research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­methyl 3-methyl-8-{[4-(tri­fluoro­meth­yl)phen­yl]sulfon­yl}-7,8-di­hydro-4H-4,6a-ep­­oxy­benzo[b]naphtho­[1,8-de]azepine-5,6-di­carboxyl­ate

crossmark logo

aRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bDepartment of Chemical Engineering, Baku Engineering University, Hasan Aliyev, str. 120, Baku, Absheron AZ0101, Azerbaijan, cAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and eDepartment of Chemistry, University of Gondar, PO Box 196, Gondar, Ethiopia
*Correspondence e-mail: Gizachew.Mulugeta@uog.edu.et

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 9 May 2025; accepted 16 May 2025; online 23 May 2025)

The mol­ecular conformation of the title compound, C29H22F3NO7S, is stable due to the intra­molecular C—H⋯O hydrogen bonds. The central seven-membered ring adopts a distorted chair form. In the 7-oxabi­cyclo­[2.2.1]hepta-2,5-diene unit, the five-membered rings adopt envelope conformations. In the crystal, the mol­ecules are linked by C—H⋯O and C—H⋯F inter­actions, forming sheets parallel to the (002) plane. Additionally, S—O⋯π and ππ inter­actions [centroid-to-centroid distance = 3.6159 (7) Å] connect the mol­ecules along the a-axis direction. van der Waals inter­actions between the mol­ecular sheets reinforce the mol­ecular packing. A Hirshfeld surface analysis was conducted to visualize the various inter­molecular inter­actions, indicating that the largest contribution to the surface contacts is from H⋯H inter­actions (37.3%), followed by O⋯H/H⋯O (24.1%), F⋯H/H⋯F (19.0%), and C⋯H/H⋯C (10.3%) inter­actions.

1. Chemical context

7-Oxabi­cyclo­[2.2.1]heptenes, products of the thermic reaction between furans and alkenes or alkynes, have great synthetic potential as a useful tool for the design of a broad diversity of substances with various practical properties. For example, these scaffolds can be used in the synthesis of polycyclic arenes – fragments of graphene – and serve as models for new carbon-based electronic materials (Eda et al., 2015[Eda, S., Eguchi, F., Haneda, H. & Hamura, T. (2015). Chem. Commun. 51, 5963-5966.]; Criado et al., 2013[Criado, A., Vilas-Varela, M., Cobas, A., Peréz, D., Pena, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637-12649.]; Furrer et al., 2013[Furrer, F., Linden, A. & Stuparu, M. C. (2013). Chem. Eur. J. 19, 13199-13206.]). The 7-oxabi­cyclo­[2.2.1]heptane moiety annelated with other rings serves as a scaffold for the preparation of mol­ecular tweezers (Murphy et al., 2016[Murphy, R. B., Norman, R. E., White, J. M., Perkins, M. V. & Johnston, M. R. (2016). Org. Biomol. Chem. 14, 8707-8720.]; Warrener et al., 1999[Warrener, R. N., Margetic, D., Amarasekara, A. S., Butler, D. N., Mahadevan, I. B. & Russell, R. A. (1999). Org. Lett. 1, 199-202.]), supra­molecular systems (Chou et al., 2015[Chou, T.-C. & Li, Y.-J. (2015). Tetrahedron 71, 5620-5633.]; Oh et al., 2010[Oh, C. H., Yi, H. J. & Lee, K. H. (2010). Bull. Korean Chem. Soc. 31, 683-688.]; Eckert-Maksić et al., 2005[Eckert-Maksić, M., Margetić, D., Kirin, S., Milić, D. & Matković-Čalogović, D. (2005). Eur. J. Org. Chem. pp. 4612-4620.]), bridging donor–acceptor mol­ecules (Chakrabarti et al., 2007[Chakrabarti, S., Liu, M., Waldeck, D. H., Oliver, A. M. & Paddon-Row, M. N. (2007). J. Am. Chem. Soc. 129, 3247-3256.]), various bioactive and natural products (Roscalesa et al., 2017[Roscalesa, S. & Plumet, J. (2017). Nat. Prod. Commun. 12, 713-732.]; Enev et al., 2012[Enev, V. S., Felzmann, W., Gromov, A., Marchart, S. & Mulzer, J. (2012). Chem. Eur. J. 18, 9651-9668.]; Gromov et al., 2009[Gromov, A., Enev, V. & Mulzer, J. (2009). Org. Lett. 11, 2884-2886.]; Schindler et al., 2009[Schindler, C. S. & Carreira, E. M. (2009). Chem. Soc. Rev. 38, 3222-3241.]; Vogel et al., 1999[Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron 55, 13521-13642.]), high-mol­ecular-weight materials (Margetić et al., 2010[Margetić, D., Eckert-Maksić, M., Trošelj, P. & Marinić, Z. (2010). J. Fluorine Chem. 131, 408-416.]; Warrener et al., 2001[Warrener, R. N., Margetić, D., Foley, P. J., Butler, D. N., Winling, A., Beales, K. A. & Russell, R. A. (2001). Tetrahedron 57, 571-582.]; Vogel et al., 1999[Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron 55, 13521-13642.]), etc. Under acid catalysis and temperature, cyclo­addition inter­mediates can be converted into phenols, cyclo­hexenoles, or substituted aromatic hydro­carbons (Zaytsev et al., 2019[Zaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett. 60, 151204.]; Zubkov et al., 2012a[Zubkov, F. I., Zaytsev, V. P., Puzikova, E. S., Nikitina, E. V., Khrustalev, V. N., Novikov, R. A. & Varlamov, A. V. (2012a). Chem. Heterocycl. Compd. 48, 514-524.],b[Zubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012b). RSC Adv. 2, 4103-4109.]; Guliyeva et al., 2024[Guliyeva, N. A., Burkin, G. M., Annadurdyyeva, S., Khrustalev, V. N., Atioğlu, Z., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 62-66.]). Continuing our research into the chemistry of furyl-substituted sulfonamides (Burkin et al., 2024[Burkin, G. M., Kvyatkovskaya, E. A., Khrustalev, V. N., Hasanov, K. I., Sadikhova, N. D., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 418-422.]; Mammadova et al., 2023a[Mammadova, G. Z., Yakovleva, E. D., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Çelikesir, S. T. & Bhattarai, A. (2023a). Acta Cryst. E79, 747-751.],b[Mammadova, G. Z., Annadurdyyeva, S., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023b). Acta Cryst. E79, 499-503.]), a new approach toward the cyclo­addition of dimethyl but-2-ynedioate (DMAD) with substituted furans (Zubkov et al., 2009[Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron 65, 3789-3803.]; Borisova et al., 2018a[Borisova, K., Nikitina, E., Novikov, R., Khrustalev, V., Dorovatovskii, P., Zubavichus, Y., Kuznetsov, M., Zaytsev, V., Varlamov, A. & Zubkov, F. (2018a). Chem. Commun. 54, 2850-2853.],b[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018b). J. Org. Chem. 83, 4840-4850.]) has been developed. In particular, in the course of the thermic [4 + 2] cyclo­addition between DMAD and sulfamide 2, an inter­esting sequence of reaction steps was observed; [4 + 2] cyclo­addition, cleavage of the ep­oxy bridge, and a subsequent aromatization of the cyclo­hexene ring (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of dimethyl 3-methyl-8-{[4-(tri­fluoro­meth­yl)phen­yl]sulfon­yl}-7,8-di­hydro-4H-4,6a-ep­oxy­benzo[b]naphtho­[1,8-de]azepine-5,6-di­carboxyl­ate.

2. Structural commentary

Fig. 2[link] shows the mol­ecular structure of the title compound, intra­molecular C—H⋯O hydrogen bonds, and naming of the rings in the mol­ecule. The mol­ecular conformation is stable due to the intra­molecular hydrogen bonds C7—H7B⋯O17, C7—H7A⋯O1 and C19—H19⋯O2, which form S(6), S(5) and S(5) ring motifs, respectively (Fig. 2[link]; Table 1[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Fig. 3[link] shows a detailed view of the central rings of the mol­ecule. The central ring A (C6A/C7/N8/C8A/C12A/C12B/C12C) exhibits a distorted chair form [puckering parameters: q2 = 0.708 (1), q3 = 207 (1) Å, φ(2) = −29.76 (9), φ(3) = −138.1 (4) °, QT = 0.738 (1) Å, and spherical polar angle θ(2) = 73.70 (9)°]. Ring A (r.m.s. deviation of fitted atoms = 0.2783 Å) subtends dihedral angles of 20.58 (5), 50.46 (5), 30.64 (5) and 28.18 (5)°, respectively, with rings D (C1–C3/C3A/C12C/C12B), E (C3A/C4–C6/C6A/C12C), F (C8A/C9–C12/C12A) and G (C18–C23). In the 7-oxabi­cyclo­[2.2.1]hepta-2,5-diene unit, the five-membered rings B (O13/C4/C3A/C12C/C6A) and C (O13/C4–C6/C6A) show envelope conformations on atom O13 [B: q(2) = 0.5436 (12) Å, φ(2) = 0.35 (14)° and C: q(2) = 0.5395 (12) Å, φ(2) = 179.95 (14)°]. The bond lengths and angles in the title compound are in good agreement with those reported for related compounds (see Database survey section).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O16i 1.00 2.49 3.3893 (16) 149
C7—H7A⋯O1 0.99 2.35 2.8481 (15) 111
C7—H7B⋯O17 0.99 2.46 3.0071 (14) 115
C12—H12⋯O2ii 0.95 2.55 3.1357 (15) 120
C15—H15A⋯O13ii 0.98 2.47 3.3741 (17) 153
C17—H17B⋯F1iii 0.98 2.54 3.3033 (17) 135
C19—H19⋯O2 0.95 2.52 2.9003 (17) 104
C22—H22⋯O14i 0.95 2.37 3.2698 (19) 158
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+1, y, z]; (iii) [x+1, y+1, z].
[Figure 2]
Figure 2
Mol­ecular structure of the title compound showing atom labelling and ellipsoids at the 30% probability level. The minor disorder component has been omitted for clarity.
[Figure 3]
Figure 3
A detailed view of the central rings of the title mol­ecule.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules form R22(17) ring motifs by C—H⋯O inter­actions and are linked by C—H⋯F inter­actions to form sheets parallel to the (002) plane (Figs. 4[link] and 5[link]; Table 1[link]). Additionally, S—O⋯π (Fig. 5[link]; Table 1[link]) and ππ inter­actions [Fig. 6[link]; Cg3⋯Cg6 = 3.6159 (7) Å, slippage = 0.804 Å; where Cg3 and Cg6 are the centroids of rings D (C1–C3/C3A/C12C/C12B) and G (C18–C23), respectively] link the mol­ecules along the a-axis direction. van der Waals inter­actions between the mol­ecular sheets reinforce the mol­ecular packing.

[Figure 4]
Figure 4
A view along the a axis of the title compound, showing the crystal packing. C—H⋯O and C—H⋯F hydrogen bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.
[Figure 5]
Figure 5
A view along the b axis of the title compound, showing the crystal packing. C—H⋯O and C—H⋯F hydrogen bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.
[Figure 6]
Figure 6
A partial packing diagram showing S—O⋯π and ππ inter­actions as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Hirshfeld surfaces and the corresponding two-dimensional fingerprint plots were created using CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) in order to visualize the inter­molecular inter­actions (Tables 1[link] and 2[link]). Fig. 7[link] shows the full two-dimensional fingerprint plot and those delineated into the major contacts: H⋯H (37.3%), O⋯H/H⋯O (24.1%), F⋯H/H⋯F (19.0%) and C⋯H/H⋯C (10.3%). Smaller contributions are made by O⋯C/C⋯O(4.9%), O⋯O(1.6%), C⋯C (1.5%), F⋯C/C⋯F (0.7%), F⋯O/O⋯F (0.4%), N⋯H/H⋯N (0.2%), S⋯C/C⋯S (0.1%) and S⋯H/H⋯S (0.1%) inter­actions.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact distance Symmetry operation
F3⋯H17C 2.72 x, −1 + y, z
F1⋯H17B 2.54 −1 + x, −1 + y, z
H12⋯H1 2.54 1 − x, 1 − y, 1 − z
O13⋯H15A 2.47 −1 + x, y, z
O14⋯H22 2.37 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
O14⋯H15B 2.64 2 − x, [{1\over 2}] + y, [{3\over 2}] − z
H22⋯O14 2.37 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
H19⋯H19 2.27 x, 1 − y, 1 − z
H17A⋯H10 2.51 1 − x, 2 − y, 1 − z
H10⋯H9 2.58 1 − x, 2 − y, 1 − z
[Figure 7]
Figure 7
(a) The full two-dimensional fingerprint plot for the title compound and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (c) F⋯H/H⋯F and (c) C⋯H/H⋯C contacts.

4. Database survey

A search of the Cambridge Structural Database (Version 5.41, last update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 11-oxatri­cyclo­[6.2.1.02,7]undeca­nes gave 739 hits, while a search for 3-methyl-11-oxatri­cyclo­[6.2.1.02,7]undeca­nes gave zero hits. In these searches, the most related compounds are CSD refcode COKHAP (Sadikhova et al., 2024[Sadikhova, N. D., Atioğlu, Z., Guliyeva, N. A., Podrezova, A. G., Nikitina, E. V., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 83-87.]) and POYBEL (Zubkov et al., 2009[Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron 65, 3789-3803.]). In COKHAP, two hexane rings and one oxane ring are fused together. The two hexane rings tend toward a distorted boat conformation, while the tetra­hydro­furan and di­hydro­furan rings adopt envelope conformations. The oxane ring is puckered. In the crystal, C—H⋯O hydrogen bonds connect the mol­ecules into a three-dimensional network. POYBEL comprises a fused penta­cyclic system containing two five-membered (cyclo­pentane and tetra­hydro­furan) and three six-membered (tetra­hydro­pyridinone, tetra­hydro­pyridine and benzene) rings. Both five-membered rings of the bicyclic fragment have the usual envelope conformations, and the two central six-membered rings adopt sofa and non-symmetrical half-chair conformations.

In addition, three related compounds containing the O=S=O group are YIKROD (Mammadova et al., 2023a[Mammadova, G. Z., Yakovleva, E. D., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Çelikesir, S. T. & Bhattarai, A. (2023a). Acta Cryst. E79, 747-751.]), KETGID (Schinke et al., 2022[Schinke, J., Gelbrich, T. & Griesser, U. J. (2022). Acta Cryst. E78, 979-983.]) and LUJKUA (Yakuth et al., 2024[Vinaya, Yakuth, S. A., Mohan Kumar, T. M., Bhaskar, B. L., Divakara, T. R., Yathirajan, H. S., Basavaraju, Y. B. & Parkin, S. (2024). Acta Cryst. E80, 1354-1358.]). In YIKROD, intra­molecular inter­actions are observed between the furan and benzene rings of the 4-cyano­phenyl group. In the crystal, mol­ecules are connected via C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the (100) plane. These layers are inter­connected by C⋯H inter­actions and weak van der Waals inter­actions. In KETGID, the 1,2-oxazole and methanone fragments form an almost coplanar unit. The crystal structure features three short inter­molecular C—H⋯O contacts involving the methane­sulfonyl-O atoms. In LUJKUA, the asymmetric unit contains two distinct mol­ecules, which exhibit differences in conformation resulting from a variation in key torsion angles. These distinctions influence the mol­ecular orientation and inter­molecular inter­actions, with strong N—H⋯N and N—H⋯O hydrogen bonds forming a centrosymmetric tetra­mer stabilized by ππ stacking.

5. Synthesis and crystallization

Dimethyl but-2-ynedioate (133.2 µL, 1.1 mmol) was added to a solution of N-(furan-2-ylmeth­yl)-N-[2-(5-methyl­furan-2-yl)phen­yl]-4-(tri­fluoro­meth­yl)benzene­sulfonamide 2 (100 mg, 0.22 mmol) in o-xylene (5 mL). The mixture was refluxed for 5 h. After cooling of the reaction to r.t, the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (eluent: from hexane to ethyl acetate). The title compound was obtained as colourless powder, yield 27%, 35 mg (0.059 mmol); m.p. 486–487 K. A single crystal of the title compound was grown from ethanol. IR (KBr), ν (cm−1): 1753 (CO2), 1325 (νas SO2), 1169 (νs SO2). 1H NMR (700.2 MHz, CDCl3) (J, Hz): δ 7.71 (dd, J = 7.6, 1.7, 1H, H Ar), 7.50–7.44 (m, 5H, H Ar), 7.20 (d, J = 8.1, 2H, H Ar), 6.69 (d, J = 7.9, 1H, H Ar), 6.61 (d, J = 8.1, 1H, H Ar), 5.91 (s, 1H, H Ar), 5.15 (d, J = 16.7, 1H, NCH), 4.47 (d, J = 16.7, 1H, NCH), 3.76 (s, 3H, OCH3), 3.47 (s, 3H, OCH3), 2.29 (s, 3H, CH3). 13C{1H} NMR (176.1 MHz, CDCl3): δ there are no signal of CF3 163.1, 162.4, 151.2, 150.6, 145.3, 144.1, 142.7, 137.4, 137.0, 133.3 (q, J = 32.4, 1 C), 132.4, 130.9, 130.0, 129.7, 129.2 (2C), 128.3, 127.9 (2C), 126.1, 124.5 (q, J = 4.1, 2 C), 96.9, 81.3, 54.8, 52.5, 52.2, 17.4. 19F{1H} NMR (658.8 MHz, CDCl3): −63.27. MS (ESI) m/z: [M + H]+ 586. Elemental analysis calculated (%) for C29H22F3NO7S: C 59.49, H 3.79, N 2.39, S 5.48; found: C 59.81, H 3.48, N 2.19, S 5.33.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were positioned geometrically (C—H = 0.95 and 1.00 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The methyl group (C13) attached to the benzene ring was found to be disordered over two positions with a refined occupancy ratio of 0.53 (2): 0.47 (2). A SADI instruction was used to restrain the C3—C13 and C3—C13′ bonds. The anisotropic displacement parameters of both parts of the carbon atom of the disordered methyl group were restrained to be similar with EADP instruction.

Table 3
Experimental details

Crystal data
Chemical formula C29H22F3NO7S
Mr 585.53
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.6375 (5), 11.0324 (6), 30.2019 (8)
β (°) 93.983 (1)
V3) 2538.7 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.79
Crystal size (mm) 0.35 × 0.18 × 0.17
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.713, 0.737
No. of measured, independent and observed [I > 2σ(I)] reflections 31570, 5526, 5187
Rint 0.049
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.05
No. of reflections 5526
No. of parameters 379
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.], ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Dimethyl 3-methyl-8-{[4-(trifluoromethyl)phenyl]sulfonyl}-7,8-dihydro-4H-4,6a-epoxybenzo[b]naphtho[1,8-de]azepine-5,6-dicarboxylate top
Crystal data top
C29H22F3NO7SF(000) = 1208
Mr = 585.53Dx = 1.532 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.6375 (5) ÅCell parameters from 20964 reflections
b = 11.0324 (6) Åθ = 2.9–79.9°
c = 30.2019 (8) ŵ = 1.79 mm1
β = 93.983 (1)°T = 100 K
V = 2538.7 (2) Å3Prism, colourless
Z = 40.35 × 0.18 × 0.17 mm
Data collection top
Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
diffractometer
5187 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.049
φ and ω scansθmax = 80.1°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 98
Tmin = 0.713, Tmax = 0.737k = 1413
31570 measured reflectionsl = 3838
5526 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.8141P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5526 reflectionsΔρmax = 0.45 e Å3
379 parametersΔρmin = 0.43 e Å3
1 restraintExtinction correction: SHELXL-2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.00089 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.08268 (3)0.68046 (3)0.60331 (2)0.01536 (10)
F10.03672 (12)0.08285 (8)0.60261 (3)0.0324 (2)
F20.22478 (16)0.13678 (9)0.55695 (5)0.0501 (3)
F30.29014 (14)0.14333 (10)0.62756 (5)0.0539 (3)
O10.16062 (12)0.70213 (9)0.64434 (3)0.0216 (2)
O20.17402 (12)0.70996 (9)0.56162 (3)0.0225 (2)
C10.48862 (15)0.49339 (11)0.57852 (4)0.0171 (2)
H10.4960380.4794400.5476650.021*
C20.55556 (16)0.40746 (11)0.60859 (4)0.0187 (2)
H20.6071000.3360710.5976440.022*
C30.54990 (15)0.42217 (11)0.65483 (4)0.0172 (2)
C3A0.47063 (15)0.52723 (11)0.66816 (4)0.0156 (2)
C40.44151 (15)0.58212 (12)0.71373 (4)0.0171 (2)
H40.4447630.5242740.7392640.021*
C50.56803 (16)0.69088 (11)0.71852 (4)0.0165 (2)
C60.50225 (15)0.77414 (11)0.68956 (4)0.0149 (2)
C6A0.33411 (15)0.71572 (11)0.66698 (4)0.0141 (2)
C70.18668 (15)0.79745 (11)0.64834 (4)0.0158 (2)
H7A0.0965920.8032450.6702870.019*
H7B0.2343160.8798230.6442210.019*
N80.10246 (13)0.75554 (9)0.60592 (3)0.0148 (2)
C8A0.19749 (15)0.76703 (11)0.56657 (4)0.0144 (2)
C90.14221 (16)0.85518 (12)0.53567 (4)0.0186 (2)
H90.0414110.9026880.5403570.022*
C100.23335 (17)0.87407 (12)0.49810 (4)0.0217 (3)
H100.1951410.9340340.4770150.026*
C110.38118 (17)0.80441 (12)0.49158 (4)0.0202 (3)
H110.4452350.8175810.4661550.024*
C120.43538 (16)0.71573 (12)0.52212 (4)0.0171 (2)
H120.5357600.6681750.5170740.020*
C12A0.34499 (15)0.69485 (11)0.56029 (4)0.0143 (2)
C12B0.40963 (14)0.60123 (11)0.59260 (4)0.0144 (2)
C12C0.40171 (14)0.61400 (11)0.63793 (4)0.0137 (2)
O130.27786 (11)0.64524 (8)0.70381 (3)0.01706 (19)
C130.6235 (19)0.3275 (12)0.6870 (4)0.0238 (3)0.53 (2)
H13A0.7326790.2949030.6765760.036*0.53 (2)
H13B0.5381760.2617030.6890670.036*0.53 (2)
H13C0.6474830.3642710.7163560.036*0.53 (2)
C13'0.625 (2)0.3275 (13)0.6867 (5)0.0238 (3)0.47 (2)
H13D0.7473940.3480270.6957990.036*0.47 (2)
H13E0.6211400.2481140.6721040.036*0.47 (2)
H13F0.5565130.3248580.7128740.036*0.47 (2)
C140.74252 (17)0.68539 (12)0.74318 (4)0.0187 (3)
O140.82551 (14)0.77048 (10)0.75805 (4)0.0298 (2)
O150.79316 (12)0.56938 (9)0.74709 (3)0.0221 (2)
C150.96586 (17)0.54877 (14)0.76935 (5)0.0252 (3)
H15A1.0518950.6015210.7563530.038*
H15B0.9995680.4638540.7656600.038*
H15C0.9623540.5670770.8010320.038*
C160.58807 (15)0.88141 (11)0.67119 (4)0.0160 (2)
O160.68066 (13)0.95432 (9)0.69113 (3)0.0247 (2)
O170.54422 (11)0.88538 (8)0.62730 (3)0.01773 (19)
C170.63324 (19)0.97498 (13)0.60257 (5)0.0244 (3)
H17A0.5858290.9741930.5715790.037*
H17B0.7590060.9565140.6039020.037*
H17C0.6155531.0552890.6153900.037*
C180.02522 (15)0.52580 (11)0.60113 (4)0.0161 (2)
C190.01841 (17)0.47033 (12)0.56005 (4)0.0213 (3)
H190.0552550.5128040.5336660.026*
C200.04285 (18)0.35202 (13)0.55788 (5)0.0241 (3)
H200.0491660.3126880.5300580.029*
C210.09484 (17)0.29210 (12)0.59721 (5)0.0220 (3)
C220.08252 (17)0.34703 (12)0.63835 (5)0.0224 (3)
H220.1153290.3037570.6648270.027*
C230.02216 (17)0.46516 (12)0.64049 (4)0.0195 (3)
H230.0133270.5039790.6683210.023*
C240.16202 (19)0.16488 (13)0.59579 (6)0.0296 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01088 (15)0.01765 (16)0.01767 (16)0.00027 (9)0.00183 (11)0.00049 (10)
F10.0335 (5)0.0180 (4)0.0464 (5)0.0065 (3)0.0085 (4)0.0001 (4)
F20.0591 (7)0.0245 (5)0.0717 (8)0.0035 (4)0.0407 (6)0.0050 (5)
F30.0374 (5)0.0263 (5)0.0941 (10)0.0095 (4)0.0236 (6)0.0078 (5)
O10.0165 (4)0.0240 (5)0.0252 (5)0.0012 (3)0.0086 (4)0.0018 (4)
O20.0159 (4)0.0257 (5)0.0250 (5)0.0014 (3)0.0049 (3)0.0034 (4)
C10.0160 (5)0.0185 (6)0.0170 (5)0.0007 (4)0.0020 (4)0.0035 (4)
C20.0174 (5)0.0157 (5)0.0231 (6)0.0007 (4)0.0027 (4)0.0026 (4)
C30.0137 (5)0.0166 (6)0.0213 (6)0.0015 (4)0.0013 (4)0.0031 (4)
C3A0.0129 (5)0.0186 (6)0.0154 (5)0.0025 (4)0.0017 (4)0.0016 (4)
C40.0153 (5)0.0215 (6)0.0148 (5)0.0005 (4)0.0025 (4)0.0028 (4)
C50.0169 (6)0.0218 (6)0.0110 (5)0.0010 (4)0.0028 (4)0.0018 (4)
C60.0143 (5)0.0193 (6)0.0114 (5)0.0005 (4)0.0023 (4)0.0036 (4)
C6A0.0137 (5)0.0174 (5)0.0116 (5)0.0014 (4)0.0035 (4)0.0002 (4)
C70.0142 (5)0.0178 (5)0.0155 (5)0.0011 (4)0.0013 (4)0.0029 (4)
N80.0123 (4)0.0175 (5)0.0144 (5)0.0002 (4)0.0012 (4)0.0006 (4)
C8A0.0133 (5)0.0157 (5)0.0141 (5)0.0026 (4)0.0011 (4)0.0011 (4)
C90.0182 (5)0.0183 (6)0.0192 (6)0.0011 (4)0.0003 (4)0.0015 (5)
C100.0244 (6)0.0218 (6)0.0188 (6)0.0007 (5)0.0002 (5)0.0054 (5)
C110.0210 (6)0.0258 (6)0.0141 (5)0.0032 (5)0.0033 (4)0.0017 (5)
C120.0150 (5)0.0217 (6)0.0146 (5)0.0011 (4)0.0011 (4)0.0027 (4)
C12A0.0139 (5)0.0161 (5)0.0128 (5)0.0021 (4)0.0010 (4)0.0022 (4)
C12B0.0117 (5)0.0165 (5)0.0151 (5)0.0014 (4)0.0012 (4)0.0010 (4)
C12C0.0108 (5)0.0148 (5)0.0155 (5)0.0007 (4)0.0018 (4)0.0009 (4)
O130.0149 (4)0.0225 (4)0.0142 (4)0.0008 (3)0.0043 (3)0.0036 (3)
C130.0248 (7)0.0199 (6)0.0267 (7)0.0026 (5)0.0027 (6)0.0074 (5)
C13'0.0248 (7)0.0199 (6)0.0267 (7)0.0026 (5)0.0027 (6)0.0074 (5)
C140.0192 (6)0.0258 (6)0.0112 (5)0.0013 (5)0.0007 (4)0.0012 (4)
O140.0306 (5)0.0287 (5)0.0282 (5)0.0025 (4)0.0117 (4)0.0016 (4)
O150.0185 (4)0.0259 (5)0.0216 (4)0.0025 (4)0.0020 (3)0.0031 (4)
C150.0177 (6)0.0360 (7)0.0217 (6)0.0042 (5)0.0010 (5)0.0066 (5)
C160.0151 (5)0.0168 (5)0.0164 (5)0.0021 (4)0.0024 (4)0.0020 (4)
O160.0266 (5)0.0233 (5)0.0236 (5)0.0069 (4)0.0016 (4)0.0053 (4)
O170.0190 (4)0.0192 (4)0.0150 (4)0.0035 (3)0.0011 (3)0.0015 (3)
C170.0274 (6)0.0215 (6)0.0246 (6)0.0037 (5)0.0051 (5)0.0066 (5)
C180.0127 (5)0.0180 (6)0.0179 (6)0.0022 (4)0.0028 (4)0.0001 (4)
C190.0243 (6)0.0231 (6)0.0167 (6)0.0038 (5)0.0035 (5)0.0010 (5)
C200.0276 (7)0.0220 (6)0.0235 (6)0.0045 (5)0.0069 (5)0.0050 (5)
C210.0169 (6)0.0171 (6)0.0325 (7)0.0035 (5)0.0045 (5)0.0018 (5)
C220.0218 (6)0.0198 (6)0.0250 (6)0.0031 (5)0.0016 (5)0.0030 (5)
C230.0210 (6)0.0199 (6)0.0175 (6)0.0025 (5)0.0010 (4)0.0003 (4)
C240.0227 (7)0.0199 (6)0.0469 (9)0.0026 (5)0.0067 (6)0.0021 (6)
Geometric parameters (Å, º) top
S1—O11.4314 (9)C10—H100.9500
S1—O21.4338 (10)C11—C121.3877 (18)
S1—N81.6359 (10)C11—H110.9500
S1—C181.7642 (13)C12—C12A1.4034 (16)
F1—C241.3434 (17)C12—H120.9500
F2—C241.334 (2)C12A—C12B1.4819 (17)
F3—C241.343 (2)C12B—C12C1.3816 (16)
C1—C21.3857 (18)C13—H13A0.9800
C1—C12B1.4129 (17)C13—H13B0.9800
C1—H10.9500C13—H13C0.9800
C2—C31.4096 (18)C13'—H13D0.9800
C2—H20.9500C13'—H13E0.9800
C3—C3A1.3805 (17)C13'—H13F0.9800
C3—C13'1.507 (10)C14—O141.2022 (18)
C3—C131.509 (9)C14—O151.3400 (17)
C3A—C12C1.4001 (17)O15—C151.4562 (15)
C3A—C41.5340 (17)C15—H15A0.9800
C4—O131.4439 (15)C15—H15B0.9800
C4—C51.5411 (17)C15—H15C0.9800
C4—H41.0000C16—O161.2045 (16)
C5—C61.3416 (18)C16—O171.3452 (15)
C5—C141.4820 (17)O17—C171.4378 (15)
C6—C161.4795 (17)C17—H17A0.9800
C6—C6A1.5517 (16)C17—H17B0.9800
C6A—O131.4466 (13)C17—H17C0.9800
C6A—C71.5198 (16)C18—C191.3876 (17)
C6A—C12C1.5358 (16)C18—C231.3899 (18)
C7—N81.4680 (15)C19—C201.390 (2)
C7—H7A0.9900C19—H190.9500
C7—H7B0.9900C20—C211.393 (2)
N8—C8A1.4405 (15)C20—H200.9500
C8A—C91.3928 (17)C21—C221.391 (2)
C8A—C12A1.4031 (17)C21—C241.4961 (19)
C9—C101.3877 (18)C22—C231.3854 (19)
C9—H90.9500C22—H220.9500
C10—C111.3910 (19)C23—H230.9500
O1—S1—O2121.06 (6)C12—C12A—C12B119.67 (11)
O1—S1—N8106.49 (6)C12C—C12B—C1115.67 (11)
O2—S1—N8107.06 (5)C12C—C12B—C12A123.09 (11)
O1—S1—C18108.27 (6)C1—C12B—C12A121.22 (11)
O2—S1—C18107.08 (6)C12B—C12C—C3A122.41 (11)
N8—S1—C18105.97 (5)C12B—C12C—C6A132.85 (11)
C2—C1—C12B121.64 (11)C3A—C12C—C6A104.66 (10)
C2—C1—H1119.2C4—O13—C6A96.88 (8)
C12B—C1—H1119.2C3—C13—H13A109.5
C1—C2—C3122.36 (11)C3—C13—H13B109.5
C1—C2—H2118.8H13A—C13—H13B109.5
C3—C2—H2118.8C3—C13—H13C109.5
C3A—C3—C2115.46 (11)H13A—C13—H13C109.5
C3A—C3—C13'123.5 (7)H13B—C13—H13C109.5
C2—C3—C13'121.1 (7)C3—C13'—H13D109.5
C3A—C3—C13123.0 (6)C3—C13'—H13E109.5
C2—C3—C13121.5 (6)H13D—C13'—H13E109.5
C3—C3A—C12C122.45 (11)C3—C13'—H13F109.5
C3—C3A—C4133.39 (11)H13D—C13'—H13F109.5
C12C—C3A—C4104.11 (10)H13E—C13'—H13F109.5
O13—C4—C3A100.46 (9)O14—C14—O15124.85 (12)
O13—C4—C599.91 (10)O14—C14—C5126.04 (12)
C3A—C4—C5105.22 (9)O15—C14—C5109.10 (11)
O13—C4—H4116.3C14—O15—C15115.88 (11)
C3A—C4—H4116.3O15—C15—H15A109.5
C5—C4—H4116.3O15—C15—H15B109.5
C6—C5—C14129.68 (12)H15A—C15—H15B109.5
C6—C5—C4105.54 (11)O15—C15—H15C109.5
C14—C5—C4123.47 (11)H15A—C15—H15C109.5
C5—C6—C16129.54 (11)H15B—C15—H15C109.5
C5—C6—C6A105.26 (10)O16—C16—O17124.64 (12)
C16—C6—C6A122.82 (10)O16—C16—C6127.35 (12)
O13—C6A—C7110.59 (9)O17—C16—C6108.01 (10)
O13—C6A—C12C100.14 (9)C16—O17—C17116.09 (10)
C7—C6A—C12C119.46 (10)O17—C17—H17A109.5
O13—C6A—C699.57 (9)O17—C17—H17B109.5
C7—C6A—C6119.05 (10)H17A—C17—H17B109.5
C12C—C6A—C6104.71 (9)O17—C17—H17C109.5
N8—C7—C6A113.89 (10)H17A—C17—H17C109.5
N8—C7—H7A108.8H17B—C17—H17C109.5
C6A—C7—H7A108.8C19—C18—C23121.92 (12)
N8—C7—H7B108.8C19—C18—S1119.01 (10)
C6A—C7—H7B108.8C23—C18—S1118.95 (10)
H7A—C7—H7B107.7C18—C19—C20119.34 (12)
C8A—N8—C7118.49 (9)C18—C19—H19120.3
C8A—N8—S1119.23 (8)C20—C19—H19120.3
C7—N8—S1121.75 (8)C19—C20—C21118.86 (12)
C9—C8A—C12A120.98 (11)C19—C20—H20120.6
C9—C8A—N8117.87 (11)C21—C20—H20120.6
C12A—C8A—N8121.12 (10)C22—C21—C20121.45 (13)
C10—C9—C8A120.45 (12)C22—C21—C24118.61 (13)
C10—C9—H9119.8C20—C21—C24119.93 (13)
C8A—C9—H9119.8C23—C22—C21119.65 (12)
C9—C10—C11119.40 (12)C23—C22—H22120.2
C9—C10—H10120.3C21—C22—H22120.2
C11—C10—H10120.3C22—C23—C18118.72 (12)
C12—C11—C10120.20 (12)C22—C23—H23120.6
C12—C11—H11119.9C18—C23—H23120.6
C10—C11—H11119.9F2—C24—F3107.37 (13)
C11—C12—C12A121.37 (11)F2—C24—F1106.36 (13)
C11—C12—H12119.3F3—C24—F1105.22 (13)
C12A—C12—H12119.3F2—C24—C21112.84 (13)
C8A—C12A—C12117.59 (11)F3—C24—C21112.32 (13)
C8A—C12A—C12B122.72 (10)F1—C24—C21112.23 (11)
C12B—C1—C2—C30.27 (19)C12—C12A—C12B—C12C143.46 (12)
C1—C2—C3—C3A0.97 (18)C8A—C12A—C12B—C1146.80 (12)
C1—C2—C3—C13'179.4 (8)C12—C12A—C12B—C134.76 (17)
C1—C2—C3—C13180.0 (7)C1—C12B—C12C—C3A1.32 (17)
C2—C3—C3A—C12C0.53 (17)C12A—C12B—C12C—C3A176.99 (11)
C13'—C3—C3A—C12C179.9 (8)C1—C12B—C12C—C6A177.79 (11)
C13—C3—C3A—C12C179.5 (7)C12A—C12B—C12C—C6A0.5 (2)
C2—C3—C3A—C4177.38 (12)C3—C3A—C12C—C12B0.65 (18)
C13'—C3—C3A—C43.0 (8)C4—C3A—C12C—C12B177.00 (11)
C13—C3—C3A—C43.6 (7)C3—C3A—C12C—C6A177.97 (11)
C3—C3A—C4—O13148.68 (13)C4—C3A—C12C—C6A0.32 (11)
C12C—C3A—C4—O1334.06 (11)O13—C6A—C12C—C12B149.70 (12)
C3—C3A—C4—C5107.93 (15)C7—C6A—C12C—C12B28.95 (18)
C12C—C3A—C4—C569.34 (11)C6—C6A—C12C—C12B107.51 (14)
O13—C4—C5—C633.53 (11)O13—C6A—C12C—C3A33.39 (11)
C3A—C4—C5—C670.27 (12)C7—C6A—C12C—C3A154.14 (10)
O13—C4—C5—C14158.45 (10)C6—C6A—C12C—C3A69.41 (11)
C3A—C4—C5—C1497.75 (13)C3A—C4—O13—C6A54.37 (10)
C14—C5—C6—C164.6 (2)C5—C4—O13—C6A53.28 (10)
C4—C5—C6—C16162.42 (11)C7—C6A—O13—C4179.14 (10)
C14—C5—C6—C6A167.07 (12)C12C—C6A—O13—C453.93 (10)
C4—C5—C6—C6A0.07 (12)C6—C6A—O13—C453.03 (10)
C5—C6—C6A—O1333.30 (11)C6—C5—C14—O1436.1 (2)
C16—C6—C6A—O13162.73 (10)C4—C5—C14—O14158.94 (13)
C5—C6—C6A—C7153.40 (10)C6—C5—C14—O15144.93 (13)
C16—C6—C6A—C742.62 (15)C4—C5—C14—O1520.01 (16)
C5—C6—C6A—C12C69.93 (11)O14—C14—O15—C153.06 (18)
C16—C6—C6A—C12C94.05 (12)C5—C14—O15—C15177.98 (10)
O13—C6A—C7—N8105.16 (11)C5—C6—C16—O1644.8 (2)
C12C—C6A—C7—N810.18 (15)C6A—C6—C16—O16155.42 (12)
C6—C6A—C7—N8140.52 (10)C5—C6—C16—O17135.61 (13)
C6A—C7—N8—C8A72.75 (13)C6A—C6—C16—O1724.19 (14)
C6A—C7—N8—S198.88 (11)O16—C16—O17—C178.00 (17)
O1—S1—N8—C8A170.14 (9)C6—C16—O17—C17172.38 (10)
O2—S1—N8—C8A39.32 (10)O1—S1—C18—C19152.89 (10)
C18—S1—N8—C8A74.73 (10)O2—S1—C18—C1920.83 (11)
O1—S1—N8—C718.29 (11)N8—S1—C18—C1993.20 (11)
O2—S1—N8—C7149.11 (9)O1—S1—C18—C2330.97 (11)
C18—S1—N8—C796.85 (10)O2—S1—C18—C23163.03 (10)
C7—N8—C8A—C9107.68 (13)N8—S1—C18—C2382.94 (11)
S1—N8—C8A—C980.47 (13)C23—C18—C19—C202.14 (19)
C7—N8—C8A—C12A70.01 (15)S1—C18—C19—C20173.88 (10)
S1—N8—C8A—C12A101.83 (12)C18—C19—C20—C210.4 (2)
C12A—C8A—C9—C100.56 (19)C19—C20—C21—C221.6 (2)
N8—C8A—C9—C10177.14 (11)C19—C20—C21—C24179.74 (12)
C8A—C9—C10—C110.2 (2)C20—C21—C22—C231.9 (2)
C9—C10—C11—C120.9 (2)C24—C21—C22—C23179.43 (12)
C10—C11—C12—C12A0.7 (2)C21—C22—C23—C180.18 (19)
C9—C8A—C12A—C120.70 (17)C19—C18—C23—C221.85 (19)
N8—C8A—C12A—C12176.93 (10)S1—C18—C23—C22174.17 (9)
C9—C8A—C12A—C12B179.17 (11)C22—C21—C24—F2158.19 (13)
N8—C8A—C12A—C12B1.54 (17)C20—C21—C24—F223.13 (19)
C11—C12—C12A—C8A0.05 (18)C22—C21—C24—F336.65 (18)
C11—C12—C12A—C12B178.57 (11)C20—C21—C24—F3144.67 (14)
C2—C1—C12B—C12C0.87 (17)C22—C21—C24—F181.66 (17)
C2—C1—C12B—C12A177.47 (11)C20—C21—C24—F197.02 (16)
C8A—C12A—C12B—C12C34.98 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O16i1.002.493.3893 (16)149
C7—H7A···O10.992.352.8481 (15)111
C7—H7B···O170.992.463.0071 (14)115
C12—H12···O2ii0.952.553.1357 (15)120
C15—H15A···O13ii0.982.473.3741 (17)153
C17—H17B···F1iii0.982.543.3033 (17)135
C19—H19···O20.952.522.9003 (17)104
C22—H22···O14i0.952.373.2698 (19)158
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z; (iii) x+1, y+1, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactdistanceSymmetry operation
F3···H17C2.72x, -1 + y, z
F1···H17B2.54-1 + x, -1 + y, z
H12···H12.541 - x, 1 - y, 1 - z
O13···H15A2.47-1 + x, y, z
O14···H222.371 - x, 1/2 + y, 3/2 - z
O14···H15B2.642 - x, 1/2 + y, 3/2 - z
H22···O142.371 - x, -1/2 + y, 3/2 - z
H19···H192.27-x, 1 - y, 1 - z
H17A···H102.511 - x, 2 - y, 1 - z
H10···H92.581 - x, 2 - y, 1 - z
 

Acknowledgements

GMB and SA thank to Common Use Center `Physical and Chemical Research of New Materials, Substances and Catalytic Systems'. This publication has been supported by the RUDN University Scientific Projects Grant System, project No. 021408–2-000, as well as by the Baku Engineering University (Azerbaijan) and Azerbaijan Medical University. The author's contributions are as follows. Conceptualization, MA and GMM; synthesis, GMB and SA; AGK NMR analysis; X-ray analysis, VNK, NAG; writing (review and editing of the manuscript) MA and GMM; funding acquisition KIH; supervision, MA and GMM.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorisova, K., Nikitina, E., Novikov, R., Khrustalev, V., Dorovatovskii, P., Zubavichus, Y., Kuznetsov, M., Zaytsev, V., Varlamov, A. & Zubkov, F. (2018a). Chem. Commun. 54, 2850–2853.  Web of Science CSD CrossRef CAS Google Scholar
First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018b). J. Org. Chem. 83, 4840–4850.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBurkin, G. M., Kvyatkovskaya, E. A., Khrustalev, V. N., Hasanov, K. I., Sadikhova, N. D., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 418–422.  CSD CrossRef IUCr Journals Google Scholar
First citationChakrabarti, S., Liu, M., Waldeck, D. H., Oliver, A. M. & Paddon-Row, M. N. (2007). J. Am. Chem. Soc. 129, 3247–3256.  CrossRef PubMed CAS Google Scholar
First citationChou, T.-C. & Li, Y.-J. (2015). Tetrahedron 71, 5620–5633.  CSD CrossRef CAS Google Scholar
First citationCriado, A., Vilas-Varela, M., Cobas, A., Peréz, D., Pena, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637–12649.  CSD CrossRef CAS PubMed Google Scholar
First citationEckert-Maksić, M., Margetić, D., Kirin, S., Milić, D. & Matković-Čalogović, D. (2005). Eur. J. Org. Chem. pp. 4612–4620.  Google Scholar
First citationEda, S., Eguchi, F., Haneda, H. & Hamura, T. (2015). Chem. Commun. 51, 5963–5966.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnev, V. S., Felzmann, W., Gromov, A., Marchart, S. & Mulzer, J. (2012). Chem. Eur. J. 18, 9651–9668.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFurrer, F., Linden, A. & Stuparu, M. C. (2013). Chem. Eur. J. 19, 13199–13206.  CSD CrossRef CAS PubMed Google Scholar
First citationGromov, A., Enev, V. & Mulzer, J. (2009). Org. Lett. 11, 2884–2886.  CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuliyeva, N. A., Burkin, G. M., Annadurdyyeva, S., Khrustalev, V. N., Atioğlu, Z., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 62–66.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMammadova, G. Z., Annadurdyyeva, S., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023b). Acta Cryst. E79, 499–503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMammadova, G. Z., Yakovleva, E. D., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Çelikesir, S. T. & Bhattarai, A. (2023a). Acta Cryst. E79, 747–751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMargetić, D., Eckert-Maksić, M., Trošelj, P. & Marinić, Z. (2010). J. Fluorine Chem. 131, 408–416.  Google Scholar
First citationMurphy, R. B., Norman, R. E., White, J. M., Perkins, M. V. & Johnston, M. R. (2016). Org. Biomol. Chem. 14, 8707–8720.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOh, C. H., Yi, H. J. & Lee, K. H. (2010). Bull. Korean Chem. Soc. 31, 683–688.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRoscalesa, S. & Plumet, J. (2017). Nat. Prod. Commun. 12, 713–732.  PubMed Google Scholar
First citationSadikhova, N. D., Atioğlu, Z., Guliyeva, N. A., Podrezova, A. G., Nikitina, E. V., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 83–87.  CSD CrossRef IUCr Journals Google Scholar
First citationSchindler, C. S. & Carreira, E. M. (2009). Chem. Soc. Rev. 38, 3222–3241.  CrossRef PubMed CAS Google Scholar
First citationSchinke, J., Gelbrich, T. & Griesser, U. J. (2022). Acta Cryst. E78, 979–983.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVinaya, Yakuth, S. A., Mohan Kumar, T. M., Bhaskar, B. L., Divakara, T. R., Yathirajan, H. S., Basavaraju, Y. B. & Parkin, S. (2024). Acta Cryst. E80, 1354–1358.  CSD CrossRef IUCr Journals Google Scholar
First citationVogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron 55, 13521–13642.  CrossRef CAS Google Scholar
First citationWarrener, R. N., Margetic, D., Amarasekara, A. S., Butler, D. N., Mahadevan, I. B. & Russell, R. A. (1999). Org. Lett. 1, 199–202.  Web of Science CrossRef CAS Google Scholar
First citationWarrener, R. N., Margetić, D., Foley, P. J., Butler, D. N., Winling, A., Beales, K. A. & Russell, R. A. (2001). Tetrahedron 57, 571–582.  CrossRef CAS Google Scholar
First citationZaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett. 60, 151204.  Web of Science CSD CrossRef Google Scholar
First citationZubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012b). RSC Adv. 2, 4103–4109.  Web of Science CrossRef CAS Google Scholar
First citationZubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron 65, 3789–3803.  CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaytsev, V. P., Puzikova, E. S., Nikitina, E. V., Khrustalev, V. N., Novikov, R. A. & Varlamov, A. V. (2012a). Chem. Heterocycl. Compd. 48, 514–524.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds