8D1.3948 (15)
C7C—C12C1.3986 (15)C7D—C12D1.4002 (15)
C8C—C9C1.3862 (15)C8D—C9D1.3856 (15)
C8C—H8CA0.9500C8D—H8DA0.9500
C9C—C10C1.3870 (16)C9D—C10D1.3896 (16)
C9C—H9CA0.9500C9D—H9DA0.9500
C10C—C11C1.3925 (17)C10D—C11D1.3884 (17)
C10C—H10C0.9500C10D—H10D0.9500
C11C—C12C1.3885 (15)C11D—C12D1.3887 (15)
C11C—H11C0.9500C11D—H11D0.9500
C12C—H12C0.9500C12D—H12D0.9500
C13C—H13C0.9500C13D—H13D0.9500
C14C—C15C1.4105 (15)C14D—C15D1.4122 (15)
C15C—C16C1.3770 (17)C15D—C16D1.3778 (17)
C15C—H15C0.9500C15D—H15D0.9500
C16C—C17C1.3946 (15)C16D—C17D1.3947 (15)
C16C—H16C0.9500C16D—H16D0.9500
C17C—C18C1.3818 (16)C17D—C18D1.3811 (16)
C17C—H17C0.9500C17D—H17D0.9500
C18C—H18C0.9500C18D—H18D0.9500
C5A—N1A—C1A116.65 (9)C5B—N1B—C1B116.52 (10)
N3A—N2A—C5A118.79 (9)N3B—N2B—C5B118.77 (9)
N3A—N2A—H2NA123.1 (10)N3B—N2B—H2NB121.8 (10)
C5A—N2A—H2NA118.0 (10)C5B—N2B—H2NB118.9 (10)
C6A—N3A—N2A120.00 (9)C6B—N3B—N2B120.11 (9)
C13A—N4A—N5A118.44 (9)C13B—N4B—N5B118.39 (9)
N4A—N5A—C14A118.72 (9)N4B—N5B—C14B118.73 (9)
N4A—N5A—H5NA122.9 (8)N4B—N5B—H5NB122.7 (9)
C14A—N5A—H5NA118.3 (8)C14B—N5B—H5NB118.5 (9)
C18A—N6A—C14A117.18 (9)C18B—N6B—C14B117.32 (9)
N1A—C1A—C2A124.09 (11)N1B—C1B—C2B124.31 (11)
N1A—C1A—H1AA118.0N1B—C1B—H1BA117.8
C2A—C1A—H1AA118.0C2B—C1B—H1BA117.8
C1A—C2A—C3A118.02 (10)C1B—C2B—C3B117.93 (11)
C1A—C2A—H2AA121.0C1B—C2B—H2BA121.0
C3A—C2A—H2AA121.0C3B—C2B—H2BA121.0
C4A—C3A—C2A119.59 (10)C4B—C3B—C2B119.63 (10)
C4A—C3A—H3AA120.2C4B—C3B—H3BA120.2
C2A—C3A—H3AA120.2C2B—C3B—H3BA120.2
C3A—C4A—C5A117.51 (11)C3B—C4B—C5B117.55 (11)
C3A—C4A—H4AA121.2C3B—C4B—H4BA121.2
C5A—C4A—H4AA121.2C5B—C4B—H4BA121.2
N1A—C5A—N2A114.24 (9)N1B—C5B—N2B114.17 (9)
N1A—C5A—C4A124.07 (10)N1B—C5B—C4B124.04 (10)
N2A—C5A—C4A121.67 (10)N2B—C5B—C4B121.79 (11)
N3A—C6A—C13A127.09 (10)N3B—C6B—C13B127.08 (10)
N3A—C6A—C7A113.45 (9)N3B—C6B—C7B113.50 (9)
C13A—C6A—C7A119.40 (9)C13B—C6B—C7B119.34 (9)
C12A—C7A—C8A118.34 (10)C12B—C7B—C8B118.26 (10)
C12A—C7A—C6A122.57 (9)C12B—C7B—C6B122.65 (9)
C8A—C7A—C6A119.08 (10)C8B—C7B—C6B119.08 (10)
C9A—C8A—C7A120.90 (10)C9B—C8B—C7B120.81 (10)
C9A—C8A—H8AA119.5C9B—C8B—H8BA119.6
C7A—C8A—H8AA119.5C7B—C8B—H8BA119.6
C8A—C9A—C10A120.17 (9)C8B—C9B—C10B120.34 (9)
C8A—C9A—H9AA119.9C8B—C9B—H9BA119.8
C10A—C9A—H9AA119.9C10B—C9B—H9BA119.8
C11A—C10A—C9A119.48 (10)C11B—C10B—C9B119.49 (10)
C11A—C10A—H10A120.3C11B—C10B—H10B120.3
C9A—C10A—H10A120.3C9B—C10B—H10B120.3
C10A—C11A—C12A120.43 (10)C10B—C11B—C12B120.33 (10)
C10A—C11A—H11A119.8C10B—C11B—H11B119.8
C12A—C11A—H11A119.8C12B—C11B—H11B119.8
C11A—C12A—C7A120.67 (9)C11B—C12B—C7B120.73 (9)
C11A—C12A—H12A119.7C11B—C12B—H12B119.6
C7A—C12A—H12A119.7C7B—C12B—H12B119.6
N4A—C13A—C6A121.26 (10)N4B—C13B—C6B121.53 (10)
N4A—C13A—H13A119.4N4B—C13B—H13B119.2
C6A—C13A—H13A119.4C6B—C13B—H13B119.2
N6A—C14A—N5A114.93 (9)N6B—C14B—N5B115.01 (9)
N6A—C14A—C15A122.82 (10)N6B—C14B—C15B122.54 (10)
N5A—C14A—C15A122.25 (9)N5B—C14B—C15B122.45 (9)
C16A—C15A—C14A117.97 (10)C16B—C15B—C14B118.18 (10)
C16A—C15A—H15A121.0C16B—C15B—H15B120.9
C14A—C15A—H15A121.0C14B—C15B—H15B120.9
C15A—C16A—C17A120.21 (11)C15B—C16B—C17B120.03 (11)
C15A—C16A—H16A119.9C15B—C16B—H16B120.0
C17A—C16A—H16A119.9C17B—C16B—H16B120.0
C18A—C17A—C16A117.17 (11)C18B—C17B—C16B117.35 (11)
C18A—C17A—H17A121.4C18B—C17B—H17B121.3
C16A—C17A—H17A121.4C16B—C17B—H17B121.3
N6A—C18A—C17A124.63 (10)N6B—C18B—C17B124.56 (10)
N6A—C18A—H18A117.7N6B—C18B—H18B117.7
C17A—C18A—H18A117.7C17B—C18B—H18B117.7
C5C—N1C—C1C116.57 (9)C5D—N1D—C1D116.63 (10)
N3C—N2C—C5C119.27 (9)N3D—N2D—C5D119.03 (9)
N3C—N2C—H2NC121.7 (10)N3D—N2D—H2ND122.3 (9)
C5C—N2C—H2NC119.0 (10)C5D—N2D—H2ND117.8 (9)
C6C—N3C—N2C119.42 (9)C6D—N3D—N2D119.39 (9)
C13C—N4C—N5C118.12 (9)C13D—N4D—N5D118.11 (9)
N4C—N5C—C14C118.68 (9)N4D—N5D—C14D118.80 (9)
N4C—N5C—H5NC122.8 (9)N4D—N5D—H5ND123.0 (8)
C14C—N5C—H5NC118.5 (9)C14D—N5D—H5ND118.1 (8)
C18C—N6C—C14C117.21 (9)C18D—N6D—C14D117.13 (9)
N1C—C1C—C2C124.33 (11)N1D—C1D—C2D124.47 (12)
N1C—C1C—H1CA117.8N1D—C1D—H1DA117.8
C2C—C1C—H1CA117.8C2D—C1D—H1DA117.8
C1C—C2C—C3C117.80 (10)C1D—C2D—C3D117.76 (11)
C1C—C2C—H2CA121.1C1D—C2D—H2DA121.1
C3C—C2C—H2CA121.1C3D—C2D—H2DA121.1
C4C—C3C—C2C119.75 (10)C4D—C3D—C2D119.68 (10)
C4C—C3C—H3CA120.1C4D—C3D—H3DA120.2
C2C—C3C—H3CA120.1C2D—C3D—H3DA120.2
C3C—C4C—C5C117.66 (11)C3D—C4D—C5D117.69 (11)
C3C—C4C—H4CA121.2C3D—C4D—H4DA121.2
C5C—C4C—H4CA121.2C5D—C4D—H4DA121.2
N1C—C5C—N2C114.21 (9)N1D—C5D—N2D114.07 (9)
N1C—C5C—C4C123.85 (10)N1D—C5D—C4D123.76 (10)
N2C—C5C—C4C121.92 (10)N2D—C5D—C4D122.16 (11)
N3C—C6C—C13C127.19 (10)N3D—C6D—C13D127.41 (10)
N3C—C6C—C7C114.31 (9)N3D—C6D—C7D114.32 (9)
C13C—C6C—C7C118.50 (9)C13D—C6D—C7D118.27 (9)
C8C—C7C—C12C118.83 (10)C8D—C7D—C12D118.73 (10)
C8C—C7C—C6C120.03 (10)C8D—C7D—C6D120.05 (9)
C12C—C7C—C6C121.11 (10)C12D—C7D—C6D121.18 (10)
C9C—C8C—C7C120.58 (10)C9D—C8D—C7D120.79 (10)
C9C—C8C—H8CA119.7C9D—C8D—H8DA119.6
C7C—C8C—H8CA119.7C7D—C8D—H8DA119.6
C8C—C9C—C10C120.60 (10)C8D—C9D—C10D120.31 (10)
C8C—C9C—H9CA119.7C8D—C9D—H9DA119.8
C10C—C9C—H9CA119.7C10D—C9D—H9DA119.8
C9C—C10C—C11C119.15 (11)C11D—C10D—C9D119.30 (11)
C9C—C10C—H10C120.4C11D—C10D—H10D120.3
C11C—C10C—H10C120.4C9D—C10D—H10D120.3
C12C—C11C—C10C120.59 (10)C10D—C11D—C12D120.70 (10)
C12C—C11C—H11C119.7C10D—C11D—H11D119.7
C10C—C11C—H11C119.7C12D—C11D—H11D119.7
C11C—C12C—C7C120.25 (10)C11D—C12D—C7D120.16 (10)
C11C—C12C—H12C119.9C11D—C12D—H12D119.9
C7C—C12C—H12C119.9C7D—C12D—H12D119.9
N4C—C13C—C6C121.91 (10)N4D—C13D—C6D121.99 (10)
N4C—C13C—H13C119.0N4D—C13D—H13D119.0
C6C—C13C—H13C119.0C6D—C13D—H13D119.0
N6C—C14C—N5C114.91 (10)N6D—C14D—N5D115.04 (9)
N6C—C14C—C15C122.81 (10)N6D—C14D—C15D122.89 (10)
N5C—C14C—C15C122.27 (9)N5D—C14D—C15D122.07 (9)
C16C—C15C—C14C117.97 (10)C16D—C15D—C14D117.89 (10)
C16C—C15C—H15C121.0C16D—C15D—H15D121.1
C14C—C15C—H15C121.0C14D—C15D—H15D121.1
C15C—C16C—C17C120.13 (11)C15D—C16D—C17D120.10 (11)
C15C—C16C—H16C119.9C15D—C16D—H16D119.9
C17C—C16C—H16C119.9C17D—C16D—H16D119.9
C18C—C17C—C16C117.43 (11)C18D—C17D—C16D117.40 (11)
C18C—C17C—H17C121.3C18D—C17D—H17D121.3
C16C—C17C—H17C121.3C16D—C17D—H17D121.3
N6C—C18C—C17C124.45 (10)N6D—C18D—C17D124.60 (10)
N6C—C18C—H18C117.8N6D—C18D—H18D117.7
C17C—C18C—H18C117.8C17D—C18D—H18D117.7
C5A—N2A—N3A—C6A177.26 (9)C5B—N2B—N3B—C6B172.83 (9)
C13A—N4A—N5A—C14A174.47 (9)C13B—N4B—N5B—C14B174.28 (9)
C5A—N1A—C1A—C2A0.80 (15)C5B—N1B—C1B—C2B0.01 (17)
N1A—C1A—C2A—C3A1.35 (16)N1B—C1B—C2B—C3B0.82 (18)
C1A—C2A—C3A—C4A1.52 (15)C1B—C2B—C3B—C4B0.46 (17)
C2A—C3A—C4A—C5A0.32 (15)C2B—C3B—C4B—C5B0.60 (16)
C1A—N1A—C5A—N2A175.71 (9)C1B—N1B—C5B—N2B178.38 (9)
C1A—N1A—C5A—C4A2.87 (15)C1B—N1B—C5B—C4B1.17 (16)
N3A—N2A—C5A—N1A179.41 (9)N3B—N2B—C5B—N1B174.84 (9)
N3A—N2A—C5A—C4A1.97 (15)N3B—N2B—C5B—C4B5.60 (15)
C3A—C4A—C5A—N1A2.67 (16)C3B—C4B—C5B—N1B1.49 (16)
C3A—C4A—C5A—N2A175.81 (9)C3B—C4B—C5B—N2B178.03 (10)
N2A—N3A—C6A—C13A0.21 (16)N2B—N3B—C6B—C13B0.41 (16)
N2A—N3A—C6A—C7A177.11 (9)N2B—N3B—C6B—C7B176.96 (9)
N3A—C6A—C7A—C12A146.48 (10)N3B—C6B—C7B—C12B145.60 (10)
C13A—C6A—C7A—C12A35.98 (14)C13B—C6B—C7B—C12B37.56 (14)
N3A—C6A—C7A—C8A32.23 (13)N3B—C6B—C7B—C8B33.43 (13)
C13A—C6A—C7A—C8A145.31 (10)C13B—C6B—C7B—C8B143.41 (10)
C12A—C7A—C8A—C9A0.71 (15)C12B—C7B—C8B—C9B0.86 (15)
C6A—C7A—C8A—C9A178.05 (9)C6B—C7B—C8B—C9B178.22 (10)
C7A—C8A—C9A—C10A0.36 (16)C7B—C8B—C9B—C10B0.53 (16)
C8A—C9A—C10A—C11A0.70 (16)C8B—C9B—C10B—C11B0.89 (16)
C9A—C10A—C11A—C12A0.03 (15)C9B—C10B—C11B—C12B0.16 (15)
C10A—C11A—C12A—C7A1.13 (15)C10B—C11B—C12B—C7B1.58 (15)
C8A—C7A—C12A—C11A1.45 (15)C8B—C7B—C12B—C11B1.91 (15)
C6A—C7A—C12A—C11A177.27 (9)C6B—C7B—C12B—C11B177.13 (9)
N5A—N4A—C13A—C6A177.24 (9)N5B—N4B—C13B—C6B176.70 (9)
N3A—C6A—C13A—N4A0.04 (17)N3B—C6B—C13B—N4B0.42 (17)
C7A—C6A—C13A—N4A177.22 (9)C7B—C6B—C13B—N4B176.78 (9)
C18A—N6A—C14A—N5A178.66 (9)C18B—N6B—C14B—N5B178.20 (9)
C18A—N6A—C14A—C15A1.23 (15)C18B—N6B—C14B—C15B1.52 (14)
N4A—N5A—C14A—N6A177.66 (8)N4B—N5B—C14B—N6B177.33 (8)
N4A—N5A—C14A—C15A2.22 (14)N4B—N5B—C14B—C15B2.39 (14)
N6A—C14A—C15A—C16A1.32 (15)N6B—C14B—C15B—C16B1.73 (15)
N5A—C14A—C15A—C16A178.56 (10)N5B—C14B—C15B—C16B177.97 (10)
C14A—C15A—C16A—C17A0.25 (15)C14B—C15B—C16B—C17B0.50 (15)
C15A—C16A—C17A—C18A0.79 (15)C15B—C16B—C17B—C18B0.79 (15)
C14A—N6A—C18A—C17A0.08 (15)C14B—N6B—C18B—C17B0.10 (15)
C16A—C17A—C18A—N6A0.91 (16)C16B—C17B—C18B—N6B1.05 (16)
C5C—N2C—N3C—C6C175.81 (9)C5D—N2D—N3D—C6D171.33 (9)
C13C—N4C—N5C—C14C178.81 (9)C13D—N4D—N5D—C14D178.87 (9)
C5C—N1C—C1C—C2C1.05 (15)C5D—N1D—C1D—C2D0.22 (17)
N1C—C1C—C2C—C3C0.50 (16)N1D—C1D—C2D—C3D0.41 (18)
C1C—C2C—C3C—C4C1.04 (15)C1D—C2D—C3D—C4D0.12 (16)
C2C—C3C—C4C—C5C0.07 (15)C2D—C3D—C4D—C5D0.32 (16)
C1C—N1C—C5C—N2C176.37 (9)C1D—N1D—C5D—N2D178.63 (9)
C1C—N1C—C5C—C4C2.13 (15)C1D—N1D—C5D—C4D0.27 (15)
N3C—N2C—C5C—N1C178.21 (9)N3D—N2D—C5D—N1D173.57 (9)
N3C—N2C—C5C—C4C3.25 (15)N3D—N2D—C5D—C4D7.50 (14)
C3C—C4C—C5C—N1C1.61 (15)C3D—C4D—C5D—N1D0.54 (16)
C3C—C4C—C5C—N2C176.78 (9)C3D—C4D—C5D—N2D178.28 (9)
N2C—N3C—C6C—C13C1.21 (16)N2D—N3D—C6D—C13D0.75 (16)
N2C—N3C—C6C—C7C179.40 (9)N2D—N3D—C6D—C7D178.94 (8)
N3C—C6C—C7C—C8C34.86 (14)N3D—C6D—C7D—C8D35.53 (14)
C13C—C6C—C7C—C8C144.59 (10)C13D—C6D—C7D—C8D144.75 (10)
N3C—C6C—C7C—C12C143.14 (10)N3D—C6D—C7D—C12D142.18 (10)
C13C—C6C—C7C—C12C37.42 (14)C13D—C6D—C7D—C12D37.55 (14)
C12C—C7C—C8C—C9C0.19 (15)C12D—C7D—C8D—C9D0.27 (15)
C6C—C7C—C8C—C9C177.85 (10)C6D—C7D—C8D—C9D177.49 (9)
C7C—C8C—C9C—C10C0.03 (16)C7D—C8D—C9D—C10D0.14 (16)
C8C—C9C—C10C—C11C0.10 (17)C8D—C9D—C10D—C11D0.24 (17)
C9C—C10C—C11C—C12C0.32 (17)C9D—C10D—C11D—C12D0.08 (17)
C10C—C11C—C12C—C7C0.49 (17)C10D—C11D—C12D—C7D0.49 (17)
C8C—C7C—C12C—C11C0.41 (16)C8D—C7D—C12D—C11D0.58 (16)
C6C—C7C—C12C—C11C177.61 (10)C6D—C7D—C12D—C11D177.16 (10)
N5C—N4C—C13C—C6C178.77 (9)N5D—N4D—C13D—C6D179.07 (9)
N3C—C6C—C13C—N4C1.58 (17)N3D—C6D—C13D—N4D1.41 (17)
C7C—C6C—C13C—N4C179.05 (9)C7D—C6D—C13D—N4D178.27 (9)
C18C—N6C—C14C—N5C179.75 (9)C18D—N6D—C14D—N5D179.94 (9)
C18C—N6C—C14C—C15C0.18 (15)C18D—N6D—C14D—C15D0.16 (15)
N4C—N5C—C14C—N6C179.19 (8)N4D—N5D—C14D—N6D179.99 (8)
N4C—N5C—C14C—C15C0.75 (15)N4D—N5D—C14D—C15D0.23 (14)
N6C—C14C—C15C—C16C0.02 (16)N6D—C14D—C15D—C16D0.32 (15)
N5C—C14C—C15C—C16C179.94 (10)N5D—C14D—C15D—C16D179.44 (10)
C14C—C15C—C16C—C17C0.43 (16)C14D—C15D—C16D—C17D0.64 (15)
C15C—C16C—C17C—C18C0.63 (16)C15D—C16D—C17D—C18D0.48 (16)
C14C—N6C—C18C—C17C0.04 (16)C14D—N6D—C18D—C17D0.34 (15)
C16C—C17C—C18C—N6C0.44 (16)C16D—C17D—C18D—N6D0.02 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···N4A0.897 (17)2.018 (16)2.6687 (14)128.3 (14)
N5A—H5NA···N6D0.916 (14)2.126 (14)3.0401 (14)175.9 (14)
N2C—H2NC···N4C0.906 (17)1.995 (16)2.6742 (13)130.6 (14)
N5C—H5NC···N6B0.911 (14)2.129 (14)3.0390 (14)177.0 (14)
N2B—H2NB···N4B0.877 (17)2.026 (16)2.6784 (14)130.4 (15)
N5B—H5NB···N6C0.913 (15)2.126 (14)3.0371 (14)175.4 (12)
N2D—H2ND···N4D0.911 (15)2.008 (15)2.6810 (13)129.5 (12)
N5D—H5ND···N6A0.938 (14)2.102 (14)3.0388 (14)177.5 (10)
Intramolecular hydrogen-bond metrics (Å, °) for the compounds top
Bridge numberCompoundBridged(D—H)d(H···A)d(D···A)D—H···A
1DtdpeC9—H9B···O10.972.613.229 (3)122.1
2MtdpC8—H8C···O1i0.992.543.1981 (16)123.9
3MtdpC6—H6A···O10.952.5122.807 (2)98.03
4PrpsbN2—H2N···S10.94 (3)2.73 (3)3.3599 (15)126 (2)
5CtrspN4—H4N···S30.83 (2)2.864 (19)3.3218 (13)116.9 (15)
6CtrspN4—H4N···N20.83 (2)2.11 (2)2.5572 (18)113.5 (16)
7ADhpkN2A—H2NA···N4A0.897 (17)2.018 (16)2.6687 (14)128.3 (14)
7BDhpkN2B—H2NB···N4B0.906 (17)1.995 (16)2.6742 (13)130.6 (14)
7CDhpkN2C—H2NC···N4C0.877 (17)2.026 (16)2.6784 (14)130.4 (15)
7DDhpkN2D—H2ND···N4D0.911 (15)2.008 (15)2.6810 (13)129.5 (12)
Symmetry code: (i) -x + 1/2, y, -z + 1.
Potential intermolecular hydrogen bridges (Å, °) top
Bridge numberCompoundBridged(D—H)d(H···A)d(D···A)D—H···A
8DtdpeC2—H2A···O1i0.9302.4623.365 (2)163.8
9MtdpC3—H3A···O1ii0.9502.7693.382 (2)123.04
10PrpsbC2—H2B···S1iii0.9503.023.9489 (18)166.7
11CtrspN1—H1N···S1iv0.83 (2)2.73 (2)3.5178 (14)160.4 (19)
12CtrspC6—H6A···S2v0.972.943.7524 (17)142.4
13ADhpkN5A—H5NA···N6D0.916 (14)2.126 (14)3.0401 (14)175.9 (14)
13BDhpkN5B—H5NB···N6C0.913 (15)2.126 (14)3.0371 (14)175.4 (12)
13CDhpkN5C—H5NC···N6B0.911 (14)2.129 (14)3.0390 (14)177.0 (14)
13DDhpkN5D—H5ND···N6A0.938 (14)2.102 (14)3.0388 (14)177.5 (10)
Symmetry codes: (i) 2 - x, 1/2 + y, 1/2 - z; (ii) 1/2 + x, 2 - y, z; (iii) x - 1, y, z - 1; (iv) -x + 1, -y, -z + 1; (v) -x, y + 1/2, -z + 3/2.
Outcomes from DFT calculations on intermolecular hydrogen bonds top
Compound and bridge typeEnergy valuea (Eh)Dimer energy advantage (kJ)H···A bond orderd(D—H), Åd(H···A), Åd(D···A), Å\langD—H···A
Ctrsp dimer, 11-3611.36318138.60.31.031.403.41168
Ctrsp monomerb-1805.6742351.01
Dtdpe dimerc, 8-3287.7320026.80.031.082.413.49147
Dtdpe monomer-1643.8647091.08
Mtdp monomer-1167.0006421.09
Mtdp dimer, 9-2334.0050159.8d1.222.76e3.48e133e
Prpsb monomer-2286.7954681.08
Prpsb dimerc-4573.60593839.40.041.092.743.82170
Dhpk dimer, 13A-2048.56573442.30.081.032.05e3.08e177
Dhpk monomer-1024.2748091.02
Notes: (a) Intramolecular hydrogen bonds are not specified during the calculations; (b) B3LYP/6-311+G** geometry minimization for a CH—S dimer gave an unrealistic geometry, although an estimate was made using ωB97X-D/6-31G*; (c) B3LYP/6-311+G** geometry minimization failed to converge for Dtdpe or Prpsb, although an estimate was made using ωB97X-D/6-31G*; (d) not calculated; (e) mean of two values.
 

Acknowledgements

RJB thanks George Washington University for Bruker APEXII diffractometer access, while MAO and AWA acknowledge support by Drexel University. We thank Howard University and the National Science Foundation Major Research Instrumentation program (NSF DMR-2117502) for financially supporting the acquisition of the Rigaku Synergy-S single-crystal X-ray diffractometer used in this study.

References

First citationApple, Inc. (2024). Mac OS 14/15, Cupertino, CA, USA.  Google Scholar
First citationBird, C. W. & Cheeseman, G. W. H. (1984). Structure of Five-membered Rings with One Heteroatom in Comprehensive Heterocyclic Chemistry: the Structure, Reactions, Synthesis, and Uses of Heterocyclic Compounds edited by Katritzky, A. R. & Rees, C. W, pp. 1–38. Oxford & New York: Pergamon Press.  Google Scholar
First citationBiswal, H. S., Bhattacharyya, S., Bhattacherjee, A. & Wategaonkar, S. (2015). Int. Rev. Phys. Chem. 34, 99–160.  CrossRef CAS Google Scholar
First citationBiswal, H. S. & Wategaonkar, S. (2009). J. Phys. Chem. A 113, 12763–12773.  CrossRef PubMed CAS Google Scholar
First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBulusu, G. & Desiraju, G. R. J. (2020). J. Indian Inst. Sci. 100, 31–41.  CrossRef Google Scholar
First citationCuthbertson, E., Hardy, A. D. U. & MacNicol, D. D. (1975). J. Chem. Soc., Perkin Trans. I pp. 254-262.  Google Scholar
First citationDeppmeier, B. J., Driessen, A. J., Hehre, W. J., Hehre, T. S., Johnson, J. A., Ohlinger, W. S. & Klunzinger, P. E. (2024). Spartan. Wavefunction Inc. Irvine, CA, USA.  Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationDesiraju, G. R. (2011). Angew. Chem. Int. Ed. 50, 52–59.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). Other weak and non-conventional hydrogen bonds in The Weak Hydrogen Bond in Structural Chemistry and Biology edited by Desiraju, G. R. & Steiner, T., pp. 122–292. Oxford: Oxford University Press.  Google Scholar
First citationFleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem. 72, 4311–4312.  CSD CrossRef CAS Web of Science Google Scholar
First citationGoldcamp, M. J., Rosa, D. T., Landers, N. A., Mandel, S. M., Krause Bauer, J. A. & Baldwin, M. J. (2000). Synthesis pp. 2033–2038.  Google Scholar
First citationHousecroft, C. E. & Sharpe, A. G. (2012). Inorg. Chem. 4th Edn., pp. 1126–1127. Harlow: Pearson Education Ltd.  Google Scholar
First citationKnoll, T., Hamburg, M., Narayanan, S., Pawliger, M., Schaefer, S., Tam, S., Alves, S., Ault, J., Balakrishnan, V., Bartell, J., Byer, S., Chien, J., Cohen, S., Coven, A., Cox, C., Georgiev, T., Harris, J., Kong, S., Luxon, T., Parent, S., Penn, J. II, Ruark, T., Rys, C., Schneider, D., Williams, R., Wormley, M., Worthington, J., Rau, D., Scarafone, M., Leavy, M., Wulff, R., Howe, D., Gauthier, K. & Weisberg, G. (2002). Adobe Systems, Inc., San Jose, CA, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMikhalyova, E. A., Yakovenko, A. V., Zeller, M., Kiskin, M. A., Kolomzarov, Y. V., Eremenko, I. L., Addison, A. W. & Pavlishchuk, V. V. (2015). Inorg. Chem. 54, 3125–3133.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPalmer, D., Fernandez, A., Gao, M., Rimmer, L. & Palmer, E. (2024). CrystalMaker Begbroke, England.  Google Scholar
First citationPavlishchuk, V. V., O'Connor, M. A., Zeller, M., Butcher, R. J. & Addison, A. W. (2024). Polyhedron 256, 116960.  CrossRef Google Scholar
First citationPramanik, S., Roy, S., Ghorui, T., Ganguly, S. & Pramanik, K. (2014). Dalton Trans. 43, 5317–5334.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.  Google Scholar
First citationRigane, I., Walha, S. & Ben Salah, A. (2016). J. Chem. Sci. 128, 1395–1404.  CrossRef CAS Google Scholar
First citationSeth, S. K., Sarkar, D., Roy, A. & Kar, T. (2011). CrystEngComm 13, 6728–6741.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteed, J. W., Turner, D. R. & Wallace, K. J. (2007). Core Concepts in Supramolecular Chemistry and Nanochemistry pp. 213–225. Chichester: J. Wiley & Sons, Ltd.  Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationSteiner, T. J. (1994). J. Chem. Soc. Chem. Commun. pp. 2341–2342.  CrossRef Google Scholar
First citationTanimoto, Y., Kobayashi, H., Nagakura, S. & Saito, Y. (1973). Acta Cryst. B29, 1822–1826.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTatamitani, Y., Kawashima, Y., Osamura, Y. & Hirota, E. (2015). J. Phys. Chem. A 119, 2132–2141.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds