research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of a coordination compound of cadmium nitrate with 2-amino­benzoxazole

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, bKhorezm Mamun branch of Uzbekistan Academy of Sciences, 1, Markaz St., Khiva, 220900, Uzbekistan, cPhysical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India, dInstitute of General and Inorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 77a, Tashkent 100170, Uzbekistan, and eInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek, St, 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 31 March 2025; accepted 6 May 2025; online 9 May 2025)

A coordination complex of cadmium nitrate [Cd(NO3)2] with 2-amino­benzaxole (2AB; C7H6N2O), namely, tetra­kis­(2-amino­benzoxazole-κN1)bis­(nitrato-κO)cadmium(II), [Cd(NO3)2(2AB)4], has been synthesized from ethanol solutions of Cd(NO3)2·H2O and 2AB. The asymmetric unit comprises half a mol­ecule of [Cd(NO3)2(2AB)4], with the CdII atom positioned on a twofold rotation axis. In the completed mol­ecular complex, four 2AB ligands and two nitrate anions each coordinate monodentately to the CdII atom, leading to a distorted octa­hedral coordination environment. The crystal structure of [Cd(NO3)2(2AB)4] exhibits several N—H⋯O inter­actions, resulting in the formation of a layered assembly parallel to (001). Hishfeld surface analysis was used to qu­antify the inter­molecular inter­actions.

1. Chemical context

Benzoxazole is a heterocyclic aromatic compound consisting of a benzene ring fused to an oxazole ring. It has a strong and unpleasant fishy odour, just like pyridine (Katritzky & Pozharskii, 2000[Katritzky, A. R. & Pozharskii, A. F. (2000). In Handbook of Heterocyclic Chemistry, 2nd ed. New York: Academic Press.]; Clayden et al., 2001[Clayden, J., Greeves, N., Warren, S. & Wothers, P. (2001). In Organic Chemistry. Oxford University Press.]). Many benzoxazole-based compounds are valued in medicinal and biological research because of their numerous biological activities (Potashman et al., 2007[Potashman, M. H., Bready, J., Coxon, A., DeMelfi, T. M., DiPietro, L., Doerr, N., Elbaum, D., Estrada, J., Gallant, P., Germain, J., Gu, Y., Harmange, J. C., Kaufman, S. A., Kendall, R., Kim, J. L., Kumar, G. N., Long, A. M., Neervannan, S., Patel, V. F., Polverino, A., Rose, P., van der Plas, S., Whittington, D., Zanon, R. & Zhao, H. (2007). J. Med. Chem. 50, 4351-4373.]; Šlachtová. & Brulíková, 2018[Šlachtová, V. & Brulíková, L. (2018). ChemistrySelect 3, 4653-4662.]; Razzoqova et al., 2022[Razzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277-1283.], 2024[Razzoqova, S., Torambetov, B., Todjiev, J., Kadirova, S., Ibragimov, A., Ruzmetov, A. & Ashurov, J. (2024). IUCrData 9, x240033.]), including anti­microbial (Erol et al., 2022[Erol, M., Celik, I., Uzunhisarcikli, E. & Kuyucuklu, G. (2022). Polycyclic Aromat. Compd. 42, 1679-1696.]), anti­tumor (Imaizumi et al., 2020[Imaizumi, T., Otsubo, S., Komai, M., Takada, H., Maemoto, M., Kobayashi, A. & Otsubo, N. (2020). Bioorg. Med. Chem. 28, 115622.]), anti-inflammatory (Parlapalli & Manda, 2017[Parlapalli, A. & Manda, S. (2017). J. Chem. Pharm. Res. 9, 57-62.]), analgesic (Ali et al., 2022[Ali, S., Omprakash, P., Tengli, A. K., Mathew, B., Basavaraj, M. V., Parkali, P., Chandan, R. S. & Kumar, A. S. (2022). Polycyclic Aromat. Compd. 30, 3853-3886.]; Sattar et al., 2020[Sattar, R., Mukhtar, R., Atif, M., Hasnain, M. & Irfan, A. (2020). J. Heterocycl. Chem. 57, 2079-2107.]), anti­tubercular (Šlachtová & Brulíková, 2018[Šlachtová, V. & Brulíková, L. (2018). ChemistrySelect 3, 4653-4662.]), herbicidal (Sangi et al., 2019[Sangi, D. P., Meira, Y. G., Moreira, N. M., Lopes, T. A., Leite, M. P., Pereira-Flores, M. E. & Alvarenga, E. S. (2019). Pest Manage. Sci. 75, 262-269.]), and fungicidal properties (Fan et al., 2022[Fan, L., Luo, Z., Yang, C., Guo, B., Miao, J., Chen, Y., Tang, L. & Li, Y. (2022). Mol. Divers. 26, 981-992.]).

[Scheme 1]
At the same time, 2-amino­benzoxazole (2AB) and its derivatives have potent anti­bacterial and anti­cancer properties (Paramashivappa et al., 2003[Paramashivappa, R., Phani Kumar, P., Subba Rao, P. V. & Srinivasa Rao, A. (2003). Bioorg. Med. Chem. Lett. 13, 657-660.]; Khajondetchairit et al., 2017[Khajondetchairit, P., Phuangsawai, O., Suphakun, P., Rattanabunyong, S., Choowongkomon, K. & Gleeson, M. P. (2017). Chem. Biol. Drug Des. 90, 987-994.]; Ouyang et al., 2012[Ouyang, L., Huang, Y., Zhao, Y., He, G., Xie, Y., Liu, J., He, J., Liu, B. & Wei, Y. (2012). Bioorg. Med. Chem. Lett. 22, 3044-3049.]). One notable derivative of 2AB is 2-amino-5-chloro­benzoxazole, which has demonstrated muscle relaxant effects and is used as an anti­spasmodic and uricosuric agent in therapeutic applications (Lynch, 2004[Lynch, D. E. (2004). Acta Cryst. E60, o1715-o1716.]).

In the context given above, we present here the synthesis, crystal structure determination and Hirshfeld surface analysis of a coordination complex of 2AB with cadmium nitrate, [Cd(NO3)2(2AB)4].

2. Structural commentary

In the asymmetric unit of [Cd(NO3)2(2AB)4], which consists of half of a complex molecule, the CdII atom is positioned on a twofold rotation axis (multiplicity 4, Wyckoff letter e). In the completed mol­ecule, the CdII atom coordinates by four 2AB ligands and two nitrate anions, resulting in a distorted octa­hedral N4O2 coordination set (Fig. 1[link]). The four 2AB ligands occupy the equatorial positions and are coordinated monodentately through their aromatic nitro­gen donor atoms with Cd—N bond lengths of 2.314 (3) and 2.325 (3) Å. The two axially positioned nitrato ligands are also coordinated in a monodentate fashion with a relatively long Cd—O bond length of 2.418 (3) Å. The dihedral angle formed between the two opposite 2-amino­benzaxazole ligands (labelled in Fig. 1[link]) is 84.85 (17)°. The mol­ecular conformation is stabilized by intra­molecular N—H⋯O hydrogen-bonding inter­actions involving the coordinated oxygen atom O1 and the non-coordinated oxygen atom O2 (entries #1 and #3 in Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.86 2.26 2.971 (5) 140
N4—H4B⋯O2ii 0.86 2.28 2.822 (6) 121
N2—H2A⋯O2i 0.86 2.11 2.899 (7) 152
N2—H2B⋯O3iii 0.86 2.33 2.953 (6) 129
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of [Cd(NO3)2(2AB)4] with displacement ellipsoids drawn at the 30% probability level; non-labelled atoms are generated by symmetry code −x + 1, y, −z + [{3\over 2}]. Intra­molecular hydrogen bonds are indicated by dashed blue lines.

3. Supra­molecular features

In the crystal structure of [Cd(NO3)2(2AB)4], inter­molecular N—H⋯O hydrogen bonds involving the non-coordinated O atoms O2 and O3 (entries #2 and #4 in Table 1[link]) lead to the formation of sheets extending parallel to (001), as shown in Fig. 2[link].

[Figure 2]
Figure 2
Visualization of the mol­ecular packing in [Cd(NO3)2(2AB)4] in a view along [010]. Inter­molecular N—H⋯O inter­actions are shows as light-blue dashed lines.

4. Hirshfeld Surface Analysis

Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19-32.]) was performed and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378-392.]) were generated using Crystal­Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to qu­antify the inter­molecular inter­actions. HS and fingerprint plot analysis conducted for [Cd(NO3)2(2AB)4] are graphically displayed in Fig. 3[link]. The red spots on the HS area of [Cd(NO3)2(2AB)4] confirm the close inter­molecular N—H⋯O contacts (related to entries #2 and #4 in Table 1[link]) between adjacent mol­ecules. The two-dimensional fingerprint plots and their relative contributions revealed that H⋯H, O⋯H, C⋯H, C⋯O, O⋯O and N⋯H inter­actions are the main inter­actions to the HS area. Specifically, the fingerprint plots reveal the presence of close N—H⋯O contacts in form of two spikes observed near (di + de) ≃ 2.3 Å and C—H contacts as two wings near (di + de) ≃ 2. 8 Å (Fig. 3[link]).

[Figure 3]
Figure 3
View of HS and two-dimensional fingerprint plots of [Cd(NO3)2(2AB)4].

5. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.46, November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 17 crystal structures of 2-amino­benzoxazole derivatives. Among these, only two structures involve coordination compounds with zinc (QALXIL; Decken & Gossage, 2005[Decken, A. & Gossage, R. A. (2005). J. Inorg. Biochem. 99, 664-667.]) and cadmium (DIWPIM; Razzoqova et al., 2023[Razzoqova, S., Ibragimov, A., Torambetov, B., Kadirova, S., Holczbauer, T., Ashurov, J. & Ibragimov, B. (2023). Acta Cryst. E79, 862-866.]). In the zinc complex, the central metal atom coordinates two benzoxazolamine ligands through the aromatic nitro­gen atom and two chloro ligands in a distorted tetra­hedral coordination environment. In the crystal structure of DIWPIM, which corresponds to [Cd(2AB)2(CH3COO)2], the CdII atom coordinates by two 2AB ligands and two acetato ligands in a monodentate and bidentate fashion, respectively, forming a distorted octa­hedral N2O4 coordination set.

6. Synthesis and crystallization

Cd(NO3)2·H2O (0.308 g, 1 mmol) and 2AB (0.268 g, 2 mmol) were dissolved separately in ethanol (5 ml), mixed together and stirred for 2 h. The obtained colourless solution was filtered and left for crystallization. Single crystals of the complex [Cd(NO3)2(2AB)4] suitable for X-ray analysis were obtained by slow evaporation of the solution over a period of 7 d.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were treated in a riding model with Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula [Cd(NO3)2(C7H6N2O)4]
Mr 772.97
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 15.9012 (3), 11.0897 (2), 18.9475 (5)
β (°) 109.182 (3)
V3) 3155.70 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.19
Crystal size (mm) 0.10 × 0.08 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.016, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12616, 3014, 2324
Rint 0.084
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.01
No. of reflections 3014
No. of parameters 223
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.95
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Tetrakis(2-aminobenzoxazole-κN1)bis(nitrato-κO)cadmium(II) top
Crystal data top
[Cd(NO3)2(C7H6N2O)4]F(000) = 1560
Mr = 772.97Dx = 1.627 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 15.9012 (3) ÅCell parameters from 4500 reflections
b = 11.0897 (2) Åθ = 4.9–70.8°
c = 18.9475 (5) ŵ = 6.19 mm1
β = 109.182 (3)°T = 293 K
V = 3155.70 (13) Å3Block, colourless
Z = 40.10 × 0.08 × 0.06 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
3014 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2324 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.084
Detector resolution: 10.0000 pixels mm-1θmax = 71.1°, θmin = 4.9°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1313
Tmin = 0.016, Tmax = 1.000l = 2223
12616 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0631P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.56 e Å3
3014 reflectionsΔρmin = 0.95 e Å3
223 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00041 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.5000000.24505 (3)0.7500000.04211 (19)
O50.5198 (2)0.0974 (3)0.6354 (2)0.0633 (9)
O40.5320 (2)0.5949 (3)0.8680 (2)0.0650 (9)
O10.3406 (2)0.2156 (3)0.7009 (2)0.0639 (9)
N10.5181 (2)0.3989 (3)0.8371 (2)0.0461 (8)
N30.5049 (2)0.0945 (3)0.6668 (2)0.0470 (8)
N50.2779 (2)0.2434 (4)0.7254 (3)0.0572 (11)
N40.6112 (2)0.0366 (4)0.7492 (2)0.0625 (11)
H4A0.6296840.0161700.7841770.075*
H4B0.6340110.1077210.7551940.075*
O20.2525 (3)0.3475 (4)0.7173 (3)0.1036 (16)
N20.6252 (3)0.5215 (4)0.8094 (3)0.0752 (13)
H2A0.6450520.4640340.7887800.090*
H2B0.6477820.5925410.8123090.090*
O30.2472 (3)0.1686 (5)0.7563 (3)0.1067 (16)
C50.3927 (3)0.3589 (5)0.8882 (3)0.0590 (12)
H50.3863580.2771020.8768570.071*
C60.4556 (3)0.4272 (4)0.8722 (2)0.0483 (10)
C130.4434 (3)0.0736 (4)0.5961 (3)0.0487 (10)
C70.5601 (3)0.5007 (4)0.8366 (3)0.0527 (11)
C120.3822 (3)0.1470 (5)0.5465 (3)0.0560 (11)
H120.3743760.2266720.5582710.067*
C10.4640 (3)0.5490 (4)0.8903 (3)0.0591 (12)
C20.4121 (4)0.6093 (5)0.9230 (3)0.0768 (16)
H20.4187500.6913420.9336030.092*
C110.3324 (3)0.0975 (6)0.4779 (3)0.0754 (16)
H110.2910930.1452090.4429080.091*
C140.5477 (3)0.0084 (4)0.6863 (3)0.0501 (11)
C80.4530 (3)0.0457 (4)0.5772 (3)0.0595 (12)
C40.3384 (4)0.4174 (6)0.9221 (3)0.0793 (17)
H40.2945170.3738970.9335950.095*
C30.3487 (4)0.5396 (7)0.9391 (4)0.087 (2)
H30.3117230.5756920.9621820.105*
C100.3436 (4)0.0227 (7)0.4611 (4)0.086 (2)
H100.3088060.0538700.4152600.103*
C90.4051 (4)0.0967 (6)0.5107 (3)0.0831 (18)
H90.4132450.1765680.4994560.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0425 (2)0.0410 (3)0.0463 (3)0.0000.01946 (17)0.000
O50.068 (2)0.0510 (17)0.074 (2)0.0032 (16)0.0276 (18)0.0150 (17)
O40.073 (2)0.0507 (18)0.074 (2)0.0063 (16)0.0271 (18)0.0097 (17)
O10.0380 (16)0.081 (2)0.075 (2)0.0023 (15)0.0215 (16)0.0023 (18)
N10.0500 (19)0.0458 (18)0.046 (2)0.0011 (16)0.0208 (16)0.0034 (16)
N30.0495 (18)0.0491 (19)0.047 (2)0.0014 (16)0.0214 (16)0.0052 (16)
N50.0346 (17)0.077 (3)0.060 (2)0.0003 (18)0.0162 (17)0.000 (2)
N40.059 (2)0.053 (2)0.075 (3)0.0158 (18)0.022 (2)0.002 (2)
O20.100 (3)0.096 (3)0.126 (4)0.050 (3)0.053 (3)0.018 (3)
N20.068 (3)0.073 (3)0.094 (4)0.025 (2)0.039 (3)0.017 (3)
O30.107 (3)0.113 (4)0.126 (4)0.044 (3)0.074 (3)0.008 (3)
C50.063 (3)0.066 (3)0.053 (3)0.001 (2)0.026 (2)0.002 (2)
C60.049 (2)0.056 (2)0.041 (2)0.006 (2)0.0149 (18)0.0022 (19)
C130.046 (2)0.054 (2)0.049 (3)0.0074 (19)0.0186 (19)0.003 (2)
C70.053 (2)0.052 (2)0.051 (3)0.007 (2)0.014 (2)0.007 (2)
C120.058 (3)0.067 (3)0.049 (3)0.005 (2)0.025 (2)0.001 (2)
C10.062 (3)0.055 (3)0.058 (3)0.008 (2)0.018 (2)0.001 (2)
C20.084 (4)0.073 (4)0.077 (4)0.017 (3)0.032 (3)0.009 (3)
C110.061 (3)0.106 (5)0.060 (3)0.008 (3)0.019 (3)0.003 (3)
C140.046 (2)0.048 (2)0.062 (3)0.0033 (18)0.025 (2)0.004 (2)
C80.062 (3)0.058 (3)0.067 (3)0.007 (2)0.031 (2)0.015 (2)
C40.075 (3)0.100 (5)0.071 (4)0.005 (3)0.035 (3)0.000 (3)
C30.083 (4)0.103 (5)0.084 (4)0.027 (4)0.038 (3)0.017 (4)
C100.073 (4)0.114 (5)0.067 (4)0.019 (4)0.019 (3)0.033 (4)
C90.079 (4)0.084 (4)0.086 (5)0.016 (3)0.027 (3)0.035 (3)
Geometric parameters (Å, º) top
Cd1—O1i2.418 (3)N2—C71.319 (6)
Cd1—O12.418 (3)C5—H50.9300
Cd1—N1i2.325 (3)C5—C61.365 (6)
Cd1—N12.325 (3)C5—C41.396 (7)
Cd1—N32.314 (3)C6—C11.390 (6)
Cd1—N3i2.314 (3)C13—C121.375 (6)
O5—C141.350 (5)C13—C81.392 (6)
O5—C81.380 (6)C12—H120.9300
O4—C71.349 (5)C12—C111.392 (7)
O4—C11.381 (6)C1—C21.358 (7)
O1—N51.269 (5)C2—H20.9300
N1—C61.401 (6)C2—C31.383 (8)
N1—C71.314 (5)C11—H110.9300
N3—C131.395 (6)C11—C101.396 (9)
N3—C141.318 (5)C8—C91.363 (7)
N5—O21.217 (5)C4—H40.9300
N5—O31.206 (6)C4—C31.391 (8)
N4—H4A0.8600C3—H30.9300
N4—H4B0.8600C10—H100.9300
N4—C141.322 (6)C10—C91.381 (9)
N2—H2A0.8600C9—H90.9300
N2—H2B0.8600
O1—Cd1—O1i164.46 (17)C1—C6—N1108.1 (4)
N1—Cd1—O1i87.51 (12)C12—C13—N3132.4 (4)
N1—Cd1—O1104.00 (12)C12—C13—C8119.9 (4)
N1i—Cd1—O1i104.00 (12)C8—C13—N3107.7 (4)
N1i—Cd1—O187.51 (12)N1—C7—O4114.8 (4)
N1i—Cd1—N185.58 (18)N1—C7—N2128.3 (4)
N3—Cd1—O184.62 (12)N2—C7—O4116.9 (4)
N3—Cd1—O1i84.18 (13)C13—C12—H12121.2
N3i—Cd1—O184.18 (13)C13—C12—C11117.6 (5)
N3i—Cd1—O1i84.63 (12)C11—C12—H12121.2
N3—Cd1—N1171.33 (11)O4—C1—C6107.7 (4)
N3i—Cd1—N194.01 (14)C2—C1—O4127.7 (5)
N3i—Cd1—N1i171.33 (11)C2—C1—C6124.6 (5)
N3—Cd1—N1i94.01 (14)C1—C2—H2122.5
N3i—Cd1—N387.70 (18)C1—C2—C3115.0 (6)
C14—O5—C8104.7 (4)C3—C2—H2122.5
C7—O4—C1104.9 (4)C12—C11—H11119.6
N5—O1—Cd1132.6 (3)C12—C11—C10120.8 (6)
C6—N1—Cd1124.1 (3)C10—C11—H11119.6
C7—N1—Cd1124.8 (3)N3—C14—O5114.5 (4)
C7—N1—C6104.6 (4)N3—C14—N4129.0 (4)
C13—N3—Cd1127.1 (3)N4—C14—O5116.5 (4)
C14—N3—Cd1124.3 (3)O5—C8—C13108.1 (4)
C14—N3—C13105.1 (4)C9—C8—O5128.0 (5)
O2—N5—O1116.9 (5)C9—C8—C13123.9 (5)
O3—N5—O1120.2 (5)C5—C4—H4119.5
O3—N5—O2122.9 (5)C3—C4—C5121.0 (6)
H4A—N4—H4B120.0C3—C4—H4119.5
C14—N4—H4A120.0C2—C3—C4122.2 (6)
C14—N4—H4B120.0C2—C3—H3118.9
H2A—N2—H2B120.0C4—C3—H3118.9
C7—N2—H2A120.0C11—C10—H10119.1
C7—N2—H2B120.0C9—C10—C11121.8 (5)
C6—C5—H5121.5C9—C10—H10119.1
C6—C5—C4117.0 (5)C8—C9—C10116.0 (6)
C4—C5—H5121.5C8—C9—H9122.0
C5—C6—N1131.8 (4)C10—C9—H9122.0
C5—C6—C1120.2 (5)
Cd1—O1—N5—O279.2 (6)C13—N3—C14—O50.8 (5)
Cd1—O1—N5—O399.7 (5)C13—N3—C14—N4178.2 (5)
Cd1—N1—C6—C526.7 (6)C13—C12—C11—C100.9 (8)
Cd1—N1—C6—C1151.9 (3)C13—C8—C9—C100.6 (9)
Cd1—N1—C7—O4152.3 (3)C7—O4—C1—C61.0 (5)
Cd1—N1—C7—N227.5 (7)C7—O4—C1—C2177.8 (5)
Cd1—N3—C13—C1222.8 (7)C7—N1—C6—C5179.3 (5)
Cd1—N3—C13—C8158.9 (3)C7—N1—C6—C10.7 (5)
Cd1—N3—C14—O5159.4 (3)C12—C13—C8—O5178.4 (4)
Cd1—N3—C14—N418.0 (7)C12—C13—C8—C90.5 (8)
O5—C8—C9—C10178.0 (5)C12—C11—C10—C91.1 (9)
O4—C1—C2—C3179.8 (5)C1—O4—C7—N10.6 (5)
N1—C6—C1—O41.1 (5)C1—O4—C7—N2179.2 (4)
N1—C6—C1—C2177.8 (5)C1—C2—C3—C40.9 (9)
N3—C13—C12—C11177.5 (5)C11—C10—C9—C80.8 (9)
N3—C13—C8—O50.2 (5)C14—O5—C8—C130.2 (5)
N3—C13—C8—C9178.1 (5)C14—O5—C8—C9177.5 (5)
C5—C6—C1—O4179.9 (4)C14—N3—C13—C12177.7 (5)
C5—C6—C1—C21.0 (8)C14—N3—C13—C80.6 (5)
C5—C4—C3—C20.5 (10)C8—O5—C14—N30.6 (5)
C6—N1—C7—O40.1 (5)C8—O5—C14—N4178.4 (4)
C6—N1—C7—N2179.8 (5)C8—C13—C12—C110.7 (7)
C6—C5—C4—C30.3 (8)C4—C5—C6—N1177.9 (5)
C6—C1—C2—C31.1 (8)C4—C5—C6—C10.5 (7)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.862.262.971 (5)140
N4—H4B···O2ii0.862.282.822 (6)121
N2—H2A···O2i0.862.112.899 (7)152
N2—H2B···O3iii0.862.332.953 (6)129
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

BT would like to acknowledge the CSIR–TWAS fellowship and the FAIRE programme provided by the Cambridge Crystallographic Data Centre (CCDC) for the use of the Cambridge Structural Database (CSD) and associated software.

References

First citationAli, S., Omprakash, P., Tengli, A. K., Mathew, B., Basavaraj, M. V., Parkali, P., Chandan, R. S. & Kumar, A. S. (2022). Polycyclic Aromat. Compd. 30, 3853–3886.  Google Scholar
First citationClayden, J., Greeves, N., Warren, S. & Wothers, P. (2001). In Organic Chemistry. Oxford University Press.  Google Scholar
First citationDecken, A. & Gossage, R. A. (2005). J. Inorg. Biochem. 99, 664–667.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErol, M., Celik, I., Uzunhisarcikli, E. & Kuyucuklu, G. (2022). Polycyclic Aromat. Compd. 42, 1679–1696.  CrossRef CAS Google Scholar
First citationFan, L., Luo, Z., Yang, C., Guo, B., Miao, J., Chen, Y., Tang, L. & Li, Y. (2022). Mol. Divers. 26, 981–992.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationImaizumi, T., Otsubo, S., Komai, M., Takada, H., Maemoto, M., Kobayashi, A. & Otsubo, N. (2020). Bioorg. Med. Chem. 28, 115622.  Web of Science CrossRef PubMed Google Scholar
First citationKatritzky, A. R. & Pozharskii, A. F. (2000). In Handbook of Heterocyclic Chemistry, 2nd ed. New York: Academic Press.  Google Scholar
First citationKhajondetchairit, P., Phuangsawai, O., Suphakun, P., Rattanabunyong, S., Choowongkomon, K. & Gleeson, M. P. (2017). Chem. Biol. Drug Des. 90, 987–994.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLynch, D. E. (2004). Acta Cryst. E60, o1715–o1716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuyang, L., Huang, Y., Zhao, Y., He, G., Xie, Y., Liu, J., He, J., Liu, B. & Wei, Y. (2012). Bioorg. Med. Chem. Lett. 22, 3044–3049.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParamashivappa, R., Phani Kumar, P., Subba Rao, P. V. & Srinivasa Rao, A. (2003). Bioorg. Med. Chem. Lett. 13, 657–660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParlapalli, A. & Manda, S. (2017). J. Chem. Pharm. Res. 9, 57–62.  CAS Google Scholar
First citationPotashman, M. H., Bready, J., Coxon, A., DeMelfi, T. M., DiPietro, L., Doerr, N., Elbaum, D., Estrada, J., Gallant, P., Germain, J., Gu, Y., Harmange, J. C., Kaufman, S. A., Kendall, R., Kim, J. L., Kumar, G. N., Long, A. M., Neervannan, S., Patel, V. F., Polverino, A., Rose, P., van der Plas, S., Whittington, D., Zanon, R. & Zhao, H. (2007). J. Med. Chem. 50, 4351–4373.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRazzoqova, S., Ibragimov, A., Torambetov, B., Kadirova, S., Holczbauer, T., Ashurov, J. & Ibragimov, B. (2023). Acta Cryst. E79, 862–866.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277–1283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazzoqova, S., Torambetov, B., Todjiev, J., Kadirova, S., Ibragimov, A., Ruzmetov, A. & Ashurov, J. (2024). IUCrData 9, x240033.  Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSangi, D. P., Meira, Y. G., Moreira, N. M., Lopes, T. A., Leite, M. P., Pereira–Flores, M. E. & Alvarenga, E. S. (2019). Pest Manage. Sci. 75, 262–269.  CrossRef CAS Google Scholar
First citationSattar, R., Mukhtar, R., Atif, M., Hasnain, M. & Irfan, A. (2020). J. Heterocycl. Chem. 57, 2079–2107.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŠlachtová, V. & Brulíková, L. (2018). ChemistrySelect 3, 4653–4662.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378–392.  CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds