

research communications
E)-2-[(pyren-1-ylmethylidene)amino]ethanol
and Hirshfeld surface analyses, crystal voids, interaction energy calculations and energy frameworks of (aDepartment of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia, bDepartment of Chemistry, Faculty of Pure and Applied Sciences, International University of Africa, Khartoum 2469, Sudan, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye
*Correspondence e-mail: [email protected]
The title compound, C19H15NO, contains a pyrene ring system, consisting of four fused benzene rings arranged in a planar configuration. In the crystal, intermolecular O—H⋯N hydrogen bonds link the molecules into infinite chains along the c-axis direction. π–π stacking interactions between the benzene rings of adjacent molecules help to consolidate the three-dimensional architecture. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (56.4%), H⋯C/C⋯H (16.6%) and C⋯C (15.8%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 76.07 Å3 and 5.79%, showing that there is no large cavity in the crystal packing. An evaluation of the electrostatic, dispersion and total energy frameworks indicates that the dispersion energy contribution is dominant while hydrogen bonding, π⋯π and van der Waals interactions are the dominant interactions in the crystal packing.
Keywords: pyrene Schiff base; Hirshfeld surface; energy framework analysis; hydrogen bond; π-stacking; crystal structure.
CCDC reference: 2452369
1. Chemical context
). The abilities of to act as chelating ligands by coordinating various transition-metal ions make them valuable in catalysis, bioorganic chemistry, and in the development of metallodrugs (da Silva et al., 2011
). Additionally, their biological activities including antimicrobial (Malik et al., 2018
) and antioxidant properties (Kumar et al., 2017
) have made them promising candidates for pharmaceutical applications. also find utility in industrial processes such as corrosion inhibition (Omar et al., 1986
), polymer stabilization (Sabaa et al., 2009
), and as sensors for metal ion detection (Alam et al., 2023
). Currently, our research program focuses on the syntheses and evaluations of anticancer activities of Schiff base type compounds (Lasri et al., 2018
, 2023a
,b
, 2024
; Eltayeb et al., 2020a
,b
). Herein, we report the synthesis, molecular and crystal structures, Hirshfeld surface analysis, crystal voids, interaction energies and energy frameworks of the title compound (I)
.
2. Structural commentary
The title compound contains a planar pyrene ring system, consisting of four fused benzene rings [A (C4–C17/C18), B (C7–C10/C18/C19), C (C10–C14/C19) and D (C14–C19)] arranged in a planar configuration (Fig. 1), where atom C3 is 0.0255 (13) Å away from the best least-squares plane of the ring system. The C2—N1—C3—C4, N1—C3—C4—C5, N1—C3—C4—C17 and O1—C1—C2—N1 torsion angles are −178.71 (11), −9.67 (19), 171.23 (12) and −61.54 (14)°, respectively. There are no unusual bond distances or inter-bond angles in the molecule.
![]() | Figure 1 The title molecule with atom-numbering scheme and 50% probability ellipsoids. |
3. Supramolecular features
In the crystal, intermolecular O—H⋯N hydrogen bonds (Table 1) link the molecules into infinite chains along the c-axis direction (Fig. 2
). π–π stacking interactions occur between the benzene rings of adjacent molecules with the inter-centroid distances of 4.3657 (18) Å [between A rings, α = 0.02 (6)° and slippage = 2.632], 3.6343 (16) Å [between A and B rings, α = 0.05 (6)° and slippage = 1.079], 3.7953 (16) Å [between A and C rings, α = 1.90 (6)° and slippage = 1.663], 3.6538 (16) Å [between A and D rings, α = 1.10 (6)° and slippage = 1.418], 4.4161 (18) Å [between B rings, α = 0.00 (6)° and slippage = 2.727], 3.8279 (16) Å [between B and D rings, α = 0.14 (6)° and slippage = 1.609], 4.1054 (17) Å [between D rings, α = 0.00 (6)° and slippage = 2.367] and may help to consolidate the three-dimensional architecture. No C—H⋯π(ring) interactions are identified.
|
![]() | Figure 2 A partial packing diagram viewed down the a-axis direction. Intermolecular O—H⋯N hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity. |
4. Hirshfeld surface analysis
A Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009
) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021
) to clarify the intermolecular interactions (Table 2
) in the crystal of the title compound (I)
. The contact distances (Table 2
) (Venkatesan et al., 2016
) are shown in Fig. 3
, where the bright-red spots correspond to the respective donors and/or acceptors; they also appear as blue and red regions in Fig. 4
corresponding to positive and negative potentials (Spackman et al., 2008
; Jayatilaka et al., 2005
). Fig. 5
shows only the presence of the π–π interactions in (I)
. According to the 2D fingerprint plots (McKinnon et al., 2007
), the intermolecular H⋯H (Table 2
), H⋯C/C⋯H and C⋯C (Table 2
) contacts make important contributions to the HS of 56.4%, 16.6% and 15.8%, respectively (Fig. 6
). Their contact patches are also plotted onto the surface as shown in Fig. 7
, suggesting that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015
).
|
![]() | Figure 3 View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm. |
![]() | Figure 4 View of the Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range of −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively. |
![]() | Figure 5 Hirshfeld surface of the title compound plotted over shape-index. |
![]() | Figure 6 The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) C⋯C, (e) H⋯O/O⋯H, (f) H⋯N/N⋯H and (g) C⋯N/N⋯C, interactions. The di and de values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts. |
![]() | Figure 7 The Hirshfeld surface representations of contact patches plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) C⋯C interactions. |
5. Crystal voids
If the molecules are tightly packed and an applied external mechanical force does not easily break the crystal, then the crystal packing does not result in significant voids. A void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the et al., 2011). The volume of the crystal voids (Fig. 8
) and the percentage of free space in the are calculated as 76.07 Å3 and 5.79%, respectively, indicating that the crystal packing is compact.
![]() | Figure 8 Graphical views of voids in the crystal packing of the title compound along the (a) a-axis and (b) c-axis directions.> |
6. Interaction energy calculations and energy frameworks
The CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Spackman et al., 2021) was used to calculate the intermolecular interaction energies. Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −9.8 (Eele), −14.2 (Epol), −103.3 (Edis), 52.1 (Erep) and −70.0 (Etot) for O1—H1⋯N1. Energy frameworks combine the calculation of intermolecular interaction energies with a graphical representation of their magnitude (Turner et al., 2015
). Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) (Fig. 9
a, b and c), and their evaluation indicates that the stabilization is dominated via the dispersion energy contributions in the of (I)
.
![]() | Figure 9 The energy frameworks for a cluster of molecules of the title compound viewed down the c-axis showing the (a) electrostatic energy, (b) dispersion energy and (c) total energy diagrams. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 80 with cut-off value of 5 kJ mol−1 within 2 × 2 X 2 unit cells. |
7. Synthesis and crystallization
To a solution of 1-pyrenecarboxaldehyde (0.230 g, 1.0 mmol) in ethanol (25 ml) was added 2-aminoethanol (0.073 g, 1.2 mmol) and the reaction mixture was refluxed for 4 h. The reaction mixture was cooled down to room temperature for precipitation, and then filtered. The precipitate was washed with cold ethanol and dried in air. Yellow crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Yield: 80%. FT–IR (cm−1): 3440 (OH), 1631 (C=N), 1594 (C=C). 1H NMR (CDCl3): 9.34 (s, 1H, N=CH), 9.12 (d, 1H, JH–H = 9.6 Hz, pyrenyl), 8.56 (d, 1H, JH–H = 7.8 Hz, pyrenyl), 8.36 (m, 7H, pyrenyl), 4.73 (t, JH–H = 5.4 Hz, OH), 3.87 (dd, 4H, JH–H = 4.8 and 5.4 Hz, CH2). 13C NMR (CDCl3): 161.83, 131.23, 128.75, 128.68, 127.41, 126.21, 125.97, 125.70, 124.92, 122.38, 64.20, 62.70; HRMS: m/z: 273.11 [M]+. Analysis calculated (%) for C19H15NO: C 83.49, H 5.53, N 5.12; found C 83.47, H 5.51, N 5.10.
8. Refinement
Crystal data, data collection and structure . The OH hydrogen atom was located in a difference-Fourier map, and refined isotropically. The C-bound hydrogen-atom positions were calculated geometrically at distances of 0.93 Å (for aromatic CH) and 0.97 Å (for CH2) and refined using a riding model by applying the constraint Uiso(H) = 1.2Ueq(C).
|
Supporting information
CCDC reference: 2452369
https://doi.org/10.1107/S2056989025004451/ee2014sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025004451/ee2014Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025004451/ee2014Isup3.cml
C19H15NO | F(000) = 576 |
Mr = 273.32 | Dx = 1.382 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.447 (2) Å | Cell parameters from 7593 reflections |
b = 20.916 (8) Å | θ = 2.6–25.4° |
c = 8.446 (3) Å | µ = 0.09 mm−1 |
β = 93.347 (9)° | T = 100 K |
V = 1313.3 (8) Å3 | Block, colourless |
Z = 4 | 0.37 × 0.35 × 0.28 mm |
Bruker D8 Quest diffractometer | 1980 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.044 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 25.3°, θmin = 2.7° |
h = −8→8 | |
14470 measured reflections | k = −25→25 |
2362 independent reflections | l = −10→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0576P)2 + 0.4126P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.019 |
2362 reflections | Δρmax = 0.18 e Å−3 |
193 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.20414 (13) | 0.21597 (5) | 0.52257 (12) | 0.0216 (3) | |
H1 | 0.248 (2) | 0.2057 (8) | 0.616 (2) | 0.032* | |
N1 | 0.37839 (14) | 0.30976 (5) | 0.32442 (13) | 0.0152 (3) | |
C1 | 0.32460 (18) | 0.19901 (6) | 0.40609 (16) | 0.0171 (3) | |
H1A | 0.256590 | 0.191054 | 0.306579 | 0.020* | |
H1B | 0.385335 | 0.159619 | 0.437830 | 0.020* | |
C2 | 0.46484 (18) | 0.25029 (6) | 0.38038 (16) | 0.0164 (3) | |
H2A | 0.534355 | 0.258221 | 0.479141 | 0.020* | |
H2B | 0.546544 | 0.235486 | 0.302886 | 0.020* | |
C3 | 0.38451 (17) | 0.35642 (6) | 0.42167 (15) | 0.0146 (3) | |
H3 | 0.444841 | 0.350163 | 0.519987 | 0.017* | |
C4 | 0.30263 (16) | 0.41963 (6) | 0.38920 (15) | 0.0130 (3) | |
C5 | 0.23407 (17) | 0.43504 (6) | 0.23570 (15) | 0.0145 (3) | |
H5 | 0.237547 | 0.404567 | 0.155754 | 0.017* | |
C6 | 0.16132 (16) | 0.49467 (6) | 0.20070 (15) | 0.0143 (3) | |
H6 | 0.117589 | 0.503528 | 0.097642 | 0.017* | |
C7 | 0.15235 (16) | 0.54192 (6) | 0.31769 (15) | 0.0128 (3) | |
C8 | 0.07710 (17) | 0.60437 (6) | 0.28453 (15) | 0.0154 (3) | |
H8 | 0.035518 | 0.614331 | 0.181508 | 0.019* | |
C9 | 0.06565 (17) | 0.64883 (6) | 0.40009 (16) | 0.0167 (3) | |
H9 | 0.016214 | 0.688652 | 0.375061 | 0.020* | |
C10 | 0.12884 (16) | 0.63543 (6) | 0.56126 (15) | 0.0140 (3) | |
C11 | 0.11339 (17) | 0.68037 (6) | 0.68337 (17) | 0.0174 (3) | |
H11 | 0.060084 | 0.719801 | 0.660935 | 0.021* | |
C12 | 0.17704 (17) | 0.66639 (6) | 0.83720 (16) | 0.0179 (3) | |
H12 | 0.166897 | 0.696676 | 0.916797 | 0.021* | |
C13 | 0.25590 (17) | 0.60745 (6) | 0.87342 (15) | 0.0167 (3) | |
H13 | 0.299764 | 0.599066 | 0.976686 | 0.020* | |
C14 | 0.27000 (16) | 0.56069 (6) | 0.75641 (15) | 0.0138 (3) | |
C15 | 0.34525 (17) | 0.49843 (6) | 0.78892 (15) | 0.0149 (3) | |
H15 | 0.386896 | 0.488566 | 0.891982 | 0.018* | |
C16 | 0.35730 (17) | 0.45384 (6) | 0.67445 (15) | 0.0146 (3) | |
H16 | 0.407480 | 0.414277 | 0.701019 | 0.018* | |
C17 | 0.29455 (16) | 0.46569 (6) | 0.51163 (15) | 0.0125 (3) | |
C18 | 0.21810 (16) | 0.52728 (6) | 0.47568 (15) | 0.0122 (3) | |
C19 | 0.20622 (16) | 0.57444 (6) | 0.59733 (15) | 0.0126 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0190 (5) | 0.0258 (6) | 0.0203 (5) | 0.0037 (4) | 0.0046 (4) | 0.0078 (4) |
N1 | 0.0156 (6) | 0.0122 (6) | 0.0180 (6) | −0.0018 (4) | 0.0029 (4) | 0.0010 (4) |
C1 | 0.0208 (7) | 0.0129 (7) | 0.0173 (7) | 0.0002 (5) | −0.0013 (5) | 0.0012 (5) |
C2 | 0.0168 (7) | 0.0151 (7) | 0.0175 (7) | 0.0025 (5) | 0.0021 (5) | −0.0003 (5) |
C3 | 0.0127 (6) | 0.0167 (7) | 0.0145 (6) | −0.0029 (5) | 0.0020 (5) | 0.0011 (5) |
C4 | 0.0098 (6) | 0.0138 (7) | 0.0156 (7) | −0.0029 (5) | 0.0022 (5) | 0.0017 (5) |
C5 | 0.0141 (7) | 0.0148 (7) | 0.0150 (7) | −0.0027 (5) | 0.0028 (5) | −0.0022 (5) |
C6 | 0.0119 (6) | 0.0191 (7) | 0.0118 (6) | −0.0016 (5) | −0.0009 (5) | 0.0029 (5) |
C7 | 0.0086 (6) | 0.0162 (6) | 0.0139 (6) | −0.0028 (5) | 0.0020 (5) | 0.0024 (5) |
C8 | 0.0129 (6) | 0.0187 (7) | 0.0146 (6) | −0.0001 (5) | 0.0001 (5) | 0.0049 (5) |
C9 | 0.0131 (6) | 0.0135 (6) | 0.0235 (7) | 0.0007 (5) | 0.0020 (5) | 0.0054 (5) |
C10 | 0.0099 (6) | 0.0143 (7) | 0.0181 (7) | −0.0030 (5) | 0.0030 (5) | 0.0001 (5) |
C11 | 0.0129 (6) | 0.0146 (7) | 0.0248 (8) | −0.0007 (5) | 0.0031 (5) | −0.0008 (5) |
C12 | 0.0156 (7) | 0.0174 (7) | 0.0209 (7) | −0.0036 (5) | 0.0039 (5) | −0.0063 (6) |
C13 | 0.0142 (7) | 0.0227 (7) | 0.0134 (7) | −0.0049 (5) | 0.0015 (5) | −0.0014 (5) |
C14 | 0.0093 (6) | 0.0160 (7) | 0.0162 (7) | −0.0039 (5) | 0.0023 (5) | 0.0004 (5) |
C15 | 0.0127 (6) | 0.0198 (7) | 0.0119 (6) | −0.0026 (5) | −0.0006 (5) | 0.0022 (5) |
C16 | 0.0135 (6) | 0.0129 (6) | 0.0173 (7) | −0.0003 (5) | 0.0001 (5) | 0.0043 (5) |
C17 | 0.0093 (6) | 0.0138 (7) | 0.0144 (6) | −0.0036 (5) | 0.0021 (5) | 0.0018 (5) |
C18 | 0.0079 (6) | 0.0144 (7) | 0.0146 (7) | −0.0034 (5) | 0.0023 (5) | 0.0014 (5) |
C19 | 0.0082 (6) | 0.0155 (7) | 0.0143 (7) | −0.0036 (5) | 0.0031 (5) | 0.0002 (5) |
O1—C1 | 1.4148 (17) | C8—H8 | 0.9300 |
O1—H1 | 0.862 (19) | C9—C10 | 1.4415 (19) |
N1—C3 | 1.2745 (17) | C9—H9 | 0.9300 |
N1—C2 | 1.4662 (17) | C10—C11 | 1.4051 (19) |
C1—C2 | 1.5215 (19) | C10—C19 | 1.4254 (19) |
C1—H1A | 0.9700 | C11—C12 | 1.388 (2) |
C1—H1B | 0.9700 | C11—H11 | 0.9300 |
C2—H2A | 0.9700 | C12—C13 | 1.3918 (19) |
C2—H2B | 0.9700 | C12—H12 | 0.9300 |
C3—C4 | 1.4750 (18) | C13—C14 | 1.3988 (19) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.4029 (19) | C14—C19 | 1.4279 (19) |
C4—C17 | 1.4171 (19) | C14—C15 | 1.4378 (19) |
C5—C6 | 1.3847 (19) | C15—C16 | 1.3500 (19) |
C5—H5 | 0.9300 | C15—H15 | 0.9300 |
C6—C7 | 1.4019 (19) | C16—C17 | 1.4476 (18) |
C6—H6 | 0.9300 | C16—H16 | 0.9300 |
C7—C18 | 1.4275 (18) | C17—C18 | 1.4337 (19) |
C7—C8 | 1.4424 (18) | C18—C19 | 1.4307 (19) |
C8—C9 | 1.3543 (19) | ||
O1···N1 | 2.9300 (19) | H1···C2i | 2.841 (16) |
O1···N1i | 2.8440 (18) | C3···H16 | 2.65 |
N1···H5 | 2.62 | C16···H3 | 2.63 |
H1···N1i | 1.997 (16) | H1···H5i | 2.33 |
C3···C19ii | 3.386 (2) | H2A···H3 | 2.07 |
C17···C17ii | 3.396 (2) | H3···H16 | 2.06 |
C1—O1—H1 | 110.7 (12) | C8—C9—H9 | 119.5 |
C3—N1—C2 | 116.32 (11) | C10—C9—H9 | 119.5 |
O1—C1—C2 | 113.01 (11) | C11—C10—C19 | 119.43 (12) |
O1—C1—H1A | 109.0 | C11—C10—C9 | 121.79 (12) |
C2—C1—H1A | 109.0 | C19—C10—C9 | 118.78 (12) |
O1—C1—H1B | 109.0 | C12—C11—C10 | 120.53 (13) |
C2—C1—H1B | 109.0 | C12—C11—H11 | 119.7 |
H1A—C1—H1B | 107.8 | C10—C11—H11 | 119.7 |
N1—C2—C1 | 110.61 (11) | C11—C12—C13 | 120.60 (12) |
N1—C2—H2A | 109.5 | C11—C12—H12 | 119.7 |
C1—C2—H2A | 109.5 | C13—C12—H12 | 119.7 |
N1—C2—H2B | 109.5 | C12—C13—C14 | 120.81 (12) |
C1—C2—H2B | 109.5 | C12—C13—H13 | 119.6 |
H2A—C2—H2B | 108.1 | C14—C13—H13 | 119.6 |
N1—C3—C4 | 124.59 (12) | C13—C14—C19 | 119.30 (12) |
N1—C3—H3 | 117.7 | C13—C14—C15 | 122.89 (12) |
C4—C3—H3 | 117.7 | C19—C14—C15 | 117.82 (12) |
C5—C4—C17 | 119.30 (12) | C16—C15—C14 | 122.03 (12) |
C5—C4—C3 | 120.13 (12) | C16—C15—H15 | 119.0 |
C17—C4—C3 | 120.56 (12) | C14—C15—H15 | 119.0 |
C6—C5—C4 | 121.40 (12) | C15—C16—C17 | 122.05 (12) |
C6—C5—H5 | 119.3 | C15—C16—H16 | 119.0 |
C4—C5—H5 | 119.3 | C17—C16—H16 | 119.0 |
C5—C6—C7 | 121.24 (12) | C4—C17—C18 | 119.31 (12) |
C5—C6—H6 | 119.4 | C4—C17—C16 | 123.47 (12) |
C7—C6—H6 | 119.4 | C18—C17—C16 | 117.21 (12) |
C6—C7—C18 | 118.67 (12) | C7—C18—C19 | 119.41 (12) |
C6—C7—C8 | 122.39 (12) | C7—C18—C17 | 120.07 (12) |
C18—C7—C8 | 118.94 (12) | C19—C18—C17 | 120.52 (12) |
C9—C8—C7 | 121.47 (12) | C10—C19—C14 | 119.31 (12) |
C9—C8—H8 | 119.3 | C10—C19—C18 | 120.32 (12) |
C7—C8—H8 | 119.3 | C14—C19—C18 | 120.38 (12) |
C8—C9—C10 | 121.07 (12) | ||
C3—N1—C2—C1 | 110.27 (13) | C3—C4—C17—C18 | 178.50 (10) |
O1—C1—C2—N1 | −61.54 (14) | C5—C4—C17—C16 | 178.35 (11) |
C2—N1—C3—C4 | −178.71 (11) | C3—C4—C17—C16 | −2.55 (19) |
N1—C3—C4—C5 | −9.67 (19) | C15—C16—C17—C4 | −178.97 (12) |
N1—C3—C4—C17 | 171.23 (12) | C15—C16—C17—C18 | 0.00 (18) |
C17—C4—C5—C6 | 1.06 (19) | C6—C7—C18—C19 | −178.58 (11) |
C3—C4—C5—C6 | −178.05 (11) | C8—C7—C18—C19 | 0.64 (17) |
C4—C5—C6—C7 | −0.38 (19) | C6—C7—C18—C17 | 1.17 (17) |
C5—C6—C7—C18 | −0.74 (18) | C8—C7—C18—C17 | −179.62 (11) |
C5—C6—C7—C8 | −179.92 (11) | C4—C17—C18—C7 | −0.50 (18) |
C6—C7—C8—C9 | 178.35 (12) | C16—C17—C18—C7 | −179.52 (10) |
C18—C7—C8—C9 | −0.83 (18) | C4—C17—C18—C19 | 179.24 (10) |
C7—C8—C9—C10 | 0.13 (19) | C16—C17—C18—C19 | 0.23 (18) |
C8—C9—C10—C11 | −178.20 (12) | C11—C10—C19—C14 | −1.30 (18) |
C8—C9—C10—C19 | 0.74 (18) | C9—C10—C19—C14 | 179.74 (11) |
C19—C10—C11—C12 | 1.71 (19) | C11—C10—C19—C18 | 178.05 (11) |
C9—C10—C11—C12 | −179.36 (12) | C9—C10—C19—C18 | −0.91 (18) |
C10—C11—C12—C13 | −0.53 (19) | C13—C14—C19—C10 | −0.27 (18) |
C11—C12—C13—C14 | −1.1 (2) | C15—C14—C19—C10 | 179.26 (11) |
C12—C13—C14—C19 | 1.47 (19) | C13—C14—C19—C18 | −179.61 (11) |
C12—C13—C14—C15 | −178.03 (11) | C15—C14—C19—C18 | −0.09 (17) |
C13—C14—C15—C16 | 179.82 (12) | C7—C18—C19—C10 | 0.23 (18) |
C19—C14—C15—C16 | 0.32 (18) | C17—C18—C19—C10 | −179.52 (11) |
C14—C15—C16—C17 | −0.28 (19) | C7—C18—C19—C14 | 179.57 (11) |
C5—C4—C17—C18 | −0.61 (18) | C17—C18—C19—C14 | −0.18 (18) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.853 (17) | 1.997 (16) | 2.8440 (18) | 171.6 (14) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Funding information
TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Alam, M. Z., Alimuddin & Khan, S. A. (2023). J. Fluoresc. 33, 1241–1272. Google Scholar
Bruker (2021). APEX3 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
da Silva, C. M., da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, Á. (2011). J. Adv. Res. 2, 1–8. CrossRef Google Scholar
Eltayeb, N. E., Lasri, J., Soliman, S. M., Mavromatis, C., Hajjar, D., Elsilk, S. E., Babgi, B. A. & Hussien, M. A. (2020b). J. Mol. Struct. 1213, 128185. CSD CrossRef Google Scholar
Eltayeb, N. E., Şen, F., Lasri, J., Hussien, M. A., Elsilk, S. E., Babgi, B. A., Gökçe, H. & Sert, Y. (2020a). J. Mol. Struct. 1202, 127315. CSD CrossRef Google Scholar
Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450. Web of Science CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta 44, 129–138. CrossRef CAS Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumar, M., Padmini, T. & Ponnuvel, K. (2017). J. Saudi Chem. Soc. 21, S322–S328. CrossRef CAS Google Scholar
Lasri, J., Elsherbiny, A. S., Eltayeb, N. E., Haukka, M. & El-Hefnawy, M. E. (2018). J. Organomet. Chem. 866, 21–26. CSD CrossRef CAS Google Scholar
Lasri, J., Eltayeb, N. E., Soliman, S. M., Ali, E. M. M., Alhayyani, S. & Akhdhar, A. (2023a). Molecules 28, 4766. CrossRef PubMed Google Scholar
Lasri, J., Eltayeb, N. E., Soliman, S. M., Ali, E. M. M., Alhayyani, S., Akhdhar, A. & Hussien, M. A. (2023b). J. Mol. Struct. 1287, 135673. CSD CrossRef Google Scholar
Lasri, J., Eltayeb, N. E., Soliman, S. M., Ali, E. M. M., Rosli, M. M., Alzahrani, F. A., Eid, T. M., Alhayyani, S., Akhdhar, A., Dutta, A., Jaremko, M., Emwas, A. H. & Almaqwashi, A. A. (2024). ChemistrySelect 9, e202402236. CSD CrossRef Google Scholar
Malik, M. A., Dar, O. A., Gull, P., Wani, M. Y. & Hashmi, A. A. (2018). Med. Chem. Commun. 9, 409–436. CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Omar, I. H., Zucchi, F. & Trabanelli, G. (1986). Surf. Coat. Technol. 29, 141–151. CrossRef CAS Google Scholar
Sabaa, M. W., Mohamed, R. R. & Oraby, E. H. (2009). Eur. Polym. J. 45, 3072–3080. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm. 10, 377–388. CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm 13, 1804–1813. CrossRef CAS Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.