

research communications
and Hirshfeld surface analyses, interaction energy calculations and energy frameworks of methyl 2-[(4-cyanophenyl)methoxy]quinoline-4-carboxylate
aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty Of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco, bUniversity of Lille, CNRS, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000 Lille, France, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, and dUniversité de Lille, CNRS, UAR 3290, MSAP, Miniaturization for Synthesis, Analysis and Proteomics, F-59000 Lille, France
*Correspondence e-mail: [email protected]
The title compound, C19H14N2O3, features competition and interplay of a range of weak interactions, which actualize under the absence of conventional hydrogen-bond donors. Two kinds of stacking interactions, namely slipped antiparallel interactions of cyanophenyl groups as well as quinoline and carboxy groups, are primarily important. In combination with relatively short tetrel OCH3⋯N≡C bonds [C⋯N = 3.146 (3) Å] they are responsible for the generation of the layers, while the interlayer bonding occurs via C—H⋯O and C—H⋯N weak hydrogen bonds. These findings are consistent with the results of Hirshfeld surface analysis and calculated interaction energies. Contributions of the C⋯C, C⋯N/N⋯C and C⋯O/O⋯C contacts originating in the stacking interactions account for 17.0% to the surface area. The largest interactions energies are associated with the two kinds of stacks (−45.8 and −24.3 kJ mol−1) and they are superior to the energies of weak hydrogen bond and tetrel interactions (−12.4 to −22.4 kJ mol−1). Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the consolidation is dominated via the dispersion energy contributions.
Keywords: quinoline; π-stacking; weak hydrogen bond; tetrel bond; crystal structure.
CCDC reference: 2465703
1. Chemical context
et al., 2019, 2020
; Hayani et al., 2021a
; El-Mrabet et al., 2023
, 2025
; Bouzian et al., 2018
, 2021
). These compounds exhibit antimicrobial (Salam et al., 2023
), antifungal (Chen et al., 2021
), anti-Alzheimer's (Chen et al., 2023
), anti-infective (Muruganantham et al., 2004
), antileishmanial (Chanquia et al., 2019
), anti-HIV (Strekowski et al., 1991
), anti-inflammatory (Ghanim et al., 2022
), antiviral (Kaur & Kumar, 2021
), and corrosion inhibitive activities (Mahamoud et al., 2006
; Filali Baba et al., 2016a
,b
). Their structural flexibility and ability to interact with diverse biological targets make quinolines attractive frameworks for drug development, especially in addressing significant therapeutic challenges. In this context, we report herein the synthesis and comprehensive structural characterization of a novel quinoline-based compound, methyl 2-(4-cyanobenzyloxy)quinoline-4-carboxylate (I)
. The target molecule was obtained via an O-alkylation reaction of methyl 2-oxo-1,2-dihydroquinoline-4-carboxylate with 4-(bromomethyl)benzonitrile under (PTC). The synthesized compound was analyzed using 1H and 13C NMR, FT-IR spectroscopy, single-crystal X-ray diffraction, and Hirshfeld surface analysis to elucidate its molecular and crystal structure.
2. Structural commentary
The title compound, (I), contains the almost planar quinoline and cyanophenyl moieties (Fig. 1
), where the planar A (C1–C6), B (N1/C1/C6–C9) and C (C13–C18) rings are oriented at dihedral angles of A/B = 0.56 (5)°, A/C = 14.47 (6)° and B/C = 15.02 (6)°. The exocyclic atoms O1, O2, O3, C10, C11 and C12 are also nearly coplanar with the quinoline framework and lie 0.005 (2), −0.030 (2), 0.016 (1), −0.015 (2), −0.067 (3) and −0.037 (2) Å, respectively, away from its mean plane.
![]() | Figure 1 The molecular structure of the title compound, with the atom and ring labelling schemes and displacement ellipsoids drawn at the 50% probability level. The dotted line indicates a possible weak hydrogen bond. |
In the ester group, the O1—C10 and O2—C10 bond lengths are 1.177 (2) Å and 1.308 (2) Å, respectively. This strict differentiation of the C—O bonds indicates mainly the localized single and double bounds rather than delocalized bonding arrangement. The O1—C10—O2 bond angle of 121.6 (2)° agrees well with the parameters for comparable methyl 2-phenyl quinoline-4-carboxylate [122.42 (14)°; Mague et al., 2016], and methyl 2-oxo-1-(propyn-2-yl)-1,2-di hydroquinoline-4-carboxylate [122.55 (12)°; El-Mrabet et al., 2023
]. The planes of the carbomethoxy group [defined by the atoms C7, C10, O1 and O2] and ring B are related by 0.96 (17)° indicating a coplanar arrangement. The latter is partly caused by the weak intramolecular C5—H5⋯O1 hydrogen bond (Table 1
), similarly to in methyl 6-chloro-1-methyl-2-oxo-1,2-dihydroquinoline-4-carboxylate with a corresponding dihedral angle of 4.08 (8)° (Filali Baba et al., 2022
). As evidenced by the C11—O2—C10—C7 [178.98 (18)°] torsion angle, the ester group attached to the quinoline moiety is in a syn peripheral conformation. The corresponding torsion angles for the related derivatives of benzyl [176.06 (11)°; Bouzian et al., 2018
] and ethyl [−176.71 (15)°; Sunitha et al., 2015
] quinoline-4-carboxylates represent syn- and anti-peripheral conformations, respectively.
|
3. Supramolecular features
In the crystal, intermolecular C15—H15⋯O1ii hydrogen bonds [symmetry code (ii): x + 1, y + , z +
; Table 1
] link the molecules into the infinite chains along the b-axis direction (Fig. 2
). However, the entire non-covalent framework in the structure may be best described as consisting of corrugated layers, which propagate parallel to the ac plane and are linked in the third dimension by a set of very weak hydrogen bonds. The layers themselves are sustained by two kinds of stacking interactions. First, two inversion-related cyanophenyl moieties [symmetry code: (v) −x + 1, −y + 1, −z + 1] afford antiparallel stacks with interplanar distances of 3.660 (2) Å, in which the centroids of C19–N2 groups [Cg2] are situated almost exactly above the centroids of the corresponding aromatic rings (Cg1) at 3.735 (2) Å (Figs. 2
, 3
). The second kind of stacking interaction is identified between nearly parallel ester groups and heterocyclic rings B [symmetry code: (vi) x +
, y, −z +
; interplanar angle is 3.98 (11)°], with separation Cg3⋯C10vi = 3.817 (2) Å (Cg3 is the ring B centroid). These layers are further consolidated by relatively short tetrel bonding (Varadwaj et al., 2023
) of the type OCH3⋯N≡C [C11⋯N2iv = 3.146 (3) Å, symmetry code (iv): −x +
, −y + 1, x +
], which is well compatible to both stacking patterns (Fig. 3
).
![]() | Figure 2 Fragment of the crystal structure showing hydrogen-bonded chains along the b-axis direction and stacking interactions between the adjacent chains. [Symmetry code (ii): x + 1, y + |
![]() | Figure 3 (a) Projection of the structure nearly on the ac-plane showing assembly of the layers by means of stacking interactions (indicated in blue) and tetrel bonds of the type OCH3⋯N≡C (indicated with dotted red lines). (b) Packing of successive corrugated layers viewed in a projection on the bc-plane, with dotted lines representing interlayer weak hydrogen bonding. The individual layers are identified with blue and red colors. Cg1, Cg2 and Cg3 are centroids of the groups C13–C18, N2/C19 and N1/C1/C6–C9, respectively. [Symmetry codes: (iii) −x + |
The resulting corrugated layers are separated by 7.849 Å, which is a half of the b (Fig. 3). In addition to the above most prominent C15—H15⋯O1ii hydrogen bonds, the suite of interlayer interactions also comprises weaker C3—H3⋯O3i and C18—H18⋯N2iii bonds [symmetry codes (i): x +
, y −
, z; (iii) x +
, y −
, z; Table 1
]. These interactions are also directional, with corresponding angles at the H atoms of 163 and 158°, respectively. No C—H⋯(ring) or π(ring)–(ring) interactions are observed. The title compound highlights rather the interplay of different kinds of stacking interactions, weak hydrogen and tetrel bonding for consolidating the 3D architecture. The combination of Hirshfeld surface analysis and energy framework calculations reveals dispersion energy as the dominant contributor, offering new insights into the packing features of quinoline-based systems and their potential in crystal engineering.
4. Hirshfeld surface analysis
For visualizing the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009
) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021
). In the HS plotted over dnorm (Fig. 4
), the contact distances equal, shorter and longer than the sum of van der Waals radii are shown in white, red and blue, respectively (Venkatesan et al., 2016
). The brightest red spots correspond to the donor and acceptor sites of the C15—H15⋯O1ii bonds, whereas the positions of the tetrel OCH3⋯N≡C bonds are also clearly visible as a pair of more diffuse red spots.
![]() | Figure 4 The Hirshfeld surface of the title compound mapped over dnorm. |
The overall two-dimensional fingerprint plots and those delineated into the contributions of the individual types of the contacts (McKinnon et al., 2007) are shown in Fig. 5
. Beyond the expected far dominant significance of H⋯H contacts (43.8%), the main contributors to the Hirshfeld surface are also associated with the H atoms: C⋯H/H⋯C = 14.3%, N⋯H/H⋯N = 14.1% and O⋯H/H⋯O = 9.9%. However, only the latter ones appear in the plots in the form of two relatively sharp spikes pointing to the lower left, thus indicating the hydrogen-bond interactions (shortest H⋯O = 2.35 Å). In the case of N⋯H/H⋯N contacts, these spikes are much shorter and diffuse, since most points originate rather in the tetrel interactions of methyl and cyano groups. In addition, the light-blue area centered at ca 3.80 Å in the plot for C⋯C contacts indicates the above stacking interactions. In total, the corresponding contacts, i.e. C⋯C, C⋯N/N⋯C and C⋯O/O⋯C, deliver as much as 17.0% to the surface area.
![]() | Figure 5 Two-dimensional fingerprint plots for the title compound: (a) all interactions and delineated into the principal contributions of (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) N⋯H/H⋯N, (f) C⋯C, (g) C⋯N/N⋯C and (h) C⋯O/O⋯C contacts. Other minor contributors are O⋯O (0.5%) and N⋯O/O⋯N (0.4%) contacts. |
The nearest coordination environment of a molecule can be determined from the color patches on the HS based on how close to other molecules they are. The Hirshfeld surface representations of contact patches plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯ N/N⋯H, C⋯C and H⋯O/O⋯H interactions in Fig. S2a–e, respectively, in the supporting information. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, C⋯C and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations and energy frameworks
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Spackman et al., 2021), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within the radius of 3.8 Å by default (Turner et al., 2014
). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015
).
With a cut-off of |Etot| > 12.0 kJ mol−1, seven symmetry-independent paths were identified for the closest environment of the title molecules (Table 2). The highest energy Etot = −45.8 kJ mol−1 corresponds to the pairing pattern involving stacking of quinoline and carboxy groups (path A⋯B, Fig. 6
). The primary contributor here is London dispersion (Edis = −66.2 kJ mol−1), due to the very large interaction area. Stacking of cyanophenyl moieties is perceptibly weaker with Etot = −24.3 kJ mol−1. This value approaches the parameter calculated for the slipped antiparallel dimer of nitrobenzene molecules (−28.2 kJ mol−1; Tsuzuki et al., 2006
). This stacking is also clearly distinguishable in the present energy landscape and it is even superior to the energies of the intermolecular interactions, which correspond to weak hydrogen bonding (−15.8 and −17.8 kJ mol−1; Table 2
). In the case of the A⋯D pair (Fig. 6
), slightly higher total energy of −22.4 kJ mol−1 is due to a combination of weak hydrogen bond C15—H15⋯O1ii and dispersion forces, with the corresponding principal contributors Eele = −10.3 and Edis = −25.3 kJ mol−1. This is in line with larger interaction area and generation of additional vdW contacts, e.g. O2⋯C3ii = 3.534 (2) Å. Finally, the tetrel bonds OCH3⋯N≡C (pair B⋯C, Fig. 6
) are very similar in energy to the weak hydrogen bonds (Etot = −12.4 kJ mol−1) and therefore their significance to the crystal packing may be regarded as comparable.
|
![]() | Figure 6 The principal pathways of intermolecular interactions, identified with a cut-off limit of 12 kJ mol−1, which involve (a) stacking and tetrel interactions and (a) weak hydrogen bonding. The interaction energies are given in kJ mol−1. |
The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the consolidation is dominated via the dispersion energy contributions (Fig. S2 in the supporting information).
6. Database survey
A search of the Cambridge Structural Database (CSD; updated 16 May 2025; Groom et al., 2016) reveals 18 relevant hits, which include the 2-oxo-1,2-dihydroquinoline-4-carboxylate core. Two of these entries, namely PEDKAO (Filali Baba et al., 2022
) and ROKCIG (Filali Baba et al., 2019
), involve additional Cl-atoms installed on the aromatic rings. Oxygen-derivatization of the selected core is a particularly rare feature. Among 13 alkyl-substituted structures retrieved, including AROPAB (Bouzian et al., 2020
) and SECCAH (Hayani et al., 2021b
), most were identified as N-alkylated derivatives. The only structural precedent for the O-alkylation of the above core is provided by 2-ethoxy-2-oxoethyl 2-(2-ethoxy-2-oxoethoxy)quinoline-4-carboxylate (refcode LIRKIJ; Bouzian et al., 2018
). This highlights the need for detailed structural validation when classifying substitution patterns on such frameworks. From a supramolecular perspective, the crystal packing of ROKCIG reveals no π–π stacking interactions or C—H⋯Cl hydrogen bonds, but it differs markedly from that of the title compound. It forms an inversion dimer through C—H⋯O hydrogen bonds, lacking the chain-like hydrogen-bonded pattern seen in the title structure. In contrast, its halogen-free analog (ROKCOM; Filali Baba et al., 2019
) forms molecular bands via C—H⋯O hydrogen bonding, further stabilized by weak π–π contacts.
7. Synthesis and crystallization
The procedure for synthesizing the methyl 2-[(4-cyanobenzyl)oxy]quinoline-4-carboxylate derivative is as follows. To a solution of methyl 2-oxo-1,2-dihydroquinoline-4-carboxylate (0.60 g, 2.20 mmol) in 15 ml of dimethylformamide (DMF), 4-(bromomethyl)benzonitrile (0.21 ml, 2.41 mmol), K2CO3 (0.85 g, 6.10 mmol) and tetra-n-butylammonium bromide (TBAB; 0.05 g, 0.18 mmol) were added and the reaction mixture was agitated at ambient temperature for a period of 12 h. Following completion of the reaction, the precipitated inorganic salts were removed through filtration and the solvent was evaporated under reduced pressure. The resultant residue was dissolved in dichloromethane. This solution was subsequently dried using anhydrous sodium sulfate and then concentrated under reduced pressure. The compound was purified through employing a hexane/ethyl acetate (4:1 v/v). The target product was obtained in a yield of 45%. It was further recrystallized from a mixture of dichloromethane and hexane (1:4 v/v) giving transparent colorless crystals, m.p. = 394 K. 1H NMR (300 MHz, CDCl3), δ, ppm: 8.61 (dd, J = 8.6, 1.4 Hz, 1H, CHAr), 7.90–7.86 (m, 1H, CHAr), 7.70–7.60 (m, 5H, CHAr), 7.53–7.47 (m, 2H, CHAr), 5.63 (s, 2H, CH2), 4.03 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3), δ, ppm: 166.21, 160.57, 147.34, 142.64, 138.51, 132.40, 130.25, 128.35, 127.85, 125.77, 125.74, 122.1, 118.87, 115.18, 111.74, 66.82, 52.87. FT–IR (cm−1): 2858 (C—Hsp3), 1727 (C=O), 2226 (C≡N), 1575–1607 (C=C, aromatic stretching); 1238 (C—O—C, ether bond).
8. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and refined as riding, with C—H = 0.95 Å (aromatic CH), 0.97 Å (CH2) and 0.98 Å (CH3) and with Uiso(H) = 1.2Ueq or 1.5Ueq of the carrier C-atom for CH and CH2 or CH3 groups, respectively. Four outliers (108, 204, 222 and 232) were omitted in the last cycles of refinement.
|
Supporting information
CCDC reference: 2465703
https://doi.org/10.1107/S2056989025005547/nu2008sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025005547/nu2008Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025005547/nu2008Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989025005547/nu2008Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989025005547/nu2008sup5.pdf
C19H14N2O3 | Dx = 1.333 Mg m−3 |
Mr = 318.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9947 reflections |
a = 7.7810 (6) Å | θ = 3.0–26.1° |
b = 15.6978 (11) Å | µ = 0.09 mm−1 |
c = 25.966 (2) Å | T = 299 K |
V = 3171.6 (4) Å3 | Prism, colourless |
Z = 8 | 0.26 × 0.22 × 0.19 mm |
F(000) = 1328 |
Bruker D8 VENTURE PHOTON 3 CPAD diffractometer | 2897 reflections with I > 2σ(I) |
Radiation source: microfocus sealed X-ray tube | Rint = 0.041 |
φ and ω scans | θmax = 26.4°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −9→9 |
Tmin = 0.719, Tmax = 0.745 | k = −19→17 |
78015 measured reflections | l = −32→32 |
3234 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0634P)2 + 1.2076P] where P = (Fo2 + 2Fc2)/3 |
3234 reflections | (Δ/σ)max < 0.001 |
218 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6069 (3) | 0.13417 (10) | 0.85140 (5) | 0.1081 (8) | |
O2 | 0.4881 (2) | 0.25179 (9) | 0.82571 (5) | 0.0777 (5) | |
O3 | 0.46253 (17) | 0.26146 (7) | 0.64306 (4) | 0.0539 (3) | |
N1 | 0.58631 (19) | 0.12898 (8) | 0.65387 (5) | 0.0472 (3) | |
N2 | 0.1671 (3) | 0.61040 (12) | 0.47079 (7) | 0.0908 (7) | |
C1 | 0.6466 (2) | 0.06874 (9) | 0.68811 (6) | 0.0434 (4) | |
C2 | 0.7132 (3) | −0.00718 (11) | 0.66761 (7) | 0.0587 (5) | |
H2 | 0.7149 | −0.0151 | 0.6321 | 0.070* | |
C3 | 0.7751 (3) | −0.06941 (11) | 0.69907 (8) | 0.0626 (5) | |
H3 | 0.8188 | −0.1193 | 0.6849 | 0.075* | |
C4 | 0.7735 (3) | −0.05892 (11) | 0.75228 (8) | 0.0573 (4) | |
H4 | 0.8159 | −0.1018 | 0.7734 | 0.069* | |
C5 | 0.7101 (2) | 0.01379 (10) | 0.77346 (6) | 0.0490 (4) | |
H5 | 0.7105 | 0.0202 | 0.8091 | 0.059* | |
C6 | 0.64375 (19) | 0.07983 (9) | 0.74226 (6) | 0.0394 (3) | |
C7 | 0.57211 (19) | 0.15814 (9) | 0.76106 (5) | 0.0379 (3) | |
C8 | 0.5129 (2) | 0.21656 (9) | 0.72667 (5) | 0.0407 (3) | |
H8 | 0.4662 | 0.2678 | 0.7380 | 0.049* | |
C9 | 0.5236 (2) | 0.19824 (9) | 0.67342 (6) | 0.0420 (4) | |
C10 | 0.5590 (2) | 0.17753 (10) | 0.81731 (6) | 0.0459 (4) | |
C11 | 0.4652 (3) | 0.27757 (17) | 0.87850 (7) | 0.0821 (7) | |
H11A | 0.4454 | 0.3379 | 0.8799 | 0.123* | |
H11B | 0.5666 | 0.2638 | 0.8979 | 0.123* | |
H11C | 0.3683 | 0.2482 | 0.8929 | 0.123* | |
C12 | 0.4609 (3) | 0.24802 (11) | 0.58871 (6) | 0.0529 (4) | |
H12A | 0.3873 | 0.2002 | 0.5802 | 0.063* | |
H12B | 0.5761 | 0.2357 | 0.5765 | 0.063* | |
C13 | 0.3942 (2) | 0.32785 (10) | 0.56377 (6) | 0.0455 (4) | |
C14 | 0.3756 (3) | 0.40331 (11) | 0.59018 (6) | 0.0630 (5) | |
H14 | 0.4035 | 0.4054 | 0.6250 | 0.076* | |
C15 | 0.3163 (3) | 0.47576 (11) | 0.56604 (7) | 0.0668 (6) | |
H15 | 0.3036 | 0.5261 | 0.5845 | 0.080* | |
C16 | 0.2760 (3) | 0.47327 (10) | 0.51442 (6) | 0.0531 (4) | |
C17 | 0.2941 (3) | 0.39821 (11) | 0.48727 (7) | 0.0680 (6) | |
H17 | 0.2664 | 0.3962 | 0.4525 | 0.082* | |
C18 | 0.3534 (3) | 0.32634 (11) | 0.51194 (6) | 0.0630 (5) | |
H18 | 0.3663 | 0.2760 | 0.4935 | 0.076* | |
C19 | 0.2146 (3) | 0.54952 (12) | 0.48955 (7) | 0.0663 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.207 (2) | 0.0747 (10) | 0.0423 (7) | 0.0505 (12) | −0.0176 (10) | 0.0059 (7) |
O2 | 0.1235 (13) | 0.0744 (9) | 0.0352 (6) | 0.0408 (9) | 0.0013 (7) | −0.0046 (6) |
O3 | 0.0886 (9) | 0.0396 (6) | 0.0336 (6) | 0.0134 (6) | −0.0052 (6) | 0.0023 (4) |
N1 | 0.0644 (8) | 0.0390 (7) | 0.0384 (7) | 0.0040 (6) | −0.0002 (6) | 0.0014 (5) |
N2 | 0.148 (2) | 0.0554 (10) | 0.0691 (11) | 0.0207 (11) | −0.0237 (12) | 0.0127 (9) |
C1 | 0.0493 (8) | 0.0364 (7) | 0.0445 (8) | 0.0001 (6) | 0.0009 (7) | 0.0025 (6) |
C2 | 0.0774 (12) | 0.0459 (9) | 0.0529 (10) | 0.0109 (9) | 0.0050 (9) | −0.0033 (7) |
C3 | 0.0752 (13) | 0.0415 (9) | 0.0710 (12) | 0.0152 (9) | 0.0028 (10) | −0.0019 (8) |
C4 | 0.0602 (10) | 0.0420 (9) | 0.0697 (11) | 0.0072 (8) | −0.0049 (9) | 0.0116 (8) |
C5 | 0.0531 (9) | 0.0437 (8) | 0.0501 (9) | −0.0003 (7) | −0.0043 (7) | 0.0093 (7) |
C6 | 0.0395 (8) | 0.0354 (7) | 0.0433 (8) | −0.0045 (6) | −0.0002 (6) | 0.0042 (6) |
C7 | 0.0398 (7) | 0.0367 (7) | 0.0373 (7) | −0.0051 (6) | −0.0001 (6) | 0.0037 (6) |
C8 | 0.0505 (9) | 0.0338 (7) | 0.0376 (8) | 0.0005 (6) | 0.0011 (6) | 0.0007 (6) |
C9 | 0.0530 (9) | 0.0353 (7) | 0.0376 (8) | 0.0009 (6) | −0.0015 (6) | 0.0042 (6) |
C10 | 0.0553 (9) | 0.0444 (8) | 0.0380 (8) | −0.0031 (7) | −0.0015 (7) | 0.0048 (6) |
C11 | 0.1124 (18) | 0.0963 (16) | 0.0377 (10) | 0.0283 (14) | 0.0028 (11) | −0.0135 (10) |
C12 | 0.0792 (12) | 0.0454 (8) | 0.0341 (8) | 0.0106 (8) | −0.0042 (8) | −0.0011 (6) |
C13 | 0.0622 (10) | 0.0387 (8) | 0.0357 (7) | 0.0012 (7) | −0.0037 (7) | 0.0008 (6) |
C14 | 0.1068 (16) | 0.0476 (9) | 0.0347 (8) | 0.0127 (10) | −0.0189 (9) | −0.0046 (7) |
C15 | 0.1149 (17) | 0.0423 (9) | 0.0432 (9) | 0.0134 (10) | −0.0172 (10) | −0.0075 (7) |
C16 | 0.0788 (12) | 0.0389 (8) | 0.0416 (8) | 0.0011 (8) | −0.0119 (8) | 0.0033 (6) |
C17 | 0.1211 (18) | 0.0473 (9) | 0.0356 (8) | 0.0025 (10) | −0.0210 (10) | 0.0000 (7) |
C18 | 0.1131 (16) | 0.0393 (8) | 0.0366 (8) | 0.0046 (9) | −0.0112 (9) | −0.0049 (7) |
C19 | 0.1043 (16) | 0.0469 (10) | 0.0476 (9) | 0.0043 (10) | −0.0163 (10) | 0.0023 (8) |
O1—C10 | 1.177 (2) | C7—C10 | 1.496 (2) |
O2—C10 | 1.308 (2) | C8—C9 | 1.415 (2) |
O2—C11 | 1.440 (2) | C8—H8 | 0.9300 |
O3—C9 | 1.3535 (18) | C11—H11A | 0.9600 |
O3—C12 | 1.4269 (18) | C11—H11B | 0.9600 |
N1—C9 | 1.296 (2) | C11—H11C | 0.9600 |
N1—C1 | 1.380 (2) | C12—C13 | 1.503 (2) |
N2—C19 | 1.135 (2) | C12—H12A | 0.9700 |
C1—C2 | 1.404 (2) | C12—H12B | 0.9700 |
C1—C6 | 1.417 (2) | C13—C14 | 1.376 (2) |
C2—C3 | 1.362 (2) | C13—C18 | 1.383 (2) |
C2—H2 | 0.9300 | C14—C15 | 1.378 (2) |
C3—C4 | 1.391 (3) | C14—H14 | 0.9300 |
C3—H3 | 0.9300 | C15—C16 | 1.377 (2) |
C4—C5 | 1.360 (2) | C15—H15 | 0.9300 |
C4—H4 | 0.9300 | C16—C17 | 1.380 (2) |
C5—C6 | 1.413 (2) | C16—C19 | 1.442 (2) |
C5—H5 | 0.9300 | C17—C18 | 1.377 (2) |
C6—C7 | 1.435 (2) | C17—H17 | 0.9300 |
C7—C8 | 1.360 (2) | C18—H18 | 0.9300 |
C10—O2—C11 | 117.47 (15) | O2—C10—C7 | 111.91 (13) |
C9—O3—C12 | 118.09 (12) | O2—C11—H11A | 109.5 |
C9—N1—C1 | 116.79 (13) | O2—C11—H11B | 109.5 |
N1—C1—C2 | 117.56 (14) | H11A—C11—H11B | 109.5 |
N1—C1—C6 | 123.34 (14) | O2—C11—H11C | 109.5 |
C2—C1—C6 | 119.09 (14) | H11A—C11—H11C | 109.5 |
C3—C2—C1 | 120.79 (16) | H11B—C11—H11C | 109.5 |
C3—C2—H2 | 119.6 | O3—C12—C13 | 107.82 (13) |
C1—C2—H2 | 119.6 | O3—C12—H12A | 110.1 |
C2—C3—C4 | 120.51 (16) | C13—C12—H12A | 110.1 |
C2—C3—H3 | 119.7 | O3—C12—H12B | 110.1 |
C4—C3—H3 | 119.7 | C13—C12—H12B | 110.1 |
C5—C4—C3 | 120.29 (16) | H12A—C12—H12B | 108.5 |
C5—C4—H4 | 119.9 | C14—C13—C18 | 118.39 (15) |
C3—C4—H4 | 119.9 | C14—C13—C12 | 122.62 (14) |
C4—C5—C6 | 121.09 (16) | C18—C13—C12 | 118.97 (14) |
C4—C5—H5 | 119.5 | C13—C14—C15 | 121.25 (15) |
C6—C5—H5 | 119.5 | C13—C14—H14 | 119.4 |
C5—C6—C1 | 118.22 (14) | C15—C14—H14 | 119.4 |
C5—C6—C7 | 125.11 (14) | C16—C15—C14 | 119.71 (16) |
C1—C6—C7 | 116.66 (13) | C16—C15—H15 | 120.1 |
C8—C7—C6 | 119.06 (13) | C14—C15—H15 | 120.1 |
C8—C7—C10 | 118.73 (13) | C15—C16—C17 | 119.87 (15) |
C6—C7—C10 | 122.21 (13) | C15—C16—C19 | 119.21 (15) |
C7—C8—C9 | 118.99 (14) | C17—C16—C19 | 120.92 (14) |
C7—C8—H8 | 120.5 | C18—C17—C16 | 119.73 (15) |
C9—C8—H8 | 120.5 | C18—C17—H17 | 120.1 |
N1—C9—O3 | 121.28 (14) | C16—C17—H17 | 120.1 |
N1—C9—C8 | 125.15 (14) | C17—C18—C13 | 121.04 (15) |
O3—C9—C8 | 113.57 (13) | C17—C18—H18 | 119.5 |
O1—C10—O2 | 121.57 (16) | C13—C18—H18 | 119.5 |
O1—C10—C7 | 126.52 (16) | N2—C19—C16 | 178.7 (2) |
C9—N1—C1—C2 | 179.24 (16) | C12—O3—C9—C8 | −177.52 (15) |
C9—N1—C1—C6 | −0.5 (2) | C7—C8—C9—N1 | 0.0 (3) |
N1—C1—C2—C3 | 179.93 (18) | C7—C8—C9—O3 | −179.29 (14) |
C6—C1—C2—C3 | −0.3 (3) | C11—O2—C10—O1 | −2.1 (3) |
C1—C2—C3—C4 | 0.1 (3) | C11—O2—C10—C7 | 178.98 (18) |
C2—C3—C4—C5 | −0.1 (3) | C8—C7—C10—O1 | −178.7 (2) |
C3—C4—C5—C6 | 0.4 (3) | C6—C7—C10—O1 | 1.8 (3) |
C4—C5—C6—C1 | −0.7 (2) | C8—C7—C10—O2 | 0.2 (2) |
C4—C5—C6—C7 | 179.06 (16) | C6—C7—C10—O2 | −179.31 (15) |
N1—C1—C6—C5 | −179.64 (15) | C9—O3—C12—C13 | −177.94 (14) |
C2—C1—C6—C5 | 0.6 (2) | O3—C12—C13—C14 | 12.1 (3) |
N1—C1—C6—C7 | 0.6 (2) | O3—C12—C13—C18 | −169.42 (18) |
C2—C1—C6—C7 | −179.15 (15) | C18—C13—C14—C15 | 0.6 (3) |
C5—C6—C7—C8 | 179.86 (15) | C12—C13—C14—C15 | 179.1 (2) |
C1—C6—C7—C8 | −0.4 (2) | C13—C14—C15—C16 | −0.5 (4) |
C5—C6—C7—C10 | −0.6 (2) | C14—C15—C16—C17 | 0.4 (4) |
C1—C6—C7—C10 | 179.15 (14) | C14—C15—C16—C19 | −179.9 (2) |
C6—C7—C8—C9 | 0.1 (2) | C15—C16—C17—C18 | −0.4 (4) |
C10—C7—C8—C9 | −179.43 (14) | C19—C16—C17—C18 | 179.9 (2) |
C1—N1—C9—O3 | 179.42 (14) | C16—C17—C18—C13 | 0.5 (4) |
C1—N1—C9—C8 | 0.2 (2) | C14—C13—C18—C17 | −0.6 (3) |
C12—O3—C9—N1 | 3.2 (2) | C12—C13—C18—C17 | −179.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O3i | 0.93 | 2.75 | 3.651 (2) | 163 |
C5—H5···O1 | 0.93 | 2.25 | 2.883 (2) | 125 |
C15—H15···O1ii | 0.93 | 2.48 | 3.337 (2) | 154 |
C18—H18···N2iii | 0.93 | 2.68 | 3.558 (3) | 158 |
Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+1/2, y−1/2, z. |
Interaction energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination. The scale factors used to determine Etot are kele = 1.057, kpol = 0.740, kdis = 0.871, and krep = 0.618 (Mackenzie et al., 2017). R is the distance between the centroids of the interacting molecules. |
Path | Symmetry code | Typea | R (Å) | Eele | Epol | Edis | Erep | Etot |
A···B | x + 1/2, y, -z + 3/2 | stacking | 5.77 | -5.3 | -2.1 | -66.2 | 30.8 | -45.8 |
A···C | -x + 1, -y + 1, -z + 1 | stacking | 12.05 | -6.1 | -2.4 | -25.1 | 9.3 | -24.3 |
B···C | -x + 1/2, -y + 1, z + 1/2 | tetrel | 15.89 | -10.5 | -2.7 | -5.0 | 8.2 | -12.4 |
A···D | x + 1, y + 1/2, z + 3/2 | C—H···O, dispersion | 8.93 | -10.3 | -2.0 | -25.3 | 19.5 | -22.4 |
A···E | -x + 1/2, y + 1/2, z | C—H···N | 8.73 | -10.1 | -2.7 | -11.7 | 8.2 | -17.8 |
A···F | x + 3/2, yy - 1/2, z | C—H···O | 8.79 | -4.2 | -0.5 | -20.4 | 10.8 | -15.8 |
A···G | x + 1/2, -y + 1/2, -z + 1 | dispersion | 9.56 | -4.3 | -1.6 | -16.0 | 7.4 | -15.1 |
Note: (a) For details of the interaction modes see Fig. 7. Weak dispersion interaction A···G is not shown in the Figure. |
Acknowledgements
TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Bouzian, Y., Chkirate, K., Mague, J. T., Al-Ostoot, F. H., Hammou Ahabchane, N. & Essassi, E. M. (2021). Acta Cryst. E77, 824–828. CrossRef IUCr Journals Google Scholar
Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData 3, x181438. Google Scholar
Bouzian, Y., Kansiz, S., Mahi, L., Ahabchane, N. H., Mague, J. T., Dege, N., Karrouchi, K. & Essassi, E. M. (2020). Acta Cryst. E76, 642–645. CrossRef IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). SAINT. Bruker AXS, Madison, Wisconsin, USA. Google Scholar
Bruker (2019). APEX4. Bruker AXS, Madison, Wisconsin, USA. Google Scholar
Chanquia, S. N., Larregui, F., Puente, V., Labriola, C., Lombardo, E. & García Liñares, G. (2019). Bioorg. Chem. 83, 526–534. CAS PubMed Google Scholar
Chen, H., Mi, J., Li, S., Liu, Z., Yang, J., Chen, R., Wang, Y., Ban, Y., Zhou, Y., Dong, W. & Sang, Z. (2023). J. Enzyme Inhib. Med. Chem. 38, 2169682. PubMed Google Scholar
Chen, Y.-J., Ma, K.-Y., Du, S.-S., Zhang, Z.-J., Wu, T.-L., Sun, Y., Liu, Y.-Q., Yin, X.-D., Zhou, R., Yan, Y.-F., Wang, R.-X., He, Y.-H., Chu, Q.-R. & Tang, C. (2021). J. Agric. Food Chem. 69, 12156–12170. CAS PubMed Google Scholar
El-Mrabet, A., Haoudi, A., Dalbouha, S., Skalli, M. K., Hökelek, T., Capet, F., Kandri Rodi, Y., Mazzah, A. & Sebbar, N. K. (2023). Acta Cryst. E79, 883–889. CrossRef IUCr Journals Google Scholar
El-Mrabet, A., Haoudi, A., Kandri-Rodi, Y. & Mazzah, A. (2025). Organics 6, 16. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ouazzani Chahdi, F., Ouzidan, Y., Sebbar, N. K. & Essassi, E. M. (2016b). J. Mater. Environ. Sci. 7, 2424–2434. Google Scholar
Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ouazzani Chahdi, F., Ouzidan, Y., Sebbar, N. K., Essassi, E. M., El-Hajjaji, F. & Hammouti, B. (2016a). Der Pharmacia Lettre 8, 128–137. Google Scholar
Filali Baba, Y., Gökce, H., Kandri Rodi, Y., Hayani, S., Ouazzani Chahdi, F., Boukir, A., Jasinski, J. P., Kaur, M., Hökelek, T., Sebbar, N. K. & Essassi, E. M. (2020). J. Mol. Struct. 1217, 128461. Google Scholar
Filali Baba, Y., Hayani, S., Dalbouha, S., Hökelek, T., Ouazzani Chahdi, F., Mague, J. T., Kandri Rodi, Y., Sebbar, N. K. & Essassi, E. M. (2022). Acta Cryst. E78, 425–432. CrossRef IUCr Journals Google Scholar
Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255–268. Web of Science CSD CrossRef CAS Google Scholar
Ghanim, A. M., Girgis, A. S., Kariuki, B. M., Samir, N., Said, M. F., Abdelnaser, A., Nasr, S., Bekheit, M. S., Abdelhameed, M. F., Almalki, A. J., Ibrahim, T. S. & Panda, S. S. (2022). Bioorg. Chem. 119, 105557. PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ 2, 563–574. CrossRef CAS PubMed IUCr Journals Google Scholar
Hayani, S., Sert, Y., Filali Baba, Y., Benhiba, F., Chahdi, F. O., Laraqui, F. Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Rodi, Y. K. & Essassi, E. M. (2021a). J. Mol. Struct. 1227, 129520. Google Scholar
Hayani, S., Thiruvalluvar, A. A., Filali Baba, Y., Rodi, Y. K., Muthunatesan, S., Chahdi, F. O., Mague, J. T., Ibrahimi, B. E., Anouar, E. H., Sebbar, N. K. & Essassi, E. M. (2021b). J. Mol. Struct. 1234, 130195. Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta 44, 129–138. CrossRef CAS Google Scholar
Kaur, R. & Kumar, K. (2021). Eur. J. Med. Chem. 215, 113220. CrossRef PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ 4, 575–587. CrossRef CAS PubMed IUCr Journals Google Scholar
Mague, J. T., Akkurt, M., Mohamed, S. K., Al-badrany, K. A. & Ahmed, E. A. (2016). IUCrData 1, x161500. Google Scholar
Mahamoud, A., Chevalier, J., Davin-Regli, A., Barbe, J. & Pagès, J. (2006). Curr. Drug Targets 7, 843–847. PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Muruganantham, N., Sivakumar, R., Anbalagan, N., Gunasekaran, V. & Leonard, J. T. (2004). Biol. Pharm. Bull. 27, 1683–1687. Web of Science CrossRef PubMed CAS Google Scholar
Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A. & Alqumber, M. A. A. (2023). Healthcare 11, 1946. PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strekowski, L., Mokrosz, J. L., Honkan, V. A., Czarny, A., Cegla, M. T., Wydra, R. L., Patterson, S. E. & Schinazi, R. F. (1991). J. Med. Chem. 34, 1739–1746. CrossRef CAS PubMed Web of Science Google Scholar
Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341–o342. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tsuzuki, S., Honda, K., Uchimaru, T. & Mikami, M. (2006). J. Chem. Phys. 125, 124304. Web of Science CrossRef PubMed Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Varadwaj, P. R., Varadwaj, A., Marques, H. M. & Yamashita, K. (2023). CrystEngComm 25, 1411–1423. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.