research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of Fmoc-β-amino butyric acid and Fmoc carbamate

crossmark logo

aSchool of Mathematical and Physical Sciences, Dainton Building, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom
*Correspondence e-mail: b.chen@sheffield.ac.uk, craig.robertson@sheffield.ac.uk

Edited by F. Di Salvo, University of Buenos Aires, Argentina (Received 4 November 2024; accepted 28 April 2025; online 13 May 2025)

In the context of the development of synthetic routes that facilitate the incorporation of β-amino acids into peptide synthesis, the synthesis, crystal structure and Hirshfeld surface analysis are reported of fluorenyl­meth­oxy­carbonyl (Fmoc) protected β-amino butyric acid, namely, 3-{[(9H-fluoren-9-ylmeth­oxy)carbon­yl]amino}­butanoic acid, C19H19NO4. The importance of pH control in the reaction employing Fmoc-N3 is demonstrated with another β-amino acid analogue from which Fmoc carbamate was identified as the major product.

1. Chemical context

The increasing application of non-natural amino acids, particularly β-amino acids, in drug development, specifically peptide drugs necessitates the development of an economical and cost-effective method for producing modified β-amino acids. Modern peptide synthesis predominantly employs solid-phase peptide synthesis (SPPS) using the Fmoc strategy to mask the reactivity of the amine group with a temporary protective group (Behrendt et al., 2016[Behrendt, R., White, P. & Offer, J. (2016). J. Pept. Sci. 22, 4-27.]). Peptide chain elongation can then be performed through sequential cycles involving the removal of the protective group, followed by the coupling of N-protected amino acids (Hlebowicz et al., 2005[Hlebowicz, E., Andersen, A., Andersson, L. & Moss, B. (2005). J. Pept. Res. 65, 90-97.]; Isidro-Llobet et al., 2007[Isidro-Llobet, A., Just-Baringo, X., Ewenson, A., Alvarez, M. & Albericio, F. (2007). PeptideScience, 88, 733-737.]). This strategy allows efficient and controlled peptide assembly. Fmoc chemistry, while seemingly straightforward, presents challenges, particularly with β-amino acids due to the additional α-carbon, which serves as a potential reactive site. During the optimization of the synthesis of Fmoc-β-amino acids using alternatives to Fmoc-Cl, Fmoc-R-β-amino­butyric acid (Fmoc-R-βABA) 1 was synthesized to a high yield and purity after the in situ preparation of Fmoc-N3 (Cruz et al., 2004[Cruz, L. J., Beteta, N. G., Ewenson, A. & Albericio, F. (2004). Org. Process Res. Dev. 8, 920-924.]). When the same technique was applied to the synthesis of Fmoc-DL-β-phenyl­alanine, Fmoc-carbamate 2 was obtained.

[Scheme 1]

2. Structural commentary

Compound 1 crystallizes in the ortho­rhom­bic space group P212121, its asymmetric unit comprising of a single mol­ecule (Fig. 1[link]). The tricyclic fluorenyl group is planar (r.m.s. deviation 0.025 Å). The carbamate group adopts the trans geometry and is planar (r.m.s. deviation 0.005 Å). The absolute configuration of an R stereogenic centre is confirmed to a high degree of certainty. The Hooft parameter of −0.05 (14) demonstrates that a single enanti­omer is present. Compound 2 crystallizes in the ortho­rhom­bic space group Pca21, its asymmetric unit comprising of two mol­ecules (Fig. 2[link]). The two tricyclic fluorenyl groups are both planar (r.m.s. deviation of C16–C28 = 0.020 Å and C1–C13 = 0.025 Å). The carbamate group is planar (r.m.s. deviation 0.001 Å). The absolute configuration of an R stereogenic centre is confirmed to a high degree of certainty. The Hooft parameter of −0.05 (14) demonstrates that a single enanti­omer is present.

[Figure 1]
Figure 1
The mol­ecular structure of Fmoc-β-amino butyric acid 1 showing 50% displacement ellipsoids
[Figure 2]
Figure 2
The mol­ecular structure of Fmoc carbamate 2 showing 50% displacement ellipsoids

3. Supra­molecular features

In the mol­ecular packing of crystal 1 (Fig. 3[link]), two hydrogen-bonded (Table 1[link]) chains are observed (Fig. 4[link]). One chain forms from the carbamate hydrogen atom (H1) and the carbonyl oxygen atom (O1) of an adjacent mol­ecule (−1 + x, y, z) and continues parallel to the a axis (Fig. 4[link]). The second chain observed is formed by the carb­oxy­lic acid group hydrogen atom (H4) and the carbonyl oxygen atom (O3) of the adjacent mol­ecule ([{1\over 2}] + x, [{1\over 2}] − y, 1 − z). These chains are not linear but have an angle of 47.9 (10)° between the carb­oxy­lic acid planes of each mol­ecule. Hydrogen-bond statistical analysis (Mercury 2024.1.0; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) was performed, which highlighted the hydrogen bonds to be not unusual. The transamide chain hydrogen bond [2.844 (2) Å] is a little below average in distance (2.97 Å) from 1428 hits. The carb­oxy­lic acid chain hydrogen bond [2.656 (2) Å] was found to be of average distance (2.66 Å) from 3072 hits.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.94 (4) 1.72 (4) 2.656 (2) 177 (3)
N1—H1⋯O1ii 0.88 (3) 2.04 (3) 2.844 (3) 152 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-1, y, z].
[Figure 3]
Figure 3
Packing of 1 as viewed along the a axis
[Figure 4]
Figure 4
Hydrogen bonding present in 1

Strong face–face ππ interactions (as investigated with the CSD Materials Aromatics Analyser tool) are observed in the packing of 1, running parallel to the a axis. The rings C1–C6 and C8–13 form columns stacking on top and below with symmetry equivalents (x, y, z and −1 + x, y, z), with a centroid–centroid distance of 4.8393 (2) Å and twist plane angle of 0.0 (3)°. These interactions can be visualised later in the Hirshfield surface analysis plot (Fig. 7, 2nd from top) showing the C⋯H/H⋯C interactions primarily around the Fmoc group.In the mol­ecular packing of crystal 2 (Fig. 5[link]), the two mol­ecules in the asymmetric unit dimerize with hydrogen bonds (Table 2[link]) formed between the carbamate hydrogen atom (H2A) and oxygen atom (O1), as well as the carbamate hydrogen atom (H1B) and oxygen atom (O3). The other carbamate hydrogen atoms of each of the two mol­ecules then form a further hydrogen bond to an adjacent mol­ecule to form a 1D hydrogen-bonded network (Fig. 6[link]). The carbamate hydrogen atom (H1A) forms a hydrogen bond with oxygen atom (O1) (x, −1 + y, z) and the carbamate hydrogen atom (H2B) with oxygen atom (O3) (x, 1 + y, z). Hydrogen-bond statistical analysis (Mercury 2024.1.0; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) was performed, which allowed comparison to 3268 structures. This showed that the dimeric hydrogen bonds (N2—H2A⋯O1) and (N1—H1B⋯O3) were not unusual. The hydrogen bonds (N1—H1A⋯O1) and (N2—H2B⋯O3) were found to be unusual on account of their hydrogen bonds having shorter lengths and more acute angles [2.8549 (3) Å, 149 (3)° and 2.827 (3) Å, 152 (3)°, respectively] below the mean (2.94 Å and 173.35°). A strong face–face ππ interaction is observed in the packing of 2 between the rings C17–C22 and C23–-28 (x, −1 + y, z) as well as between C2–C7 and C8–C13(x, 1 + y, z) columns stacking on top and below with symmetry equivalents), with a centroid–centroid distance of 4.4182 (15) Å and relative orientation of 2.55 (9)°. These interactions can also be visualised later in the Hirshfield surface analysis plot (Fig. 8, 2nd from top) showing the ⋯H/H⋯C interactions around the Fmoc group.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3 0.91 (3) 2.06 (3) 2.955 (3) 169 (3)
N1—H1A⋯O1i 0.86 (3) 2.08 (3) 2.849 (3) 149 (3)
N2—H2A⋯O1 0.85 (3) 2.13 (3) 2.967 (3) 169 (3)
N2—H2B⋯O3ii 0.87 (4) 2.03 (4) 2.827 (3) 152 (3)
Symmetry codes: (i) [x, y-1, z]; (ii) [x, y+1, z].
[Figure 5]
Figure 5
Packing of 2 as viewed along the b axis
[Figure 6]
Figure 6
Hydrogen bonding between the carbamate groups present in 2

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.46, November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) highlighted that the crystal structures of compounds 1 and 2 have not been reported. Searches for structural motifs similar to 1 began with Fmoc-protected α-amino acids and discovered 51 results of various natural amino acids, synthetic derivatives and co-crystals, the most closely related structure being CUWKIO (Valle et al., 1984[Valle, G., Bonora, G. M. & Toniolo, C. (1984). Can. J. Chem. 62, 2661-2666.]), a Fmoc-protected alanine monohydrate that differs in structure by the one carbon atom as well as co-crystallizing with a mol­ecule of water. Despite crystallizing in the same space group as 1, CUWKIO has a different set of hydrogen bonds formed within the crystal structure. Instead of the amide hydrogen-bonded chains seen in 1, the amide H atom of CUWKIO forms a hydrogen bond to the carb­oxy­lic acid carbonyl whereas the co-crystallized water forms a hydrogen bond to the amide carbonyl. The co-crystallized water then satisfies its remaining hydrogen-bond formation with the carb­oxy­lic acid carbonyl and the carb­oxy­lic acid hydrogen is satisfied by forming a hydrogen bond to the water. In total, four hydrogen bonds are reported in CUWKIO in contrast to 1, which has two. Aromatic inter­actions, as investigated with the CSD Materials Aromatics Analyser tool, highlight a change in packing of the ππ inter­actions of the Fmoc groups. Strong face-face inter­actions in 1 are no longer present but instead strong edge-to-face inter­actions seen in CUWKIO. Further investigation of structural similarities lead us to look for Fmoc-protected β-amino acids, the structural motif of which was found the related structure BOMRAY (Ahmad Wani et al., 2014[Ahmad Wani, N., Gupta, V. K., Kant, R., Aravinda, S. & Rai, R. (2014). Acta Cryst. E70, 272-277.]), which differs as there is a spiro-centred carbon with cyclic six-membered ring at the β carbon, in contrast to 1, which has the methyl group as well as being a racemate. BOMRAY crystallises in the P[\overline{1}] space group and the primary hydrogen-bond inter­actions are a not unusual dimerization of the carb­oxy­lic acid as well as a long amide N—H to carb­oxy­lic acid carbonyl bond. The amide carbonyl in this case only forms a long weak inter­molecular inter­action with a CH2 group. Analysis of the aromatic inter­actions in BOMRAY reveals strong face-face π-stacking inter­actions, albeit with an offset, meaning only one of the phenyl rings is involved in the inter­action.

5. Hirshfeld surface analysis

In order to visualise the inter­molecular inter­actions in 1 and 2, Hirshfeld surface analysis was carried out using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and visualised via two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]). The Hirshfeld surface analysis of 2 was carried out with the asymmetric unit of the two mol­ecules. The left columns of Fig. 7[link] (top) and 8 (top) show the Hirshfeld surfaces of 1 and 2, respectively, each mapped with the function dnorm, which is the sum of the distances from a surface point to the nearest inter­ior (di) and exterior(de) atom, normalized by the van der Waals (vdW) radii of the corresponding atom (rvdW). Contacts shorter than the sum of their vdW radii are shown in red, those longer in blue and those approximately equal to their vdW radii in white. In the structure of 1, Fig. 7[link], the shortest contacts, with the most intense red spots, are shown to be the hydrogen-bonding sites, as shown in Fig. 4[link], the carb­oxy­lic acid and amide. The fingerprint plots (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) for 1 and 2 are given in the right columns of Figs. 7[link] and 8[link] and the inter­molecular inter­actions shown in Tables 3[link] and 4[link], respectively. The overall fingerprint plots are shown first (top) followed by those delineated into C⋯H/H⋯C, H/H, N⋯H/H⋯N and O⋯H/H⋯O. For 1, the most important overall contribution is H⋯H, Fig. 7[link], contributing 51.8% with the tip of de = di at 1.12 Å. The shortest inter­actions, the hydrogen bonding at the carb­oxy­lic acid and amide sites, as highlighted by the dnorm surface plot, are clearly visualized in the bottom O⋯H/H⋯O plot with the shortest distances. The C⋯H⋯π inter­actions are shown in the the surface of the C⋯H/H⋯C highlighted figure as well as the characteristic wings revealed in the fingerprint plot. For structure 2, while the dimerization of the amine and carbonyl within the asymmetric unit is occluded from the view, the surface map shows the brightest red spots corresponding to the hydrogen bond formed from the amine to carbonyl, clearly highlighted in Fig. 8[link] (bottom) surface displaying O⋯H/H⋯O contacts and its corresponding plot demonstrating the shortest distance. In 2, the most important contribution again is H⋯H, contributing 51.9% with the tip of de = di at 1.16 Å.

Table 3
Summary of the percentages of inter­molecular contacts contributed to the HSA surface of Fmoc-protected β-amino­butyric acid 1

Inside atom   Outside atom     Total contributions
  C H N O  
C 2.0 13.0 0.0 0.2 15.3
H 9.8 51.8 0.5 9.8 71.9
N 0.0 0.5 0.0 0.0 0.5
O 0.2 11.6 0.0 0.5 12.3
Total contributions 12.0 77.0 0.5 10.5  

Table 4
Summary of the percentages of inter­molecular contacts contributed to the HSA surface of Fmoc carbamate 2

Inside atom   Outside atom     Total contributions
  C H N O  
C 2.6 17.9 0.0 0.1 20.7
H 13.6 51.9 1.2 4.9 71.6
N 0.0 1.2 0.0 0.2 1.4
O 0.1 5.5 0.1 0.6 6.4
Total contributions 16.3 76.6 1.3 5.8  
[Figure 7]
Figure 7
Hirshfeld surfaces of 1 mapped with dnorm (left image of each pair) with the corresponding two-dimensional fingerprint plot (right image of each pair) showing firstly all contributions and then the major contributions of C⋯H/H⋯C, H⋯H, N⋯H/H⋯N and O⋯H/H⋯O contacts.
[Figure 8]
Figure 8
Hirshfeld surfaces of 2 mapped with dnorm (left image of each pair) with the corresponding two-dimensional fingerprint plot (right image of each pair) showing firstly all contributions and then the major contributions of C⋯H/H⋯C, H⋯H, N⋯H/H⋯N and O⋯H/H⋯O contacts.

6. Synthesis and crystallization

Fmoc-Cl was initially derivatized into Fmoc-N3 to prepare it for addition to solutions of the β-amino acid. Specifically, 10 mmol of Fmoc-Cl were dissolved in dioxane (5 ml), while 12 mmol of NaN3 were dissolved in a 2:1 mixture of dioxane/water (10 ml). The Fmoc-Cl solution was then added to the NaN3 solution, and the resulting mixture was stirred at 323 K for 2 h.>

For the synthesis of 1, (Fig. 9[link])11 mmol of R-βABA were dissolved in a 2:1 mixture of dioxane/10% NaHCO3, which maintains the pH at 8–9. The Fmoc-N3 solution was cautiously added in three portions to the β-amino acid over a period of 1 h. The reaction mixture was then stirred for 15 h at room temperature. Following the reaction, the mixture was poured into 5 mL of ice-cold water and subjected to three extractions with petroleum ether. The aqueous layers were separated using a separation funnel and chilled on ice for 2 h. Subsequently, the aqueous layer was acidified to pH 1 with 2 M HCl. The resulting precipitate was filtered and washed with ice-cold water until a pH of about 5 was attained. The collected white solid was placed in a petri dish covered with a paper towel and left to dry overnight within the fume hood. X-ray quality single crystals were grown by recrystallization from ethyl acetate/pet ether. NMR: 1H NMR (400 MHz, DMSO) δ = 12.18 (s, 1H), 7.89 (dd, J = 7.3, 5.9, 3H), 7.73–7.62 (m, 3H), 7.47–7.26 (m, 7H), 4.63 (d, J = 6.2, 1H), 4.38–4.17 (m, 3H), 3.88 (hept, J = 6.8, 1H), 2.50–2.42 (m, 1H), 2.30 (dd, J = 15.4, 7.3, 1H), 1.10 (d, J = 6.6, 2H). 13C NMR (101 MHz, DMSO) δ 128.03, 127.32, 125.56, 125.21, 120.29, 69.65, 65.78, 65.43, 47.14, 47.14, 46.44, 44.33, 41.51, 41.51, 41.16, 40.11, 21.12, 20.77. MP:120-125 °C HRMS Analysis: m/z (ES+) 326.1401. C19H20NO4 requires 326.1387.

[Figure 9]
Figure 9
The synthesis of the title compounds.

For the synthesis of 2, 11 mmol of DL-β-phenyl­alanine were dissolved in a 2:1 mixture of dioxane/10% NaHCO3 along with NH4OH (1 mL), which maintains the pH at 12. As above, the Fmoc-N3 solution was cautiously added in three portions to the β-amino acid over a period of 1 h. The reaction mixture was then stirred for 15 h at room temperature. Following the reaction, the mixture was poured into 5 mL of ice-cold water and subjected to three extractions with petroleum ether. The aqueous layers were separated using a separation funnel and chilled on ice for 2 h. Subsequently, the aqueous layer was acidified to pH 1 with 2 M HCl. The resulting precipitate was filtered and washed with ice-cold water until a pH of about 5 was attained. The collected white solid was placed in a Petri dish covered with a paper towel and left to dry overnight within the fume hood. X-ray quality single crystals were grown by recrystallization from ethyl acetate/pet ether. M.p. 471–473 K NMR: 1H NMR (400 MHz, DMSO) δ = 7.89 (d, J = 7.5, 2H), 7.70 (d, J = 7.4, 2H), 7.46–7.38 (m, 2H), 7.34 (td, J = 7.4, 1.2, 2H), 6.75 (s, 1H), 6.55 (s, 1H), 4.28 (d, J = 1.6, 1H), 4.27 (s, 1H), 4.22 (dd, J = 8.0, 5.7, 1H). 13C NMR (101 MHz, DMSO) δ = 157.20, 157.13, 144.45, 143.05, 141.21, 139.90, 137.90, 129.39, 128.06, 127.76, 127.52, 125.62, 121.85, 120.57, 120.49, 110.19, 65.48, 47.22. HRMS Analysis: m/z (ES+) C15H13NO2 requires 239.26.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All carbon-bound H atoms were positioned geometrically and refined as riding, with aromatic C—H = 0.95 Å, sp3 C—H = 1.00 Å, sp3 C—H2 0.99 Å and with Uiso(H) = 1.2 Ueq(C) and sp3 C—H3 = 0.98 Å with Uiso(H) = 1.5Ueq(methyl C). Hydrogen atoms involved in hydrogen-bonding inter­actions were refined isotropically.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula C19H19NO4 C15H13NO2
Mr 325.35 239.26
Crystal system, space group Orthorhombic, P212121 Orthorhombic, Pca21
Temperature (K) 100 100
a, b, c (Å) 4.8393 (2), 12.4928 (4), 27.3101 (9) 15.3560 (3), 5.0400 (1), 31.0254 (7)
V3) 1651.07 (10) 2401.19 (9)
Z 4 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.75 0.71
Crystal size (mm) 0.3 × 0.03 × 0.01 0.25 × 0.03 × 0.01
 
Data collection
Diffractometer Bruker D8 Venture Photon III Bruker D8 Venture Photon III
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.664, 0.753 0.683, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 25780, 2922, 2590 18874, 4069, 3754
Rint 0.081 0.051
(sin θ/λ)max−1) 0.596 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.073, 1.06 0.030, 0.068, 1.05
No. of reflections 2922 4069
No. of parameters 226 341
No. of restraints 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.12, −0.17 0.14, −0.17
Absolute structure Flack x determined using 992 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1617 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (14) −0.26 (13)
Computer programs: APEX5 and SAINT V8.40B (Bruker, 2023[Bruker (2023). APEX5 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

3-{[(9H-Fluoren-9-ylmethoxy)carbonyl]amino}butanoic acid (1) top
Crystal data top
C19H19NO4Dx = 1.309 Mg m3
Mr = 325.35Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 3582 reflections
a = 4.8393 (2) Åθ = 3.2–66.6°
b = 12.4928 (4) ŵ = 0.75 mm1
c = 27.3101 (9) ÅT = 100 K
V = 1651.07 (10) Å3Needle, colourless
Z = 40.3 × 0.03 × 0.01 mm
F(000) = 688
Data collection top
Bruker D8 Venture Photon III
diffractometer
2590 reflections with I > 2σ(I)
φ and ω scansRint = 0.081
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 66.8°, θmin = 3.2°
Tmin = 0.664, Tmax = 0.753h = 55
25780 measured reflectionsk = 1414
2922 independent reflectionsl = 3231
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.2044P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.12 e Å3
2922 reflectionsΔρmin = 0.17 e Å3
226 parametersAbsolute structure: Flack x determined using 992 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.05 (14)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. For 1, a needle crystal with dimensions 0.01 x 0.026 x 0.3 mm was selected and for 2, a needle crystal with dimensions 0.012 x 0.026 x 0.25 was selected. Intensity data for each was collected on a Bruker Venture Photon III diffractometer operating with a CuKα microfocus X-ray source with the crystal mounted in fomblin oil on a MicroMount (MiTeGen, USA) and cooled to 100 K in a stream of cold nitrogen gas using an Oxford Cryosystems 700 Cryostream. Data were corrected for absorption using empirical methods (SADABS; Bruker, 2023) based upon symmetry equivalent reflections combined with measurements at different azimuthal angles (Krause et al., 2015). The crystal structures were solved and refined against F2 values using ShelXT (Sheldrick, 2015a) for solution and ShelXL (Sheldrick, 2015b) for refinement accessed via the Olex2 program (Dolomanov et al., 2009). Non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6114 (3)0.65660 (13)0.60381 (6)0.0260 (4)
O20.2958 (3)0.76326 (12)0.64093 (6)0.0254 (4)
O30.0146 (4)0.30716 (13)0.53156 (6)0.0309 (4)
O40.3887 (4)0.38097 (14)0.51041 (7)0.0331 (4)
H40.422 (8)0.314 (3)0.4965 (14)0.078 (12)*
N10.1735 (4)0.67252 (15)0.57425 (7)0.0215 (4)
H10.005 (6)0.691 (2)0.5827 (9)0.032 (7)*
C10.4148 (5)0.89471 (18)0.70131 (8)0.0230 (5)
H1A0.2278470.8859970.7164020.028*
C20.4183 (5)0.99043 (18)0.66703 (8)0.0231 (5)
C30.2681 (5)1.0088 (2)0.62449 (9)0.0309 (6)
H30.1338240.9586060.6136660.037*
C40.3181 (6)1.1019 (2)0.59806 (10)0.0372 (7)
H4A0.2160121.1153930.5689940.045*
C50.5141 (6)1.1755 (2)0.61339 (10)0.0374 (7)
H50.5465081.2381060.5945220.045*
C60.6638 (6)1.15843 (19)0.65610 (10)0.0326 (6)
H60.7978171.2089280.6667040.039*
C70.6136 (5)1.06620 (19)0.68294 (9)0.0250 (5)
C80.7377 (5)1.02758 (18)0.72875 (9)0.0239 (5)
C90.9348 (5)1.0736 (2)0.75932 (10)0.0304 (6)
H91.0100161.1420410.7519930.037*
C101.0195 (6)1.0182 (2)0.80057 (9)0.0346 (6)
H101.1514381.0493150.8220290.042*
C110.9134 (6)0.9177 (2)0.81081 (9)0.0322 (6)
H110.9778900.8798680.8387300.039*
C120.7136 (5)0.8712 (2)0.78084 (9)0.0273 (6)
H120.6394590.8026780.7883350.033*
C130.6254 (5)0.92702 (18)0.73987 (8)0.0229 (5)
C140.5056 (5)0.79107 (19)0.67675 (9)0.0249 (5)
H14A0.6865120.8010560.6604630.030*
H14B0.5239000.7333480.7013670.030*
C150.3773 (5)0.69342 (17)0.60606 (9)0.0213 (5)
C160.2032 (5)0.58643 (17)0.53839 (8)0.0212 (5)
H160.4043790.5766440.5313650.025*
C170.0920 (5)0.48249 (18)0.56036 (9)0.0255 (5)
H17A0.1728250.4739540.5934350.031*
H17B0.1102850.4901260.5644820.031*
C180.1454 (5)0.38223 (18)0.53224 (9)0.0230 (5)
C190.0586 (6)0.6161 (2)0.49085 (9)0.0314 (6)
H19A0.1393380.6258520.4970110.047*
H19B0.0849980.5587500.4668220.047*
H19C0.1368760.6828480.4780780.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0159 (8)0.0299 (9)0.0323 (9)0.0033 (7)0.0010 (7)0.0065 (8)
O20.0174 (8)0.0265 (8)0.0322 (9)0.0008 (7)0.0031 (7)0.0098 (7)
O30.0281 (9)0.0220 (8)0.0427 (11)0.0025 (7)0.0001 (8)0.0051 (8)
O40.0280 (10)0.0227 (9)0.0486 (12)0.0002 (8)0.0117 (9)0.0072 (8)
N10.0147 (10)0.0212 (10)0.0287 (11)0.0010 (8)0.0011 (9)0.0044 (9)
C10.0195 (12)0.0233 (12)0.0263 (13)0.0004 (10)0.0001 (10)0.0031 (10)
C20.0202 (12)0.0246 (12)0.0246 (12)0.0042 (10)0.0031 (10)0.0036 (10)
C30.0278 (14)0.0346 (14)0.0304 (13)0.0074 (12)0.0007 (11)0.0066 (12)
C40.0404 (16)0.0419 (16)0.0292 (14)0.0167 (14)0.0002 (12)0.0046 (12)
C50.0420 (16)0.0315 (15)0.0385 (16)0.0098 (13)0.0110 (13)0.0094 (12)
C60.0316 (15)0.0262 (13)0.0402 (15)0.0026 (12)0.0074 (12)0.0010 (12)
C70.0225 (12)0.0235 (12)0.0290 (13)0.0040 (10)0.0045 (10)0.0028 (10)
C80.0212 (12)0.0236 (12)0.0267 (13)0.0007 (10)0.0029 (10)0.0059 (10)
C90.0253 (14)0.0266 (13)0.0394 (15)0.0021 (11)0.0021 (11)0.0098 (12)
C100.0307 (14)0.0397 (16)0.0336 (15)0.0050 (12)0.0056 (12)0.0159 (13)
C110.0351 (15)0.0360 (14)0.0254 (13)0.0116 (12)0.0032 (11)0.0072 (11)
C120.0311 (14)0.0249 (12)0.0258 (13)0.0037 (11)0.0039 (11)0.0036 (10)
C130.0204 (12)0.0239 (12)0.0243 (12)0.0014 (10)0.0038 (10)0.0044 (10)
C140.0199 (12)0.0268 (13)0.0279 (13)0.0010 (10)0.0042 (10)0.0063 (11)
C150.0209 (12)0.0179 (11)0.0251 (12)0.0031 (10)0.0011 (10)0.0005 (10)
C160.0175 (11)0.0203 (11)0.0258 (12)0.0001 (9)0.0011 (10)0.0032 (10)
C170.0269 (12)0.0220 (12)0.0276 (13)0.0005 (10)0.0043 (10)0.0026 (10)
C180.0222 (13)0.0206 (11)0.0261 (13)0.0003 (10)0.0025 (10)0.0025 (10)
C190.0382 (16)0.0261 (13)0.0300 (14)0.0002 (12)0.0060 (12)0.0010 (11)
Geometric parameters (Å, º) top
O1—C151.224 (3)C7—C81.469 (3)
O2—C141.452 (3)C8—C91.392 (3)
O2—C151.350 (3)C8—C131.402 (3)
O3—C181.216 (3)C9—H90.9500
O4—H40.94 (4)C9—C101.385 (4)
O4—C181.320 (3)C10—H100.9500
N1—H10.88 (3)C10—C111.384 (4)
N1—C151.340 (3)C11—H110.9500
N1—C161.462 (3)C11—C121.394 (4)
C1—H1A1.0000C12—H120.9500
C1—C21.519 (3)C12—C131.386 (3)
C1—C131.520 (3)C14—H14A0.9900
C1—C141.523 (3)C14—H14B0.9900
C2—C31.389 (3)C16—H161.0000
C2—C71.407 (3)C16—C171.528 (3)
C3—H30.9500C16—C191.521 (3)
C3—C41.391 (4)C17—H17A0.9900
C4—H4A0.9500C17—H17B0.9900
C4—C51.385 (4)C17—C181.492 (3)
C5—H50.9500C19—H19A0.9800
C5—C61.390 (4)C19—H19B0.9800
C6—H60.9500C19—H19C0.9800
C6—C71.387 (3)
C15—O2—C14115.19 (17)C10—C11—C12121.1 (2)
C18—O4—H4110 (2)C12—C11—H11119.4
C15—N1—H1117.4 (18)C11—C12—H12120.7
C15—N1—C16120.36 (19)C13—C12—C11118.5 (2)
C16—N1—H1117.6 (18)C13—C12—H12120.7
C2—C1—H1A110.5C8—C13—C1110.4 (2)
C2—C1—C13102.15 (19)C12—C13—C1129.2 (2)
C2—C1—C14113.24 (19)C12—C13—C8120.4 (2)
C13—C1—H1A110.5O2—C14—C1107.37 (19)
C13—C1—C14109.72 (19)O2—C14—H14A110.2
C14—C1—H1A110.5O2—C14—H14B110.2
C3—C2—C1129.7 (2)C1—C14—H14A110.2
C3—C2—C7119.9 (2)C1—C14—H14B110.2
C7—C2—C1110.3 (2)H14A—C14—H14B108.5
C2—C3—H3120.6O1—C15—O2123.3 (2)
C2—C3—C4118.8 (3)O1—C15—N1125.1 (2)
C4—C3—H3120.6N1—C15—O2111.6 (2)
C3—C4—H4A119.4N1—C16—H16108.3
C5—C4—C3121.1 (3)N1—C16—C17109.11 (19)
C5—C4—H4A119.4N1—C16—C19110.34 (18)
C4—C5—H5119.7C17—C16—H16108.3
C4—C5—C6120.6 (3)C19—C16—H16108.3
C6—C5—H5119.7C19—C16—C17112.4 (2)
C5—C6—H6120.7C16—C17—H17A108.1
C7—C6—C5118.7 (3)C16—C17—H17B108.1
C7—C6—H6120.7H17A—C17—H17B107.3
C2—C7—C8108.5 (2)C18—C17—C16116.76 (19)
C6—C7—C2120.9 (2)C18—C17—H17A108.1
C6—C7—C8130.6 (2)C18—C17—H17B108.1
C9—C8—C7130.9 (2)O3—C18—O4123.5 (2)
C9—C8—C13120.4 (2)O3—C18—C17123.0 (2)
C13—C8—C7108.7 (2)O4—C18—C17113.4 (2)
C8—C9—H9120.5C16—C19—H19A109.5
C10—C9—C8118.9 (2)C16—C19—H19B109.5
C10—C9—H9120.5C16—C19—H19C109.5
C9—C10—H10119.7H19A—C19—H19B109.5
C11—C10—C9120.5 (2)H19A—C19—H19C109.5
C11—C10—H10119.7H19B—C19—H19C109.5
C10—C11—H11119.4
N1—C16—C17—C18170.6 (2)C9—C8—C13—C121.4 (3)
C1—C2—C3—C4177.1 (2)C9—C10—C11—C121.9 (4)
C1—C2—C7—C6176.9 (2)C10—C11—C12—C131.0 (4)
C1—C2—C7—C82.4 (3)C11—C12—C13—C1179.4 (2)
C2—C1—C13—C80.7 (2)C11—C12—C13—C80.7 (3)
C2—C1—C13—C12179.5 (2)C13—C1—C2—C3179.9 (2)
C2—C1—C14—O267.4 (3)C13—C1—C2—C71.9 (2)
C2—C3—C4—C50.2 (4)C13—C1—C14—O2179.18 (18)
C2—C7—C8—C9178.4 (2)C13—C8—C9—C100.5 (4)
C2—C7—C8—C131.9 (3)C14—O2—C15—O11.0 (3)
C3—C2—C7—C61.5 (4)C14—O2—C15—N1179.49 (19)
C3—C2—C7—C8179.2 (2)C14—C1—C2—C362.2 (3)
C3—C4—C5—C60.8 (4)C14—C1—C2—C7116.0 (2)
C4—C5—C6—C70.2 (4)C14—C1—C13—C8119.7 (2)
C5—C6—C7—C20.9 (4)C14—C1—C13—C1259.1 (3)
C5—C6—C7—C8179.9 (2)C15—O2—C14—C1161.10 (18)
C6—C7—C8—C92.3 (4)C15—N1—C16—C1790.3 (3)
C6—C7—C8—C13177.3 (3)C15—N1—C16—C19145.8 (2)
C7—C2—C3—C40.9 (4)C16—N1—C15—O111.4 (4)
C7—C8—C9—C10179.0 (2)C16—N1—C15—O2170.19 (18)
C7—C8—C13—C10.7 (3)C16—C17—C18—O3147.0 (2)
C7—C8—C13—C12178.2 (2)C16—C17—C18—O436.3 (3)
C8—C9—C10—C111.1 (4)C19—C16—C17—C1866.7 (3)
C9—C8—C13—C1179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.94 (4)1.72 (4)2.656 (2)177 (3)
N1—H1···O1ii0.88 (3)2.04 (3)2.844 (3)152 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1, y, z.
(2) top
Crystal data top
C15H13NO2Dx = 1.324 Mg m3
Mr = 239.26Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pca21Cell parameters from 6701 reflections
a = 15.3560 (3) Åθ = 3.2–65.9°
b = 5.0400 (1) ŵ = 0.71 mm1
c = 31.0254 (7) ÅT = 100 K
V = 2401.19 (9) Å3Needle, colourless
Z = 80.25 × 0.03 × 0.01 mm
F(000) = 1008
Data collection top
Bruker D8 Venture Photon III
diffractometer
3754 reflections with I > 2σ(I)
φ and ω scansRint = 0.051
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 66.8°, θmin = 2.9°
Tmin = 0.683, Tmax = 0.753h = 1818
18874 measured reflectionsk = 55
4069 independent reflectionsl = 3636
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.3089P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.14 e Å3
4069 reflectionsΔρmin = 0.16 e Å3
341 parametersAbsolute structure: Flack x determined using 1617 quotients
[(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.26 (13)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53087 (12)0.7151 (3)0.47451 (7)0.0233 (4)
O20.42477 (11)0.4384 (3)0.45115 (6)0.0198 (4)
N10.53609 (17)0.2741 (4)0.48787 (8)0.0230 (5)
H1A0.5141 (19)0.123 (6)0.4816 (10)0.019 (7)*
H1B0.589 (2)0.295 (6)0.5007 (11)0.031 (8)*
C10.32636 (17)0.5633 (5)0.39449 (9)0.0176 (6)
H10.2933720.3981980.4017560.021*
C20.26475 (15)0.7768 (5)0.37850 (9)0.0176 (5)
C30.19497 (17)0.8955 (5)0.39955 (9)0.0226 (6)
H30.1795260.8440260.4279990.027*
C40.14832 (17)1.0913 (6)0.37805 (11)0.0263 (6)
H40.1002591.1735100.3919630.032*
C50.17085 (18)1.1689 (5)0.33649 (9)0.0248 (6)
H50.1383921.3039420.3224150.030*
C60.24063 (19)1.0499 (5)0.31541 (10)0.0221 (6)
H60.2561561.1026890.2870370.027*
C70.28718 (16)0.8528 (5)0.33653 (9)0.0176 (5)
C80.36178 (15)0.6916 (5)0.32254 (8)0.0171 (5)
C90.40625 (17)0.6884 (5)0.28345 (9)0.0212 (6)
H90.3911220.8082220.2610280.025*
C100.4733 (2)0.5061 (5)0.27793 (11)0.0251 (7)
H100.5037830.4995970.2513060.030*
C110.49616 (17)0.3337 (5)0.31090 (10)0.0237 (6)
H110.5422940.2109250.3066240.028*
C120.45228 (17)0.3385 (5)0.35021 (9)0.0205 (6)
H120.4685550.2217200.3728630.025*
C130.38445 (19)0.5168 (5)0.35564 (10)0.0170 (6)
C140.37677 (17)0.6619 (5)0.43372 (9)0.0194 (5)
H14A0.4174090.8051510.4252370.023*
H14B0.3360870.7328220.4556320.023*
C150.50003 (18)0.4899 (5)0.47137 (9)0.0165 (6)
O30.71790 (12)0.3289 (3)0.51774 (6)0.0235 (4)
O40.81702 (12)0.6052 (3)0.54788 (6)0.0203 (4)
N20.71138 (16)0.7720 (4)0.50730 (8)0.0201 (5)
H2A0.663 (2)0.759 (5)0.4946 (10)0.019 (7)*
H2B0.730 (2)0.928 (7)0.5147 (11)0.033 (9)*
C160.91776 (18)0.4654 (5)0.60216 (9)0.0182 (6)
H160.9488520.6355100.5959490.022*
C170.98232 (16)0.2503 (5)0.61506 (9)0.0187 (5)
C181.05075 (16)0.1434 (5)0.59156 (9)0.0229 (6)
H181.0629740.2047820.5632530.028*
C191.10103 (18)0.0548 (6)0.61018 (11)0.0282 (7)
H191.1483110.1285620.5944740.034*
C201.08324 (19)0.1464 (5)0.65126 (11)0.0300 (7)
H201.1181900.2831600.6633100.036*
C211.0147 (2)0.0408 (5)0.67526 (10)0.0248 (7)
H211.0026320.1031840.7035290.030*
C220.96431 (16)0.1588 (5)0.65662 (9)0.0187 (5)
C230.88995 (16)0.3076 (5)0.67375 (8)0.0183 (5)
C240.84808 (18)0.2916 (6)0.71340 (9)0.0232 (6)
H240.8657560.1647390.7342930.028*
C250.7798 (2)0.4652 (6)0.72182 (11)0.0274 (7)
H250.7511300.4589800.7489420.033*
C260.75307 (19)0.6472 (5)0.69102 (10)0.0266 (6)
H260.7060410.7634840.6972540.032*
C270.79414 (17)0.6619 (5)0.65113 (9)0.0225 (6)
H270.7754500.7866060.6301130.027*
C280.86269 (19)0.4917 (5)0.64261 (10)0.0178 (6)
C290.86563 (17)0.3768 (5)0.56314 (9)0.0186 (5)
H29A0.9051500.3112820.5402840.022*
H29B0.8253050.2317540.5711800.022*
C300.74632 (18)0.5541 (5)0.52380 (9)0.0164 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0227 (10)0.0147 (9)0.0326 (11)0.0011 (7)0.0087 (8)0.0015 (8)
O20.0215 (10)0.0167 (9)0.0211 (10)0.0041 (7)0.0075 (8)0.0043 (7)
N10.0222 (13)0.0150 (12)0.0318 (14)0.0029 (9)0.0085 (11)0.0005 (10)
C10.0160 (14)0.0192 (13)0.0176 (14)0.0019 (11)0.0010 (11)0.0023 (10)
C20.0145 (11)0.0163 (12)0.0220 (14)0.0035 (9)0.0055 (10)0.0027 (11)
C30.0177 (13)0.0271 (14)0.0231 (15)0.0014 (11)0.0005 (11)0.0039 (11)
C40.0146 (13)0.0256 (14)0.0388 (18)0.0021 (11)0.0022 (12)0.0103 (14)
C50.0194 (13)0.0216 (13)0.0334 (16)0.0018 (10)0.0108 (11)0.0008 (11)
C60.0236 (15)0.0216 (13)0.0212 (15)0.0006 (11)0.0047 (12)0.0012 (11)
C70.0135 (12)0.0169 (13)0.0225 (14)0.0027 (9)0.0037 (10)0.0020 (10)
C80.0145 (12)0.0159 (13)0.0208 (14)0.0041 (10)0.0024 (10)0.0004 (10)
C90.0209 (13)0.0214 (13)0.0213 (14)0.0013 (11)0.0002 (11)0.0037 (10)
C100.0197 (16)0.0308 (16)0.0248 (18)0.0006 (10)0.0063 (13)0.0013 (12)
C110.0180 (13)0.0226 (14)0.0304 (16)0.0019 (11)0.0001 (11)0.0014 (11)
C120.0192 (13)0.0186 (13)0.0235 (15)0.0011 (10)0.0038 (11)0.0018 (11)
C130.0157 (15)0.0160 (13)0.0194 (15)0.0034 (9)0.0047 (12)0.0014 (10)
C140.0200 (13)0.0183 (13)0.0199 (14)0.0007 (9)0.0044 (11)0.0033 (11)
C150.0160 (13)0.0188 (13)0.0149 (14)0.0002 (9)0.0005 (11)0.0020 (10)
O30.0211 (10)0.0142 (9)0.0351 (12)0.0008 (7)0.0083 (8)0.0002 (8)
O40.0226 (10)0.0144 (9)0.0239 (10)0.0017 (7)0.0079 (8)0.0020 (8)
N20.0195 (12)0.0145 (11)0.0263 (13)0.0004 (9)0.0079 (10)0.0012 (9)
C160.0163 (12)0.0185 (13)0.0198 (15)0.0012 (9)0.0030 (11)0.0020 (11)
C170.0150 (11)0.0190 (12)0.0223 (14)0.0031 (9)0.0043 (10)0.0002 (10)
C180.0163 (12)0.0278 (14)0.0248 (15)0.0030 (10)0.0019 (11)0.0032 (11)
C190.0163 (14)0.0311 (15)0.0372 (18)0.0008 (11)0.0036 (12)0.0071 (13)
C200.0256 (14)0.0213 (14)0.0432 (19)0.0054 (11)0.0156 (14)0.0015 (12)
C210.0239 (16)0.0251 (14)0.0255 (16)0.0028 (11)0.0117 (13)0.0028 (12)
C220.0183 (13)0.0172 (12)0.0205 (14)0.0033 (9)0.0056 (11)0.0008 (10)
C230.0183 (12)0.0190 (13)0.0176 (14)0.0053 (10)0.0044 (10)0.0000 (10)
C240.0260 (14)0.0268 (15)0.0167 (13)0.0093 (11)0.0030 (10)0.0014 (11)
C250.0258 (17)0.0327 (16)0.0236 (18)0.0113 (12)0.0054 (14)0.0104 (12)
C260.0208 (13)0.0251 (15)0.0340 (17)0.0021 (11)0.0041 (12)0.0124 (12)
C270.0197 (13)0.0202 (13)0.0275 (15)0.0009 (10)0.0020 (12)0.0033 (11)
C280.0147 (14)0.0186 (14)0.0201 (16)0.0043 (9)0.0015 (12)0.0022 (10)
C290.0202 (13)0.0166 (13)0.0189 (13)0.0030 (10)0.0025 (10)0.0028 (10)
C300.0153 (13)0.0197 (13)0.0142 (14)0.0006 (10)0.0003 (11)0.0004 (11)
Geometric parameters (Å, º) top
O1—C151.234 (3)O3—C301.230 (3)
O2—C141.450 (3)O4—C291.451 (3)
O2—C151.340 (3)O4—C301.343 (3)
N1—H1A0.86 (3)N2—H2A0.85 (3)
N1—H1B0.91 (3)N2—H2B0.87 (4)
N1—C151.323 (4)N2—C301.325 (3)
C1—H11.0000C16—H161.0000
C1—C21.516 (4)C16—C171.523 (4)
C1—C131.518 (4)C16—C281.519 (4)
C1—C141.526 (4)C16—C291.518 (4)
C2—C31.390 (4)C17—C181.388 (4)
C2—C71.400 (4)C17—C221.397 (4)
C3—H30.9500C18—H180.9500
C3—C41.390 (4)C18—C191.389 (4)
C4—H40.9500C19—H190.9500
C4—C51.391 (4)C19—C201.383 (5)
C5—H50.9500C20—H200.9500
C5—C61.391 (4)C20—C211.395 (4)
C6—H60.9500C21—H210.9500
C6—C71.388 (4)C21—C221.395 (4)
C7—C81.470 (4)C22—C231.466 (4)
C8—C91.392 (4)C23—C241.390 (4)
C8—C131.397 (4)C23—C281.403 (4)
C9—H90.9500C24—H240.9500
C9—C101.391 (4)C24—C251.391 (4)
C10—H100.9500C25—H250.9500
C10—C111.387 (4)C25—C261.387 (5)
C11—H110.9500C26—H260.9500
C11—C121.394 (4)C26—C271.391 (4)
C12—H120.9500C27—H270.9500
C12—C131.386 (4)C27—C281.383 (4)
C14—H14A0.9900C29—H29A0.9900
C14—H14B0.9900C29—H29B0.9900
C15—O2—C14117.54 (19)C30—O4—C29116.43 (19)
H1A—N1—H1B124 (3)H2A—N2—H2B119 (3)
C15—N1—H1A119 (2)C30—N2—H2A118.4 (19)
C15—N1—H1B116 (2)C30—N2—H2B121 (2)
C2—C1—H1110.4C17—C16—H16110.5
C2—C1—C13102.5 (2)C28—C16—H16110.5
C2—C1—C14110.3 (2)C28—C16—C17102.0 (2)
C13—C1—H1110.4C29—C16—H16110.5
C13—C1—C14112.7 (2)C29—C16—C17110.1 (2)
C14—C1—H1110.4C29—C16—C28113.0 (2)
C3—C2—C1129.3 (3)C18—C17—C16129.1 (2)
C3—C2—C7120.6 (2)C18—C17—C22120.4 (2)
C7—C2—C1110.2 (2)C22—C17—C16110.4 (2)
C2—C3—H3120.7C17—C18—H18120.6
C4—C3—C2118.5 (3)C17—C18—C19118.8 (3)
C4—C3—H3120.7C19—C18—H18120.6
C3—C4—H4119.5C18—C19—H19119.5
C3—C4—C5121.1 (3)C20—C19—C18120.9 (3)
C5—C4—H4119.5C20—C19—H19119.5
C4—C5—H5119.8C19—C20—H20119.6
C4—C5—C6120.4 (3)C19—C20—C21120.9 (3)
C6—C5—H5119.8C21—C20—H20119.6
C5—C6—H6120.6C20—C21—H21120.9
C7—C6—C5118.9 (3)C22—C21—C20118.2 (3)
C7—C6—H6120.6C22—C21—H21120.9
C2—C7—C8108.4 (2)C17—C22—C23108.7 (2)
C6—C7—C2120.5 (2)C21—C22—C17120.7 (3)
C6—C7—C8131.1 (3)C21—C22—C23130.6 (3)
C9—C8—C7130.2 (2)C24—C23—C22130.6 (2)
C9—C8—C13120.7 (2)C24—C23—C28120.6 (2)
C13—C8—C7109.0 (2)C28—C23—C22108.7 (2)
C8—C9—H9120.7C23—C24—H24120.7
C10—C9—C8118.6 (3)C23—C24—C25118.6 (3)
C10—C9—H9120.7C25—C24—H24120.7
C9—C10—H10119.7C24—C25—H25119.7
C11—C10—C9120.7 (3)C26—C25—C24120.7 (3)
C11—C10—H10119.7C26—C25—H25119.7
C10—C11—H11119.6C25—C26—H26119.5
C10—C11—C12120.8 (2)C25—C26—C27121.0 (3)
C12—C11—H11119.6C27—C26—H26119.5
C11—C12—H12120.6C26—C27—H27120.6
C13—C12—C11118.7 (3)C28—C27—C26118.8 (3)
C13—C12—H12120.6C28—C27—H27120.6
C8—C13—C1109.9 (2)C23—C28—C16110.2 (2)
C12—C13—C1129.7 (3)C27—C28—C16129.5 (3)
C12—C13—C8120.4 (3)C27—C28—C23120.4 (3)
O2—C14—C1107.6 (2)O4—C29—C16107.33 (19)
O2—C14—H14A110.2O4—C29—H29A110.2
O2—C14—H14B110.2O4—C29—H29B110.2
C1—C14—H14A110.2C16—C29—H29A110.2
C1—C14—H14B110.2C16—C29—H29B110.2
H14A—C14—H14B108.5H29A—C29—H29B108.5
O1—C15—O2123.1 (2)O3—C30—O4123.3 (2)
O1—C15—N1124.4 (3)O3—C30—N2124.2 (3)
N1—C15—O2112.5 (2)N2—C30—O4112.5 (2)
C1—C2—C3—C4179.2 (3)C16—C17—C18—C19179.5 (3)
C1—C2—C7—C6178.9 (2)C16—C17—C22—C21179.5 (2)
C1—C2—C7—C81.5 (3)C16—C17—C22—C231.2 (3)
C2—C1—C13—C82.8 (3)C17—C16—C28—C232.3 (3)
C2—C1—C13—C12178.2 (3)C17—C16—C28—C27178.2 (3)
C2—C1—C14—O2171.9 (2)C17—C16—C29—O4170.1 (2)
C2—C3—C4—C50.4 (4)C17—C18—C19—C200.4 (4)
C2—C7—C8—C9178.4 (2)C17—C22—C23—C24179.6 (2)
C2—C7—C8—C130.4 (3)C17—C22—C23—C280.3 (3)
C3—C2—C7—C60.6 (4)C18—C17—C22—C210.1 (4)
C3—C2—C7—C8179.0 (2)C18—C17—C22—C23179.4 (2)
C3—C4—C5—C60.4 (4)C18—C19—C20—C210.5 (4)
C4—C5—C6—C70.1 (4)C19—C20—C21—C220.3 (4)
C5—C6—C7—C20.6 (4)C20—C21—C22—C170.1 (4)
C5—C6—C7—C8179.0 (3)C20—C21—C22—C23179.2 (3)
C6—C7—C8—C91.2 (5)C21—C22—C23—C240.3 (5)
C6—C7—C8—C13179.2 (3)C21—C22—C23—C28178.9 (3)
C7—C2—C3—C40.2 (4)C22—C17—C18—C190.2 (4)
C7—C8—C9—C10177.3 (3)C22—C23—C24—C25178.0 (3)
C7—C8—C13—C12.1 (3)C22—C23—C28—C161.7 (3)
C7—C8—C13—C12178.8 (2)C22—C23—C28—C27178.7 (2)
C8—C9—C10—C110.9 (4)C23—C24—C25—C261.1 (4)
C9—C8—C13—C1179.7 (2)C24—C23—C28—C16179.0 (2)
C9—C8—C13—C120.5 (4)C24—C23—C28—C270.6 (4)
C9—C10—C11—C120.3 (4)C24—C25—C26—C270.4 (4)
C10—C11—C12—C130.8 (4)C25—C26—C27—C280.2 (4)
C11—C12—C13—C1179.9 (3)C26—C27—C28—C16179.6 (3)
C11—C12—C13—C81.2 (4)C26—C27—C28—C230.1 (4)
C13—C1—C2—C3178.0 (2)C28—C16—C17—C18178.6 (3)
C13—C1—C2—C72.6 (3)C28—C16—C17—C222.1 (3)
C13—C1—C14—O274.2 (3)C28—C16—C29—O476.7 (3)
C13—C8—C9—C100.5 (4)C28—C23—C24—C251.2 (4)
C14—O2—C15—O12.3 (4)C29—O4—C30—O36.6 (4)
C14—O2—C15—N1176.8 (2)C29—O4—C30—N2173.0 (2)
C14—C1—C2—C361.8 (3)C29—C16—C17—C1861.2 (3)
C14—C1—C2—C7117.6 (2)C29—C16—C17—C22118.1 (2)
C14—C1—C13—C8115.7 (2)C29—C16—C28—C23115.9 (2)
C14—C1—C13—C1263.3 (4)C29—C16—C28—C2763.7 (4)
C15—O2—C14—C1150.3 (2)C30—O4—C29—C16158.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O30.91 (3)2.06 (3)2.955 (3)169 (3)
N1—H1A···O1i0.86 (3)2.08 (3)2.849 (3)149 (3)
N2—H2A···O10.85 (3)2.13 (3)2.967 (3)169 (3)
N2—H2B···O3ii0.87 (4)2.03 (4)2.827 (3)152 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Summary of the percentages of intermolecular contacts contributed to the HSA surface of Fmoc-protected β-aminobutyric acid 1 top
Inside atomOutside atomTotal contributions
CHNO
C2.013.00.00.215.3
H9.851.80.59.871.9
N0.00.50.00.00.5
O0.211.60.00.512.3
Total contributions12.077.00.510.5
Summary of the percentages of intermolecular contacts contributed to the HSA surface of Fmoc carbamate 2 top
Inside atomOutside atomTotal contributions
CHNO
C2.617.90.00.120.7
H13.651.91.24.971.6
N0.01.20.00.21.4
O0.15.50.10.66.4
Total contributions16.376.61.35.8
 

Acknowledgements

MAM is grateful to his family for support of his PhD studies.

References

First citationAhmad Wani, N., Gupta, V. K., Kant, R., Aravinda, S. & Rai, R. (2014). Acta Cryst. E70, 272–277.  CrossRef IUCr Journals Google Scholar
First citationBehrendt, R., White, P. & Offer, J. (2016). J. Pept. Sci. 22, 4–27.  CrossRef CAS PubMed Google Scholar
First citationBruker (2023). APEX5 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCruz, L. J., Beteta, N. G., Ewenson, A. & Albericio, F. (2004). Org. Process Res. Dev. 8, 920–924.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHlebowicz, E., Andersen, A., Andersson, L. & Moss, B. (2005). J. Pept. Res. 65, 90–97.  CrossRef PubMed CAS Google Scholar
First citationIsidro-Llobet, A., Just–Baringo, X., Ewenson, A., Alvarez, M. & Albericio, F. (2007). PeptideScience, 88, 733-737.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValle, G., Bonora, G. M. & Toniolo, C. (1984). Can. J. Chem. 62, 2661–2666.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds