

research communications
Synthesis and catena-poly[[bis(nitrato-κ2O,O′)strontium(II)]-di-μ-L-histidine-κ3O,O′:O;κ2O:O′]
ofaCrystal Growth Laboratory, PG and Research Department of Physics, Thanthai Periyar Government Arts and Science College, (Autonomous and affiliated to Bharathidasan University, Tiruchirappalli), Tiruchirappalli-620 023, Tamil Nadu, India, bUnidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita, Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, 72960, Puebla, Mexico, and cDepartment of Chemistry, Srimad Andavan Arts and Science, College (Autonomous and affiliated to Bharathidasan University, Tiruchirappalli), Tiruchirappalli-620 005, Tamil Nadu, India
*Correspondence e-mail: [email protected], [email protected]
The title mono-periodic coordination polymer, [Sr(NO3)2(C6H9N3O2)2]n, was synthesized from L-histidine and strontium nitrate. Crystallizing in the monoclinic C2, the structure features an Sr2+ cation (site symmetry 2) coordinated by ten oxygen atoms from zwitterionic L-histidine ligands and nitrate anions, forming a distorted decahedral geometry with Sr—O bond lengths ranging from 2.645 (4) to 2.863 (4) Å. The bridging L-histidine molecules generate a polymeric chain extending along the [010] direction. The structure is consolidated by N—H⋯O, N—H⋯N and weak C—H⋯O hydrogen bonds, creating layers lying parallel to the bc plane.
Keywords: crystal structure; coordination polymer; L-histidine; strontium.
CCDC reference: 2453805
1. Chemical context
Coordination polymers and metal–organic frameworks are hybrid inorganic–organic materials characterized by extended crystal structures formed through coordination bonds between metal ions or metal-containing bridged clusters and multifunctional organic ligands. These structures can form chains, layers or three-dimensional networks, making them highly versatile materials (e.g., Tăbăcaru et al., 2018; Jiao et al., 2019
; Pettinari et al., 2016
). Over the past few decades, these phases have garnered significant attention from chemists, material scientists, and physicists, both in academia and industry, due to their remarkable structural diversity and wide-ranging applications in fields such as sensors (Wu et al., 2020
; Wang, 2020
), catalysis (Wu & Zhao, 2017
; Zhu et al., 2017
), photonics (Dhakshinamoorthy et al., 2016
), gas storage and separation (Farrusseng, 2011
), electronics (Baumann et al., 2019
) and other applications.
Al-Terkawi et al. (2017) reported the synthesis and structural analysis of strontium coordination polymers containing deprotonated tetrafluorophthalic and phthalic acids. They synthesized two strontium-based dicarboxylate systems by a mechanochemical method and determined their structures from powder X-ray diffraction data. Dynamic vapor sorption tests showed no significant difference in adsorption behavior between dehydrated and hydrated samples. Zhang et al. (2014
) synthesized and characterized a strontium(II) coordination polymer with pyridine-2,6-dicarboxylate anions, sulfate ions and water molecules. The of this coordination polymer is consolidated by hydrogen bonding and π–π stacking interactions. Fei et al. (2005
) described the synthesis and of a hydrated di-periodic strontium–imidazolium carboxylate coordination polymer. The reveals that the polymeric sheets are separated by near-planar water sheets. The water molecules form edge-sharing hexagons linked by O—H⋯O hydrogen bonds and establish hydrogen bonds with the imidazolium ions, while not interacting with the strontium cations.
L-histidine-based crystal structures have attracted significant attention in materials science due to their diverse properties and wide-ranging applications (Thangavel et al., 2022; Pereira et al., 2023
; Li et al., 2022
). The ability of L-histidine (C6H9N3O2) to coordinate with metals makes it an effective reagent for preparing metal–organic frameworks used in catalysis and adsorption. Additionally, these structures exhibit nonlinear optical properties, as well as piezoelectric and ferroelectric characteristics. Building on these earlier findings, and as part of our ongoing research into L-histidine-based metal–organic frameworks, we present here the synthesis and of the title mono-periodic coordination polymer, [Sr(NO3)2(C6H9N3O2)2]n (I), formed from the reaction of L-histidine and strontium nitrate in aqueous solution.
2. Structural commentary
Compound (I) crystallizes in the monoclinic C2. The consists of one zwitterionic L-histidine molecule, one nitrate anion and one Sr2+ cation (Fig. 1). The bond lengths (Table 1
) around the carboxylate group of the L-histidine molecule indicate deprotonation, i.e., carrying a negative charge. The amine group of the L-histidine is protonated, resulting in its zwitterionic form in the The Sr2+ ion lies on a crystallographic twofold axis and is coordinated by ten oxygen atoms (Fig. 2
). Among them, four originate from two L-histidine molecules that simultaneously chelate the Sr2+ cation via atoms O1 and O2, while two others come from two different bridging L-histidine molecules (via O2). The remaining four oxygen atoms belong to two chelating nitrate anions, which act as O,O-bidentate ligands. As a result, the Sr2+ cation adopts a distorted decahedral geometry. The Sr—O bond lengths range from 2.645 (4) to 2.863 (4) Å while the O—Sr—O angles vary between 45.60 (9) and 146.16 (10)°. These values are comparable to previously reported data (Parsekar et al., 2022
; Natarajan et al., 2011
; Arularasan et al., 2013
). The bond lengths and bond angles in the L-histidine molecule are consistent with earlier reported crystal structures (Gokul Raj et al., 2006
; Raghavalu et al., 2007
; Muralidharan et al., 2013
) : key torsion angles are presented in Table 1
. The expected S configuration of C5 is confirmed by the The bridging L-histidine molecules connect neighboring metal ions into a polymeric chain propagating along [010] via atom O2, resulting in a Sr⋯Sr separation of 4.6574 (5) Å for adjacent metal ions (Fig. 2
), i.e., the b cell dimension.
|
![]() | Figure 1 The asymmetric unit of (I) showing 50% displacement ellipsoids. |
![]() | Figure 2 A view of the coordination environment surrounding the strontium atom in (I). |
3. Supramolecular features
In the extended structure, each polymeric chain is interconnected with neighboring chains via hydrogen bonds, including N2—H2A⋯O5 and N1—H1B⋯O1 (Table 2). The structure is consolidated by additional hydrogen-bonding interactions, including N1—H1B⋯N3, N1—H1A⋯O3, N1—H1A⋯O4, and N1—H1C⋯O1. Finally, the N1—H1A⋯O3 interaction results in the formation of a three-dimensional supramolecular architecture (Table 2
, Fig. 3
).
|
![]() | Figure 3 A view along the b-axis showing the packing of (I) with hydrogen bonds indicated by blue dashed lines. |
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, update of June 2024; Groom et al., 2016) using Conquest (Bruno et al., 2002
) for a zwitterionic L-histidine molecule gave 87 hits, ten of which involved coordination to metal atoms, viz.: Zn [CSD refcode: DOBBEC01 (Mekhatria et al., 2011
), KEKWIH (Chen & Bu 2006
), NADWIA (Dong et al., 2010
), and YAHLOJ (Fan et al., 2005
)], Rh (EYEWUD; Jalilehvand et al., 2021
), Cd [HADXOD (Seo & Ok 2021
), KITCIC (Sihem et al., 2019
), KITCIC01 (Mohamedi et al., 2019
), and KITCIC02 (Seo & Ok 2021
)], Ag (TIGHEY; Mirolo et al., 2013
). In contrast, a search for the neutral non-zwitterionic L-histidine molecule gave 28 hits, six of which displayed metal coordination: Pt [FARYUS (Baidina et al., 1990
), and KUWQEZ (Ye et al., 2009
)], Hg (HISHGC; Adams et al., 1970
), Ir (SETMOT; Krämer et al., 1990
), Pd (VIWSUP01; Caubet et al., 1992
), and V (WEGFIX01; Czernuszewicz et al., 1994
). The coordination modes varied across these structures: mono O-coordination through the carboxyl group was observed in complexes with Zn (DOBBEC01), Cd (HADXOD, KITCIC, KITCIC 01, KITCIC 02), Zn (KEKWIH), and Hg (HISHGC). A bidentate O,O-coordination mode was seen in LIKREE (Arularasan et al., 2013
). Coordination via N atoms either the amino group, the imidazole-ring nitrogen atom, or both, was evident in Pt (FARYUS, and KUWQEZ), Ir (SETMOT), Pd (VIWSUP01).
5. Synthesis and crystallization
In a 250 ml beaker, L-histidine (1.552 g) and strontium nitrate (2.12 g) were taken in equimolar amounts and dissolved in deionized water (30 ml) at room temperature. The mixture was stirred thoroughly for 4 h using a magnetic stirrer and then filtered. The beaker was placed in an undisturbed area to allow the mother solution to slowly evaporate. After 12 days, colorless single crystals of (I) with a well-formed triangular shape were harvested with dimensions of up to 0.9 × 0.4 × 0.3 mm.
6. Refinement
Crystal data, data collection and structure . The N-bound H atoms were located in a difference-Fourier map and refined with isotropic displacement parameters. All C-bound H atoms were included in calculated positions and treated as riding atoms with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C). The crystal studied was refined as a two-component inversion twin.
|
Supporting information
CCDC reference: 2453805
https://doi.org/10.1107/S2056989025004694/hb8141sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025004694/hb8141Isup2.hkl
[Sr(NO3)2(C6H9N3O2)2] | F(000) = 528 |
Mr = 521.96 | Dx = 1.900 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
a = 24.9533 (7) Å | Cell parameters from 9983 reflections |
b = 4.6575 (1) Å | θ = 3.4–27.1° |
c = 8.1543 (2) Å | µ = 3.03 mm−1 |
β = 105.695 (1)° | T = 298 K |
V = 912.36 (4) Å3 | Plate, colourless |
Z = 2 | 0.20 × 0.11 × 0.02 mm |
Bruker D8 VENTURE diffractometer with PHOTON II detector | 1859 independent reflections |
Radiation source: fine-focus sealed tube | 1859 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω and φ scan | θmax = 27.1°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −31→31 |
Tmin = 0.593, Tmax = 0.799 | k = −5→5 |
9589 measured reflections | l = −10→10 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.016 | w = 1/[σ2(Fo2) + (0.0202P)2 + 0.2576P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.045 | (Δ/σ)max = 0.001 |
S = 1.13 | Δρmax = 0.36 e Å−3 |
1859 reflections | Δρmin = −0.19 e Å−3 |
158 parameters | Absolute structure: Refined as an inversion twin. |
7 restraints | Absolute structure parameter: 0.037 (8) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.500000 | 0.90071 (5) | 1.000000 | 0.01832 (9) | |
C1 | 0.27741 (10) | 0.8961 (15) | 0.2136 (3) | 0.0323 (5) | |
H1 | 0.271782 | 1.046398 | 0.135723 | 0.039* | |
C2 | 0.26207 (12) | 0.5153 (7) | 0.3481 (4) | 0.0297 (6) | |
H2 | 0.245095 | 0.357124 | 0.382380 | 0.036* | |
C3 | 0.31540 (11) | 0.6064 (6) | 0.4157 (3) | 0.0234 (5) | |
C4 | 0.35847 (11) | 0.4845 (7) | 0.5642 (3) | 0.0288 (7) | |
H4A | 0.345129 | 0.301837 | 0.594645 | 0.035* | |
H4B | 0.362698 | 0.612670 | 0.660601 | 0.035* | |
C5 | 0.41568 (10) | 0.4382 (8) | 0.5331 (3) | 0.0206 (6) | |
H5 | 0.430841 | 0.625543 | 0.513984 | 0.025* | |
C6 | 0.45482 (10) | 0.3017 (6) | 0.6917 (3) | 0.0210 (5) | |
O1 | 0.47792 (9) | 0.0682 (5) | 0.6740 (3) | 0.0305 (5) | |
O2 | 0.46051 (8) | 0.4284 (9) | 0.8299 (2) | 0.0312 (5) | |
O3 | 0.42251 (9) | 0.6821 (6) | 1.1355 (3) | 0.0404 (6) | |
O4 | 0.33890 (11) | 0.5834 (8) | 0.9953 (4) | 0.0652 (9) | |
O5 | 0.38281 (11) | 0.9385 (10) | 0.9198 (3) | 0.0528 (9) | |
N1 | 0.41140 (9) | 0.2554 (5) | 0.3799 (3) | 0.0221 (4) | |
N2 | 0.23858 (10) | 0.7020 (6) | 0.2203 (3) | 0.0312 (5) | |
N3 | 0.32485 (9) | 0.8489 (5) | 0.3311 (3) | 0.0287 (7) | |
N4 | 0.38007 (10) | 0.7320 (6) | 1.0161 (3) | 0.0291 (5) | |
H1A | 0.4028 (12) | 0.357 (7) | 0.286 (3) | 0.040 (10)* | |
H1C | 0.4414 (10) | 0.165 (8) | 0.386 (5) | 0.043 (11)* | |
H1B | 0.3835 (11) | 0.127 (6) | 0.364 (4) | 0.035 (10)* | |
H2A | 0.198 (2) | 0.692 (12) | 0.154 (6) | 0.070 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.01760 (13) | 0.02030 (14) | 0.01563 (13) | 0.000 | 0.00204 (9) | 0.000 |
C1 | 0.0333 (12) | 0.0333 (13) | 0.0270 (11) | 0.012 (2) | 0.0027 (9) | 0.006 (2) |
C2 | 0.0239 (12) | 0.0333 (13) | 0.0314 (14) | 0.0004 (11) | 0.0064 (11) | −0.0006 (12) |
C3 | 0.0196 (12) | 0.0270 (12) | 0.0225 (12) | 0.0061 (10) | 0.0040 (10) | −0.0031 (10) |
C4 | 0.0234 (12) | 0.042 (2) | 0.0199 (11) | 0.0091 (10) | 0.0041 (10) | 0.0014 (10) |
C5 | 0.0199 (9) | 0.0204 (19) | 0.0189 (10) | 0.0010 (11) | 0.0011 (8) | 0.0008 (11) |
C6 | 0.0164 (11) | 0.0236 (11) | 0.0214 (12) | −0.0021 (8) | 0.0020 (9) | 0.0037 (9) |
O1 | 0.0322 (10) | 0.0312 (12) | 0.0257 (10) | 0.0112 (9) | 0.0037 (8) | 0.0065 (8) |
O2 | 0.0321 (8) | 0.0347 (14) | 0.0203 (8) | −0.0028 (12) | −0.0041 (6) | −0.0038 (12) |
O3 | 0.0265 (10) | 0.0620 (16) | 0.0309 (11) | −0.0031 (10) | 0.0049 (9) | 0.0114 (11) |
O4 | 0.0360 (13) | 0.087 (2) | 0.077 (2) | −0.0342 (15) | 0.0238 (14) | −0.0464 (18) |
O5 | 0.0569 (14) | 0.054 (2) | 0.0441 (12) | 0.0125 (17) | 0.0086 (10) | 0.0157 (17) |
N1 | 0.0214 (10) | 0.0264 (12) | 0.0174 (10) | 0.0018 (9) | 0.0034 (8) | 0.0017 (9) |
N2 | 0.0204 (11) | 0.0402 (14) | 0.0280 (12) | 0.0057 (10) | −0.0018 (9) | −0.0051 (11) |
N3 | 0.0263 (10) | 0.028 (2) | 0.0284 (11) | 0.0007 (9) | 0.0024 (8) | −0.0024 (9) |
N4 | 0.0232 (11) | 0.0348 (15) | 0.0283 (12) | 0.0002 (10) | 0.0050 (10) | −0.0090 (11) |
Sr1—O2i | 2.645 (4) | C3—C4 | 1.497 (4) |
Sr1—O2 | 2.645 (4) | C4—C5 | 1.531 (3) |
Sr1—O3i | 2.674 (2) | C4—H4A | 0.9700 |
Sr1—O3 | 2.674 (2) | C4—H4B | 0.9700 |
Sr1—O1ii | 2.681 (2) | C5—N1 | 1.492 (4) |
Sr1—O1iii | 2.681 (2) | C5—C6 | 1.532 (3) |
Sr1—O5 | 2.824 (3) | C5—H5 | 0.9800 |
Sr1—O5i | 2.824 (3) | C6—O2 | 1.245 (4) |
Sr1—O2iii | 2.863 (4) | C6—O1 | 1.257 (4) |
Sr1—O2ii | 2.863 (4) | O3—N4 | 1.251 (3) |
C1—N3 | 1.325 (3) | O4—N4 | 1.212 (4) |
C1—N2 | 1.337 (6) | O5—N4 | 1.256 (5) |
C1—H1 | 0.9300 | N1—H1A | 0.878 (19) |
C2—N2 | 1.362 (4) | N1—H1C | 0.85 (2) |
C2—C3 | 1.363 (4) | N1—H1B | 0.90 (2) |
C2—H2 | 0.9300 | N2—H2A | 1.00 (5) |
C3—N3 | 1.376 (4) | ||
O2i—Sr1—O2 | 67.44 (12) | N2—C1—H1 | 124.0 |
O2i—Sr1—O3i | 72.05 (7) | N2—C2—C3 | 106.4 (3) |
O2—Sr1—O3i | 71.04 (7) | N2—C2—H2 | 126.8 |
O2i—Sr1—O3 | 71.04 (7) | C3—C2—H2 | 126.8 |
O2—Sr1—O3 | 72.05 (7) | C2—C3—N3 | 109.5 (2) |
O3i—Sr1—O3 | 135.25 (13) | C2—C3—C4 | 128.2 (3) |
O2i—Sr1—O1ii | 135.21 (7) | N3—C3—C4 | 122.3 (2) |
O2—Sr1—O1ii | 76.97 (8) | C3—C4—C5 | 114.6 (2) |
O3i—Sr1—O1ii | 71.26 (7) | C3—C4—H4A | 108.6 |
O3—Sr1—O1ii | 122.88 (6) | C5—C4—H4A | 108.6 |
O2i—Sr1—O1iii | 76.97 (8) | C3—C4—H4B | 108.6 |
O2—Sr1—O1iii | 135.21 (7) | C5—C4—H4B | 108.6 |
O3i—Sr1—O1iii | 122.88 (6) | H4A—C4—H4B | 107.6 |
O3—Sr1—O1iii | 71.26 (7) | N1—C5—C4 | 111.1 (2) |
O1ii—Sr1—O1iii | 146.16 (10) | N1—C5—C6 | 110.8 (3) |
O2i—Sr1—O5 | 112.88 (10) | C4—C5—C6 | 109.2 (2) |
O2—Sr1—O5 | 73.43 (11) | N1—C5—H5 | 108.6 |
O3i—Sr1—O5 | 138.34 (8) | C4—C5—H5 | 108.6 |
O3—Sr1—O5 | 45.60 (9) | C6—C5—H5 | 108.6 |
O1ii—Sr1—O5 | 80.21 (7) | O2—C6—O1 | 124.7 (3) |
O1iii—Sr1—O5 | 97.68 (8) | O2—C6—C5 | 117.3 (3) |
O2i—Sr1—O5i | 73.43 (10) | O1—C6—C5 | 118.0 (2) |
O2—Sr1—O5i | 112.88 (10) | O2—C6—Sr1iv | 67.8 (2) |
O3i—Sr1—O5i | 45.60 (9) | O1—C6—Sr1iv | 59.51 (14) |
O3—Sr1—O5i | 138.34 (8) | C5—C6—Sr1iv | 161.20 (19) |
O1ii—Sr1—O5i | 97.68 (8) | C6—O1—Sr1iv | 96.65 (16) |
O1iii—Sr1—O5i | 80.21 (7) | C6—O2—Sr1 | 143.5 (2) |
O5—Sr1—O5i | 172.85 (19) | C6—O2—Sr1iv | 88.4 (2) |
O2i—Sr1—O2iii | 115.42 (6) | Sr1—O2—Sr1iv | 115.42 (6) |
O2—Sr1—O2iii | 177.14 (9) | N4—O3—Sr1 | 99.34 (17) |
O3i—Sr1—O2iii | 109.54 (7) | N4—O5—Sr1 | 92.04 (19) |
O3—Sr1—O2iii | 108.60 (7) | C5—N1—H1A | 112 (3) |
O1ii—Sr1—O2iii | 100.50 (7) | C5—N1—H1C | 112 (3) |
O1iii—Sr1—O2iii | 47.01 (7) | H1A—N1—H1C | 109 (3) |
O5—Sr1—O2iii | 104.94 (10) | C5—N1—H1B | 112 (2) |
O5i—Sr1—O2iii | 68.60 (10) | H1A—N1—H1B | 104 (2) |
O2i—Sr1—O2ii | 177.14 (10) | H1C—N1—H1B | 108 (3) |
O2—Sr1—O2ii | 115.42 (6) | C1—N2—C2 | 107.2 (2) |
O3i—Sr1—O2ii | 108.61 (7) | C1—N2—H2A | 130 (3) |
O3—Sr1—O2ii | 109.54 (7) | C2—N2—H2A | 123 (3) |
O1ii—Sr1—O2ii | 47.01 (7) | C1—N3—C3 | 104.9 (3) |
O1iii—Sr1—O2ii | 100.50 (7) | O4—N4—O3 | 120.7 (3) |
O5—Sr1—O2ii | 68.60 (10) | O4—N4—O5 | 122.5 (3) |
O5i—Sr1—O2ii | 104.94 (10) | O3—N4—O5 | 116.8 (3) |
O2iii—Sr1—O2ii | 61.72 (10) | O4—N4—Sr1 | 157.1 (2) |
N3—C1—N2 | 112.0 (4) | O3—N4—Sr1 | 57.43 (14) |
N3—C1—H1 | 124.0 | O5—N4—Sr1 | 64.34 (16) |
N2—C2—C3—N3 | 0.4 (3) | O1—C6—O2—Sr1 | 114.7 (4) |
N2—C2—C3—C4 | 177.2 (3) | C5—C6—O2—Sr1 | −66.8 (4) |
C2—C3—C4—C5 | 132.6 (3) | Sr1iv—C6—O2—Sr1 | 133.1 (3) |
N3—C3—C4—C5 | −51.0 (4) | O1—C6—O2—Sr1iv | −18.4 (3) |
C3—C4—C5—N1 | −55.2 (4) | C5—C6—O2—Sr1iv | 160.1 (2) |
C3—C4—C5—C6 | −177.7 (3) | N3—C1—N2—C2 | −0.7 (4) |
N1—C5—C6—O2 | −177.5 (2) | C3—C2—N2—C1 | 0.2 (4) |
C4—C5—C6—O2 | −54.8 (4) | N2—C1—N3—C3 | 0.9 (4) |
N1—C5—C6—O1 | 1.1 (3) | C2—C3—N3—C1 | −0.7 (3) |
C4—C5—C6—O1 | 123.8 (3) | C4—C3—N3—C1 | −177.8 (3) |
N1—C5—C6—Sr1iv | −76.2 (6) | Sr1—O3—N4—O4 | 153.1 (2) |
C4—C5—C6—Sr1iv | 46.5 (7) | Sr1—O3—N4—O5 | −26.0 (3) |
O2—C6—O1—Sr1iv | 19.8 (3) | Sr1—O5—N4—O4 | −154.9 (3) |
C5—C6—O1—Sr1iv | −158.6 (2) | Sr1—O5—N4—O3 | 24.2 (3) |
Symmetry codes: (i) −x+1, y, −z+2; (ii) x, y+1, z; (iii) −x+1, y+1, −z+2; (iv) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···N3iv | 0.90 (2) | 1.92 (2) | 2.818 (3) | 179 (3) |
N1—H1C···O3v | 0.85 (2) | 2.99 (4) | 3.387 (4) | 111 (3) |
N1—H1C···O1vi | 0.85 (2) | 2.24 (2) | 3.039 (3) | 156 (3) |
N2—H2A···O4vii | 1.00 (5) | 2.25 (5) | 2.854 (3) | 118 (4) |
N2—H2A···O5viii | 1.00 (5) | 2.28 (5) | 3.180 (4) | 148 (4) |
C4—H4B···O5 | 0.97 | 2.54 | 3.507 (5) | 175 |
C5—H5···O1ii | 0.98 | 2.55 | 3.373 (4) | 142 |
Symmetry codes: (ii) x, y+1, z; (iv) x, y−1, z; (v) x, y−1, z−1; (vi) −x+1, y, −z+1; (vii) −x+1/2, y+1/2, −z+1; (viii) −x+1/2, y−1/2, −z+1. |
Funding information
PV and MJP thank VIEP-BUAP for project 100184100-VIEP2024 and also thank VIEP-BUAP for a Visiting Professor Fellowship.
References
Adams, M. J., Hodgkin, D. C. & Raeburn, U. A. (1970). J. Chem. Soc. A pp. 2632. CSD CrossRef Google Scholar
Al-Terkawi, A.-A., Scholz, G., Emmerling, F. & Kemnitz, E. (2017). Dalton Trans. 46, 12574–12587. PubMed Google Scholar
Arularasan, P., Chakkaravarthi, G. & Mohan, R. (2013). Acta Cryst. E69, m597. CSD CrossRef IUCr Journals Google Scholar
Baidina, I. A., Slyudkin, O. P. & Borisov, S. V. (1990). J. Struct. Chem. 31, 503–506. CrossRef Google Scholar
Baumann, A. E., Burns, D. A., Liu, B. & Thoi, V. S. (2019). Commun. Chem. 2, 86. Web of Science CrossRef Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Caubet, A., Moreno, V., Molins, E. & Miravitlles, C. (1992). J. Inorg. Biochem. 48, 135–152. CSD CrossRef CAS Web of Science Google Scholar
Chen, L. & Bu, X. (2006). Chem. Mater. 18, 1857–1860. CSD CrossRef CAS Google Scholar
Czernuszewicz, R. S., Yan, Q., Bond, M. R. & Carrano, C. J. (1994). Inorg. Chem. 33, 6116–6119. CSD CrossRef CAS Web of Science Google Scholar
Dhakshinamoorthy, A., Asiri, A. M. & García, H. (2016). Angew. Chem. Int. Ed. 55, 5414–5445. CrossRef CAS Google Scholar
Dong, Z., Zhao, V., Liang, Z., Chen, P., Yan, Y., Li, J., Yu, J. & Xu, R. (2010). Dalton Trans. 39, 5439–5445. CSD CrossRef PubMed Google Scholar
Fan, J., Slebodnick, C., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 552–558. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrusseng, D. (2011). Metal-organic frameworks: applications from catalysis to gas storage. Chichester: John Wiley & Sons. ISBN 978-3527328703 Google Scholar
Fei, Z., Geldbach, T. J., Zhao, D., Scopelliti, R. & Dyson, P. J. (2005). Inorg. Chem. 44, 5200–5202. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gokul Raj, S., Ramesh Kumar, G., Raghavalu, T., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, o1178–o1180. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jalilehvand, F., Enriquez Garcia, A., Niksirat, P., Finfrock, Y. Z. & Gelfand, B. S. (2021). J. Inorg. Biochem. 224, 111556. CSD CrossRef PubMed Google Scholar
Jiao, L., Seow, J. Y. R., Skinner, W. S., Wang, Z. U. & Jiang, H.-L. (2019). Mater. Today 27, 43–68. CrossRef Google Scholar
Krämer, R., Polborn, K., Wanjek, H., Zahn, I. & Beck, W. (1990). Chem. Ber. 123, 767–778. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, J., Yao, S.-L., Zheng, T.-F., Xu, H., Li, J.-Y., Peng, Y., Chen, J.-L., Liu, S.-J. & Wen, H.-R. (2022). Dalton Trans. 51, 5983–5988. CSD CrossRef PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mekhatria, D., Rigolet, S., Janiak, C., Simon-Masseron, A., Hasnaoui, M. A. & Bengueddach, A. (2011). Cryst. Growth Des. 11, 396–404. CSD CrossRef CAS Google Scholar
Mirolo, L., Schmidt, T., Eckhardt, S., Meuwly, M. & Fromm, K. M. (2013). Chem. A Eur. J. 19, 1754–1761. CSD CrossRef Google Scholar
Mohamedi, N., Elleuch, S., Boufas, S., Legouira, M. & Djazi, F. (2019). Acta Cryst. E75, 823–825. CSD CrossRef IUCr Journals Google Scholar
Muralidharan, S., Nagapandiselvi, P., Srinivasan, T., Gopalakrishnan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o804. CSD CrossRef IUCr Journals Google Scholar
Natarajan, S., Kalyana Sundar, J., Athimoolam, S. & Srinivasan, B. R. (2011). J. Coord. Chem. 64, 2274–2283. CSD CrossRef Google Scholar
Parsekar, N. U., Bhargao, P. H., Näther, C., Bensch, W. & Srinivasan, B. R. (2022). J. Inorg. Organomet. Polym. 32, 200–215. CSD CrossRef CAS Google Scholar
Pereira, F. A. R., Macedo-Filho, A., Silva, A. M., Frazão, N. F., Sarmento, R. G., Lima, K. A. L., Melo, J. J. S., Pereira Junior, M. L., Ribeiro Junior, L. A. & Freire, V. N. (2023). J. Mol. Model. 29, 205. CrossRef PubMed Google Scholar
Pettinari, C., Tăbăcaru, A. & Galli, S. (2016). Coord. Chem. Rev. 307, 1–31. Web of Science CrossRef CAS Google Scholar
Raghavalu, T., Kumar, K. S., Kumar, G. R., Gokul Raj, S. & Mohan, R. (2007). Acta Cryst. E63, o1706–o1707. CSD CrossRef IUCr Journals Google Scholar
Seo, W. & Ok, K. M. (2021). Inorg. Chem. Front. 8, 4536–4543. CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sihem, B., Nacira, M., Slim, E., Messaoud, L. & Faical, D. (2019). CSD Communication (refcode KITCIC). CCDC, Cambridge, England. Google Scholar
Tăbăcaru, A., Pettinari, C. & Galli, S. (2018). Coord. Chem. Rev. 372, 1–30. Google Scholar
Thangavel, S., Kathiravan, V., Ashok Kumar, R., Satheesh Kumar, G. & Selvarajan, P. (2022). J. Mater. Sci. Mater. Electron. 33, 12249–12258. CrossRef Google Scholar
Wang, L. (2020). Sens. Actuators A Phys. 307, 111984. CrossRef Google Scholar
Wu, C.-D. & Zhao, M. (2017). Adv. Mater. 29, 1605446. CrossRef Google Scholar
Wu, F., Ye, J., Cao, Y., Wang, Z., Miao, T. & Shi, Q. (2020). Luminescence 35, 440–446. CrossRef PubMed Google Scholar
Ye, Q.-S., Xie, M.-J., Liu, W.-P., Chen, X.-Z., Yu, Y., Chang, Q.-W. & Hou, S.-Q. (2009). Chem. Pharm. Bull. 57, 424–427. CSD CrossRef Google Scholar
Zhang, W., Qi, S.-G. & Feng, Y.-Q. (2014). Acta Cryst. C70, 584–587. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, L., Liu, X.-Q., Jiang, H.-L. & Sun, L.-B. (2017). Chem. Rev. 117, 8129–8176. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.