

research communications
N′-(2,6-dimethylphenyl)-N-(pyridin-2-yl)carbamimidoyl]platinum(II)
and Hirshfeld surface analysis of chlorido(2,6-dimethylphenyl isocyanide)[aPeoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation, bZelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), Leninsky Prospect 47, 119991 Moscow, Russian Federation, cInstitute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation, dBaku Engineering University, Khirdalan City, 120 AZ0101 Hasan Aliyev Street, Baku, Azerbaijan, eAzerbaijan State University of Economics, M. Mukhtarov 194, 1001 Baku, Azerbaijan, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: [email protected]
In the title compound, [Pt(C14H14N3)Cl(C9H9N)], the platinum atom has a square-planar geometry. In the crystal, dimers with R22(8) motifs are formed by pairs of N—H⋯N hydrogen bonds. They are connected to each other through pairs of weak C—H⋯Cl interactions, forming a R22(16) motif, creating parallel ribbons along the [011] axis. The molecular pairs are also linked by C—H⋯π and by π–π interactions, the shortest centroid-centroid distance [3.513 (2) Å] being observed between pyridyl rings. These weak interactions form parallel ribbons along the [010] axis. The resulting three-dimensional network ensures the cohesion of the Hirshfeld two-dimensional fingerprint plots revealed that the most significant interactions are H⋯H (58.0%), C⋯H/H⋯C (17.9%), Cl⋯H/H⋯Cl (10.7%), N⋯H/H⋯N (6.9%), C⋯C (2.9%), Pt⋯H/H⋯Pt (2.6%), and N⋯C/C⋯N (1.1%) contacts.
Keywords: crystal structure; dimers; square-planar geometry; isocyanides; 2-aminopyridine; Hirshfeld surface analysis.
CCDC reference: 2456370
1. Chemical context
Acyclic diaminocarbenes (ADCs) are well-known for their strong σ-donating properties and their ability to coordinate to metals through the carbene C atom (Alder et al., 1996; Tskhovrebov et al., 2012
, 2013
, 2018
; Luzyanin et al., 2009
; Repina et al., 2025
). Among the various methods for synthesizing N-acyclic carbene (NAC) metal complexes, the addition of to the activated CN triple bond of isocyanide ligands stands out, due to its simplicity and the versatility of ligands that can be accessed (Michelin et al., 2001
).
N-Acyclic carbene complexes of platinum are of significant interest in applied science because of their potential applications in catalysis and photoluminescent materials and as anticancer agents (Kinzhalov & Luzyanin, 2022). For instance, palladium NAC complexes have been successfully utilized as Suzuki–Miyaura, Sonogashira, and Heck reaction catalysts (Mizoroki et al., 1971
; Heck & Nolley, 1972
; Miyaura et al., 1979
; Suzuki, 1999
). The ability of the Pd center to promote coupling between coordinated and 2-aminopyridine was demonstrated earlier (Tskhovrebov et al., 2011
; Mikhaylov et al., 2020
). In our study, we aimed to adapt this synthetic approach to platinum.
2. Structural commentary
The bond lengths involving Pt are: Pt1—C15 = 1.910 (3), Pt1—C1 = 1.979 (3), Pt1—N1 = 2.048 (3) and Pt1—Cl1 = 2.3709 (9) Å, while the sum of the angles around the Pt atom [C1—Pt1—N1 = 80.71(12°), C15—Pt1—C1 = 98.97 (14)°, C15–Pt1—Cl1 = 85.69 (10) and N1—Pt1—Cl1 = 94.63 (9)°] is 360 (14)°, thus showing a typical square-planar geometry (Fig. 1). The Pt—Ccarbene distance [1.910 (3) Å] is slightly shorter than Pt—Camine [1.979 (3) Å]. The 2,6-dimethylphenyl fragments (A: C7–C12 and B: C16–C21) are almost perpendicular to the mean plane passing through the square-planar complex and the pyridyl-carbamimidoyl moiety, the interplanar angles being 81.55 (9) and 72.64 (11)°, respectively. The compound exhibits weak intramolecular C6—H6⋯Cl1 and C13—H13A⋯N3 interactions (Fig. 1
; Table 1
). The geometric parameters are normal and consistent with those of related compounds (see Database survey section).
|
![]() | Figure 1 Molecular structure of the title complex with displacement ellipsoids drawn at the 30% probability level. |
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(8) ring motif (Bernstein et al., 1995). The dimers are connected through pairs of weak C—H⋯Cl interactions, forming an R22(16) motif. Thus, parallel ribbons are formed along the [011] axis (Fig. 2
; Table 1
). Furthermore, the molecular pairs are also linked by C—H⋯π and π–π interactions [Cg2⋯Cg2a = 3.513 (2) Å, slippage = 0.106 Å; symmetry code (a): 1 − x, −y, 1 − z; where Cg2 is the centroid of the N1/C2–C6 pyridine ring], forming parallel ribbons along the [010] axis (Table 1
; Fig. 3
). The three-dimensional network arising from N—H⋯N and C—H⋯Cl hydrogen bonds, C—H⋯π and π—π interactions, contribute to the cohesion of the Table 2
lists additional intermolecular hydrogen contacts.
|
![]() | Figure 2 Hydrogen bonds (dotted lines) in the crystal, showing the N—H⋯N dimer and the C—H⋯Cl interactions. |
![]() | Figure 3 A view along the a-axis showing the C—H⋯π interactions (dotted lines). |
In order to quantify the intermolecular interactions in the crystal, Crystal Explorer 17.5 (Spackman et al., 2021) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots. The contributions of different intermolecular contacts to the Hirshfeld surface (Fig. 4
) are following: H⋯H (58.0%; Fig. 4
b), C⋯H/H⋯C (17.9%; Fig. 4
c), Cl⋯H/H⋯Cl (10.7%; Fig. 4
d), N⋯H/H⋯N (6.9%; Fig. 4
e), C⋯C (2.9%; Fig. 4
f), Pt⋯H/H⋯Pt (2.6%; Fig. 4
g), and N⋯C/C⋯N (1.1%; Fig. 4
h).
![]() | Figure 4 Two-dimensional fingerprint plots from a Hirshfeld surface analysis of the complex showing: (a) all contacts, (b) H⋯H (58.0%), (c) C⋯H/H⋯C (17.9%), (d) Cl⋯H/H⋯Cl (10.7%), (e) N⋯H/H⋯N (6.9%), (f) C⋯C (2.9%), (g) Pt⋯H/H⋯Pt (2.6%), (h) N⋯C/C⋯N (1.1%). |
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.44. last update Jun 2023; Groom et al., 2016) for the complex yielded four closely related entries, viz. CSD refcodes ROJWOD (Luzyanin et al., 2008
), ROJWUJ (Luzyanin et al., 2008
), ROJXAQ (Luzyanin et al., 2008
), and MUDJAZ (Mikhaylov et al., 2020
). ROJWOD and ROJWUJ crystallize in the triclinic P
like the title complex, ROJXAQ in the monoclinic C2/c, and MUDJAZ in the monoclinic P21/c In ROJWOD and MUDJAZ, the PtII atom has a square-planar geometry. In the crystals of ROJWUJ and ROJXAQ, both PtII centers exhibit a slightly distorted square-planar geometry and they have the same coordination environment. In MUDJAZ, the carbene and unreacted isocyanide ligands were located in mutually trans positions. Such an arrangement was unexpected since it did not follow the trans effect rule (Shaw et al., 2009
). Consolidation of the unfavorable isomer was rationalized by intra-molecular hydrogen bonds.
5. Synthesis and crystallization
The title compound was prepared according to a modified literature procedure (Fig. 5; Gee et al., 2018
). A solution of 2,6-dimethylphenylisocyanide (14 mg, 107 µmol) in 1,2-dichloroethane (2 mL) was added to a solution of dichloro (1,5-cyclooctadiene) platinum(II) (20 mg, 53 µmol) in 1,2-dichloroethane (2 mL), and the reaction mixture was stirred at room temperature for 30 minutes. After that, 2-aminopyridine (10 mg, 107 µmol) was added and the reaction mixture was stirred under reflux for 1 h. The course of the reaction was controlled by TLC. The solution was evaporated and the residue was purified by (eluent: DCM), then evaporated and dried under vacuum. Yellow solid. Yield: 17 mg (55%). Crystals suitable for X-ray analysis were obtained by layering hexane over a dichloromethane solution of the target complex.
![]() | Figure 5 Synthesis of the title N-acyclic carbene complex of platinum(II). |
6. Refinement
Crystal data, data collection and structure . The N-bound H atom was located in a difference-Fourier map [N2—H2 = 0.80 (6) Å] and refined with Uiso(H) =1.2Ueq(N). The C-bound H atoms were positioned geometrically (C—H= 0.93–0.98 Å) and refined as riding with fixed isotropic displacement parameters [Uiso(H) = 1.2 or 1.5Ueq(C)]. One of the methyl groups (C13) was found to be disordered; it was treated as an idealized disordered methyl group, with two positions rotated from each other by 60°, and the site-occupation factors were fixed at 0.5. Twelve reflections (−7 3 0, −8 4 0, −7 4 0, 7 − 6 1, −9 2 1, 5 − 7 2, 4 − 9 3, 5 − 9 3, −10 0 2, −11 − 2 3, 6 − 9 1 and −9 0 2) were omitted during as they showed poor agreement. The remaining positive and negative residual electron densities are located near the platinum atom Pt1 (1.05 Å from Pt1) and the hydrogen atom H13D (0.88 Å from H13D), respectively.
|
Supporting information
CCDC reference: 2456370
https://doi.org/10.1107/S2056989025005079/tx2098sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025005079/tx2098Isup2.hkl
[Pt(C14H14N3)Cl(C9H9N)] | Z = 2 |
Mr = 585.99 | F(000) = 568 |
Triclinic, P1 | Dx = 1.800 Mg m−3 |
a = 7.7053 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7010 (3) Å | Cell parameters from 9990 reflections |
c = 15.0316 (5) Å | θ = 2.7–32.6° |
α = 104.535 (1)° | µ = 6.63 mm−1 |
β = 95.922 (1)° | T = 100 K |
γ = 90.227 (1)° | Prism, red |
V = 1081.31 (6) Å3 | 0.20 × 0.15 × 0.10 mm |
Bruker D8 QUEST PHOTON-III CCD diffractometer | 6973 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.036 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015). | θmax = 32.6°, θmin = 2.3° |
Tmin = 0.297, Tmax = 0.495 | h = −11→11 |
26083 measured reflections | k = −14→14 |
7860 independent reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: mixed |
wR(F2) = 0.071 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0282P)2 + 2.7164P] where P = (Fo2 + 2Fc2)/3 |
7860 reflections | (Δ/σ)max = 0.002 |
268 parameters | Δρmax = 2.31 e Å−3 |
0 restraints | Δρmin = −1.84 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | 0.53441 (2) | 0.13401 (2) | 0.28812 (2) | 0.01514 (4) | |
Cl1 | 0.51685 (14) | −0.09097 (9) | 0.17919 (8) | 0.0293 (2) | |
N1 | 0.3881 (4) | 0.0699 (3) | 0.3776 (2) | 0.0167 (5) | |
N2 | 0.4380 (4) | 0.3015 (3) | 0.4560 (2) | 0.0208 (6) | |
N3 | 0.6105 (4) | 0.4395 (3) | 0.3983 (2) | 0.0205 (6) | |
N4 | 0.7598 (4) | 0.2117 (3) | 0.1508 (2) | 0.0194 (6) | |
C1 | 0.5383 (4) | 0.3147 (4) | 0.3855 (2) | 0.0167 (6) | |
C2 | 0.3667 (4) | 0.1731 (4) | 0.4533 (2) | 0.0169 (6) | |
C3 | 0.2794 (5) | 0.1459 (4) | 0.5250 (3) | 0.0204 (7) | |
H3 | 0.265681 | 0.219578 | 0.578710 | 0.024* | |
C4 | 0.2142 (5) | 0.0100 (4) | 0.5158 (3) | 0.0215 (7) | |
H4 | 0.156299 | −0.011383 | 0.563766 | 0.026* | |
C5 | 0.2336 (5) | −0.0964 (4) | 0.4353 (3) | 0.0240 (8) | |
H5 | 0.187654 | −0.190204 | 0.427571 | 0.029* | |
C6 | 0.3199 (5) | −0.0627 (4) | 0.3681 (3) | 0.0226 (7) | |
H6 | 0.332495 | −0.134323 | 0.313232 | 0.027* | |
C7 | 0.7334 (5) | 0.4707 (3) | 0.3421 (2) | 0.0176 (6) | |
C8 | 0.6827 (5) | 0.5520 (3) | 0.2788 (2) | 0.0175 (6) | |
C9 | 0.8120 (5) | 0.6020 (4) | 0.2349 (2) | 0.0200 (7) | |
H9 | 0.780448 | 0.658775 | 0.192975 | 0.024* | |
C10 | 0.9859 (5) | 0.5697 (4) | 0.2517 (3) | 0.0237 (7) | |
H10 | 1.072772 | 0.606706 | 0.222696 | 0.028* | |
C11 | 1.0329 (5) | 0.4835 (4) | 0.3108 (3) | 0.0256 (8) | |
H11 | 1.151099 | 0.457850 | 0.319630 | 0.031* | |
C12 | 0.9076 (5) | 0.4341 (4) | 0.3573 (3) | 0.0231 (7) | |
C13 | 0.4921 (5) | 0.5789 (4) | 0.2586 (3) | 0.0238 (7) | |
H13A | 0.423489 | 0.535280 | 0.296317 | 0.036* | 0.5 |
H13B | 0.474198 | 0.681757 | 0.273333 | 0.036* | 0.5 |
H13C | 0.454504 | 0.537103 | 0.192970 | 0.036* | 0.5 |
H13D | 0.477972 | 0.634147 | 0.212097 | 0.036* | 0.5 |
H13E | 0.427263 | 0.487670 | 0.235081 | 0.036* | 0.5 |
H13F | 0.446956 | 0.632323 | 0.315444 | 0.036* | 0.5 |
C14 | 0.9594 (6) | 0.3416 (5) | 0.4217 (3) | 0.0335 (10) | |
H14A | 1.086152 | 0.349498 | 0.438079 | 0.050* | |
H14B | 0.925098 | 0.242238 | 0.391146 | 0.050* | |
H14C | 0.900736 | 0.372707 | 0.477880 | 0.050* | |
C15 | 0.6750 (4) | 0.1938 (3) | 0.2063 (3) | 0.0182 (6) | |
C16 | 0.8932 (5) | 0.2184 (4) | 0.0958 (3) | 0.0223 (7) | |
C17 | 0.8685 (5) | 0.2968 (5) | 0.0294 (3) | 0.0268 (8) | |
C18 | 1.0081 (7) | 0.3038 (7) | −0.0215 (3) | 0.0468 (14) | |
H18 | 0.998231 | 0.356724 | −0.066964 | 0.056* | |
C19 | 1.1612 (7) | 0.2343 (8) | −0.0066 (3) | 0.0505 (15) | |
H19 | 1.255256 | 0.241513 | −0.041498 | 0.061* | |
C20 | 1.1796 (6) | 0.1548 (6) | 0.0582 (3) | 0.0365 (11) | |
H20 | 1.284531 | 0.106110 | 0.066206 | 0.044* | |
C21 | 1.0446 (5) | 0.1458 (4) | 0.1116 (3) | 0.0267 (8) | |
C22 | 0.6990 (6) | 0.3677 (5) | 0.0129 (3) | 0.0314 (9) | |
H22A | 0.661132 | 0.418583 | 0.072357 | 0.047* | |
H22B | 0.609921 | 0.295356 | −0.019962 | 0.047* | |
H22C | 0.715665 | 0.435391 | −0.024357 | 0.047* | |
C23 | 1.0591 (6) | 0.0627 (5) | 0.1833 (4) | 0.0386 (11) | |
H23A | 1.162807 | 0.004344 | 0.176843 | 0.058* | |
H23B | 0.954809 | 0.000691 | 0.175119 | 0.058* | |
H23C | 1.069049 | 0.128459 | 0.244974 | 0.058* | |
H2 | 0.434 (8) | 0.372 (6) | 0.497 (4) | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01269 (5) | 0.01191 (5) | 0.02260 (7) | −0.00027 (4) | 0.00389 (4) | 0.00688 (4) |
Cl1 | 0.0335 (5) | 0.0139 (3) | 0.0412 (6) | −0.0005 (3) | 0.0197 (4) | 0.0019 (3) |
N1 | 0.0123 (12) | 0.0144 (12) | 0.0263 (15) | 0.0002 (10) | 0.0036 (11) | 0.0097 (11) |
N2 | 0.0271 (15) | 0.0177 (13) | 0.0174 (14) | −0.0097 (12) | 0.0016 (12) | 0.0046 (11) |
N3 | 0.0285 (15) | 0.0171 (13) | 0.0179 (14) | −0.0074 (11) | 0.0034 (12) | 0.0077 (11) |
N4 | 0.0175 (13) | 0.0155 (12) | 0.0247 (15) | −0.0017 (10) | 0.0043 (11) | 0.0030 (11) |
C1 | 0.0181 (15) | 0.0157 (14) | 0.0176 (15) | −0.0041 (11) | −0.0017 (12) | 0.0082 (12) |
C2 | 0.0158 (14) | 0.0186 (14) | 0.0178 (15) | −0.0061 (11) | −0.0010 (12) | 0.0085 (12) |
C3 | 0.0204 (16) | 0.0249 (16) | 0.0177 (16) | −0.0078 (13) | −0.0011 (12) | 0.0101 (13) |
C4 | 0.0199 (16) | 0.0233 (16) | 0.0264 (18) | −0.0028 (13) | 0.0016 (13) | 0.0159 (14) |
C5 | 0.0199 (16) | 0.0153 (14) | 0.041 (2) | −0.0001 (12) | 0.0094 (15) | 0.0126 (15) |
C6 | 0.0214 (16) | 0.0136 (14) | 0.035 (2) | −0.0003 (12) | 0.0100 (15) | 0.0068 (14) |
C7 | 0.0257 (16) | 0.0146 (13) | 0.0127 (14) | −0.0069 (12) | 0.0013 (12) | 0.0041 (11) |
C8 | 0.0237 (16) | 0.0138 (13) | 0.0150 (15) | −0.0029 (12) | 0.0024 (12) | 0.0037 (11) |
C9 | 0.0280 (17) | 0.0181 (14) | 0.0154 (15) | −0.0044 (13) | 0.0055 (13) | 0.0054 (12) |
C10 | 0.0248 (17) | 0.0261 (17) | 0.0211 (17) | −0.0098 (14) | 0.0033 (14) | 0.0076 (14) |
C11 | 0.0210 (17) | 0.0272 (18) | 0.030 (2) | −0.0083 (14) | −0.0032 (14) | 0.0125 (16) |
C12 | 0.0238 (17) | 0.0245 (16) | 0.0217 (17) | −0.0102 (14) | −0.0055 (14) | 0.0107 (14) |
C13 | 0.0234 (17) | 0.0226 (16) | 0.0281 (19) | 0.0018 (14) | 0.0070 (15) | 0.0100 (15) |
C14 | 0.0262 (19) | 0.039 (2) | 0.040 (2) | −0.0144 (17) | −0.0116 (17) | 0.025 (2) |
C15 | 0.0154 (14) | 0.0140 (13) | 0.0248 (17) | 0.0000 (11) | 0.0043 (13) | 0.0036 (12) |
C16 | 0.0201 (16) | 0.0214 (15) | 0.0216 (17) | −0.0060 (13) | 0.0092 (13) | −0.0040 (13) |
C17 | 0.0255 (18) | 0.040 (2) | 0.0127 (16) | −0.0054 (16) | 0.0041 (13) | 0.0028 (15) |
C18 | 0.033 (2) | 0.093 (4) | 0.0161 (19) | −0.002 (3) | 0.0097 (17) | 0.016 (2) |
C19 | 0.029 (2) | 0.096 (5) | 0.024 (2) | −0.003 (3) | 0.0153 (18) | 0.006 (3) |
C20 | 0.0187 (18) | 0.051 (3) | 0.031 (2) | 0.0007 (18) | 0.0075 (16) | −0.007 (2) |
C21 | 0.0205 (17) | 0.0224 (16) | 0.032 (2) | −0.0028 (13) | 0.0060 (15) | −0.0046 (15) |
C22 | 0.028 (2) | 0.048 (3) | 0.0192 (18) | −0.0027 (18) | 0.0010 (15) | 0.0124 (18) |
C23 | 0.025 (2) | 0.028 (2) | 0.065 (3) | 0.0054 (16) | 0.007 (2) | 0.016 (2) |
Pt1—C15 | 1.910 (3) | C11—C12 | 1.398 (5) |
Pt1—C1 | 1.979 (3) | C11—H11 | 0.9500 |
Pt1—N1 | 2.048 (3) | C12—C14 | 1.504 (5) |
Pt1—Cl1 | 2.3709 (9) | C13—H13A | 0.9800 |
N1—C2 | 1.340 (5) | C13—H13B | 0.9800 |
N1—C6 | 1.355 (4) | C13—H13C | 0.9800 |
N2—C2 | 1.350 (4) | C13—H13D | 0.9800 |
N2—C1 | 1.404 (4) | C13—H13E | 0.9800 |
N2—H2 | 0.80 (6) | C13—H13F | 0.9800 |
N3—C1 | 1.291 (4) | C14—H14A | 0.9800 |
N3—C7 | 1.413 (4) | C14—H14B | 0.9800 |
N4—C15 | 1.157 (5) | C14—H14C | 0.9800 |
N4—C16 | 1.394 (4) | C16—C21 | 1.396 (6) |
C2—C3 | 1.405 (5) | C16—C17 | 1.398 (6) |
C3—C4 | 1.377 (5) | C17—C18 | 1.394 (6) |
C3—H3 | 0.9500 | C17—C22 | 1.505 (6) |
C4—C5 | 1.401 (6) | C18—C19 | 1.387 (8) |
C4—H4 | 0.9500 | C18—H18 | 0.9500 |
C5—C6 | 1.369 (5) | C19—C20 | 1.382 (8) |
C5—H5 | 0.9500 | C19—H19 | 0.9500 |
C6—H6 | 0.9500 | C20—C21 | 1.394 (6) |
C7—C12 | 1.401 (5) | C20—H20 | 0.9500 |
C7—C8 | 1.408 (5) | C21—C23 | 1.496 (7) |
C8—C9 | 1.399 (5) | C22—H22A | 0.9800 |
C8—C13 | 1.506 (5) | C22—H22B | 0.9800 |
C9—C10 | 1.390 (6) | C22—H22C | 0.9800 |
C9—H9 | 0.9500 | C23—H23A | 0.9800 |
C10—C11 | 1.389 (5) | C23—H23B | 0.9800 |
C10—H10 | 0.9500 | C23—H23C | 0.9800 |
C15—Pt1—C1 | 98.97 (14) | C11—C12—C14 | 120.3 (4) |
C15—Pt1—N1 | 178.85 (14) | C7—C12—C14 | 120.7 (3) |
C1—Pt1—N1 | 80.71 (12) | C8—C13—H13A | 109.5 |
C15—Pt1—Cl1 | 85.69 (10) | C8—C13—H13B | 109.5 |
C1—Pt1—Cl1 | 175.33 (10) | H13A—C13—H13B | 109.5 |
N1—Pt1—Cl1 | 94.63 (9) | C8—C13—H13C | 109.5 |
C2—N1—C6 | 119.7 (3) | H13A—C13—H13C | 109.5 |
C2—N1—Pt1 | 113.5 (2) | H13B—C13—H13C | 109.5 |
C6—N1—Pt1 | 126.8 (3) | H13D—C13—H13E | 109.5 |
C2—N2—C1 | 119.2 (3) | H13D—C13—H13F | 109.5 |
C2—N2—H2 | 125 (4) | H13E—C13—H13F | 109.5 |
C1—N2—H2 | 115 (4) | C12—C14—H14A | 109.5 |
C1—N3—C7 | 123.1 (3) | C12—C14—H14B | 109.5 |
C15—N4—C16 | 166.0 (4) | H14A—C14—H14B | 109.5 |
N3—C1—N2 | 114.0 (3) | C12—C14—H14C | 109.5 |
N3—C1—Pt1 | 134.9 (3) | H14A—C14—H14C | 109.5 |
N2—C1—Pt1 | 111.2 (2) | H14B—C14—H14C | 109.5 |
N1—C2—N2 | 115.2 (3) | N4—C15—Pt1 | 171.2 (3) |
N1—C2—C3 | 121.3 (3) | N4—C16—C21 | 117.0 (4) |
N2—C2—C3 | 123.4 (3) | N4—C16—C17 | 118.8 (4) |
C4—C3—C2 | 118.6 (3) | C21—C16—C17 | 124.2 (4) |
C4—C3—H3 | 120.7 | C18—C17—C16 | 116.4 (4) |
C2—C3—H3 | 120.7 | C18—C17—C22 | 121.9 (4) |
C3—C4—C5 | 119.7 (3) | C16—C17—C22 | 121.7 (3) |
C3—C4—H4 | 120.2 | C19—C18—C17 | 120.8 (5) |
C5—C4—H4 | 120.2 | C19—C18—H18 | 119.6 |
C6—C5—C4 | 118.7 (3) | C17—C18—H18 | 119.6 |
C6—C5—H5 | 120.6 | C20—C19—C18 | 121.3 (4) |
C4—C5—H5 | 120.6 | C20—C19—H19 | 119.4 |
N1—C6—C5 | 122.0 (4) | C18—C19—H19 | 119.4 |
N1—C6—H6 | 119.0 | C19—C20—C21 | 120.2 (4) |
C5—C6—H6 | 119.0 | C19—C20—H20 | 119.9 |
C12—C7—C8 | 121.0 (3) | C21—C20—H20 | 119.9 |
C12—C7—N3 | 119.4 (3) | C20—C21—C16 | 117.2 (4) |
C8—C7—N3 | 119.2 (3) | C20—C21—C23 | 122.2 (4) |
C9—C8—C7 | 118.4 (3) | C16—C21—C23 | 120.6 (4) |
C9—C8—C13 | 122.2 (3) | C17—C22—H22A | 109.5 |
C7—C8—C13 | 119.4 (3) | C17—C22—H22B | 109.5 |
C10—C9—C8 | 120.9 (3) | H22A—C22—H22B | 109.5 |
C10—C9—H9 | 119.5 | C17—C22—H22C | 109.5 |
C8—C9—H9 | 119.5 | H22A—C22—H22C | 109.5 |
C11—C10—C9 | 120.0 (3) | H22B—C22—H22C | 109.5 |
C11—C10—H10 | 120.0 | C21—C23—H23A | 109.5 |
C9—C10—H10 | 120.0 | C21—C23—H23B | 109.5 |
C10—C11—C12 | 120.5 (4) | H23A—C23—H23B | 109.5 |
C10—C11—H11 | 119.7 | C21—C23—H23C | 109.5 |
C12—C11—H11 | 119.7 | H23A—C23—H23C | 109.5 |
C11—C12—C7 | 119.0 (3) | H23B—C23—H23C | 109.5 |
C7—N3—C1—N2 | 172.0 (3) | C8—C9—C10—C11 | 1.8 (6) |
C7—N3—C1—Pt1 | −8.2 (6) | C9—C10—C11—C12 | −3.1 (6) |
C2—N2—C1—N3 | −175.3 (3) | C10—C11—C12—C7 | 1.2 (6) |
C2—N2—C1—Pt1 | 4.9 (4) | C10—C11—C12—C14 | −179.6 (4) |
C6—N1—C2—N2 | −179.5 (3) | C8—C7—C12—C11 | 2.0 (6) |
Pt1—N1—C2—N2 | 2.6 (4) | N3—C7—C12—C11 | −170.8 (3) |
C6—N1—C2—C3 | 2.1 (5) | C8—C7—C12—C14 | −177.2 (4) |
Pt1—N1—C2—C3 | −175.9 (3) | N3—C7—C12—C14 | 10.0 (5) |
C1—N2—C2—N1 | −5.0 (5) | C15—N4—C16—C21 | 9.9 (16) |
C1—N2—C2—C3 | 173.4 (3) | C15—N4—C16—C17 | −169.7 (13) |
N1—C2—C3—C4 | −0.5 (5) | N4—C16—C17—C18 | 177.9 (4) |
N2—C2—C3—C4 | −178.8 (4) | C21—C16—C17—C18 | −1.6 (6) |
C2—C3—C4—C5 | −1.0 (6) | N4—C16—C17—C22 | −3.0 (6) |
C3—C4—C5—C6 | 1.0 (6) | C21—C16—C17—C22 | 177.4 (4) |
C2—N1—C6—C5 | −2.1 (6) | C16—C17—C18—C19 | 0.7 (8) |
Pt1—N1—C6—C5 | 175.6 (3) | C22—C17—C18—C19 | −178.3 (5) |
C4—C5—C6—N1 | 0.6 (6) | C17—C18—C19—C20 | 0.8 (9) |
C1—N3—C7—C12 | −80.3 (5) | C18—C19—C20—C21 | −1.5 (8) |
C1—N3—C7—C8 | 106.8 (4) | C19—C20—C21—C16 | 0.7 (7) |
C12—C7—C8—C9 | −3.3 (5) | C19—C20—C21—C23 | −179.2 (5) |
N3—C7—C8—C9 | 169.5 (3) | N4—C16—C21—C20 | −178.6 (3) |
C12—C7—C8—C13 | 175.0 (3) | C17—C16—C21—C20 | 1.0 (6) |
N3—C7—C8—C13 | −12.2 (5) | N4—C16—C21—C23 | 1.2 (6) |
C7—C8—C9—C10 | 1.4 (5) | C17—C16—C21—C23 | −179.2 (4) |
C13—C8—C9—C10 | −176.9 (3) |
Cg3 is the centroid of the C7–C12 benzene ring attached to the N3 atom. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N3i | 0.80 (6) | 2.15 (6) | 2.943 (4) | 173 (6) |
C6—H6···Cl1 | 0.95 | 2.70 | 3.308 (4) | 123 |
C13—H13A···N3 | 0.98 | 2.36 | 2.848 (5) | 110 |
C22—H22B···Cl1ii | 0.98 | 2.78 | 3.660 (5) | 150 |
C3—H3···Cg3i | 0.95 | 2.99 | 3.898 (4) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z. |
Contact | Distance | Symmetry operation |
H6···H13B | 2.09 | x, -1 + y, z |
H13A···H11 | 2.32 | -1 + x, y, z |
H19···Cl1 | 2.96 | 2 - x, -y, -z |
H22B···Cl1 | 2.78 | 1 - x, -y, -z |
H2···N3 | 2.15 | 1 - x, 1 - y, 1 - z |
H14B···H4 | 2.59 | 1 - x, -y, 1 - z |
H4···C4 | 2.98 | -x, -y, 1 - z |
H18···H10 | 2.46 | 2 - x, 1 - y, -z |
H14C···C14 | 2.94 | 2 - x, 1 - y, 1 - z |
Acknowledgements
The author's contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, AAS, EAD, ASK and ASN; X-ray analysis, VNK and MA; writing (review and editing of the manuscript) MMG, MA and AB; funding acquisition, NQS, EVD and MRK; supervision, NQS and AGT.
Funding information
This work was performed with the support of the Russian Science Foundation (award No. 25–23-00043).
References
Alder, R. W., Allen, P. R., Murray, M. & Orpen, A. G. (1996). Angew. Chem. Int. Ed. Engl. 35, 1121–1123. CSD CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gee, J. C., Fuller, B. A., Lockett, H.-M., Sedghi, G., Robertson, C. M. & Luzyanin, K. V. (2018). Chem. Commun. 54, 9450–9453. CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Heck, R. F. & Nolley, J. P. (1972). J. Org. Chem. 37, 2320–2322. CrossRef CAS Web of Science Google Scholar
Kinzhalov, M. A. & Luzyanin, K. V. (2022). Russ. J. Inorg. Chem. 67, 48–90. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Luzyanin, K. V., Pombeiro, A. J. L., Haukka, M. & Kukushkin, V. Yu. (2008). Organometallics 27, 5379–5389. CSD CrossRef Google Scholar
Luzyanin, K. V., Tskhovrebov, A. G., Carias, M. C., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009). Organometallics 28, 6559–6566. CSD CrossRef Google Scholar
Michelin, R. A., Pombeiro, A. J. L. & Guedes da Silva, M. F. (2001). Coord. Chem. Rev. 218, 75–112. CrossRef Google Scholar
Mikhaylov, V. N., Sorokoumov, V. N., Novikov, A. S., Melnik, M. V., Tskhovrebov, A. G. & Balova, I. A. (2020). J. Organomet. Chem. 912, 121174. CSD CrossRef Google Scholar
Miyaura, N., Yamada, K. & Suzuki, A. (1979). Tetrahedron Lett. 20, 3437–3440. CrossRef Web of Science Google Scholar
Mizoroki, T., Mori, T. & Ozaki, A. (1971). Bull. Chem. Soc. Jpn 44, 581–581. CrossRef Google Scholar
Repina, O. V., Kubasov, A. S., Vologzhanina, A. V., Borisov, A. V., Kritchenkov, I. S., Voroshilkina, K. M., Nazarov, A. A., Shchevnikov, D. M., Grudova, M. V., Gomila, R. M., Frontera, A., Nenajdenko, V. G., Kritchenkov, A. S. & Tskhovrebov, A. G. (2025). Int. J. Mol. Sci. https://doi. org/10.3390/ijms26020483. Google Scholar
Shaw, J. L., Dockery, C. R., Lewis, S. E., Harris, L. & Bettis, R. (2009). J. Chem. Educ. 86, 1416–1418. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Suzuki, A. (1999). J. Organomet. Chem. 576, 147–168. Web of Science CrossRef CAS Google Scholar
Tskhovrebov, A., Solari, E., Scopelliti, R. & Severin, K. (2013). Inorg. Chem. 52, 11688–11690. CSD CrossRef PubMed Google Scholar
Tskhovrebov, A. G., Goddard, R. & Fürstner, A. (2018). Angew. Chem. Int. Ed. 57, 8089–8094. CSD CrossRef CAS Google Scholar
Tskhovrebov, A. G., Luzyanin, K. V., Dolgushin, F. M., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2011). Organometallics 30, 3362–3370. CrossRef Google Scholar
Tskhovrebov, A. G., Luzyanin, K. V., Haukka, M. & Kukushkin, V. Y. (2012). J. Chem. Crystallogr. 42, 1170–1175. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.