research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-[2-(2-chloro­eth­­oxy)eth­yl]-2-methyl-4-nitro-1H-imidazole

crossmark logo

aDepartment of Physical Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru-560 035, India, bDepartment of Applied Sciences, New Horizon College of Engineering, Bengaluru-560 103, India, cDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and eDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: [email protected]

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 6 June 2025; accepted 19 June 2025; online 24 June 2025)

Imidazoles are a widely studied class of heterocyclic compounds with significant biological and pharmacological relevance, including applications as fungicides, herbicides, and therapeutic agents. The title compound, C8H12ClN3O3 (I), is a structural analogue and impurity of the anti-protozoal drug metronidazole, making it valuable for mechanistic and drug development studies. Here, we report its crystal structure and Hirshfeld surface analysis. Crystals of I are triclinic, space-group type P1, with two independent mol­ecules (A and B) in the asymmetric unit, each exhibiting chloro­eth­oxy­ethyl chain disorder over two conformations. Both mol­ecules have essentially planar methyl-nitro-1H-imidazole cores, with conformational variation arising from the side chains. The structure lacks conventional hydrogen bonds but features several weak C—H⋯O, C—H⋯N, and C—H⋯Cl inter­actions, connecting mol­ecules into dimers and layers parallel to the ac-plane. Hirshfeld surface analysis reveals that the mol­ecular environments of A and B are similar and dominated by contacts involving hydrogen.

1. Chemical context

Imidazoles are a common class of heterocyclic compounds found in natural and synthetic pharmacologically active substances (Neilde et al., 2014[Neildé, K., Crozet, M. D., Terme, T. & Vanelle, P. (2014). Tetrahedron Lett. 55, 3652-3657.]; Adamovich et al., 2014[Adamovich, S. N., Ushakov, I. A., Mirskova, A. N., Mirskov, R. G. & Voronov, V. K. (2014). Mendeleev Commun. 24, 293-294.]; Have et al., 1997[ten Have, R., Huisman, M., Meetsma, A. & van Leusen, A. M. (1997). Tetrahedron 53, 11355-11368.]), exhibiting diverse biological properties (Lombardino & Wiseman, 1974[Lombardino, J. G. & Wiseman, E. H. (1974). J. Med. Chem. 17, 1182-1188.]). Many imidazole derivatives act as fungicides, herbicides, plant growth regulators, therapeutic agents (Maier et al., 1989[Maier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989). US Patent No. 4 820 335.]), anti­cancer agents (Krezel, 1998[Krezel, I. (1998). Farmaco 53, 342-345.]), and bactericides (Jackson et al., 2000[Jackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159-162.]). Recent reviews highlight the medicinal relevance of synthetic imidazole analogs (Rulhania et al., 2021[Rulhania, S., Kumar, S., Nehra, B., Gupta, G. D. & Monga, V. (2021). J. Mol. Struct. 1232, 129982.]) and advances in imidazole-based drug development (Zhang et al., 2014[Zhang, L., Peng, X.-M., Damu, G. L. V., Geng, R.-X. & Zhou, C.-H. (2014). Med. Res. Rev. 34, 340-437.]). Nitro-imidazoles have seen broad application in drug synthesis (Hori et al., 1997[Hori, H., Jin, C. Z., Kiyono, M., Kasai, S., Shimamura, M. & Inayama, S. (1997). Bioorg. Med. Chem. 5, 591-599.]), with derivatives used as radio-sensitizers, and as anti-protozoal, anti-fungal, anti-bacterial, or anti-epileptic agents (Olender et al., 2009[Olender, D., Żwawiak, J., Lukianchuk, V., Lesyk, R., Kropacz, A., Fojutowski, A. & Zaprutko, L. (2009). Eur. J. Med. Chem. 44, 645-652.]; Duan et al., 2014[Duan, Y.-T., Wang, Z.-C., Sang, Y.-L., Tao, X.-X., Teraiya, S. B., Wang, P.-F., Wen, Q., Zhou, X.-J., Ding, L., Yang, Y.-H. & Zhu, H.-L. (2014). Eur. J. Med. Chem. 76, 387-396.]; Sutherland et al., 2010[Sutherland, H. S., Blaser, A., Kmentova, I., Franzblau, S. G., Wan, B., Wang, Y., Ma, Z., Palmer, B. D., Denny, W. A. & Thompson, A. M. (2010). J. Med. Chem. 53, 855-866.]).

1-[2-(2-Chloro­eth­oxy)eth­yl]-2-methyl-4-nitro-1H-imidazole (I), C8H12ClN3O3, is an analogue of (and impurity in) the anti-protozoal drug metronidazole. Its value in drug development and mechanistic studies results from its structural similarity to metronidazole and other nitro-imidazoles. The nitro group confers distinctive chemical and biological properties, making it a promising candidate for exploring new therapies, especially against protozoal infections. In this context, we present the crystal structure and a Hirshfeld-surface analysis of I.

[Scheme 1]

2. Structural commentary

Crystals of I are triclinic, space-group type P[\overline{1}], with two mol­ecules (A and B) in the asymmetric unit (Z′ = 2). Chemically, the mol­ecules comprise an imidazole ring substituted with N-nitro, methyl, and chloro­eth­oxy­ethyl groups (see Scheme and Fig. 1[link]). The chloro­eth­oxy­ethyl chains of both independent mol­ecules are each disordered over two conformations with refined major:minor occupancies of 0.7256 (4):0.2744 (4) and 0.6384 (4):0.3616 (4) for mol­ecules A and B respectively. Thus, there are four separate conformations. However, as is clear from a least-squares overlay plot (Fig. 2[link]), the two major conformers are very similar, as are the two minor conformers. This similarity prompted us to test whether the structure was simpler at higher temperatures, either by resolution of the disorder, or by transition to a Z′ = 1 structure. No such changes were apparent up to 250 K.

[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of the asymmetric unit of I. Minor disorder components are omitted for the sake of clarity. Hydrogen atoms are shown as small white spheres of arbitrary radius.
[Figure 2]
Figure 2
A least-squares overlay plot of the four conformations (major and minor disorder for mol­ecules A and B). Atoms are drawn with CPK colours, bond colours identify the particular conformer. Mol­ecule B was inverted for the optimal fit.

The methyl-nitro-1H-imidazole moieties are largely planar [r.m.s. deviation = 0.0242 Å (A), 0.0584 Å (B)], with maximum deviation at atoms O3A [0.0456 (17) Å] and O3B [0.1144 (17) Å], resulting from slight twists of the nitro groups [dihedrals with the imidazole ring are 2.75 (13)° and 5.64 (6)° in A and B, respectively. The overall geometry of the mol­ecules results from the relative orientations of the planar moieties with the chloro­eth­oxy­ethyl chains, whose conformations result from torsions about the N1—C5, C5—C6, C6—O1, O1—C7, and C7—C8 bonds, as qu­anti­fied in Table 1[link] and shown in the overlay (Fig. 2[link]).

Table 1
Conformation-defining torsion angles (°) in I

Torsion angle A (major) A (minor) B (major) B (minor)
C1—N1—C5—C6 −76.1 (7) −92.7 (19) 71.4 (9) 88.2 (13)
N1—C5—C6—O1 −65.6 (8) −64 (2) 63.8 (10) 67.1 (16)
C5—C6—O1—C7 −81.8 (5) −169.2 (10) 88.4 (5) 176.3 (8)
C6—O1—C7—C8 −165.1 (3) 168.8 (7) 166.9 (3) −162.7 (6)
O1—C7—C8—Cl1 −66.8 (2) 68.1 (6) 68.2 (4) −69.9 (7)

3. Supra­molecular features

There are no conventional hydrogen bonds in I, but a number of weak hydrogen-bond-type contacts are flagged by SHELXL as ‘potential hydrogen bonds'. These are listed in Table 2[link] for major and minor disorder components of both A and B. One such weak inter­action is strictly intra-mol­ecular, namely C4A—H4AA⋯Cl1A [dD–A = 3.888 (2) Å], enclosing an S(10) motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For the sake of simplicity, considering just the major disorder components within the asymmetric unit, three inter-mol­ecular contacts C4A—H4AB⋯O2B, C1B—H1B⋯N2A, and C5B—H5B1⋯O3A connect the independent mol­ecules into dimers, enclosing two different R22(9) ring motifs, which combine with symmetry equivalents to link the mol­ecules into layers parallel to the ac plane, as shown in Fig. 3[link]. Additional contacts between layers build up the full three-dimensional structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A⋯N2Bi 0.95 2.61 3.5144 (15) 160
C4A—H4AA⋯Cl1A 0.98 2.91 3.888 (2) 172
C4A—H4AA⋯O1C 0.98 2.39 3.024 (4) 122
C4A—H4AB⋯O2B 0.98 2.34 3.2626 (14) 157
C5A—H5A1⋯O2Aii 0.99 2.65 3.562 (10) 153
C5A—H5A2⋯O3Bi 0.99 2.51 3.202 (10) 127
C7A—H7A2⋯Cl1Biii 0.99 2.96 3.778 (3) 141
C8A—H8A1⋯O1Biv 0.99 2.42 3.338 (3) 153
C8A—H8A1⋯Cl1Biv 0.99 2.99 3.725 (3) 132
C8A—H8A2⋯N2Biv 0.99 2.63 3.419 (3) 137
C5C—H5C2⋯O3Bi 0.99 2.31 3.16 (3) 144
C1B—H1B⋯N2A 0.95 2.65 3.5495 (14) 157
C4B—H4BB⋯O2Av 0.98 2.45 3.2622 (15) 140
C4B—H4BC⋯O1D 0.98 2.38 3.124 (3) 133
C5B—H5B1⋯O3A 0.99 2.53 3.199 (12) 124
C5B—H5B1⋯O2Bvi 0.99 2.60 3.439 (10) 142
C5B—H5B2⋯O2Bvii 0.99 2.60 3.379 (10) 135
C8B—H8B2⋯O1Aviii 0.99 2.39 3.292 (5) 151
C5D—H5D1⋯O3A 0.99 2.53 3.26 (2) 130
C5D—H5D1⋯O2Bvi 0.99 2.52 3.345 (19) 141
C5D—H5D2⋯O2Bvii 0.99 2.61 3.297 (17) 127
C7D—H7D2⋯Cl1Cvii 0.99 2.81 3.742 (6) 157
Symmetry codes: (i) [x, y, z-1]; (ii) [x-1, y, z]; (iii) [x-1, y, z-1]; (iv) [-x+1, -y+1, -z+1]; (v) [x, y, z+1]; (vi) [-x+1, -y, -z+1]; (vii) [x+1, y, z]; (viii) [-x+2, -y+1, -z+1].
[Figure 3]
Figure 3
A partial packing plot of I viewed normal to the ac plane. A selection of the weak hydrogen bonds listed in Table 2[link] are drawn as dotted lines, highlighting ring motifs with graph-set notation R22(9).

A Hirshfeld surface analysis conducted using CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) calculated independently for mol­ecules A and B (major components only) indicate that the environment of each mol­ecule is similar and that the vast majority of inter­molecular contacts involve hydrogen (92.8% for A, 93.8% for B). These results are summarized in the 2D-fingerprint plots shown in Fig. 4[link].

[Figure 4]
Figure 4
Hirshfeld surface two-dimensional-fingerprint plots calculated individually for the major disorder components in I. The panels are arranged in vertical pairs for (a,f) H⋯O contacts (33.3%, 35.1% for A and B, respectively, (b,g) H⋯H (25.1%, 27.0%), (c,h) H⋯Cl (17%, 16.7%), (d,i) H⋯N (11.1%, 10.0%), (e,j) H⋯C (6.2%, 5.5%), showing the similar environments for both independent mol­ecules.

4. Database survey

A search of the Cambridge Structural Database (CSD, v5.46, Nov. 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a search fragment consisting of 2-methyl-4-nitro-1H-imidazole and X = ‘any group' attached to the equivalent of N1(A/B) resulted in 116 hits. Searches with ‘-C-X' and ‘-C-C-X' at that position gave 52 and 33 matches, respectively, while a search with ‘-C-C-O-X' returned six hits, two of which were duplicates. Of the four unique structures, CADDUJ (Yu et al., 2015[Yu, Q., Xu, W.-X., Yao, Y.-H., Zhang, Z.-Q., Sun, S. & Li, J. (2015). J. Porphyrins Phthalocyanines 19, 1107-1113.]) has a tetra­phenyl Zn(EtOH)-porphyrinato group attached at the equivalent of O1(A/B). Entry IFOSUN (Zama et al., 2013[Zama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837-o838.]) has a methyl ester attached at O1(A/B) and KUZVUX (Wang et al., 2010[Wang, H.-Y., Zou, P., Xie, M.-H., He, Y.-J. & Wu, J. (2010). Acta Cryst. E66, o2606.]) has an ethyl ester group. The remaining refcode, NOBVIJ (Skupin et al., 1997[Skupin, R., Cooper, T. G., Fröhlich, R., Prigge, J. & Haufe, G. (1997). Tetrahedron Asymmetry 8, 2453-2464.]), has a methyl ester at O1(A/B) and a chloro­methyl group attached to C6(A/B).

5. Synthesis and crystallization

The sample of I was synthesized as per the literature procedure of Kaifez et al. (1968[Kaifez, F., Sunjic, V., Kolbah, D., Fajdiga, T. & Oklobdzija, M. (1968). J. Med. Chem. 11, 169-171.]). In brief, direct alkyl­ation of 2-methyl-4-nitro­imidazole led to the product, which was then purified by column chromatography (silica gel, ethyl acetate/hexane system) and recrystallized from ethyl­acetate by slow evaporation (m.p.: 383–385 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were found in difference-Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.95 Å (Csp2—H), 0.98 Å (RCH3) and 0.99 Å (R2CH2). Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3 only) of the attached atom. To ensure satisfactory refinement for the disordered chains in the structure, a combination of constraints and restraints were used. The constraints (SHELXL command EADP) were used to equalize displacement parameters of overlapping disordered atoms. Restraints were used to maintain the fidelity of the disordered chains (SHELXL commands SAME, SADI, SIMU, and RIGU).

Table 3
Experimental details

Crystal data
Chemical formula C8H12ClN3O3
Mr 233.66
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.5810 (4), 11.1448 (7), 11.5757 (5)
α, β, γ (°) 98.662 (2), 93.164 (2), 103.444 (2)
V3) 1059.71 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.25 × 0.21 × 0.13
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.892, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 34130, 4879, 4337
Rint 0.025
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.06
No. of reflections 4879
No. of parameters 365
No. of restraints 416
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.35
Computer programs: APEX5 (Bruker, 2023[Bruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), over-lay.py (Parkin, 2025[Parkin, S. (2025). Programs over-rip, over-rot, over-lay. https://xray.uky.edu/Tutorials/structure-overlays/1-Introduction]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

1-[2-(2-Chloroethoxy)ethyl]-2-methyl-4-nitro-1H-imidazole top
Crystal data top
C8H12ClN3O3Z = 4
Mr = 233.66F(000) = 488
Triclinic, P1Dx = 1.465 Mg m3
a = 8.5810 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1448 (7) ÅCell parameters from 9978 reflections
c = 11.5757 (5) Åθ = 2.7–27.6°
α = 98.662 (2)°µ = 0.35 mm1
β = 93.164 (2)°T = 100 K
γ = 103.444 (2)°Solvent-rounded block, colourless
V = 1059.71 (10) Å30.25 × 0.21 × 0.13 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
4879 independent reflections
Radiation source: microsource4337 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.025
φ and ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1011
Tmin = 0.892, Tmax = 0.959k = 1414
34130 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.076H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.4798P]
where P = (Fo2 + 2Fc2)/3
4879 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.51 e Å3
416 restraintsΔρmin = 0.35 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 100K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O2A0.92119 (11)0.09620 (9)0.10635 (8)0.0291 (2)
O3A0.92893 (11)0.11525 (10)0.29564 (8)0.0349 (2)
N1A0.47096 (11)0.15624 (9)0.13212 (8)0.01687 (19)
N2A0.62164 (11)0.14669 (9)0.29175 (8)0.01833 (19)
N3A0.86024 (12)0.11372 (10)0.19955 (9)0.0218 (2)
C1A0.61200 (13)0.13743 (10)0.09384 (10)0.0187 (2)
H1A0.6416820.1297760.0157050.022*
C2A0.70087 (13)0.13209 (10)0.19353 (10)0.0178 (2)
C3A0.48135 (13)0.16128 (10)0.25182 (9)0.0173 (2)
C4A0.35045 (15)0.18143 (12)0.32518 (11)0.0245 (2)
H4AA0.3447550.2690300.3325920.037*
H4AB0.3723460.1616780.4032290.037*
H4AC0.2477360.1268850.2882060.037*
C5A0.3362 (11)0.1720 (6)0.0572 (9)0.0202 (4)0.726 (4)
H5A10.2377030.1587580.0990790.024*0.726 (4)
H5A20.3163840.1085810.0151670.024*0.726 (4)
C6A0.3727 (5)0.3019 (4)0.0251 (3)0.0229 (6)0.726 (4)
H6A10.4750290.3163840.0121490.027*0.726 (4)
H6A20.2863650.3068220.0330690.027*0.726 (4)
O1A0.38532 (18)0.39806 (13)0.12420 (15)0.0220 (4)0.726 (4)
C7A0.2349 (2)0.41695 (19)0.15685 (16)0.0259 (5)0.726 (4)
H7A10.1803350.3479380.1962030.031*0.726 (4)
H7A20.1651060.4179480.0861700.031*0.726 (4)
C8A0.2632 (3)0.5393 (2)0.2385 (2)0.0274 (5)0.726 (4)
H8A10.1583390.5587820.2526170.033*0.726 (4)
H8A20.3266920.6063670.2009050.033*0.726 (4)
Cl1A0.36807 (19)0.53736 (14)0.37668 (12)0.0386 (2)0.726 (4)
C5C0.341 (3)0.1759 (15)0.054 (2)0.0202 (4)0.274 (4)
H5C10.2361520.1378750.0813660.024*0.274 (4)
H5C20.3452450.1323580.0260440.024*0.274 (4)
C6C0.3512 (15)0.3136 (10)0.0509 (8)0.0217 (15)0.274 (4)
H6C10.4570120.3542120.0270370.026*0.274 (4)
H6C20.2657920.3221120.0060610.026*0.274 (4)
O1C0.3310 (6)0.3704 (3)0.1662 (4)0.0233 (9)0.274 (4)
C7C0.3083 (7)0.4938 (5)0.1727 (4)0.0267 (11)0.274 (4)
H7C10.2254140.4953460.1103390.032*0.274 (4)
H7C20.4101350.5522170.1610890.032*0.274 (4)
C8C0.2564 (7)0.5327 (6)0.2901 (5)0.0242 (12)0.274 (4)
H8C10.1615150.4682390.3037570.029*0.274 (4)
H8C20.2227640.6118740.2902700.029*0.274 (4)
Cl1C0.4080 (5)0.5545 (4)0.4069 (3)0.0406 (6)0.274 (4)
O2B0.31302 (10)0.11153 (8)0.58764 (7)0.02304 (18)
O3B0.32527 (10)0.15036 (9)0.77777 (7)0.0271 (2)
N1B0.79607 (11)0.14491 (9)0.64445 (8)0.01650 (19)
N2B0.64632 (11)0.15332 (9)0.79508 (8)0.01790 (19)
N3B0.38786 (11)0.13284 (9)0.68559 (8)0.01845 (19)
C1B0.64369 (13)0.13249 (10)0.59632 (9)0.0163 (2)
H1B0.6070100.1221790.5156610.020*
C2B0.55580 (13)0.13829 (10)0.69080 (9)0.0160 (2)
C3B0.79288 (13)0.15741 (10)0.76422 (10)0.0177 (2)
C4B0.93855 (15)0.17517 (13)0.84634 (11)0.0267 (3)
H4BA0.9820020.1009000.8321610.040*
H4BB0.9100850.1876290.9273580.040*
H4BC1.0197650.2487070.8337180.040*
C5B0.9357 (11)0.1542 (6)0.5756 (11)0.0193 (8)0.638 (4)
H5B10.9101980.0852260.5074940.023*0.638 (4)
H5B21.0277070.1430700.6246730.023*0.638 (4)
C6B0.9854 (6)0.2777 (4)0.5312 (4)0.0233 (8)0.638 (4)
H6B11.0733220.2740290.4798900.028*0.638 (4)
H6B20.8929570.2898010.4832020.028*0.638 (4)
O1B1.03761 (19)0.38096 (16)0.62241 (18)0.0281 (5)0.638 (4)
C7B1.2020 (3)0.4077 (3)0.6584 (2)0.0312 (6)0.638 (4)
H7B11.2639840.4062010.5888350.037*0.638 (4)
H7B21.2238860.3432870.7029400.037*0.638 (4)
C8B1.2537 (6)0.5338 (5)0.7340 (4)0.0293 (9)0.638 (4)
H8B11.2202840.5960750.6919510.035*0.638 (4)
H8B21.3725710.5575840.7476630.035*0.638 (4)
Cl1B1.1692 (2)0.5392 (2)0.87550 (19)0.0367 (3)0.638 (4)
C5D0.937 (2)0.1368 (12)0.580 (2)0.0193 (8)0.362 (4)
H5D10.9043520.0775030.5049570.023*0.362 (4)
H5D21.0156490.1067920.6270160.023*0.362 (4)
C6D1.0118 (11)0.2649 (8)0.5563 (6)0.0236 (13)0.362 (4)
H6D11.0985170.2613550.5037660.028*0.362 (4)
H6D20.9297520.2984980.5171420.028*0.362 (4)
O1D1.0767 (3)0.3445 (2)0.6658 (2)0.0178 (6)0.362 (4)
C7D1.1612 (5)0.4697 (4)0.6524 (3)0.0271 (9)0.362 (4)
H7D11.0837040.5200770.6367960.033*0.362 (4)
H7D21.2295480.4663980.5864340.033*0.362 (4)
C8D1.2633 (12)0.5263 (9)0.7665 (6)0.0341 (17)0.362 (4)
H8D11.3387120.6058250.7581870.041*0.362 (4)
H8D21.3270000.4682480.7885730.041*0.362 (4)
Cl1D1.1350 (4)0.5536 (4)0.8748 (4)0.0367 (3)0.362 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O2A0.0239 (4)0.0449 (6)0.0233 (4)0.0149 (4)0.0088 (3)0.0084 (4)
O3A0.0228 (5)0.0607 (7)0.0221 (5)0.0145 (4)0.0032 (4)0.0051 (4)
N1A0.0171 (4)0.0174 (4)0.0162 (4)0.0051 (4)0.0012 (3)0.0017 (3)
N2A0.0196 (5)0.0188 (5)0.0170 (4)0.0052 (4)0.0027 (4)0.0030 (4)
N3A0.0174 (5)0.0271 (5)0.0209 (5)0.0055 (4)0.0017 (4)0.0041 (4)
C1A0.0190 (5)0.0199 (5)0.0175 (5)0.0056 (4)0.0037 (4)0.0015 (4)
C2A0.0156 (5)0.0191 (5)0.0186 (5)0.0044 (4)0.0023 (4)0.0019 (4)
C3A0.0188 (5)0.0154 (5)0.0177 (5)0.0040 (4)0.0030 (4)0.0031 (4)
C4A0.0249 (6)0.0312 (6)0.0222 (6)0.0123 (5)0.0076 (5)0.0086 (5)
C5A0.0183 (8)0.0229 (7)0.0180 (7)0.0063 (6)0.0032 (6)0.0011 (5)
C6A0.0271 (15)0.0249 (11)0.0175 (14)0.0120 (9)0.0016 (10)0.0014 (10)
O1A0.0195 (7)0.0220 (7)0.0242 (8)0.0083 (5)0.0007 (5)0.0015 (6)
C7A0.0205 (9)0.0276 (10)0.0291 (9)0.0101 (8)0.0000 (7)0.0028 (7)
C8A0.0302 (10)0.0264 (10)0.0269 (13)0.0130 (8)0.0012 (10)0.0008 (10)
Cl1A0.0536 (7)0.0319 (4)0.0280 (6)0.0127 (4)0.0008 (4)0.0042 (4)
C5C0.0183 (8)0.0229 (7)0.0180 (7)0.0063 (6)0.0032 (6)0.0011 (5)
C6C0.024 (3)0.027 (3)0.018 (3)0.014 (2)0.001 (3)0.004 (2)
O1C0.031 (2)0.0221 (16)0.0192 (17)0.0131 (15)0.0025 (15)0.0020 (13)
C7C0.034 (2)0.025 (2)0.023 (2)0.015 (2)0.0030 (18)0.0020 (18)
C8C0.030 (2)0.022 (2)0.020 (3)0.0110 (17)0.001 (2)0.001 (2)
Cl1C0.0540 (17)0.0357 (13)0.0318 (16)0.0149 (11)0.0056 (10)0.0022 (11)
O2B0.0167 (4)0.0348 (5)0.0172 (4)0.0065 (3)0.0011 (3)0.0034 (3)
O3B0.0211 (4)0.0440 (5)0.0184 (4)0.0123 (4)0.0074 (3)0.0032 (4)
N1B0.0132 (4)0.0191 (4)0.0164 (4)0.0043 (3)0.0012 (3)0.0001 (3)
N2B0.0164 (4)0.0204 (5)0.0165 (4)0.0034 (4)0.0008 (3)0.0037 (4)
N3B0.0161 (4)0.0222 (5)0.0178 (5)0.0058 (4)0.0027 (3)0.0033 (4)
C1B0.0139 (5)0.0174 (5)0.0163 (5)0.0034 (4)0.0006 (4)0.0001 (4)
C2B0.0135 (5)0.0168 (5)0.0171 (5)0.0037 (4)0.0007 (4)0.0014 (4)
C3B0.0168 (5)0.0182 (5)0.0180 (5)0.0044 (4)0.0005 (4)0.0027 (4)
C4B0.0194 (6)0.0374 (7)0.0232 (6)0.0070 (5)0.0022 (5)0.0067 (5)
C5B0.0146 (6)0.0227 (18)0.0201 (10)0.0068 (13)0.0032 (6)0.0026 (16)
C6B0.0210 (17)0.0255 (12)0.0212 (17)0.0004 (11)0.0067 (11)0.0031 (11)
O1B0.0187 (7)0.0266 (8)0.0339 (10)0.0004 (6)0.0045 (7)0.0036 (7)
C7B0.0209 (10)0.0336 (13)0.0343 (11)0.0001 (9)0.0051 (8)0.0001 (9)
C8B0.0219 (14)0.0274 (14)0.0350 (19)0.0007 (10)0.0009 (14)0.0049 (14)
Cl1B0.0289 (8)0.0350 (5)0.0429 (2)0.0056 (4)0.0032 (5)0.0020 (3)
C5D0.0146 (6)0.0227 (18)0.0201 (10)0.0068 (13)0.0032 (6)0.0026 (16)
C6D0.019 (2)0.035 (2)0.018 (3)0.0084 (17)0.0032 (18)0.0055 (19)
O1D0.0180 (12)0.0181 (12)0.0161 (12)0.0006 (9)0.0018 (9)0.0082 (9)
C7D0.0276 (18)0.0176 (17)0.0355 (18)0.0008 (14)0.0101 (14)0.0101 (14)
C8D0.028 (2)0.023 (2)0.044 (4)0.0038 (18)0.003 (3)0.002 (3)
Cl1D0.0289 (8)0.0350 (5)0.0429 (2)0.0056 (4)0.0032 (5)0.0020 (3)
Geometric parameters (Å, º) top
O2A—N3A1.2336 (13)O2B—N3B1.2337 (12)
O3A—N3A1.2257 (13)O3B—N3B1.2306 (12)
N1A—C1A1.3617 (14)N1B—C1B1.3607 (14)
N1A—C3A1.3753 (14)N1B—C3B1.3749 (14)
N1A—C5A1.466 (5)N1B—C5B1.468 (7)
N1A—C5C1.470 (14)N1B—C5D1.474 (12)
N2A—C3A1.3197 (14)N2B—C3B1.3188 (14)
N2A—C2A1.3648 (14)N2B—C2B1.3652 (14)
N3A—C2A1.4286 (14)N3B—C2B1.4257 (14)
C1A—C2A1.3643 (16)C1B—C2B1.3643 (15)
C1A—H1A0.9500C1B—H1B0.9500
C3A—C4A1.4827 (15)C3B—C4B1.4840 (15)
C4A—H4AA0.9800C4B—H4BA0.9800
C4A—H4AB0.9800C4B—H4BB0.9800
C4A—H4AC0.9800C4B—H4BC0.9800
C5A—C6A1.516 (6)C5B—C6B1.518 (6)
C5A—H5A10.9900C5B—H5B10.9900
C5A—H5A20.9900C5B—H5B20.9900
C6A—O1A1.427 (3)C6B—O1B1.408 (4)
C6A—H6A10.9900C6B—H6B10.9900
C6A—H6A20.9900C6B—H6B20.9900
O1A—C7A1.417 (2)O1B—C7B1.398 (3)
C7A—C8A1.498 (3)C7B—C8B1.495 (5)
C7A—H7A10.9900C7B—H7B10.9900
C7A—H7A20.9900C7B—H7B20.9900
C8A—Cl1A1.797 (3)C8B—Cl1B1.826 (5)
C8A—H8A10.9900C8B—H8B10.9900
C8A—H8A20.9900C8B—H8B20.9900
C5C—C6C1.523 (13)C5D—C6D1.494 (11)
C5C—H5C10.9900C5D—H5D10.9900
C5C—H5C20.9900C5D—H5D20.9900
C6C—O1C1.426 (8)C6D—O1D1.435 (7)
C6C—H6C10.9900C6D—H6D10.9900
C6C—H6C20.9900C6D—H6D20.9900
O1C—C7C1.424 (6)O1D—C7D1.450 (4)
C7C—C8C1.488 (7)C7D—C8D1.508 (8)
C7C—H7C10.9900C7D—H7D10.9900
C7C—H7C20.9900C7D—H7D20.9900
C8C—Cl1C1.772 (6)C8D—Cl1D1.752 (9)
C8C—H8C10.9900C8D—H8D10.9900
C8C—H8C20.9900C8D—H8D20.9900
C1A—N1A—C3A107.79 (9)C1B—N1B—C3B107.89 (9)
C1A—N1A—C5A125.0 (5)C1B—N1B—C5B123.2 (5)
C3A—N1A—C5A127.2 (5)C3B—N1B—C5B128.6 (5)
C1A—N1A—C5C123.1 (13)C1B—N1B—C5D126.2 (10)
C3A—N1A—C5C129.0 (13)C3B—N1B—C5D125.7 (10)
C3A—N2A—C2A103.88 (9)C3B—N2B—C2B103.77 (9)
O3A—N3A—O2A123.38 (10)O3B—N3B—O2B123.41 (9)
O3A—N3A—C2A119.06 (10)O3B—N3B—C2B118.99 (9)
O2A—N3A—C2A117.55 (9)O2B—N3B—C2B117.59 (9)
N1A—C1A—C2A104.08 (9)N1B—C1B—C2B103.94 (9)
N1A—C1A—H1A128.0N1B—C1B—H1B128.0
C2A—C1A—H1A128.0C2B—C1B—H1B128.0
C1A—C2A—N2A112.85 (10)C1B—C2B—N2B112.97 (9)
C1A—C2A—N3A125.68 (10)C1B—C2B—N3B125.27 (10)
N2A—C2A—N3A121.47 (10)N2B—C2B—N3B121.75 (9)
N2A—C3A—N1A111.39 (9)N2B—C3B—N1B111.43 (9)
N2A—C3A—C4A125.06 (10)N2B—C3B—C4B125.39 (10)
N1A—C3A—C4A123.55 (10)N1B—C3B—C4B123.18 (10)
C3A—C4A—H4AA109.5C3B—C4B—H4BA109.5
C3A—C4A—H4AB109.5C3B—C4B—H4BB109.5
H4AA—C4A—H4AB109.5H4BA—C4B—H4BB109.5
C3A—C4A—H4AC109.5C3B—C4B—H4BC109.5
H4AA—C4A—H4AC109.5H4BA—C4B—H4BC109.5
H4AB—C4A—H4AC109.5H4BB—C4B—H4BC109.5
N1A—C5A—C6A110.6 (5)N1B—C5B—C6B113.7 (5)
N1A—C5A—H5A1109.5N1B—C5B—H5B1108.8
C6A—C5A—H5A1109.5C6B—C5B—H5B1108.8
N1A—C5A—H5A2109.5N1B—C5B—H5B2108.8
C6A—C5A—H5A2109.5C6B—C5B—H5B2108.8
H5A1—C5A—H5A2108.1H5B1—C5B—H5B2107.7
O1A—C6A—C5A112.8 (5)O1B—C6B—C5B113.0 (5)
O1A—C6A—H6A1109.0O1B—C6B—H6B1109.0
C5A—C6A—H6A1109.0C5B—C6B—H6B1109.0
O1A—C6A—H6A2109.0O1B—C6B—H6B2109.0
C5A—C6A—H6A2109.0C5B—C6B—H6B2109.0
H6A1—C6A—H6A2107.8H6B1—C6B—H6B2107.8
C7A—O1A—C6A113.8 (2)C7B—O1B—C6B113.8 (2)
O1A—C7A—C8A108.77 (17)O1B—C7B—C8B109.9 (3)
O1A—C7A—H7A1109.9O1B—C7B—H7B1109.7
C8A—C7A—H7A1109.9C8B—C7B—H7B1109.7
O1A—C7A—H7A2109.9O1B—C7B—H7B2109.7
C8A—C7A—H7A2109.9C8B—C7B—H7B2109.7
H7A1—C7A—H7A2108.3H7B1—C7B—H7B2108.2
C7A—C8A—Cl1A112.35 (16)C7B—C8B—Cl1B113.0 (3)
C7A—C8A—H8A1109.1C7B—C8B—H8B1109.0
Cl1A—C8A—H8A1109.1Cl1B—C8B—H8B1109.0
C7A—C8A—H8A2109.1C7B—C8B—H8B2109.0
Cl1A—C8A—H8A2109.1Cl1B—C8B—H8B2109.0
H8A1—C8A—H8A2107.9H8B1—C8B—H8B2107.8
N1A—C5C—C6C113.1 (12)N1B—C5D—C6D107.5 (9)
N1A—C5C—H5C1109.0N1B—C5D—H5D1110.2
C6C—C5C—H5C1109.0C6D—C5D—H5D1110.2
N1A—C5C—H5C2109.0N1B—C5D—H5D2110.2
C6C—C5C—H5C2109.0C6D—C5D—H5D2110.2
H5C1—C5C—H5C2107.8H5D1—C5D—H5D2108.5
O1C—C6C—C5C107.2 (13)O1D—C6D—C5D108.7 (9)
O1C—C6C—H6C1110.3O1D—C6D—H6D1109.9
C5C—C6C—H6C1110.3C5D—C6D—H6D1109.9
O1C—C6C—H6C2110.3O1D—C6D—H6D2109.9
C5C—C6C—H6C2110.3C5D—C6D—H6D2109.9
H6C1—C6C—H6C2108.5H6D1—C6D—H6D2108.3
C7C—O1C—C6C113.8 (6)C6D—O1D—C7D113.3 (4)
O1C—C7C—C8C108.6 (5)O1D—C7D—C8D106.2 (5)
O1C—C7C—H7C1110.0O1D—C7D—H7D1110.5
C8C—C7C—H7C1110.0C8D—C7D—H7D1110.5
O1C—C7C—H7C2110.0O1D—C7D—H7D2110.5
C8C—C7C—H7C2110.0C8D—C7D—H7D2110.5
H7C1—C7C—H7C2108.3H7D1—C7D—H7D2108.7
C7C—C8C—Cl1C113.6 (4)C7D—C8D—Cl1D108.1 (6)
C7C—C8C—H8C1108.8C7D—C8D—H8D1110.1
Cl1C—C8C—H8C1108.8Cl1D—C8D—H8D1110.1
C7C—C8C—H8C2108.8C7D—C8D—H8D2110.1
Cl1C—C8C—H8C2108.8Cl1D—C8D—H8D2110.1
H8C1—C8C—H8C2107.7H8D1—C8D—H8D2108.4
C3A—N1A—C1A—C2A0.01 (12)C3B—N1B—C1B—C2B0.02 (12)
C5A—N1A—C1A—C2A178.2 (3)C5B—N1B—C1B—C2B174.9 (3)
C5C—N1A—C1A—C2A176.0 (8)C5D—N1B—C1B—C2B175.7 (6)
N1A—C1A—C2A—N2A0.01 (13)N1B—C1B—C2B—N2B0.18 (12)
N1A—C1A—C2A—N3A179.85 (10)N1B—C1B—C2B—N3B178.29 (10)
C3A—N2A—C2A—C1A0.00 (13)C3B—N2B—C2B—C1B0.27 (12)
C3A—N2A—C2A—N3A179.87 (10)C3B—N2B—C2B—N3B178.27 (10)
O3A—N3A—C2A—C1A177.43 (11)O3B—N3B—C2B—C1B173.51 (11)
O2A—N3A—C2A—C1A3.03 (17)O2B—N3B—C2B—C1B5.93 (16)
O3A—N3A—C2A—N2A2.42 (17)O3B—N3B—C2B—N2B4.84 (16)
O2A—N3A—C2A—N2A177.12 (10)O2B—N3B—C2B—N2B175.72 (10)
C2A—N2A—C3A—N1A0.01 (12)C2B—N2B—C3B—N1B0.25 (12)
C2A—N2A—C3A—C4A179.66 (11)C2B—N2B—C3B—C4B178.83 (11)
C1A—N1A—C3A—N2A0.02 (13)C1B—N1B—C3B—N2B0.15 (13)
C5A—N1A—C3A—N2A178.2 (3)C5B—N1B—C3B—N2B174.7 (3)
C5C—N1A—C3A—N2A175.7 (9)C5D—N1B—C3B—N2B175.6 (6)
C1A—N1A—C3A—C4A179.67 (10)C1B—N1B—C3B—C4B178.95 (11)
C5A—N1A—C3A—C4A1.5 (4)C5B—N1B—C3B—C4B4.4 (4)
C5C—N1A—C3A—C4A3.9 (9)C5D—N1B—C3B—C4B5.3 (6)
C1A—N1A—C5A—C6A76.1 (7)C1B—N1B—C5B—C6B71.3 (8)
C3A—N1A—C5A—C6A101.8 (7)C3B—N1B—C5B—C6B102.5 (8)
N1A—C5A—C6A—O1A65.6 (8)N1B—C5B—C6B—O1B63.8 (10)
C5A—C6A—O1A—C7A81.8 (5)C5B—C6B—O1B—C7B88.4 (5)
C6A—O1A—C7A—C8A165.1 (2)C6B—O1B—C7B—C8B166.9 (3)
O1A—C7A—C8A—Cl1A66.8 (2)O1B—C7B—C8B—Cl1B68.2 (4)
C1A—N1A—C5C—C6C92.7 (19)C1B—N1B—C5D—C6D88.2 (13)
C3A—N1A—C5C—C6C82 (2)C3B—N1B—C5D—C6D96.8 (14)
N1A—C5C—C6C—O1C64 (2)N1B—C5D—C6D—O1D67.1 (16)
C5C—C6C—O1C—C7C169.2 (10)C5D—C6D—O1D—C7D176.3 (8)
C6C—O1C—C7C—C8C168.8 (6)C6D—O1D—C7D—C8D162.6 (6)
O1C—C7C—C8C—Cl1C68.1 (6)O1D—C7D—C8D—Cl1D69.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···N2Bi0.952.613.5144 (15)160
C4A—H4AA···Cl1A0.982.913.888 (2)172
C4A—H4AA···O1C0.982.393.024 (4)122
C4A—H4AB···O2B0.982.343.2626 (14)157
C5A—H5A1···O2Aii0.992.653.562 (10)153
C5A—H5A2···O3Bi0.992.513.202 (10)127
C7A—H7A2···Cl1Biii0.992.963.778 (3)141
C8A—H8A1···O1Biv0.992.423.338 (3)153
C8A—H8A1···Cl1Biv0.992.993.725 (3)132
C8A—H8A2···N2Biv0.992.633.419 (3)137
C5C—H5C2···O3Bi0.992.313.16 (3)144
C1B—H1B···N2A0.952.653.5495 (14)157
C4B—H4BB···O2Av0.982.453.2622 (15)140
C4B—H4BC···O1D0.982.383.124 (3)133
C5B—H5B1···O3A0.992.533.199 (12)124
C5B—H5B1···O2Bvi0.992.603.439 (10)142
C5B—H5B2···O2Bvii0.992.603.379 (10)135
C8B—H8B2···O1Aviii0.992.393.292 (5)151
C5D—H5D1···O3A0.992.533.26 (2)130
C5D—H5D1···O2Bvi0.992.523.345 (19)141
C5D—H5D2···O2Bvii0.992.613.297 (17)127
C7D—H7D2···Cl1Cvii0.992.813.742 (6)157
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x1, y, z1; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x+1, y, z; (viii) x+2, y+1, z+1.
Conformation-defining torsion angles (°) in I top
Torsion angleA (major)A (minor)B (major)B (minor)
C1—N1—C5—C6-76.1 (7)-92.7 (19)71.4 (9)88.2 (13)
N1—C5—C6—O1-65.6 (8)-64 (2)63.8 (10)67.1 (16)
C5—C6—O1—C7-81.8 (5)-169.2 (10)88.4 (5)176.3 (8)
C6—O1—C7—C8-165.1 (3)168.8 (7)166.9 (3)-162.7 (6)
O1—C7—C8—Cl1-66.8 (2)68.1 (6)68.2 (4)-69.9 (7)
 

Acknowledgements

HSY thanks the UGC, New Delhi, for the award of UGC BSR Faculty Fellowship for a period of three years.

References

First citationAdamovich, S. N., Ushakov, I. A., Mirskova, A. N., Mirskov, R. G. & Voronov, V. K. (2014). Mendeleev Commun. 24, 293–294.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, Y.-T., Wang, Z.-C., Sang, Y.-L., Tao, X.-X., Teraiya, S. B., Wang, P.-F., Wen, Q., Zhou, X.-J., Ding, L., Yang, Y.-H. & Zhu, H.-L. (2014). Eur. J. Med. Chem. 76, 387–396.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHori, H., Jin, C. Z., Kiyono, M., Kasai, S., Shimamura, M. & Inayama, S. (1997). Bioorg. Med. Chem. 5, 591–599.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159–162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaifez, F., Sunjic, V., Kolbah, D., Fajdiga, T. & Oklobdzija, M. (1968). J. Med. Chem. 11, 169–171.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrezel, I. (1998). Farmaco 53, 342–345.  PubMed Google Scholar
First citationLombardino, J. G. & Wiseman, E. H. (1974). J. Med. Chem. 17, 1182–1188.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989). US Patent No. 4 820 335.  Google Scholar
First citationNeildé, K., Crozet, M. D., Terme, T. & Vanelle, P. (2014). Tetrahedron Lett. 55, 3652–3657.  Google Scholar
First citationOlender, D., Żwawiak, J., Lukianchuk, V., Lesyk, R., Kropacz, A., Fojutowski, A. & Zaprutko, L. (2009). Eur. J. Med. Chem. 44, 645–652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParkin, S. (2025). Programs over-rip, over-rot, over-lay. https://xray.uky.edu/Tutorials/structure-overlays/1-Introduction  Google Scholar
First citationRulhania, S., Kumar, S., Nehra, B., Gupta, G. D. & Monga, V. (2021). J. Mol. Struct. 1232, 129982.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkupin, R., Cooper, T. G., Fröhlich, R., Prigge, J. & Haufe, G. (1997). Tetrahedron Asymmetry 8, 2453–2464.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutherland, H. S., Blaser, A., Kmentova, I., Franzblau, S. G., Wan, B., Wang, Y., Ma, Z., Palmer, B. D., Denny, W. A. & Thompson, A. M. (2010). J. Med. Chem. 53, 855–866.  Web of Science CrossRef PubMed CAS Google Scholar
First citationten Have, R., Huisman, M., Meetsma, A. & van Leusen, A. M. (1997). Tetrahedron 53, 11355–11368.  Google Scholar
First citationWang, H.-Y., Zou, P., Xie, M.-H., He, Y.-J. & Wu, J. (2010). Acta Cryst. E66, o2606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Q., Xu, W.-X., Yao, Y.-H., Zhang, Z.-Q., Sun, S. & Li, J. (2015). J. Porphyrins Phthalocyanines 19, 1107–1113.  Google Scholar
First citationZama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837–o838.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Peng, X.-M., Damu, G. L. V., Geng, R.-X. & Zhou, C.-H. (2014). Med. Res. Rev. 34, 340–437.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds