research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-2-cyano-N′-(3,4,5-tri­meth­­oxy­benzyl­­idene)acetohydrazide

crossmark logo

aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, bDepartment of Science and Humanities, Rathinam Technical Campus, Coimbatore 641 021, India, and cPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: senraj05@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 23 April 2025; accepted 1 May 2025; online 9 May 2025)

In the title compound, C13H15N3O4, the 2-cyano-N′-methyl­ideneacetohydrazide moiety and the trimeth­oxy phenol ring form a dihedral angle of 13.8 (1)°. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds are observed. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute most to the crystal packing (38.3%).

1. Chemical context

Hydrazones have been found to show various biological properties, including anti­convulsant (Angelova et al., 2016[Angelova, V., Karabeliov, V., Andreeva-Gateva, P. A. & Tchekalarova, J. (2016). Drug Dev. Res. 77, 379-392.]), anti­fungal (Ozdemir et al., 2008[Özdemir, A., Turan-zitouni, G., Asim kaplancikli, Z., Demirci, F. & Iscan, G. (2008). J. Enzyme Inhib. Med. Chem. 23, 470-475.]) and anti­tumoral (Parlar et al., 2018[Parlar, S., Erzurumlu, Y., Ilhan, R., Ballar Kırmızıbayrak, P., Alptüzün, V. & Erciyas, E. (2018). Chem. Biol. Drug Des. 92, 1198-1205.]). In the present work, the synthesis, structural and computational studies of (E)-2-cyano-N′-(3,4,5-tri­meth­oxy­benzyl­idene)acetohydrazide, (I)[link], are reported.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is displayed in Fig. 1[link]. The phenyl ring (C1–C6) is planar with a maximum deviation of 0.008 (2) Å for atom C6 and its attached meth­oxy atoms O1, C11, O2, C12, O3 and C13 deviate by 0.023 (2), −0.169 (4), 0.133 (2), −1.089 (3), 0.010 (2) and 0.056 (3) Å, respectively. The 2-cyano-N′-methyl­ideneacetohydrazide moiety (C7/N1/N2/C8/O4/C9/C10/N3) is nearly planar with a maximum deviation of 0.280 (3) Å for atom N3. This moiety forms a dihedral angle of 13.8 (1)° with the trimeth­oxy phenyl ring.

[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules associate pairwise by C9—H9B⋯O2i and C13—H13A⋯O4i hydrogen bonds (Table 1[link]) into inversion dimers with an R22 (22) graph-set motifs (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), as shown in Fig. 2[link]. The mol­ecules are further linked into a C(4) chain motif by N2—H2⋯O4iii hydrogen bonds running parallel to [0[\overline{1}]0] (Table 1[link]; Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2i 0.97 2.50 3.448 (3) 165
C13—H13A⋯O4ii 0.96 2.51 3.350 (3) 146
N2—H2⋯O4iii 0.86 1.98 2.802 (3) 160
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+1, -y+1, -z+1]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the dimeric arrangement through O—H⋯O hydrogen bonds
[Figure 3]
Figure 3
The crystal packing of the title compound (I)[link] viewed along the b axis. The N—H⋯O and O—H⋯O inter­molecular hydrogen bonds are shown as dashed lines. For clarity, H atoms not involved in hydrogen bonds have been omitted.

4. Hirshfeld surface analysis

To further characterize the inter­molecular inter­actions, we carried out a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19-32.]) using Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) The HS mapped over dnorm is illustrated in Fig. 4[link] where the deep-red spot occurs at O4 and this oxygen atom is responsible for intermolecular N—H⋯O and C—H⋯O hydrogen bonds.

[Figure 4]
Figure 4
A view of the Hirshfeld surface mapped over dnorm.

The associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) provide qu­anti­tative information about the non-covalent inter­actions in the crystal packing in terms of the percentage contribution of the inter­atomic contacts (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378-392.]). The overall two-dimensional fingerprint plot is shown in Fig. 5[link]a. The HS analysis reveals that H⋯H and H⋯O/O⋯H contacts are the main contributors to the crystal packing, followed by H⋯N/N⋯H, H⋯C/C⋯H, O⋯C/C⋯O and C⋯N/N⋯C contacts; see Fig. 5[link]bg. The HS analysis confirms the importance of H-atom contacts in the crystal (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for compound (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯N/N⋯H, (e)H⋯C/C⋯H, (f) O⋯C/C⋯O and (g) N⋯C/C⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Synthesis and crystallization

The title compound (I)[link] was synthesized by condensing 2-cyano acetohydrazide in methanol with 3,4,5-tri­meth­oxy­benzaldehyde in a 1:1 ratio following an established protocol (Shaik et al., 2019[Shaik, K., Deb, P. K., Mailavaram, R. P., Chandrasekaran, B., Kachler, S., Klotz, K. N. & Jaber, A. M. Y. (2019). Chem. Biol. Drug Des. 94, 1568-1573.]). The progress of the reaction was monitored by thin layer chromatography (TLC). After completion of the reaction, methanol was removed under vacuum. The solid product was collected, washed, and recrystallized from methanol to obtain crystals of (I)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in idealized positions and allowed to ride on their parent atoms: N—H = 0.86 and C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C, N) for all other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C13H15N3O4
Mr 277.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 13.9944 (8), 11.0371 (7), 9.0560 (5)
β (°) 99.936 (2)
V3) 1377.79 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.16 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.624, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 23917, 2823, 1540
Rint 0.072
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.156, 1.05
No. of reflections 2823
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.23
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

(E)-2-Cyano-N'-(3,4,5-trimethoxybenzylidene)acetohydrazide top
Crystal data top
C13H15N3O4F(000) = 584
Mr = 277.28Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.9944 (8) ÅCell parameters from 4885 reflections
b = 11.0371 (7) Åθ = 2.4–22.9°
c = 9.0560 (5) ŵ = 0.10 mm1
β = 99.936 (2)°T = 298 K
V = 1377.79 (14) Å3Block, brown
Z = 40.16 × 0.12 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1540 reflections with I > 2σ(I)
Radiation source: i-mu-s microfocus sourceRint = 0.072
φ and ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1715
Tmin = 0.624, Tmax = 0.745k = 1313
23917 measured reflectionsl = 118
2823 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.5215P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2823 reflectionsΔρmax = 0.15 e Å3
181 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17230 (13)0.43960 (19)0.1731 (2)0.0708 (6)
O20.15221 (12)0.52233 (16)0.0935 (2)0.0574 (5)
O30.29283 (12)0.49755 (17)0.3328 (2)0.0586 (5)
O40.73449 (12)0.30054 (17)0.34803 (19)0.0589 (5)
C70.51086 (18)0.3277 (2)0.0177 (3)0.0473 (6)
H70.5222230.3081370.0776200.057*
N10.57857 (14)0.31831 (18)0.1302 (2)0.0471 (5)
N30.98039 (19)0.2939 (3)0.3950 (3)0.0824 (9)
C10.33918 (18)0.3770 (2)0.0817 (3)0.0502 (7)
H10.3479810.3499740.1756780.060*
C20.25037 (18)0.4247 (2)0.0625 (3)0.0496 (7)
C30.23722 (17)0.4649 (2)0.0780 (3)0.0463 (6)
C40.31260 (18)0.4556 (2)0.1992 (3)0.0458 (6)
C50.40109 (18)0.4078 (2)0.1801 (3)0.0485 (7)
H50.4513610.4012700.2615180.058*
C60.41465 (17)0.3697 (2)0.0388 (3)0.0456 (6)
N20.66924 (14)0.28820 (18)0.1029 (2)0.0446 (5)
H20.6781780.2723510.0133460.054*
C80.74341 (17)0.2840 (2)0.2180 (3)0.0423 (6)
C90.84027 (16)0.2566 (2)0.1732 (3)0.0470 (6)
H9A0.8415020.1728090.1412810.056*
H9B0.8489850.3077090.0894300.056*
C100.9189 (2)0.2776 (3)0.2976 (3)0.0533 (7)
C110.1728 (2)0.3876 (3)0.3140 (4)0.0847 (10)
H11A0.1129390.4061170.3793390.127*
H11B0.2260710.4196000.3557260.127*
H11C0.1795610.3012810.3036280.127*
C120.0851 (2)0.4491 (3)0.1573 (4)0.0719 (9)
H12A0.0281340.4956290.1641370.108*
H12B0.0674670.3795590.0948100.108*
H12C0.1149320.4229700.2556130.108*
C130.3689 (2)0.4940 (3)0.4573 (3)0.0677 (8)
H13A0.3463300.5256460.5438980.102*
H13B0.3899690.4118390.4760620.102*
H13C0.4221690.5422650.4367200.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0544 (12)0.0881 (15)0.0646 (13)0.0106 (10)0.0047 (10)0.0052 (11)
O20.0438 (10)0.0538 (11)0.0771 (13)0.0103 (9)0.0176 (9)0.0081 (9)
O30.0502 (11)0.0717 (13)0.0553 (12)0.0109 (9)0.0128 (9)0.0084 (9)
O40.0594 (12)0.0831 (14)0.0376 (10)0.0069 (10)0.0184 (9)0.0000 (9)
C70.0466 (15)0.0463 (15)0.0517 (16)0.0016 (12)0.0157 (13)0.0031 (12)
N10.0398 (12)0.0527 (13)0.0522 (13)0.0056 (10)0.0179 (11)0.0005 (10)
N30.0639 (17)0.116 (2)0.0637 (17)0.0227 (16)0.0017 (14)0.0100 (16)
C10.0499 (16)0.0494 (15)0.0522 (16)0.0017 (12)0.0110 (14)0.0042 (12)
C20.0438 (15)0.0492 (15)0.0534 (17)0.0003 (12)0.0020 (13)0.0048 (13)
C30.0364 (14)0.0400 (14)0.0635 (18)0.0024 (11)0.0110 (13)0.0062 (12)
C40.0460 (15)0.0413 (14)0.0521 (16)0.0025 (11)0.0138 (13)0.0018 (12)
C50.0419 (15)0.0508 (16)0.0527 (16)0.0048 (12)0.0081 (12)0.0020 (12)
C60.0432 (15)0.0416 (14)0.0532 (16)0.0016 (11)0.0118 (13)0.0011 (12)
N20.0410 (12)0.0567 (13)0.0396 (12)0.0047 (10)0.0162 (10)0.0017 (10)
C80.0432 (15)0.0455 (14)0.0407 (15)0.0005 (11)0.0141 (12)0.0024 (11)
C90.0421 (15)0.0551 (16)0.0447 (15)0.0009 (12)0.0105 (12)0.0021 (12)
C100.0477 (17)0.0650 (18)0.0497 (17)0.0052 (14)0.0156 (14)0.0077 (14)
C110.076 (2)0.099 (3)0.070 (2)0.0001 (19)0.0110 (18)0.021 (2)
C120.0469 (17)0.071 (2)0.101 (2)0.0049 (15)0.0221 (17)0.0050 (18)
C130.072 (2)0.078 (2)0.0522 (18)0.0183 (17)0.0077 (16)0.0050 (15)
Geometric parameters (Å, º) top
O1—C21.359 (3)C5—C61.390 (3)
O1—C111.401 (3)C5—H50.9300
O2—C31.376 (3)N2—C81.339 (3)
O2—C121.434 (3)N2—H20.8600
O3—C41.367 (3)C8—C91.511 (3)
O3—C131.412 (3)C9—C101.451 (4)
O4—C81.219 (3)C9—H9A0.9700
C7—N11.270 (3)C9—H9B0.9700
C7—C61.467 (3)C11—H11A0.9600
C7—H70.9300C11—H11B0.9600
N1—N21.375 (3)C11—H11C0.9600
N3—C101.136 (3)C12—H12A0.9600
C1—C61.384 (3)C12—H12B0.9600
C1—C21.388 (3)C12—H12C0.9600
C1—H10.9300C13—H13A0.9600
C2—C31.389 (4)C13—H13B0.9600
C3—C41.389 (3)C13—H13C0.9600
C4—C51.384 (3)
C2—O1—C11119.5 (2)O4—C8—N2123.5 (2)
C3—O2—C12114.76 (19)O4—C8—C9122.4 (2)
C4—O3—C13117.24 (19)N2—C8—C9114.1 (2)
N1—C7—C6119.7 (2)C10—C9—C8110.8 (2)
N1—C7—H7120.1C10—C9—H9A109.5
C6—C7—H7120.1C8—C9—H9A109.5
C7—N1—N2117.3 (2)C10—C9—H9B109.5
C6—C1—C2120.1 (2)C8—C9—H9B109.5
C6—C1—H1120.0H9A—C9—H9B108.1
C2—C1—H1120.0N3—C10—C9179.9 (4)
O1—C2—C1125.2 (2)O1—C11—H11A109.5
O1—C2—C3114.8 (2)O1—C11—H11B109.5
C1—C2—C3119.9 (2)H11A—C11—H11B109.5
O2—C3—C4120.4 (2)O1—C11—H11C109.5
O2—C3—C2119.6 (2)H11A—C11—H11C109.5
C4—C3—C2119.8 (2)H11B—C11—H11C109.5
O3—C4—C5124.2 (2)O2—C12—H12A109.5
O3—C4—C3115.6 (2)O2—C12—H12B109.5
C5—C4—C3120.2 (2)H12A—C12—H12B109.5
C4—C5—C6119.8 (2)O2—C12—H12C109.5
C4—C5—H5120.1H12A—C12—H12C109.5
C6—C5—H5120.1H12B—C12—H12C109.5
C1—C6—C5120.1 (2)O3—C13—H13A109.5
C1—C6—C7120.5 (2)O3—C13—H13B109.5
C5—C6—C7119.3 (2)H13A—C13—H13B109.5
C8—N2—N1118.96 (19)O3—C13—H13C109.5
C8—N2—H2120.5H13A—C13—H13C109.5
N1—N2—H2120.5H13B—C13—H13C109.5
C6—C7—N1—N2174.8 (2)O2—C3—C4—C5174.0 (2)
C11—O1—C2—C110.5 (4)C2—C3—C4—C50.8 (4)
C11—O1—C2—C3171.3 (3)O3—C4—C5—C6178.7 (2)
C6—C1—C2—O1178.0 (2)C3—C4—C5—C60.3 (4)
C6—C1—C2—C30.1 (4)C2—C1—C6—C51.3 (4)
C12—O2—C3—C481.8 (3)C2—C1—C6—C7175.5 (2)
C12—O2—C3—C2103.3 (3)C4—C5—C6—C11.4 (4)
O1—C2—C3—O24.3 (3)C4—C5—C6—C7175.4 (2)
C1—C2—C3—O2174.0 (2)N1—C7—C6—C1178.0 (2)
O1—C2—C3—C4179.2 (2)N1—C7—C6—C55.1 (4)
C1—C2—C3—C41.0 (4)C7—N1—N2—C8176.4 (2)
C13—O3—C4—C51.6 (4)N1—N2—C8—O43.2 (4)
C13—O3—C4—C3177.5 (2)N1—N2—C8—C9176.8 (2)
O2—C3—C4—O35.1 (3)O4—C8—C9—C1011.6 (3)
C2—C3—C4—O3180.0 (2)N2—C8—C9—C10168.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.972.503.448 (3)165
C13—H13A···O4ii0.962.513.350 (3)146
N2—H2···O4iii0.861.982.802 (3)160
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: sselvanayagam@gmail.com.

References

First citationAngelova, V., Karabeliov, V., Andreeva–Gateva, P. A. & Tchekalarova, J. (2016). Drug Dev. Res. 77, 379–392.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationÖzdemir, A., Turan-zitouni, G., Asim kaplancikli, Z., Demirci, F. & Iscan, G. (2008). J. Enzyme Inhib. Med. Chem. 23, 470–475.  PubMed Google Scholar
First citationParlar, S., Erzurumlu, Y., Ilhan, R., Ballar Kırmızıbayrak, P., Alptüzün, V. & Erciyas, E. (2018). Chem. Biol. Drug Des. 92, 1198–1205.  CrossRef CAS PubMed Google Scholar
First citationShaik, K., Deb, P. K., Mailavaram, R. P., Chandrasekaran, B., Kachler, S., Klotz, K. N. & Jaber, A. M. Y. (2019). Chem. Biol. Drug Des. 94, 1568–1573.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378–392.  CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds