research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and structures of dinuclear zinc(II) acetate-bridged coordination compounds with the aromatic Schiff base chelators N,N-di­methyl-2-[phen­yl(pyridin-2-yl)methyl­­idene]hydrazine-1-carbo­thio­amide and N-ethyl-2-[phen­yl(pyridin-2-yl)methyl­­idene]hydrazine-1-carbo­thio­amide

crossmark logo

aDepartment of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA, bDepartment of Chemistry, College of Arts and Science, Howard University, Washington, DC 20059, USA, cDepartment of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, LG 77, Ghana, and dDepartment of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, LG 581, Ghana
*Correspondence e-mail: [email protected], [email protected], [email protected]

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 5 April 2025; accepted 17 June 2025; online 24 June 2025)

In the centrosymmetric title complexes, di-μ-acetato-bis({N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C15H15N4S)2(C2H3O2)2] (I), and di-μ-acetato-bis({N-ethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C16H17N4S)2(C2H3O2)2] (II), the zinc ions are chelated by the N,N,S-tridentate ligands and bridged by pairs of acetate ions. The acetate ion in (I) is disordered over two orientations in a 0.756 (6):0.244 (6) ratio, leading to different zinc coordination modes for the major (5-coordinate) and minor (6-coordinate) disorder components. Geometrical indices [τ5 = 0.32 and 0.30 for (I) (major component) and (II), respectively] suggest the zinc coordination in these phases to be distorted square pyramidal. This study forms part of our aim to discern the mechanism of metal binding in these chelators, their specificity and selectivity, and to gain insight into the role of cellular zinc in physiological processes such as infection, immunity and cancer.

1. Chemical context

Divalent zinc (Zn2+) is a highly abundant and essential nutrient in the human body and is required in nearly all cellular function including cell growth, DNA repair, and immune function (Berg & Shi, 1996[Berg, J. M. & Shi, Y. (1996). Science 271, 1081-1085.]; Lonergan & Skaar, 2019[Lonergan, Z. R. & Skaar, E. P. (2019). Trends Biochem. Sci. 44, 1041-1056.]). Zinc is important in pharmacology, toxicology and in imaging as cellular probes (Pluth et al., 2011[Pluth, M. D., Tomat, E. & Lippard, S. J. (2011). Annu. Rev. Biochem. 80, 333-355.]; Radford & Lippard, 2013[Radford, R. J. & Lippard, S. J. (2013). Curr. Opin. Chem. Biol. 17, 129-136.]). Like iron, both an excess and a deficiency of zinc lead to cellular and organism-level pathology. It is therefore necessary that the levels and distribution of labile zinc be exquisitely regulated within and outside the cell.

Comparatively, a lot is known about the role of zinc in proteins, as exemplified by the zinc finger structural motif (Frankel et al., 1987[Frankel, A. D., Berg, J. M. & Pabo, C. O. (1987). Proc. Natl Acad. Sci. USA 84, 4841-4845.]; Berg, 1990[Berg, J. M. (1990). Annu. Rev. Biophys. Biophys. Chem. 19, 405-421.]). This, however, may have overshadowed other essential roles of zinc, thus limiting our understanding of cell biology and our ability to design ligands that are able to modulate cellular homeostasis. There is a sizeable pool of `free' or `labile zinc' – non-protein bound zinc attached to a vast number of low mol­ecular weight ligands – that take part in ligand binding and ligand exchange within and outside the cell. There is a need to investigate the function of labile zinc within cells and tissues. This requires tools that can detect 'free' zinc ion species in a qu­anti­tative manner, reporting their exact cellular location and precise inter­action.

Zinc chelators are such tools, but they have not been well studied (Dean et al., 2012[Dean, K. M., Qin, Y. & Palmer, A. E. (2012). Biochim. Biophys. Acta 1823, 1406-1415.]). Zinc chelators are important for zinc ion sequestration and transport, and can be used as probes for imaging. Zinc-chelating agents can be designed with respect to affinity, hydro­phobicity, lipophilicity and specificity for diverse metals – the basis of zinc preference for donor atoms and coordination chemistry. Current zinc probes lack specificity and may also have side effects in living systems (Krężel & Maret, 2016[Krężel, A. & Maret, W. (2016). Arch. Biochem. Biophys. 611, 3-19.]; Catapano et al., 2018[Catapano, M. C., Tvrdý, V., Karlíčková, J., Mercolini, L. & Mladěnka, P. (2018). Bioorg. Chem. 77, 287-292.]). The search for chelators of improved efficacy with no side effects remains a distant goal.

Chelating ligands have therapeutic and diagnostic use in the clinic and in research. The biological activities of metal-bound ligand complexes differ from those of either the ligand or the metal ion itself, and increased or decreased biological activity has been reported for several transition metal complexes. Of clinical inter­est, Richardson and coworkers have demonstrated that the Schiff base ligand series 2-(di-2-pyridinyl­methyl­ene)-N,N-dimethyl-hydrazinecarbo­thio­amide (Dp44mT), N,N-dimethyl-2-[phen­yl(pyridin-2-yl)methyl­idene]hydra­zine­carbo­thio­amide (Bp44mT), and di-2-pyridyl­ketone 4-cyclo­hexyl-4-methyl-3-thio­semicarbazone (DpC) used as iron chelators have strong anti-tumor response (Yuan et al., 2004[Yuan, J., Lovejoy, D. B. & Richardson, D. R. (2004). Blood 104, 1450-1458.]; Yu et al., 2011[Yu, Y., Suryo Rahmanto, Y., Hawkins, C. L. & Richardson, D. R. (2011). Mol. Pharmacol. 79, 921-931.]; Heffeter et al., 2019[Heffeter, P., Pape, V. F. S., Enyedy, É. A., Keppler, B. K., Szakacs, G. & Kowol, C. R. (2019). Antioxid. Redox Signal. 30, 1062-1082.]). Bp44mT (neutral mol­ecule C15H16N4S, anion C15H15N4S) is the ligand, L1. Richardson and colleagues also showed that these chelators in complex with metals have additional properties and are able to overcome clinical drug resistance. Specifically, the zinc complexes of Dp44mT, DpC and L1 have potent cytotoxic activity against cancer cells and are able to target the lysosome through transmetallation with copper (Yu et al., 2012[Yu, Y., Suryo Rahmanto, Y. & Richardson, D. R. (2012). Br. J. Pharmacol. 165, 148-166.]; Sestak et al., 2015[Sestak, V., Stariat, J., Cermanova, J., Potuckova, E., Chladek, J., Roh, J., Bures, J., Jansova, H., Prusa, P., Sterba, M., Micuda, S., Simunek, T., Kalinowski, D. S., Richardson, D. R. & Kovarikova, P. (2015). Oncotarget 6, 42411-42428.]; Stacy et al., 2016[Stacy, A. E., Palanimuthu, D., Bernhardt, P. V., Kalinowski, D. S., Jansson, P. J. & Richardson, D. R. (2016). J. Med. Chem. 59, 8601-8620.]). Metals, especially iron and zinc, are also crucial at the inter­section of immunology and infectious diseases (Weinberg, 1984[Weinberg, E. D. (1984). Physiol. Rev. 64, 65-102.]; Cassat & Skaar, 2013[Cassat, J. E. & Skaar, E. P. (2013). Cell Host Microbe 13, 509-519.]; Nairz & Weiss, 2020[Nairz, M. & Weiss, G. (2020). Mol. Aspects Med. 75, 100864.]). Their coordination chemistry and stereochemistry are important with respect to their transport and recognition in the microbial niche (Winkelmann & Braun, 1981[Winkelmann, G. & Braun, V. (1981). FEMS Microbiol. Lett. 11, 237-241.]; Adjimani & Emery, 1988[Adjimani, J. P. & Emery, T. (1988). J. Bacteriol. 170, 1377-1379.]; Juttukonda et al., 2020[Juttukonda, L. J., Beavers, W. N., Unsihuay, D., Kim, K., Pishchany, G., Horning, K. J., Weiss, A., Al-Tameemi, H., Boyd, J. M., Sulikowski, G. A., Bowman, A. B. & Skaar, E. P. (2020). mBio 11, e02555-20.]). Recently, Skaar and coworkers have shown convincingly that dietary zinc deficiency critically degrades the immune response against pneumonia and promotes Acinetobacter baumannii lung infection in elders and in patients who require ventilation (Palmer et al., 2024[Palmer, L. D., Traina, K. A., Juttukonda, L. J., Lonergan, Z. R., Bansah, D. A., Ren, X., Geary, J. H., Pinelli, C., Boyd, K. L., Yang, T. S. & Skaar, E. P. (2024). Nat. Microbiol. 9, 3196-3209.]).

The many excellent biological attributes of Zn2+ ion derive from its electronic structure as a 3d10 ion. As such, zinc lacks ligand field stabilization energy or preference for a specific geometry. Zinc has coordination flexibility that facilitates rapid adoption of different structural geometries depending on the ligand and the environment – the electrostatic and steric inter­actions around the ligands – and not by the ion's electronic ligand field stabilization energy. This also facilitates rapid ligand exchange. These properties endow zinc with its adaptability enabling it to participate in many biological functions and rapidly with diverse coordination and hapticity (Krężel & Maret, 2016[Krężel, A. & Maret, W. (2016). Arch. Biochem. Biophys. 611, 3-19.]). When zinc is penta-coordinate, it may adopt either a trigonal–bipyramidal or square-pyramidal structure. Also, the filled d orbitals precludes it from taking part in redox reactions. Zinc has a single normal oxidation state (+2) and the zinc ion only functions as a Lewis acid, a property crucial for its buffering and anti­oxidant role in the cell (Krężel & Maret, 2016[Krężel, A. & Maret, W. (2016). Arch. Biochem. Biophys. 611, 3-19.]). Biological zinc is predominantly coordinated by nitro­gen donor atoms (as in histidine), sulfur donor atoms (as in cysteine residues), and with O donor atoms, as in glutamate or aspartate (Karlin et al., 1997[Karlin, S., Zhu, Z. Y. & Karlin, K. D. (1997). Proc. Natl Acad. Sci. USA 94, 14225-14230.]).

We recently described a more and highly effective derivative chelating agent, the ligand (E)-N-ethyl-2-(phen­yl(pyridin-2-yl)methyl­ene)hydrazine-1-carbo­thio­amide (neutral mol­ecule C16H18N3S, anion C16H17N3S) (L2). L2 is commonly called 2-phenyl-1-pyridin-2-yl-ethanone or PPYeT (Kumari et al., 2012[Kumari, N., Xu, M., Kovalskyy, D., Dhawan, S. & Nekhai, S. (2012). Blood 120, 1052.]) and is built on the common existing thio­semicarbazone (TSC) backbone (Parry et al., 2025[Parry, C. S., Li, Y., Kwofie, S. K., Valencia, J., Niedermaier, C. A. T., Ramadhar, T. R., Nekhai, S., Wilson, M. D. & Butcher, R. J. (2025). J. Mol. Struct. 1334, 141859.]; Bonaccorso et al., 2019[Bonaccorso, C., Marzo, T. & La Mendola, D. (2019). Pharmaceuticals 13, 4.]), after ligand L1 (Yu et al., 2012[Yu, Y., Suryo Rahmanto, Y. & Richardson, D. R. (2012). Br. J. Pharmacol. 165, 148-166.]). L2 has a more flexible scaffold compared to previously reported thio­semicarbazone BpT-based chelators and was more specific and had greater chelating effectiveness with fewer side effects (Kumari et al., 2012[Kumari, N., Xu, M., Kovalskyy, D., Dhawan, S. & Nekhai, S. (2012). Blood 120, 1052.]). L2 has also shown unusual effectiveness as an anti­viral agent. The reported efficacy and desirable properties have spurred us to carry out detailed structural analyses of this new class of metal chelators. To that end, we have prepared the respective zinc compounds of L1 and L2 [(I) and (II), respectively] to gain insight to their structure, metal-bound complexes and coordination chemistry to elucidate their mechanism, the basis of their specificity and selectivity, and to expand their use.

[Scheme 1]

2. Structural commentary

The crystal structure of the reaction product of zinc-ion binding to ligand L1 is a 2:2 complex (I), a dimer of monomeric zinc-bound ligands. Likewise, the structure of the reaction product of zinc and L2 is a 2:2 complex (II). In both compounds, the organic ligand is bound to zinc in a tridentate fashion through the N,N′,S donor set, as expected. Further, the two metal ions in the complex are bridged by two acetate linkers to form 2:2 complexes. Selected geometrical data are listed in Tables 1[link] and 2[link].

Table 1
Selected bond lengths (Å) for (I)[link]

Zn1—S1 2.3705 (17) Zn1—O2i 2.006 (5)
Zn1—N1 2.117 (3) Zn1—O1A 2.114 (14)
Zn1—N4 2.159 (5) Zn1—O1Ai 2.052 (18)
Zn1—O1 2.018 (5) Zn1—O2Ai 2.410 (18)
Symmetry code: (i) [-x, -y+1, -z+1].

Table 2
Selected bond lengths (Å) for (II)[link]

Zn1—S1 2.3360 (6) Zn1—N1 2.1017 (19)
Zn1—O1i 2.0547 (17) Zn1—N3 2.1128 (19)
Zn1—O1 2.0567 (16)    
Symmetry code: (i) [-x, -y+1, -z+1].

We encountered disorder of the acetate ion in (I) during refinement. The disorder was modeled with two equivalent orientations (Müller et al., 2006[Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement. A Crystallographer's Guide to SHELXL edited by P. Müller. Oxford University Press.]; Herbst-Irmer, 2016[Herbst-Irmer, R. (2016). Z. Kristallogr. Cryst. Mater. 231, 573-581.]; Archana et al., 2022[Archana, S. D., Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Butcher, R. J. (2022). Acta Cryst. E78, 1016-1027.]). The major domain was assigned 76% occupancy; this is the orientation described above as five-coordinate (Fig. 1[link]a). The alternate domain has a zinc metal center coordinating, as previously described, with the ligand anion through the N,N′,S donor set but with additional coordinate bonds to both oxygen atoms of an acetate linker and to a single O atom from the second acetate linker, so that each zinc center altogether forms a six-coordinate geometry (24% occupancy) (Fig. 1[link]b). The two domains together, superimposed as in the crystal, are shown in Fig. 2[link], with zinc-coordinating bonds of the minor domain shown with dashed lines in white. A tilt of the C—C stem (bond C16A—C17A) of the acetate group can also be seen.

[Figure 1]
Figure 1
Disordered structure of (I): (a) the major disorder component, in which the zinc ion binds to ligand donors in 5-coordinate mode; (b) the minor disorder component, in which the zinc atom binds in a six-coordinate mode. Atoms with suffix a are generated by the symmetry operationx, 1 − y, 1 − z.
[Figure 2]
Figure 2
Overlay of the major and minor components of (I). Coordinating bonds of the minor component are shown in dashed lines in white. Atoms with suffix a are generated by the symmetry operationx, 1 − y, 1 − z.

The structure of (II), also a 2:2 complex, on the other hand, was not twinned. In this structure, a zinc ion coordinates the N,N′,S donor set of the L2 anionic ligand in (II) and with two oxygen atoms: one O atom from each of the two acetate linkers, in penta-coordinate mode. The other zinc ion makes similar coordination with the mixed donor set. In distinct contrast with either of the two zinc coordination modes seen in complex (I), in complex (II), one O atom in the acetate linker is left uncoordinated (Fig. 3[link]).

[Figure 3]
Figure 3
The mol­ecular structure of (II). Atoms with suffix a are generated by the symmetry operationx, 1 − y, 1 − z.

Therefore, from the two crystal structures, we find three distinct zinc coordination modes (Fig. 4[link]). Modes 1 and 2 correspond to the major and minor domains of complex (I) (Fig. 1[link]; panels a and b, respectively), and mode 3 corresponds to the sole structure of (II).

[Figure 4]
Figure 4
The coordination modes of the zinc centers in the metal-bound complexes. Three distinct coordination modes are discernible in our analysis.

A notable feature of Zn2+ ions is inducing dimerization. Dimer formation would be favored especially in the context of heterocyclic ligands such as L1 and L2 presenting with a mixed donor set and the carboxyl­ate group from the metal salt serving as a bridge. Dimerization allows the formation of more ordered structures with greater stability and enhanced functional efficacy including cooperative binding. Zinc ion-induced dimerization is common in proteins; examples are zinc fingers and class II major histocompatibility complex mol­ecules (Wang et al., 2001[Wang, B. S., Grant, R. A. & Pabo, C. O. (2001). Nat. Struct. Biol. 8, 589-593.]; Li et al., 2007[Li, H., Zhao, Y., Guo, Y., Li, Z., Eisele, L. & Mourad, W. (2007). J. Biol. Chem. 282, 5991-6000.]). Zinc ion-induced dimerization is also important in small mol­ecule ligand inter­actions in cells and tissues.

Comparing the complexed structures in this study, the zinc coordinate bonds appear to be shorter in (II) than in (I): for example, the zinc–pyridine N bond length in (II), Zn1—N3 = 2.113 (2) Å is perceptibly shorter than in (I) [2.159 (5) Å]. This trend is true for zinc coordination to the donors within the ligand (pyridine N, imine N and sulfur S1) (Tables 1[link] and 2[link]). Zinc coordinate bonding bridging the O atoms from the acetate anion remain tight in complex (II) [Zn1—O1i; symmetry code: (i) −x, −y + 1, −z + 1, Zn1—O1 average bond length = 2.055 Å]. Comparable bond lengths in complex (I) major domain are: Zn1—O2i = 2.006 (5) Å and Zn1—O1 = 2.018 (5) Å indicating there is strong bonding through the bridging O atoms in the major disorder component of (I). The corresponding bond lengths in the minor component are Zn1—O2Ai = 2.410 (18) Å, Zn1—O1Ai = 2.052 (18) Å and Zn1—O1A = 2.114 (14) Å (Tables 1[link] and 2[link]).

In the major component of (I), the zinc center makes a coordinate bond with an O atom from each acetate group; the angle at the zinc center, O2i—Zn1—O1, is 121.0 (3)°. The second zinc center binds in the same manner in this dinuclear dimer structure. In the minor component of (I), the acetate group is rotated by 26.7 (16)° (C16—C17 bond versus C16A—C17A) compared to the acetate group in the major component (Fig. 2[link]), so that both O atoms can coordinate with Zn1 [O2Ai—Zn1—O1Ai = 54.7 (6)°]. Atom O1Ai coordinates further with Zn1i. The angle made by this distinctive bond, Zn1—O1Ai—Zn1i is 125.1 (8)°. A comparable but different mode of coordination is seen in (II): one O atom of an acetate group bridges the two zinc centers with no involvement of the other O atom in the group and the second acetate group shows the same bonding mode by symmetry [Zn1—O—Zn1i = 101.26 (7)°].

3. Supra­molecular features

There is an abundance of donor atoms in both structures. However, we found only three hydrogen bonds (Table 3[link]) in complex (I) and none in complex (II). These contribute subtly but significantly to packing in both the major and minor disorder components of (I). In the minor domain, hydrogen atom H14 from a terminal methyl group (C14) inter­acts with the sulfur atom of an adjacent mol­ecule; the same H atom forms a hydrogen bond with an O atom of an acetate bridging group. In the case of the major domain, H14 in the same manner inter­acts with sulfur atom S1 of an adjacent mol­ecule; additionally, hydrogen atom H17 from the methyl group carbon C17 of the bridging acetate anion reaches to O atom (O1) of an acetate bridging group in a nearby mol­ecule in the major domain configuration. Carbon has a low electronegativity value and is typically not considered a hydrogen-bond donor in the same regard as oxygen, nitro­gen or fluorine. However, these carbon hydrogen-bond donors (C14 and C17) are connected to amide N and acetate –COO groups, respectively and contribute weak but significant inter­actions. The arrangement and cohesion of mol­ecules in the structure of complex (I) does not depend solely on hydrogen bonds. The packing scheme reveals favorable inter­actions between phenyl rings and the aliphatic stem of neighboring mol­ecules contributing favorable van der Waals inter­actions and weak dispersive forces.

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯S1ii 0.96 3.00 3.832 (7) 146
C14—H14B⋯O2Aiii 0.96 2.65 3.36 (2) 131
C17—H17C⋯O1iv 0.96 2.57 3.493 (9) 160
Symmetry codes: (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x, -y+1, -z+2].

It is notable that, even with the abundance of electron donors (hanging double-bonded O atom from the bridging group) and N and S donors from the ligand (Fig. 5[link]), no hydrogen bonds are found in the extended structure of complex (II). Fig. 5[link] depicts packing in the crystal and shows a view down [100]. There are no electron acceptors in the vicinity of the O donors. The packing scheme shows additive alignment of hydro­phobic groups (phenyl and aliphatic groups) in addition to potential dispersive forces. The distance between a terminal methyl group and a phenyl ring is 4.54 Å. There is an abundance of –CH3 and –CH groups near the exposed double-bonded O atom that can contribute dispersive forces to packing. We detected no aromatic ππ stacking inter­actions. Though there is an abundance of donor groups in the starting ligand, the metal-bound complexes may have lipophilic profile and stability values different from the parent ligand, as we observe in this complex (II).

[Figure 5]
Figure 5
Packing structure of (II). A view down [100] is shown along with the unit cell.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.44, update September 2023; search date: March 14, 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures similar to L2 yielded no results. A search on L1 gave 36 unique hits, 11 of which are unbound ligands and 25 are metal-bound complexes. CSD refcode OBUHAW (Jayakumar et al., 2011[Jayakumar, K., Sithambaresan, M. & Prathapachandra Kurup, M. R. (2011). Acta Cryst. E67, o3195.]) is recognized as ligand L1 in its unbound form, also JURBUX (Parry et al., 2025[Parry, C. S., Li, Y., Kwofie, S. K., Valencia, J., Niedermaier, C. A. T., Ramadhar, T. R., Nekhai, S., Wilson, M. D. & Butcher, R. J. (2025). J. Mol. Struct. 1334, 141859.]), that we used for our 2:2 zinc complex (I) being reported here. Notable in this set is structure RIYMUH (Valdés-Martínez et al., 1996[Valdés-Martínez, J., Toscano, R., Zentella-Dehesa, A., Salberg, M. M., Bain, G. A. & West, D. X. (1996). Polyhedron 15, 427-431.]), a derivative of OBUHAW that has been evaluated in phase 1 clinical trials for use against cancers (Heffeter et al., 2019[Heffeter, P., Pape, V. F. S., Enyedy, É. A., Keppler, B. K., Szakacs, G. & Kowol, C. R. (2019). Antioxid. Redox Signal. 30, 1062-1082.]).

The complexes we found in the search are in 1:1, 1:2 or 2:2 metal: ligand ratio and the ligands are tridentate. ARARAM is a centrosymmetric dimer of two monomeric complexes with two chloro groups bridging at the metal centers (Sreekanth & Kurup, 2003[Sreekanth, A. & Kurup, M. R. P. (2003). Polyhedron 22, 3321-3332.]). ARAREQ is similar but it is a monomeric complex, with bromide instead of chloride (Sreekanth & Kurup, 2003[Sreekanth, A. & Kurup, M. R. P. (2003). Polyhedron 22, 3321-3332.]). Coordination around the Cu center is square planar. A 1:2 Cu complex forms in AWEQUQ (Stacy et al., 2016[Stacy, A. E., Palanimuthu, D., Bernhardt, P. V., Kalinowski, D. S., Jansson, P. J. & Richardson, D. R. (2016). J. Med. Chem. 59, 8601-8620.]), where the single positive charge at the copper center is balanced by the perchlorate anion ClO4. BIHSIX (Fang et al., 2018[Fang, Y., Li, J., Han, P. P., Han, Q. X. & Li, M. X. (2018). Toxicol. Res. 7, 987-993.]) is a 1:2 complex of zinc and L1. In BIHSIX, L1 is tridentate and coordinates with zinc at the L1 imine N, pyridine N and sulfur S atoms as in our structure (I); the second ligand in BIHSIX binds in the same manner. However, in distinct contrast with BIHSIX, our structure (I) is a 2:2 (dinuclear) dimer, though BIHSIX and our (I) complex both formed in space group P21/c.

It is the structure BOFKIS (Jayakumar et al., 2014[Jayakumar, K., Sithambaresan, M., Aravindakshan, A. A. & Kurup, M. R. P. (2014). Polyhedron 75, 50-56.]), a complex of L1 with bound copper, to make a dinuclear dimer bridged by two acetate moiety O atoms, that best approximates how zinc is coordinated in our structures, specifically, the major domain of complex (I) (Fig. 1[link]a). The other complexes that the search gave are of uncommon metals such as vanadium (DEMKEM; Sreekanth et al., 2006[Sreekanth, A., Fun, H.-K., John, R. P., Kurup, M. R. P. & Chantrapromma, S. (2006). Acta Cryst. E62, m1919-m1921.]) and gold (QALDAJ; Sreekanth et al., 2004[Sreekanth, A., Fun, H.-K. & Kurup, M. R. P. (2004). Inorg. Chem. Commun. 7, 1250-1253.]).

5. Synthesis and crystallization

The ligands L1 and L2 were synthesized for us by Enamine LLC (Monmouth Junction, New Jersey, USA) as >95% pure. The zinc-bound complexes of the ligands were obtained by incubating the ligands in a suitable solvent with zinc acetate. We obtained diffraction-quality crystals by vapor diffusion from aceto­nitrile [solvent for structure (I)] and from acetone [for structure (II)]. In either case we used diethyl ether as precipitant. Crystals were harvested from the vial and trimmed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. We encountered non-merohedral twinning in the diffraction dataset from complex (I), and we did not merge the data, hence no Rint value is reported for this dataset. Hydrogen atoms were placed and allowed to refine using a riding model.

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula [Zn2(C15H15N4S)2(C2H3O2)2] [Zn2(C16H17N4S)2(C2H3O2)2]
Mr 815.57 843.62
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 296 100
a, b, c (Å) 10.8384 (1), 20.0381 (2), 8.2914 (1) 9.3280 (2), 9.9979 (2), 10.5761 (2)
α, β, γ (°) 90, 91.342 (1), 90 67.101 (2), 83.267 (2), 87.150 (1)
V3) 1800.24 (3) 902.33 (3)
Z 2 1
Radiation type Cu Kα Cu Kα
μ (mm−1) 3.13 3.15
Crystal size (mm) 0.16 × 0.08 × 0.06 0.6 × 0.1 × 0.1
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO 1.171.42.49. Rigaku Oxford Diffraction, Yarnton, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO 1.171.42.49. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.736, 0.849 0.761, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8417, 8417, 7097 17092, 3599, 3314
Rint ? 0.037
(sin θ/λ)max−1) 0.630 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.217, 1.05 0.035, 0.099, 1.07
No. of reflections 8417 3599
No. of parameters 244 237
No. of restraints 6 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −1.01 1.04, −0.61
Computer programs: CrysAlis PRO 1.171.42.49 (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO 1.171.42.49. Rigaku Oxford Diffraction, Yarnton, England.]), CrysAlis PRO 1.171.43.91a (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO 1.171.43.91a. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Di-µ-acetato-bis({N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)) (I) top
Crystal data top
[Zn2(C15H15N4S)2(C2H3O2)2]F(000) = 840
Mr = 815.57Dx = 1.505 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.8384 (1) ÅCell parameters from 16893 reflections
b = 20.0381 (2) Åθ = 4.0–75.6°
c = 8.2914 (1) ŵ = 3.13 mm1
β = 91.342 (1)°T = 296 K
V = 1800.24 (3) Å3Prism, orange
Z = 20.16 × 0.08 × 0.06 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
8417 measured reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source8417 independent reflections
Mirror monochromator7097 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1θmax = 76.3°, θmin = 4.1°
ω scansh = 1313
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 2425
Tmin = 0.736, Tmax = 0.849l = 1010
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.217 w = 1/[σ2(Fo2) + (0.1154P)2 + 1.5821P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
8417 reflectionsΔρmax = 0.57 e Å3
244 parametersΔρmin = 1.01 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.12170 (6)0.44522 (3)0.57934 (7)0.0620 (3)
S10.01854 (11)0.34367 (8)0.5248 (2)0.0798 (4)
N10.2602 (3)0.37741 (17)0.6499 (4)0.0536 (8)
N20.2478 (3)0.31082 (16)0.6317 (5)0.0547 (8)
N30.1212 (4)0.2251 (2)0.5758 (6)0.0748 (12)
N40.2609 (5)0.50729 (19)0.6857 (5)0.0677 (10)
C10.3636 (5)0.4755 (2)0.7234 (5)0.0601 (10)
C20.4601 (6)0.5100 (3)0.7907 (8)0.0817 (16)
H20.5323930.4877590.8163780.098*
C30.4488 (9)0.5777 (3)0.8195 (9)0.101 (2)
H30.5138220.6012710.8634380.122*
C40.3429 (9)0.6096 (3)0.7837 (8)0.099 (2)
H40.3334120.6549990.8039160.119*
C50.2483 (8)0.5725 (3)0.7156 (7)0.0875 (19)
H50.1748150.5936460.6904380.105*
C60.4746 (4)0.3618 (2)0.7337 (5)0.0530 (9)
C70.4657 (5)0.3067 (2)0.8357 (6)0.0615 (10)
H70.3890710.2936530.8775740.074*
C80.5704 (6)0.2714 (3)0.8748 (8)0.0812 (17)
H80.5643620.2351860.9448690.097*
C90.6835 (6)0.2896 (4)0.8104 (11)0.101 (3)
H90.7539220.2661960.8385110.121*
C100.6930 (5)0.3419 (4)0.7054 (10)0.094 (2)
H100.7693340.3528620.6589770.113*
C110.5889 (5)0.3791 (3)0.6674 (7)0.0726 (13)
H110.5960520.4153810.5979290.087*
C120.3637 (4)0.4022 (2)0.6978 (5)0.0523 (9)
C130.1374 (4)0.2914 (2)0.5811 (5)0.0606 (10)
C140.2110 (6)0.1788 (3)0.6350 (8)0.0811 (15)
H14A0.2809890.2029720.6731690.122*
H14B0.1748960.1532280.7219510.122*
H14C0.2369590.1493180.5495200.122*
C150.0079 (7)0.1946 (4)0.5192 (11)0.107 (2)
H15A0.0468170.1860370.6095140.161*
H15B0.0312770.2244070.4455240.161*
H15C0.0272360.1534120.4652390.161*
O10.0062 (5)0.4927 (4)0.7356 (7)0.0946 (18)0.756 (6)
O20.1716 (5)0.5131 (3)0.6323 (6)0.0787 (15)0.756 (6)
C160.1073 (7)0.4970 (7)0.7512 (8)0.0500 (16)0.756 (6)
C170.1712 (9)0.4881 (5)0.9105 (9)0.076 (2)0.756 (6)
H17A0.2463710.5134410.9130510.114*0.756 (6)
H17B0.1898580.4417110.9269140.114*0.756 (6)
H17C0.1186020.5033860.9944520.114*0.756 (6)
O1A0.0452 (14)0.4995 (11)0.601 (2)0.0946 (18)0.244 (6)
O2A0.2194 (16)0.5302 (11)0.678 (2)0.0787 (15)0.244 (6)
C16A0.120 (3)0.502 (2)0.715 (4)0.0500 (16)0.244 (6)
C17A0.122 (3)0.4713 (16)0.875 (3)0.076 (2)0.244 (6)
H17D0.2027690.4536910.8994510.114*0.244 (6)
H17E0.0625790.4357780.8775410.114*0.244 (6)
H17F0.1017350.5042970.9543020.114*0.244 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0618 (4)0.0728 (4)0.0514 (4)0.0222 (3)0.0024 (3)0.0105 (2)
S10.0484 (6)0.1006 (10)0.0910 (10)0.0045 (5)0.0119 (6)0.0123 (7)
N10.0529 (18)0.0538 (17)0.0539 (19)0.0059 (13)0.0001 (15)0.0022 (14)
N20.0465 (17)0.0509 (17)0.067 (2)0.0003 (13)0.0030 (15)0.0026 (14)
N30.064 (2)0.074 (3)0.087 (3)0.0191 (18)0.005 (2)0.002 (2)
N40.097 (3)0.0536 (19)0.052 (2)0.0192 (18)0.0040 (19)0.0056 (15)
C10.080 (3)0.054 (2)0.046 (2)0.0020 (19)0.000 (2)0.0037 (16)
C20.105 (4)0.058 (3)0.084 (4)0.005 (3)0.019 (3)0.007 (2)
C30.151 (7)0.059 (3)0.095 (4)0.019 (4)0.018 (4)0.004 (3)
C40.175 (8)0.046 (2)0.077 (4)0.006 (3)0.005 (4)0.002 (2)
C50.142 (6)0.057 (3)0.062 (3)0.028 (3)0.008 (3)0.011 (2)
C60.049 (2)0.057 (2)0.053 (2)0.0027 (15)0.0048 (17)0.0061 (16)
C70.063 (3)0.062 (2)0.059 (3)0.0090 (18)0.006 (2)0.0016 (18)
C80.091 (4)0.066 (3)0.088 (4)0.021 (3)0.032 (3)0.009 (2)
C90.067 (3)0.096 (4)0.141 (6)0.030 (3)0.045 (4)0.052 (4)
C100.047 (2)0.105 (5)0.131 (6)0.000 (3)0.003 (3)0.052 (4)
C110.059 (3)0.078 (3)0.080 (3)0.012 (2)0.006 (2)0.014 (2)
C120.052 (2)0.054 (2)0.050 (2)0.0024 (16)0.0000 (17)0.0023 (16)
C130.054 (2)0.070 (3)0.058 (3)0.0034 (18)0.0021 (19)0.0053 (19)
C140.080 (3)0.059 (3)0.103 (4)0.009 (2)0.015 (3)0.008 (3)
C150.087 (4)0.104 (5)0.131 (6)0.040 (4)0.020 (4)0.007 (4)
O10.059 (3)0.153 (5)0.072 (3)0.036 (3)0.008 (2)0.036 (3)
O20.051 (3)0.123 (4)0.061 (3)0.003 (3)0.005 (2)0.024 (3)
C160.055 (3)0.052 (3)0.043 (4)0.004 (2)0.005 (3)0.003 (4)
C170.081 (6)0.096 (6)0.050 (4)0.011 (4)0.002 (3)0.005 (3)
O1A0.059 (3)0.153 (5)0.072 (3)0.036 (3)0.008 (2)0.036 (3)
O2A0.051 (3)0.123 (4)0.061 (3)0.003 (3)0.005 (2)0.024 (3)
C16A0.055 (3)0.052 (3)0.043 (4)0.004 (2)0.005 (3)0.003 (4)
C17A0.081 (6)0.096 (6)0.050 (4)0.011 (4)0.002 (3)0.005 (3)
Geometric parameters (Å, º) top
Zn1—S12.3705 (17)C6—C121.485 (6)
Zn1—N12.117 (3)C7—H70.9300
Zn1—N42.159 (5)C7—C81.383 (7)
Zn1—O12.018 (5)C8—H80.9300
Zn1—O2i2.006 (5)C8—C91.375 (11)
Zn1—O1A2.114 (14)C9—H90.9300
Zn1—O1Ai2.052 (18)C9—C101.365 (12)
Zn1—O2Ai2.410 (18)C10—H100.9300
S1—C131.733 (5)C10—C111.394 (9)
N1—N21.350 (5)C11—H110.9300
N1—C121.298 (6)C14—H14A0.9600
N2—C131.334 (6)C14—H14B0.9600
N3—C131.342 (7)C14—H14C0.9600
N3—C141.438 (8)C15—H15A0.9600
N3—C151.459 (7)C15—H15B0.9600
N4—C11.327 (7)C15—H15C0.9600
N4—C51.336 (7)O1—C161.237 (9)
C1—C21.382 (8)O2—C161.262 (8)
C1—C121.485 (6)C16—C171.488 (10)
C2—H20.9300C17—H17A0.9600
C2—C31.383 (8)C17—H17B0.9600
C3—H30.9300C17—H17C0.9600
C3—C41.352 (11)O1A—C16A1.24 (2)
C4—H40.9300O2A—C16A1.26 (2)
C4—C51.397 (11)C16A—C17A1.46 (2)
C5—H50.9300C17A—H17D0.9600
C6—C71.392 (6)C17A—H17E0.9600
C6—C111.387 (7)C17A—H17F0.9600
S1—Zn1—O2Ai101.9 (5)C6—C7—H7119.9
N1—Zn1—S180.93 (10)C8—C7—C6120.2 (5)
N1—Zn1—N475.53 (14)C8—C7—H7119.9
N1—Zn1—O2Ai94.4 (4)C7—C8—H8119.9
N4—Zn1—S1155.44 (10)C9—C8—C7120.1 (6)
N4—Zn1—O2Ai87.0 (5)C9—C8—H8119.9
O1—Zn1—S1103.8 (2)C8—C9—H9119.8
O1—Zn1—N1123.9 (2)C10—C9—C8120.4 (5)
O1—Zn1—N484.0 (2)C10—C9—H9119.8
O1—Zn1—O1Ai87.6 (4)C9—C10—H10119.8
O1—Zn1—O2Ai136.5 (6)C9—C10—C11120.3 (6)
O2i—Zn1—S1108.03 (19)C11—C10—H10119.8
O2i—Zn1—N1109.3 (2)C6—C11—C10119.8 (6)
O2i—Zn1—N486.6 (2)C6—C11—H11120.1
O2i—Zn1—O1121.0 (3)C10—C11—H11120.1
O2i—Zn1—O1Ai40.8 (5)N1—C12—C1115.1 (4)
O2i—Zn1—O2Ai15.7 (5)N1—C12—C6124.2 (4)
O1A—Zn1—S192.9 (6)C1—C12—C6120.6 (4)
O1Ai—Zn1—S197.1 (6)N2—C13—S1125.9 (4)
O1Ai—Zn1—N1148.1 (4)N2—C13—N3114.7 (4)
O1A—Zn1—N1156.5 (6)N3—C13—S1119.4 (3)
O1A—Zn1—N4105.9 (5)N3—C14—H14A109.5
O1Ai—Zn1—N4106.5 (6)N3—C14—H14B109.5
O1Ai—Zn1—O1A54.9 (8)N3—C14—H14C109.5
O1A—Zn1—O2Ai109.1 (7)H14A—C14—H14B109.5
O1Ai—Zn1—O2Ai54.7 (6)H14A—C14—H14C109.5
C13—S1—Zn196.33 (16)H14B—C14—H14C109.5
N2—N1—Zn1122.0 (3)N3—C15—H15A109.5
C12—N1—Zn1117.6 (3)N3—C15—H15B109.5
C12—N1—N2120.1 (3)N3—C15—H15C109.5
C13—N2—N1114.6 (3)H15A—C15—H15B109.5
C13—N3—C14122.5 (4)H15A—C15—H15C109.5
C13—N3—C15122.4 (5)H15B—C15—H15C109.5
C14—N3—C15114.9 (5)C16—O1—Zn1134.4 (6)
C1—N4—Zn1114.7 (3)C16—O2—Zn1i130.3 (6)
C1—N4—C5120.6 (5)O1—C16—O2120.1 (7)
C5—N4—Zn1124.7 (4)O1—C16—C17121.7 (6)
N4—C1—C2120.2 (4)O2—C16—C17118.0 (7)
N4—C1—C12116.0 (4)C16—C17—H17A109.5
C2—C1—C12123.7 (4)C16—C17—H17B109.5
C1—C2—H2120.2C16—C17—H17C109.5
C1—C2—C3119.7 (6)H17A—C17—H17B109.5
C3—C2—H2120.2H17A—C17—H17C109.5
C2—C3—H3120.0H17B—C17—H17C109.5
C4—C3—C2119.9 (6)Zn1i—O1A—Zn1125.1 (8)
C4—C3—H3120.0C16A—O1A—Zn1129.3 (18)
C3—C4—H4120.9O1A—C16A—O2A112 (2)
C3—C4—C5118.1 (5)O1A—C16A—C17A132 (3)
C5—C4—H4120.9O2A—C16A—C17A115 (2)
N4—C5—C4121.5 (6)C16A—C17A—H17D109.5
N4—C5—H5119.2C16A—C17A—H17E109.5
C4—C5—H5119.2C16A—C17A—H17F109.5
C7—C6—C12120.6 (4)H17D—C17A—H17E109.5
C11—C6—C7119.2 (4)H17D—C17A—H17F109.5
C11—C6—C12120.3 (4)H17E—C17A—H17F109.5
Zn1—S1—C13—N21.8 (4)C1—C2—C3—C40.8 (11)
Zn1—S1—C13—N3178.0 (4)C2—C1—C12—N1172.7 (5)
Zn1—N1—N2—C136.3 (5)C2—C1—C12—C64.5 (7)
Zn1—N1—C12—C110.1 (5)C2—C3—C4—C51.0 (11)
Zn1—N1—C12—C6172.9 (3)C3—C4—C5—N40.1 (10)
Zn1—N4—C1—C2179.3 (4)C5—N4—C1—C21.6 (8)
Zn1—N4—C1—C124.1 (5)C5—N4—C1—C12175.0 (5)
Zn1—N4—C5—C4179.5 (5)C6—C7—C8—C91.4 (8)
Zn1—O1—C16—O251.2 (18)C7—C6—C11—C100.9 (7)
Zn1—O1—C16—C17133.0 (9)C7—C6—C12—N150.6 (6)
Zn1i—O2—C16—O115.9 (18)C7—C6—C12—C1126.3 (5)
Zn1i—O2—C16—C17160.0 (7)C7—C8—C9—C101.1 (9)
Zn1—O1A—C16A—O2A169 (2)C8—C9—C10—C112.6 (9)
Zn1i—O1A—C16A—O2A7 (5)C9—C10—C11—C61.6 (8)
Zn1—O1A—C16A—C17A2 (8)C11—C6—C7—C82.4 (7)
Zn1i—O1A—C16A—C17A178 (5)C11—C6—C12—N1130.3 (5)
Zn1i—O2A—C16A—O1A5 (4)C11—C6—C12—C152.8 (6)
Zn1i—O2A—C16A—C17A178 (4)C12—N1—N2—C13179.7 (4)
N1—N2—C13—S15.2 (6)C12—C1—C2—C3175.9 (6)
N1—N2—C13—N3174.7 (4)C12—C6—C7—C8176.7 (4)
N2—N1—C12—C1176.3 (4)C12—C6—C11—C10178.2 (4)
N2—N1—C12—C60.8 (6)C14—N3—C13—S1173.9 (4)
N4—C1—C2—C30.5 (9)C14—N3—C13—N25.9 (8)
N4—C1—C12—N13.8 (6)C15—N3—C13—S12.0 (8)
N4—C1—C12—C6179.1 (4)C15—N3—C13—N2178.2 (6)
C1—N4—C5—C41.4 (8)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···S1ii0.963.003.832 (7)146
C14—H14B···O2Aiii0.962.653.36 (2)131
C17—H17C···O1iv0.962.573.493 (9)160
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+3/2; (iv) x, y+1, z+2.
Di-µ-acetato-bis({N-ethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)) (II) top
Crystal data top
[Zn2(C16H17N4S)2(C2H3O2)2]Z = 1
Mr = 843.62F(000) = 436
Triclinic, P1Dx = 1.553 Mg m3
a = 9.3280 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.9979 (2) ÅCell parameters from 10059 reflections
c = 10.5761 (2) Åθ = 4.6–75.5°
α = 67.101 (2)°µ = 3.15 mm1
β = 83.267 (2)°T = 100 K
γ = 87.150 (1)°Needle, metallic orangish yellow
V = 902.33 (3) Å30.6 × 0.1 × 0.1 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3599 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3314 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.0000 pixels mm-1θmax = 75.9°, θmin = 4.6°
ω scansh = 1111
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 1212
Tmin = 0.761, Tmax = 1.000l = 138
17092 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.808P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3599 reflectionsΔρmax = 1.04 e Å3
237 parametersΔρmin = 0.61 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. n/a

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.13763 (3)0.56946 (3)0.52595 (3)0.02666 (12)
S10.07920 (7)0.80673 (6)0.50446 (7)0.03498 (16)
O10.03886 (17)0.55584 (18)0.36744 (17)0.0314 (4)
O20.20742 (19)0.6904 (2)0.2109 (2)0.0420 (4)
N10.2769 (2)0.5869 (2)0.66120 (19)0.0257 (4)
N20.2572 (2)0.6924 (2)0.7140 (2)0.0291 (4)
N30.2913 (2)0.4029 (2)0.54080 (19)0.0267 (4)
C10.3747 (2)0.4885 (2)0.7032 (2)0.0261 (5)
C20.1670 (2)0.7967 (2)0.6451 (2)0.0294 (5)
N50.1441 (2)0.9069 (2)0.6877 (2)0.0350 (5)
H50.0818870.9749270.6473160.042*
C40.2163 (3)0.9198 (3)0.7967 (3)0.0380 (6)
H4A0.3205670.9370020.7661810.046*
H4B0.2054780.8283390.8796670.046*
C50.1511 (4)1.0449 (3)0.8317 (3)0.0474 (7)
H5A0.1665871.1358710.7506950.071*
H5B0.1973241.0505810.9080140.071*
H5C0.0472981.0288860.8590570.071*
C60.3890 (2)0.3859 (2)0.6315 (2)0.0243 (4)
C70.4979 (2)0.2824 (2)0.6496 (2)0.0274 (5)
H70.5669770.2721400.7120770.033*
C80.5045 (2)0.1939 (2)0.5752 (2)0.0292 (5)
H80.5781940.1223780.5866220.035*
C90.4035 (3)0.2103 (3)0.4844 (2)0.0305 (5)
H90.4059560.1503580.4332170.037*
C100.2986 (3)0.3169 (3)0.4703 (2)0.0298 (5)
H100.2290270.3291400.4078450.036*
C110.4011 (3)0.3593 (3)0.9519 (2)0.0299 (5)
C120.4561 (3)0.2191 (3)1.0019 (3)0.0428 (6)
H120.5408300.1957570.9553430.051*
C130.3887 (4)0.1127 (3)1.1191 (3)0.0528 (8)
H130.4265490.0166581.1512370.063*
C140.2658 (3)0.1459 (4)1.1899 (3)0.0489 (7)
H140.2175690.0725261.2684900.059*
C150.2151 (3)0.2871 (4)1.1442 (3)0.0478 (7)
H150.1334730.3116321.1937030.057*
C160.2825 (3)0.3938 (3)1.0261 (3)0.0377 (6)
H160.2470960.4907330.9961160.045*
C170.4658 (2)0.4735 (3)0.8165 (2)0.0290 (5)
H17A0.4702200.5678570.8259910.035*
H17B0.5653580.4448700.7931000.035*
C180.0920 (2)0.6274 (3)0.2411 (2)0.0298 (5)
C190.0001 (3)0.6270 (3)0.1320 (3)0.0386 (6)
H19A0.0218440.5266720.1473660.058*
H19B0.0527490.6742720.0402900.058*
H19C0.0901380.6798800.1379400.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02338 (17)0.02572 (18)0.02823 (18)0.00230 (12)0.00559 (12)0.00704 (13)
S10.0350 (3)0.0272 (3)0.0430 (3)0.0064 (2)0.0152 (3)0.0116 (3)
O10.0300 (8)0.0344 (9)0.0279 (8)0.0010 (7)0.0068 (7)0.0090 (7)
O20.0272 (9)0.0545 (12)0.0426 (10)0.0061 (8)0.0036 (7)0.0160 (9)
N10.0243 (9)0.0238 (9)0.0266 (9)0.0006 (7)0.0023 (7)0.0072 (8)
N20.0277 (9)0.0264 (10)0.0331 (10)0.0004 (7)0.0029 (8)0.0114 (8)
N30.0224 (9)0.0263 (9)0.0283 (9)0.0003 (7)0.0036 (7)0.0069 (8)
C10.0211 (10)0.0276 (11)0.0254 (11)0.0028 (8)0.0012 (8)0.0063 (9)
C20.0265 (11)0.0249 (11)0.0342 (12)0.0021 (9)0.0014 (9)0.0096 (9)
N50.0344 (11)0.0277 (10)0.0427 (12)0.0028 (8)0.0059 (9)0.0132 (9)
C40.0404 (14)0.0359 (13)0.0375 (13)0.0054 (11)0.0013 (11)0.0142 (11)
C50.0574 (18)0.0422 (15)0.0453 (16)0.0035 (13)0.0029 (13)0.0216 (13)
C60.0202 (10)0.0241 (10)0.0238 (10)0.0016 (8)0.0016 (8)0.0041 (8)
C70.0234 (10)0.0272 (11)0.0263 (11)0.0016 (8)0.0017 (8)0.0046 (9)
C80.0254 (11)0.0259 (11)0.0307 (11)0.0020 (9)0.0003 (9)0.0062 (9)
C90.0311 (12)0.0308 (12)0.0303 (12)0.0016 (9)0.0016 (9)0.0129 (10)
C100.0285 (11)0.0310 (12)0.0298 (11)0.0015 (9)0.0052 (9)0.0107 (10)
C110.0286 (11)0.0360 (12)0.0263 (11)0.0004 (9)0.0085 (9)0.0118 (10)
C120.0521 (16)0.0403 (15)0.0295 (13)0.0093 (12)0.0064 (11)0.0069 (11)
C130.076 (2)0.0392 (16)0.0337 (14)0.0041 (15)0.0108 (14)0.0030 (12)
C140.0525 (17)0.0581 (19)0.0267 (13)0.0123 (14)0.0095 (12)0.0032 (12)
C150.0347 (14)0.072 (2)0.0317 (13)0.0006 (13)0.0037 (11)0.0143 (14)
C160.0329 (13)0.0474 (15)0.0316 (12)0.0021 (11)0.0061 (10)0.0135 (11)
C170.0254 (11)0.0322 (12)0.0288 (11)0.0007 (9)0.0051 (9)0.0105 (10)
C180.0246 (11)0.0317 (12)0.0311 (12)0.0041 (9)0.0028 (9)0.0105 (10)
C190.0358 (13)0.0487 (15)0.0290 (12)0.0040 (11)0.0029 (10)0.0122 (11)
Geometric parameters (Å, º) top
Zn1—S12.3360 (6)C7—H70.9500
Zn1—O1i2.0547 (17)C7—C81.390 (3)
Zn1—O12.0567 (16)C8—H80.9500
Zn1—N12.1017 (19)C8—C91.381 (3)
Zn1—N32.1128 (19)C9—H90.9500
S1—C21.748 (3)C9—C101.386 (3)
O1—C181.296 (3)C10—H100.9500
O2—C181.220 (3)C11—C121.386 (4)
N1—N21.369 (3)C11—C161.389 (4)
N1—C11.290 (3)C11—C171.521 (3)
N2—C21.338 (3)C12—H120.9500
N3—C61.358 (3)C12—C131.385 (4)
N3—C101.335 (3)C13—H130.9500
C1—C61.488 (3)C13—C141.393 (5)
C1—C171.506 (3)C14—H140.9500
C2—N51.342 (3)C14—C151.380 (5)
N5—H50.8800C15—H150.9500
N5—C41.451 (3)C15—C161.392 (4)
C4—H4A0.9900C16—H160.9500
C4—H4B0.9900C17—H17A0.9900
C4—C51.518 (4)C17—H17B0.9900
C5—H5A0.9800C18—C191.517 (3)
C5—H5B0.9800C19—H19A0.9800
C5—H5C0.9800C19—H19B0.9800
C6—C71.388 (3)C19—H19C0.9800
O1—Zn1—S1101.39 (5)C6—C7—H7120.5
O1i—Zn1—S1106.55 (5)C6—C7—C8119.1 (2)
O1i—Zn1—O178.74 (7)C8—C7—H7120.5
O1i—Zn1—N1111.25 (7)C7—C8—H8120.1
O1—Zn1—N1168.46 (7)C9—C8—C7119.8 (2)
O1i—Zn1—N399.24 (7)C9—C8—H8120.1
O1—Zn1—N396.75 (7)C8—C9—H9121.0
N1—Zn1—S181.70 (5)C8—C9—C10118.1 (2)
N1—Zn1—N376.34 (7)C10—C9—H9121.0
N3—Zn1—S1150.82 (6)N3—C10—C9122.7 (2)
C2—S1—Zn194.80 (8)N3—C10—H10118.6
Zn1i—O1—Zn1101.26 (7)C9—C10—H10118.6
C18—O1—Zn1119.22 (15)C12—C11—C16118.8 (2)
C18—O1—Zn1i139.34 (15)C12—C11—C17121.3 (2)
N2—N1—Zn1121.20 (14)C16—C11—C17119.9 (2)
C1—N1—Zn1118.57 (16)C11—C12—H12119.6
C1—N1—N2119.98 (19)C13—C12—C11120.8 (3)
C2—N2—N1111.85 (19)C13—C12—H12119.6
C6—N3—Zn1114.71 (15)C12—C13—H13119.9
C10—N3—Zn1125.89 (16)C12—C13—C14120.3 (3)
C10—N3—C6119.41 (19)C14—C13—H13119.9
N1—C1—C6114.0 (2)C13—C14—H14120.5
N1—C1—C17124.3 (2)C15—C14—C13119.0 (3)
C6—C1—C17121.69 (19)C15—C14—H14120.5
N2—C2—S1127.26 (18)C14—C15—H15119.7
N2—C2—N5116.0 (2)C14—C15—C16120.6 (3)
N5—C2—S1116.74 (18)C16—C15—H15119.7
C2—N5—H5118.2C11—C16—C15120.4 (3)
C2—N5—C4123.5 (2)C11—C16—H16119.8
C4—N5—H5118.2C15—C16—H16119.8
N5—C4—H4A109.7C1—C17—C11109.73 (18)
N5—C4—H4B109.7C1—C17—H17A109.7
N5—C4—C5109.7 (2)C1—C17—H17B109.7
H4A—C4—H4B108.2C11—C17—H17A109.7
C5—C4—H4A109.7C11—C17—H17B109.7
C5—C4—H4B109.7H17A—C17—H17B108.2
C4—C5—H5A109.5O1—C18—C19115.0 (2)
C4—C5—H5B109.5O2—C18—O1123.0 (2)
C4—C5—H5C109.5O2—C18—C19122.0 (2)
H5A—C5—H5B109.5C18—C19—H19A109.5
H5A—C5—H5C109.5C18—C19—H19B109.5
H5B—C5—H5C109.5C18—C19—H19C109.5
N3—C6—C1115.76 (19)H19A—C19—H19B109.5
N3—C6—C7120.8 (2)H19A—C19—H19C109.5
C7—C6—C1123.3 (2)H19B—C19—H19C109.5
Zn1—S1—C2—N211.2 (2)C1—N1—N2—C2170.9 (2)
Zn1—S1—C2—N5170.12 (17)C1—C6—C7—C8178.3 (2)
Zn1—O1—C18—O28.3 (3)C2—N5—C4—C5172.4 (2)
Zn1i—O1—C18—O2177.72 (18)C6—N3—C10—C90.6 (3)
Zn1i—O1—C18—C192.2 (4)C6—C1—C17—C1181.4 (2)
Zn1—O1—C18—C19171.85 (16)C6—C7—C8—C90.2 (3)
Zn1—N1—N2—C215.0 (2)C7—C8—C9—C100.5 (3)
Zn1—N1—C1—C68.8 (2)C8—C9—C10—N30.3 (3)
Zn1—N1—C1—C17169.86 (16)C10—N3—C6—C1178.71 (19)
Zn1—N3—C6—C11.3 (2)C10—N3—C6—C71.3 (3)
Zn1—N3—C6—C7178.70 (16)C11—C12—C13—C141.1 (5)
Zn1—N3—C10—C9179.39 (17)C12—C11—C16—C153.7 (4)
S1—C2—N5—C4175.73 (18)C12—C11—C17—C1100.0 (3)
N1—N2—C2—S10.3 (3)C12—C13—C14—C152.0 (5)
N1—N2—C2—N5178.42 (19)C13—C14—C15—C162.3 (4)
N1—C1—C6—N34.8 (3)C14—C15—C16—C110.6 (4)
N1—C1—C6—C7172.5 (2)C16—C11—C12—C134.0 (4)
N1—C1—C17—C1197.2 (3)C16—C11—C17—C178.4 (3)
N2—N1—C1—C6176.93 (18)C17—C1—C6—N3173.91 (19)
N2—N1—C1—C174.4 (3)C17—C1—C6—C78.8 (3)
N2—C2—N5—C43.1 (3)C17—C11—C12—C13174.4 (3)
N3—C6—C7—C81.1 (3)C17—C11—C16—C15174.7 (2)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We thank Ms Maame Kobe Asiamah and Ms Hanna Wosen for help with crystallization trials.

Funding information

Funding for this research was provided by: Howard University College of Medicine (project U100272, Fund #19, Program #02); National Science Foundation, Directorate for Mathematical and Physical Sciences (MRI grant DMR-2117502 for the X-ray diffractometer); National Institutes of Health, National Center on Minority Health and Health Disparities (award No. 2U54MD007597). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

First citationAdjimani, J. P. & Emery, T. (1988). J. Bacteriol. 170, 1377–1379.  PubMed Google Scholar
First citationArchana, S. D., Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Butcher, R. J. (2022). Acta Cryst. E78, 1016–1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerg, J. M. (1990). Annu. Rev. Biophys. Biophys. Chem. 19, 405–421.  PubMed Google Scholar
First citationBerg, J. M. & Shi, Y. (1996). Science 271, 1081–1085.  PubMed Google Scholar
First citationBonaccorso, C., Marzo, T. & La Mendola, D. (2019). Pharmaceuticals 13, 4.  PubMed Google Scholar
First citationCassat, J. E. & Skaar, E. P. (2013). Cell Host Microbe 13, 509–519.  PubMed Google Scholar
First citationCatapano, M. C., Tvrdý, V., Karlíčková, J., Mercolini, L. & Mladěnka, P. (2018). Bioorg. Chem. 77, 287–292.  PubMed Google Scholar
First citationDean, K. M., Qin, Y. & Palmer, A. E. (2012). Biochim. Biophys. Acta 1823, 1406–1415.  PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFang, Y., Li, J., Han, P. P., Han, Q. X. & Li, M. X. (2018). Toxicol. Res. 7, 987–993.  CSD CrossRef CAS Google Scholar
First citationFrankel, A. D., Berg, J. M. & Pabo, C. O. (1987). Proc. Natl Acad. Sci. USA 84, 4841–4845.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeffeter, P., Pape, V. F. S., Enyedy, É. A., Keppler, B. K., Szakacs, G. & Kowol, C. R. (2019). Antioxid. Redox Signal. 30, 1062–1082.  PubMed Google Scholar
First citationHerbst-Irmer, R. (2016). Z. Kristallogr. Cryst. Mater. 231, 573–581.  Google Scholar
First citationJayakumar, K., Sithambaresan, M., Aravindakshan, A. A. & Kurup, M. R. P. (2014). Polyhedron 75, 50–56.  Google Scholar
First citationJayakumar, K., Sithambaresan, M. & Prathapachandra Kurup, M. R. (2011). Acta Cryst. E67, o3195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJuttukonda, L. J., Beavers, W. N., Unsihuay, D., Kim, K., Pishchany, G., Horning, K. J., Weiss, A., Al-Tameemi, H., Boyd, J. M., Sulikowski, G. A., Bowman, A. B. & Skaar, E. P. (2020). mBio 11, e02555–20.  PubMed Google Scholar
First citationKarlin, S., Zhu, Z. Y. & Karlin, K. D. (1997). Proc. Natl Acad. Sci. USA 94, 14225–14230.  PubMed Google Scholar
First citationKrężel, A. & Maret, W. (2016). Arch. Biochem. Biophys. 611, 3–19.  Web of Science PubMed Google Scholar
First citationKumari, N., Xu, M., Kovalskyy, D., Dhawan, S. & Nekhai, S. (2012). Blood 120, 1052.  Google Scholar
First citationLi, H., Zhao, Y., Guo, Y., Li, Z., Eisele, L. & Mourad, W. (2007). J. Biol. Chem. 282, 5991–6000.  PubMed Google Scholar
First citationLonergan, Z. R. & Skaar, E. P. (2019). Trends Biochem. Sci. 44, 1041–1056.  PubMed Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement. A Crystallographer's Guide to SHELXL edited by P. Müller. Oxford University Press.  Google Scholar
First citationNairz, M. & Weiss, G. (2020). Mol. Aspects Med. 75, 100864.  PubMed Google Scholar
First citationPalmer, L. D., Traina, K. A., Juttukonda, L. J., Lonergan, Z. R., Bansah, D. A., Ren, X., Geary, J. H., Pinelli, C., Boyd, K. L., Yang, T. S. & Skaar, E. P. (2024). Nat. Microbiol. 9, 3196–3209.  PubMed Google Scholar
First citationParry, C. S., Li, Y., Kwofie, S. K., Valencia, J., Niedermaier, C. A. T., Ramadhar, T. R., Nekhai, S., Wilson, M. D. & Butcher, R. J. (2025). J. Mol. Struct. 1334, 141859.  CSD CrossRef Google Scholar
First citationPluth, M. D., Tomat, E. & Lippard, S. J. (2011). Annu. Rev. Biochem. 80, 333–355.  PubMed Google Scholar
First citationRadford, R. J. & Lippard, S. J. (2013). Curr. Opin. Chem. Biol. 17, 129–136.  PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO 1.171.42.49. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRigaku OD (2023). CrysAlis PRO 1.171.43.91a. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSestak, V., Stariat, J., Cermanova, J., Potuckova, E., Chladek, J., Roh, J., Bures, J., Jansova, H., Prusa, P., Sterba, M., Micuda, S., Simunek, T., Kalinowski, D. S., Richardson, D. R. & Kovarikova, P. (2015). Oncotarget 6, 42411–42428.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSreekanth, A., Fun, H.-K., John, R. P., Kurup, M. R. P. & Chantrapromma, S. (2006). Acta Cryst. E62, m1919–m1921.  CSD CrossRef IUCr Journals Google Scholar
First citationSreekanth, A., Fun, H.-K. & Kurup, M. R. P. (2004). Inorg. Chem. Commun. 7, 1250–1253.  Web of Science CSD CrossRef CAS Google Scholar
First citationSreekanth, A. & Kurup, M. R. P. (2003). Polyhedron 22, 3321–3332.  Google Scholar
First citationStacy, A. E., Palanimuthu, D., Bernhardt, P. V., Kalinowski, D. S., Jansson, P. J. & Richardson, D. R. (2016). J. Med. Chem. 59, 8601–8620.  PubMed Google Scholar
First citationValdés-Martínez, J., Toscano, R., Zentella-Dehesa, A., Salberg, M. M., Bain, G. A. & West, D. X. (1996). Polyhedron 15, 427–431.  Google Scholar
First citationWang, B. S., Grant, R. A. & Pabo, C. O. (2001). Nat. Struct. Biol. 8, 589–593.  PubMed Google Scholar
First citationWeinberg, E. D. (1984). Physiol. Rev. 64, 65–102.  PubMed Google Scholar
First citationWinkelmann, G. & Braun, V. (1981). FEMS Microbiol. Lett. 11, 237–241.  Google Scholar
First citationYu, Y., Suryo Rahmanto, Y., Hawkins, C. L. & Richardson, D. R. (2011). Mol. Pharmacol. 79, 921–931.  PubMed Google Scholar
First citationYu, Y., Suryo Rahmanto, Y. & Richardson, D. R. (2012). Br. J. Pharmacol. 165, 148–166.  CrossRef CAS PubMed Google Scholar
First citationYuan, J., Lovejoy, D. B. & Richardson, D. R. (2004). Blood 104, 1450–1458.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds