research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and supra­molecular features of bis­­{ethyl 2-[1-methyl-3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl]acetate}­tri­nitratolanthanum(III)

crossmark logo

aA. V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lyustdorfska doroga, Odessa, Ukraine, bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine, cV. I. Vernadskii Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Akad. Palladin Ave 32/34, Kyiv 03142, Ukraine, dDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and eEnamine Ltd. (www.enamine.net), Winston Churchill str. 78, 02094 Kyiv, Ukraine
*Correspondence e-mail: [email protected]

Edited by L. Suescun, Universidad de la República, Uruguay (Received 10 April 2025; accepted 17 June 2025; online 24 June 2025)

The title lanthanum(III) complex, [La(Et-MPTA)2(NO3)3] {where Et-MPTA is ethyl 2-[1-methyl-3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl]acetate} or [La(C24H28N8O4)(NO3)3], crystallizes in the monoclinic space group C2/c (No. 15). The lanthanum atom is twelve-coordinate, bonded to two oxygen atoms from carboxyl­ate groups, four nitro­gen atoms from two pyridinyl-1,2,4-triazole ligands, and six oxygen atoms of three NO3 anions. The coordination geometry around the lanthanum atom can be described as a distorted icosa­hedron. Supra­molecular features include π-stacking inter­actions between pyridyl and triazole rings and weak inter­molecular N—O⋯C inter­actions, which lead to the formation of layers parallel to the (101) plane.

1. Chemical context

Triazole-based compounds have wide applications in various fields such as medicine, materials science, and pharmaceuticals (Morais et al., 2022[Morais, P. A. B., Javarini, C. L., Valim, T. C., Francisco, C. S., de Freitas Ferreira, L. C., Bottocim, R. R. T., Neto, A. C. & Lacerda Júnior, V. (2022). Curr. Org. Chem. 26, e131222211916.]). The variation of the substituents on the triazole ring allows the creation of a broad range of functional materials. Ligands containing the 1,2,4-triazole fragment coordinate through nitro­gen donor centers, and complexes with 1,2,4-triazole ligands may exhibit photoluminescence (Matin et al., 2022[Matin, M. M., Matin, P., Rahman, Md. R., Ben Hadda, T., Almalki, F. A., Mahmud, S., Ghoneim, M. M., Alruwaily, M. & Alshehri, S. (2022). Front. Mol. Biosci. 9, 864286, 1-8.]; Schweinfurth et al., 2017[Schweinfurth, D., Hettmanczyk, L., Suntrup, L. & Sarkar, B. (2017). Z. Anorg. Allg. Chem. 643, 554-584.]). Rare-earth metal complexes with nitro­gen-containing ligands have garnered significant inter­est due to their potential applications in various fields including catalysis, luminescence, and magnetic materials (Kainat et al., 2024[Kainat, S. F., Hawsawi, M. B., Mughal, E. U., Naeem, N., Almohyawi, A. M., Altass, H. M., Hussein, E. M., Sadiq, A., Moussa, Z., Abd-El-Azizf, A. S. & Ahmed, S. A. (2024). RSC Adv. 14, 21464-21537.]; Kaczmarek et al., 2018[Kaczmarek, M. T., Zabiszak, M., Nowak, M. & Jastrzab, R. (2018). Coord. Chem. Rev. 370, 42-54.]; Zeybel & Köse, 2023[Zeybel, L. & Köse, D. A. (2023). J. Mol. Struct. 1290, 135979.]).

[Scheme 1]

The pyridinyl-1,2,4-triazole derivative used in this study, namely ethyl 2-[1-methyl-3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl]acetate, is a versatile ligand that can coordinate to metal ions in different modes, leading to diverse structural motifs. The investigation of the crystal structure of the lanthanum(III) complex with this ligand provides insights into lanthanide coordination chemistry and the supra­molecular inter­actions that consolidate the crystal structure. Understanding these structural features is crucial for designing new lanthanide-based materials with tailored properties.

2. Structural commentary

The title [La(Et-MPTA)2(NO3)3] complex crystallizes in the monoclinic space group C2/c with the complex occupying a special position, at which the central lanthanum atom is located on a twofold axis. The coordination geometry around the lanthanum atom can be described as a distorted icosa­hedron (Fig. 1[link] inset), which is common for 12-coordinated LnIII complexes (Jing et al., 1994[Jing, H., Wang, X., Hou, Z., Chen, S. & Li, D. (1994). Polyhedron 13(6-7), 1035-138.]; Jones et al., 1997[Jones, P. L., Amoroso, A. J., Jefferey, J. C., McCleverty, J. A., Psillakis, E., Rees l, H. & Ward, M. D. (1997). Inorg. Chem. 36, 10-18.]; Chandrasekhar et al., 2009[Chandrasekhar, V., Pandian, B. M., Vittal, J. J. & Clerac, R. (2009). Inorg. Chem. 48, 1148-1157.]). The coordination polyhedron is formed by two oxygen atoms from the carboxyl­ate groups, four nitro­gen atoms from two pyridinyl-1,2,4-triazole of Et-MPTA ligands, and six oxygen atoms of three coordinated NO3 anions (Fig. 1[link]). The La—O bond lengths range from 2.648 (2) to 2.752 (2) Å, and the La—N bond lengths range from 2.735 (2) to 2.841 (2) Å (Table 1[link]). These bond lengths are consistent with those reported for other lanthanum(III) complexes with nitro­gen- and oxygen-donor ligands (Guillaumont, 2006[Guillaumont, D. (2006). J. Mol. Struct.: THEOCHEM. 771, 1-3, 105-110.]; Mishra, 2008[Mishra, S. (2008). Coord. Chem. Rev. 252, 18-20, 1996-2025.]; Cotton et al., 2022[Cotton, S. A., Raithby, P. R., Shield, A. & Harrowfield, J. M. (2022). Coord. Chem. Rev. 455, 214366.]). Three NO3 anions are coordinated to LaIII ion via oxygen atoms in a terminal bidentate manner (de Bettencourt-Dias et al., 2012[de Bettencourt-Dias, A., Bauer, S., Viswanathan, S., Maull, B. C. & Ako, A. M. (2012). Dalton Trans. 41, 11212-11218.]). One nitrate group is coordinated in a symmetric manner where the La—O6 bond length and its symmetry equivalent are both 2.648 (2) Å. Two other nitrate groups have asymmetric type of coordination with the La—O3 and La—O4 bond lengths equal to 2.658 (3) Å and 2.753 (3) Å, respectively.

Table 1
Selected bond lengths (Å)

La1—O1i 2.696 (2) La1—O6i 2.648 (2)
La1—O1 2.696 (2) La1—O6 2.648 (2)
La1—O3 2.658 (2) La1—N1i 2.735 (2)
La1—O3i 2.658 (2) La1—N1 2.735 (2)
La1—O4 2.752 (2) La1—N4i 2.841 (2)
La1—O4i 2.752 (2) La1—N4 2.841 (2)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Hydrogen atoms and the disordered C11B, C12B atoms are omitted for clarity. Inset: icosa­hedral coordination environment around the LaIII atom.

3. Supra­molecular features

In the crystal, π-stacking inter­actions are observed between the pyridyl substituent and the triazole ring [C5⋯C7 = 3.283 (5) Å, Cg1⋯Cg2([{1\over 2}] − x, [{3\over 2}] − y, 1 − z) = 3.809 (2) Å where Cg1 and Cg2 are the centroids of the N1–N3/C3/C5 and N4/C6–C10 rings, respectively] and an N6—O7⋯C1(x, −1 + y, z) weak inter­molecular inter­action [with an O⋯C distance of 2.913 (5) Å] is present, forming layers parallel to the ([\overline{1}]01) plane (Fig. 2[link]).

[Figure 2]
Figure 2
Crystal packing view of [La(Et-MPTA)2(NO3)3] along the b axis.

The inter­molecular inter­actions in the crystal structure of the title compound were analysed using the dnorm property (Fig. S1) mapped over the Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19-23.]), which was calculated using the CrystalExplorer21 program (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The strongest contacts, which are visualized on the Hirshfeld surface are the N—O⋯C inter­actions. The lighter red spots correspond to π-inter­actions. The majority of the inter­molecular inter­actions of the title compound are weak, and are represented in blue on the Hirshfeld surface.

For further exploration of the inter­molecular inter­actions, two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) were generated, as shown in Fig. S2. The major contributions to the crystal structure are from the H⋯H (39.9%) and H⋯O/O⋯H (37.9%) inter­actions. The H⋯C/C⋯H (6.9%), N⋯H/H⋯N (4.9%), N⋯C/C⋯N (3.5%), O⋯C/C⋯O (2.9%) and C⋯C (1.3%) inter­actions are less impactful in comparison.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.46, updated November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded twelve structures of lanthanide complexes with coordination number 12 and coordinated by three NO3 groups. Among them three structures with the La atom [refcodes AWAKER (Liu et al., 2021[Liu, J., Chen, B., Liu, Y., Ma, J., Li, X. & Yang, Y. (2021). Sep. Purif. Technol. 274, 119119.]), MILWEJ (Liu et al., 2001[Liu, R., Zhu, W., Zhang, Y. & Yan, X. (2001). Acta Chim. Sinica 59, 533.]), UBAMUI (Raja et al., 2016a[Raja, K., Suseelamma, A. & Reddy, K. H. (2016a). J. Chem. Sci. 128, 1265-1275.])], six structures with the Ce atom [refcodes FOTXOC (Zhang & Liu, 2009[Zhang, Y.-Y. & Liu, S.-X. (2009). Acta Cryst. C65, m269-m272.]), HIXWEQ (Christidis et al., 1999[Christidis, P. C., Tossidis, I. A. & Paschalidis, D. G. (1999). Acta Cryst. C55, 707-710.]), HOZQOF (Lin et al., 2019[Lin, L., Lu, L., Du, R., Yuan, C., Zhu, M., Fu, X. & Xing, S. (2019). Dalton Trans. 48, 17673-17682.]), JORLIO (Nakase et al., 2018[Nakase, M., Kobayashi, T., Shiwaku, H., Suzuki, S., Grimes, T. S., Mincher, B. J. & Yaita, T. (2018). Solvent Extr. Ion Exch. 36, 633-646. https://doi. org/10.1080/07366299.2018.1532137.]), USEBAX (Zhao et al., 2016[Zhao, Q., Shen, Z., Liu, W., Song, H. & He, Z. (2016). Chin. J. Struct. Chem. 35, 939-945.]), VAPDIC (Raja et al., 2016b[Raja, K., Suseelamma, A. & Reddy, K. H. (2016b). J. Chem. Sci. 128, 23-32.])], and three structures with the Pr atom [refcodes KERPEF (Reddy et al., 2017[Reddy, K. H., Raja, K. & Suseelamma, A. (2017). Inorg. Nano-Metal Chem. 47, 1398-1405.]), PICSON (Gueye et al., 2022[Gueye, A., Camara, P. S., Ndiaye-Gueye, M., Zazouli, S., Tamboura, F. B., Diouf, O., Gruber, N. & Gaye, M. L. (2022). Sci. J. Chem. 10, 1-12. DOI: 10.11648/j. sjc. 20221001.11.]), VIMWAR (Panayiotidou et al., 2013[Panayiotidou, L., Drouza, C., Arabatzis, N., Lianos, P., Stathatos, E., Viskadourakis, Z., Giapintzakis, J. & Keramidas, A. D. (2013). Polyhedron 64, 308-320.])]. In the coordination polyhedrons of these structures, the Ln—O and Ln—N bond distances vary from 2.589–2.728 Å and 2.656–2.937 Å, respectively.

5. Synthesis and crystallization

Et-MPTA was synthesized according to a previously described procedure (Kharlova et al., 2019[Kharlova, M. I., Khomenko, D. M., Doroshchuk, R. O., Lampeka, R. D., Smola, S. S., Rusakova, N. V. & Shtemenko, O. V. (2019). Voprosy Khimii i Khimicheskoi Tekhnologii. 2019, 247-254.]; Khomenko et al., 2016[Khomenko, D. M., Doroschuk, R. O. & Lampeka, R. D. (2016). French-Ukrainian Journal of Chemistry 4, 28-32.]). For the synthesis of the La(Et-MPTA)2(NO3)3 complex, 0.2 mmol (0.0866 g) of La(NO3)3·6H2O and 0.4 mmol (0.0984 g) of the Et-MPTA ligand were dissolved separately in approximately 5 mL of methanol under heating. The methano­lic solutions of La(NO3)3·6H2O and the ligand were combined in a 25 mL beaker and heated for 1–2 h on a magnetic stirrer with constant non-turbulent stirring, avoiding boiling the reaction mixture. The solution was cooled to room temperature with the beaker kept open; the final volume was 6-7 mL. Over the next few hours, crystallization was observed. In order to study the structure, the crystals were used together with the mother liquor. For further analysis, the obtained crystals were separated from the solution, washed, and dried. The crystals are soluble in methanol, ethanol, and insoluble in water. IR (KBr), cm−1: 3370 m, br (νOH stretching, adsorbed H2O), 2963 w (νCH stretching, alk­yl), 1740 s (νC=O stretching), 1605 m (νC=C, νC=N, stretching, aromatic), 1490 s (ν4 stretching, NO3), 1384 s (δC-H, scissoring CH2), 1324 s (ν1 stretching, NO3), 1034 m (ν3 stretching, NO3), 1194 m (νC–O stretching, ether), 1034 w (νC-N stretching, ring, δC–H bending), 566 w (νLa–O stretching), 434 w (νLa–N stretching).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were placed in calculated positions and refined using a riding model with Uiso(H) = nUeq of the carrier atom (n = 1.5 for methyl groups and n = 1.2 for other hydrogen atoms). The C atoms of the ethyl group are disordered over two positions with an occupancy of 50%. Restraints were applied to the bond lengths in the disordered parts (O—C = 1.420 Å, C—C = 1.513 Å) within a standard deviation of 0.05 Å.

Table 2
Experimental details

Crystal data
Chemical formula [La(NO3)3(C12H14N4O2)2]
Mr 817.48
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 20.9094 (15), 9.0361 (5), 19.3753 (13)
β (°) 122.360 (8)
V3) 3092.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.47
Crystal size (mm) 0.20 × 0.1 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.631, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25399, 3551, 3079
Rint 0.066
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.062, 1.03
No. of reflections 3551
No. of parameters 244
No. of restraints 4
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.84
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

\ Bis{ethyl 2-[1-methyl-3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl]acetate}\ trinitratolanthanum(III) top
Crystal data top
[La(NO3)3(C12H14N4O2)2]F(000) = 1640
Mr = 817.48Dx = 1.756 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.9094 (15) ÅCell parameters from 6040 reflections
b = 9.0361 (5) Åθ = 2.3–29.5°
c = 19.3753 (13) ŵ = 1.47 mm1
β = 122.360 (8)°T = 296 K
V = 3092.2 (4) Å3Block, colourless
Z = 40.20 × 0.1 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2727
Tmin = 0.631, Tmax = 0.746k = 1111
25399 measured reflectionsl = 2523
3551 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0207P)2 + 5.1659P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3551 reflectionsΔρmax = 0.57 e Å3
244 parametersΔρmin = 0.84 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.5000000.70697 (3)0.7500000.02422 (8)
O10.49470 (11)0.9461 (2)0.83001 (13)0.0342 (5)
O20.47068 (12)1.1356 (3)0.88686 (13)0.0490 (6)
O30.41282 (12)0.6737 (2)0.81036 (13)0.0420 (6)
O40.36568 (13)0.5606 (3)0.69543 (14)0.0450 (6)
O50.30520 (15)0.5608 (4)0.75756 (18)0.0757 (9)
O60.48997 (14)0.4392 (2)0.68942 (13)0.0446 (6)
O70.5000000.2329 (4)0.7500000.1035 (19)
N10.37318 (13)0.8792 (3)0.66653 (14)0.0302 (6)
N20.30215 (14)1.0757 (3)0.62102 (17)0.0396 (7)
N30.29540 (14)1.0126 (3)0.55397 (16)0.0385 (6)
N40.40813 (13)0.6946 (3)0.57673 (14)0.0306 (5)
N50.35979 (15)0.5972 (3)0.75405 (17)0.0415 (7)
N60.5000000.3676 (4)0.7500000.0504 (11)
C10.45126 (17)1.0320 (3)0.83070 (18)0.0335 (7)
C20.36730 (18)1.0331 (4)0.7704 (2)0.0453 (9)
H2A0.3434800.9624930.7875350.054*
H2B0.3474311.1304880.7696250.054*
C30.34823 (16)0.9948 (3)0.68711 (19)0.0330 (7)
C40.2648 (2)1.2166 (5)0.6141 (3)0.0697 (12)
H4A0.3007761.2956790.6310300.105*
H4B0.2445391.2146480.6484490.105*
H4C0.2243841.2318620.5584200.105*
C50.33897 (15)0.8949 (3)0.58451 (17)0.0288 (6)
C60.35208 (15)0.7916 (3)0.53514 (17)0.0312 (6)
C70.30868 (17)0.7975 (4)0.45033 (18)0.0396 (7)
H70.2699010.8664150.4234600.048*
C80.32411 (19)0.6997 (4)0.40704 (19)0.0447 (8)
H80.2961550.7017510.3502320.054*
C90.3815 (2)0.5987 (4)0.4488 (2)0.0460 (9)
H90.3927980.5305630.4208630.055*
C100.42195 (19)0.6004 (4)0.53292 (19)0.0411 (8)
H100.4610290.5323850.5608190.049*
C11A0.5493 (3)1.1248 (13)0.9524 (5)0.047 (3)0.5
H11A0.5817121.1654650.9353630.057*0.5
H11B0.5632931.0223010.9680230.057*0.5
C11B0.5489 (3)1.1767 (13)0.9403 (5)0.053 (4)0.5
H11C0.5544681.2833950.9409670.063*0.5
H11D0.5795181.1323130.9219040.063*0.5
C12A0.5574 (5)1.2123 (9)1.0228 (5)0.0440 (19)0.5
H12A0.5411871.3123791.0056640.066*0.5
H12B0.6094011.2120111.0671730.066*0.5
H12C0.5266521.1683871.0404120.066*0.5
C12B0.5734 (5)1.1211 (11)1.0242 (6)0.068 (3)0.5
H12D0.5657561.0160961.0221330.102*0.5
H12E0.5441121.1689071.0424680.102*0.5
H12F0.6261221.1429401.0613600.102*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02401 (12)0.02188 (12)0.02192 (12)0.0000.00906 (10)0.000
O10.0289 (11)0.0289 (11)0.0396 (13)0.0067 (9)0.0150 (10)0.0011 (9)
O20.0382 (13)0.0619 (16)0.0406 (14)0.0085 (12)0.0169 (12)0.0151 (12)
O30.0405 (13)0.0439 (14)0.0374 (13)0.0049 (10)0.0180 (11)0.0037 (10)
O40.0427 (14)0.0476 (15)0.0392 (14)0.0067 (11)0.0184 (12)0.0029 (11)
O50.0450 (16)0.116 (3)0.072 (2)0.0192 (16)0.0356 (15)0.0128 (18)
O60.0654 (16)0.0292 (12)0.0372 (13)0.0023 (11)0.0261 (12)0.0024 (10)
O70.228 (6)0.024 (2)0.098 (4)0.0000.113 (4)0.000
N10.0252 (12)0.0337 (14)0.0289 (14)0.0029 (11)0.0126 (11)0.0011 (11)
N20.0308 (14)0.0368 (15)0.0445 (17)0.0100 (12)0.0157 (13)0.0054 (13)
N30.0347 (15)0.0401 (16)0.0342 (15)0.0074 (12)0.0141 (13)0.0072 (12)
N40.0318 (13)0.0277 (13)0.0273 (12)0.0014 (11)0.0126 (11)0.0007 (11)
N50.0320 (15)0.0463 (17)0.0420 (17)0.0012 (13)0.0170 (14)0.0116 (14)
N60.081 (3)0.022 (2)0.057 (3)0.0000.042 (3)0.000
C10.0336 (17)0.0358 (17)0.0283 (16)0.0057 (14)0.0146 (14)0.0017 (14)
C20.0339 (18)0.057 (2)0.040 (2)0.0081 (17)0.0167 (16)0.0074 (17)
C30.0202 (15)0.0351 (17)0.0351 (18)0.0018 (13)0.0091 (14)0.0015 (14)
C40.076 (3)0.058 (3)0.069 (3)0.041 (2)0.035 (2)0.014 (2)
C50.0207 (14)0.0300 (15)0.0293 (16)0.0024 (12)0.0092 (13)0.0045 (13)
C60.0248 (14)0.0337 (15)0.0291 (15)0.0082 (14)0.0104 (12)0.0019 (15)
C70.0315 (16)0.0482 (19)0.0288 (16)0.0036 (16)0.0092 (14)0.0068 (16)
C80.0438 (19)0.057 (2)0.0254 (16)0.0148 (19)0.0135 (15)0.0045 (17)
C90.054 (2)0.049 (2)0.0366 (19)0.0063 (18)0.0252 (18)0.0093 (17)
C100.046 (2)0.0388 (18)0.0320 (18)0.0020 (16)0.0165 (16)0.0023 (15)
C11A0.029 (5)0.070 (9)0.030 (5)0.006 (4)0.008 (4)0.021 (5)
C11B0.049 (6)0.045 (7)0.058 (7)0.010 (4)0.025 (5)0.011 (5)
C12A0.050 (5)0.045 (4)0.038 (4)0.003 (4)0.024 (4)0.014 (4)
C12B0.057 (6)0.082 (7)0.053 (6)0.027 (6)0.022 (5)0.001 (6)
Geometric parameters (Å, º) top
La1—O1i2.696 (2)C1—C21.500 (4)
La1—O12.696 (2)C2—H2A0.9700
La1—O32.658 (2)C2—H2B0.9700
La1—O3i2.658 (2)C2—C31.482 (4)
La1—O42.752 (2)C4—H4A0.9600
La1—O4i2.752 (2)C4—H4B0.9600
La1—O6i2.648 (2)C4—H4C0.9600
La1—O62.648 (2)C5—C61.464 (4)
La1—N1i2.735 (2)C6—C71.389 (4)
La1—N12.735 (2)C7—H70.9300
La1—N4i2.841 (2)C7—C81.370 (5)
La1—N42.841 (2)C8—H80.9300
O1—C11.200 (3)C8—C91.375 (5)
O2—C11.323 (4)C9—H90.9300
O2—C11A1.446 (5)C9—C101.377 (4)
O2—C11B1.440 (5)C10—H100.9300
O3—N51.266 (3)C11A—H11A0.9700
O4—N51.251 (3)C11A—H11B0.9700
O5—N51.224 (3)C11A—C12A1.506 (5)
O6—N61.256 (3)C11B—H11C0.9700
O7—N61.217 (5)C11B—H11D0.9700
N1—C31.321 (4)C11B—C12B1.505 (5)
N1—C51.357 (3)C12A—H12A0.9600
N2—N31.355 (4)C12A—H12B0.9600
N2—C31.335 (4)C12A—H12C0.9600
N2—C41.462 (4)C12B—H12D0.9600
N3—C51.317 (4)C12B—H12E0.9600
N4—C61.334 (4)C12B—H12F0.9600
N4—C101.339 (4)
O1—La1—O1i73.45 (9)C3—N2—N3109.9 (3)
O1i—La1—O4120.78 (6)C3—N2—C4129.8 (3)
O1i—La1—O4i104.97 (7)C5—N3—N2102.5 (2)
O1—La1—O4104.97 (7)C6—N4—La1120.53 (19)
O1—La1—O4i120.78 (6)C6—N4—C10116.9 (3)
O1i—La1—N161.91 (7)C10—N4—La1122.4 (2)
O1i—La1—N1i63.81 (7)O4—N5—O3117.4 (3)
O1—La1—N1i61.91 (7)O5—N5—O3120.8 (3)
O1—La1—N163.81 (7)O5—N5—O4121.8 (3)
O1i—La1—N4i120.07 (7)O6—N6—La158.98 (18)
O1—La1—N4120.07 (7)O6i—N6—La158.98 (18)
O1i—La1—N464.01 (7)O6i—N6—O6118.0 (4)
O1—La1—N4i64.01 (7)O7—N6—La1180.0
O3—La1—O165.72 (6)O7—N6—O6121.02 (18)
O3i—La1—O1i65.72 (6)O7—N6—O6i121.02 (18)
O3i—La1—O1126.35 (6)O1—C1—O2124.4 (3)
O3—La1—O1i126.35 (6)O1—C1—C2124.9 (3)
O3—La1—O3i167.00 (9)O2—C1—C2110.6 (3)
O3i—La1—O4125.16 (7)C1—C2—H2A109.3
O3i—La1—O4i46.80 (7)C1—C2—H2B109.3
O3—La1—O446.80 (7)H2A—C2—H2B108.0
O3—La1—O4i125.16 (7)C3—C2—C1111.5 (3)
O3—La1—N1i118.72 (7)C3—C2—H2A109.3
O3i—La1—N1i69.40 (7)C3—C2—H2B109.3
O3i—La1—N1118.72 (7)N1—C3—N2110.0 (3)
O3—La1—N169.40 (7)N1—C3—C2126.4 (3)
O3—La1—N4i70.42 (7)N2—C3—C2123.5 (3)
O3—La1—N4109.05 (7)N2—C4—H4A109.5
O3i—La1—N4i109.05 (7)N2—C4—H4B109.5
O3i—La1—N470.41 (7)N2—C4—H4C109.5
O4—La1—O4i122.58 (10)H4A—C4—H4B109.5
O4—La1—N467.77 (7)H4A—C4—H4C109.5
O4i—La1—N4i67.76 (7)H4B—C4—H4C109.5
O4—La1—N4i109.92 (7)N1—C5—C6122.2 (3)
O4i—La1—N4109.92 (7)N3—C5—N1114.5 (3)
O6—La1—O1i119.69 (7)N3—C5—C6123.2 (3)
O6i—La1—O1i165.76 (6)N4—C6—C5115.8 (2)
O6—La1—O1165.77 (6)N4—C6—C7123.1 (3)
O6i—La1—O1119.70 (7)C7—C6—C5121.1 (3)
O6—La1—O3100.45 (7)C6—C7—H7120.6
O6i—La1—O3i100.45 (7)C8—C7—C6118.7 (3)
O6i—La1—O367.16 (7)C8—C7—H7120.6
O6—La1—O3i67.16 (7)C7—C8—H8120.5
O6—La1—O464.43 (7)C7—C8—C9119.0 (3)
O6—La1—O4i63.50 (7)C9—C8—H8120.5
O6i—La1—O463.50 (7)C8—C9—H9120.7
O6i—La1—O4i64.43 (7)C8—C9—C10118.6 (3)
O6i—La1—O647.95 (9)C10—C9—H9120.7
O6i—La1—N1127.14 (7)N4—C10—C9123.6 (3)
O6—La1—N1115.86 (7)N4—C10—H10118.2
O6i—La1—N1i115.86 (7)C9—C10—H10118.2
O6—La1—N1i127.14 (7)O2—C11A—H11A110.4
O6i—La1—N4109.33 (7)O2—C11A—H11B110.4
O6i—La1—N4i66.26 (7)O2—C11A—C12A106.5 (6)
O6—La1—N466.25 (7)H11A—C11A—H11B108.6
O6—La1—N4i109.33 (7)C12A—C11A—H11A110.4
N1—La1—O4i165.39 (7)C12A—C11A—H11B110.4
N1i—La1—O4i65.10 (7)O2—C11B—H11C110.4
N1—La1—O465.11 (7)O2—C11B—H11D110.4
N1i—La1—O4165.39 (7)O2—C11B—C12B106.8 (7)
N1—La1—N1i110.63 (10)H11C—C11B—H11D108.6
N1i—La1—N4123.34 (7)C12B—C11B—H11C110.4
N1—La1—N4i123.34 (7)C12B—C11B—H11D110.4
N1—La1—N459.67 (7)C11A—C12A—H12A109.5
N1i—La1—N4i59.67 (7)C11A—C12A—H12B109.5
N4—La1—N4i175.51 (10)C11A—C12A—H12C109.5
C1—O1—La1142.1 (2)H12A—C12A—H12B109.5
C1—O2—C11A112.3 (4)H12A—C12A—H12C109.5
C1—O2—C11B120.3 (6)H12B—C12A—H12C109.5
N5—O3—La199.98 (17)C11B—C12B—H12D109.5
N5—O4—La195.78 (17)C11B—C12B—H12E109.5
N6—O6—La197.0 (2)C11B—C12B—H12F109.5
C3—N1—La1133.32 (19)H12D—C12B—H12E109.5
C3—N1—C5103.0 (2)H12D—C12B—H12F109.5
C5—N1—La1119.27 (18)H12E—C12B—H12F109.5
N3—N2—C4120.2 (3)
La1—O1—C1—O2174.4 (2)N4—C6—C7—C80.3 (5)
La1—O1—C1—C22.8 (5)C1—O2—C11A—C12A162.2 (7)
La1—O3—N5—O42.3 (3)C1—O2—C11B—C12B110.0 (8)
La1—O3—N5—O5177.9 (3)C1—C2—C3—N150.7 (4)
La1—O4—N5—O32.2 (3)C1—C2—C3—N2129.2 (3)
La1—O4—N5—O5178.0 (3)C3—N1—C5—N30.4 (3)
La1—O6—N6—O6i0.003 (3)C3—N1—C5—C6178.3 (3)
La1—O6—N6—O7180.000 (2)C3—N2—N3—C50.1 (3)
La1—N1—C3—N2154.6 (2)C4—N2—N3—C5176.8 (3)
La1—N1—C3—C225.3 (5)C4—N2—C3—N1176.1 (3)
La1—N1—C5—N3159.02 (19)C4—N2—C3—C23.8 (5)
La1—N1—C5—C618.9 (3)C5—N1—C3—N20.5 (3)
La1—N4—C6—C53.8 (3)C5—N1—C3—C2179.6 (3)
La1—N4—C6—C7175.5 (2)C5—C6—C7—C8178.9 (3)
La1—N4—C10—C9175.5 (3)C6—N4—C10—C90.4 (5)
O1—C1—C2—C337.0 (5)C6—C7—C8—C90.5 (5)
O2—C1—C2—C3145.4 (3)C7—C8—C9—C100.6 (5)
N1—C5—C6—N49.9 (4)C8—C9—C10—N40.6 (5)
N1—C5—C6—C7170.8 (3)C10—N4—C6—C5179.0 (3)
N2—N3—C5—N10.2 (3)C10—N4—C6—C70.2 (4)
N2—N3—C5—C6178.1 (3)C11A—O2—C1—O15.7 (7)
N3—N2—C3—N10.4 (3)C11A—O2—C1—C2171.9 (6)
N3—N2—C3—C2179.7 (3)C11B—O2—C1—O115.8 (6)
N3—C5—C6—N4167.8 (3)C11B—O2—C1—C2166.6 (5)
N3—C5—C6—C711.4 (4)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

The authors are grateful to the National Academy of Sciences of Ukraine for funding the research (project 0125U000387) and the Center for collective use of scientific equipment "Single-crystal diffractometric system SMART APEX II CCD" of the V. I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine.

Funding information

Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0125U000387).

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekhar, V., Pandian, B. M., Vittal, J. J. & Clerac, R. (2009). Inorg. Chem. 48, 1148–1157.  PubMed Google Scholar
First citationChristidis, P. C., Tossidis, I. A. & Paschalidis, D. G. (1999). Acta Cryst. C55, 707–710.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCotton, S. A., Raithby, P. R., Shield, A. & Harrowfield, J. M. (2022). Coord. Chem. Rev. 455, 214366.  Google Scholar
First citationde Bettencourt-Dias, A., Bauer, S., Viswanathan, S., Maull, B. C. & Ako, A. M. (2012). Dalton Trans. 41, 11212–11218.  PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGueye, A., Camara, P. S., Ndiaye-Gueye, M., Zazouli, S., Tamboura, F. B., Diouf, O., Gruber, N. & Gaye, M. L. (2022). Sci. J. Chem. 10, 1–12. DOI: 10.11648/j. sjc. 20221001.11.  Google Scholar
First citationGuillaumont, D. (2006). J. Mol. Struct.: THEOCHEM. 771, 1–3, 105–110.  Google Scholar
First citationJing, H., Wang, X., Hou, Z., Chen, S. & Li, D. (1994). Polyhedron 13(6–7), 1035–138.  Google Scholar
First citationJones, P. L., Amoroso, A. J., Jefferey, J. C., McCleverty, J. A., Psillakis, E., Rees l, H. & Ward, M. D. (1997). Inorg. Chem. 36, 10–18.  Google Scholar
First citationKaczmarek, M. T., Zabiszak, M., Nowak, M. & Jastrzab, R. (2018). Coord. Chem. Rev. 370, 42–54.  Web of Science CrossRef CAS Google Scholar
First citationKainat, S. F., Hawsawi, M. B., Mughal, E. U., Naeem, N., Almohyawi, A. M., Altass, H. M., Hussein, E. M., Sadiq, A., Moussa, Z., Abd-El-Azizf, A. S. & Ahmed, S. A. (2024). RSC Adv. 14, 21464–21537.  PubMed Google Scholar
First citationKharlova, M. I., Khomenko, D. M., Doroshchuk, R. O., Lampeka, R. D., Smola, S. S., Rusakova, N. V. & Shtemenko, O. V. (2019). Voprosy Khimii i Khimicheskoi Tekhnologii. 2019, 247–254.  Google Scholar
First citationKhomenko, D. M., Doroschuk, R. O. & Lampeka, R. D. (2016). French-Ukrainian Journal of Chemistry 4, 28–32.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLin, L., Lu, L., Du, R., Yuan, C., Zhu, M., Fu, X. & Xing, S. (2019). Dalton Trans. 48, 17673–17682.  PubMed Google Scholar
First citationLiu, J., Chen, B., Liu, Y., Ma, J., Li, X. & Yang, Y. (2021). Sep. Purif. Technol. 274, 119119.  Google Scholar
First citationLiu, R., Zhu, W., Zhang, Y. & Yan, X. (2001). Acta Chim. Sinica 59, 533.  Google Scholar
First citationMatin, M. M., Matin, P., Rahman, Md. R., Ben Hadda, T., Almalki, F. A., Mahmud, S., Ghoneim, M. M., Alruwaily, M. & Alshehri, S. (2022). Front. Mol. Biosci. 9, 864286, 1–8.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMishra, S. (2008). Coord. Chem. Rev. 252, 18–20, 1996–2025.  Google Scholar
First citationMorais, P. A. B., Javarini, C. L., Valim, T. C., Francisco, C. S., de Freitas Ferreira, L. C., Bottocim, R. R. T., Neto, A. C. & Lacerda Júnior, V. (2022). Curr. Org. Chem. 26, e131222211916.  Google Scholar
First citationNakase, M., Kobayashi, T., Shiwaku, H., Suzuki, S., Grimes, T. S., Mincher, B. J. & Yaita, T. (2018). Solvent Extr. Ion Exch. 36, 633–646. https://doi. org/10.1080/07366299.2018.1532137.  Google Scholar
First citationPanayiotidou, L., Drouza, C., Arabatzis, N., Lianos, P., Stathatos, E., Viskadourakis, Z., Giapintzakis, J. & Keramidas, A. D. (2013). Polyhedron 64, 308–320.  Google Scholar
First citationRaja, K., Suseelamma, A. & Reddy, K. H. (2016a). J. Chem. Sci. 128, 1265–1275.  Google Scholar
First citationRaja, K., Suseelamma, A. & Reddy, K. H. (2016b). J. Chem. Sci. 128, 23–32.  Google Scholar
First citationReddy, K. H., Raja, K. & Suseelamma, A. (2017). Inorg. Nano-Metal Chem. 47, 1398–1405.  Google Scholar
First citationSchweinfurth, D., Hettmanczyk, L., Suntrup, L. & Sarkar, B. (2017). Z. Anorg. Allg. Chem. 643, 554–584.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–23.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeybel, L. & Köse, D. A. (2023). J. Mol. Struct. 1290, 135979.  Google Scholar
First citationZhang, Y.-Y. & Liu, S.-X. (2009). Acta Cryst. C65, m269–m272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q., Shen, Z., Liu, W., Song, H. & He, Z. (2016). Chin. J. Struct. Chem. 35, 939–945.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds