research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­action energy calculations and energy frameworks of (E)-2-[(pyren-1-yl­methyl­idene)amino]­ethanol

crossmark logo

aDepartment of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia, bDepartment of Chemistry, Faculty of Pure and Applied Sciences, International University of Africa, Khartoum 2469, Sudan, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye
*Correspondence e-mail: [email protected]

Edited by F. F. Ferreira, Universidade Federal do ABC, Brazil (Received 23 April 2025; accepted 16 May 2025; online 10 June 2025)

The title compound, C19H15NO, contains a pyrene ring system, consisting of four fused benzene rings arranged in a planar configuration. In the crystal, inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into infinite chains along the c-axis direction. ππ stacking inter­actions between the benzene rings of adjacent mol­ecules help to consolidate the three-dimensional architecture. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (56.4%), H⋯C/C⋯H (16.6%) and C⋯C (15.8%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 76.07 Å3 and 5.79%, showing that there is no large cavity in the crystal packing. An evaluation of the electrostatic, dispersion and total energy frameworks indicates that the dispersion energy contribution is dominant while hydrogen bonding, ππ and van der Waals inter­actions are the dominant inter­actions in the crystal packing.

1. Chemical context

Schiff bases have garnered significant attention in coordination and medicinal chemistry and in materials science due to their structural versatilities, ease of syntheses, and diverse applications (Gupta & Sutar, 2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]). The abilities of Schiff bases to act as chelating ligands by coordinating various transition-metal ions make them valuable in catalysis, bio­organic chemistry, and in the development of metallodrugs (da Silva et al., 2011[da Silva, C. M., da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, Á. (2011). J. Adv. Res. 2, 1-8.]). Additionally, their biological activities including anti­microbial (Malik et al., 2018[Malik, M. A., Dar, O. A., Gull, P., Wani, M. Y. & Hashmi, A. A. (2018). Med. Chem. Commun. 9, 409-436.]) and anti­oxidant properties (Kumar et al., 2017[Kumar, M., Padmini, T. & Ponnuvel, K. (2017). J. Saudi Chem. Soc. 21, S322-S328.]) have made them promising candidates for pharmaceutical applications. Schiff bases also find utility in industrial processes such as corrosion inhibition (Omar et al., 1986[Omar, I. H., Zucchi, F. & Trabanelli, G. (1986). Surf. Coat. Technol. 29, 141-151.]), polymer stabilization (Sabaa et al., 2009[Sabaa, M. W., Mohamed, R. R. & Oraby, E. H. (2009). Eur. Polym. J. 45, 3072-3080.]), and as sensors for metal ion detection (Alam et al., 2023[Alam, M. Z., Alimuddin & Khan, S. A. (2023). J. Fluoresc. 33, 1241-1272.]). Currently, our research program focuses on the syntheses and evaluations of anti­cancer activities of Schiff base type compounds (Lasri et al., 2018[Lasri, J., Elsherbiny, A. S., Eltayeb, N. E., Haukka, M. & El-Hefnawy, M. E. (2018). J. Organomet. Chem. 866, 21-26.], 2023a[Lasri, J., Eltayeb, N. E., Soliman, S. M., Ali, E. M. M., Alhayyani, S. & Akhdhar, A. (2023a). Molecules 28, 4766.],b[Lasri, J., Eltayeb, N. E., Soliman, S. M., Ali, E. M. M., Alhayyani, S., Akhdhar, A. & Hussien, M. A. (2023b). J. Mol. Struct. 1287, 135673.], 2024[Lasri, J., Eltayeb, N. E., Soliman, S. M., Ali, E. M. M., Rosli, M. M., Alzahrani, F. A., Eid, T. M., Alhayyani, S., Akhdhar, A., Dutta, A., Jaremko, M., Emwas, A. H. & Almaqwashi, A. A. (2024). ChemistrySelect 9, e202402236.]; Eltayeb et al., 2020a[Eltayeb, N. E., Şen, F., Lasri, J., Hussien, M. A., Elsilk, S. E., Babgi, B. A., Gökçe, H. & Sert, Y. (2020a). J. Mol. Struct. 1202, 127315.],b[Eltayeb, N. E., Lasri, J., Soliman, S. M., Mavromatis, C., Hajjar, D., Elsilk, S. E., Babgi, B. A. & Hussien, M. A. (2020b). J. Mol. Struct. 1213, 128185.]). Herein, we report the synthesis, mol­ecular and crystal structures, Hirshfeld surface analysis, crystal voids, inter­action energies and energy frameworks of the title compound (I)[link].

2. Structural commentary

The title compound contains a planar pyrene ring system, consisting of four fused benzene rings [A (C4–C17/C18), B (C7–C10/C18/C19), C (C10–C14/C19) and D (C14–C19)] arranged in a planar configuration (Fig. 1[link]), where atom C3 is 0.0255 (13) Å away from the best least-squares plane of the ring system. The C2—N1—C3—C4, N1—C3—C4—C5, N1—C3—C4—C17 and O1—C1—C2—N1 torsion angles are −178.71 (11), −9.67 (19), 171.23 (12) and −61.54 (14)°, respectively. There are no unusual bond distances or inter-bond angles in the mol­ecule.

[Scheme 1]
[Figure 1]
Figure 1
The title mol­ecule with atom-numbering scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, inter­molecular O—H⋯N hydrogen bonds (Table 1[link]) link the mol­ecules into infinite chains along the c-axis direction (Fig. 2[link]). ππ stacking inter­actions occur between the benzene rings of adjacent mol­ecules with the inter-centroid distances of 4.3657 (18) Å [between A rings, α = 0.02 (6)° and slippage = 2.632], 3.6343 (16) Å [between A and B rings, α = 0.05 (6)° and slippage = 1.079], 3.7953 (16) Å [between A and C rings, α = 1.90 (6)° and slippage = 1.663], 3.6538 (16) Å [between A and D rings, α = 1.10 (6)° and slippage = 1.418], 4.4161 (18) Å [between B rings, α = 0.00 (6)° and slippage = 2.727], 3.8279 (16) Å [between B and D rings, α = 0.14 (6)° and slippage = 1.609], 4.1054 (17) Å [between D rings, α = 0.00 (6)° and slippage = 2.367] and may help to consolidate the three-dimensional architecture. No C—H⋯π(ring) inter­actions are identified.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.853 (17) 1.997 (16) 2.8440 (18) 171.6 (14)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram viewed down the a-axis direction. Inter­molecular O—H⋯N hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to clarify the inter­molecular inter­actions (Table 2[link]) in the crystal of the title compound (I)[link]. The contact distances (Table 2[link]) (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]) are shown in Fig. 3[link], where the bright-red spots correspond to the respective donors and/or acceptors; they also appear as blue and red regions in Fig. 4[link] corresponding to positive and negative potentials (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm. 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/]). Fig. 5[link] shows only the presence of the ππ inter­actions in (I)[link]. According to the 2D fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), the inter­molecular H⋯H (Table 2[link]), H⋯C/C⋯H and C⋯C (Table 2[link]) contacts make important contributions to the HS of 56.4%, 16.6% and 15.8%, respectively (Fig. 6[link]). Their contact patches are also plotted onto the surface as shown in Fig. 7[link], suggesting that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

Table 2
Selected interatomic distances (Å)

O1⋯N1 2.9300 (19) H1⋯C2i 2.841 (16)
O1⋯N1i 2.8440 (18) C3⋯H16 2.65
N1⋯H5 2.62 C16⋯H3 2.63
H1⋯N1i 1.997 (16) H1⋯H5i 2.33
C3⋯C19ii 3.386 (2) H2A⋯H3 2.07
C17⋯C17ii 3.396 (2) H3⋯H16 2.06
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 4]
Figure 4
View of the Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range of −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) C⋯C, (e) H⋯O/O⋯H, (f) H⋯N/N⋯H and (g) C⋯N/N⋯C, inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.
[Figure 7]
Figure 7
The Hirshfeld surface representations of contact patches plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) C⋯C inter­actions.

5. Crystal voids

If the mol­ecules are tightly packed and an applied external mechanical force does not easily break the crystal, then the crystal packing does not result in significant voids. A void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm 13, 1804-1813.]). The volume of the crystal voids (Fig. 8[link]) and the percentage of free space in the unit cell are calculated as 76.07 Å3 and 5.79%, respectively, indicating that the crystal packing is compact.

[Figure 8]
Figure 8
Graphical views of voids in the crystal packing of the title compound along the (a) a-axis and (b) c-axis directions.>

6. Inter­action energy calculations and energy frameworks

The CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to calculate the inter­molecular inter­action energies. Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −9.8 (Eele), −14.2 (Epol), −103.3 (Edis), 52.1 (Erep) and −70.0 (Etot) for O1—H1⋯N1. Energy frameworks combine the calculation of inter­molecular inter­action energies with a graphical representation of their magnitude (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]). Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) (Fig. 9[link]a, b and c), and their evaluation indicates that the stabilization is dominated via the dispersion energy contributions in the crystal structure of (I)[link].

[Figure 9]
Figure 9
The energy frameworks for a cluster of mol­ecules of the title compound viewed down the c-axis showing the (a) electrostatic energy, (b) dispersion energy and (c) total energy diagrams. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 80 with cut-off value of 5 kJ mol−1 within 2 × 2 X 2 unit cells.

7. Synthesis and crystallization

To a solution of 1-pyrenecarboxaldehyde (0.230 g, 1.0 mmol) in ethanol (25 ml) was added 2-amino­ethanol (0.073 g, 1.2 mmol) and the reaction mixture was refluxed for 4 h. The reaction mixture was cooled down to room temperature for precipitation, and then filtered. The precipitate was washed with cold ethanol and dried in air. Yellow crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Yield: 80%. FT–IR (cm−1): 3440 (OH), 1631 (C=N), 1594 (C=C). 1H NMR (CDCl3): 9.34 (s, 1H, N=CH), 9.12 (d, 1H, JH–H = 9.6 Hz, pyren­yl), 8.56 (d, 1H, JH–H = 7.8 Hz, pyren­yl), 8.36 (m, 7H, pyren­yl), 4.73 (t, JH–H = 5.4 Hz, OH), 3.87 (dd, 4H, JH–H = 4.8 and 5.4 Hz, CH2). 13C NMR (CDCl3): 161.83, 131.23, 128.75, 128.68, 127.41, 126.21, 125.97, 125.70, 124.92, 122.38, 64.20, 62.70; HRMS: m/z: 273.11 [M]+. Analysis calculated (%) for C19H15NO: C 83.49, H 5.53, N 5.12; found C 83.47, H 5.51, N 5.10.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The OH hydrogen atom was located in a difference-Fourier map, and refined isotropically. The C-bound hydrogen-atom positions were calculated geometrically at distances of 0.93 Å (for aromatic CH) and 0.97 Å (for CH2) and refined using a riding model by applying the constraint Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C19H15NO
Mr 273.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.447 (2), 20.916 (8), 8.446 (3)
β (°) 93.347 (9)
V3) 1313.3 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.37 × 0.35 × 0.28
 
Data collection
Diffractometer Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 14470, 2362, 1980
Rint 0.044
(sin θ/λ)max−1) 0.601
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.04
No. of reflections 2362
No. of parameters 193
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2021[Bruker (2021). APEX3 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

(E)-2-[(Pyren-1-ylmethylidene)amino]ethanol top
Crystal data top
C19H15NOF(000) = 576
Mr = 273.32Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.447 (2) ÅCell parameters from 7593 reflections
b = 20.916 (8) Åθ = 2.6–25.4°
c = 8.446 (3) ŵ = 0.09 mm1
β = 93.347 (9)°T = 100 K
V = 1313.3 (8) Å3Block, colourless
Z = 40.37 × 0.35 × 0.28 mm
Data collection top
Bruker D8 Quest
diffractometer
1980 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.3°, θmin = 2.7°
h = 88
14470 measured reflectionsk = 2525
2362 independent reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.4126P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.019
2362 reflectionsΔρmax = 0.18 e Å3
193 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20414 (13)0.21597 (5)0.52257 (12)0.0216 (3)
H10.248 (2)0.2057 (8)0.616 (2)0.032*
N10.37839 (14)0.30976 (5)0.32442 (13)0.0152 (3)
C10.32460 (18)0.19901 (6)0.40609 (16)0.0171 (3)
H1A0.2565900.1910540.3065790.020*
H1B0.3853350.1596190.4378300.020*
C20.46484 (18)0.25029 (6)0.38038 (16)0.0164 (3)
H2A0.5343550.2582210.4791410.020*
H2B0.5465440.2354860.3028860.020*
C30.38451 (17)0.35642 (6)0.42167 (15)0.0146 (3)
H30.4448410.3501630.5199870.017*
C40.30263 (16)0.41963 (6)0.38920 (15)0.0130 (3)
C50.23407 (17)0.43504 (6)0.23570 (15)0.0145 (3)
H50.2375470.4045670.1557540.017*
C60.16132 (16)0.49467 (6)0.20070 (15)0.0143 (3)
H60.1175890.5035280.0976420.017*
C70.15235 (16)0.54192 (6)0.31769 (15)0.0128 (3)
C80.07710 (17)0.60437 (6)0.28453 (15)0.0154 (3)
H80.0355180.6143310.1815080.019*
C90.06565 (17)0.64883 (6)0.40009 (16)0.0167 (3)
H90.0162140.6886520.3750610.020*
C100.12884 (16)0.63543 (6)0.56126 (15)0.0140 (3)
C110.11339 (17)0.68037 (6)0.68337 (17)0.0174 (3)
H110.0600840.7198010.6609350.021*
C120.17704 (17)0.66639 (6)0.83720 (16)0.0179 (3)
H120.1668970.6966760.9167970.021*
C130.25590 (17)0.60745 (6)0.87342 (15)0.0167 (3)
H130.2997640.5990660.9766860.020*
C140.27000 (16)0.56069 (6)0.75641 (15)0.0138 (3)
C150.34525 (17)0.49843 (6)0.78892 (15)0.0149 (3)
H150.3868960.4885660.8919820.018*
C160.35730 (17)0.45384 (6)0.67445 (15)0.0146 (3)
H160.4074800.4142770.7010190.018*
C170.29455 (16)0.46569 (6)0.51163 (15)0.0125 (3)
C180.21810 (16)0.52728 (6)0.47568 (15)0.0122 (3)
C190.20622 (16)0.57444 (6)0.59733 (15)0.0126 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0190 (5)0.0258 (6)0.0203 (5)0.0037 (4)0.0046 (4)0.0078 (4)
N10.0156 (6)0.0122 (6)0.0180 (6)0.0018 (4)0.0029 (4)0.0010 (4)
C10.0208 (7)0.0129 (7)0.0173 (7)0.0002 (5)0.0013 (5)0.0012 (5)
C20.0168 (7)0.0151 (7)0.0175 (7)0.0025 (5)0.0021 (5)0.0003 (5)
C30.0127 (6)0.0167 (7)0.0145 (6)0.0029 (5)0.0020 (5)0.0011 (5)
C40.0098 (6)0.0138 (7)0.0156 (7)0.0029 (5)0.0022 (5)0.0017 (5)
C50.0141 (7)0.0148 (7)0.0150 (7)0.0027 (5)0.0028 (5)0.0022 (5)
C60.0119 (6)0.0191 (7)0.0118 (6)0.0016 (5)0.0009 (5)0.0029 (5)
C70.0086 (6)0.0162 (6)0.0139 (6)0.0028 (5)0.0020 (5)0.0024 (5)
C80.0129 (6)0.0187 (7)0.0146 (6)0.0001 (5)0.0001 (5)0.0049 (5)
C90.0131 (6)0.0135 (6)0.0235 (7)0.0007 (5)0.0020 (5)0.0054 (5)
C100.0099 (6)0.0143 (7)0.0181 (7)0.0030 (5)0.0030 (5)0.0001 (5)
C110.0129 (6)0.0146 (7)0.0248 (8)0.0007 (5)0.0031 (5)0.0008 (5)
C120.0156 (7)0.0174 (7)0.0209 (7)0.0036 (5)0.0039 (5)0.0063 (6)
C130.0142 (7)0.0227 (7)0.0134 (7)0.0049 (5)0.0015 (5)0.0014 (5)
C140.0093 (6)0.0160 (7)0.0162 (7)0.0039 (5)0.0023 (5)0.0004 (5)
C150.0127 (6)0.0198 (7)0.0119 (6)0.0026 (5)0.0006 (5)0.0022 (5)
C160.0135 (6)0.0129 (6)0.0173 (7)0.0003 (5)0.0001 (5)0.0043 (5)
C170.0093 (6)0.0138 (7)0.0144 (6)0.0036 (5)0.0021 (5)0.0018 (5)
C180.0079 (6)0.0144 (7)0.0146 (7)0.0034 (5)0.0023 (5)0.0014 (5)
C190.0082 (6)0.0155 (7)0.0143 (7)0.0036 (5)0.0031 (5)0.0002 (5)
Geometric parameters (Å, º) top
O1—C11.4148 (17)C8—H80.9300
O1—H10.862 (19)C9—C101.4415 (19)
N1—C31.2745 (17)C9—H90.9300
N1—C21.4662 (17)C10—C111.4051 (19)
C1—C21.5215 (19)C10—C191.4254 (19)
C1—H1A0.9700C11—C121.388 (2)
C1—H1B0.9700C11—H110.9300
C2—H2A0.9700C12—C131.3918 (19)
C2—H2B0.9700C12—H120.9300
C3—C41.4750 (18)C13—C141.3988 (19)
C3—H30.9300C13—H130.9300
C4—C51.4029 (19)C14—C191.4279 (19)
C4—C171.4171 (19)C14—C151.4378 (19)
C5—C61.3847 (19)C15—C161.3500 (19)
C5—H50.9300C15—H150.9300
C6—C71.4019 (19)C16—C171.4476 (18)
C6—H60.9300C16—H160.9300
C7—C181.4275 (18)C17—C181.4337 (19)
C7—C81.4424 (18)C18—C191.4307 (19)
C8—C91.3543 (19)
O1···N12.9300 (19)H1···C2i2.841 (16)
O1···N1i2.8440 (18)C3···H162.65
N1···H52.62C16···H32.63
H1···N1i1.997 (16)H1···H5i2.33
C3···C19ii3.386 (2)H2A···H32.07
C17···C17ii3.396 (2)H3···H162.06
C1—O1—H1110.7 (12)C8—C9—H9119.5
C3—N1—C2116.32 (11)C10—C9—H9119.5
O1—C1—C2113.01 (11)C11—C10—C19119.43 (12)
O1—C1—H1A109.0C11—C10—C9121.79 (12)
C2—C1—H1A109.0C19—C10—C9118.78 (12)
O1—C1—H1B109.0C12—C11—C10120.53 (13)
C2—C1—H1B109.0C12—C11—H11119.7
H1A—C1—H1B107.8C10—C11—H11119.7
N1—C2—C1110.61 (11)C11—C12—C13120.60 (12)
N1—C2—H2A109.5C11—C12—H12119.7
C1—C2—H2A109.5C13—C12—H12119.7
N1—C2—H2B109.5C12—C13—C14120.81 (12)
C1—C2—H2B109.5C12—C13—H13119.6
H2A—C2—H2B108.1C14—C13—H13119.6
N1—C3—C4124.59 (12)C13—C14—C19119.30 (12)
N1—C3—H3117.7C13—C14—C15122.89 (12)
C4—C3—H3117.7C19—C14—C15117.82 (12)
C5—C4—C17119.30 (12)C16—C15—C14122.03 (12)
C5—C4—C3120.13 (12)C16—C15—H15119.0
C17—C4—C3120.56 (12)C14—C15—H15119.0
C6—C5—C4121.40 (12)C15—C16—C17122.05 (12)
C6—C5—H5119.3C15—C16—H16119.0
C4—C5—H5119.3C17—C16—H16119.0
C5—C6—C7121.24 (12)C4—C17—C18119.31 (12)
C5—C6—H6119.4C4—C17—C16123.47 (12)
C7—C6—H6119.4C18—C17—C16117.21 (12)
C6—C7—C18118.67 (12)C7—C18—C19119.41 (12)
C6—C7—C8122.39 (12)C7—C18—C17120.07 (12)
C18—C7—C8118.94 (12)C19—C18—C17120.52 (12)
C9—C8—C7121.47 (12)C10—C19—C14119.31 (12)
C9—C8—H8119.3C10—C19—C18120.32 (12)
C7—C8—H8119.3C14—C19—C18120.38 (12)
C8—C9—C10121.07 (12)
C3—N1—C2—C1110.27 (13)C3—C4—C17—C18178.50 (10)
O1—C1—C2—N161.54 (14)C5—C4—C17—C16178.35 (11)
C2—N1—C3—C4178.71 (11)C3—C4—C17—C162.55 (19)
N1—C3—C4—C59.67 (19)C15—C16—C17—C4178.97 (12)
N1—C3—C4—C17171.23 (12)C15—C16—C17—C180.00 (18)
C17—C4—C5—C61.06 (19)C6—C7—C18—C19178.58 (11)
C3—C4—C5—C6178.05 (11)C8—C7—C18—C190.64 (17)
C4—C5—C6—C70.38 (19)C6—C7—C18—C171.17 (17)
C5—C6—C7—C180.74 (18)C8—C7—C18—C17179.62 (11)
C5—C6—C7—C8179.92 (11)C4—C17—C18—C70.50 (18)
C6—C7—C8—C9178.35 (12)C16—C17—C18—C7179.52 (10)
C18—C7—C8—C90.83 (18)C4—C17—C18—C19179.24 (10)
C7—C8—C9—C100.13 (19)C16—C17—C18—C190.23 (18)
C8—C9—C10—C11178.20 (12)C11—C10—C19—C141.30 (18)
C8—C9—C10—C190.74 (18)C9—C10—C19—C14179.74 (11)
C19—C10—C11—C121.71 (19)C11—C10—C19—C18178.05 (11)
C9—C10—C11—C12179.36 (12)C9—C10—C19—C180.91 (18)
C10—C11—C12—C130.53 (19)C13—C14—C19—C100.27 (18)
C11—C12—C13—C141.1 (2)C15—C14—C19—C10179.26 (11)
C12—C13—C14—C191.47 (19)C13—C14—C19—C18179.61 (11)
C12—C13—C14—C15178.03 (11)C15—C14—C19—C180.09 (17)
C13—C14—C15—C16179.82 (12)C7—C18—C19—C100.23 (18)
C19—C14—C15—C160.32 (18)C17—C18—C19—C10179.52 (11)
C14—C15—C16—C170.28 (19)C7—C18—C19—C14179.57 (11)
C5—C4—C17—C180.61 (18)C17—C18—C19—C140.18 (18)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.853 (17)1.997 (16)2.8440 (18)171.6 (14)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Funding information

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAlam, M. Z., Alimuddin & Khan, S. A. (2023). J. Fluoresc. 33, 1241–1272.  Google Scholar
First citationBruker (2021). APEX3 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationda Silva, C. M., da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, Á. (2011). J. Adv. Res. 2, 1–8.  CrossRef Google Scholar
First citationEltayeb, N. E., Lasri, J., Soliman, S. M., Mavromatis, C., Hajjar, D., Elsilk, S. E., Babgi, B. A. & Hussien, M. A. (2020b). J. Mol. Struct. 1213, 128185.  CSD CrossRef Google Scholar
First citationEltayeb, N. E., Şen, F., Lasri, J., Hussien, M. A., Elsilk, S. E., Babgi, B. A., Gökçe, H. & Sert, Y. (2020a). J. Mol. Struct. 1202, 127315.  CSD CrossRef Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta 44, 129–138.  CrossRef CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, M., Padmini, T. & Ponnuvel, K. (2017). J. Saudi Chem. Soc. 21, S322–S328.  CrossRef CAS Google Scholar
First citationLasri, J., Elsherbiny, A. S., Eltayeb, N. E., Haukka, M. & El-Hefnawy, M. E. (2018). J. Organomet. Chem. 866, 21–26.  CSD CrossRef CAS Google Scholar
First citationLasri, J., Eltayeb, N. E., Soliman, S. M., Ali, E. M. M., Alhayyani, S. & Akhdhar, A. (2023a). Molecules 28, 4766.  CrossRef PubMed Google Scholar
First citationLasri, J., Eltayeb, N. E., Soliman, S. M., Ali, E. M. M., Alhayyani, S., Akhdhar, A. & Hussien, M. A. (2023b). J. Mol. Struct. 1287, 135673.  CSD CrossRef Google Scholar
First citationLasri, J., Eltayeb, N. E., Soliman, S. M., Ali, E. M. M., Rosli, M. M., Alzahrani, F. A., Eid, T. M., Alhayyani, S., Akhdhar, A., Dutta, A., Jaremko, M., Emwas, A. H. & Almaqwashi, A. A. (2024). ChemistrySelect 9, e202402236.  CSD CrossRef Google Scholar
First citationMalik, M. A., Dar, O. A., Gull, P., Wani, M. Y. & Hashmi, A. A. (2018). Med. Chem. Commun. 9, 409–436.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOmar, I. H., Zucchi, F. & Trabanelli, G. (1986). Surf. Coat. Technol. 29, 141–151.  CrossRef CAS Google Scholar
First citationSabaa, M. W., Mohamed, R. R. & Oraby, E. H. (2009). Eur. Polym. J. 45, 3072–3080.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm. 10, 377–388.  CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm 13, 1804–1813.  CrossRef CAS Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds