research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analyses, inter­action energy calculations and energy frameworks of methyl 2-[(4-cyano­phen­yl)meth­­oxy]quinoline-4-carboxyl­ate

crossmark logo

aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty Of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco, bUniversity of Lille, CNRS, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000 Lille, France, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, and dUniversité de Lille, CNRS, UAR 3290, MSAP, Miniaturization for Synthesis, Analysis and Proteomics, F-59000 Lille, France
*Correspondence e-mail: [email protected]

Edited by K. V. Domasevitch, National Taras Shevchenko University of Kyiv, Ukraine (Received 21 March 2025; accepted 19 June 2025; online 27 June 2025)

The title compound, C19H14N2O3, features competition and inter­play of a range of weak inter­actions, which actualize under the absence of conventional hydrogen-bond donors. Two kinds of stacking inter­actions, namely slipped anti­parallel inter­actions of cyano­phenyl groups as well as quinoline and carb­oxy groups, are primarily important. In combination with relatively short tetrel OCH3⋯N≡C bonds [C⋯N = 3.146 (3) Å] they are responsible for the generation of the layers, while the inter­layer bonding occurs via C—H⋯O and C—H⋯N weak hydrogen bonds. These findings are consistent with the results of Hirshfeld surface analysis and calculated inter­action energies. Contributions of the C⋯C, C⋯N/N⋯C and C⋯O/O⋯C contacts originating in the stacking inter­actions account for 17.0% to the surface area. The largest inter­actions energies are associated with the two kinds of stacks (−45.8 and −24.3 kJ mol−1) and they are superior to the energies of weak hydrogen bond and tetrel inter­actions (−12.4 to −22.4 kJ mol−1). Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the consolidation is dominated via the dispersion energy contributions.

1. Chemical context

Heterocyclic compounds, especially nitro­gen-containing systems such as quinoline derivatives, play a pivotal role in medicinal chemistry due to their broad spectrum of biological activities (Filali Baba et al., 2019[Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255-268.], 2020[Filali Baba, Y., Gökce, H., Kandri Rodi, Y., Hayani, S., Ouazzani Chahdi, F., Boukir, A., Jasinski, J. P., Kaur, M., Hökelek, T., Sebbar, N. K. & Essassi, E. M. (2020). J. Mol. Struct. 1217, 128461.]; Hayani et al., 2021a[Hayani, S., Sert, Y., Filali Baba, Y., Benhiba, F., Chahdi, F. O., Laraqui, F. Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Rodi, Y. K. & Essassi, E. M. (2021a). J. Mol. Struct. 1227, 129520.]; El-Mrabet et al., 2023[El-Mrabet, A., Haoudi, A., Dalbouha, S., Skalli, M. K., Hökelek, T., Capet, F., Kandri Rodi, Y., Mazzah, A. & Sebbar, N. K. (2023). Acta Cryst. E79, 883-889.], 2025[El-Mrabet, A., Haoudi, A., Kandri-Rodi, Y. & Mazzah, A. (2025). Organics 6, 16.]; Bouzian et al., 2018[Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData 3, x181438.], 2021[Bouzian, Y., Chkirate, K., Mague, J. T., Al-Ostoot, F. H., Hammou Ahabchane, N. & Essassi, E. M. (2021). Acta Cryst. E77, 824-828.]). These compounds exhibit anti­microbial (Salam et al., 2023[Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A. & Alqumber, M. A. A. (2023). Healthcare 11, 1946.]), anti­fungal (Chen et al., 2021[Chen, Y.-J., Ma, K.-Y., Du, S.-S., Zhang, Z.-J., Wu, T.-L., Sun, Y., Liu, Y.-Q., Yin, X.-D., Zhou, R., Yan, Y.-F., Wang, R.-X., He, Y.-H., Chu, Q.-R. & Tang, C. (2021). J. Agric. Food Chem. 69, 12156-12170.]), anti-Alzheimer's (Chen et al., 2023[Chen, H., Mi, J., Li, S., Liu, Z., Yang, J., Chen, R., Wang, Y., Ban, Y., Zhou, Y., Dong, W. & Sang, Z. (2023). J. Enzyme Inhib. Med. Chem. 38, 2169682.]), anti-infective (Muruganantham et al., 2004[Muruganantham, N., Sivakumar, R., Anbalagan, N., Gunasekaran, V. & Leonard, J. T. (2004). Biol. Pharm. Bull. 27, 1683-1687.]), anti­leishmanial (Chanquia et al., 2019[Chanquia, S. N., Larregui, F., Puente, V., Labriola, C., Lombardo, E. & García Liñares, G. (2019). Bioorg. Chem. 83, 526-534.]), anti-HIV (Strekowski et al., 1991[Strekowski, L., Mokrosz, J. L., Honkan, V. A., Czarny, A., Cegla, M. T., Wydra, R. L., Patterson, S. E. & Schinazi, R. F. (1991). J. Med. Chem. 34, 1739-1746.]), anti-inflammatory (Ghanim et al., 2022[Ghanim, A. M., Girgis, A. S., Kariuki, B. M., Samir, N., Said, M. F., Abdelnaser, A., Nasr, S., Bekheit, M. S., Abdelhameed, M. F., Almalki, A. J., Ibrahim, T. S. & Panda, S. S. (2022). Bioorg. Chem. 119, 105557.]), anti­viral (Kaur & Kumar, 2021[Kaur, R. & Kumar, K. (2021). Eur. J. Med. Chem. 215, 113220.]), and corrosion inhibitive activities (Mahamoud et al., 2006[Mahamoud, A., Chevalier, J., Davin-Regli, A., Barbe, J. & Pagès, J. (2006). Curr. Drug Targets 7, 843-847.]; Filali Baba et al., 2016a[Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ouazzani Chahdi, F., Ouzidan, Y., Sebbar, N. K., Essassi, E. M., El-Hajjaji, F. & Hammouti, B. (2016a). Der Pharmacia Lettre 8, 128-137.],b[Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ouazzani Chahdi, F., Ouzidan, Y., Sebbar, N. K. & Essassi, E. M. (2016b). J. Mater. Environ. Sci. 7, 2424-2434.]). Their structural flexibility and ability to inter­act with diverse biological targets make quinolines attractive frameworks for drug development, especially in addressing significant therapeutic challenges. In this context, we report herein the synthesis and comprehensive structural characterization of a novel quinoline-based compound, methyl 2-(4-cyano­benz­yloxy)quinoline-4-carboxyl­ate (I)[link]. The target mol­ecule was obtained via an O-alkyl­ation reaction of methyl 2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate with 4-(bromo­meth­yl)benzo­nitrile under phase-transfer catalysis (PTC). The synthesized compound was analyzed using 1H and 13C NMR, FT-IR spectroscopy, single-crystal X-ray diffraction, and Hirshfeld surface analysis to elucidate its mol­ecular and crystal structure.

[Scheme 1]

2. Structural commentary

The title compound, (I)[link], contains the almost planar quinoline and cyano­phenyl moieties (Fig. 1[link]), where the planar A (C1–C6), B (N1/C1/C6–C9) and C (C13–C18) rings are oriented at dihedral angles of A/B = 0.56 (5)°, A/C = 14.47 (6)° and B/C = 15.02 (6)°. The exocyclic atoms O1, O2, O3, C10, C11 and C12 are also nearly coplanar with the quinoline framework and lie 0.005 (2), −0.030 (2), 0.016 (1), −0.015 (2), −0.067 (3) and −0.037 (2) Å, respectively, away from its mean plane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom and ring labelling schemes and displacement ellipsoids drawn at the 50% probability level. The dotted line indicates a possible weak hydrogen bond.

In the ester group, the O1—C10 and O2—C10 bond lengths are 1.177 (2) Å and 1.308 (2) Å, respectively. This strict differentiation of the C—O bonds indicates mainly the localized single and double bounds rather than delocalized bonding arrangement. The O1—C10—O2 bond angle of 121.6 (2)° agrees well with the parameters for comparable methyl 2-phenyl quinoline-4-carboxyl­ate [122.42 (14)°; Mague et al., 2016[Mague, J. T., Akkurt, M., Mohamed, S. K., Al-badrany, K. A. & Ahmed, E. A. (2016). IUCrData 1, x161500.]], and methyl 2-oxo-1-(propyn-2-yl)-1,2-di hydro­quinoline-4-carboxyl­ate [122.55 (12)°; El-Mrabet et al., 2023[El-Mrabet, A., Haoudi, A., Dalbouha, S., Skalli, M. K., Hökelek, T., Capet, F., Kandri Rodi, Y., Mazzah, A. & Sebbar, N. K. (2023). Acta Cryst. E79, 883-889.]]. The planes of the carbometh­oxy group [defined by the atoms C7, C10, O1 and O2] and ring B are related by 0.96 (17)° indicating a coplanar arrangement. The latter is partly caused by the weak intra­molecular C5—H5⋯O1 hydrogen bond (Table 1[link]), similarly to in methyl 6-chloro-1-methyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate with a corresponding dihedral angle of 4.08 (8)° (Filali Baba et al., 2022[Filali Baba, Y., Hayani, S., Dalbouha, S., Hökelek, T., Ouazzani Chahdi, F., Mague, J. T., Kandri Rodi, Y., Sebbar, N. K. & Essassi, E. M. (2022). Acta Cryst. E78, 425-432.]). As evidenced by the C11—O2—C10—C7 [178.98 (18)°] torsion angle, the ester group attached to the quinoline moiety is in a syn peripheral conformation. The corresponding torsion angles for the related derivatives of benzyl [176.06 (11)°; Bouzian et al., 2018[Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData 3, x181438.]] and ethyl [−176.71 (15)°; Sunitha et al., 2015[Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341-o342.]] quinoline-4-carboxyl­ates represent syn- and anti-peripheral conformations, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.75 3.651 (2) 163
C5—H5⋯O1 0.93 2.25 2.883 (2) 125
C15—H15⋯O1ii 0.93 2.48 3.337 (2) 154
C18—H18⋯N2iii 0.93 2.68 3.558 (3) 158
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

3. Supra­molecular features

In the crystal, inter­molecular C15—H15⋯O1ii hydrogen bonds [symmetry code (ii): x + 1, y + [{1\over 2}], z + [{3\over 2}]; Table 1[link]] link the mol­ecules into the infinite chains along the b-axis direction (Fig. 2[link]). However, the entire non-covalent framework in the structure may be best described as consisting of corrugated layers, which propagate parallel to the ac plane and are linked in the third dimension by a set of very weak hydrogen bonds. The layers themselves are sustained by two kinds of stacking inter­actions. First, two inversion-related cyano­phenyl moieties [symmetry code: (v) −x + 1, −y + 1, −z + 1] afford anti­parallel stacks with inter­planar distances of 3.660 (2) Å, in which the centroids of C19–N2 groups [Cg2] are situated almost exactly above the centroids of the corresponding aromatic rings (Cg1) at 3.735 (2) Å (Figs. 2[link], 3[link]). The second kind of stacking inter­action is identified between nearly parallel ester groups and heterocyclic rings B [symmetry code: (vi) x + [{1\over 2}], y, −z + [{3\over 2}]; inter­planar angle is 3.98 (11)°], with separation Cg3⋯C10vi = 3.817 (2) Å (Cg3 is the ring B centroid). These layers are further consolidated by relatively short tetrel bonding (Varadwaj et al., 2023[Varadwaj, P. R., Varadwaj, A., Marques, H. M. & Yamashita, K. (2023). CrystEngComm 25, 1411-1423.]) of the type OCH3⋯N≡C [C11⋯N2iv = 3.146 (3) Å, symmetry code (iv): −x + [{1\over 2}], −y + 1, x + [{1\over 2}]], which is well compatible to both stacking patterns (Fig. 3[link]).

[Figure 2]
Figure 2
Fragment of the crystal structure showing hydrogen-bonded chains along the b-axis direction and stacking inter­actions between the adjacent chains. [Symmetry code (ii): x + 1, y + [{1\over 2}], z + [{3\over 2}].]
[Figure 3]
Figure 3
(a) Projection of the structure nearly on the ac-plane showing assembly of the layers by means of stacking inter­actions (indicated in blue) and tetrel bonds of the type OCH3⋯N≡C (indicated with dotted red lines). (b) Packing of successive corrugated layers viewed in a projection on the bc-plane, with dotted lines representing inter­layer weak hydrogen bonding. The individual layers are identified with blue and red colors. Cg1, Cg2 and Cg3 are centroids of the groups C13–C18, N2/C19 and N1/C1/C6–C9, respectively. [Symmetry codes: (iii) −x + [{1\over 2}], y − [{1\over 2}], z; (v) −x + 1, −y + 1, −z + 1; (vi) x + [{1\over 2}], y, −z + [{3\over 2}].]

The resulting corrugated layers are separated by 7.849 Å, which is a half of the unit cell parameter b (Fig. 3[link]). In addition to the above most prominent C15—H15⋯O1ii hydrogen bonds, the suite of inter­layer inter­actions also comprises weaker C3—H3⋯O3i and C18—H18⋯N2iii bonds [symmetry codes (i): x + [{3\over 2}], y − [{1\over 2}], z; (iii) x + [{1\over 2}], y − [{1\over 2}], z; Table 1[link]]. These inter­actions are also directional, with corresponding angles at the H atoms of 163 and 158°, respectively. No C—H⋯(ring) or π(ring)–(ring) inter­actions are observed. The title compound highlights rather the inter­play of different kinds of stacking inter­actions, weak hydrogen and tetrel bonding for consolidating the 3D architecture. The combination of Hirshfeld surface analysis and energy framework calculations reveals dispersion energy as the dominant contributor, offering new insights into the packing features of quinoline-based systems and their potential in crystal engineering.

4. Hirshfeld surface analysis

For visualizing the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). In the HS plotted over dnorm (Fig. 4[link]), the contact distances equal, shorter and longer than the sum of van der Waals radii are shown in white, red and blue, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The brightest red spots correspond to the donor and acceptor sites of the C15—H15⋯O1ii bonds, whereas the positions of the tetrel OCH3⋯N≡C bonds are also clearly visible as a pair of more diffuse red spots.

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped over dnorm.

The overall two-dimensional fingerprint plots and those delineated into the contributions of the individual types of the contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are shown in Fig. 5[link]. Beyond the expected far dominant significance of H⋯H contacts (43.8%), the main contributors to the Hirshfeld surface are also associated with the H atoms: C⋯H/H⋯C = 14.3%, N⋯H/H⋯N = 14.1% and O⋯H/H⋯O = 9.9%. However, only the latter ones appear in the plots in the form of two relatively sharp spikes pointing to the lower left, thus indicating the hydrogen-bond inter­actions (shortest H⋯O = 2.35 Å). In the case of N⋯H/H⋯N contacts, these spikes are much shorter and diffuse, since most points originate rather in the tetrel inter­actions of methyl and cyano groups. In addition, the light-blue area centered at ca 3.80 Å in the plot for C⋯C contacts indicates the above stacking inter­actions. In total, the corresponding contacts, i.e. C⋯C, C⋯N/N⋯C and C⋯O/O⋯C, deliver as much as 17.0% to the surface area.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound: (a) all inter­actions and delineated into the principal contributions of (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) N⋯H/H⋯N, (f) C⋯C, (g) C⋯N/N⋯C and (h) C⋯O/O⋯C contacts. Other minor contributors are O⋯O (0.5%) and N⋯O/O⋯N (0.4%) contacts.

The nearest coordination environment of a mol­ecule can be determined from the color patches on the HS based on how close to other mol­ecules they are. The Hirshfeld surface representations of contact patches plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯ N/N⋯H, C⋯C and H⋯O/O⋯H inter­actions in Fig. S2a–e, respectively, in the supporting information. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, C⋯C and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ 2, 563-574.]).

5. Inter­action energy calculations and energy frameworks

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]).

With a cut-off of |Etot| > 12.0 kJ mol−1, seven symmetry-independent paths were identified for the closest environment of the title mol­ecules (Table 2[link]). The highest energy Etot = −45.8 kJ mol−1 corresponds to the pairing pattern involving stacking of quinoline and carb­oxy groups (path AB, Fig. 6[link]). The primary contributor here is London dispersion (Edis = −66.2 kJ mol−1), due to the very large inter­action area. Stacking of cyano­phenyl moieties is perceptibly weaker with Etot = −24.3 kJ mol−1. This value approaches the parameter calculated for the slipped anti­parallel dimer of nitro­benzene mol­ecules (−28.2 kJ mol−1; Tsuzuki et al., 2006[Tsuzuki, S., Honda, K., Uchimaru, T. & Mikami, M. (2006). J. Chem. Phys. 125, 124304.]). This stacking is also clearly distinguishable in the present energy landscape and it is even superior to the energies of the inter­molecular inter­actions, which correspond to weak hydrogen bonding (−15.8 and −17.8 kJ mol−1; Table 2[link]). In the case of the AD pair (Fig. 6[link]), slightly higher total energy of −22.4 kJ mol−1 is due to a combination of weak hydrogen bond C15—H15⋯O1ii and dispersion forces, with the corresponding principal contributors Eele = −10.3 and Edis = −25.3 kJ mol−1. This is in line with larger inter­action area and generation of additional vdW contacts, e.g. O2⋯C3ii = 3.534 (2) Å. Finally, the tetrel bonds OCH3⋯N≡C (pair BC, Fig. 6[link]) are very similar in energy to the weak hydrogen bonds (Etot = −12.4 kJ mol−1) and therefore their significance to the crystal packing may be regarded as comparable.

Table 2
Calculated inter­action energies (kJ mol−1)

Inter­action energies were calculated employing the CE-B3LYP/6–31G(d,p) functional/basis set combination. The scale factors used to determine Etot are kele = 1.057, kpol = 0.740, kdis = 0.871, and krep = 0.618 (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ 4, 575-587.]). R is the distance between the centroids of the inter­acting mol­ecules.

Path Symmetry code Typea R (Å) Eele Epol Edis Erep Etot
AB x + [{1\over 2}], y, −z + [{3\over 2}] stacking 5.77 −5.3 −2.1 −66.2 30.8 −45.8
AC x + 1, −y + 1, −z + 1 stacking 12.05 −6.1 −2.4 −25.1 9.3 −24.3
BC x + [{1\over 2}], −y + 1, z + [{1\over 2}] tetrel 15.89 −10.5 −2.7 −5.0 8.2 −12.4
AD x + 1, y + [{1\over 2}], z + [{3\over 2}] C—H⋯O, dispersion 8.93 −10.3 −2.0 −25.3 19.5 −22.4
AE x + [{1\over 2}], y + [{1\over 2}], z C—H⋯N 8.73 −10.1 −2.7 −11.7 8.2 −17.8
AF x + [{3\over 2}], y − [{1\over 2}], z C—H⋯O 8.79 −4.2 −0.5 −20.4 10.8 −15.8
AG x + [{1\over 2}], −y + [{1\over 2}], −z + 1 dispersion 9.56 −4.3 −1.6 −16.0 7.4 −15.1
Note: (a) For details of the inter­action modes see Fig. 6[link]. Weak dispersion inter­action AG is not shown in the Figure.
[Figure 6]
Figure 6
The principal pathways of inter­molecular inter­actions, identified with a cut-off limit of 12 kJ mol−1, which involve (a) stacking and tetrel inter­actions and (a) weak hydrogen bonding. The inter­action energies are given in kJ mol−1.

The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the consolidation is dominated via the dispersion energy contributions (Fig. S2 in the supporting information).

6. Database survey

A search of the Cambridge Structural Database (CSD; updated 16 May 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals 18 relevant hits, which include the 2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate core. Two of these entries, namely PEDKAO (Filali Baba et al., 2022[Filali Baba, Y., Hayani, S., Dalbouha, S., Hökelek, T., Ouazzani Chahdi, F., Mague, J. T., Kandri Rodi, Y., Sebbar, N. K. & Essassi, E. M. (2022). Acta Cryst. E78, 425-432.]) and ROKCIG (Filali Baba et al., 2019[Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255-268.]), involve additional Cl-atoms installed on the aromatic rings. Oxygen-derivatization of the selected core is a particularly rare feature. Among 13 alkyl-substituted structures retrieved, including AROPAB (Bouzian et al., 2020[Bouzian, Y., Kansiz, S., Mahi, L., Ahabchane, N. H., Mague, J. T., Dege, N., Karrouchi, K. & Essassi, E. M. (2020). Acta Cryst. E76, 642-645.]) and SECCAH (Hayani et al., 2021b[Hayani, S., Thiruvalluvar, A. A., Filali Baba, Y., Rodi, Y. K., Muthunatesan, S., Chahdi, F. O., Mague, J. T., Ibrahimi, B. E., Anouar, E. H., Sebbar, N. K. & Essassi, E. M. (2021b). J. Mol. Struct. 1234, 130195.]), most were identified as N-alkyl­ated derivatives. The only structural precedent for the O-alkyl­ation of the above core is provided by 2-eth­oxy-2-oxoethyl 2-(2-eth­oxy-2-oxoeth­oxy)quinoline-4-carboxyl­ate (refcode LIRKIJ; Bouzian et al., 2018[Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData 3, x181438.]). This highlights the need for detailed structural validation when classifying substitution patterns on such frameworks. From a supra­molecular perspective, the crystal packing of ROKCIG reveals no ππ stacking inter­actions or C—H⋯Cl hydrogen bonds, but it differs markedly from that of the title compound. It forms an inversion dimer through C—H⋯O hydrogen bonds, lacking the chain-like hydrogen-bonded pattern seen in the title structure. In contrast, its halogen-free analog (ROKCOM; Filali Baba et al., 2019[Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255-268.]) forms mol­ecular bands via C—H⋯O hydrogen bonding, further stabilized by weak ππ contacts.

7. Synthesis and crystallization

The procedure for synthesizing the methyl 2-[(4-cyano­benz­yl)­oxy]quinoline-4-carboxyl­ate derivative is as follows. To a solution of methyl 2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate (0.60 g, 2.20 mmol) in 15 ml of di­methyl­formamide (DMF), 4-(bromo­meth­yl)benzo­nitrile (0.21 ml, 2.41 mmol), K2CO3 (0.85 g, 6.10 mmol) and tetra-n-butyl­ammonium bromide (TBAB; 0.05 g, 0.18 mmol) were added and the reaction mixture was agitated at ambient temperature for a period of 12 h. Following completion of the reaction, the precipitated inorganic salts were removed through filtration and the solvent was evaporated under reduced pressure. The resultant residue was dissolved in di­chloro­methane. This solution was subsequently dried using anhydrous sodium sulfate and then concentrated under reduced pressure. The compound was purified through column chromatography, employing a hexa­ne/ethyl acetate eluent (4:1 v/v). The target product was obtained in a yield of 45%. It was further recrystallized from a mixture of di­chloro­methane and hexane (1:4 v/v) giving transparent colorless crystals, m.p. = 394 K. 1H NMR (300 MHz, CDCl3), δ, ppm: 8.61 (dd, J = 8.6, 1.4 Hz, 1H, CHAr), 7.90–7.86 (m, 1H, CHAr), 7.70–7.60 (m, 5H, CHAr), 7.53–7.47 (m, 2H, CHAr), 5.63 (s, 2H, CH2), 4.03 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3), δ, ppm: 166.21, 160.57, 147.34, 142.64, 138.51, 132.40, 130.25, 128.35, 127.85, 125.77, 125.74, 122.1, 118.87, 115.18, 111.74, 66.82, 52.87. FT–IR (cm−1): 2858 (C—Hsp3), 1727 (C=O), 2226 (C≡N), 1575–1607 (C=C, aromatic stretching); 1238 (C—O—C, ether bond).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically and refined as riding, with C—H = 0.95 Å (aromatic CH), 0.97 Å (CH2) and 0.98 Å (CH3) and with Uiso(H) = 1.2Ueq or 1.5Ueq of the carrier C-atom for CH and CH2 or CH3 groups, respectively. Four outliers (108, 204, 222 and 232) were omitted in the last cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C19H14N2O3
Mr 318.32
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 299
a, b, c (Å) 7.7810 (6), 15.6978 (11), 25.966 (2)
V3) 3171.6 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.26 × 0.22 × 0.19
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.719, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 78015, 3234, 2897
Rint 0.041
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.136, 1.05
No. of reflections 3234
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.21
Computer programs: APEX4 (Bruker, 2019[Bruker (2019). APEX4. Bruker AXS, Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS, Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Methyl 2-[(4-cyanophenyl)methoxy]quinoline-4-carboxylate top
Crystal data top
C19H14N2O3Dx = 1.333 Mg m3
Mr = 318.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9947 reflections
a = 7.7810 (6) Åθ = 3.0–26.1°
b = 15.6978 (11) ŵ = 0.09 mm1
c = 25.966 (2) ÅT = 299 K
V = 3171.6 (4) Å3Prism, colourless
Z = 80.26 × 0.22 × 0.19 mm
F(000) = 1328
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
2897 reflections with I > 2σ(I)
Radiation source: microfocus sealed X-ray tubeRint = 0.041
φ and ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.719, Tmax = 0.745k = 1917
78015 measured reflectionsl = 3232
3234 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0634P)2 + 1.2076P]
where P = (Fo2 + 2Fc2)/3
3234 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6069 (3)0.13417 (10)0.85140 (5)0.1081 (8)
O20.4881 (2)0.25179 (9)0.82571 (5)0.0777 (5)
O30.46253 (17)0.26146 (7)0.64306 (4)0.0539 (3)
N10.58631 (19)0.12898 (8)0.65387 (5)0.0472 (3)
N20.1671 (3)0.61040 (12)0.47079 (7)0.0908 (7)
C10.6466 (2)0.06874 (9)0.68811 (6)0.0434 (4)
C20.7132 (3)0.00718 (11)0.66761 (7)0.0587 (5)
H20.71490.01510.63210.070*
C30.7751 (3)0.06941 (11)0.69907 (8)0.0626 (5)
H30.81880.11930.68490.075*
C40.7735 (3)0.05892 (11)0.75228 (8)0.0573 (4)
H40.81590.10180.77340.069*
C50.7101 (2)0.01379 (10)0.77346 (6)0.0490 (4)
H50.71050.02020.80910.059*
C60.64375 (19)0.07983 (9)0.74226 (6)0.0394 (3)
C70.57211 (19)0.15814 (9)0.76106 (5)0.0379 (3)
C80.5129 (2)0.21656 (9)0.72667 (5)0.0407 (3)
H80.46620.26780.73800.049*
C90.5236 (2)0.19824 (9)0.67342 (6)0.0420 (4)
C100.5590 (2)0.17753 (10)0.81731 (6)0.0459 (4)
C110.4652 (3)0.27757 (17)0.87850 (7)0.0821 (7)
H11A0.44540.33790.87990.123*
H11B0.56660.26380.89790.123*
H11C0.36830.24820.89290.123*
C120.4609 (3)0.24802 (11)0.58871 (6)0.0529 (4)
H12A0.38730.20020.58020.063*
H12B0.57610.23570.57650.063*
C130.3942 (2)0.32785 (10)0.56377 (6)0.0455 (4)
C140.3756 (3)0.40331 (11)0.59018 (6)0.0630 (5)
H140.40350.40540.62500.076*
C150.3163 (3)0.47576 (11)0.56604 (7)0.0668 (6)
H150.30360.52610.58450.080*
C160.2760 (3)0.47327 (10)0.51442 (6)0.0531 (4)
C170.2941 (3)0.39821 (11)0.48727 (7)0.0680 (6)
H170.26640.39620.45250.082*
C180.3534 (3)0.32634 (11)0.51194 (6)0.0630 (5)
H180.36630.27600.49350.076*
C190.2146 (3)0.54952 (12)0.48955 (7)0.0663 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.207 (2)0.0747 (10)0.0423 (7)0.0505 (12)0.0176 (10)0.0059 (7)
O20.1235 (13)0.0744 (9)0.0352 (6)0.0408 (9)0.0013 (7)0.0046 (6)
O30.0886 (9)0.0396 (6)0.0336 (6)0.0134 (6)0.0052 (6)0.0023 (4)
N10.0644 (8)0.0390 (7)0.0384 (7)0.0040 (6)0.0002 (6)0.0014 (5)
N20.148 (2)0.0554 (10)0.0691 (11)0.0207 (11)0.0237 (12)0.0127 (9)
C10.0493 (8)0.0364 (7)0.0445 (8)0.0001 (6)0.0009 (7)0.0025 (6)
C20.0774 (12)0.0459 (9)0.0529 (10)0.0109 (9)0.0050 (9)0.0033 (7)
C30.0752 (13)0.0415 (9)0.0710 (12)0.0152 (9)0.0028 (10)0.0019 (8)
C40.0602 (10)0.0420 (9)0.0697 (11)0.0072 (8)0.0049 (9)0.0116 (8)
C50.0531 (9)0.0437 (8)0.0501 (9)0.0003 (7)0.0043 (7)0.0093 (7)
C60.0395 (8)0.0354 (7)0.0433 (8)0.0045 (6)0.0002 (6)0.0042 (6)
C70.0398 (7)0.0367 (7)0.0373 (7)0.0051 (6)0.0001 (6)0.0037 (6)
C80.0505 (9)0.0338 (7)0.0376 (8)0.0005 (6)0.0011 (6)0.0007 (6)
C90.0530 (9)0.0353 (7)0.0376 (8)0.0009 (6)0.0015 (6)0.0042 (6)
C100.0553 (9)0.0444 (8)0.0380 (8)0.0031 (7)0.0015 (7)0.0048 (6)
C110.1124 (18)0.0963 (16)0.0377 (10)0.0283 (14)0.0028 (11)0.0135 (10)
C120.0792 (12)0.0454 (8)0.0341 (8)0.0106 (8)0.0042 (8)0.0011 (6)
C130.0622 (10)0.0387 (8)0.0357 (7)0.0012 (7)0.0037 (7)0.0008 (6)
C140.1068 (16)0.0476 (9)0.0347 (8)0.0127 (10)0.0189 (9)0.0046 (7)
C150.1149 (17)0.0423 (9)0.0432 (9)0.0134 (10)0.0172 (10)0.0075 (7)
C160.0788 (12)0.0389 (8)0.0416 (8)0.0011 (8)0.0119 (8)0.0033 (6)
C170.1211 (18)0.0473 (9)0.0356 (8)0.0025 (10)0.0210 (10)0.0000 (7)
C180.1131 (16)0.0393 (8)0.0366 (8)0.0046 (9)0.0112 (9)0.0049 (7)
C190.1043 (16)0.0469 (10)0.0476 (9)0.0043 (10)0.0163 (10)0.0023 (8)
Geometric parameters (Å, º) top
O1—C101.177 (2)C7—C101.496 (2)
O2—C101.308 (2)C8—C91.415 (2)
O2—C111.440 (2)C8—H80.9300
O3—C91.3535 (18)C11—H11A0.9600
O3—C121.4269 (18)C11—H11B0.9600
N1—C91.296 (2)C11—H11C0.9600
N1—C11.380 (2)C12—C131.503 (2)
N2—C191.135 (2)C12—H12A0.9700
C1—C21.404 (2)C12—H12B0.9700
C1—C61.417 (2)C13—C141.376 (2)
C2—C31.362 (2)C13—C181.383 (2)
C2—H20.9300C14—C151.378 (2)
C3—C41.391 (3)C14—H140.9300
C3—H30.9300C15—C161.377 (2)
C4—C51.360 (2)C15—H150.9300
C4—H40.9300C16—C171.380 (2)
C5—C61.413 (2)C16—C191.442 (2)
C5—H50.9300C17—C181.377 (2)
C6—C71.435 (2)C17—H170.9300
C7—C81.360 (2)C18—H180.9300
C10—O2—C11117.47 (15)O2—C10—C7111.91 (13)
C9—O3—C12118.09 (12)O2—C11—H11A109.5
C9—N1—C1116.79 (13)O2—C11—H11B109.5
N1—C1—C2117.56 (14)H11A—C11—H11B109.5
N1—C1—C6123.34 (14)O2—C11—H11C109.5
C2—C1—C6119.09 (14)H11A—C11—H11C109.5
C3—C2—C1120.79 (16)H11B—C11—H11C109.5
C3—C2—H2119.6O3—C12—C13107.82 (13)
C1—C2—H2119.6O3—C12—H12A110.1
C2—C3—C4120.51 (16)C13—C12—H12A110.1
C2—C3—H3119.7O3—C12—H12B110.1
C4—C3—H3119.7C13—C12—H12B110.1
C5—C4—C3120.29 (16)H12A—C12—H12B108.5
C5—C4—H4119.9C14—C13—C18118.39 (15)
C3—C4—H4119.9C14—C13—C12122.62 (14)
C4—C5—C6121.09 (16)C18—C13—C12118.97 (14)
C4—C5—H5119.5C13—C14—C15121.25 (15)
C6—C5—H5119.5C13—C14—H14119.4
C5—C6—C1118.22 (14)C15—C14—H14119.4
C5—C6—C7125.11 (14)C16—C15—C14119.71 (16)
C1—C6—C7116.66 (13)C16—C15—H15120.1
C8—C7—C6119.06 (13)C14—C15—H15120.1
C8—C7—C10118.73 (13)C15—C16—C17119.87 (15)
C6—C7—C10122.21 (13)C15—C16—C19119.21 (15)
C7—C8—C9118.99 (14)C17—C16—C19120.92 (14)
C7—C8—H8120.5C18—C17—C16119.73 (15)
C9—C8—H8120.5C18—C17—H17120.1
N1—C9—O3121.28 (14)C16—C17—H17120.1
N1—C9—C8125.15 (14)C17—C18—C13121.04 (15)
O3—C9—C8113.57 (13)C17—C18—H18119.5
O1—C10—O2121.57 (16)C13—C18—H18119.5
O1—C10—C7126.52 (16)N2—C19—C16178.7 (2)
C9—N1—C1—C2179.24 (16)C12—O3—C9—C8177.52 (15)
C9—N1—C1—C60.5 (2)C7—C8—C9—N10.0 (3)
N1—C1—C2—C3179.93 (18)C7—C8—C9—O3179.29 (14)
C6—C1—C2—C30.3 (3)C11—O2—C10—O12.1 (3)
C1—C2—C3—C40.1 (3)C11—O2—C10—C7178.98 (18)
C2—C3—C4—C50.1 (3)C8—C7—C10—O1178.7 (2)
C3—C4—C5—C60.4 (3)C6—C7—C10—O11.8 (3)
C4—C5—C6—C10.7 (2)C8—C7—C10—O20.2 (2)
C4—C5—C6—C7179.06 (16)C6—C7—C10—O2179.31 (15)
N1—C1—C6—C5179.64 (15)C9—O3—C12—C13177.94 (14)
C2—C1—C6—C50.6 (2)O3—C12—C13—C1412.1 (3)
N1—C1—C6—C70.6 (2)O3—C12—C13—C18169.42 (18)
C2—C1—C6—C7179.15 (15)C18—C13—C14—C150.6 (3)
C5—C6—C7—C8179.86 (15)C12—C13—C14—C15179.1 (2)
C1—C6—C7—C80.4 (2)C13—C14—C15—C160.5 (4)
C5—C6—C7—C100.6 (2)C14—C15—C16—C170.4 (4)
C1—C6—C7—C10179.15 (14)C14—C15—C16—C19179.9 (2)
C6—C7—C8—C90.1 (2)C15—C16—C17—C180.4 (4)
C10—C7—C8—C9179.43 (14)C19—C16—C17—C18179.9 (2)
C1—N1—C9—O3179.42 (14)C16—C17—C18—C130.5 (4)
C1—N1—C9—C80.2 (2)C14—C13—C18—C170.6 (3)
C12—O3—C9—N13.2 (2)C12—C13—C18—C17179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.753.651 (2)163
C5—H5···O10.932.252.883 (2)125
C15—H15···O1ii0.932.483.337 (2)154
C18—H18···N2iii0.932.683.558 (3)158
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1/2, y1/2, z.
Calculated interaction energies (kJ mol-1) top
Interaction energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination. The scale factors used to determine Etot are kele = 1.057, kpol = 0.740, kdis = 0.871, and krep = 0.618 (Mackenzie et al., 2017). R is the distance between the centroids of the interacting molecules.
PathSymmetry codeTypeaR (Å)EeleEpolEdisErepEtot
A···Bx + 1/2, y, -z + 3/2stacking5.77-5.3-2.1-66.230.8-45.8
A···C-x + 1, -y + 1, -z + 1stacking12.05-6.1-2.4-25.19.3-24.3
B···C-x + 1/2, -y + 1, z + 1/2tetrel15.89-10.5-2.7-5.08.2-12.4
A···Dx + 1, y + 1/2, z + 3/2C—H···O, dispersion8.93-10.3-2.0-25.319.5-22.4
A···E-x + 1/2, y + 1/2, zC—H···N8.73-10.1-2.7-11.78.2-17.8
A···Fx + 3/2, yy - 1/2, zC—H···O8.79-4.2-0.5-20.410.8-15.8
A···Gx + 1/2, -y + 1/2, -z + 1dispersion9.56-4.3-1.6-16.07.4-15.1
Note: (a) For details of the interaction modes see Fig. 7. Weak dispersion interaction A···G is not shown in the Figure.
 

Acknowledgements

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBouzian, Y., Chkirate, K., Mague, J. T., Al-Ostoot, F. H., Hammou Ahabchane, N. & Essassi, E. M. (2021). Acta Cryst. E77, 824–828.  CrossRef IUCr Journals Google Scholar
First citationBouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData 3, x181438.  Google Scholar
First citationBouzian, Y., Kansiz, S., Mahi, L., Ahabchane, N. H., Mague, J. T., Dege, N., Karrouchi, K. & Essassi, E. M. (2020). Acta Cryst. E76, 642–645.  CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2019). APEX4. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationChanquia, S. N., Larregui, F., Puente, V., Labriola, C., Lombardo, E. & García Liñares, G. (2019). Bioorg. Chem. 83, 526–534.  CAS PubMed Google Scholar
First citationChen, H., Mi, J., Li, S., Liu, Z., Yang, J., Chen, R., Wang, Y., Ban, Y., Zhou, Y., Dong, W. & Sang, Z. (2023). J. Enzyme Inhib. Med. Chem. 38, 2169682.  PubMed Google Scholar
First citationChen, Y.-J., Ma, K.-Y., Du, S.-S., Zhang, Z.-J., Wu, T.-L., Sun, Y., Liu, Y.-Q., Yin, X.-D., Zhou, R., Yan, Y.-F., Wang, R.-X., He, Y.-H., Chu, Q.-R. & Tang, C. (2021). J. Agric. Food Chem. 69, 12156–12170.  CAS PubMed Google Scholar
First citationEl-Mrabet, A., Haoudi, A., Dalbouha, S., Skalli, M. K., Hökelek, T., Capet, F., Kandri Rodi, Y., Mazzah, A. & Sebbar, N. K. (2023). Acta Cryst. E79, 883–889.  CrossRef IUCr Journals Google Scholar
First citationEl-Mrabet, A., Haoudi, A., Kandri-Rodi, Y. & Mazzah, A. (2025). Organics 6, 16.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ouazzani Chahdi, F., Ouzidan, Y., Sebbar, N. K. & Essassi, E. M. (2016b). J. Mater. Environ. Sci. 7, 2424–2434.  Google Scholar
First citationFilali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ouazzani Chahdi, F., Ouzidan, Y., Sebbar, N. K., Essassi, E. M., El-Hajjaji, F. & Hammouti, B. (2016a). Der Pharmacia Lettre 8, 128–137.  Google Scholar
First citationFilali Baba, Y., Gökce, H., Kandri Rodi, Y., Hayani, S., Ouazzani Chahdi, F., Boukir, A., Jasinski, J. P., Kaur, M., Hökelek, T., Sebbar, N. K. & Essassi, E. M. (2020). J. Mol. Struct. 1217, 128461.  Google Scholar
First citationFilali Baba, Y., Hayani, S., Dalbouha, S., Hökelek, T., Ouazzani Chahdi, F., Mague, J. T., Kandri Rodi, Y., Sebbar, N. K. & Essassi, E. M. (2022). Acta Cryst. E78, 425–432.  CrossRef IUCr Journals Google Scholar
First citationFilali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhanim, A. M., Girgis, A. S., Kariuki, B. M., Samir, N., Said, M. F., Abdelnaser, A., Nasr, S., Bekheit, M. S., Abdelhameed, M. F., Almalki, A. J., Ibrahim, T. S. & Panda, S. S. (2022). Bioorg. Chem. 119, 105557.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ 2, 563–574.  CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHayani, S., Sert, Y., Filali Baba, Y., Benhiba, F., Chahdi, F. O., Laraqui, F. Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Rodi, Y. K. & Essassi, E. M. (2021a). J. Mol. Struct. 1227, 129520.  Google Scholar
First citationHayani, S., Thiruvalluvar, A. A., Filali Baba, Y., Rodi, Y. K., Muthunatesan, S., Chahdi, F. O., Mague, J. T., Ibrahimi, B. E., Anouar, E. H., Sebbar, N. K. & Essassi, E. M. (2021b). J. Mol. Struct. 1234, 130195.  Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta 44, 129–138.  CrossRef CAS Google Scholar
First citationKaur, R. & Kumar, K. (2021). Eur. J. Med. Chem. 215, 113220.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ 4, 575–587.  CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMague, J. T., Akkurt, M., Mohamed, S. K., Al-badrany, K. A. & Ahmed, E. A. (2016). IUCrData 1, x161500.  Google Scholar
First citationMahamoud, A., Chevalier, J., Davin-Regli, A., Barbe, J. & Pagès, J. (2006). Curr. Drug Targets 7, 843–847.  PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMuruganantham, N., Sivakumar, R., Anbalagan, N., Gunasekaran, V. & Leonard, J. T. (2004). Biol. Pharm. Bull. 27, 1683–1687.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A. & Alqumber, M. A. A. (2023). Healthcare 11, 1946.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrekowski, L., Mokrosz, J. L., Honkan, V. A., Czarny, A., Cegla, M. T., Wydra, R. L., Patterson, S. E. & Schinazi, R. F. (1991). J. Med. Chem. 34, 1739–1746.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341–o342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsuzuki, S., Honda, K., Uchimaru, T. & Mikami, M. (2006). J. Chem. Phys. 125, 124304.  Web of Science CrossRef PubMed Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVaradwaj, P. R., Varadwaj, A., Marques, H. M. & Yamashita, K. (2023). CrystEngComm 25, 1411–1423.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds