

research communications
H-1,2,4-triazol-5-yl]acetate}trinitratolanthanum(III)
and supramolecular features of bis{ethyl 2-[1-methyl-3-(pyridin-2-yl)-1aA. V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lyustdorfska doroga, Odessa, Ukraine, bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine, cV. I. Vernadskii Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Akad. Palladin Ave 32/34, Kyiv 03142, Ukraine, dDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and eEnamine Ltd. (www.enamine.net), Winston Churchill str. 78, 02094 Kyiv, Ukraine
*Correspondence e-mail: [email protected]
The title lanthanum(III) complex, [La(Et-MPTA)2(NO3)3] {where Et-MPTA is ethyl 2-[1-methyl-3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl]acetate} or [La(C24H28N8O4)(NO3)3], crystallizes in the monoclinic C2/c (No. 15). The lanthanum atom is twelve-coordinate, bonded to two oxygen atoms from carboxylate groups, four nitrogen atoms from two pyridinyl-1,2,4-triazole ligands, and six oxygen atoms of three NO3− anions. The coordination geometry around the lanthanum atom can be described as a distorted icosahedron. Supramolecular features include π-stacking interactions between pyridyl and triazole rings and weak intermolecular N—O⋯C interactions, which lead to the formation of layers parallel to the (101) plane.
Keywords: crystal structure; lanthanum(III) complex; pyridinyl-1,2,4-triazole; intermolecular interactions.
CCDC reference: 2465028
1. Chemical context
Triazole-based compounds have wide applications in various fields such as medicine, materials science, and pharmaceuticals (Morais et al., 2022). The variation of the substituents on the triazole ring allows the creation of a broad range of functional materials. Ligands containing the 1,2,4-triazole fragment coordinate through nitrogen donor centers, and complexes with 1,2,4-triazole ligands may exhibit (Matin et al., 2022
; Schweinfurth et al., 2017
). Rare-earth metal complexes with nitrogen-containing ligands have garnered significant interest due to their potential applications in various fields including catalysis, luminescence, and magnetic materials (Kainat et al., 2024
; Kaczmarek et al., 2018
; Zeybel & Köse, 2023
).
The pyridinyl-1,2,4-triazole derivative used in this study, namely ethyl 2-[1-methyl-3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl]acetate, is a versatile ligand that can coordinate to metal ions in different modes, leading to diverse structural motifs. The investigation of the of the lanthanum(III) complex with this ligand provides insights into lanthanide coordination chemistry and the supramolecular interactions that consolidate the Understanding these structural features is crucial for designing new lanthanide-based materials with tailored properties.
2. Structural commentary
The title [La(Et-MPTA)2(NO3)3] complex crystallizes in the monoclinic C2/c with the complex occupying a special position, at which the central lanthanum atom is located on a twofold axis. The coordination geometry around the lanthanum atom can be described as a distorted icosahedron (Fig. 1 inset), which is common for 12-coordinated LnIII complexes (Jing et al., 1994
; Jones et al., 1997
; Chandrasekhar et al., 2009
). The is formed by two oxygen atoms from the carboxylate groups, four nitrogen atoms from two pyridinyl-1,2,4-triazole of Et-MPTA ligands, and six oxygen atoms of three coordinated NO3 anions (Fig. 1
). The La—O bond lengths range from 2.648 (2) to 2.752 (2) Å, and the La—N bond lengths range from 2.735 (2) to 2.841 (2) Å (Table 1
). These bond lengths are consistent with those reported for other lanthanum(III) complexes with nitrogen- and oxygen-donor ligands (Guillaumont, 2006
; Mishra, 2008
; Cotton et al., 2022
). Three NO3− anions are coordinated to LaIII ion via oxygen atoms in a terminal bidentate manner (de Bettencourt-Dias et al., 2012
). One nitrate group is coordinated in a symmetric manner where the La—O6 bond length and its symmetry equivalent are both 2.648 (2) Å. Two other nitrate groups have asymmetric type of coordination with the La—O3 and La—O4 bond lengths equal to 2.658 (3) Å and 2.753 (3) Å, respectively.
|
![]() | Figure 1 Molecular structure of the title compound. Hydrogen atoms and the disordered C11B, C12B atoms are omitted for clarity. Inset: icosahedral coordination environment around the LaIII atom. |
3. Supramolecular features
In the crystal, π-stacking interactions are observed between the pyridyl substituent and the triazole ring [C5⋯C7 = 3.283 (5) Å, Cg1⋯Cg2( − x,
− y, 1 − z) = 3.809 (2) Å where Cg1 and Cg2 are the centroids of the N1–N3/C3/C5 and N4/C6–C10 rings, respectively] and an N6—O7⋯C1(x, −1 + y, z) weak intermolecular interaction [with an O⋯C distance of 2.913 (5) Å] is present, forming layers parallel to the (
01) plane (Fig. 2
).
![]() | Figure 2 Crystal packing view of [La(Et-MPTA)2(NO3)3] along the b axis. |
The intermolecular interactions in the dnorm property (Fig. S1) mapped over the Hirshfeld surface (Spackman & Jayatilaka, 2009), which was calculated using the CrystalExplorer21 program (Spackman et al., 2021
). The strongest contacts, which are visualized on the Hirshfeld surface are the N—O⋯C interactions. The lighter red spots correspond to π-interactions. The majority of the intermolecular interactions of the title compound are weak, and are represented in blue on the Hirshfeld surface.
For further exploration of the intermolecular interactions, two-dimensional fingerprint plots (McKinnon et al., 2007) were generated, as shown in Fig. S2. The major contributions to the are from the H⋯H (39.9%) and H⋯O/O⋯H (37.9%) interactions. The H⋯C/C⋯H (6.9%), N⋯H/H⋯N (4.9%), N⋯C/C⋯N (3.5%), O⋯C/C⋯O (2.9%) and C⋯C (1.3%) interactions are less impactful in comparison.
4. Database survey
A search of the Cambridge Structural Database (CSD Version 5.46, updated November 2024; Groom et al., 2016) yielded twelve structures of lanthanide complexes with 12 and coordinated by three NO3− groups. Among them three structures with the La atom [refcodes AWAKER (Liu et al., 2021
), MILWEJ (Liu et al., 2001
), UBAMUI (Raja et al., 2016a
)], six structures with the Ce atom [refcodes FOTXOC (Zhang & Liu, 2009
), HIXWEQ (Christidis et al., 1999
), HOZQOF (Lin et al., 2019
), JORLIO (Nakase et al., 2018
), USEBAX (Zhao et al., 2016
), VAPDIC (Raja et al., 2016b
)], and three structures with the Pr atom [refcodes KERPEF (Reddy et al., 2017
), PICSON (Gueye et al., 2022
), VIMWAR (Panayiotidou et al., 2013
)]. In the coordination polyhedrons of these structures, the Ln—O and Ln—N bond distances vary from 2.589–2.728 Å and 2.656–2.937 Å, respectively.
5. Synthesis and crystallization
Et-MPTA was synthesized according to a previously described procedure (Kharlova et al., 2019; Khomenko et al., 2016
). For the synthesis of the La(Et-MPTA)2(NO3)3 complex, 0.2 mmol (0.0866 g) of La(NO3)3·6H2O and 0.4 mmol (0.0984 g) of the Et-MPTA ligand were dissolved separately in approximately 5 mL of methanol under heating. The methanolic solutions of La(NO3)3·6H2O and the ligand were combined in a 25 mL beaker and heated for 1–2 h on a magnetic stirrer with constant non-turbulent stirring, avoiding boiling the reaction mixture. The solution was cooled to room temperature with the beaker kept open; the final volume was 6-7 mL. Over the next few hours, crystallization was observed. In order to study the structure, the crystals were used together with the mother liquor. For further analysis, the obtained crystals were separated from the solution, washed, and dried. The crystals are soluble in methanol, ethanol, and insoluble in water. IR (KBr), cm−1: 3370 m, br (νOH stretching, adsorbed H2O), 2963 w (νCH stretching, alkyl), 1740 s (νC=O stretching), 1605 m (νC=C, νC=N, stretching, aromatic), 1490 s (ν4 stretching, NO3), 1384 s (δC-H, scissoring CH2), 1324 s (ν1 stretching, NO3), 1034 m (ν3 stretching, NO3), 1194 m (νC–O stretching, ether), 1034 w (νC-N stretching, ring, δC–H bending), 566 w (νLa–O stretching), 434 w (νLa–N stretching).
6. Refinement
Crystal data, data collection and structure . The H atoms were placed in calculated positions and refined using a riding model with Uiso(H) = nUeq of the (n = 1.5 for methyl groups and n = 1.2 for other hydrogen atoms). The C atoms of the ethyl group are disordered over two positions with an occupancy of 50%. Restraints were applied to the bond lengths in the disordered parts (O—C = 1.420 Å, C—C = 1.513 Å) within a standard deviation of 0.05 Å.
|
Supporting information
CCDC reference: 2465028
https://doi.org/10.1107/S2056989025005419/oo2010sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025005419/oo2010Isup2.hkl
Supporting Information Figure S1. DOI: https://doi.org/10.1107/S2056989025005419/oo2010sup4.tif
Supporting information Figure S2. DOI: https://doi.org/10.1107/S2056989025005419/oo2010sup5.tif
Supporting information file containing figures for Hirshfeld surface analysis. DOI: https://doi.org/10.1107/S2056989025005419/oo2010sup6.doc
[La(NO3)3(C12H14N4O2)2] | F(000) = 1640 |
Mr = 817.48 | Dx = 1.756 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.9094 (15) Å | Cell parameters from 6040 reflections |
b = 9.0361 (5) Å | θ = 2.3–29.5° |
c = 19.3753 (13) Å | µ = 1.47 mm−1 |
β = 122.360 (8)° | T = 296 K |
V = 3092.2 (4) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.1 × 0.08 mm |
Bruker APEXII CCD diffractometer | 3079 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
φ and ω scans | θmax = 27.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −27→27 |
Tmin = 0.631, Tmax = 0.746 | k = −11→11 |
25399 measured reflections | l = −25→23 |
3551 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.062 | w = 1/[σ2(Fo2) + (0.0207P)2 + 5.1659P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3551 reflections | Δρmax = 0.57 e Å−3 |
244 parameters | Δρmin = −0.84 e Å−3 |
4 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.500000 | 0.70697 (3) | 0.750000 | 0.02422 (8) | |
O1 | 0.49470 (11) | 0.9461 (2) | 0.83001 (13) | 0.0342 (5) | |
O2 | 0.47068 (12) | 1.1356 (3) | 0.88686 (13) | 0.0490 (6) | |
O3 | 0.41282 (12) | 0.6737 (2) | 0.81036 (13) | 0.0420 (6) | |
O4 | 0.36568 (13) | 0.5606 (3) | 0.69543 (14) | 0.0450 (6) | |
O5 | 0.30520 (15) | 0.5608 (4) | 0.75756 (18) | 0.0757 (9) | |
O6 | 0.48997 (14) | 0.4392 (2) | 0.68942 (13) | 0.0446 (6) | |
O7 | 0.500000 | 0.2329 (4) | 0.750000 | 0.1035 (19) | |
N1 | 0.37318 (13) | 0.8792 (3) | 0.66653 (14) | 0.0302 (6) | |
N2 | 0.30215 (14) | 1.0757 (3) | 0.62102 (17) | 0.0396 (7) | |
N3 | 0.29540 (14) | 1.0126 (3) | 0.55397 (16) | 0.0385 (6) | |
N4 | 0.40813 (13) | 0.6946 (3) | 0.57673 (14) | 0.0306 (5) | |
N5 | 0.35979 (15) | 0.5972 (3) | 0.75405 (17) | 0.0415 (7) | |
N6 | 0.500000 | 0.3676 (4) | 0.750000 | 0.0504 (11) | |
C1 | 0.45126 (17) | 1.0320 (3) | 0.83070 (18) | 0.0335 (7) | |
C2 | 0.36730 (18) | 1.0331 (4) | 0.7704 (2) | 0.0453 (9) | |
H2A | 0.343480 | 0.962493 | 0.787535 | 0.054* | |
H2B | 0.347431 | 1.130488 | 0.769625 | 0.054* | |
C3 | 0.34823 (16) | 0.9948 (3) | 0.68711 (19) | 0.0330 (7) | |
C4 | 0.2648 (2) | 1.2166 (5) | 0.6141 (3) | 0.0697 (12) | |
H4A | 0.300776 | 1.295679 | 0.631030 | 0.105* | |
H4B | 0.244539 | 1.214648 | 0.648449 | 0.105* | |
H4C | 0.224384 | 1.231862 | 0.558420 | 0.105* | |
C5 | 0.33897 (15) | 0.8949 (3) | 0.58451 (17) | 0.0288 (6) | |
C6 | 0.35208 (15) | 0.7916 (3) | 0.53514 (17) | 0.0312 (6) | |
C7 | 0.30868 (17) | 0.7975 (4) | 0.45033 (18) | 0.0396 (7) | |
H7 | 0.269901 | 0.866415 | 0.423460 | 0.048* | |
C8 | 0.32411 (19) | 0.6997 (4) | 0.40704 (19) | 0.0447 (8) | |
H8 | 0.296155 | 0.701751 | 0.350232 | 0.054* | |
C9 | 0.3815 (2) | 0.5987 (4) | 0.4488 (2) | 0.0460 (9) | |
H9 | 0.392798 | 0.530563 | 0.420863 | 0.055* | |
C10 | 0.42195 (19) | 0.6004 (4) | 0.53292 (19) | 0.0411 (8) | |
H10 | 0.461029 | 0.532385 | 0.560819 | 0.049* | |
C11A | 0.5493 (3) | 1.1248 (13) | 0.9524 (5) | 0.047 (3) | 0.5 |
H11A | 0.581712 | 1.165465 | 0.935363 | 0.057* | 0.5 |
H11B | 0.563293 | 1.022301 | 0.968023 | 0.057* | 0.5 |
C11B | 0.5489 (3) | 1.1767 (13) | 0.9403 (5) | 0.053 (4) | 0.5 |
H11C | 0.554468 | 1.283395 | 0.940967 | 0.063* | 0.5 |
H11D | 0.579518 | 1.132313 | 0.921904 | 0.063* | 0.5 |
C12A | 0.5574 (5) | 1.2123 (9) | 1.0228 (5) | 0.0440 (19) | 0.5 |
H12A | 0.541187 | 1.312379 | 1.005664 | 0.066* | 0.5 |
H12B | 0.609401 | 1.212011 | 1.067173 | 0.066* | 0.5 |
H12C | 0.526652 | 1.168387 | 1.040412 | 0.066* | 0.5 |
C12B | 0.5734 (5) | 1.1211 (11) | 1.0242 (6) | 0.068 (3) | 0.5 |
H12D | 0.565756 | 1.016096 | 1.022133 | 0.102* | 0.5 |
H12E | 0.544112 | 1.168907 | 1.042468 | 0.102* | 0.5 |
H12F | 0.626122 | 1.142940 | 1.061360 | 0.102* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.02401 (12) | 0.02188 (12) | 0.02192 (12) | 0.000 | 0.00906 (10) | 0.000 |
O1 | 0.0289 (11) | 0.0289 (11) | 0.0396 (13) | 0.0067 (9) | 0.0150 (10) | 0.0011 (9) |
O2 | 0.0382 (13) | 0.0619 (16) | 0.0406 (14) | 0.0085 (12) | 0.0169 (12) | −0.0151 (12) |
O3 | 0.0405 (13) | 0.0439 (14) | 0.0374 (13) | −0.0049 (10) | 0.0180 (11) | −0.0037 (10) |
O4 | 0.0427 (14) | 0.0476 (15) | 0.0392 (14) | −0.0067 (11) | 0.0184 (12) | −0.0029 (11) |
O5 | 0.0450 (16) | 0.116 (3) | 0.072 (2) | −0.0192 (16) | 0.0356 (15) | 0.0128 (18) |
O6 | 0.0654 (16) | 0.0292 (12) | 0.0372 (13) | −0.0023 (11) | 0.0261 (12) | 0.0024 (10) |
O7 | 0.228 (6) | 0.024 (2) | 0.098 (4) | 0.000 | 0.113 (4) | 0.000 |
N1 | 0.0252 (12) | 0.0337 (14) | 0.0289 (14) | 0.0029 (11) | 0.0126 (11) | 0.0011 (11) |
N2 | 0.0308 (14) | 0.0368 (15) | 0.0445 (17) | 0.0100 (12) | 0.0157 (13) | 0.0054 (13) |
N3 | 0.0347 (15) | 0.0401 (16) | 0.0342 (15) | 0.0074 (12) | 0.0141 (13) | 0.0072 (12) |
N4 | 0.0318 (13) | 0.0277 (13) | 0.0273 (12) | −0.0014 (11) | 0.0126 (11) | 0.0007 (11) |
N5 | 0.0320 (15) | 0.0463 (17) | 0.0420 (17) | −0.0012 (13) | 0.0170 (14) | 0.0116 (14) |
N6 | 0.081 (3) | 0.022 (2) | 0.057 (3) | 0.000 | 0.042 (3) | 0.000 |
C1 | 0.0336 (17) | 0.0358 (17) | 0.0283 (16) | 0.0057 (14) | 0.0146 (14) | 0.0017 (14) |
C2 | 0.0339 (18) | 0.057 (2) | 0.040 (2) | 0.0081 (17) | 0.0167 (16) | −0.0074 (17) |
C3 | 0.0202 (15) | 0.0351 (17) | 0.0351 (18) | 0.0018 (13) | 0.0091 (14) | 0.0015 (14) |
C4 | 0.076 (3) | 0.058 (3) | 0.069 (3) | 0.041 (2) | 0.035 (2) | 0.014 (2) |
C5 | 0.0207 (14) | 0.0300 (15) | 0.0293 (16) | −0.0024 (12) | 0.0092 (13) | 0.0045 (13) |
C6 | 0.0248 (14) | 0.0337 (15) | 0.0291 (15) | −0.0082 (14) | 0.0104 (12) | 0.0019 (15) |
C7 | 0.0315 (16) | 0.0482 (19) | 0.0288 (16) | −0.0036 (16) | 0.0092 (14) | 0.0068 (16) |
C8 | 0.0438 (19) | 0.057 (2) | 0.0254 (16) | −0.0148 (19) | 0.0135 (15) | −0.0045 (17) |
C9 | 0.054 (2) | 0.049 (2) | 0.0366 (19) | −0.0063 (18) | 0.0252 (18) | −0.0093 (17) |
C10 | 0.046 (2) | 0.0388 (18) | 0.0320 (18) | 0.0020 (16) | 0.0165 (16) | −0.0023 (15) |
C11A | 0.029 (5) | 0.070 (9) | 0.030 (5) | 0.006 (4) | 0.008 (4) | −0.021 (5) |
C11B | 0.049 (6) | 0.045 (7) | 0.058 (7) | −0.010 (4) | 0.025 (5) | −0.011 (5) |
C12A | 0.050 (5) | 0.045 (4) | 0.038 (4) | −0.003 (4) | 0.024 (4) | −0.014 (4) |
C12B | 0.057 (6) | 0.082 (7) | 0.053 (6) | −0.027 (6) | 0.022 (5) | 0.001 (6) |
La1—O1i | 2.696 (2) | C1—C2 | 1.500 (4) |
La1—O1 | 2.696 (2) | C2—H2A | 0.9700 |
La1—O3 | 2.658 (2) | C2—H2B | 0.9700 |
La1—O3i | 2.658 (2) | C2—C3 | 1.482 (4) |
La1—O4 | 2.752 (2) | C4—H4A | 0.9600 |
La1—O4i | 2.752 (2) | C4—H4B | 0.9600 |
La1—O6i | 2.648 (2) | C4—H4C | 0.9600 |
La1—O6 | 2.648 (2) | C5—C6 | 1.464 (4) |
La1—N1i | 2.735 (2) | C6—C7 | 1.389 (4) |
La1—N1 | 2.735 (2) | C7—H7 | 0.9300 |
La1—N4i | 2.841 (2) | C7—C8 | 1.370 (5) |
La1—N4 | 2.841 (2) | C8—H8 | 0.9300 |
O1—C1 | 1.200 (3) | C8—C9 | 1.375 (5) |
O2—C1 | 1.323 (4) | C9—H9 | 0.9300 |
O2—C11A | 1.446 (5) | C9—C10 | 1.377 (4) |
O2—C11B | 1.440 (5) | C10—H10 | 0.9300 |
O3—N5 | 1.266 (3) | C11A—H11A | 0.9700 |
O4—N5 | 1.251 (3) | C11A—H11B | 0.9700 |
O5—N5 | 1.224 (3) | C11A—C12A | 1.506 (5) |
O6—N6 | 1.256 (3) | C11B—H11C | 0.9700 |
O7—N6 | 1.217 (5) | C11B—H11D | 0.9700 |
N1—C3 | 1.321 (4) | C11B—C12B | 1.505 (5) |
N1—C5 | 1.357 (3) | C12A—H12A | 0.9600 |
N2—N3 | 1.355 (4) | C12A—H12B | 0.9600 |
N2—C3 | 1.335 (4) | C12A—H12C | 0.9600 |
N2—C4 | 1.462 (4) | C12B—H12D | 0.9600 |
N3—C5 | 1.317 (4) | C12B—H12E | 0.9600 |
N4—C6 | 1.334 (4) | C12B—H12F | 0.9600 |
N4—C10 | 1.339 (4) | ||
O1—La1—O1i | 73.45 (9) | C3—N2—N3 | 109.9 (3) |
O1i—La1—O4 | 120.78 (6) | C3—N2—C4 | 129.8 (3) |
O1i—La1—O4i | 104.97 (7) | C5—N3—N2 | 102.5 (2) |
O1—La1—O4 | 104.97 (7) | C6—N4—La1 | 120.53 (19) |
O1—La1—O4i | 120.78 (6) | C6—N4—C10 | 116.9 (3) |
O1i—La1—N1 | 61.91 (7) | C10—N4—La1 | 122.4 (2) |
O1i—La1—N1i | 63.81 (7) | O4—N5—O3 | 117.4 (3) |
O1—La1—N1i | 61.91 (7) | O5—N5—O3 | 120.8 (3) |
O1—La1—N1 | 63.81 (7) | O5—N5—O4 | 121.8 (3) |
O1i—La1—N4i | 120.07 (7) | O6—N6—La1 | 58.98 (18) |
O1—La1—N4 | 120.07 (7) | O6i—N6—La1 | 58.98 (18) |
O1i—La1—N4 | 64.01 (7) | O6i—N6—O6 | 118.0 (4) |
O1—La1—N4i | 64.01 (7) | O7—N6—La1 | 180.0 |
O3—La1—O1 | 65.72 (6) | O7—N6—O6 | 121.02 (18) |
O3i—La1—O1i | 65.72 (6) | O7—N6—O6i | 121.02 (18) |
O3i—La1—O1 | 126.35 (6) | O1—C1—O2 | 124.4 (3) |
O3—La1—O1i | 126.35 (6) | O1—C1—C2 | 124.9 (3) |
O3—La1—O3i | 167.00 (9) | O2—C1—C2 | 110.6 (3) |
O3i—La1—O4 | 125.16 (7) | C1—C2—H2A | 109.3 |
O3i—La1—O4i | 46.80 (7) | C1—C2—H2B | 109.3 |
O3—La1—O4 | 46.80 (7) | H2A—C2—H2B | 108.0 |
O3—La1—O4i | 125.16 (7) | C3—C2—C1 | 111.5 (3) |
O3—La1—N1i | 118.72 (7) | C3—C2—H2A | 109.3 |
O3i—La1—N1i | 69.40 (7) | C3—C2—H2B | 109.3 |
O3i—La1—N1 | 118.72 (7) | N1—C3—N2 | 110.0 (3) |
O3—La1—N1 | 69.40 (7) | N1—C3—C2 | 126.4 (3) |
O3—La1—N4i | 70.42 (7) | N2—C3—C2 | 123.5 (3) |
O3—La1—N4 | 109.05 (7) | N2—C4—H4A | 109.5 |
O3i—La1—N4i | 109.05 (7) | N2—C4—H4B | 109.5 |
O3i—La1—N4 | 70.41 (7) | N2—C4—H4C | 109.5 |
O4—La1—O4i | 122.58 (10) | H4A—C4—H4B | 109.5 |
O4—La1—N4 | 67.77 (7) | H4A—C4—H4C | 109.5 |
O4i—La1—N4i | 67.76 (7) | H4B—C4—H4C | 109.5 |
O4—La1—N4i | 109.92 (7) | N1—C5—C6 | 122.2 (3) |
O4i—La1—N4 | 109.92 (7) | N3—C5—N1 | 114.5 (3) |
O6—La1—O1i | 119.69 (7) | N3—C5—C6 | 123.2 (3) |
O6i—La1—O1i | 165.76 (6) | N4—C6—C5 | 115.8 (2) |
O6—La1—O1 | 165.77 (6) | N4—C6—C7 | 123.1 (3) |
O6i—La1—O1 | 119.70 (7) | C7—C6—C5 | 121.1 (3) |
O6—La1—O3 | 100.45 (7) | C6—C7—H7 | 120.6 |
O6i—La1—O3i | 100.45 (7) | C8—C7—C6 | 118.7 (3) |
O6i—La1—O3 | 67.16 (7) | C8—C7—H7 | 120.6 |
O6—La1—O3i | 67.16 (7) | C7—C8—H8 | 120.5 |
O6—La1—O4 | 64.43 (7) | C7—C8—C9 | 119.0 (3) |
O6—La1—O4i | 63.50 (7) | C9—C8—H8 | 120.5 |
O6i—La1—O4 | 63.50 (7) | C8—C9—H9 | 120.7 |
O6i—La1—O4i | 64.43 (7) | C8—C9—C10 | 118.6 (3) |
O6i—La1—O6 | 47.95 (9) | C10—C9—H9 | 120.7 |
O6i—La1—N1 | 127.14 (7) | N4—C10—C9 | 123.6 (3) |
O6—La1—N1 | 115.86 (7) | N4—C10—H10 | 118.2 |
O6i—La1—N1i | 115.86 (7) | C9—C10—H10 | 118.2 |
O6—La1—N1i | 127.14 (7) | O2—C11A—H11A | 110.4 |
O6i—La1—N4 | 109.33 (7) | O2—C11A—H11B | 110.4 |
O6i—La1—N4i | 66.26 (7) | O2—C11A—C12A | 106.5 (6) |
O6—La1—N4 | 66.25 (7) | H11A—C11A—H11B | 108.6 |
O6—La1—N4i | 109.33 (7) | C12A—C11A—H11A | 110.4 |
N1—La1—O4i | 165.39 (7) | C12A—C11A—H11B | 110.4 |
N1i—La1—O4i | 65.10 (7) | O2—C11B—H11C | 110.4 |
N1—La1—O4 | 65.11 (7) | O2—C11B—H11D | 110.4 |
N1i—La1—O4 | 165.39 (7) | O2—C11B—C12B | 106.8 (7) |
N1—La1—N1i | 110.63 (10) | H11C—C11B—H11D | 108.6 |
N1i—La1—N4 | 123.34 (7) | C12B—C11B—H11C | 110.4 |
N1—La1—N4i | 123.34 (7) | C12B—C11B—H11D | 110.4 |
N1—La1—N4 | 59.67 (7) | C11A—C12A—H12A | 109.5 |
N1i—La1—N4i | 59.67 (7) | C11A—C12A—H12B | 109.5 |
N4—La1—N4i | 175.51 (10) | C11A—C12A—H12C | 109.5 |
C1—O1—La1 | 142.1 (2) | H12A—C12A—H12B | 109.5 |
C1—O2—C11A | 112.3 (4) | H12A—C12A—H12C | 109.5 |
C1—O2—C11B | 120.3 (6) | H12B—C12A—H12C | 109.5 |
N5—O3—La1 | 99.98 (17) | C11B—C12B—H12D | 109.5 |
N5—O4—La1 | 95.78 (17) | C11B—C12B—H12E | 109.5 |
N6—O6—La1 | 97.0 (2) | C11B—C12B—H12F | 109.5 |
C3—N1—La1 | 133.32 (19) | H12D—C12B—H12E | 109.5 |
C3—N1—C5 | 103.0 (2) | H12D—C12B—H12F | 109.5 |
C5—N1—La1 | 119.27 (18) | H12E—C12B—H12F | 109.5 |
N3—N2—C4 | 120.2 (3) | ||
La1—O1—C1—O2 | 174.4 (2) | N4—C6—C7—C8 | −0.3 (5) |
La1—O1—C1—C2 | −2.8 (5) | C1—O2—C11A—C12A | −162.2 (7) |
La1—O3—N5—O4 | 2.3 (3) | C1—O2—C11B—C12B | −110.0 (8) |
La1—O3—N5—O5 | −177.9 (3) | C1—C2—C3—N1 | 50.7 (4) |
La1—O4—N5—O3 | −2.2 (3) | C1—C2—C3—N2 | −129.2 (3) |
La1—O4—N5—O5 | 178.0 (3) | C3—N1—C5—N3 | 0.4 (3) |
La1—O6—N6—O6i | −0.003 (3) | C3—N1—C5—C6 | 178.3 (3) |
La1—O6—N6—O7 | 180.000 (2) | C3—N2—N3—C5 | −0.1 (3) |
La1—N1—C3—N2 | 154.6 (2) | C4—N2—N3—C5 | 176.8 (3) |
La1—N1—C3—C2 | −25.3 (5) | C4—N2—C3—N1 | −176.1 (3) |
La1—N1—C5—N3 | −159.02 (19) | C4—N2—C3—C2 | 3.8 (5) |
La1—N1—C5—C6 | 18.9 (3) | C5—N1—C3—N2 | −0.5 (3) |
La1—N4—C6—C5 | −3.8 (3) | C5—N1—C3—C2 | 179.6 (3) |
La1—N4—C6—C7 | 175.5 (2) | C5—C6—C7—C8 | 178.9 (3) |
La1—N4—C10—C9 | −175.5 (3) | C6—N4—C10—C9 | −0.4 (5) |
O1—C1—C2—C3 | −37.0 (5) | C6—C7—C8—C9 | 0.5 (5) |
O2—C1—C2—C3 | 145.4 (3) | C7—C8—C9—C10 | −0.6 (5) |
N1—C5—C6—N4 | −9.9 (4) | C8—C9—C10—N4 | 0.6 (5) |
N1—C5—C6—C7 | 170.8 (3) | C10—N4—C6—C5 | −179.0 (3) |
N2—N3—C5—N1 | −0.2 (3) | C10—N4—C6—C7 | 0.2 (4) |
N2—N3—C5—C6 | −178.1 (3) | C11A—O2—C1—O1 | −5.7 (7) |
N3—N2—C3—N1 | 0.4 (3) | C11A—O2—C1—C2 | 171.9 (6) |
N3—N2—C3—C2 | −179.7 (3) | C11B—O2—C1—O1 | 15.8 (6) |
N3—C5—C6—N4 | 167.8 (3) | C11B—O2—C1—C2 | −166.6 (5) |
N3—C5—C6—C7 | −11.4 (4) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Acknowledgements
The authors are grateful to the National Academy of Sciences of Ukraine for funding the research (project 0125U000387) and the Center for collective use of scientific equipment "Single-crystal diffractometric system SMART APEX II CCD" of the V. I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine.
Funding information
Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0125U000387).
References
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandrasekhar, V., Pandian, B. M., Vittal, J. J. & Clerac, R. (2009). Inorg. Chem. 48, 1148–1157. PubMed Google Scholar
Christidis, P. C., Tossidis, I. A. & Paschalidis, D. G. (1999). Acta Cryst. C55, 707–710. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cotton, S. A., Raithby, P. R., Shield, A. & Harrowfield, J. M. (2022). Coord. Chem. Rev. 455, 214366. Google Scholar
de Bettencourt-Dias, A., Bauer, S., Viswanathan, S., Maull, B. C. & Ako, A. M. (2012). Dalton Trans. 41, 11212–11218. PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gueye, A., Camara, P. S., Ndiaye-Gueye, M., Zazouli, S., Tamboura, F. B., Diouf, O., Gruber, N. & Gaye, M. L. (2022). Sci. J. Chem. 10, 1–12. DOI: 10.11648/j. sjc. 20221001.11. Google Scholar
Guillaumont, D. (2006). J. Mol. Struct.: THEOCHEM. 771, 1–3, 105–110. Google Scholar
Jing, H., Wang, X., Hou, Z., Chen, S. & Li, D. (1994). Polyhedron 13(6–7), 1035–138. Google Scholar
Jones, P. L., Amoroso, A. J., Jefferey, J. C., McCleverty, J. A., Psillakis, E., Rees l, H. & Ward, M. D. (1997). Inorg. Chem. 36, 10–18. Google Scholar
Kaczmarek, M. T., Zabiszak, M., Nowak, M. & Jastrzab, R. (2018). Coord. Chem. Rev. 370, 42–54. Web of Science CrossRef CAS Google Scholar
Kainat, S. F., Hawsawi, M. B., Mughal, E. U., Naeem, N., Almohyawi, A. M., Altass, H. M., Hussein, E. M., Sadiq, A., Moussa, Z., Abd-El-Azizf, A. S. & Ahmed, S. A. (2024). RSC Adv. 14, 21464–21537. PubMed Google Scholar
Kharlova, M. I., Khomenko, D. M., Doroshchuk, R. O., Lampeka, R. D., Smola, S. S., Rusakova, N. V. & Shtemenko, O. V. (2019). Voprosy Khimii i Khimicheskoi Tekhnologii. 2019, 247–254. Google Scholar
Khomenko, D. M., Doroschuk, R. O. & Lampeka, R. D. (2016). French-Ukrainian Journal of Chemistry 4, 28–32. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lin, L., Lu, L., Du, R., Yuan, C., Zhu, M., Fu, X. & Xing, S. (2019). Dalton Trans. 48, 17673–17682. PubMed Google Scholar
Liu, J., Chen, B., Liu, Y., Ma, J., Li, X. & Yang, Y. (2021). Sep. Purif. Technol. 274, 119119. Google Scholar
Liu, R., Zhu, W., Zhang, Y. & Yan, X. (2001). Acta Chim. Sinica 59, 533. Google Scholar
Matin, M. M., Matin, P., Rahman, Md. R., Ben Hadda, T., Almalki, F. A., Mahmud, S., Ghoneim, M. M., Alruwaily, M. & Alshehri, S. (2022). Front. Mol. Biosci. 9, 864286, 1–8. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Mishra, S. (2008). Coord. Chem. Rev. 252, 18–20, 1996–2025. Google Scholar
Morais, P. A. B., Javarini, C. L., Valim, T. C., Francisco, C. S., de Freitas Ferreira, L. C., Bottocim, R. R. T., Neto, A. C. & Lacerda Júnior, V. (2022). Curr. Org. Chem. 26, e131222211916. Google Scholar
Nakase, M., Kobayashi, T., Shiwaku, H., Suzuki, S., Grimes, T. S., Mincher, B. J. & Yaita, T. (2018). Solvent Extr. Ion Exch. 36, 633–646. https://doi. org/10.1080/07366299.2018.1532137. Google Scholar
Panayiotidou, L., Drouza, C., Arabatzis, N., Lianos, P., Stathatos, E., Viskadourakis, Z., Giapintzakis, J. & Keramidas, A. D. (2013). Polyhedron 64, 308–320. Google Scholar
Raja, K., Suseelamma, A. & Reddy, K. H. (2016a). J. Chem. Sci. 128, 1265–1275. Google Scholar
Raja, K., Suseelamma, A. & Reddy, K. H. (2016b). J. Chem. Sci. 128, 23–32. Google Scholar
Reddy, K. H., Raja, K. & Suseelamma, A. (2017). Inorg. Nano-Metal Chem. 47, 1398–1405. Google Scholar
Schweinfurth, D., Hettmanczyk, L., Suntrup, L. & Sarkar, B. (2017). Z. Anorg. Allg. Chem. 643, 554–584. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–23. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zeybel, L. & Köse, D. A. (2023). J. Mol. Struct. 1290, 135979. Google Scholar
Zhang, Y.-Y. & Liu, S.-X. (2009). Acta Cryst. C65, m269–m272. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, Q., Shen, Z., Liu, W., Song, H. & He, Z. (2016). Chin. J. Struct. Chem. 35, 939–945. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.