

research communications
Synthesis and structure of (E)-3,4,5-trihydroxy-N′-(3,4,5-trimethoxybenzylidene)benzohydrazide monohydrate
aDépartement de Chimie, UFR des Sciences et Technologies, Laboratoire de Chimie Physique des Matériaux (LCPM), BP 523, Ziguinchor, Senegal, bInstitut Européen des Membranes, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France, and cICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
*Correspondence e-mail: mlo@univ-zig.sn
In the structure of the title compound, C17H18N2O7·H2O, hydrogen bonds link three molecules to the water molecule. Additional hydrogen-bonding interactions connect two molecules via the amide nitrogen donor and two methoxy oxygen acceptors. This three-dimensional hydrogen-bond network has no particular directionality, and a slight disorder of two methoxy groups is observed. According to force-field calculations, weaker but more extended van der Waals interactions show a larger stabilization effect than the hydrogen-bond interactions, while hydrogen-bond analysis suggests that polymorphs of the compound may be found in the future.
Keywords: crystal structure; gallic acid; acylhydrazone.
CCDC reference: 2449013
1. Introduction
Gallic acid is a secondary natural metabolite widely found in various fruits and vegetables (Zhou et al., 2020; Hadidi et al., 2024
). Structurally, it is a low-molecular-weight phenolic acid, identified as 3,4,5-trihydroxybenzoic acid, and it is studied extensively for its remarkable antioxidant properties, which have applications in medicinal chemistry and various industrial sectors (Badhani et al., 2015
).
Acylhydrazones [R—C(=O)—NH—N=CH—R′] represent a class of organic compounds resulting from the combination of a hydrazone function and a carbonyl group. Synthetically, they are obtained through the condensation of a hydrazide, typically derived from a carboxylic acid or its ester, with an aldehyde or ketone (Oliveira et al., 2022; Haranahalli et al., 2019
; Vlad et al., 2024
). This straightforward and efficient synthetic method accounts for its growing use in various fields of modern chemistry (Liu et al., 2020
). In materials chemistry, acylhydrazones are employed to develop promising materials such as reversible polymers (Ramimoghadam et al., 2024
) and tunable photoswitches (van Dijken et al., 2015
). Moreover, their structure exhibits keto–enol tautomeric equilibrium, which underlies their extensive use as multidentate ligands in coordination chemistry (Liu et al., 2022
). Additionally, the structural similarity between acylhydrazones and explains their widespread application in medicinal chemistry. Numerous studies have shown that acylhydrazones exhibit a broad range of biological activities (Socea et al., 2022
; Kassab, 2023
; Maia et al., 2014
).
In this context, acylhydrazones derived from gallic acid emerge as a particularly promising class of compounds, combining the antioxidant and metal-chelating properties of gallic acid with the versatile chemical behavior of acylhydrazones. This simple and efficient methodology allows access to a wide range of gallic acid-based acylhydrazones with tunable properties. As part of our research efforts, we successfully characterized the crystallographic structure of the title compound (TTMB·H2O), paving the way for further structural and biological investigations.
2. Structural commentary
All bond lengths and angles are comparable to those of similar fragments present in the Cambridge Structural Database: a default Mogul check (Bruno et al., 2004) gave no unusual features. The molecular structure of the major disordered component of TTMB·H2O is shown in Fig. 1
. The gallic acid phenyl ring and the trimethoxy phenyl ring are inclined slightly with respect to each other, subtending a dihedral angle of 10.56 (2)°. The dihedral angle between the central acylhydrazone motif and the trimethoxy phenyl ring is 14.01 (2)°, whereas that with the gallic acid phenyl ring is 12.64 (3)°. The methoxy group in the 3-position is in a close to perpendicular orientation with respect to the ring to which it is attached [C7—O6—C5—C2 torsion angle = −86.57 (9)°], whereas the disordered methoxy groups in the 2 and 4 positions are not far from coplanarity with the ring. The occupancy factors of the methyl groups of the 2,4 methoxy moieties are 0.54 (2)/0.46 (2) and 0.39 (3)/0.61 (3), respectively. The presence of the water molecule in the is probably due to traces of water in the ethanol used for the crystallization.
![]() | Figure 1 A view of the title structure showing the atom-labeling scheme. The atomic displacement ellipsoids are drawn at the 50% probability level. Only the major components of the disordered methoxy groups are shown. The isotropically refined hydrogen atoms have been drawn as fixed-sized spheres of 0.12 Å radius. The bond radius is 0.08 Å. |
3. Supramolecular features
The most prominent supramolecular feature in the structure of TTMB·H2O is the water molecule that connects three TTMB moieties by short hydrogen bonds (Table 1, Fig. 2
): donor–acceptor distances 2.8930 (8) (O27⋯N14), 2.7746 (8) (O27⋯O6), 2.7649 (8) (O25⋯O27), and 2.6892 Å (O23⋯O27). The latter two hydrogen bonds show a bifurcated bond involving two donor oxygen atoms of two neighboring hydroxyl groups of the same TTMB moiety, whereas the water oxygen acts as a single acceptor. An additional bifurcated hydrogen bond is found between two TTMB moieties, but involving the opposite configuration, i.e. two acceptor oxygen atoms and one donor nitrogen. The two acceptor oxygen atoms belong to two neighboring methoxy groups and connect to an amide nitrogen donor of a neighboring moiety. Such bifurcated hydrogen bonds are not rare and have been observed in α-helices, where it was shown that the interaction energy of bifurcated hydrogen bonds is in general 50 to 60% smaller than those of a canonical single donor–single acceptor hydrogen bond (Feldblum & Arkin, 2024
). A hydrogen-bond coordination analysis (Galek et al., 2014
) shows that the likelihood of an acyclic amide nitrogen donor (N15) having a bifurcated hydrogen bond is very low (2.4%), compared to that of a – not observed – single hydrogen bond (86%). The probability of water oxygen atoms accepting two donors – as is observed in this structure – remains relatively low (29%) compared to the acceptance of only one donor (65%). Two of the three acceptor oxygen atoms of the methoxy groups show no intermolecular interactions. The overall hydrogen-bond coordination capacity in TTMB·H20 is only fulfilled at 56%, leaving the possibility open that one or more polymorphs may exist.
|
![]() | Figure 2 Hydrogen-bonded network between water and three TTMB moieties. |
A full hydrogen-bond statistical analysis shows that the water oxygen (O27) to amide nitrogen distance (N14) 2.8930 (8) Å, is unusually short, falling within the lower 5% quantile for 591 analogs. The same is true for the O27⋯O6 donor–acceptor pair distance [2.7746 (8) Å; 746 observations]. The N15—H151⋯O21 angle [121.6 (7)°] is also found to be unusually small, whereas the N15—H151⋯O23 angle falls within the expected range. This bifurcated hydrogen bond appears to be constituted of a strong and weak component.
The hydrogen-bond network has no particular directionality and can thus be considered as three-dimensional. Although the hydrogen-bond network alone might seem essential for the stabilization of the structural architecture, there may be other interactions that play a role. There are no appreciable π–π interactions with centroid–centroid distances below 4.0 Å, and only one short C—H-centroid interaction, C7—H73⋯Cg2(C12–C1–C2–C5–C8–C11), 2.608 (6) Å. The interaction energies of different synthons that may contribute to the total lattice energy were calculated using the Momany force field, also called the CHARMm force field (Momany & Rone, 1992). In this force field, the interaction energy of each synthon is decomposed in three different terms: an electrostatic, a hydrogen bond, and a van der Waals energy term. The most important individual synthon links two parallel TTMB molecules with a slipped-parallel π–π stacking arrangement (Fig. 3
). The energy decomposition shows that van der Waals interactions make up most of the total interaction energy, which is confirmed by a pictorial representation of the interaction zones calculated by the NCI index method (Fig. 3
, Johnson et al., 2010
). The second most important synthon has two TTMB molecules in a nearly perpendicular orientation for which the hydrogen-bond interactions are 40% more important than the van der Waals interactions. The synthons that link the water molecule to the neighboring TTMB molecules have the most important energy contribution, while the van der Waals energy is negligible. From the decomposition of the total lattice energy, it appears that – according to the Momany force field – approximately 46% of the stabilization is accounted for by van der Waals-type interactions, 31% by hydrogen-bond interactions and 23% by electrostatic interactions.
![]() | Figure 3 Non-covalent interaction regions between two nearly parallel TTMB moieties. The reduced electron density gradient [s(ρ); see Johnson et al., 2010 ![]() |
4. Database survey
A search of the Cambridge Structural Database (version 5.46 with November 2024 updates; Groom et al., 2016) revealed 14 entries for gallic acid acylhydrazone derivatives, of which one contains a metal center (IDUVEK; Alhadi et al., 2012
). The hydroxynaphthalene derivative (LUYHUL; Shaikh et al., 2020
) was reported to be used as a nano-molar detection probe for the of La3+ ions in vivo. The structure that is most closely related to the title compound is the 2,4-dimethoxyphenyl derivative (SOYCON; Alhadi et al., 2009
) but instead of a water solvate, it is an ethanol solvate. Among the fourteen related structures seven are water solvates, two are methanol solvates and one is an ethanol solvate, while the others have no solvent of crystallization.
5. Synthesis and crystallization
The title compound was synthesized in a round-bottom flask by dissolving 3,4,5-trihydroxybenzohydrazide (1.1 mmol, 0.2 g) in absolute ethanol (2 mL). Subsequently, a solution of 3,4,5-trimethoxybenzaldehyde (1.0 mmol, 0.196 g) in absolute ethanol (2 mL) was added dropwise under continuous stirring, followed by the addition of a single drop of acetic acid as a catalyst. The reaction mixture was refluxed for approximately 3 h, leading to the formation of a white precipitate. The resulting solid was collected by filtration, washed thoroughly with cold ethanol, and air-dried. Single crystals suitable for X-ray et al., 2022).
6. Refinement
Crystal data, data collection and structure . An initial structure was carried out using OLEX2 (Dolomanov et al., 2009
) using spherical scattering factors for all atoms. The methyl groups of the two methoxy groups in the 2- and 4-positions were found to be slightly disordered over two different positions. The relative occupancies were refined while keeping the sum at 1.0 with soft restraints set on the oxygen-to-carbon distances, and similarity restraints on the atomic displacement parameters of each disordered group. The difference-Fourier map showed residual densities in the centers of almost all covalent bonds, so it was decided to perform the final according to the Hirshfeld Atom (HAR) methodology using aspherical scattering factors as implemented in the OLEX2 software package. The electron density was calculated from a Gaussian basis set single determinant SCF wave function (DFT-r2SCAN, cc-pVTZ basis set) with the ORCA 6.0 package (Neese, 2012
) and partitioning according to the NoSpherA2 methodology (Kleemiss et al., 2021
). The positions and isotropic atomic displacement parameters of the hydrogen atoms were freely refined. The four disordered parts were treated for the calculation of the wavefunctions according to the grouped parts method, giving four different structures (syntax 1-2;3,4 for parts 1/3, 1/4, 2/3, 2/4), recently described by Kleemiss et al. (2021
).
|
Supporting information
CCDC reference: 2449013
https://doi.org/10.1107/S2056989025004001/tx2096sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025004001/tx2096Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025004001/tx2096Isup3.cml
C17H18N2O7·H2O | F(000) = 800.657 |
Mr = 380.36 | Dx = 1.436 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.5409 (7) Å | Cell parameters from 9902 reflections |
b = 10.9018 (6) Å | θ = 2.4–34.3° |
c = 14.3799 (8) Å | µ = 0.12 mm−1 |
β = 103.427 (2)° | T = 173 K |
V = 1759.78 (17) Å3 | Prism, colourless |
Z = 4 | 0.34 × 0.23 × 0.04 mm |
Venture Photon-II diffractometer | 5802 reflections with I ≥ 2u(I) |
φ and ω scans | Rint = 0.059 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 34.5°, θmin = 2.4° |
Tmin = 0.95, Tmax = 1.00 | h = −18→18 |
57780 measured reflections | k = −17→17 |
7401 independent reflections | l = −22→22 |
Refinement on F2 | 28 constraints |
Least-squares matrix: full | Primary atom site location: iterative |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.062 | Only H-atom coordinates refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0094P)2 + 0.2877P] where P = (Fo2 + 2Fc2)/3 |
7401 reflections | (Δ/σ)max = 0.001 |
342 parameters | Δρmax = 0.30 e Å−3 |
16 restraints | Δρmin = −0.29 e Å−3 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O23 | −0.16740 (5) | −0.10296 (4) | −0.27135 (3) | 0.01723 (10) | |
H231 | −0.2026 (9) | −0.1681 (9) | −0.2449 (7) | 0.02584 (14)* | |
O21 | −0.00615 (5) | 0.04187 (5) | −0.31462 (3) | 0.02050 (11) | |
H211 | 0.0150 (10) | 0.1127 (10) | −0.3460 (7) | 0.03076 (16)* | |
O17 | 0.01977 (5) | 0.26329 (5) | 0.07329 (3) | 0.01894 (10) | |
O3 | 0.31182 (6) | 0.71678 (6) | 0.31595 (4) | 0.03290 (15) | |
O6 | 0.49176 (4) | 0.83971 (5) | 0.27220 (4) | 0.01874 (10) | |
O9 | 0.53534 (5) | 0.82814 (6) | 0.09931 (4) | 0.03169 (14) | |
O25 | −0.23283 (5) | −0.07336 (5) | −0.09043 (4) | 0.02225 (11) | |
H251 | −0.2469 (10) | −0.1477 (10) | −0.1263 (8) | 0.03337 (17)* | |
N15 | 0.10103 (5) | 0.35562 (5) | −0.03782 (4) | 0.01652 (11) | |
H151 | 0.0992 (8) | 0.3707 (8) | −0.1057 (6) | 0.01982 (13)* | |
N14 | 0.16027 (5) | 0.43628 (5) | 0.02928 (4) | 0.01534 (10) | |
C22 | −0.11988 (6) | −0.01524 (6) | −0.20606 (4) | 0.01278 (11) | |
C20 | −0.03649 (6) | 0.06508 (6) | −0.23039 (4) | 0.01397 (11) | |
C19 | 0.01409 (6) | 0.15878 (6) | −0.16865 (5) | 0.01610 (12) | |
H191 | 0.0802 (7) | 0.2141 (8) | −0.1889 (6) | 0.01932 (14)* | |
C18 | −0.01895 (6) | 0.17342 (6) | −0.08161 (4) | 0.01353 (11) | |
C16 | 0.03388 (6) | 0.26711 (6) | −0.00924 (4) | 0.01391 (11) | |
C13 | 0.21854 (6) | 0.52293 (6) | 0.00037 (5) | 0.01643 (12) | |
H131 | 0.2215 (7) | 0.5313 (7) | −0.0733 (6) | 0.01972 (14)* | |
C12 | 0.28525 (6) | 0.61051 (6) | 0.06973 (4) | 0.01459 (11) | |
C1 | 0.25992 (6) | 0.62084 (6) | 0.15975 (5) | 0.01662 (12) | |
H11 | 0.1882 (7) | 0.5690 (8) | 0.1756 (6) | 0.01994 (15)* | |
C2 | 0.32763 (6) | 0.69985 (6) | 0.22673 (5) | 0.01729 (12) | |
C5 | 0.42032 (6) | 0.76765 (6) | 0.20393 (5) | 0.01525 (12) | |
C7 | 0.44587 (8) | 0.96035 (8) | 0.27896 (8) | 0.0344 (2) | |
H71 | 0.4434 (10) | 1.0070 (10) | 0.2129 (8) | 0.0517 (3)* | |
H72 | 0.3597 (10) | 0.9547 (10) | 0.2945 (8) | 0.0517 (3)* | |
H73 | 0.5075 (10) | 1.0059 (10) | 0.3340 (8) | 0.0517 (3)* | |
C8 | 0.44380 (6) | 0.75848 (6) | 0.11305 (5) | 0.01781 (13) | |
C11 | 0.37541 (6) | 0.67979 (6) | 0.04516 (5) | 0.01825 (13) | |
H111 | 0.3905 (7) | 0.6718 (8) | −0.0256 (6) | 0.02190 (15)* | |
C26 | −0.10082 (6) | 0.09328 (6) | −0.05723 (5) | 0.01540 (12) | |
H261 | −0.1239 (7) | 0.1025 (8) | 0.0107 (6) | 0.01848 (14)* | |
C24 | −0.15188 (6) | −0.00032 (6) | −0.11857 (5) | 0.01416 (11) | |
O27 | 0.26649 (5) | 0.28900 (5) | 0.19444 (4) | 0.02384 (11) | |
H271 | 0.3461 (10) | 0.3139 (10) | 0.2147 (8) | 0.03577 (17)* | |
H272 | 0.2198 (10) | 0.3454 (11) | 0.1480 (9) | 0.03577 (17)* | |
C4a | 0.2110 (5) | 0.6593 (5) | 0.3378 (3) | 0.0297 (8) | 0.54 (2) |
H4a1 | 0.126 (2) | 0.672 (2) | 0.2865 (16) | 0.0446 (13)* | 0.54 (2) |
H4a2 | 0.223 (3) | 0.559 (3) | 0.3363 (18) | 0.0446 (13)* | 0.54 (2) |
H4a3 | 0.2086 (19) | 0.693 (2) | 0.4071 (15) | 0.0446 (13)* | 0.54 (2) |
C4b | 0.2449 (9) | 0.6202 (11) | 0.3523 (4) | 0.0425 (19) | 0.46 (2) |
H4b1 | 0.153 (3) | 0.639 (4) | 0.320 (3) | 0.064 (3)* | 0.46 (2) |
H4b2 | 0.272 (3) | 0.527 (3) | 0.342 (2) | 0.064 (3)* | 0.46 (2) |
H4b3 | 0.263 (3) | 0.626 (3) | 0.428 (2) | 0.064 (3)* | 0.46 (2) |
C10d | 0.5545 (17) | 0.8358 (16) | 0.0054 (8) | 0.049 (3) | 0.39 (3) |
H10d1 | 0.564 (5) | 0.751 (5) | −0.028 (4) | 0.074 (4)* | 0.39 (3) |
H10d2 | 0.477 (4) | 0.869 (4) | −0.046 (3) | 0.074 (4)* | 0.39 (3) |
H10d3 | 0.616 (4) | 0.909 (4) | 0.006 (3) | 0.074 (4)* | 0.39 (3) |
C10c | 0.5817 (7) | 0.8001 (10) | 0.0173 (6) | 0.0452 (14) | 0.61 (3) |
H10c1 | 0.606 (2) | 0.707 (2) | 0.015 (2) | 0.068 (2)* | 0.61 (3) |
H10c2 | 0.511 (3) | 0.823 (3) | −0.050 (2) | 0.068 (2)* | 0.61 (3) |
H10c3 | 0.660 (2) | 0.857 (3) | 0.0249 (17) | 0.068 (2)* | 0.61 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O23 | 0.0230 (2) | 0.0151 (2) | 0.0147 (2) | −0.00580 (18) | 0.00659 (19) | −0.00383 (17) |
O21 | 0.0317 (3) | 0.0189 (2) | 0.0142 (2) | −0.0083 (2) | 0.0119 (2) | −0.00423 (18) |
O17 | 0.0275 (3) | 0.0186 (2) | 0.0125 (2) | −0.0064 (2) | 0.00826 (19) | −0.00412 (18) |
O3 | 0.0381 (3) | 0.0441 (4) | 0.0216 (3) | −0.0233 (3) | 0.0174 (3) | −0.0159 (3) |
O6 | 0.0155 (2) | 0.0193 (2) | 0.0202 (2) | −0.00291 (18) | 0.00158 (18) | −0.00466 (19) |
O9 | 0.0320 (3) | 0.0398 (3) | 0.0267 (3) | −0.0219 (3) | 0.0137 (2) | −0.0063 (3) |
O25 | 0.0248 (3) | 0.0230 (3) | 0.0232 (3) | −0.0101 (2) | 0.0143 (2) | −0.0044 (2) |
N15 | 0.0242 (3) | 0.0144 (2) | 0.0106 (2) | −0.0058 (2) | 0.0032 (2) | −0.00096 (19) |
N14 | 0.0210 (3) | 0.0133 (2) | 0.0111 (2) | −0.0041 (2) | 0.0024 (2) | −0.00061 (19) |
C22 | 0.0155 (3) | 0.0123 (3) | 0.0113 (3) | −0.0021 (2) | 0.0047 (2) | −0.0009 (2) |
C20 | 0.0185 (3) | 0.0133 (3) | 0.0113 (3) | −0.0037 (2) | 0.0058 (2) | −0.0017 (2) |
C19 | 0.0212 (3) | 0.0159 (3) | 0.0130 (3) | −0.0069 (2) | 0.0077 (2) | −0.0030 (2) |
C18 | 0.0170 (3) | 0.0131 (3) | 0.0112 (3) | −0.0028 (2) | 0.0047 (2) | −0.0023 (2) |
C16 | 0.0183 (3) | 0.0131 (3) | 0.0106 (3) | −0.0024 (2) | 0.0039 (2) | −0.0017 (2) |
C13 | 0.0218 (3) | 0.0150 (3) | 0.0119 (3) | −0.0044 (2) | 0.0027 (2) | −0.0005 (2) |
C12 | 0.0174 (3) | 0.0137 (3) | 0.0125 (3) | −0.0032 (2) | 0.0030 (2) | 0.0001 (2) |
C1 | 0.0182 (3) | 0.0173 (3) | 0.0153 (3) | −0.0059 (2) | 0.0060 (2) | −0.0030 (2) |
C2 | 0.0189 (3) | 0.0195 (3) | 0.0146 (3) | −0.0064 (2) | 0.0063 (2) | −0.0047 (2) |
C5 | 0.0149 (3) | 0.0153 (3) | 0.0155 (3) | −0.0030 (2) | 0.0033 (2) | −0.0019 (2) |
C7 | 0.0271 (4) | 0.0226 (4) | 0.0480 (6) | −0.0002 (3) | −0.0028 (4) | −0.0147 (4) |
C8 | 0.0184 (3) | 0.0196 (3) | 0.0160 (3) | −0.0067 (2) | 0.0052 (2) | −0.0003 (2) |
C11 | 0.0223 (3) | 0.0198 (3) | 0.0131 (3) | −0.0071 (2) | 0.0052 (2) | −0.0002 (2) |
C26 | 0.0188 (3) | 0.0159 (3) | 0.0135 (3) | −0.0038 (2) | 0.0079 (2) | −0.0036 (2) |
C24 | 0.0159 (3) | 0.0145 (3) | 0.0136 (3) | −0.0033 (2) | 0.0066 (2) | −0.0021 (2) |
O27 | 0.0203 (2) | 0.0206 (3) | 0.0272 (3) | −0.0067 (2) | −0.0013 (2) | 0.0062 (2) |
C4a | 0.0357 (17) | 0.0344 (16) | 0.0244 (12) | −0.0135 (12) | 0.0179 (12) | −0.0065 (10) |
C4b | 0.050 (3) | 0.060 (4) | 0.0238 (15) | −0.032 (3) | 0.0208 (17) | −0.0121 (19) |
C10d | 0.059 (6) | 0.060 (5) | 0.036 (3) | −0.038 (4) | 0.028 (4) | −0.011 (3) |
C10c | 0.043 (2) | 0.065 (4) | 0.0345 (16) | −0.0290 (19) | 0.0243 (15) | −0.0085 (18) |
O23—H231 | 0.940 (10) | C12—C1 | 1.3962 (9) |
O23—C22 | 1.3629 (8) | C12—C11 | 1.3960 (9) |
O21—H211 | 0.955 (11) | C1—H11 | 1.070 (8) |
O21—C20 | 1.3603 (8) | C1—C2 | 1.3894 (9) |
O17—C16 | 1.2356 (8) | C2—C5 | 1.4004 (9) |
O3—C2 | 1.3499 (8) | C5—C8 | 1.3985 (9) |
O3—C4a | 1.420 (3) | C7—H71 | 1.072 (11) |
O3—C4b | 1.471 (6) | C7—H72 | 1.070 (11) |
O6—C5 | 1.3729 (8) | C7—H73 | 1.057 (11) |
O6—C7 | 1.4295 (10) | C8—C11 | 1.3979 (9) |
O9—C8 | 1.3523 (8) | C11—H111 | 1.075 (8) |
O9—C10d | 1.421 (9) | C26—H261 | 1.075 (8) |
O9—C10c | 1.436 (6) | C26—C24 | 1.3875 (9) |
O25—H251 | 0.954 (11) | O27—H271 | 0.937 (11) |
O25—C24 | 1.3587 (8) | O27—H272 | 0.973 (12) |
N15—H151 | 0.985 (9) | C4a—H4a1 | 1.09 (2) |
N15—N14 | 1.3656 (7) | C4a—H4a2 | 1.10 (3) |
N15—C16 | 1.3596 (8) | C4a—H4a3 | 1.07 (2) |
N14—C13 | 1.2835 (8) | C4b—H4b1 | 1.07 (3) |
C22—C20 | 1.4041 (9) | C4b—H4b2 | 1.09 (3) |
C22—C24 | 1.4006 (9) | C4b—H4b3 | 1.07 (3) |
C20—C19 | 1.3899 (9) | C10d—H10d1 | 1.06 (5) |
C19—H191 | 1.065 (8) | C10d—H10d2 | 1.09 (4) |
C19—C18 | 1.3996 (9) | C10d—H10d3 | 1.07 (4) |
C18—C16 | 1.4844 (9) | C10c—H10c1 | 1.05 (2) |
C18—C26 | 1.3903 (9) | C10c—H10c2 | 1.14 (3) |
C13—H131 | 1.071 (8) | C10c—H10c3 | 1.08 (3) |
C13—C12 | 1.4637 (9) | ||
C22—O23—H231 | 113.2 (6) | H71—C7—O6 | 108.0 (6) |
C20—O21—H211 | 114.7 (6) | H72—C7—O6 | 109.8 (6) |
C4a—O3—C2 | 116.66 (17) | H72—C7—H71 | 112.2 (8) |
C4b—O3—C2 | 115.9 (2) | H73—C7—O6 | 106.7 (6) |
C4b—O3—C4a | 23.2 (3) | H73—C7—H71 | 108.3 (8) |
C7—O6—C5 | 113.86 (6) | H73—C7—H72 | 111.5 (8) |
C10d—O9—C8 | 118.1 (5) | C5—C8—O9 | 115.08 (6) |
C10c—O9—C8 | 116.9 (3) | C11—C8—O9 | 125.18 (6) |
C10c—O9—C10d | 20.3 (6) | C11—C8—C5 | 119.74 (6) |
C24—O25—H251 | 112.3 (6) | C8—C11—C12 | 119.24 (6) |
N14—N15—H151 | 119.0 (5) | H111—C11—C12 | 119.3 (4) |
C16—N15—H151 | 122.4 (5) | H111—C11—C8 | 121.4 (4) |
C16—N15—N14 | 118.06 (5) | H261—C26—C18 | 119.8 (4) |
C13—N14—N15 | 117.33 (5) | C24—C26—C18 | 121.00 (6) |
C20—C22—O23 | 117.09 (5) | C24—C26—H261 | 119.2 (4) |
C24—C22—O23 | 123.53 (6) | C22—C24—O25 | 122.85 (6) |
C24—C22—C20 | 119.36 (6) | C26—C24—O25 | 117.49 (6) |
C22—C20—O21 | 116.03 (5) | C26—C24—C22 | 119.66 (6) |
C19—C20—O21 | 123.28 (6) | H272—O27—H271 | 112.1 (9) |
C19—C20—C22 | 120.64 (6) | H4a1—C4a—O3 | 116.6 (12) |
H191—C19—C20 | 117.5 (4) | H4a2—C4a—O3 | 108.7 (13) |
C18—C19—C20 | 119.59 (6) | H4a2—C4a—H4a1 | 102 (2) |
C18—C19—H191 | 122.8 (4) | H4a3—C4a—O3 | 104.8 (11) |
C16—C18—C19 | 123.54 (6) | H4a3—C4a—H4a1 | 111.8 (17) |
C26—C18—C19 | 119.74 (6) | H4a3—C4a—H4a2 | 112.8 (18) |
C26—C18—C16 | 116.63 (5) | H4b1—C4b—O3 | 105 (2) |
N15—C16—O17 | 121.72 (6) | H4b2—C4b—O3 | 115.9 (17) |
C18—C16—O17 | 121.73 (6) | H4b2—C4b—H4b1 | 114 (3) |
C18—C16—N15 | 116.53 (5) | H4b3—C4b—O3 | 109.0 (15) |
H131—C13—N14 | 121.5 (4) | H4b3—C4b—H4b1 | 112 (2) |
C12—C13—N14 | 119.45 (6) | H4b3—C4b—H4b2 | 101 (2) |
C12—C13—H131 | 119.1 (4) | H10d1—C10d—O9 | 116 (3) |
C1—C12—C13 | 119.61 (6) | H10d2—C10d—O9 | 112 (2) |
C11—C12—C13 | 119.04 (6) | H10d2—C10d—H10d1 | 98 (4) |
C11—C12—C1 | 121.32 (6) | H10d3—C10d—O9 | 107 (2) |
H11—C1—C12 | 119.6 (4) | H10d3—C10d—H10d1 | 121 (3) |
C2—C1—C12 | 119.18 (6) | H10d3—C10d—H10d2 | 101 (3) |
C2—C1—H11 | 121.2 (4) | H10c1—C10c—O9 | 112.6 (13) |
C1—C2—O3 | 124.42 (6) | H10c2—C10c—O9 | 108.9 (16) |
C5—C2—O3 | 115.43 (6) | H10c2—C10c—H10c1 | 109 (2) |
C5—C2—C1 | 120.15 (6) | H10c3—C10c—O9 | 105.0 (13) |
C2—C5—O6 | 119.95 (6) | H10c3—C10c—H10c1 | 109.4 (18) |
C8—C5—O6 | 119.65 (6) | H10c3—C10c—H10c2 | 112.3 (19) |
C8—C5—C2 | 120.35 (6) | ||
O23—C22—C20—O21 | −3.99 (7) | O25—C24—C26—C18 | −178.76 (6) |
O23—C22—C20—C19 | 178.55 (6) | N15—N14—C13—C12 | −178.94 (6) |
O23—C22—C24—O25 | 0.70 (8) | N15—C16—C18—C19 | 12.19 (7) |
O23—C22—C24—C26 | −178.59 (6) | N15—C16—C18—C26 | −171.26 (6) |
O21—C20—C22—C24 | 177.39 (6) | N14—C13—C12—C1 | −17.48 (8) |
O21—C20—C19—C18 | −177.57 (7) | N14—C13—C12—C11 | 160.80 (7) |
O17—C16—N15—N14 | 4.59 (8) | C22—C20—C19—C18 | −0.30 (8) |
O17—C16—C18—C19 | −166.24 (7) | C22—C24—C26—C18 | 0.57 (8) |
O17—C16—C18—C26 | 10.31 (8) | C20—C19—C18—C16 | 177.24 (6) |
O3—C2—C1—C12 | −179.60 (7) | C20—C19—C18—C26 | 0.80 (8) |
O3—C2—C5—O6 | 3.49 (8) | C19—C18—C26—C24 | −0.94 (8) |
O3—C2—C5—C8 | −179.20 (6) | C13—C12—C1—C2 | 176.87 (6) |
O6—C5—C2—C1 | −175.92 (6) | C13—C12—C11—C8 | −176.43 (6) |
O6—C5—C8—O9 | −2.67 (7) | C12—C1—C2—C5 | −0.25 (8) |
O6—C5—C8—C11 | 176.38 (6) | C12—C11—C8—C5 | −0.65 (8) |
O9—C8—C5—C2 | −179.99 (6) | C1—C2—C5—C8 | 1.40 (8) |
O9—C8—C11—C12 | 178.30 (7) | C2—C5—C8—C11 | −0.94 (8) |
O25—C24—C22—C20 | 179.23 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O23—H231···O27i | 0.941 (10) | 1.748 (10) | 2.6892 (7) | 179.3 (9) |
O21—H211···O17ii | 0.955 (11) | 1.790 (11) | 2.7246 (7) | 165.3 (10) |
O25—H251···O27i | 0.954 (11) | 1.811 (11) | 2.7649 (8) | 177.5 (10) |
N15—H151···O23iii | 0.985 (9) | 2.115 (9) | 3.0491 (7) | 157.7 (8) |
N15—H151···O21iii | 0.985 (9) | 2.320 (9) | 2.9572 (8) | 121.6 (7) |
C19—H191···O23iii | 1.065 (8) | 2.363 (8) | 3.3661 (8) | 156.4 (6) |
C11—H111···O3iv | 1.076 (8) | 2.555 (9) | 3.3986 (9) | 134.7 (6) |
O27—H271···O6v | 0.938 (11) | 1.858 (12) | 2.7746 (8) | 165.1 (10) |
O27—H272···N14 | 0.973 (12) | 1.956 (12) | 2.8930 (8) | 161.0 (10) |
C10d—H10d2···O3iv | 1.09 (4) | 2.59 (5) | 3.472 (16) | 138 (3) |
C10d—H10d3···O25vi | 1.07 (4) | 2.47 (4) | 3.236 (11) | 128 (3) |
C10c—H10c3···O25vi | 1.08 (3) | 2.41 (2) | 3.229 (7) | 131.4 (17) |
Symmetry codes: (i) −x, −y, −z; (ii) x, −y+1/2, z−1/2; (iii) −x, y+1/2, −z−1/2; (iv) x, −y+3/2, z−1/2; (v) −x+1, y−1/2, −z+1/2; (vi) x+1, y+1, z. |
Acknowledgements
The authors are grateful to the French Embassy in Senegal for funding the three-month research stay at the Charles Gerhardt Institute in Montpellier. We also extend our sincere thanks to Ms Dominique Granier for her valuable technical assistance in the measurement of the X-ray diffraction data.
References
Alhadi, A. A., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1373. Web of Science CSD CrossRef IUCr Journals Google Scholar
Alhadi, A. A., Shaker, S. A., Suleiman, N., Yehye, W. A. & Mohd Ali, H. (2012). J. Chil. Chem. Soc. 57, 1283–1286. CrossRef CAS Google Scholar
Badhani, B., Sharma, N. & Kakkar, R. (2015). RSC Adv. 5, 27540–27557. CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feldblum, E. S. & Arkin, I. (2024). Proc. Natl. Acad. Sci. 111, 4085–4090. CrossRef Google Scholar
Galek, P. T. A., Chisholm, J. A., Pidcock, E. & Wood, P. A. (2014). Acta Cryst. B70, 91–105. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hadidi, M., Liñán-Atero, R., Tarahi, M., Christodoulou, M. C. & Aghababaei, F. (2024). Antioxidants, 13, 1001. CrossRef PubMed Google Scholar
Haranahalli, K., Lazzarini, C., Sun, Y., Zambito, J., Pathiranage, S., McCarthy, J. B., Mallamo, J., Del Poeta, M. & Ojima, I. (2019). J. Med. Chem. 62, 8249–8273. CrossRef CAS PubMed Google Scholar
Humphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graph. 14, 1996, 33–38. Google Scholar
Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506. Web of Science CrossRef CAS PubMed Google Scholar
Kassab, A. E. (2023). Arch. Pharm. 356, 2200548. CrossRef Google Scholar
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liu, R., Cui, J., Ding, T., Liu, Y. & Liang, H. (2022). Molecules 27, 8393. CrossRef PubMed Google Scholar
Liu, Y., Peng, Q., Li, Y., Hou, H. & Li, K. (2020). Chin. Chem. Lett. 31, 3271–3275. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maia, R., Tesch, R. & Fraga, C. A. M. (2014). Expert Opin. Ther. Pat. 24, 1161–1170. CrossRef CAS PubMed Google Scholar
Momany, F. A. & Rone, R. (1992). J. Comput. Chem. 13, 888–900. CrossRef CAS Google Scholar
Neese, F. (2012). WIREs Comput. Mol. Sci. 2, 73–78. Web of Science CrossRef CAS Google Scholar
Oliveira, F. A., Pinto, A. C. S., Duarte, C. L., Taranto, A. G., Lorenzato Junior, E., Cordeiro, C. F., Carvalho, D. T., Varotti, F. P. & Fonseca, A. L. (2022). BMC Chem. 16, 50. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peng, Z., Li, Y., Tan, L., Chen, L., Shi, Q., Zeng, Q.-H., Liu, H., Wang, J. J. & Zhao, Y. (2022). Food Chem. 378, 132127. CrossRef PubMed Google Scholar
Ramimoghadam, D., Eyckens, D. J., Evans, R. A., Moad, G., Holmes, S. & Simons, R. (2024). Chem. A Eur. J. 30, e202401728. CrossRef Google Scholar
Shaikh, A., Ghosh, M., Mukherjee, P., Ghosh, A., Molla, R. A., Ta, S. & Das, D. (2020). New J. Chem. 44, 13501–13506. CrossRef CAS Google Scholar
Socea, L.-I., Barbuceanu, S.-F., Pahontu, E. M., Dumitru, A.-C., Nitulescu, G. M., Sfetea, R. C. & Apostol, T.-V. (2022). Molecules, 27, 8719. CrossRef PubMed Google Scholar
van Dijken, D. J., Kovaříček, P., Ihrig, S. P. & Hecht, S. (2015). J. Am. Chem. Soc. 137, 14982–14991. CrossRef CAS PubMed Google Scholar
Vlad, I. M., Nuţă, D. C., Căproiu, M. T., Dumitraşcu, F., Kapronczai, E., Mük, G. R., Avram, S., Niculescu, A. G., Zarafu, I., Ciorobescu, V. A., Brezeanu, A. M. & Limban, C. (2024). Antibiotics, 13, 212. CrossRef PubMed Google Scholar
Zhou, X., Zeng, L., Chen, Y., Wang, X., Liao, Y., Xiao, Y., Fu, X. & Yang, Z. (2020). Int. J. Mol. Sci. 21, 5684. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.