research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 5-methyl-2-[(1,3-thia­zol-2-yl)sulfan­yl]-1,3,4-thia­diazole

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, bPhysical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India, cDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, dKarakalpak State University, 1 Ch. Abdirov St. Nukus, 230112, Uzbekistan, eTermez University of Economics and Service, 41B Farovon St., Termiz, 190111, Uzbekistan, and fAcademy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru, Nagar, Ghaziabad, Uttar Pradesh 201002, India
*Correspondence e-mail: [email protected]

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 21 April 2025; accepted 2 June 2025; online 6 June 2025)

The title compound, C6H5N3S3, consists of two biologically relevant heterocyclic units, suggesting potential biological activity and possible use as a ligand in metal complexation. The compound crystallizes in the monoclinic space group P21/c and features non-classical inter­molecular C—H⋯N hydrogen bonds, along with ππ stacking inter­actions that contribute to the crystal cohesion. Hirshfeld surface analysis highlights significant inter­molecular inter­actions including, among others, N⋯H/H⋯N, S⋯H/H⋯S, and S⋯C/C⋯S contacts.

1. Chemical context

Derivatives combining 1,3,4-thia­diazole and 1,3-thia­zole moieties offer significant potential in medicinal chemistry due to their enhanced biological activity, pharmacokinetic profiles and structural versatility. This class of compounds is being actively explored in various therapeutic areas, including their use as anti­microbial (Booq et al., 2021[Booq, R. Y., Tawfik, E. A., Alfassam, H. A., Alfahad, A. J. & Alyamani, E. J. (2021). Antibiotics 10, 1480.]; Hussain et al., 2022[Hussain, Z., Pengfei, S., Yimin, L., Shasha, L., Zehao, L., Yifan, Y., Linhui, L., Linying, Z. & Yong, W. (2022). Pathogens and Disease 80(1), 1-11.]), anti­cancer (Shaikh et al., 2024[Shaikh, S. A., Wakchaure, S. N., Labhade, S. R., Kale, R. R., Alavala, R. R., Chobe, S. S., Jain, K. S., Labhade, H. S. & Bhanushali, D. D. (2024). BMC Chem. 18, 119-119.]; Altıntop et al., 2017[Altıntop, M. D., Ciftci, H. I., Radwan, M. O., Sever, B., Kaplancıklı, Z. A., Ali, T. F. & Özdemir, A. (2017). Molecules 23, 59. https://doi.org/10.3390/molecules23010059]; Dawood et al., 2013[Dawood, K. M., Eldebss, T. M., El-Zahabi, H. S., Yousef, M. H. & Metz, P. (2013). Eur. J. Med. Chem. 70, 740-749.]), anti-inflammatory (Arshad et al., 2022[Arshad, M. F., Alam, A., Alshammari, A. A., Alhazza, M. B., Alzimam, I. M., Alam, M. A., Mustafa, G., Ansari, M. S., Alotaibi, A. M., Alotaibi, A. A., Kumar, S., Asdaq, S. M. B., Imran, M., Deb, P. K., Venugopala, K. N. & Jomah, S. (2022). Molecules 27, 3994-3994.]) and neuroprotective agents. With ongoing research into their SAR, bioavailability, and environmental impact, these derivatives are promising candidates for the next generation of drug development.

The structural fusion of 1,3,4-thia­diazole and 1,3-thia­zole is expected to have synergistic biological effects due to their different modes of action. Thia­diazo­les are often involved in enzyme inhibition and inter­action with metal ions, while thia­zoles enhance inter­actions with biological targets such as nucleic acids or proteins.

Herein, we report the synthesis and crystal structure of a new heterocyclic compound with combination of 1,3,4-thia­diazole and 1,3-thia­zole fragments. This 2-thia­zole-substituted derivative can act as a chelating ligand.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic system, space group P21/c. The mol­ecular structure of the compound is shown in Fig. 1[link]. The geometric parameters of the thia­diazole and thia­zole rings are close to standard values and the values reported for related structures. (Renier et al., 2023[Renier, O., Bousrez, G., Smetana, V., Mudring, A. V. & Rogers, R. D. (2023). CrystEngComm 25, 530-540.]; Luqman et al., 2016[Luqman, A., Blair, V. L., Brammananth, R., Crellin, P. K., Coppel, R. L. & Andrews, P. C. (2016). Eur. J. Inorg. Chem. pp. 2738-2749.]; Burnett et al., 2015[Burnett, M. E., Johnston, H. M. & Green, K. N. (2015). Acta Cryst. C71, 1074-1079.]; Dani et al., 2014[Dani, R. K., Bharty, M. K., Paswan, S., Singh, S. & Singh, N. K. (2014). Inorg. Chim. Acta 421, 519-530.]; Weidner et al., 2008[Weidner, T., Ballav, N., Zharnikov, M., Priebe, A., Long, N. J., Maurer, J., Winter, R., Rothenberger, A., Fenske, D., Rother, D., Bruhn, C., Fink, H. & Siemeling, U. (2008). Chem. Eur. J. 14, 4346-4360.]; Jumal et al., 2006[Jumal, J. & Yamin, B. M. (2006). Acta Cryst. E62, o2893-o2894.]; Kennedy et al., 2004[Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1510-o1512.]; Hipler et al., 2003[Hipler, F., Winter, M. & Fischer, R. A. (2003). J. Mol. Struct. 658, 179-191.]). The N—N and endocyclic C—S bonds are shorter than classical single bonds (1.4 and 1.81 Å), indicating partial double-bond character. At the same time, the C=N bonds are somewhat longer (∼0.02 Å) than the corresponding double bond, as a result of conjugation within the ring systems. These facts confirm the aromaticity of both rings. The exocyclic C—S bond is shortened since it includes carbon atoms with sp2 hybridization. Deviation of the bond angles from 120° in the 1,3,4-thia­diazole and 1,3-thia­zole rings is a common feature in five-membered rings (Bharty et al., 2012[Bharty, M. K., Bharti, A., Dani, R. K., Kushawaha, S. K., Dulare, R. & Singh, N. K. (2012). Polyhedron 41, 52-60.]). The C—S—C bond angles in the 1,3,4-thia­diazole and 1,3-thia­zole rings of the title compound are 86.62 (8) and 89.25 (9)°, respectively, and the C1—S2—C3 bond angle outside the ring is 103.82 (8)°. The thia­diazole and thia­zole rings do not lie in the same plane, subtending a dihedral angle of 32.61 (10)°. No intra­molecular hydrogen bonds are observed.

[Figure 1]
Figure 1
A view of the mol­ecular structure of 5-methyl-2-[(1,3-thia­zol-2-yl)sulfan­yl]-1,3,4-thia­diazole, showing the atom labeling and bond lengths. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and energy framework calculations

The crystal packing is consolidated by C5—H5⋯N3ii hydrogen bonds [symmetry code: (ii) x + 1, y, z + 1], forming a six-membered R22 (6) ring motif (Grabowski, 2020[Grabowski, S. J. (2020). Crystals 10, 130-130.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). Along the a-axis direction, cohesion of the crystal packing is achieved by C4—H4⋯N2i hydrogen bonds [symmetry code: (i) x + 1, y, z] between the methine group of the 1,3-thia­zole ring and the nitro­gen atom of the 1,3,4-thia­diazole ring of a nearby mol­ecule. The geometrical parameters of inter­molecular hydrogen bonds are shown in Table 1[link] and Fig. 2[link]a.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.93 2.55 3.472 (2) 169
C5—H5⋯N3ii 0.93 2.63 3.392 (3) 139
Symmetry codes: (i) [x+1, y, z]; (ii) [-x+1, -y, -z+1].
[Figure 2]
Figure 2
(a) Overview of inter­molecular C4—H4⋯N2 and C5—H5⋯N3 hydrogen bonds (shown in blue), (b) a view of the ππ stacking inter­actions (hydrogen bonds are shown in blue and ππ stacking inter­actions are shown in green). and (c) Highlight of S2⋯C5 chalcogen inter­actions (dashed lines) along the b-axis direction, with relevant atoms labeled.

In the supra­molecular structure of the compound, weak ππ-stacking inter­actions are found (Fig. 2[link]b) between thia­diazole rings (symmetry operation −x, 1 − y, 1 − z) with an intra­centroid distance of 3.889 (9) Å and between thia­zole rings (symmetry operation −x, −y, 1 − z) with a centroid-to-centroid distance of 3.809 (9) Å. Similarly, the structure also exhibits inter­molecular chalcogen bond between C5 of the thia­zole ring and the bridging S2 atom [C5⋯S2(1 − x, −[{1\over 2}] + y, [{3\over 2}] − z) = 3.491 (2) Å] (Fig. 2[link]c).

The inter­action energies of the hydrogen-bond system were calculated within the mol­ecules using the B3LYP method (B3LYP/6-31G (d, p) in CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The total energy (Etot) is the sum of Coulombic (Eele), polar (Epol), dispersion (Edis) and repulsive (Erep) contributions. The four energy components were scaled in the total energy: Etot = 1.057Eele + 0.74Epol + 0.871Edis + 0.618Erep. The inter­action energies were investigated for a 3.8 Å cluster around the reference mol­ecule. The results give a total inter­action energy of −141 kJ mol−1 involving electrostatic (−74.3 kJ mol−1), polarization (−12.2 kJ mol−1), dispersion (−146.9 kJ mol−1) and repulsion (125 kJ mol−1) components.

4. Hirshfeld surface analysis

To further investigate the inter­mol­ecular inter­actions present in the title compound, a Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 3[link] shows the three-dimensional (3D) Hirshfeld surface of the complex plotted over dnorm (normalized contact distance). The hydrogen-bond inter­actions given in Table 1[link] play a key role in the mol­ecular packing of the complex.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the mol­ecule plotted over dnorm.

The overall 2D fingerprint plot and those divided into inter­atomic inter­actions are shown in Fig. 4[link]. The Hirshfeld surface analysis shows that 24.3% of the inter­molecular inter­actions are from N⋯H/H⋯N contacts, 21.1% from S⋯H/H⋯S contacts, 17.7% from H⋯H contacts and 9.7% are from S⋯C/C⋯S contacts, while other contributions are from C⋯H/H⋯C, S⋯C/C⋯S and S⋯N/N⋯S contacts (Fig. 4[link]).

[Figure 4]
Figure 4
The full two-dimensional fingerprint plot for the title compound, showing all inter­actions, and those delineated into separate inter­actions with the percentage contributions of various inter­atomic contacts occurring in the crystal.

5. Database survey

A survey of the Cambridge Structural Database performed using ConQuest software (CSD, Version 5.46, last updated November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that 122 crystal structures have been reported for the 2-methyl-1,3,4-thia­diazole-5-thiol fragment; among them, 73 structures are related to organometallic compounds. There are mostly organic thiol-substituted compounds reported, because of the good reactivity of the thiol group. In addition, there are three organic structures based on the 2-methyl-1,3,4-thia­diazole-5-thiol fragment (CILHAI, Dani et al., 2013[Dani, R. K., Bharty, M. K., Kushawaha, S. K., Paswan, S., Prakash, O., Singh, R. K. & Singh, N. K. (2013). J. Mol. Struct. 1054-1055, 251-261.]; GEXWOY, Zhao et al., 2010[Zhao, Y., Ouyang, G. P., Xu, W. M., Jin, L. H. & Yuan, K. (2010). Chin. J. Org. Chem. 30, 1093-1097.]; XICMOO, Cabral et al., 2018[Cabral, L. I., Brás, E. M., Henriques, M. S., Marques, C., Frija, L. M., Barreira, L., Paixão, J. A., Fausto, R. & Cristiano, M. L. S. (2018). Chem. A Eur. J. 24, 3251-3262.]), which can bind in a bidentate manner with metal atoms to form six-membered rings. Similar to C6H5N3S3, chalcogen-bonding inter­actions were observed in both structures. In CILHAI, S—N chalcogen inter­actions occur where both nitro­gen atoms of the thia­diazole ring inter­act with the bridging sulfur atom and the sulfur atom of an adjacent thia­diazole ring. In XICMOO, a chalcogen inter­action is present between a sulfur atom and a carbon atom of a neighboring benzene ring.

6. Synthesis and crystallization

A solution of 5-methyl-1,3,4-thia­diazole-2-thiol (0.01 mol) and 2-bromo­thia­zole (0.01 mol) in DMF (10 ml) in presence of cesium carbonate was stirred for 5 h at 413 K. DMF was distilled off with a rotary evaporator. The resulting brown concentrate was dissolved in DCM/MeOH and separated by flash column chromatography. The synthesized amorphous product 2-methyl-5-(1,3-thia­zol-2-ylsulfan­yl)-1,3,4-thia­diazole was light yellow in color (m.p. 327 K). Further recrystallization gave crystals suitable for X-ray diffraction (yield: 60%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C6H5N3S3
Mr 215.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.6463 (2), 7.7151 (2), 11.1774 (3)
β (°) 103.272 (1)
V3) 893.56 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.13 × 0.1 × 0.06
 
Data collection
Diffractometer Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 18027, 2296, 1988
Rint 0.052
(sin θ/λ)max−1) 0.677
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.05
No. of reflections 2296
No. of parameters 110
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

5-Methyl-2-[(1,3-thiazol-2-yl)sulfanyl]-1,3,4-thiadiazole top
Crystal data top
C6H5N3S3F(000) = 440
Mr = 215.31Dx = 1.600 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.6463 (2) ÅCell parameters from 8027 reflections
b = 7.7151 (2) Åθ = 3.5–28.7°
c = 11.1774 (3) ŵ = 0.77 mm1
β = 103.272 (1)°T = 296 K
V = 893.56 (4) Å3Block, colourless
Z = 40.13 × 0.1 × 0.06 mm
Data collection top
Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
diffractometer
1988 reflections with I > 2σ(I)
φ and ω scansRint = 0.052
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.7°, θmin = 3.6°
h = 1314
18027 measured reflectionsk = 1010
2296 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.4384P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2296 reflectionsΔρmax = 0.50 e Å3
110 parametersΔρmin = 0.48 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18439 (4)0.24766 (7)0.46938 (4)0.04704 (14)
S20.34737 (4)0.41561 (7)0.71120 (4)0.04642 (14)
S30.61254 (5)0.45960 (7)0.67293 (6)0.05644 (16)
N10.10297 (15)0.3506 (3)0.65446 (15)0.0558 (4)
N20.00530 (15)0.2958 (3)0.56825 (16)0.0591 (5)
N30.46784 (15)0.2117 (2)0.57237 (16)0.0497 (4)
C10.20708 (15)0.3340 (2)0.61488 (15)0.0384 (3)
C20.02170 (17)0.2417 (3)0.46812 (17)0.0449 (4)
C30.47049 (15)0.3452 (2)0.64267 (14)0.0358 (3)
C40.67326 (17)0.3165 (3)0.58452 (17)0.0460 (4)
H40.7561090.3205930.5707530.055*
C50.58447 (17)0.1979 (3)0.53809 (18)0.0479 (4)
H50.5999050.1109580.4856730.058*
C60.07813 (19)0.1783 (4)0.3609 (2)0.0606 (6)
H6A0.0894450.2617090.2955720.091*
H6B0.1583700.1624160.3848620.091*
H6C0.0508860.0698150.3331510.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0320 (2)0.0677 (3)0.0452 (2)0.00771 (18)0.01673 (17)0.0140 (2)
S20.0357 (2)0.0601 (3)0.0451 (2)0.00303 (18)0.01261 (17)0.0143 (2)
S30.0371 (2)0.0589 (3)0.0750 (4)0.0130 (2)0.0165 (2)0.0186 (3)
N10.0346 (7)0.0911 (13)0.0452 (8)0.0027 (8)0.0164 (6)0.0116 (9)
N20.0312 (7)0.0991 (14)0.0502 (9)0.0052 (8)0.0160 (7)0.0104 (9)
N30.0372 (7)0.0557 (9)0.0591 (9)0.0067 (7)0.0175 (7)0.0144 (8)
C10.0336 (7)0.0455 (9)0.0382 (8)0.0005 (6)0.0128 (6)0.0004 (7)
C20.0313 (8)0.0600 (11)0.0456 (9)0.0036 (7)0.0131 (7)0.0005 (8)
C30.0292 (7)0.0421 (8)0.0354 (7)0.0000 (6)0.0058 (6)0.0023 (6)
C40.0319 (8)0.0571 (11)0.0507 (10)0.0024 (7)0.0131 (7)0.0058 (8)
C50.0387 (9)0.0568 (11)0.0512 (10)0.0035 (8)0.0163 (8)0.0054 (8)
C60.0377 (9)0.0926 (17)0.0509 (11)0.0108 (10)0.0087 (8)0.0101 (11)
Geometric parameters (Å, º) top
S1—C11.7222 (17)N3—C31.292 (2)
S1—C21.7295 (17)N3—C51.385 (2)
S2—C11.7460 (17)C2—C61.490 (3)
S2—C31.7496 (16)C4—H40.9300
S3—C31.7162 (16)C4—C51.332 (3)
S3—C41.705 (2)C5—H50.9300
N1—N21.388 (2)C6—H6A0.9600
N1—C11.291 (2)C6—H6B0.9600
N2—C21.287 (2)C6—H6C0.9600
C1—S1—C286.62 (8)N3—C3—S3115.16 (12)
C1—S2—C3103.82 (8)S3—C4—H4125.0
C4—S3—C389.25 (9)C5—C4—S3109.93 (13)
C1—N1—N2111.92 (15)C5—C4—H4125.0
C2—N2—N1112.76 (15)N3—C5—H5121.9
C3—N3—C5109.47 (15)C4—C5—N3116.16 (17)
S1—C1—S2129.53 (9)C4—C5—H5121.9
N1—C1—S1114.64 (13)C2—C6—H6A109.5
N1—C1—S2115.66 (14)C2—C6—H6B109.5
N2—C2—S1114.04 (14)C2—C6—H6C109.5
N2—C2—C6123.05 (17)H6A—C6—H6B109.5
C6—C2—S1122.91 (14)H6A—C6—H6C109.5
S3—C3—S2117.96 (10)H6B—C6—H6C109.5
N3—C3—S2126.86 (13)
S3—C4—C5—N31.7 (2)C2—S1—C1—S2173.80 (14)
N1—N2—C2—S11.3 (3)C2—S1—C1—N11.12 (17)
N1—N2—C2—C6179.1 (2)C3—S2—C1—S113.37 (15)
N2—N1—C1—S10.7 (2)C3—S2—C1—N1171.75 (15)
N2—N1—C1—S2174.98 (15)C3—S3—C4—C51.02 (15)
C1—S1—C2—N21.35 (17)C3—N3—C5—C41.6 (3)
C1—S1—C2—C6179.1 (2)C4—S3—C3—S2178.37 (11)
C1—S2—C3—S3156.31 (10)C4—S3—C3—N30.16 (15)
C1—S2—C3—N325.35 (18)C5—N3—C3—S2179.10 (14)
C1—N1—N2—C20.4 (3)C5—N3—C3—S30.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.932.553.472 (2)169
C5—H5···N3ii0.932.633.392 (3)139
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

BT would like to acknowledge a CSIR–TWAS fellowship and also the FAIRE programme provided by the Cambridge Crystallographic Data Centre (CCDC) for the use of the Cambridge Structural Database (CSD) and associated software.

References

First citationAltıntop, M. D., Ciftci, H. I., Radwan, M. O., Sever, B., Kaplancıklı, Z. A., Ali, T. F. & Özdemir, A. (2017). Molecules 23, 59. https://doi.org/10.3390/molecules23010059  Google Scholar
First citationArshad, M. F., Alam, A., Alshammari, A. A., Alhazza, M. B., Alzimam, I. M., Alam, M. A., Mustafa, G., Ansari, M. S., Alotaibi, A. M., Alotaibi, A. A., Kumar, S., Asdaq, S. M. B., Imran, M., Deb, P. K., Venugopala, K. N. & Jomah, S. (2022). Molecules 27, 3994–3994.  CrossRef CAS PubMed Google Scholar
First citationBharty, M. K., Bharti, A., Dani, R. K., Kushawaha, S. K., Dulare, R. & Singh, N. K. (2012). Polyhedron 41, 52–60.  CSD CrossRef CAS Google Scholar
First citationBooq, R. Y., Tawfik, E. A., Alfassam, H. A., Alfahad, A. J. & Alyamani, E. J. (2021). Antibiotics 10, 1480.  CrossRef PubMed Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. E., Johnston, H. M. & Green, K. N. (2015). Acta Cryst. C71, 1074–1079.  CSD CrossRef IUCr Journals Google Scholar
First citationCabral, L. I., Brás, E. M., Henriques, M. S., Marques, C., Frija, L. M., Barreira, L., Paixão, J. A., Fausto, R. & Cristiano, M. L. S. (2018). Chem. A Eur. J. 24, 3251–3262.  CSD CrossRef CAS Google Scholar
First citationDani, R. K., Bharty, M. K., Kushawaha, S. K., Paswan, S., Prakash, O., Singh, R. K. & Singh, N. K. (2013). J. Mol. Struct. 1054–1055, 251–261.  CSD CrossRef CAS Google Scholar
First citationDani, R. K., Bharty, M. K., Paswan, S., Singh, S. & Singh, N. K. (2014). Inorg. Chim. Acta 421, 519–530.  CSD CrossRef CAS Google Scholar
First citationDawood, K. M., Eldebss, T. M., El-Zahabi, H. S., Yousef, M. H. & Metz, P. (2013). Eur. J. Med. Chem. 70, 740–749.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGrabowski, S. J. (2020). Crystals 10, 130–130.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHipler, F., Winter, M. & Fischer, R. A. (2003). J. Mol. Struct. 658, 179–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationHussain, Z., Pengfei, S., Yimin, L., Shasha, L., Zehao, L., Yifan, Y., Linhui, L., Linying, Z. & Yong, W. (2022). Pathogens and Disease 80(1), 1–11.  Google Scholar
First citationJumal, J. & Yamin, B. M. (2006). Acta Cryst. E62, o2893–o2894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1510–o1512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLuqman, A., Blair, V. L., Brammananth, R., Crellin, P. K., Coppel, R. L. & Andrews, P. C. (2016). Eur. J. Inorg. Chem. pp. 2738–2749.  CSD CrossRef Google Scholar
First citationRenier, O., Bousrez, G., Smetana, V., Mudring, A. V. & Rogers, R. D. (2023). CrystEngComm 25, 530–540.  CSD CrossRef CAS Google Scholar
First citationShaikh, S. A., Wakchaure, S. N., Labhade, S. R., Kale, R. R., Alavala, R. R., Chobe, S. S., Jain, K. S., Labhade, H. S. & Bhanushali, D. D. (2024). BMC Chem. 18, 119–119.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeidner, T., Ballav, N., Zharnikov, M., Priebe, A., Long, N. J., Maurer, J., Winter, R., Rothenberger, A., Fenske, D., Rother, D., Bruhn, C., Fink, H. & Siemeling, U. (2008). Chem. Eur. J. 14, 4346–4360.  CSD CrossRef PubMed CAS Google Scholar
First citationZhao, Y., Ouyang, G. P., Xu, W. M., Jin, L. H. & Yuan, K. (2010). Chin. J. Org. Chem. 30, 1093–1097.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds