research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 1,1′-[oxybis(ethane-2,1-di­yl)]bis­­(2-methyl­sulfanyl-1H-benzo[d]imidazole)

crossmark logo

aNational Center for Nuclear Energy, Science and Technology, Rabat, Morocco, bLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculte des Sciences, Av. Ibn Battouta, BP 1014, Rabat, Morocco, cLaboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales, Kinshasa, Republique Democratique, Congo, dLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and fLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 20 April 2025; accepted 28 April 2025; online 2 May 2025)

The asymmetric unit of the title compound, C20H22N4OS2, consists of two independent mol­ecules, one of which is disordered. In each mol­ecule, the mean planes of the terminal benzimidazole moieties are inclined to one another by about 68°. In the crystal, tetra­molecular strands are generated by C—H⋯N hydrogen bonds and C—H⋯π(ring) inter­actions and are linked by C—H⋯π(ring) and π-stacking inter­actions.

1. Chemical context

The benzimidazole ring system consists of a five-membered imidazole ring (with two nitro­gens included in the heterocyclic structure) fused to another aromatic ring. This structure gives benzimidazoles significant chemical stability and a range of biological properties (Obaid et al., 2022[Obaid, R. J., Mughal, E. U., Naeem, N., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., Moussa, Z. & Ahmed, S. A. (2022). Process Biochem. 120, 250-259.]), making them a subject of inter­est in the pharmacological field.

The benzimidazole ring is a well-known motif recognized for its chemical flexibility, allowing effective inter­action with various biological targets. As derivatives of this ring, bis­benzimidazoles share inter­esting physicochemical properties, such as their ability to inter­act with biological macromolecules like proteins, enzymes, and DNA. These inter­actions make them promising candidates for the development of drugs aimed at treating various diseases. Several bis­benzimidazole derivatives have been studied for their activity against various pathogens, including parasites and bacteria. Compounds from this class are used in the treatment of parasitic diseases such as giardiasis, amebiasis, and onchocerciasis. Additionally, some studies have revealed that bis­benzimidazoles possess anti­cancer properties. They work by inhibiting key enzymes in cancer cells, blocking cell division, or inducing mechanisms of programmed cell death (apoptosis). For instance, derivatives like levamisole, used in cancer treatments (Yadav et al., 2018[Yadav, S., Narasimhan, B., Lim, S. M., Ramasamy, K., Vasudevan, M., Shah, S. A. A. & Mathur, A. (2018). Egypt. J. Basic Appl. Sci. 5, 100-109.]), have shown potential effects in stimulating the immune system and inhibiting tumor growth. Moreover, emerging research suggests that certain bis­benzimidazoles could be beneficial in the treatment of neurodegenerative diseases like Alzheimer's disease (Algul et al., 2025[Algul, O., Mete, B., Turkmenoglu, B., Saglamtas, R., Alagoz, M. A., Dogen, A., Gulcin, I. & Burmaoglu, S. (2025). J. Mol. Struct. 1323, 140800.]).

Continuing our research in this field (e.g. Missioui et al., 2022[Missioui, M., Mortada, S., Guerrab, W., Demirtaş, G., Mague, J. T., Ansar, M., El Abbes Faouzi, M., Essassi, E. M., Mehdar, Y. T. H., Aljohani, F. S., Said, M. A. & Ramli, Y. (2022). Ara. J. Chem. 15, 103851.]), we synthesized the title compound 1,1′-[oxybis(ethane-2,1-di­yl)]bis­(2-methyl­sulfanyl-1H-benzo[d]imidazole) via an alkyl­ation reaction. We determined its mol­ecular and crystalline structures, and conducted a Hirshfeld surface analysis to analyze the inter­molecular inter­actions.

[Scheme 1]

2. Structural commentary

The asymmetric unit consists of two independent mol­ecules, one of which is disordered (Figs. 1[link] and 2[link]). This involves the rotation of one 2-(methyl­sulfan­yl)benzimidazole unit by approximately 170° about the N7—C32 bond in a 0.7200 (13)/0.2800 (13) ratio, while for that at the other end of the mol­ecule a shift of 0.5 Å parallel to the plane of the unit is observed in a 0.775 (6)/0.225 (6) ratio (Fig. 2[link]). In the ordered mol­ecule, the two benzimidazole units are nearly planar as the dihedral angles between their constituent planes are less than 2°, while the dihedral angle between the mean planes of the benzimidazole units in this mol­ecule is 68.38 (9)° (Fig. 1[link]) and the C7—N2—C9 —C10 and the C13—N3—C12—C11 torsion angles are 99.1 (3) and 103.6 (3)°, respectively. In the central chain, the N2—C9—C10—O1 and the C11—O1—C10—C9 torsion angles are, respectively, −179.5 (2) and −180.0 (2)°, while the C10—O1—C11—C12 and the O1—C11—C12—N3 torsion angles are, respectively, 179.9 (2) and −60.0 (3)°. One methyl­sulfanyl group lies nearly in the plane of the five-membered ring to which it is attached [C8—S1—C7—N1 = −1.8 (3)°], but the other is rotated moderately out of the corresponding plane [C14—S2—C13—N4 = −23.2 (3)°]. The benzimidazole units in the disordered mol­ecule were refined as planar rigid groups and the dihedral angle between their mean planes in the major component is 68.12 (11)° but because of the disorder, comparison of its torsion angles with those of the ordered mol­ecule is not useful. In the ordered mol­ecule, bond distances and inter­bond angles are as expected for the formulation given.

[Figure 1]
Figure 1
The ordered mol­ecule in the asymmetric unit of the title compound with labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
The disordered mol­ecule in the asymmetric unit of the title compound showing the overlay of the two components with the minor component depicted with dashed lines.

3. Supra­molecular features

In the crystal, the major component of the disordered mol­ecule containing O2 is linked to the mol­ecule containing O1 at −x + 1, −y + 2, −z + 1 by a C35—H34B⋯N4 hydrogen bond (Table 1[link]) and this two-mol­ecule unit is linked to its counterpart at −x + 1, −y, −z by a C29—H29BCg1 inter­action (Table 1[link] and Fig. 3[link]). These tetra­molecular strands are connected by C2—H2⋯Cg5 and C11—H11B⋯Cg11 inter­actions (Table 1[link]) as well as by π-stacking inter­actions between inversion-related N1/C6/C1/N2/C7 rings [centroid–centroid distance = 3.6645 (18) Å, dihedral angle = 0.03 (18)°, slippage = 1.06 Å] to generate the full 3-D structure (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg5 and Cg11 are the centroids of the N5/C26/C21/N6/C27, the C21-C26 and the C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg5i 0.95 2.71 3.583 (3) 153
C11—H11BCg11ii 0.99 2.74 3.423 (3) 126
C29—H29BCg1iii 0.99 2.70 3.489 (3) 137
C34—H34B⋯N4iv 0.98 2.50 3.398 (3) 153
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y, -z]; (iv) [-x+1, -y+2, -z+1].
[Figure 3]
Figure 3
One tetra­molecular strand viewed along the c-axis direction with C—H⋯N hydrogen bonds and C—H⋯π(ring) inter­actions depicted, respectively, by blue and green dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity.
[Figure 4]
Figure 4
Packing viewed along the b-axis direction with C—H⋯N hydrogen bonds and C—H⋯π(ring) and π-stacking inter­actions depicted, respectively, by blue, green and orange dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD updated to November 2024 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])) with the fragment shown in Fig. 5[link] (R = C) and restricted to only organic compounds generated seven hits. Four of these contained only one 2-(methyl­sulfan­yl)-1H-benzamidazole moiety and had R = CH2CH2OH (DUNZUI: Akonan et al., 2010[Akonan, L., Molou, K. Y. G., Adohi-Krou, A., Abou, A. & Tenon, A. J. (2010). Acta Cryst. E66, o442.]), 5,6-di­hydro-2H-pyran-2-one (IHAREP: Hammal et al., 2008[Hammal, L., Bentarzi, Y., Kaoua, R., Bakhta, S., Nedjar-Kolli, B., Andre, C. & Hoffmann, P. (2008). J. Soc. Alger. Chim. 18, 45-54.]), morpholin-4-methyl (SIMCUN: Abou et al., 2007[Abou, A., Bany, G. E., Kakou-Yao, R., Seikou, T. & Ebby, N. D. (2007). Acta Cryst. E63, o4218.]) and the ionic compound 1-methyl-2-(methyl­sulfan­yl)-1H-benzimidazol-3-ium iodide (WANXUH: Hasty et al., 2017[Hasty, S. J., Bandara, M. D., Rath, N. P. & Demchenko, A. V. (2017). J. Org. Chem. 82, 1904-1911.]). For these, the carbon atom of the methysulfanyl group lies in or very close to the plane of the benzimidazole moiety, while for the first three, the R group projects well out of that plane, which is similar to what is seen in the title mol­ecule. In the asymmetric unit of DUNZUI there are two independent mol­ecules and in its crystal packing, there are π-stacking inter­actions between five-membered rings of one of these. More extensive π-stacking occurs in WANXUH because of its relatively flat steric profile, while in SIMCUN both rings of the benzimidazole moiety participate in π-stacking inter­actions.

[Figure 5]
Figure 5
The fragment used for the database search.

Two of the other examples are more analogous to the title mol­ecule with two 2-(methyl­sulfan­yl)-1H-benzamidazole moieties bridged by a —(CH2)3— chain (GEVJOH: Yüksektepe et al., 2007[Yüksektepe, Ç., Çalışkan, N., Genç, M., Servi, S. & Büyükgüngör, O. (2007). Acta Cryst. E63, o100-o102.]) or by a 1,4-CH2C6H4CH2 unit (UGACEM: Rajakannu et al., 2013[Rajakannu, P., Elumalai, P., Mobin, S. M., Lu, K.-L. & Sathiyendiran, M. (2013). J. Organomet. Chem. 743, 17-23.]) while the third has two 3-methyl-2-(methyl­sulfan­yl)-1H-benzimidazol-3-ium cations bridged by a 1,3-phenyl­ene group and triflate anions (KEYQUE: Steinke et al., 2023[Steinke, T., Engelage, E. & Huber, S. M. (2023). Acta Cryst. C79, 26-35.]). In GEVJOH, the dihedral angle between the mean planes of the two benzimidazole units is 74.87 (6)° while the torsion angles corresponding to the C7—N2—C9 —C10 and the C13—N3—C12—C11 torsion in the title mol­ecule are, 87.9 (2) and 93.6 (2)°, respectively, similar to the title compound. For the other two, the bridging units are much less flexible with the mean planes of the benzimidazole units in KEYQUE inclined to that of the central phenyl­ene ring by 60.5 (2) and 86.7 (2)°, respectively. UGACEM has crystallographically-imposed centrosymmetry and the unique benzimidazole is essentially perpendicular to the central phenyl­ene ring.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis of the title compound was performed with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to determine the contributions of the several inter­molecular inter­actions in the crystal. Full descriptions of the plots obtained and their inter­pretations have been published (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The dnorm surface for the mol­ecule containing O1 (ordered mol­ecule) calculated over the range −0.1811 to 1.3161 in arbitrary units together with several nearest neighbor mol­ecules including the major component of the disordered mol­ecule is shown in Fig. 6[link]a. The C—H⋯N hydrogen bonds are depicted by red dashed lines and are clearly associated with the dark red spots on the dnorm surface. Fig. 6[link]b shows the surface for the major component of the disordered mol­ecule calculated over the shape function and showing the characteristic pattern of triangles indicating the presence of the π-stacking inter­actions (dashed lines) noted in Section 3. The 2-D fingerprint plots for all inter­molecular inter­actions and those delineated into specific contacts are presented in Fig. 7[link]. The largest contribution is from H⋯H contacts (Fig. 7[link]b, 52.5% of the total) consistent with the significant hydrogen content of the mol­ecule and the fact that the hydrogen atoms constitute a large portion of its periphery. The next most important contact is C⋯H/H⋯C at 21.9% (Fig. 7[link]c), which primarily comes from the C—H⋯π(ring) inter­actions. The N⋯H/H⋯N contacts (Fig. 7[link]d), contributing 9.0%, appear as a pair of relatively sharp spikes at de + di = 2.88 Å and correspond primarily to the C—H⋯N hydrogen bonds while S⋯H/H⋯S contacts (Fig. 7[link]e) contribute 8.5%. All other atom⋯atom contacts contribute a total of 8.1% and are considered quite minor.

[Figure 6]
Figure 6
Hirshfeld surfaces: (a) the dnorm surface for the ordered mol­ecule with several nearest neighbors with C—H⋯N hydrogen bonds shown as dashed lines; (b) the surface calculated over the shape function for the major component of the disordered mol­ecule showing the π-stacking inter­action.
[Figure 7]
Figure 7
Fingerprint plots showing: (a) all inter­molecular inter­actions and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) S⋯H/H⋯S contacts.

6. Synthesis and crystallization

To a 50 mL round-bottom flask, 20 mL of di­methyl­formamide (DMF) were added followed by the successive addition of 0.0122 moles of 2-methyl­mercaptobenzimidazole, 0.0150 moles of potassium carbonate (K2CO3), 0.0070 moles of 1-chloro-2-(2-chloro­eth­oxy)ethane, and 0.0007 moles of tetra­butyl­ammonium bromide (BTBA). The mixture was stirred at room temperature for 2 h.

The salts were removed by filtration and the solvent was then removed under reduced pressure on a rotary evaporator. The residue obtained was subsequently purified by silica gel column chromatography, using hexa­ne/ethyl acetate (80/20, v/v) as the mobile phase and recrystallized from ethanol, yielding the title compound with a 72% yield as colorless crystals.

1H NMR (300 MHz, CDCl3) (δ, ppm): 2.54 (s, 6H), 3.73 (t, 3J = 7.5 Hz, 4H), 4.33 (t, 3J = 7.9 Hz, 4H), 7.48–7.82 (m, 8Har).; 13C NMR (300 MHz, CDCl3) (δ, ppm): 15.5, 49.4, 71.3, 112.7, 124.4, 127.4, 138.8, 148.1, 171.2. HRMS (ESI–MS) (m/z) 398.54.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. In the mol­ecule containing O2, one end is disordered by a modest shift in a 0.775 (6)/0.225 (6) ratio while the other end is disordered by an approximate 170° rotation about the C31—C32 bond in a 0.7200 (13)/0.2800 (13) ratio. In both instances, the disordered portions were refined as rigid groups.

Table 2
Experimental details

Crystal data
Chemical formula C20H22N4OS2
Mr 398.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.6654 (12), 13.5974 (15), 15.7917 (17)
α, β, γ (°) 109.206 (2), 101.687 (2), 107.789 (2)
V3) 1938.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.36 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.90, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 36334, 10449, 5628
Rint 0.074
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.199, 1.00
No. of reflections 10449
No. of parameters 460
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.32, −1.07
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

1,1'-[Oxybis(ethane-2,1-diyl)]bis(2-methylsulfanyl-1H-benzo[d]imidazole) top
Crystal data top
C20H22N4OS2Z = 4
Mr = 398.53F(000) = 840
Triclinic, P1Dx = 1.365 Mg m3
a = 10.6654 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5974 (15) ÅCell parameters from 9943 reflections
c = 15.7917 (17) Åθ = 2.6–29.0°
α = 109.206 (2)°µ = 0.29 mm1
β = 101.687 (2)°T = 100 K
γ = 107.789 (2)°Column, colourless
V = 1938.8 (4) Å30.36 × 0.22 × 0.18 mm
Data collection top
Bruker SMART APEX
diffractometer
10449 independent reflections
Radiation source: fine-focus sealed tube5628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 8.3333 pixels mm-1θmax = 29.5°, θmin = 1.7°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1818
Tmin = 0.90, Tmax = 0.95l = 2121
36334 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1077P)2]
where P = (Fo2 + 2Fc2)/3
10449 reflections(Δ/σ)max = 0.003
460 parametersΔρmax = 1.32 e Å3
3 restraintsΔρmin = 1.07 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 deg. in omega, collected at phi = 0.00, 90.00 and 180.00 deg. and 2 sets of 800 frames, each of width 0.45 deg in phi, collected at omega = -30.00 and 210.00 deg. The scan time was 30 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the molecule containing O2, one end is disordered by a modest shift in a 0.775 (6)/0.225 (6) ratio while the other end is disordered by an approximate 180° rotation about the C31—C32 bond in a 0.7200 (13)/0.2800 (13) ratio. In both instances, the disordered portions were refined as rigid groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.28306 (8)0.39883 (6)0.31081 (5)0.03271 (19)
S20.28353 (10)0.94354 (7)0.40847 (8)0.0589 (3)
O10.14040 (17)0.69787 (14)0.45180 (12)0.0265 (4)
N10.3274 (2)0.34561 (18)0.46399 (16)0.0261 (5)
N20.3144 (2)0.51604 (17)0.49496 (15)0.0245 (5)
N30.0989 (2)0.90589 (18)0.50202 (16)0.0287 (5)
N40.2898 (2)1.0698 (2)0.58629 (18)0.0370 (6)
C10.3323 (3)0.5043 (2)0.57981 (18)0.0254 (6)
C20.3387 (3)0.5740 (2)0.66891 (19)0.0301 (6)
H20.3325010.6452700.6810740.036*
C30.3544 (3)0.5346 (2)0.73914 (19)0.0347 (7)
H30.3585520.5795230.8010180.042*
C40.3641 (3)0.4298 (2)0.7205 (2)0.0331 (7)
H40.3749250.4052590.7702830.040*
C50.3586 (3)0.3602 (2)0.6312 (2)0.0306 (6)
H50.3658840.2893250.6194250.037*
C60.3419 (3)0.3990 (2)0.56012 (19)0.0256 (6)
C70.3107 (3)0.4180 (2)0.42919 (19)0.0253 (6)
C80.2915 (4)0.2620 (2)0.2606 (2)0.0437 (8)
H8A0.2109030.2034620.2610970.066*
H8B0.3780350.2641020.2985360.066*
H8C0.2900120.2440720.1949210.066*
C90.2979 (3)0.6119 (2)0.47908 (19)0.0266 (6)
H9A0.3192260.6125520.4210470.032*
H9B0.3647000.6840110.5336830.032*
C100.1505 (3)0.6037 (2)0.46773 (19)0.0269 (6)
H10A0.0828890.5318220.4132040.032*
H10B0.1287980.6044270.5259530.032*
C110.0038 (3)0.6962 (2)0.44035 (19)0.0277 (6)
H11A0.0198450.6979390.4981500.033*
H11B0.0656720.6255610.3854480.033*
C120.0002 (3)0.7980 (2)0.42393 (19)0.0299 (6)
H12A0.0210780.7935680.3648270.036*
H12B0.0954640.7957200.4142920.036*
C130.2245 (3)0.9775 (2)0.5057 (2)0.0360 (7)
C140.3995 (4)1.0841 (3)0.4299 (3)0.0683 (12)
H14A0.4350521.0796170.3767290.103*
H14B0.4780651.1154410.4890890.103*
H14C0.3484301.1334940.4353530.103*
C150.2020 (3)1.0574 (2)0.6399 (2)0.0328 (7)
C160.2183 (3)1.1275 (2)0.7317 (2)0.0410 (8)
H160.2982171.1970140.7679670.049*
C170.1160 (4)1.0933 (3)0.7681 (2)0.0506 (9)
H170.1265201.1392270.8313670.061*
C180.0043 (4)0.9924 (3)0.7150 (2)0.0517 (9)
H180.0742290.9724610.7424070.062*
C190.0230 (3)0.9218 (2)0.6238 (2)0.0384 (7)
H190.1042080.8532370.5872870.046*
C200.0820 (3)0.9558 (2)0.58821 (19)0.0290 (6)
O20.3432 (2)0.27334 (17)0.01613 (14)0.0388 (5)
S30.16784 (16)0.00367 (13)0.02660 (19)0.0477 (5)0.775 (6)
N50.3973 (3)0.04310 (18)0.17227 (15)0.0359 (8)0.775 (6)
N60.44458 (15)0.10270 (18)0.06022 (10)0.0285 (6)0.775 (6)
C210.57282 (16)0.13722 (15)0.12777 (10)0.0269 (7)0.775 (6)
C220.70801 (15)0.1992 (2)0.13525 (16)0.0274 (8)0.775 (6)
H220.7268020.2247030.0880980.033*0.775 (6)
C230.81397 (19)0.2219 (2)0.21508 (18)0.0331 (9)0.775 (6)
H230.9081380.2643330.2232660.040*0.775 (6)
C240.7853 (3)0.1837 (2)0.28399 (14)0.0332 (10)0.775 (6)
H240.8607200.2005920.3377200.040*0.775 (6)
C250.6500 (3)0.1219 (3)0.27622 (13)0.0349 (10)0.775 (6)
H250.6316610.0961280.3233220.042*0.775 (6)
C260.5421 (2)0.09900 (16)0.19659 (11)0.0315 (8)0.775 (6)
C270.34510 (18)0.04853 (11)0.09217 (12)0.0343 (8)0.775 (6)
C280.1014 (6)0.1083 (4)0.0703 (4)0.0574 (16)0.775 (6)
H28A0.0004500.1474360.0399980.086*0.775 (6)
H28B0.1435580.1638160.0553840.086*0.775 (6)
H28C0.1247890.0708150.1395050.086*0.775 (6)
S3A0.1493 (6)0.0051 (5)0.0063 (5)0.0477 (5)0.225 (6)
N5A0.3535 (8)0.0386 (7)0.1495 (5)0.0359 (8)0.225 (6)
N6A0.4310 (6)0.1156 (7)0.0536 (4)0.0285 (6)0.225 (6)
C21A0.5488 (6)0.1448 (7)0.1284 (4)0.0269 (7)0.225 (6)
C22A0.6890 (6)0.2104 (10)0.1500 (6)0.0274 (8)0.225 (6)
H22A0.7205150.2432080.1095770.033*0.225 (6)
C23A0.7804 (7)0.2254 (9)0.2336 (6)0.0331 (9)0.225 (6)
H23A0.8773970.2698240.2513340.040*0.225 (6)
C24A0.7330 (9)0.1763 (10)0.2925 (5)0.0332 (10)0.225 (6)
H24A0.7989330.1881890.3492130.040*0.225 (6)
C25A0.5928 (10)0.1110 (11)0.2707 (5)0.0349 (10)0.225 (6)
H25A0.5617610.0779730.3110610.042*0.225 (6)
C26A0.4993 (8)0.0958 (7)0.1871 (4)0.0315 (8)0.225 (6)
C27A0.3187 (6)0.0537 (4)0.0717 (4)0.0343 (8)0.225 (6)
C28A0.067 (2)0.1135 (11)0.0191 (15)0.0574 (16)0.225 (6)
H28D0.0324130.1521680.0198780.086*0.225 (6)
H28E0.1120930.1668560.0043520.086*0.225 (6)
H28F0.0762530.0860850.0866830.086*0.225 (6)
C290.4256 (3)0.1246 (2)0.02772 (19)0.0342 (7)
H29A0.3291410.0740430.0720480.041*
H29B0.4902640.1024720.0591500.041*
C300.4495 (3)0.2450 (2)0.0135 (2)0.0330 (6)
H30A0.5420730.2980320.0353490.040*
H30B0.4487280.2525380.0737920.040*
C310.3493 (3)0.3779 (2)0.0136 (2)0.0355 (7)
H31A0.3229270.3683310.0533590.043*
H31B0.4461980.4362420.0477350.043*
C320.2527 (5)0.4171 (3)0.0588 (3)0.0296 (9)0.7195 (12)
H32A0.1643600.3511760.0407560.036*0.7195 (12)
H32B0.2962780.4521620.1289460.036*0.7195 (12)
C32A0.1981 (13)0.3781 (6)0.0241 (9)0.0296 (9)0.2805 (12)
H32C0.1198430.3144920.0316030.036*0.2805 (12)
H32D0.1886170.3684490.0822660.036*0.2805 (12)
S40.39349 (9)0.68180 (7)0.19358 (6)0.0311 (2)0.7195 (12)
N70.22350 (13)0.49926 (7)0.02765 (7)0.0211 (5)0.7195 (12)
N80.21846 (13)0.66717 (8)0.03301 (7)0.0223 (6)0.7195 (12)
C330.27146 (8)0.61603 (6)0.07802 (5)0.0231 (7)0.7195 (12)
C340.41965 (18)0.82874 (7)0.22143 (9)0.0458 (12)0.7195 (12)
H34A0.4504780.8505180.1734040.069*0.7195 (12)
H34B0.4910320.8780500.2843860.069*0.7195 (12)
H34C0.3315460.8369880.2215510.069*0.7195 (12)
C350.12425 (11)0.57701 (9)0.05554 (6)0.0244 (7)0.7195 (12)
C360.03477 (17)0.58012 (13)0.13155 (8)0.0288 (8)0.7195 (12)
H360.0325230.6497510.1306500.035*0.7195 (12)
C370.04984 (16)0.47801 (15)0.20768 (7)0.0264 (8)0.7195 (12)
H370.1115580.4774220.2606500.032*0.7195 (12)
C380.04811 (17)0.37225 (13)0.20983 (8)0.0354 (9)0.7195 (12)
H380.1095480.3034100.2635250.042*0.7195 (12)
C390.04091 (19)0.36846 (10)0.13557 (9)0.0313 (9)0.7195 (12)
H390.0433770.2986850.1370390.038*0.7195 (12)
C400.12734 (12)0.47218 (8)0.05802 (6)0.0239 (7)0.7195 (12)
S4A0.0421 (3)0.39830 (19)0.15751 (16)0.0311 (2)0.2805 (12)
N7A0.1945 (4)0.4857 (2)0.02976 (17)0.0211 (5)0.2805 (12)
N8A0.1597 (4)0.61691 (18)0.02063 (18)0.0223 (6)0.2805 (12)
C33A0.1366 (2)0.50973 (18)0.04389 (15)0.0231 (7)0.2805 (12)
C34A0.0100 (5)0.4769 (3)0.22092 (19)0.0458 (12)0.2805 (12)
H34D0.0735210.5331180.2208760.069*0.2805 (12)
H34E0.0622800.5159440.1893890.069*0.2805 (12)
H34F0.0692240.4241490.2867210.069*0.2805 (12)
C35A0.2426 (3)0.6713 (2)0.07740 (18)0.0244 (7)0.2805 (12)
C36A0.3022 (5)0.7864 (2)0.1396 (2)0.0288 (8)0.2805 (12)
H36A0.2874870.8419800.1197620.035*0.2805 (12)
C37A0.3831 (5)0.8157 (3)0.2307 (2)0.0264 (8)0.2805 (12)
H37A0.4247040.8934130.2748270.032*0.2805 (12)
C38A0.4068 (5)0.7329 (4)0.26154 (19)0.0354 (9)0.2805 (12)
H38A0.4647840.7570510.3249940.042*0.2805 (12)
C39A0.3472 (6)0.6189 (3)0.20094 (18)0.0313 (9)0.2805 (12)
H39A0.3615680.5635340.2212650.038*0.2805 (12)
C40A0.2647 (4)0.5887 (2)0.10817 (16)0.0239 (7)0.2805 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0413 (4)0.0294 (4)0.0308 (4)0.0179 (3)0.0115 (3)0.0135 (3)
S20.0604 (6)0.0366 (5)0.0818 (7)0.0194 (4)0.0425 (5)0.0165 (5)
O10.0267 (9)0.0217 (9)0.0318 (10)0.0118 (8)0.0049 (8)0.0130 (8)
N10.0244 (11)0.0220 (11)0.0314 (12)0.0103 (9)0.0060 (9)0.0117 (10)
N20.0258 (11)0.0195 (11)0.0274 (12)0.0105 (9)0.0036 (9)0.0108 (9)
N30.0279 (12)0.0205 (11)0.0346 (13)0.0108 (9)0.0022 (10)0.0118 (10)
N40.0293 (13)0.0271 (13)0.0509 (16)0.0102 (10)0.0052 (12)0.0180 (12)
C10.0237 (13)0.0214 (13)0.0272 (14)0.0074 (11)0.0013 (11)0.0117 (11)
C20.0361 (15)0.0189 (13)0.0272 (14)0.0122 (11)0.0003 (12)0.0056 (11)
C30.0446 (17)0.0294 (15)0.0226 (14)0.0157 (13)0.0009 (12)0.0074 (12)
C40.0398 (16)0.0295 (15)0.0294 (15)0.0150 (13)0.0016 (12)0.0167 (13)
C50.0317 (14)0.0225 (13)0.0345 (16)0.0112 (11)0.0023 (12)0.0133 (12)
C60.0221 (13)0.0219 (13)0.0296 (14)0.0083 (11)0.0029 (11)0.0109 (11)
C70.0225 (13)0.0220 (13)0.0306 (14)0.0098 (11)0.0064 (11)0.0111 (11)
C80.060 (2)0.0313 (16)0.0424 (18)0.0206 (15)0.0217 (16)0.0134 (15)
C90.0303 (14)0.0197 (13)0.0306 (14)0.0112 (11)0.0059 (11)0.0130 (11)
C100.0294 (14)0.0190 (12)0.0308 (14)0.0100 (11)0.0050 (11)0.0115 (11)
C110.0256 (13)0.0232 (13)0.0278 (14)0.0094 (11)0.0004 (11)0.0091 (11)
C120.0292 (14)0.0244 (14)0.0304 (15)0.0134 (11)0.0000 (11)0.0085 (12)
C130.0309 (15)0.0252 (15)0.0519 (19)0.0127 (12)0.0090 (14)0.0177 (14)
C140.070 (3)0.043 (2)0.107 (3)0.0210 (19)0.059 (3)0.033 (2)
C150.0362 (15)0.0224 (14)0.0328 (15)0.0101 (12)0.0059 (12)0.0151 (12)
C160.0485 (19)0.0257 (15)0.0320 (16)0.0055 (13)0.0047 (14)0.0122 (13)
C170.080 (3)0.0287 (16)0.0340 (17)0.0131 (17)0.0156 (17)0.0123 (14)
C180.072 (2)0.0325 (17)0.044 (2)0.0095 (17)0.0270 (18)0.0151 (16)
C190.0450 (18)0.0246 (15)0.0377 (17)0.0072 (13)0.0098 (14)0.0128 (13)
C200.0314 (14)0.0215 (13)0.0326 (15)0.0105 (11)0.0001 (12)0.0161 (12)
O20.0555 (13)0.0383 (12)0.0400 (12)0.0330 (11)0.0195 (10)0.0219 (10)
S30.0413 (6)0.0394 (6)0.0431 (11)0.0092 (5)0.0076 (7)0.0051 (7)
N50.044 (2)0.0291 (14)0.0327 (19)0.0147 (16)0.0109 (17)0.0124 (14)
N60.0403 (14)0.0231 (13)0.0288 (13)0.0213 (11)0.0092 (11)0.0122 (11)
C210.0387 (18)0.0241 (14)0.0267 (14)0.0242 (14)0.0103 (13)0.0107 (12)
C220.0408 (18)0.0338 (17)0.0217 (16)0.0308 (15)0.0161 (13)0.0103 (14)
C230.040 (2)0.0467 (19)0.0254 (19)0.0306 (17)0.0174 (15)0.0143 (16)
C240.042 (3)0.0400 (19)0.0301 (17)0.031 (2)0.0099 (17)0.0170 (15)
C250.060 (3)0.0230 (17)0.0246 (16)0.023 (2)0.0099 (19)0.0104 (14)
C260.050 (3)0.0226 (15)0.0291 (17)0.0231 (17)0.0136 (17)0.0116 (13)
C270.047 (2)0.0216 (15)0.037 (2)0.0199 (15)0.0151 (17)0.0095 (15)
C280.060 (3)0.036 (2)0.071 (4)0.014 (2)0.041 (3)0.011 (3)
S3A0.0413 (6)0.0394 (6)0.0431 (11)0.0092 (5)0.0076 (7)0.0051 (7)
N5A0.044 (2)0.0291 (14)0.0327 (19)0.0147 (16)0.0109 (17)0.0124 (14)
N6A0.0403 (14)0.0231 (13)0.0288 (13)0.0213 (11)0.0092 (11)0.0122 (11)
C21A0.0387 (18)0.0241 (14)0.0267 (14)0.0242 (14)0.0103 (13)0.0107 (12)
C22A0.0408 (18)0.0338 (17)0.0217 (16)0.0308 (15)0.0161 (13)0.0103 (14)
C23A0.040 (2)0.0467 (19)0.0254 (19)0.0306 (17)0.0174 (15)0.0143 (16)
C24A0.042 (3)0.0400 (19)0.0301 (17)0.031 (2)0.0099 (17)0.0170 (15)
C25A0.060 (3)0.0230 (17)0.0246 (16)0.023 (2)0.0099 (19)0.0104 (14)
C26A0.050 (3)0.0226 (15)0.0291 (17)0.0231 (17)0.0136 (17)0.0116 (13)
C27A0.047 (2)0.0216 (15)0.037 (2)0.0199 (15)0.0151 (17)0.0095 (15)
C28A0.060 (3)0.036 (2)0.071 (4)0.014 (2)0.041 (3)0.011 (3)
C290.0439 (17)0.0308 (15)0.0270 (15)0.0225 (13)0.0063 (13)0.0076 (12)
C300.0437 (17)0.0322 (15)0.0267 (15)0.0243 (13)0.0080 (13)0.0105 (12)
C310.0514 (18)0.0339 (16)0.0346 (16)0.0293 (14)0.0152 (14)0.0186 (14)
C320.041 (3)0.023 (2)0.027 (3)0.016 (2)0.0091 (19)0.0118 (19)
C32A0.041 (3)0.023 (2)0.027 (3)0.016 (2)0.0091 (19)0.0118 (19)
S40.0366 (5)0.0262 (5)0.0259 (5)0.0137 (4)0.0005 (4)0.0104 (4)
N70.0230 (14)0.0191 (12)0.0247 (12)0.0087 (10)0.0093 (10)0.0120 (10)
N80.0272 (17)0.0227 (16)0.0187 (16)0.0118 (13)0.0055 (12)0.0102 (13)
C330.0222 (17)0.0232 (17)0.0217 (17)0.0077 (14)0.0074 (13)0.0083 (14)
C340.054 (3)0.033 (2)0.036 (2)0.024 (2)0.003 (2)0.0001 (19)
C350.0278 (18)0.0218 (17)0.0227 (19)0.0111 (15)0.0054 (15)0.0092 (15)
C360.0316 (19)0.0306 (19)0.0287 (19)0.0161 (16)0.0084 (15)0.0154 (16)
C370.0229 (17)0.035 (2)0.0168 (17)0.0100 (15)0.0023 (14)0.0100 (16)
C380.036 (2)0.031 (2)0.029 (2)0.0118 (17)0.0061 (17)0.0058 (17)
C390.043 (2)0.0206 (18)0.033 (2)0.0149 (17)0.0077 (17)0.0149 (16)
C400.0272 (18)0.0255 (18)0.0216 (17)0.0146 (15)0.0075 (14)0.0099 (14)
S4A0.0366 (5)0.0262 (5)0.0259 (5)0.0137 (4)0.0005 (4)0.0104 (4)
N7A0.0230 (14)0.0191 (12)0.0247 (12)0.0087 (10)0.0093 (10)0.0120 (10)
N8A0.0272 (17)0.0227 (16)0.0187 (16)0.0118 (13)0.0055 (12)0.0102 (13)
C33A0.0222 (17)0.0232 (17)0.0217 (17)0.0077 (14)0.0074 (13)0.0083 (14)
C34A0.054 (3)0.033 (2)0.036 (2)0.024 (2)0.003 (2)0.0001 (19)
C35A0.0278 (18)0.0218 (17)0.0227 (19)0.0111 (15)0.0054 (15)0.0092 (15)
C36A0.0316 (19)0.0306 (19)0.0287 (19)0.0161 (16)0.0084 (15)0.0154 (16)
C37A0.0229 (17)0.035 (2)0.0168 (17)0.0100 (15)0.0023 (14)0.0100 (16)
C38A0.036 (2)0.031 (2)0.029 (2)0.0118 (17)0.0061 (17)0.0058 (17)
C39A0.043 (2)0.0206 (18)0.033 (2)0.0149 (17)0.0077 (17)0.0149 (16)
C40A0.0272 (18)0.0255 (18)0.0216 (17)0.0146 (15)0.0075 (14)0.0099 (14)
Geometric parameters (Å, º) top
S1—C71.749 (3)S3A—C27A1.7474
S1—C81.805 (3)S3A—C28A1.799 (5)
S2—C131.753 (3)N5A—C27A1.3103
S2—C141.805 (3)N5A—C26A1.3998
O1—C101.414 (3)N6A—C291.321 (6)
O1—C111.423 (3)N6A—C27A1.3808
N1—C71.314 (3)N6A—C21A1.3843
N1—C61.402 (3)C21A—C22A1.3879
N2—C71.377 (3)C21A—C26A1.4038
N2—C11.383 (3)C22A—C23A1.3840
N2—C91.460 (3)C22A—H22A0.9500
N3—C131.371 (4)C23A—C24A1.3994
N3—C201.383 (4)C23A—H23A0.9500
N3—C121.457 (3)C24A—C25A1.3863
N4—C131.317 (4)C24A—H24A0.9500
N4—C151.393 (4)C25A—C26A1.3929
C1—C21.388 (4)C25A—H25A0.9500
C1—C61.402 (3)C28A—H28D0.9800
C2—C31.383 (4)C28A—H28E0.9800
C2—H20.9500C28A—H28F0.9800
C3—C41.399 (4)C29—C301.508 (4)
C3—H30.9500C29—H29A0.9900
C4—C51.392 (4)C29—H29B0.9900
C4—H40.9500C30—H30A0.9900
C5—C61.392 (4)C30—H30B0.9900
C5—H50.9500C31—C321.495 (5)
C8—H8A0.9800C31—C32A1.654 (13)
C8—H8B0.9800C31—H31A0.9900
C8—H8C0.9800C31—H31B0.9900
C9—C101.511 (4)C32—N71.449 (3)
C9—H9A0.9900C32—H32A0.9900
C9—H9B0.9900C32—H32B0.9900
C10—H10A0.9900C32A—N7A1.449 (4)
C10—H10B0.9900C32A—H32C0.9900
C11—C121.500 (3)C32A—H32D0.9900
C11—H11A0.9900S4—C331.7540
C11—H11B0.9900S4—C341.8152
C12—H12A0.9900N7—C401.3773
C12—H12B0.9900N7—C331.3868
C14—H14A0.9800N8—C331.3081
C14—H14B0.9800N8—C351.4206
C14—H14C0.9800C34—H34A0.9800
C15—C161.388 (4)C34—H34B0.9800
C15—C201.402 (4)C34—H34C0.9800
C16—C171.363 (5)C35—C361.3954
C16—H160.9500C35—C401.4237
C17—C181.401 (4)C36—C371.3726
C17—H170.9500C36—H360.9500
C18—C191.375 (4)C37—C381.4330
C18—H180.9500C37—H370.9500
C19—C201.376 (4)C38—C391.3777
C19—H190.9500C38—H380.9500
O2—C311.418 (3)C39—C401.3966
O2—C301.420 (3)C39—H390.9500
S3—C271.7474S4A—C33A1.7540
S3—C281.798 (5)S4A—C34A1.8152
N5—C271.3103N7A—C40A1.3773
N5—C261.3998N7A—C33A1.3867
N6—C271.3808N8A—C33A1.3081
N6—C211.3843N8A—C35A1.4206
N6—C291.501 (3)C34A—H34D0.9800
C21—C221.3879C34A—H34E0.9800
C21—C261.4038C34A—H34F0.9800
C22—C231.3839C35A—C36A1.3954
C22—H220.9500C35A—C40A1.4237
C23—C241.3994C36A—C37A1.3726
C23—H230.9500C36A—H36A0.9500
C24—C251.3863C37A—C38A1.4330
C24—H240.9500C37A—H37A0.9500
C25—C261.3930C38A—C39A1.3776
C25—H250.9500C38A—H38A0.9500
C28—H28A0.9800C39A—C40A1.3966
C28—H28B0.9800C39A—H39A0.9500
C28—H28C0.9800
C7—S1—C8100.14 (14)C29—N6A—C21A127.8 (3)
C13—S2—C1499.88 (16)C27A—N6A—C21A106.1
C10—O1—C11111.49 (18)N6A—C21A—C22A131.6
C7—N1—C6103.9 (2)N6A—C21A—C26A105.4
C7—N2—C1106.1 (2)C22A—C21A—C26A123.0
C7—N2—C9127.7 (2)C23A—C22A—C21A116.4
C1—N2—C9126.2 (2)C23A—C22A—H22A121.8
C13—N3—C20106.6 (2)C21A—C22A—H22A121.8
C13—N3—C12127.9 (3)C22A—C23A—C24A121.4
C20—N3—C12125.5 (2)C22A—C23A—H23A119.3
C13—N4—C15104.2 (2)C24A—C23A—H23A119.3
N2—C1—C2131.7 (2)C25A—C24A—C23A122.0
N2—C1—C6105.5 (2)C25A—C24A—H24A119.0
C2—C1—C6122.7 (2)C23A—C24A—H24A119.0
C3—C2—C1116.8 (2)C24A—C25A—C26A117.4
C3—C2—H2121.6C24A—C25A—H25A121.3
C1—C2—H2121.6C26A—C25A—H25A121.3
C2—C3—C4121.0 (3)C25A—C26A—N5A129.7
C2—C3—H3119.5C25A—C26A—C21A119.9
C4—C3—H3119.5N5A—C26A—C21A110.3
C5—C4—C3122.1 (3)N5A—C27A—N6A114.0
C5—C4—H4118.9N5A—C27A—S3A126.5
C3—C4—H4118.9N6A—C27A—S3A119.5
C6—C5—C4117.1 (2)S3A—C28A—H28D109.5
C6—C5—H5121.5S3A—C28A—H28E109.5
C4—C5—H5121.5H28D—C28A—H28E109.5
C5—C6—C1120.2 (2)S3A—C28A—H28F109.5
C5—C6—N1129.4 (2)H28D—C28A—H28F109.5
C1—C6—N1110.3 (2)H28E—C28A—H28F109.5
N1—C7—N2114.2 (2)N6A—C29—C30109.5 (4)
N1—C7—S1126.1 (2)N6—C29—C30116.4 (2)
N2—C7—S1119.69 (19)N6—C29—H29A108.2
S1—C8—H8A109.5C30—C29—H29A108.2
S1—C8—H8B109.5N6—C29—H29B108.2
H8A—C8—H8B109.5C30—C29—H29B108.2
S1—C8—H8C109.5H29A—C29—H29B107.3
H8A—C8—H8C109.5O2—C30—C29110.0 (2)
H8B—C8—H8C109.5O2—C30—H30A109.7
N2—C9—C10110.6 (2)C29—C30—H30A109.7
N2—C9—H9A109.5O2—C30—H30B109.7
C10—C9—H9A109.5C29—C30—H30B109.7
N2—C9—H9B109.5H30A—C30—H30B108.2
C10—C9—H9B109.5O2—C31—C32110.8 (2)
H9A—C9—H9B108.1O2—C31—C32A102.3 (3)
O1—C10—C9108.1 (2)O2—C31—H31A109.5
O1—C10—H10A110.1C32—C31—H31A109.5
C9—C10—H10A110.1O2—C31—H31B109.5
O1—C10—H10B110.1C32—C31—H31B109.5
C9—C10—H10B110.1H31A—C31—H31B108.1
H10A—C10—H10B108.4N7—C32—C31109.8 (3)
O1—C11—C12108.8 (2)N7—C32—H32A109.7
O1—C11—H11A109.9C31—C32—H32A109.7
C12—C11—H11A109.9N7—C32—H32B109.7
O1—C11—H11B109.9C31—C32—H32B109.7
C12—C11—H11B109.9H32A—C32—H32B108.2
H11A—C11—H11B108.3N7A—C32A—C31108.3 (7)
N3—C12—C11113.5 (2)N7A—C32A—H32C110.0
N3—C12—H12A108.9C31—C32A—H32C110.0
C11—C12—H12A108.9N7A—C32A—H32D110.0
N3—C12—H12B108.9C31—C32A—H32D110.0
C11—C12—H12B108.9H32C—C32A—H32D108.4
H12A—C12—H12B107.7C33—S4—C3499.7
N4—C13—N3113.6 (3)C40—N7—C33105.9
N4—C13—S2126.0 (2)C40—N7—C32124.77 (17)
N3—C13—S2120.4 (2)C33—N7—C32129.05 (17)
S2—C14—H14A109.5C33—N8—C35103.7
S2—C14—H14B109.5N8—C33—N7115.1
H14A—C14—H14B109.5N8—C33—S4125.9
S2—C14—H14C109.5N7—C33—S4119.0
H14A—C14—H14C109.5S4—C34—H34A109.5
H14B—C14—H14C109.5S4—C34—H34B109.5
C16—C15—N4130.1 (3)H34A—C34—H34B109.5
C16—C15—C20119.5 (3)S4—C34—H34C109.5
N4—C15—C20110.5 (3)H34A—C34—H34C109.5
C17—C16—C15117.9 (3)H34B—C34—H34C109.5
C17—C16—H16121.1C36—C35—N8129.5
C15—C16—H16121.1C36—C35—C40121.0
C16—C17—C18122.0 (3)N8—C35—C40109.5
C16—C17—H17119.0C37—C36—C35117.0
C18—C17—H17119.0C37—C36—H36121.5
C19—C18—C17121.2 (3)C35—C36—H36121.5
C19—C18—H18119.4C36—C37—C38122.1
C17—C18—H18119.4C36—C37—H37118.9
C18—C19—C20116.5 (3)C38—C37—H37118.9
C18—C19—H19121.8C39—C38—C37121.3
C20—C19—H19121.8C39—C38—H38119.4
C19—C20—N3131.9 (2)C37—C38—H38119.4
C19—C20—C15123.0 (3)C38—C39—C40116.8
N3—C20—C15105.1 (2)C38—C39—H39121.6
C31—O2—C30110.7 (2)C40—C39—H39121.6
C27—S3—C2898.26 (19)N7—C40—C39132.2
C27—N5—C26104.2N7—C40—C35105.9
C27—N6—C21106.1C39—C40—C35121.8
C27—N6—C29129.48 (13)C33A—S4A—C34A99.7
C21—N6—C29124.46 (13)C40A—N7A—C33A105.9
N6—C21—C22131.6C40A—N7A—C32A125.9 (5)
N6—C21—C26105.4C33A—N7A—C32A127.7 (5)
C22—C21—C26123.0C33A—N8A—C35A103.7
C23—C22—C21116.4N8A—C33A—N7A115.1
C23—C22—H22121.8N8A—C33A—S4A125.9
C21—C22—H22121.8N7A—C33A—S4A119.0
C22—C23—C24121.4S4A—C34A—H34D109.5
C22—C23—H23119.3S4A—C34A—H34E109.5
C24—C23—H23119.3H34D—C34A—H34E109.5
C25—C24—C23122.0S4A—C34A—H34F109.5
C25—C24—H24119.0H34D—C34A—H34F109.5
C23—C24—H24119.0H34E—C34A—H34F109.5
C24—C25—C26117.4C36A—C35A—N8A129.5
C24—C25—H25121.3C36A—C35A—C40A121.0
C26—C25—H25121.3N8A—C35A—C40A109.5
C25—C26—N5129.7C37A—C36A—C35A117.0
C25—C26—C21119.9C37A—C36A—H36A121.5
N5—C26—C21110.3C35A—C36A—H36A121.5
N5—C27—N6114.0C36A—C37A—C38A122.1
N5—C27—S3126.5C36A—C37A—H37A118.9
N6—C27—S3119.5C38A—C37A—H37A118.9
S3—C28—H28A109.5C39A—C38A—C37A121.3
S3—C28—H28B109.5C39A—C38A—H38A119.4
H28A—C28—H28B109.5C37A—C38A—H38A119.4
S3—C28—H28C109.5C38A—C39A—C40A116.8
H28A—C28—H28C109.5C38A—C39A—H39A121.6
H28B—C28—H28C109.5C40A—C39A—H39A121.6
C27A—S3A—C28A98.3 (8)N7A—C40A—C39A132.2
C27A—N5A—C26A104.2N7A—C40A—C35A105.9
C29—N6A—C27A125.0 (3)C39A—C40A—C35A121.8
C7—N2—C1—C2177.5 (3)N6A—C21A—C22A—C23A178.1
C9—N2—C1—C20.5 (4)C26A—C21A—C22A—C23A0.3
C7—N2—C1—C61.4 (3)C21A—C22A—C23A—C24A0.2
C9—N2—C1—C6179.4 (2)C22A—C23A—C24A—C25A0.3
N2—C1—C2—C3178.4 (3)C23A—C24A—C25A—C26A0.2
C6—C1—C2—C30.3 (4)C24A—C25A—C26A—N5A177.3
C1—C2—C3—C40.4 (4)C24A—C25A—C26A—C21A0.7
C2—C3—C4—C50.0 (4)C27A—N5A—C26A—C25A178.0
C3—C4—C5—C60.4 (4)C27A—N5A—C26A—C21A0.1
C4—C5—C6—C10.4 (4)N6A—C21A—C26A—C25A179.0
C4—C5—C6—N1177.2 (3)C22A—C21A—C26A—C25A0.8
N2—C1—C6—C5179.1 (2)N6A—C21A—C26A—N5A0.7
C2—C1—C6—C50.1 (4)C22A—C21A—C26A—N5A177.6
N2—C1—C6—N11.1 (3)C26A—N5A—C27A—N6A0.9
C2—C1—C6—N1177.9 (2)C26A—N5A—C27A—S3A178.4
C7—N1—C6—C5178.1 (3)C29—N6A—C27A—N5A167.2 (9)
C7—N1—C6—C10.3 (3)C21A—N6A—C27A—N5A1.3
C6—N1—C7—N20.7 (3)C29—N6A—C27A—S3A13.5 (9)
C6—N1—C7—S1178.45 (19)C21A—N6A—C27A—S3A178.0
C1—N2—C7—N11.4 (3)C28A—S3A—C27A—N5A25.4 (8)
C9—N2—C7—N1179.3 (2)C28A—S3A—C27A—N6A155.3 (8)
C1—N2—C7—S1177.80 (17)C27A—N6A—C29—C30112.2 (6)
C9—N2—C7—S10.1 (3)C21A—N6A—C29—C3081.8 (5)
C8—S1—C7—N11.8 (3)C27—N6—C29—C30105.3 (3)
C8—S1—C7—N2179.1 (2)C21—N6—C29—C3073.6 (3)
C7—N2—C9—C1099.1 (3)C31—O2—C30—C29169.6 (2)
C1—N2—C9—C1078.4 (3)N6A—C29—C30—O261.3 (4)
C11—O1—C10—C9180.0 (2)N6—C29—C30—O268.0 (3)
N2—C9—C10—O1179.5 (2)C30—O2—C31—C32171.2 (3)
C10—O1—C11—C12179.9 (2)C30—O2—C31—C32A166.8 (5)
C13—N3—C12—C11103.6 (3)O2—C31—C32—N7160.5 (2)
C20—N3—C12—C1176.4 (3)O2—C31—C32A—N7A175.8 (6)
O1—C11—C12—N360.0 (3)C31—C32—N7—C4080.5 (3)
C15—N4—C13—N30.8 (3)C31—C32—N7—C33106.9 (3)
C15—N4—C13—S2179.9 (2)C35—N8—C33—N70.9
C20—N3—C13—N40.6 (3)C35—N8—C33—S4178.6
C12—N3—C13—N4179.4 (2)C40—N7—C33—N81.4
C20—N3—C13—S2179.87 (19)C32—N7—C33—N8175.1 (3)
C12—N3—C13—S20.1 (4)C40—N7—C33—S4178.2
C14—S2—C13—N423.2 (3)C32—N7—C33—S44.5 (3)
C14—S2—C13—N3156.0 (3)C34—S4—C33—N81.8
C13—N4—C15—C16178.5 (3)C34—S4—C33—N7178.7
C13—N4—C15—C200.8 (3)C33—N8—C35—C36177.9
N4—C15—C16—C17178.7 (3)C33—N8—C35—C400.1
C20—C15—C16—C170.5 (4)N8—C35—C36—C37177.3
C15—C16—C17—C181.6 (5)C40—C35—C36—C370.4
C16—C17—C18—C191.4 (6)C35—C36—C37—C380.3
C17—C18—C19—C200.1 (5)C36—C37—C38—C391.0
C18—C19—C20—N3178.7 (3)C37—C38—C39—C400.9
C18—C19—C20—C151.0 (4)C33—N7—C40—C39176.9
C13—N3—C20—C19179.6 (3)C32—N7—C40—C392.8 (3)
C12—N3—C20—C190.4 (4)C33—N7—C40—C351.1
C13—N3—C20—C150.0 (3)C32—N7—C40—C35175.2 (3)
C12—N3—C20—C15180.0 (2)C38—C39—C40—N7177.7
C16—C15—C20—C190.8 (4)C38—C39—C40—C350.1
N4—C15—C20—C19179.8 (2)C36—C35—C40—N7178.8
C16—C15—C20—N3178.9 (2)N8—C35—C40—N70.7
N4—C15—C20—N30.4 (3)C36—C35—C40—C390.6
C27—N6—C21—C22176.9N8—C35—C40—C39177.6
C29—N6—C21—C222.2 (2)C31—C32A—N7A—C40A75.9 (9)
C27—N6—C21—C261.1C31—C32A—N7A—C33A94.9 (7)
C29—N6—C21—C26179.8 (2)C35A—N8A—C33A—N7A0.9
N6—C21—C22—C23178.1C35A—N8A—C33A—S4A178.6
C26—C21—C22—C230.3C40A—N7A—C33A—N8A1.4
C21—C22—C23—C240.2C32A—N7A—C33A—N8A173.6 (8)
C22—C23—C24—C250.3C40A—N7A—C33A—S4A178.2
C23—C24—C25—C260.2C32A—N7A—C33A—S4A6.0 (8)
C24—C25—C26—N5177.3C34A—S4A—C33A—N8A1.8
C24—C25—C26—C210.7C34A—S4A—C33A—N7A178.7
C27—N5—C26—C25178.0C33A—N8A—C35A—C36A177.9
C27—N5—C26—C210.1C33A—N8A—C35A—C40A0.1
N6—C21—C26—C25179.0N8A—C35A—C36A—C37A177.3
C22—C21—C26—C250.8C40A—C35A—C36A—C37A0.4
N6—C21—C26—N50.7C35A—C36A—C37A—C38A0.3
C22—C21—C26—N5177.6C36A—C37A—C38A—C39A1.0
C26—N5—C27—N60.9C37A—C38A—C39A—C40A0.9
C26—N5—C27—S3178.4C33A—N7A—C40A—C39A176.9
C21—N6—C27—N51.3C32A—N7A—C40A—C39A4.4 (8)
C29—N6—C27—N5179.6 (2)C33A—N7A—C40A—C35A1.1
C21—N6—C27—S3178.0C32A—N7A—C40A—C35A173.6 (8)
C29—N6—C27—S31.0 (2)C38A—C39A—C40A—N7A177.7
C28—S3—C27—N523.16 (19)C38A—C39A—C40A—C35A0.1
C28—S3—C27—N6157.56 (19)C36A—C35A—C40A—N7A178.8
C29—N6A—C21A—C22A15.0 (9)N8A—C35A—C40A—N7A0.7
C27A—N6A—C21A—C22A176.9C36A—C35A—C40A—C39A0.6
C29—N6A—C21A—C26A166.9 (9)N8A—C35A—C40A—C39A177.6
C27A—N6A—C21A—C26A1.1
Hydrogen-bond geometry (Å, º) top
Cg1, Cg5 and Cg11 are the centroids of the N5/C26/C21/N6/C27, the C21-C26 and the C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg5i0.952.713.583 (3)153
C11—H11B···Cg11ii0.992.743.423 (3)126
C29—H29B···Cg1iii0.992.703.489 (3)137
C34—H34B···N4iv0.982.503.398 (3)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+2, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. The contributions of the authors are as follows: conceptualization, EME and AM; method­ology, AA; investigation, AM and LEG; writing (original draft), JTM and AM; writing (review and editing of the manuscript), YR; formal analysis, AA; supervision, EME; crystal structure determination and validation, JTM; resources, CKM

References

First citationAbou, A., Bany, G. E., Kakou-Yao, R., Seikou, T. & Ebby, N. D. (2007). Acta Cryst. E63, o4218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkonan, L., Molou, K. Y. G., Adohi-Krou, A., Abou, A. & Tenon, A. J. (2010). Acta Cryst. E66, o442.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlgul, O., Mete, B., Turkmenoglu, B., Saglamtas, R., Alagoz, M. A., Dogen, A., Gulcin, I. & Burmaoglu, S. (2025). J. Mol. Struct. 1323, 140800.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHammal, L., Bentarzi, Y., Kaoua, R., Bakhta, S., Nedjar-Kolli, B., Andre, C. & Hoffmann, P. (2008). J. Soc. Alger. Chim. 18, 45–54.  CAS Google Scholar
First citationHasty, S. J., Bandara, M. D., Rath, N. P. & Demchenko, A. V. (2017). J. Org. Chem. 82, 1904–1911.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMissioui, M., Mortada, S., Guerrab, W., Demirtaş, G., Mague, J. T., Ansar, M., El Abbes Faouzi, M., Essassi, E. M., Mehdar, Y. T. H., Aljohani, F. S., Said, M. A. & Ramli, Y. (2022). Ara. J. Chem. 15, 103851.  CrossRef Google Scholar
First citationObaid, R. J., Mughal, E. U., Naeem, N., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., Moussa, Z. & Ahmed, S. A. (2022). Process Biochem. 120, 250–259.  CrossRef CAS Google Scholar
First citationRajakannu, P., Elumalai, P., Mobin, S. M., Lu, K.-L. & Sathiyendiran, M. (2013). J. Organomet. Chem. 743, 17–23.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinke, T., Engelage, E. & Huber, S. M. (2023). Acta Cryst. C79, 26–35.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYadav, S., Narasimhan, B., Lim, S. M., Ramasamy, K., Vasudevan, M., Shah, S. A. A. & Mathur, A. (2018). Egypt. J. Basic Appl. Sci. 5, 100-109.  Google Scholar
First citationYüksektepe, Ç., Çalışkan, N., Genç, M., Servi, S. & Büyükgüngör, O. (2007). Acta Cryst. E63, o100–o102.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds