research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of catena-poly[[bis­­(nitrato-κ2O,O′)strontium(II)]-di-μ-L-histidine-κ3O,O′:O;κ2O:O′]

crossmark logo

aCrystal Growth Laboratory, PG and Research Department of Physics, Thanthai Periyar Government Arts and Science College, (Autonomous and affiliated to Bharathidasan University, Tiruchirappalli), Tiruchirappalli-620 023, Tamil Nadu, India, bUnidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita, Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, 72960, Puebla, Mexico, and cDepartment of Chemistry, Srimad Andavan Arts and Science, College (Autonomous and affiliated to Bharathidasan University, Tiruchirappalli), Tiruchirappalli-620 005, Tamil Nadu, India
*Correspondence e-mail: [email protected], [email protected]

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 5 May 2025; accepted 24 May 2025; online 10 June 2025)

The title mono-periodic coordination polymer, [Sr(NO3)2(C6H9N3O2)2]n, was synthesized from L-histidine and strontium nitrate. Crystallizing in the monoclinic space group C2, the structure features an Sr2+ cation (site symmetry 2) coordinated by ten oxygen atoms from zwitterionic L-histidine ligands and nitrate anions, forming a distorted deca­hedral geometry with Sr—O bond lengths ranging from 2.645 (4) to 2.863 (4) Å. The bridging L-histidine mol­ecules generate a polymeric chain extending along the [010] direction. The structure is consolidated by N—H⋯O, N—H⋯N and weak C—H⋯O hydrogen bonds, creating layers lying parallel to the bc plane.

1. Chemical context

Coordination polymers and metal–organic frameworks are hybrid inorganic–organic materials characterized by extended crystal structures formed through coordination bonds between metal ions or metal-containing bridged clusters and multifunctional organic ligands. These structures can form chains, layers or three-dimensional networks, making them highly versatile materials (e.g., Tăbăcaru et al., 2018[Tăbăcaru, A., Pettinari, C. & Galli, S. (2018). Coord. Chem. Rev. 372, 1-30.]; Jiao et al., 2019[Jiao, L., Seow, J. Y. R., Skinner, W. S., Wang, Z. U. & Jiang, H.-L. (2019). Mater. Today 27, 43-68.]; Pettinari et al., 2016[Pettinari, C., Tăbăcaru, A. & Galli, S. (2016). Coord. Chem. Rev. 307, 1-31.]). Over the past few decades, these phases have garnered significant attention from chemists, material scientists, and physicists, both in academia and industry, due to their remarkable structural diversity and wide-ranging applications in fields such as sensors (Wu et al., 2020[Wu, F., Ye, J., Cao, Y., Wang, Z., Miao, T. & Shi, Q. (2020). Luminescence 35, 440-446.]; Wang, 2020[Wang, L. (2020). Sens. Actuators A Phys. 307, 111984.]), catalysis (Wu & Zhao, 2017[Wu, C.-D. & Zhao, M. (2017). Adv. Mater. 29, 1605446.]; Zhu et al., 2017[Zhu, L., Liu, X.-Q., Jiang, H.-L. & Sun, L.-B. (2017). Chem. Rev. 117, 8129-8176.]), photonics (Dhakshinamoorthy et al., 2016[Dhakshinamoorthy, A., Asiri, A. M. & García, H. (2016). Angew. Chem. Int. Ed. 55, 5414-5445.]), gas storage and separation (Farrusseng, 2011[Farrusseng, D. (2011). Metal-organic frameworks: applications from catalysis to gas storage. Chichester: John Wiley & Sons. ISBN 978-3527328703]), electronics (Baumann et al., 2019[Baumann, A. E., Burns, D. A., Liu, B. & Thoi, V. S. (2019). Commun. Chem. 2, 86.]) and other applications.

Al-Terkawi et al. (2017[Al-Terkawi, A.-A., Scholz, G., Emmerling, F. & Kemnitz, E. (2017). Dalton Trans. 46, 12574-12587.]) reported the synthesis and structural analysis of strontium coordination polymers containing deprotonated tetra­fluoro­phthalic and phthalic acids. They synthesized two strontium-based di­carboxyl­ate systems by a mechanochemical method and determined their structures from powder X-ray diffraction data. Dynamic vapor sorption tests showed no significant difference in adsorption behavior between dehydrated and hydrated samples. Zhang et al. (2014[Zhang, W., Qi, S.-G. & Feng, Y.-Q. (2014). Acta Cryst. C70, 584-587.]) synthesized and characterized a strontium(II) coordination polymer with pyridine-2,6-di­carboxyl­ate anions, sulfate ions and water mol­ecules. The crystal structure of this coordination polymer is consolidated by hydrogen bonding and ππ stacking inter­actions. Fei et al. (2005[Fei, Z., Geldbach, T. J., Zhao, D., Scopelliti, R. & Dyson, P. J. (2005). Inorg. Chem. 44, 5200-5202.]) described the synthesis and crystal structure of a hydrated di-periodic strontium–imidazolium carboxyl­ate coordination polymer. The crystal structure reveals that the polymeric sheets are separated by near-planar water sheets. The water mol­ecules form edge-sharing hexa­gons linked by O—H⋯O hydrogen bonds and establish hydrogen bonds with the imidazolium ions, while not inter­acting with the strontium cations.

[Scheme 1]

L-histidine-based crystal structures have attracted significant attention in materials science due to their diverse properties and wide-ranging applications (Thangavel et al., 2022[Thangavel, S., Kathiravan, V., Ashok Kumar, R., Satheesh Kumar, G. & Selvarajan, P. (2022). J. Mater. Sci. Mater. Electron. 33, 12249-12258.]; Pereira et al., 2023[Pereira, F. A. R., Macedo-Filho, A., Silva, A. M., Frazão, N. F., Sarmento, R. G., Lima, K. A. L., Melo, J. J. S., Pereira Junior, M. L., Ribeiro Junior, L. A. & Freire, V. N. (2023). J. Mol. Model. 29, 205.]; Li et al., 2022[Li, J., Yao, S.-L., Zheng, T.-F., Xu, H., Li, J.-Y., Peng, Y., Chen, J.-L., Liu, S.-J. & Wen, H.-R. (2022). Dalton Trans. 51, 5983-5988.]). The ability of L-histidine (C6H9N3O2) to coordinate with metals makes it an effective reagent for preparing metal–organic frameworks used in catalysis and adsorption. Additionally, these structures exhibit nonlinear optical properties, as well as piezoelectric and ferroelectric characteristics. Building on these earlier findings, and as part of our ongoing research into L-histidine-based metal–organic frameworks, we present here the synthesis and crystal structure of the title mono-periodic coordination polymer, [Sr(NO3)2(C6H9N3O2)2]n (I), formed from the reaction of L-histidine and strontium nitrate in aqueous solution.

2. Structural commentary

Compound (I) crystallizes in the monoclinic space group C2. The asymmetric unit consists of one zwitterionic L-histidine mol­ecule, one nitrate anion and one Sr2+ cation (Fig. 1[link]). The bond lengths (Table 1[link]) around the carboxyl­ate group of the L-histidine mol­ecule indicate deprotonation, i.e., carrying a negative charge. The amine group of the L-histidine is protonated, resulting in its zwitterionic form in the crystal structure. The Sr2+ ion lies on a crystallographic twofold axis and is coordinated by ten oxygen atoms (Fig. 2[link]). Among them, four originate from two L-histidine mol­ecules that simultaneously chelate the Sr2+ cation via atoms O1 and O2, while two others come from two different bridging L-histidine mol­ecules (via O2). The remaining four oxygen atoms belong to two chelating nitrate anions, which act as O,O-bidentate ligands. As a result, the Sr2+ cation adopts a distorted deca­hedral geometry. The Sr—O bond lengths range from 2.645 (4) to 2.863 (4) Å while the O—Sr—O angles vary between 45.60 (9) and 146.16 (10)°. These values are comparable to previously reported data (Parsekar et al., 2022[Parsekar, N. U., Bhargao, P. H., Näther, C., Bensch, W. & Srinivasan, B. R. (2022). J. Inorg. Organomet. Polym. 32, 200-215.]; Natarajan et al., 2011[Natarajan, S., Kalyana Sundar, J., Athimoolam, S. & Srinivasan, B. R. (2011). J. Coord. Chem. 64, 2274-2283.]; Arularasan et al., 2013[Arularasan, P., Chakkaravarthi, G. & Mohan, R. (2013). Acta Cryst. E69, m597.]). The bond lengths and bond angles in the L-histidine mol­ecule are consistent with earlier reported crystal structures (Gokul Raj et al., 2006[Gokul Raj, S., Ramesh Kumar, G., Raghavalu, T., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, o1178-o1180.]; Raghavalu et al., 2007[Raghavalu, T., Kumar, K. S., Kumar, G. R., Gokul Raj, S. & Mohan, R. (2007). Acta Cryst. E63, o1706-o1707.]; Muralidharan et al., 2013[Muralidharan, S., Nagapandiselvi, P., Srinivasan, T., Gopalakrishnan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o804.]) : key torsion angles are presented in Table 1[link]. The expected S configuration of C5 is confirmed by the refinement. The bridging L-histidine mol­ecules connect neighboring metal ions into a polymeric chain propagating along [010] via atom O2, resulting in a Sr⋯Sr separation of 4.6574 (5) Å for adjacent metal ions (Fig. 2[link]), i.e., the b cell dimension.

Table 1
Selected geometric parameters (Å, °)

Sr1—O2 2.645 (4) Sr1—O2ii 2.863 (4)
Sr1—O3 2.674 (2) C6—O2 1.245 (4)
Sr1—O1i 2.681 (2) C6—O1 1.257 (4)
Sr1—O5 2.824 (3)    
       
Sr1—O2—Sr1iii 115.42 (6)    
       
C3—C4—C5—N1 −55.2 (4) N1—C5—C6—O2 −177.5 (2)
C3—C4—C5—C6 −177.7 (3) C4—C5—C6—O2 −54.8 (4)
Symmetry codes: (i) [x, y+1, z]; (ii) [-x+1, y+1, -z+2]; (iii) [x, y-1, z].
[Figure 1]
Figure 1
The asymmetric unit of (I) showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
A view of the coordination environment surrounding the strontium atom in (I).

3. Supra­molecular features

In the extended structure, each polymeric chain is inter­connected with neighboring chains via hydrogen bonds, including N2—H2A⋯O5 and N1—H1B⋯O1 (Table 2[link]). The structure is consolidated by additional hydrogen-bonding inter­actions, including N1—H1B⋯N3, N1—H1A⋯O3, N1—H1A⋯O4, and N1—H1C⋯O1. Finally, the N1—H1A⋯O3 inter­action results in the formation of a three-dimensional supra­molecular architecture (Table 2[link], Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N3iii 0.90 (2) 1.92 (2) 2.818 (3) 179 (3)
N1—H1C⋯O3iv 0.85 (2) 2.99 (4) 3.387 (4) 111 (3)
N1—H1C⋯O1v 0.85 (2) 2.24 (2) 3.039 (3) 156 (3)
N2—H2A⋯O4vi 1.00 (5) 2.25 (5) 2.854 (3) 118 (4)
N2—H2A⋯O5vii 1.00 (5) 2.28 (5) 3.180 (4) 148 (4)
C4—H4B⋯O5 0.97 2.54 3.507 (5) 175
C5—H5⋯O1i 0.98 2.55 3.373 (4) 142
Symmetry codes: (i) [x, y+1, z]; (iii) [x, y-1, z]; (iv) [x, y-1, z-1]; (v) [-x+1, y, -z+1]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (vii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
A view along the b-axis showing the packing of (I) with hydrogen bonds indicated by blue dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, update of June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for a zwitterionic L-histidine mol­ecule gave 87 hits, ten of which involved coordination to metal atoms, viz.: Zn [CSD refcode: DOBBEC01 (Mekhatria et al., 2011[Mekhatria, D., Rigolet, S., Janiak, C., Simon-Masseron, A., Hasnaoui, M. A. & Bengueddach, A. (2011). Cryst. Growth Des. 11, 396-404.]), KEKWIH (Chen & Bu 2006[Chen, L. & Bu, X. (2006). Chem. Mater. 18, 1857-1860.]), NADWIA (Dong et al., 2010[Dong, Z., Zhao, V., Liang, Z., Chen, P., Yan, Y., Li, J., Yu, J. & Xu, R. (2010). Dalton Trans. 39, 5439-5445.]), and YAHLOJ (Fan et al., 2005[Fan, J., Slebodnick, C., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 552-558.])], Rh (EYEWUD; Jalilehvand et al., 2021[Jalilehvand, F., Enriquez Garcia, A., Niksirat, P., Finfrock, Y. Z. & Gelfand, B. S. (2021). J. Inorg. Biochem. 224, 111556.]), Cd [HADXOD (Seo & Ok 2021[Seo, W. & Ok, K. M. (2021). Inorg. Chem. Front. 8, 4536-4543.]), KITCIC (Sihem et al., 2019[Sihem, B., Nacira, M., Slim, E., Messaoud, L. & Faical, D. (2019). CSD Communication (refcode KITCIC). CCDC, Cambridge, England.]), KITCIC01 (Mohamedi et al., 2019[Mohamedi, N., Elleuch, S., Boufas, S., Legouira, M. & Djazi, F. (2019). Acta Cryst. E75, 823-825.]), and KITCIC02 (Seo & Ok 2021[Seo, W. & Ok, K. M. (2021). Inorg. Chem. Front. 8, 4536-4543.])], Ag (TIGHEY; Mirolo et al., 2013[Mirolo, L., Schmidt, T., Eckhardt, S., Meuwly, M. & Fromm, K. M. (2013). Chem. A Eur. J. 19, 1754-1761.]). In contrast, a search for the neutral non-zwitterionic L-histidine mol­ecule gave 28 hits, six of which displayed metal coordination: Pt [FARYUS (Baidina et al., 1990[Baidina, I. A., Slyudkin, O. P. & Borisov, S. V. (1990). J. Struct. Chem. 31, 503-506.]), and KUWQEZ (Ye et al., 2009[Ye, Q.-S., Xie, M.-J., Liu, W.-P., Chen, X.-Z., Yu, Y., Chang, Q.-W. & Hou, S.-Q. (2009). Chem. Pharm. Bull. 57, 424-427.])], Hg (HISHGC; Adams et al., 1970[Adams, M. J., Hodgkin, D. C. & Raeburn, U. A. (1970). J. Chem. Soc. A pp. 2632.]), Ir (SETMOT; Krämer et al., 1990[Krämer, R., Polborn, K., Wanjek, H., Zahn, I. & Beck, W. (1990). Chem. Ber. 123, 767-778.]), Pd (VIWSUP01; Caubet et al., 1992[Caubet, A., Moreno, V., Molins, E. & Miravitlles, C. (1992). J. Inorg. Biochem. 48, 135-152.]), and V (WEGFIX01; Czernuszewicz et al., 1994[Czernuszewicz, R. S., Yan, Q., Bond, M. R. & Carrano, C. J. (1994). Inorg. Chem. 33, 6116-6119.]). The coordination modes varied across these structures: mono O-coordination through the carboxyl group was observed in complexes with Zn (DOBBEC01), Cd (HADXOD, KITCIC, KITCIC 01, KITCIC 02), Zn (KEKWIH), and Hg (HISHGC). A bidentate O,O-coordination mode was seen in LIKREE (Arularasan et al., 2013[Arularasan, P., Chakkaravarthi, G. & Mohan, R. (2013). Acta Cryst. E69, m597.]). Coordination via N atoms either the amino group, the imidazole-ring nitro­gen atom, or both, was evident in Pt (FARYUS, and KUWQEZ), Ir (SETMOT), Pd (VIWSUP01).

5. Synthesis and crystallization

In a 250 ml beaker, L-histidine (1.552 g) and strontium nitrate (2.12 g) were taken in equimolar amounts and dissolved in deionized water (30 ml) at room temperature. The mixture was stirred thoroughly for 4 h using a magnetic stirrer and then filtered. The beaker was placed in an undisturbed area to allow the mother solution to slowly evaporate. After 12 days, colorless single crystals of (I) with a well-formed triangular shape were harvested with dimensions of up to 0.9 × 0.4 × 0.3 mm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N-bound H atoms were located in a difference-Fourier map and refined with isotropic displacement parameters. All C-bound H atoms were included in calculated positions and treated as riding atoms with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C). The crystal studied was refined as a two-component inversion twin.

Table 3
Experimental details

Crystal data
Chemical formula [Sr(NO3)2(C6H9N3O2)2]
Mr 521.96
Crystal system, space group Monoclinic, C2
Temperature (K) 298
a, b, c (Å) 24.9533 (7), 4.6575 (1), 8.1543 (2)
β (°) 105.695 (1)
V3) 912.36 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.03
Crystal size (mm) 0.20 × 0.11 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE diffractometer with PHOTON II detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.593, 0.799
No. of measured, independent and observed [I > 2σ(I)] reflections 9589, 1859, 1859
Rint 0.027
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.045, 1.13
No. of reflections 1859
No. of parameters 158
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.19
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.037 (8)
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

catena-Poly[[bis(nitrato-κ2O,O')strontium(II)]-di-µ-L-histidine-κ3O,O':O;κ2O:O'] top
Crystal data top
[Sr(NO3)2(C6H9N3O2)2]F(000) = 528
Mr = 521.96Dx = 1.900 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 24.9533 (7) ÅCell parameters from 9983 reflections
b = 4.6575 (1) Åθ = 3.4–27.1°
c = 8.1543 (2) ŵ = 3.03 mm1
β = 105.695 (1)°T = 298 K
V = 912.36 (4) Å3Plate, colourless
Z = 20.20 × 0.11 × 0.02 mm
Data collection top
Bruker D8 VENTURE
diffractometer with PHOTON II detector
1859 independent reflections
Radiation source: fine-focus sealed tube1859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 27.1°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3131
Tmin = 0.593, Tmax = 0.799k = 55
9589 measured reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0202P)2 + 0.2576P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.001
S = 1.13Δρmax = 0.36 e Å3
1859 reflectionsΔρmin = 0.19 e Å3
158 parametersAbsolute structure: Refined as an inversion twin.
7 restraintsAbsolute structure parameter: 0.037 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.5000000.90071 (5)1.0000000.01832 (9)
C10.27741 (10)0.8961 (15)0.2136 (3)0.0323 (5)
H10.2717821.0463980.1357230.039*
C20.26207 (12)0.5153 (7)0.3481 (4)0.0297 (6)
H20.2450950.3571240.3823800.036*
C30.31540 (11)0.6064 (6)0.4157 (3)0.0234 (5)
C40.35847 (11)0.4845 (7)0.5642 (3)0.0288 (7)
H4A0.3451290.3018370.5946450.035*
H4B0.3626980.6126700.6606010.035*
C50.41568 (10)0.4382 (8)0.5331 (3)0.0206 (6)
H50.4308410.6255430.5139840.025*
C60.45482 (10)0.3017 (6)0.6917 (3)0.0210 (5)
O10.47792 (9)0.0682 (5)0.6740 (3)0.0305 (5)
O20.46051 (8)0.4284 (9)0.8299 (2)0.0312 (5)
O30.42251 (9)0.6821 (6)1.1355 (3)0.0404 (6)
O40.33890 (11)0.5834 (8)0.9953 (4)0.0652 (9)
O50.38281 (11)0.9385 (10)0.9198 (3)0.0528 (9)
N10.41140 (9)0.2554 (5)0.3799 (3)0.0221 (4)
N20.23858 (10)0.7020 (6)0.2203 (3)0.0312 (5)
N30.32485 (9)0.8489 (5)0.3311 (3)0.0287 (7)
N40.38007 (10)0.7320 (6)1.0161 (3)0.0291 (5)
H1A0.4028 (12)0.357 (7)0.286 (3)0.040 (10)*
H1C0.4414 (10)0.165 (8)0.386 (5)0.043 (11)*
H1B0.3835 (11)0.127 (6)0.364 (4)0.035 (10)*
H2A0.198 (2)0.692 (12)0.154 (6)0.070 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01760 (13)0.02030 (14)0.01563 (13)0.0000.00204 (9)0.000
C10.0333 (12)0.0333 (13)0.0270 (11)0.012 (2)0.0027 (9)0.006 (2)
C20.0239 (12)0.0333 (13)0.0314 (14)0.0004 (11)0.0064 (11)0.0006 (12)
C30.0196 (12)0.0270 (12)0.0225 (12)0.0061 (10)0.0040 (10)0.0031 (10)
C40.0234 (12)0.042 (2)0.0199 (11)0.0091 (10)0.0041 (10)0.0014 (10)
C50.0199 (9)0.0204 (19)0.0189 (10)0.0010 (11)0.0011 (8)0.0008 (11)
C60.0164 (11)0.0236 (11)0.0214 (12)0.0021 (8)0.0020 (9)0.0037 (9)
O10.0322 (10)0.0312 (12)0.0257 (10)0.0112 (9)0.0037 (8)0.0065 (8)
O20.0321 (8)0.0347 (14)0.0203 (8)0.0028 (12)0.0041 (6)0.0038 (12)
O30.0265 (10)0.0620 (16)0.0309 (11)0.0031 (10)0.0049 (9)0.0114 (11)
O40.0360 (13)0.087 (2)0.077 (2)0.0342 (15)0.0238 (14)0.0464 (18)
O50.0569 (14)0.054 (2)0.0441 (12)0.0125 (17)0.0086 (10)0.0157 (17)
N10.0214 (10)0.0264 (12)0.0174 (10)0.0018 (9)0.0034 (8)0.0017 (9)
N20.0204 (11)0.0402 (14)0.0280 (12)0.0057 (10)0.0018 (9)0.0051 (11)
N30.0263 (10)0.028 (2)0.0284 (11)0.0007 (9)0.0024 (8)0.0024 (9)
N40.0232 (11)0.0348 (15)0.0283 (12)0.0002 (10)0.0050 (10)0.0090 (11)
Geometric parameters (Å, º) top
Sr1—O2i2.645 (4)C3—C41.497 (4)
Sr1—O22.645 (4)C4—C51.531 (3)
Sr1—O3i2.674 (2)C4—H4A0.9700
Sr1—O32.674 (2)C4—H4B0.9700
Sr1—O1ii2.681 (2)C5—N11.492 (4)
Sr1—O1iii2.681 (2)C5—C61.532 (3)
Sr1—O52.824 (3)C5—H50.9800
Sr1—O5i2.824 (3)C6—O21.245 (4)
Sr1—O2iii2.863 (4)C6—O11.257 (4)
Sr1—O2ii2.863 (4)O3—N41.251 (3)
C1—N31.325 (3)O4—N41.212 (4)
C1—N21.337 (6)O5—N41.256 (5)
C1—H10.9300N1—H1A0.878 (19)
C2—N21.362 (4)N1—H1C0.85 (2)
C2—C31.363 (4)N1—H1B0.90 (2)
C2—H20.9300N2—H2A1.00 (5)
C3—N31.376 (4)
O2i—Sr1—O267.44 (12)N2—C1—H1124.0
O2i—Sr1—O3i72.05 (7)N2—C2—C3106.4 (3)
O2—Sr1—O3i71.04 (7)N2—C2—H2126.8
O2i—Sr1—O371.04 (7)C3—C2—H2126.8
O2—Sr1—O372.05 (7)C2—C3—N3109.5 (2)
O3i—Sr1—O3135.25 (13)C2—C3—C4128.2 (3)
O2i—Sr1—O1ii135.21 (7)N3—C3—C4122.3 (2)
O2—Sr1—O1ii76.97 (8)C3—C4—C5114.6 (2)
O3i—Sr1—O1ii71.26 (7)C3—C4—H4A108.6
O3—Sr1—O1ii122.88 (6)C5—C4—H4A108.6
O2i—Sr1—O1iii76.97 (8)C3—C4—H4B108.6
O2—Sr1—O1iii135.21 (7)C5—C4—H4B108.6
O3i—Sr1—O1iii122.88 (6)H4A—C4—H4B107.6
O3—Sr1—O1iii71.26 (7)N1—C5—C4111.1 (2)
O1ii—Sr1—O1iii146.16 (10)N1—C5—C6110.8 (3)
O2i—Sr1—O5112.88 (10)C4—C5—C6109.2 (2)
O2—Sr1—O573.43 (11)N1—C5—H5108.6
O3i—Sr1—O5138.34 (8)C4—C5—H5108.6
O3—Sr1—O545.60 (9)C6—C5—H5108.6
O1ii—Sr1—O580.21 (7)O2—C6—O1124.7 (3)
O1iii—Sr1—O597.68 (8)O2—C6—C5117.3 (3)
O2i—Sr1—O5i73.43 (10)O1—C6—C5118.0 (2)
O2—Sr1—O5i112.88 (10)O2—C6—Sr1iv67.8 (2)
O3i—Sr1—O5i45.60 (9)O1—C6—Sr1iv59.51 (14)
O3—Sr1—O5i138.34 (8)C5—C6—Sr1iv161.20 (19)
O1ii—Sr1—O5i97.68 (8)C6—O1—Sr1iv96.65 (16)
O1iii—Sr1—O5i80.21 (7)C6—O2—Sr1143.5 (2)
O5—Sr1—O5i172.85 (19)C6—O2—Sr1iv88.4 (2)
O2i—Sr1—O2iii115.42 (6)Sr1—O2—Sr1iv115.42 (6)
O2—Sr1—O2iii177.14 (9)N4—O3—Sr199.34 (17)
O3i—Sr1—O2iii109.54 (7)N4—O5—Sr192.04 (19)
O3—Sr1—O2iii108.60 (7)C5—N1—H1A112 (3)
O1ii—Sr1—O2iii100.50 (7)C5—N1—H1C112 (3)
O1iii—Sr1—O2iii47.01 (7)H1A—N1—H1C109 (3)
O5—Sr1—O2iii104.94 (10)C5—N1—H1B112 (2)
O5i—Sr1—O2iii68.60 (10)H1A—N1—H1B104 (2)
O2i—Sr1—O2ii177.14 (10)H1C—N1—H1B108 (3)
O2—Sr1—O2ii115.42 (6)C1—N2—C2107.2 (2)
O3i—Sr1—O2ii108.61 (7)C1—N2—H2A130 (3)
O3—Sr1—O2ii109.54 (7)C2—N2—H2A123 (3)
O1ii—Sr1—O2ii47.01 (7)C1—N3—C3104.9 (3)
O1iii—Sr1—O2ii100.50 (7)O4—N4—O3120.7 (3)
O5—Sr1—O2ii68.60 (10)O4—N4—O5122.5 (3)
O5i—Sr1—O2ii104.94 (10)O3—N4—O5116.8 (3)
O2iii—Sr1—O2ii61.72 (10)O4—N4—Sr1157.1 (2)
N3—C1—N2112.0 (4)O3—N4—Sr157.43 (14)
N3—C1—H1124.0O5—N4—Sr164.34 (16)
N2—C2—C3—N30.4 (3)O1—C6—O2—Sr1114.7 (4)
N2—C2—C3—C4177.2 (3)C5—C6—O2—Sr166.8 (4)
C2—C3—C4—C5132.6 (3)Sr1iv—C6—O2—Sr1133.1 (3)
N3—C3—C4—C551.0 (4)O1—C6—O2—Sr1iv18.4 (3)
C3—C4—C5—N155.2 (4)C5—C6—O2—Sr1iv160.1 (2)
C3—C4—C5—C6177.7 (3)N3—C1—N2—C20.7 (4)
N1—C5—C6—O2177.5 (2)C3—C2—N2—C10.2 (4)
C4—C5—C6—O254.8 (4)N2—C1—N3—C30.9 (4)
N1—C5—C6—O11.1 (3)C2—C3—N3—C10.7 (3)
C4—C5—C6—O1123.8 (3)C4—C3—N3—C1177.8 (3)
N1—C5—C6—Sr1iv76.2 (6)Sr1—O3—N4—O4153.1 (2)
C4—C5—C6—Sr1iv46.5 (7)Sr1—O3—N4—O526.0 (3)
O2—C6—O1—Sr1iv19.8 (3)Sr1—O5—N4—O4154.9 (3)
C5—C6—O1—Sr1iv158.6 (2)Sr1—O5—N4—O324.2 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z; (iii) x+1, y+1, z+2; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N3iv0.90 (2)1.92 (2)2.818 (3)179 (3)
N1—H1C···O3v0.85 (2)2.99 (4)3.387 (4)111 (3)
N1—H1C···O1vi0.85 (2)2.24 (2)3.039 (3)156 (3)
N2—H2A···O4vii1.00 (5)2.25 (5)2.854 (3)118 (4)
N2—H2A···O5viii1.00 (5)2.28 (5)3.180 (4)148 (4)
C4—H4B···O50.972.543.507 (5)175
C5—H5···O1ii0.982.553.373 (4)142
Symmetry codes: (ii) x, y+1, z; (iv) x, y1, z; (v) x, y1, z1; (vi) x+1, y, z+1; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y1/2, z+1.
 

Funding information

PV and MJP thank VIEP-BUAP for project 100184100-VIEP2024 and also thank VIEP-BUAP for a Visiting Professor Fellowship.

References

First citationAdams, M. J., Hodgkin, D. C. & Raeburn, U. A. (1970). J. Chem. Soc. A pp. 2632.  CSD CrossRef Google Scholar
First citationAl-Terkawi, A.-A., Scholz, G., Emmerling, F. & Kemnitz, E. (2017). Dalton Trans. 46, 12574–12587.  PubMed Google Scholar
First citationArularasan, P., Chakkaravarthi, G. & Mohan, R. (2013). Acta Cryst. E69, m597.  CSD CrossRef IUCr Journals Google Scholar
First citationBaidina, I. A., Slyudkin, O. P. & Borisov, S. V. (1990). J. Struct. Chem. 31, 503–506.  CrossRef Google Scholar
First citationBaumann, A. E., Burns, D. A., Liu, B. & Thoi, V. S. (2019). Commun. Chem. 2, 86.  Web of Science CrossRef Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCaubet, A., Moreno, V., Molins, E. & Miravitlles, C. (1992). J. Inorg. Biochem. 48, 135–152.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, L. & Bu, X. (2006). Chem. Mater. 18, 1857–1860.  CSD CrossRef CAS Google Scholar
First citationCzernuszewicz, R. S., Yan, Q., Bond, M. R. & Carrano, C. J. (1994). Inorg. Chem. 33, 6116–6119.  CSD CrossRef CAS Web of Science Google Scholar
First citationDhakshinamoorthy, A., Asiri, A. M. & García, H. (2016). Angew. Chem. Int. Ed. 55, 5414–5445.  CrossRef CAS Google Scholar
First citationDong, Z., Zhao, V., Liang, Z., Chen, P., Yan, Y., Li, J., Yu, J. & Xu, R. (2010). Dalton Trans. 39, 5439–5445.  CSD CrossRef PubMed Google Scholar
First citationFan, J., Slebodnick, C., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 552–558.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrusseng, D. (2011). Metal-organic frameworks: applications from catalysis to gas storage. Chichester: John Wiley & Sons. ISBN 978-3527328703  Google Scholar
First citationFei, Z., Geldbach, T. J., Zhao, D., Scopelliti, R. & Dyson, P. J. (2005). Inorg. Chem. 44, 5200–5202.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGokul Raj, S., Ramesh Kumar, G., Raghavalu, T., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, o1178–o1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJalilehvand, F., Enriquez Garcia, A., Niksirat, P., Finfrock, Y. Z. & Gelfand, B. S. (2021). J. Inorg. Biochem. 224, 111556.  CSD CrossRef PubMed Google Scholar
First citationJiao, L., Seow, J. Y. R., Skinner, W. S., Wang, Z. U. & Jiang, H.-L. (2019). Mater. Today 27, 43–68.  CrossRef Google Scholar
First citationKrämer, R., Polborn, K., Wanjek, H., Zahn, I. & Beck, W. (1990). Chem. Ber. 123, 767–778.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, J., Yao, S.-L., Zheng, T.-F., Xu, H., Li, J.-Y., Peng, Y., Chen, J.-L., Liu, S.-J. & Wen, H.-R. (2022). Dalton Trans. 51, 5983–5988.  CSD CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMekhatria, D., Rigolet, S., Janiak, C., Simon-Masseron, A., Hasnaoui, M. A. & Bengueddach, A. (2011). Cryst. Growth Des. 11, 396–404.  CSD CrossRef CAS Google Scholar
First citationMirolo, L., Schmidt, T., Eckhardt, S., Meuwly, M. & Fromm, K. M. (2013). Chem. A Eur. J. 19, 1754–1761.  CSD CrossRef Google Scholar
First citationMohamedi, N., Elleuch, S., Boufas, S., Legouira, M. & Djazi, F. (2019). Acta Cryst. E75, 823–825.  CSD CrossRef IUCr Journals Google Scholar
First citationMuralidharan, S., Nagapandiselvi, P., Srinivasan, T., Gopalakrishnan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o804.  CSD CrossRef IUCr Journals Google Scholar
First citationNatarajan, S., Kalyana Sundar, J., Athimoolam, S. & Srinivasan, B. R. (2011). J. Coord. Chem. 64, 2274–2283.  CSD CrossRef Google Scholar
First citationParsekar, N. U., Bhargao, P. H., Näther, C., Bensch, W. & Srinivasan, B. R. (2022). J. Inorg. Organomet. Polym. 32, 200–215.  CSD CrossRef CAS Google Scholar
First citationPereira, F. A. R., Macedo-Filho, A., Silva, A. M., Frazão, N. F., Sarmento, R. G., Lima, K. A. L., Melo, J. J. S., Pereira Junior, M. L., Ribeiro Junior, L. A. & Freire, V. N. (2023). J. Mol. Model. 29, 205.  CrossRef PubMed Google Scholar
First citationPettinari, C., Tăbăcaru, A. & Galli, S. (2016). Coord. Chem. Rev. 307, 1–31.  Web of Science CrossRef CAS Google Scholar
First citationRaghavalu, T., Kumar, K. S., Kumar, G. R., Gokul Raj, S. & Mohan, R. (2007). Acta Cryst. E63, o1706–o1707.  CSD CrossRef IUCr Journals Google Scholar
First citationSeo, W. & Ok, K. M. (2021). Inorg. Chem. Front. 8, 4536–4543.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSihem, B., Nacira, M., Slim, E., Messaoud, L. & Faical, D. (2019). CSD Communication (refcode KITCIC). CCDC, Cambridge, England.  Google Scholar
First citationTăbăcaru, A., Pettinari, C. & Galli, S. (2018). Coord. Chem. Rev. 372, 1–30.  Google Scholar
First citationThangavel, S., Kathiravan, V., Ashok Kumar, R., Satheesh Kumar, G. & Selvarajan, P. (2022). J. Mater. Sci. Mater. Electron. 33, 12249–12258.  CrossRef Google Scholar
First citationWang, L. (2020). Sens. Actuators A Phys. 307, 111984.  CrossRef Google Scholar
First citationWu, C.-D. & Zhao, M. (2017). Adv. Mater. 29, 1605446.  CrossRef Google Scholar
First citationWu, F., Ye, J., Cao, Y., Wang, Z., Miao, T. & Shi, Q. (2020). Luminescence 35, 440–446.  CrossRef PubMed Google Scholar
First citationYe, Q.-S., Xie, M.-J., Liu, W.-P., Chen, X.-Z., Yu, Y., Chang, Q.-W. & Hou, S.-Q. (2009). Chem. Pharm. Bull. 57, 424–427.  CSD CrossRef Google Scholar
First citationZhang, W., Qi, S.-G. & Feng, Y.-Q. (2014). Acta Cryst. C70, 584–587.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, L., Liu, X.-Q., Jiang, H.-L. & Sun, L.-B. (2017). Chem. Rev. 117, 8129–8176.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds