research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of (E)-3,4,5-trihy­dr­oxy-N′-(3,4,5-tri­meth­­oxy­benzyl­­idene)benzohydrazide monohydrate

crossmark logo

aDépartement de Chimie, UFR des Sciences et Technologies, Laboratoire de Chimie Physique des Matériaux (LCPM), BP 523, Ziguinchor, Senegal, bInstitut Européen des Membranes, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France, and cICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
*Correspondence e-mail: mlo@univ-zig.sn

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 7 April 2025; accepted 5 May 2025; online 13 May 2025)

In the structure of the title compound, C17H18N2O7·H2O, hydrogen bonds link three mol­ecules to the water mol­ecule. Additional hydrogen-bonding inter­actions connect two mol­ecules via the amide nitro­gen donor and two meth­oxy oxygen acceptors. This three-dimensional hydrogen-bond network has no particular directionality, and a slight disorder of two meth­oxy groups is observed. According to force-field calculations, weaker but more extended van der Waals inter­actions show a larger stabilization effect than the hydrogen-bond inter­actions, while hydrogen-bond analysis suggests that polymorphs of the compound may be found in the future.

1. Introduction

Gallic acid is a secondary natural metabolite widely found in various fruits and vegetables (Zhou et al., 2020[Zhou, X., Zeng, L., Chen, Y., Wang, X., Liao, Y., Xiao, Y., Fu, X. & Yang, Z. (2020). Int. J. Mol. Sci. 21, 5684.]; Hadidi et al., 2024[Hadidi, M., Liñán-Atero, R., Tarahi, M., Christodoulou, M. C. & Aghababaei, F. (2024). Antioxidants, 13, 1001.]). Structurally, it is a low-mol­ecular-weight phenolic acid, identified as 3,4,5-tri­hydroxy­benzoic acid, and it is studied extensively for its remarkable anti­oxidant properties, which have applications in medicinal chemistry and various industrial sectors (Badhani et al., 2015[Badhani, B., Sharma, N. & Kakkar, R. (2015). RSC Adv. 5, 27540-27557.]).

Acyl­hydrazones [R—C(=O)—NH—N=CH—R′] represent a class of organic compounds resulting from the combination of a hydrazone function and a carbonyl group. Synthetically, they are obtained through the condensation of a hydrazide, typically derived from a carb­oxy­lic acid or its ester, with an aldehyde or ketone (Oliveira et al., 2022[Oliveira, F. A., Pinto, A. C. S., Duarte, C. L., Taranto, A. G., Lorenzato Junior, E., Cordeiro, C. F., Carvalho, D. T., Varotti, F. P. & Fonseca, A. L. (2022). BMC Chem. 16, 50.]; Haranahalli et al., 2019[Haranahalli, K., Lazzarini, C., Sun, Y., Zambito, J., Pathiranage, S., McCarthy, J. B., Mallamo, J., Del Poeta, M. & Ojima, I. (2019). J. Med. Chem. 62, 8249-8273.]; Vlad et al., 2024[Vlad, I. M., Nuţă, D. C., Căproiu, M. T., Dumitraşcu, F., Kapronczai, E., Mük, G. R., Avram, S., Niculescu, A. G., Zarafu, I., Ciorobescu, V. A., Brezeanu, A. M. & Limban, C. (2024). Antibiotics, 13, 212.]). This straightforward and efficient synthetic method accounts for its growing use in various fields of modern chemistry (Liu et al., 2020[Liu, Y., Peng, Q., Li, Y., Hou, H. & Li, K. (2020). Chin. Chem. Lett. 31, 3271-3275.]). In materials chemistry, acyl­hydrazones are employed to develop promising materials such as reversible polymers (Ramimoghadam et al., 2024[Ramimoghadam, D., Eyckens, D. J., Evans, R. A., Moad, G., Holmes, S. & Simons, R. (2024). Chem. A Eur. J. 30, e202401728.]) and tunable photoswitches (van Dijken et al., 2015[van Dijken, D. J., Kovaříček, P., Ihrig, S. P. & Hecht, S. (2015). J. Am. Chem. Soc. 137, 14982-14991.]). Moreover, their structure exhibits keto–enol tautomeric equilibrium, which underlies their extensive use as multidentate ligands in coordination chemistry (Liu et al., 2022[Liu, R., Cui, J., Ding, T., Liu, Y. & Liang, H. (2022). Molecules 27, 8393.]). Additionally, the structural similarity between acyl­hydrazones and peptides explains their widespread application in medicinal chemistry. Numerous studies have shown that acyl­hydrazones exhibit a broad range of biological activities (Socea et al., 2022[Socea, L.-I., Barbuceanu, S.-F., Pahontu, E. M., Dumitru, A.-C., Nitulescu, G. M., Sfetea, R. C. & Apostol, T.-V. (2022). Molecules, 27, 8719.]; Kassab, 2023[Kassab, A. E. (2023). Arch. Pharm. 356, 2200548.]; Maia et al., 2014[Maia, R., Tesch, R. & Fraga, C. A. M. (2014). Expert Opin. Ther. Pat. 24, 1161-1170.]).

In this context, acyl­hydrazones derived from gallic acid emerge as a particularly promising class of compounds, combining the anti­oxidant and metal-chelating properties of gallic acid with the versatile chemical behavior of acyl­hydrazones. This simple and efficient methodology allows access to a wide range of gallic acid-based acyl­hydrazones with tunable properties. As part of our research efforts, we successfully characterized the crystallographic structure of the title compound (TTMB·H2O), paving the way for further structural and biological investigations.

[Scheme 1]

2. Structural commentary

All bond lengths and angles are comparable to those of similar fragments present in the Cambridge Structural Database: a default Mogul check (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) gave no unusual features. The mol­ecular structure of the major disordered component of TTMB·H2O is shown in Fig. 1[link]. The gallic acid phenyl ring and the trimeth­oxy phenyl ring are inclined slightly with respect to each other, subtending a dihedral angle of 10.56 (2)°. The dihedral angle between the central acyl­hydrazone motif and the trimeth­oxy phenyl ring is 14.01 (2)°, whereas that with the gallic acid phenyl ring is 12.64 (3)°. The meth­oxy group in the 3-position is in a close to perpendicular orientation with respect to the ring to which it is attached [C7—O6—C5—C2 torsion angle = −86.57 (9)°], whereas the disordered meth­oxy groups in the 2 and 4 positions are not far from coplanarity with the ring. The occupancy factors of the methyl groups of the 2,4 meth­oxy moieties are 0.54 (2)/0.46 (2) and 0.39 (3)/0.61 (3), respectively. The presence of the water mol­ecule in the crystal structure is probably due to traces of water in the ethanol used for the crystallization.

[Figure 1]
Figure 1
A view of the title structure showing the atom-labeling scheme. The atomic displacement ellipsoids are drawn at the 50% probability level. Only the major components of the disordered meth­oxy groups are shown. The isotropically refined hydrogen atoms have been drawn as fixed-sized spheres of 0.12 Å radius. The bond radius is 0.08 Å.

3. Supra­molecular features

The most prominent supra­molecular feature in the structure of TTMB·H2O is the water mol­ecule that connects three TTMB moieties by short hydrogen bonds (Table 1[link], Fig. 2[link]): donor–acceptor distances 2.8930 (8) (O27⋯N14), 2.7746 (8) (O27⋯O6), 2.7649 (8) (O25⋯O27), and 2.6892 Å (O23⋯O27). The latter two hydrogen bonds show a bifurcated bond involving two donor oxygen atoms of two neighboring hydroxyl groups of the same TTMB moiety, whereas the water oxygen acts as a single acceptor. An additional bifurcated hydrogen bond is found between two TTMB moieties, but involving the opposite configuration, i.e. two acceptor oxygen atoms and one donor nitro­gen. The two acceptor oxygen atoms belong to two neighboring meth­oxy groups and connect to an amide nitro­gen donor of a neighboring moiety. Such bifurcated hydrogen bonds are not rare and have been observed in α-helices, where it was shown that the inter­action energy of bifurcated hydrogen bonds is in general 50 to 60% smaller than those of a canonical single donor–single acceptor hydrogen bond (Feldblum & Arkin, 2024[Feldblum, E. S. & Arkin, I. (2024). Proc. Natl. Acad. Sci. 111, 4085-4090.]). A hydrogen-bond coordination analysis (Galek et al., 2014[Galek, P. T. A., Chisholm, J. A., Pidcock, E. & Wood, P. A. (2014). Acta Cryst. B70, 91-105.]) shows that the likelihood of an acyclic amide nitro­gen donor (N15) having a bifurcated hydrogen bond is very low (2.4%), compared to that of a – not observed – single hydrogen bond (86%). The probability of water oxygen atoms accepting two donors – as is observed in this structure – remains relatively low (29%) compared to the acceptance of only one donor (65%). Two of the three acceptor oxygen atoms of the meth­oxy groups show no inter­molecular inter­actions. The overall hydrogen-bond coordination capacity in TTMB·H20 is only fulfilled at 56%, leaving the possibility open that one or more polymorphs may exist.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H231⋯O27i 0.941 (10) 1.748 (10) 2.6892 (7) 179.3 (9)
O21—H211⋯O17ii 0.955 (11) 1.790 (11) 2.7246 (7) 165.3 (10)
O25—H251⋯O27i 0.954 (11) 1.811 (11) 2.7649 (8) 177.5 (10)
N15—H151⋯O23iii 0.985 (9) 2.115 (9) 3.0491 (7) 157.7 (8)
N15—H151⋯O21iii 0.985 (9) 2.320 (9) 2.9572 (8) 121.6 (7)
O27—H271⋯O6iv 0.938 (11) 1.858 (12) 2.7746 (8) 165.1 (10)
O27—H272⋯N14 0.973 (12) 1.956 (12) 2.8930 (8) 161.0 (10)
Symmetry codes: (i) [-x, -y, -z]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen-bonded network between water and three TTMB moieties.

A full hydrogen-bond statistical analysis shows that the water oxygen (O27) to amide nitro­gen distance (N14) 2.8930 (8) Å, is unusually short, falling within the lower 5% qu­antile for 591 analogs. The same is true for the O27⋯O6 donor–acceptor pair distance [2.7746 (8) Å; 746 observations]. The N15—H151⋯O21 angle [121.6 (7)°] is also found to be unusually small, whereas the N15—H151⋯O23 angle falls within the expected range. This bifurcated hydrogen bond appears to be constituted of a strong and weak component.

The hydrogen-bond network has no particular directionality and can thus be considered as three-dimensional. Although the hydrogen-bond network alone might seem essential for the stabilization of the structural architecture, there may be other inter­actions that play a role. There are no appreciable ππ inter­actions with centroid–centroid distances below 4.0 Å, and only one short C—H-centroid inter­action, C7—H73⋯Cg2(C12–C1–C2–C5–C8–C11), 2.608 (6) Å. The inter­action energies of different synthons that may contribute to the total lattice energy were calculated using the Momany force field, also called the CHARMm force field (Momany & Rone, 1992[Momany, F. A. & Rone, R. (1992). J. Comput. Chem. 13, 888-900.]). In this force field, the inter­action energy of each synthon is decomposed in three different terms: an electrostatic, a hydrogen bond, and a van der Waals energy term. The most important individual synthon links two parallel TTMB mol­ecules with a slipped-parallel ππ stacking arrangement (Fig. 3[link]). The energy decomposition shows that van der Waals inter­actions make up most of the total inter­action energy, which is confirmed by a pictorial representation of the inter­action zones calculated by the NCI index method (Fig. 3[link], Johnson et al., 2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]). The second most important synthon has two TTMB mol­ecules in a nearly perpendicular orientation for which the hydrogen-bond inter­actions are 40% more important than the van der Waals inter­actions. The synthons that link the water mol­ecule to the neighboring TTMB mol­ecules have the most important energy contribution, while the van der Waals energy is negligible. From the decomposition of the total lattice energy, it appears that – according to the Momany force field – approximately 46% of the stabilization is accounted for by van der Waals-type inter­actions, 31% by hydrogen-bond inter­actions and 23% by electrostatic inter­actions.

[Figure 3]
Figure 3
Non-covalent inter­action regions between two nearly parallel TTMB moieties. The reduced electron density gradient [s(ρ); see Johnson et al., 2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]] isosurface is drawn at the level of 0.3 atomic units and is color mapped based on the value of sin (λ)ρ: −0.1 (blue) < 0.0 (green) < 0.1 (red), where ρ is the electron density and λ the second electron density Hessian eigenvalue.

4. Database survey

A search of the Cambridge Structural Database (version 5.46 with November 2024 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 14 entries for gallic acid acyl­hydrazone derivatives, of which one contains a metal center (IDUVEK; Alhadi et al., 2012[Alhadi, A. A., Shaker, S. A., Suleiman, N., Yehye, W. A. & Mohd Ali, H. (2012). J. Chil. Chem. Soc. 57, 1283-1286.]). The hy­droxy­naphthalene derivative (LUYHUL; Shaikh et al., 2020[Shaikh, A., Ghosh, M., Mukherjee, P., Ghosh, A., Molla, R. A., Ta, S. & Das, D. (2020). New J. Chem. 44, 13501-13506.]) was reported to be used as a nano-molar detection probe for the catalytic activity of La3+ ions in vivo. The structure that is most closely related to the title compound is the 2,4-di­meth­oxy­phenyl derivative (SOYCON; Alhadi et al., 2009[Alhadi, A. A., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1373.]) but instead of a water solvate, it is an ethanol solvate. Among the fourteen related structures seven are water solvates, two are methanol solvates and one is an ethanol solvate, while the others have no solvent of crystallization.

5. Synthesis and crystallization

The title compound was synthesized in a round-bottom flask by dissolving 3,4,5-tri­hydroxy­benzohydrazide (1.1 mmol, 0.2 g) in absolute ethanol (2 mL). Subsequently, a solution of 3,4,5-tri­meth­oxy­benzaldehyde (1.0 mmol, 0.196 g) in absolute ethanol (2 mL) was added dropwise under continuous stirring, followed by the addition of a single drop of acetic acid as a catalyst. The reaction mixture was refluxed for approximately 3 h, leading to the formation of a white precipitate. The resulting solid was collected by filtration, washed thoroughly with cold ethanol, and air-dried. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution of the title compound at room temperature over several days. Standard characterization data for TTMB are available in the literature (Peng et al., 2022[Peng, Z., Li, Y., Tan, L., Chen, L., Shi, Q., Zeng, Q.-H., Liu, H., Wang, J. J. & Zhao, Y. (2022). Food Chem. 378, 132127.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. An initial structure refinement was carried out using OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) using spherical scattering factors for all atoms. The methyl groups of the two meth­oxy groups in the 2- and 4-positions were found to be slightly disordered over two different positions. The relative occupancies were refined while keeping the sum at 1.0 with soft restraints set on the oxygen-to-carbon distances, and similarity restraints on the atomic displacement parameters of each disordered group. The difference-Fourier map showed residual densities in the centers of almost all covalent bonds, so it was decided to perform the final refinement according to the Hirshfeld Atom Refinement (HAR) methodology using aspherical scattering factors as implemented in the OLEX2 software package. The electron density was calculated from a Gaussian basis set single determinant SCF wave function (DFT-r2SCAN, cc-pVTZ basis set) with the ORCA 6.0 package (Neese, 2012[Neese, F. (2012). WIREs Comput. Mol. Sci. 2, 73-78.]) and partitioning according to the NoSpherA2 methodology (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]). The positions and isotropic atomic displacement parameters of the hydrogen atoms were freely refined. The four disordered parts were treated for the calculation of the wavefunctions according to the grouped parts method, giving four different structures (syntax 1-2;3,4 for parts 1/3, 1/4, 2/3, 2/4), recently described by Kleemiss et al. (2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]).

Table 2
Experimental details

Crystal data
Chemical formula C17H18N2O7·H2O
Mr 380.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 11.5409 (7), 10.9018 (6), 14.3799 (8)
β (°) 103.427 (2)
V3) 1759.78 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.34 × 0.23 × 0.04
 
Data collection
Diffractometer Venture Photon-II
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.95, 1.00
No. of measured, independent and observed [I ≥ 2u(I)] reflections 57780, 7401, 5802
Rint 0.059
(sin θ/λ)max−1) 0.796
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.062, 1.08
No. of reflections 7401
No. of parameters 342
No. of restraints 16
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.30, −0.30
Computer programs: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), OLEX2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]; VMD (Humphrey et al., 1996[Humphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graph. 14, 1996, 33-38.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(E)-3,4,5-Trihydroxy-N'-(3,4,5-trimethoxybenzylidene)benzohydrazide monohydrate top
Crystal data top
C17H18N2O7·H2OF(000) = 800.657
Mr = 380.36Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.5409 (7) ÅCell parameters from 9902 reflections
b = 10.9018 (6) Åθ = 2.4–34.3°
c = 14.3799 (8) ŵ = 0.12 mm1
β = 103.427 (2)°T = 173 K
V = 1759.78 (17) Å3Prism, colourless
Z = 40.34 × 0.23 × 0.04 mm
Data collection top
Venture Photon-II
diffractometer
5802 reflections with I 2u(I)
φ and ω scansRint = 0.059
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 34.5°, θmin = 2.4°
Tmin = 0.95, Tmax = 1.00h = 1818
57780 measured reflectionsk = 1717
7401 independent reflectionsl = 2222
Refinement top
Refinement on F228 constraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.062Only H-atom coordinates refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0094P)2 + 0.2877P]
where P = (Fo2 + 2Fc2)/3
7401 reflections(Δ/σ)max = 0.001
342 parametersΔρmax = 0.30 e Å3
16 restraintsΔρmin = 0.29 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O230.16740 (5)0.10296 (4)0.27135 (3)0.01723 (10)
H2310.2026 (9)0.1681 (9)0.2449 (7)0.02584 (14)*
O210.00615 (5)0.04187 (5)0.31462 (3)0.02050 (11)
H2110.0150 (10)0.1127 (10)0.3460 (7)0.03076 (16)*
O170.01977 (5)0.26329 (5)0.07329 (3)0.01894 (10)
O30.31182 (6)0.71678 (6)0.31595 (4)0.03290 (15)
O60.49176 (4)0.83971 (5)0.27220 (4)0.01874 (10)
O90.53534 (5)0.82814 (6)0.09931 (4)0.03169 (14)
O250.23283 (5)0.07336 (5)0.09043 (4)0.02225 (11)
H2510.2469 (10)0.1477 (10)0.1263 (8)0.03337 (17)*
N150.10103 (5)0.35562 (5)0.03782 (4)0.01652 (11)
H1510.0992 (8)0.3707 (8)0.1057 (6)0.01982 (13)*
N140.16027 (5)0.43628 (5)0.02928 (4)0.01534 (10)
C220.11988 (6)0.01524 (6)0.20606 (4)0.01278 (11)
C200.03649 (6)0.06508 (6)0.23039 (4)0.01397 (11)
C190.01409 (6)0.15878 (6)0.16865 (5)0.01610 (12)
H1910.0802 (7)0.2141 (8)0.1889 (6)0.01932 (14)*
C180.01895 (6)0.17342 (6)0.08161 (4)0.01353 (11)
C160.03388 (6)0.26711 (6)0.00924 (4)0.01391 (11)
C130.21854 (6)0.52293 (6)0.00037 (5)0.01643 (12)
H1310.2215 (7)0.5313 (7)0.0733 (6)0.01972 (14)*
C120.28525 (6)0.61051 (6)0.06973 (4)0.01459 (11)
C10.25992 (6)0.62084 (6)0.15975 (5)0.01662 (12)
H110.1882 (7)0.5690 (8)0.1756 (6)0.01994 (15)*
C20.32763 (6)0.69985 (6)0.22673 (5)0.01729 (12)
C50.42032 (6)0.76765 (6)0.20393 (5)0.01525 (12)
C70.44587 (8)0.96035 (8)0.27896 (8)0.0344 (2)
H710.4434 (10)1.0070 (10)0.2129 (8)0.0517 (3)*
H720.3597 (10)0.9547 (10)0.2945 (8)0.0517 (3)*
H730.5075 (10)1.0059 (10)0.3340 (8)0.0517 (3)*
C80.44380 (6)0.75848 (6)0.11305 (5)0.01781 (13)
C110.37541 (6)0.67979 (6)0.04516 (5)0.01825 (13)
H1110.3905 (7)0.6718 (8)0.0256 (6)0.02190 (15)*
C260.10082 (6)0.09328 (6)0.05723 (5)0.01540 (12)
H2610.1239 (7)0.1025 (8)0.0107 (6)0.01848 (14)*
C240.15188 (6)0.00032 (6)0.11857 (5)0.01416 (11)
O270.26649 (5)0.28900 (5)0.19444 (4)0.02384 (11)
H2710.3461 (10)0.3139 (10)0.2147 (8)0.03577 (17)*
H2720.2198 (10)0.3454 (11)0.1480 (9)0.03577 (17)*
C4a0.2110 (5)0.6593 (5)0.3378 (3)0.0297 (8)0.54 (2)
H4a10.126 (2)0.672 (2)0.2865 (16)0.0446 (13)*0.54 (2)
H4a20.223 (3)0.559 (3)0.3363 (18)0.0446 (13)*0.54 (2)
H4a30.2086 (19)0.693 (2)0.4071 (15)0.0446 (13)*0.54 (2)
C4b0.2449 (9)0.6202 (11)0.3523 (4)0.0425 (19)0.46 (2)
H4b10.153 (3)0.639 (4)0.320 (3)0.064 (3)*0.46 (2)
H4b20.272 (3)0.527 (3)0.342 (2)0.064 (3)*0.46 (2)
H4b30.263 (3)0.626 (3)0.428 (2)0.064 (3)*0.46 (2)
C10d0.5545 (17)0.8358 (16)0.0054 (8)0.049 (3)0.39 (3)
H10d10.564 (5)0.751 (5)0.028 (4)0.074 (4)*0.39 (3)
H10d20.477 (4)0.869 (4)0.046 (3)0.074 (4)*0.39 (3)
H10d30.616 (4)0.909 (4)0.006 (3)0.074 (4)*0.39 (3)
C10c0.5817 (7)0.8001 (10)0.0173 (6)0.0452 (14)0.61 (3)
H10c10.606 (2)0.707 (2)0.015 (2)0.068 (2)*0.61 (3)
H10c20.511 (3)0.823 (3)0.050 (2)0.068 (2)*0.61 (3)
H10c30.660 (2)0.857 (3)0.0249 (17)0.068 (2)*0.61 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O230.0230 (2)0.0151 (2)0.0147 (2)0.00580 (18)0.00659 (19)0.00383 (17)
O210.0317 (3)0.0189 (2)0.0142 (2)0.0083 (2)0.0119 (2)0.00423 (18)
O170.0275 (3)0.0186 (2)0.0125 (2)0.0064 (2)0.00826 (19)0.00412 (18)
O30.0381 (3)0.0441 (4)0.0216 (3)0.0233 (3)0.0174 (3)0.0159 (3)
O60.0155 (2)0.0193 (2)0.0202 (2)0.00291 (18)0.00158 (18)0.00466 (19)
O90.0320 (3)0.0398 (3)0.0267 (3)0.0219 (3)0.0137 (2)0.0063 (3)
O250.0248 (3)0.0230 (3)0.0232 (3)0.0101 (2)0.0143 (2)0.0044 (2)
N150.0242 (3)0.0144 (2)0.0106 (2)0.0058 (2)0.0032 (2)0.00096 (19)
N140.0210 (3)0.0133 (2)0.0111 (2)0.0041 (2)0.0024 (2)0.00061 (19)
C220.0155 (3)0.0123 (3)0.0113 (3)0.0021 (2)0.0047 (2)0.0009 (2)
C200.0185 (3)0.0133 (3)0.0113 (3)0.0037 (2)0.0058 (2)0.0017 (2)
C190.0212 (3)0.0159 (3)0.0130 (3)0.0069 (2)0.0077 (2)0.0030 (2)
C180.0170 (3)0.0131 (3)0.0112 (3)0.0028 (2)0.0047 (2)0.0023 (2)
C160.0183 (3)0.0131 (3)0.0106 (3)0.0024 (2)0.0039 (2)0.0017 (2)
C130.0218 (3)0.0150 (3)0.0119 (3)0.0044 (2)0.0027 (2)0.0005 (2)
C120.0174 (3)0.0137 (3)0.0125 (3)0.0032 (2)0.0030 (2)0.0001 (2)
C10.0182 (3)0.0173 (3)0.0153 (3)0.0059 (2)0.0060 (2)0.0030 (2)
C20.0189 (3)0.0195 (3)0.0146 (3)0.0064 (2)0.0063 (2)0.0047 (2)
C50.0149 (3)0.0153 (3)0.0155 (3)0.0030 (2)0.0033 (2)0.0019 (2)
C70.0271 (4)0.0226 (4)0.0480 (6)0.0002 (3)0.0028 (4)0.0147 (4)
C80.0184 (3)0.0196 (3)0.0160 (3)0.0067 (2)0.0052 (2)0.0003 (2)
C110.0223 (3)0.0198 (3)0.0131 (3)0.0071 (2)0.0052 (2)0.0002 (2)
C260.0188 (3)0.0159 (3)0.0135 (3)0.0038 (2)0.0079 (2)0.0036 (2)
C240.0159 (3)0.0145 (3)0.0136 (3)0.0033 (2)0.0066 (2)0.0021 (2)
O270.0203 (2)0.0206 (3)0.0272 (3)0.0067 (2)0.0013 (2)0.0062 (2)
C4a0.0357 (17)0.0344 (16)0.0244 (12)0.0135 (12)0.0179 (12)0.0065 (10)
C4b0.050 (3)0.060 (4)0.0238 (15)0.032 (3)0.0208 (17)0.0121 (19)
C10d0.059 (6)0.060 (5)0.036 (3)0.038 (4)0.028 (4)0.011 (3)
C10c0.043 (2)0.065 (4)0.0345 (16)0.0290 (19)0.0243 (15)0.0085 (18)
Geometric parameters (Å, º) top
O23—H2310.940 (10)C12—C11.3962 (9)
O23—C221.3629 (8)C12—C111.3960 (9)
O21—H2110.955 (11)C1—H111.070 (8)
O21—C201.3603 (8)C1—C21.3894 (9)
O17—C161.2356 (8)C2—C51.4004 (9)
O3—C21.3499 (8)C5—C81.3985 (9)
O3—C4a1.420 (3)C7—H711.072 (11)
O3—C4b1.471 (6)C7—H721.070 (11)
O6—C51.3729 (8)C7—H731.057 (11)
O6—C71.4295 (10)C8—C111.3979 (9)
O9—C81.3523 (8)C11—H1111.075 (8)
O9—C10d1.421 (9)C26—H2611.075 (8)
O9—C10c1.436 (6)C26—C241.3875 (9)
O25—H2510.954 (11)O27—H2710.937 (11)
O25—C241.3587 (8)O27—H2720.973 (12)
N15—H1510.985 (9)C4a—H4a11.09 (2)
N15—N141.3656 (7)C4a—H4a21.10 (3)
N15—C161.3596 (8)C4a—H4a31.07 (2)
N14—C131.2835 (8)C4b—H4b11.07 (3)
C22—C201.4041 (9)C4b—H4b21.09 (3)
C22—C241.4006 (9)C4b—H4b31.07 (3)
C20—C191.3899 (9)C10d—H10d11.06 (5)
C19—H1911.065 (8)C10d—H10d21.09 (4)
C19—C181.3996 (9)C10d—H10d31.07 (4)
C18—C161.4844 (9)C10c—H10c11.05 (2)
C18—C261.3903 (9)C10c—H10c21.14 (3)
C13—H1311.071 (8)C10c—H10c31.08 (3)
C13—C121.4637 (9)
C22—O23—H231113.2 (6)H71—C7—O6108.0 (6)
C20—O21—H211114.7 (6)H72—C7—O6109.8 (6)
C4a—O3—C2116.66 (17)H72—C7—H71112.2 (8)
C4b—O3—C2115.9 (2)H73—C7—O6106.7 (6)
C4b—O3—C4a23.2 (3)H73—C7—H71108.3 (8)
C7—O6—C5113.86 (6)H73—C7—H72111.5 (8)
C10d—O9—C8118.1 (5)C5—C8—O9115.08 (6)
C10c—O9—C8116.9 (3)C11—C8—O9125.18 (6)
C10c—O9—C10d20.3 (6)C11—C8—C5119.74 (6)
C24—O25—H251112.3 (6)C8—C11—C12119.24 (6)
N14—N15—H151119.0 (5)H111—C11—C12119.3 (4)
C16—N15—H151122.4 (5)H111—C11—C8121.4 (4)
C16—N15—N14118.06 (5)H261—C26—C18119.8 (4)
C13—N14—N15117.33 (5)C24—C26—C18121.00 (6)
C20—C22—O23117.09 (5)C24—C26—H261119.2 (4)
C24—C22—O23123.53 (6)C22—C24—O25122.85 (6)
C24—C22—C20119.36 (6)C26—C24—O25117.49 (6)
C22—C20—O21116.03 (5)C26—C24—C22119.66 (6)
C19—C20—O21123.28 (6)H272—O27—H271112.1 (9)
C19—C20—C22120.64 (6)H4a1—C4a—O3116.6 (12)
H191—C19—C20117.5 (4)H4a2—C4a—O3108.7 (13)
C18—C19—C20119.59 (6)H4a2—C4a—H4a1102 (2)
C18—C19—H191122.8 (4)H4a3—C4a—O3104.8 (11)
C16—C18—C19123.54 (6)H4a3—C4a—H4a1111.8 (17)
C26—C18—C19119.74 (6)H4a3—C4a—H4a2112.8 (18)
C26—C18—C16116.63 (5)H4b1—C4b—O3105 (2)
N15—C16—O17121.72 (6)H4b2—C4b—O3115.9 (17)
C18—C16—O17121.73 (6)H4b2—C4b—H4b1114 (3)
C18—C16—N15116.53 (5)H4b3—C4b—O3109.0 (15)
H131—C13—N14121.5 (4)H4b3—C4b—H4b1112 (2)
C12—C13—N14119.45 (6)H4b3—C4b—H4b2101 (2)
C12—C13—H131119.1 (4)H10d1—C10d—O9116 (3)
C1—C12—C13119.61 (6)H10d2—C10d—O9112 (2)
C11—C12—C13119.04 (6)H10d2—C10d—H10d198 (4)
C11—C12—C1121.32 (6)H10d3—C10d—O9107 (2)
H11—C1—C12119.6 (4)H10d3—C10d—H10d1121 (3)
C2—C1—C12119.18 (6)H10d3—C10d—H10d2101 (3)
C2—C1—H11121.2 (4)H10c1—C10c—O9112.6 (13)
C1—C2—O3124.42 (6)H10c2—C10c—O9108.9 (16)
C5—C2—O3115.43 (6)H10c2—C10c—H10c1109 (2)
C5—C2—C1120.15 (6)H10c3—C10c—O9105.0 (13)
C2—C5—O6119.95 (6)H10c3—C10c—H10c1109.4 (18)
C8—C5—O6119.65 (6)H10c3—C10c—H10c2112.3 (19)
C8—C5—C2120.35 (6)
O23—C22—C20—O213.99 (7)O25—C24—C26—C18178.76 (6)
O23—C22—C20—C19178.55 (6)N15—N14—C13—C12178.94 (6)
O23—C22—C24—O250.70 (8)N15—C16—C18—C1912.19 (7)
O23—C22—C24—C26178.59 (6)N15—C16—C18—C26171.26 (6)
O21—C20—C22—C24177.39 (6)N14—C13—C12—C117.48 (8)
O21—C20—C19—C18177.57 (7)N14—C13—C12—C11160.80 (7)
O17—C16—N15—N144.59 (8)C22—C20—C19—C180.30 (8)
O17—C16—C18—C19166.24 (7)C22—C24—C26—C180.57 (8)
O17—C16—C18—C2610.31 (8)C20—C19—C18—C16177.24 (6)
O3—C2—C1—C12179.60 (7)C20—C19—C18—C260.80 (8)
O3—C2—C5—O63.49 (8)C19—C18—C26—C240.94 (8)
O3—C2—C5—C8179.20 (6)C13—C12—C1—C2176.87 (6)
O6—C5—C2—C1175.92 (6)C13—C12—C11—C8176.43 (6)
O6—C5—C8—O92.67 (7)C12—C1—C2—C50.25 (8)
O6—C5—C8—C11176.38 (6)C12—C11—C8—C50.65 (8)
O9—C8—C5—C2179.99 (6)C1—C2—C5—C81.40 (8)
O9—C8—C11—C12178.30 (7)C2—C5—C8—C110.94 (8)
O25—C24—C22—C20179.23 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H231···O27i0.941 (10)1.748 (10)2.6892 (7)179.3 (9)
O21—H211···O17ii0.955 (11)1.790 (11)2.7246 (7)165.3 (10)
O25—H251···O27i0.954 (11)1.811 (11)2.7649 (8)177.5 (10)
N15—H151···O23iii0.985 (9)2.115 (9)3.0491 (7)157.7 (8)
N15—H151···O21iii0.985 (9)2.320 (9)2.9572 (8)121.6 (7)
C19—H191···O23iii1.065 (8)2.363 (8)3.3661 (8)156.4 (6)
C11—H111···O3iv1.076 (8)2.555 (9)3.3986 (9)134.7 (6)
O27—H271···O6v0.938 (11)1.858 (12)2.7746 (8)165.1 (10)
O27—H272···N140.973 (12)1.956 (12)2.8930 (8)161.0 (10)
C10d—H10d2···O3iv1.09 (4)2.59 (5)3.472 (16)138 (3)
C10d—H10d3···O25vi1.07 (4)2.47 (4)3.236 (11)128 (3)
C10c—H10c3···O25vi1.08 (3)2.41 (2)3.229 (7)131.4 (17)
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x, y+3/2, z1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1, z.
 

Acknowledgements

The authors are grateful to the French Embassy in Senegal for funding the three-month research stay at the Charles Gerhardt Institute in Montpellier. We also extend our sincere thanks to Ms Dominique Granier for her valuable technical assistance in the measurement of the X-ray diffraction data.

References

First citationAlhadi, A. A., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlhadi, A. A., Shaker, S. A., Suleiman, N., Yehye, W. A. & Mohd Ali, H. (2012). J. Chil. Chem. Soc. 57, 1283–1286.  CrossRef CAS Google Scholar
First citationBadhani, B., Sharma, N. & Kakkar, R. (2015). RSC Adv. 5, 27540–27557.  CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeldblum, E. S. & Arkin, I. (2024). Proc. Natl. Acad. Sci. 111, 4085–4090.  CrossRef Google Scholar
First citationGalek, P. T. A., Chisholm, J. A., Pidcock, E. & Wood, P. A. (2014). Acta Cryst. B70, 91–105.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadidi, M., Liñán-Atero, R., Tarahi, M., Christodoulou, M. C. & Aghababaei, F. (2024). Antioxidants, 13, 1001.  CrossRef PubMed Google Scholar
First citationHaranahalli, K., Lazzarini, C., Sun, Y., Zambito, J., Pathiranage, S., McCarthy, J. B., Mallamo, J., Del Poeta, M. & Ojima, I. (2019). J. Med. Chem. 62, 8249–8273.  CrossRef CAS PubMed Google Scholar
First citationHumphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graph. 14, 1996, 33–38.  Google Scholar
First citationJohnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKassab, A. E. (2023). Arch. Pharm. 356, 2200548.  CrossRef Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, R., Cui, J., Ding, T., Liu, Y. & Liang, H. (2022). Molecules 27, 8393.  CrossRef PubMed Google Scholar
First citationLiu, Y., Peng, Q., Li, Y., Hou, H. & Li, K. (2020). Chin. Chem. Lett. 31, 3271–3275.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaia, R., Tesch, R. & Fraga, C. A. M. (2014). Expert Opin. Ther. Pat. 24, 1161–1170.  CrossRef CAS PubMed Google Scholar
First citationMomany, F. A. & Rone, R. (1992). J. Comput. Chem. 13, 888–900.  CrossRef CAS Google Scholar
First citationNeese, F. (2012). WIREs Comput. Mol. Sci. 2, 73–78.  Web of Science CrossRef CAS Google Scholar
First citationOliveira, F. A., Pinto, A. C. S., Duarte, C. L., Taranto, A. G., Lorenzato Junior, E., Cordeiro, C. F., Carvalho, D. T., Varotti, F. P. & Fonseca, A. L. (2022). BMC Chem. 16, 50.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeng, Z., Li, Y., Tan, L., Chen, L., Shi, Q., Zeng, Q.-H., Liu, H., Wang, J. J. & Zhao, Y. (2022). Food Chem. 378, 132127.  CrossRef PubMed Google Scholar
First citationRamimoghadam, D., Eyckens, D. J., Evans, R. A., Moad, G., Holmes, S. & Simons, R. (2024). Chem. A Eur. J. 30, e202401728.  CrossRef Google Scholar
First citationShaikh, A., Ghosh, M., Mukherjee, P., Ghosh, A., Molla, R. A., Ta, S. & Das, D. (2020). New J. Chem. 44, 13501–13506.  CrossRef CAS Google Scholar
First citationSocea, L.-I., Barbuceanu, S.-F., Pahontu, E. M., Dumitru, A.-C., Nitulescu, G. M., Sfetea, R. C. & Apostol, T.-V. (2022). Molecules, 27, 8719.  CrossRef PubMed Google Scholar
First citationvan Dijken, D. J., Kovaříček, P., Ihrig, S. P. & Hecht, S. (2015). J. Am. Chem. Soc. 137, 14982–14991.  CrossRef CAS PubMed Google Scholar
First citationVlad, I. M., Nuţă, D. C., Căproiu, M. T., Dumitraşcu, F., Kapronczai, E., Mük, G. R., Avram, S., Niculescu, A. G., Zarafu, I., Ciorobescu, V. A., Brezeanu, A. M. & Limban, C. (2024). Antibiotics, 13, 212.  CrossRef PubMed Google Scholar
First citationZhou, X., Zeng, L., Chen, Y., Wang, X., Liao, Y., Xiao, Y., Fu, X. & Yang, Z. (2020). Int. J. Mol. Sci. 21, 5684.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds