research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of chlorido­(2,6-di­methyl­phenyl isocyanide)[N′-(2,6-di­methyl­phen­yl)-N-(pyridin-2-yl)carbamimido­yl]platinum(II)

crossmark logo

aPeoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation, bZelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), Leninsky Prospect 47, 119991 Moscow, Russian Federation, cInstitute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation, dBaku Engineering University, Khirdalan City, 120 AZ0101 Hasan Aliyev Street, Baku, Azerbaijan, eAzerbaijan State University of Economics, M. Mukhtarov 194, 1001 Baku, Azerbaijan, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: [email protected]

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 23 April 2025; accepted 4 June 2025; online 10 June 2025)

In the title compound, [Pt(C14H14N3)Cl(C9H9N)], the platinum atom has a square-planar geometry. In the crystal, dimers with R22(8) motifs are formed by pairs of N—H⋯N hydrogen bonds. They are connected to each other through pairs of weak C—H⋯Cl inter­actions, forming a R22(16) motif, creating parallel ribbons along the [011] axis. The mol­ecular pairs are also linked by C—H⋯π and by ππ inter­actions, the shortest centroid-centroid distance [3.513 (2) Å] being observed between pyridyl rings. These weak inter­actions form parallel ribbons along the [010] axis. The resulting three-dimensional network ensures the cohesion of the crystal structure. Hirshfeld two-dimensional fingerprint plots revealed that the most significant inter­actions are H⋯H (58.0%), C⋯H/H⋯C (17.9%), Cl⋯H/H⋯Cl (10.7%), N⋯H/H⋯N (6.9%), C⋯C (2.9%), Pt⋯H/H⋯Pt (2.6%), and N⋯C/C⋯N (1.1%) contacts.

1. Chemical context

Acyclic di­amino­carbenes (ADCs) are well-known for their strong σ-donating properties and their ability to coordinate to metals through the carbene C atom (Alder et al., 1996[Alder, R. W., Allen, P. R., Murray, M. & Orpen, A. G. (1996). Angew. Chem. Int. Ed. Engl. 35, 1121-1123.]; Tskhovrebov et al., 2012[Tskhovrebov, A. G., Luzyanin, K. V., Haukka, M. & Kukushkin, V. Y. (2012). J. Chem. Crystallogr. 42, 1170-1175.], 2013[Tskhovrebov, A., Solari, E., Scopelliti, R. & Severin, K. (2013). Inorg. Chem. 52, 11688-11690.], 2018[Tskhovrebov, A. G., Goddard, R. & Fürstner, A. (2018). Angew. Chem. Int. Ed. 57, 8089-8094.]; Luzyanin et al., 2009[Luzyanin, K. V., Tskhovrebov, A. G., Carias, M. C., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009). Organometallics 28, 6559-6566.]; Repina et al., 2025[Repina, O. V., Kubasov, A. S., Vologzhanina, A. V., Borisov, A. V., Kritchenkov, I. S., Voroshilkina, K. M., Nazarov, A. A., Shchevnikov, D. M., Grudova, M. V., Gomila, R. M., Frontera, A., Nenajdenko, V. G., Kritchenkov, A. S. & Tskhovrebov, A. G. (2025). Int. J. Mol. Sci. https://doi. org/10.3390/ijms26020483.]). Among the various methods for synthesizing N-acyclic carbene (NAC) metal complexes, the addition of amines to the activated CN triple bond of isocyanide ligands stands out, due to its simplicity and the versatility of ligands that can be accessed (Michelin et al., 2001[Michelin, R. A., Pombeiro, A. J. L. & Guedes da Silva, M. F. (2001). Coord. Chem. Rev. 218, 75-112.]).

N-Acyclic carbene complexes of platinum are of significant inter­est in applied science because of their potential applications in catalysis and photoluminescent materials and as anti­cancer agents (Kinzhalov & Luzyanin, 2022[Kinzhalov, M. A. & Luzyanin, K. V. (2022). Russ. J. Inorg. Chem. 67, 48-90.]). For instance, palladium NAC complexes have been successfully utilized as Suzuki–Miyaura, Sonogashira, and Heck reaction catalysts (Mizoroki et al., 1971[Mizoroki, T., Mori, T. & Ozaki, A. (1971). Bull. Chem. Soc. Jpn 44, 581-581.]; Heck & Nolley, 1972[Heck, R. F. & Nolley, J. P. (1972). J. Org. Chem. 37, 2320-2322.]; Miyaura et al., 1979[Miyaura, N., Yamada, K. & Suzuki, A. (1979). Tetrahedron Lett. 20, 3437-3440.]; Suzuki, 1999[Suzuki, A. (1999). J. Organomet. Chem. 576, 147-168.]). The ability of the Pd center to promote coupling between coordinated isocyanides and 2-amino­pyridine was demonstrated earlier (Tskhovrebov et al., 2011[Tskhovrebov, A. G., Luzyanin, K. V., Dolgushin, F. M., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2011). Organometallics 30, 3362-3370.]; Mikhaylov et al., 2020[Mikhaylov, V. N., Sorokoumov, V. N., Novikov, A. S., Melnik, M. V., Tskhovrebov, A. G. & Balova, I. A. (2020). J. Organomet. Chem. 912, 121174.]). In our study, we aimed to adapt this synthetic approach to platinum.

[Scheme 1]

2. Structural commentary

The bond lengths involving Pt are: Pt1—C15 = 1.910 (3), Pt1—C1 = 1.979 (3), Pt1—N1 = 2.048 (3) and Pt1—Cl1 = 2.3709 (9) Å, while the sum of the angles around the Pt atom [C1—Pt1—N1 = 80.71(12°), C15—Pt1—C1 = 98.97 (14)°, C15–Pt1—Cl1 = 85.69 (10) and N1—Pt1—Cl1 = 94.63 (9)°] is 360 (14)°, thus showing a typical square-planar geometry (Fig. 1[link]). The Pt—Ccarbene distance [1.910 (3) Å] is slightly shorter than Pt—Camine [1.979 (3) Å]. The 2,6-di­methyl­phenyl fragments (A: C7–C12 and B: C16–C21) are almost perpendicular to the mean plane passing through the square-planar complex and the pyridyl-carbamimidoyl moiety, the inter­planar angles being 81.55 (9) and 72.64 (11)°, respectively. The compound exhibits weak intra­molecular C6—H6⋯Cl1 and C13—H13A⋯N3 inter­actions (Fig. 1[link]; Table 1[link]). The geometric parameters are normal and consistent with those of related compounds (see Database survey section).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 benzene ring attached to the N3 atom.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3i 0.80 (6) 2.15 (6) 2.943 (4) 173 (6)
C6—H6⋯Cl1 0.95 2.70 3.308 (4) 123
C13—H13A⋯N3 0.98 2.36 2.848 (5) 110
C22—H22B⋯Cl1ii 0.98 2.78 3.660 (5) 150
C3—H3⋯Cg3i 0.95 2.99 3.898 (4) 162
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y, -z].
[Figure 1]
Figure 1
Mol­ecular structure of the title complex with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(8) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The dimers are connected through pairs of weak C—H⋯Cl inter­actions, forming an R22(16) motif. Thus, parallel ribbons are formed along the [011] axis (Fig. 2[link]; Table 1[link]). Furthermore, the mol­ecular pairs are also linked by C—H⋯π and ππ inter­actions [Cg2⋯Cg2a = 3.513 (2) Å, slippage = 0.106 Å; symmetry code (a): 1 − x, −y, 1 − z; where Cg2 is the centroid of the N1/C2–C6 pyridine ring], forming parallel ribbons along the [010] axis (Table 1[link]; Fig. 3[link]). The three-dimensional network arising from N—H⋯N and C—H⋯Cl hydrogen bonds, C—H⋯π and ππ inter­actions, contribute to the cohesion of the crystal structure. Table 2[link] lists additional inter­molecular hydrogen contacts.

Table 2
Inter­atomic contacts (Å)

Contact Distance Symmetry operation
H6⋯H13B 2.09 x, −1 + y, z
H13A⋯H11 2.32 −1 + x, y, z
H19⋯Cl1 2.96 2 − x, −y, −z
H22B⋯Cl1 2.78 1 − x, −y, −z
H2⋯N3 2.15 1 − x, 1 − y, 1 − z
H14B⋯H4 2.59 1 − x, −y, 1 − z
H4⋯C4 2.98 x, −y, 1 − z
H18⋯H10 2.46 2 − x, 1 − y, −z
H14C⋯C14 2.94 2 − x, 1 − y, 1 − z
[Figure 2]
Figure 2
Hydrogen bonds (dotted lines) in the crystal, showing the N—H⋯N dimer and the C—H⋯Cl inter­actions.
[Figure 3]
Figure 3
A view along the a-axis showing the C—H⋯π inter­actions (dotted lines).

In order to qu­antify the inter­molecular inter­actions in the crystal, Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots. The contributions of different inter­molecular contacts to the Hirshfeld surface (Fig. 4[link]) are following: H⋯H (58.0%; Fig. 4[link]b), C⋯H/H⋯C (17.9%; Fig. 4[link]c), Cl⋯H/H⋯Cl (10.7%; Fig. 4[link]d), N⋯H/H⋯N (6.9%; Fig. 4[link]e), C⋯C (2.9%; Fig. 4[link]f), Pt⋯H/H⋯Pt (2.6%; Fig. 4[link]g), and N⋯C/C⋯N (1.1%; Fig. 4[link]h).

[Figure 4]
Figure 4
Two-dimensional fingerprint plots from a Hirshfeld surface analysis of the complex showing: (a) all contacts, (b) H⋯H (58.0%), (c) C⋯H/H⋯C (17.9%), (d) Cl⋯H/H⋯Cl (10.7%), (e) N⋯H/H⋯N (6.9%), (f) C⋯C (2.9%), (g) Pt⋯H/H⋯Pt (2.6%), (h) N⋯C/C⋯N (1.1%).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44. last update Jun 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the complex yielded four closely related entries, viz. CSD refcodes ROJWOD (Luzyanin et al., 2008[Luzyanin, K. V., Pombeiro, A. J. L., Haukka, M. & Kukushkin, V. Yu. (2008). Organometallics 27, 5379-5389.]), ROJWUJ (Luzyanin et al., 2008[Luzyanin, K. V., Pombeiro, A. J. L., Haukka, M. & Kukushkin, V. Yu. (2008). Organometallics 27, 5379-5389.]), ROJXAQ (Luzyanin et al., 2008[Luzyanin, K. V., Pombeiro, A. J. L., Haukka, M. & Kukushkin, V. Yu. (2008). Organometallics 27, 5379-5389.]), and MUDJAZ (Mikhaylov et al., 2020[Mikhaylov, V. N., Sorokoumov, V. N., Novikov, A. S., Melnik, M. V., Tskhovrebov, A. G. & Balova, I. A. (2020). J. Organomet. Chem. 912, 121174.]). ROJWOD and ROJWUJ crystallize in the triclinic P[\overline{1}] space group like the title complex, ROJXAQ in the monoclinic C2/c, and MUDJAZ in the monoclinic P21/c space group. In ROJWOD and MUDJAZ, the PtII atom has a square-planar geometry. In the crystals of ROJWUJ and ROJXAQ, both PtII centers exhibit a slightly distorted square-planar geometry and they have the same coordination environment. In MUDJAZ, the carbene and unreacted isocyanide ligands were located in mutually trans positions. Such an arrangement was unexpected since it did not follow the trans effect rule (Shaw et al., 2009[Shaw, J. L., Dockery, C. R., Lewis, S. E., Harris, L. & Bettis, R. (2009). J. Chem. Educ. 86, 1416-1418.]). Consolidation of the unfavorable isomer was rationalized by intra-mol­ecular hydrogen bonds.

5. Synthesis and crystallization

The title compound was prepared according to a modified literature procedure (Fig. 5[link]; Gee et al., 2018[Gee, J. C., Fuller, B. A., Lockett, H.-M., Sedghi, G., Robertson, C. M. & Luzyanin, K. V. (2018). Chem. Commun. 54, 9450-9453.]). A solution of 2,6-di­methyl­phenyl­isocyanide (14 mg, 107 µmol) in 1,2-di­chloro­ethane (2 mL) was added to a solution of di­chloro (1,5-cyclo­octa­diene) platinum(II) (20 mg, 53 µmol) in 1,2-di­chloro­ethane (2 mL), and the reaction mixture was stirred at room temperature for 30 minutes. After that, 2-amino­pyridine (10 mg, 107 µmol) was added and the reaction mixture was stirred under reflux for 1 h. The course of the reaction was controlled by TLC. The solution was evaporated and the residue was purified by column chromatography (eluent: DCM), then evaporated and dried under vacuum. Yellow solid. Yield: 17 mg (55%). Crystals suitable for X-ray analysis were obtained by layering hexane over a di­chloro­methane solution of the target complex.

[Figure 5]
Figure 5
Synthesis of the title N-acyclic carbene complex of platinum(II).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N-bound H atom was located in a difference-Fourier map [N2—H2 = 0.80 (6) Å] and refined with Uiso(H) =1.2Ueq(N). The C-bound H atoms were positioned geometrically (C—H= 0.93–0.98 Å) and refined as riding with fixed isotropic displacement parameters [Uiso(H) = 1.2 or 1.5Ueq(C)]. One of the methyl groups (C13) was found to be disordered; it was treated as an idealized disordered methyl group, with two positions rotated from each other by 60°, and the site-occupation factors were fixed at 0.5. Twelve reflections (−7 3 0, −8 4 0, −7 4 0, 7 − 6 1, −9 2 1, 5 − 7 2, 4 − 9 3, 5 − 9 3, −10 0 2, −11 − 2 3, 6 − 9 1 and −9 0 2) were omitted during refinement as they showed poor agreement. The remaining positive and negative residual electron densities are located near the platinum atom Pt1 (1.05 Å from Pt1) and the hydrogen atom H13D (0.88 Å from H13D), respectively.

Table 3
Experimental details

Crystal data
Chemical formula [Pt(C14H14N3)Cl(C9H9N)]
Mr 585.99
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.7053 (3), 9.7010 (3), 15.0316 (5)
α, β, γ (°) 104.535 (1), 95.922 (1), 90.227 (1)
V3) 1081.31 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.63
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]).
Tmin, Tmax 0.297, 0.495
No. of measured, independent and observed [I > 2σ(I)] reflections 26083, 7860, 6973
Rint 0.036
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.071, 1.09
No. of reflections 7860
No. of parameters 268
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.31, −1.84
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Chlorido(2,6-dimethylphenyl isocyanide)[N'-(2,6-dimethylphenyl)-N-(pyridin-2-yl)carbamimidoyl]platinum(II) top
Crystal data top
[Pt(C14H14N3)Cl(C9H9N)]Z = 2
Mr = 585.99F(000) = 568
Triclinic, P1Dx = 1.800 Mg m3
a = 7.7053 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7010 (3) ÅCell parameters from 9990 reflections
c = 15.0316 (5) Åθ = 2.7–32.6°
α = 104.535 (1)°µ = 6.63 mm1
β = 95.922 (1)°T = 100 K
γ = 90.227 (1)°Prism, red
V = 1081.31 (6) Å30.20 × 0.15 × 0.10 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
6973 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Krause et al., 2015).
θmax = 32.6°, θmin = 2.3°
Tmin = 0.297, Tmax = 0.495h = 1111
26083 measured reflectionsk = 1414
7860 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: mixed
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0282P)2 + 2.7164P]
where P = (Fo2 + 2Fc2)/3
7860 reflections(Δ/σ)max = 0.002
268 parametersΔρmax = 2.31 e Å3
0 restraintsΔρmin = 1.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.53441 (2)0.13401 (2)0.28812 (2)0.01514 (4)
Cl10.51685 (14)0.09097 (9)0.17919 (8)0.0293 (2)
N10.3881 (4)0.0699 (3)0.3776 (2)0.0167 (5)
N20.4380 (4)0.3015 (3)0.4560 (2)0.0208 (6)
N30.6105 (4)0.4395 (3)0.3983 (2)0.0205 (6)
N40.7598 (4)0.2117 (3)0.1508 (2)0.0194 (6)
C10.5383 (4)0.3147 (4)0.3855 (2)0.0167 (6)
C20.3667 (4)0.1731 (4)0.4533 (2)0.0169 (6)
C30.2794 (5)0.1459 (4)0.5250 (3)0.0204 (7)
H30.2656810.2195780.5787100.024*
C40.2142 (5)0.0100 (4)0.5158 (3)0.0215 (7)
H40.1562990.0113830.5637660.026*
C50.2336 (5)0.0964 (4)0.4353 (3)0.0240 (8)
H50.1876540.1902040.4275710.029*
C60.3199 (5)0.0627 (4)0.3681 (3)0.0226 (7)
H60.3324950.1343230.3132320.027*
C70.7334 (5)0.4707 (3)0.3421 (2)0.0176 (6)
C80.6827 (5)0.5520 (3)0.2788 (2)0.0175 (6)
C90.8120 (5)0.6020 (4)0.2349 (2)0.0200 (7)
H90.7804480.6587750.1929750.024*
C100.9859 (5)0.5697 (4)0.2517 (3)0.0237 (7)
H101.0727720.6067060.2226960.028*
C111.0329 (5)0.4835 (4)0.3108 (3)0.0256 (8)
H111.1510990.4578500.3196300.031*
C120.9076 (5)0.4341 (4)0.3573 (3)0.0231 (7)
C130.4921 (5)0.5789 (4)0.2586 (3)0.0238 (7)
H13A0.4234890.5352800.2963170.036*0.5
H13B0.4741980.6817570.2733330.036*0.5
H13C0.4545040.5371030.1929700.036*0.5
H13D0.4779720.6341470.2120970.036*0.5
H13E0.4272630.4876700.2350810.036*0.5
H13F0.4469560.6323230.3154440.036*0.5
C140.9594 (6)0.3416 (5)0.4217 (3)0.0335 (10)
H14A1.0861520.3494980.4380790.050*
H14B0.9250980.2422380.3911460.050*
H14C0.9007360.3727070.4778800.050*
C150.6750 (4)0.1938 (3)0.2063 (3)0.0182 (6)
C160.8932 (5)0.2184 (4)0.0958 (3)0.0223 (7)
C170.8685 (5)0.2968 (5)0.0294 (3)0.0268 (8)
C181.0081 (7)0.3038 (7)0.0215 (3)0.0468 (14)
H180.9982310.3567240.0669640.056*
C191.1612 (7)0.2343 (8)0.0066 (3)0.0505 (15)
H191.2552560.2415130.0414980.061*
C201.1796 (6)0.1548 (6)0.0582 (3)0.0365 (11)
H201.2845310.1061100.0662060.044*
C211.0446 (5)0.1458 (4)0.1116 (3)0.0267 (8)
C220.6990 (6)0.3677 (5)0.0129 (3)0.0314 (9)
H22A0.6611320.4185830.0723570.047*
H22B0.6099210.2953560.0199620.047*
H22C0.7156650.4353910.0243570.047*
C231.0591 (6)0.0627 (5)0.1833 (4)0.0386 (11)
H23A1.1628070.0043440.1768430.058*
H23B0.9548090.0006910.1751190.058*
H23C1.0690490.1284590.2449740.058*
H20.434 (8)0.372 (6)0.497 (4)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01269 (5)0.01191 (5)0.02260 (7)0.00027 (4)0.00389 (4)0.00688 (4)
Cl10.0335 (5)0.0139 (3)0.0412 (6)0.0005 (3)0.0197 (4)0.0019 (3)
N10.0123 (12)0.0144 (12)0.0263 (15)0.0002 (10)0.0036 (11)0.0097 (11)
N20.0271 (15)0.0177 (13)0.0174 (14)0.0097 (12)0.0016 (12)0.0046 (11)
N30.0285 (15)0.0171 (13)0.0179 (14)0.0074 (11)0.0034 (12)0.0077 (11)
N40.0175 (13)0.0155 (12)0.0247 (15)0.0017 (10)0.0043 (11)0.0030 (11)
C10.0181 (15)0.0157 (14)0.0176 (15)0.0041 (11)0.0017 (12)0.0082 (12)
C20.0158 (14)0.0186 (14)0.0178 (15)0.0061 (11)0.0010 (12)0.0085 (12)
C30.0204 (16)0.0249 (16)0.0177 (16)0.0078 (13)0.0011 (12)0.0101 (13)
C40.0199 (16)0.0233 (16)0.0264 (18)0.0028 (13)0.0016 (13)0.0159 (14)
C50.0199 (16)0.0153 (14)0.041 (2)0.0001 (12)0.0094 (15)0.0126 (15)
C60.0214 (16)0.0136 (14)0.035 (2)0.0003 (12)0.0100 (15)0.0068 (14)
C70.0257 (16)0.0146 (13)0.0127 (14)0.0069 (12)0.0013 (12)0.0041 (11)
C80.0237 (16)0.0138 (13)0.0150 (15)0.0029 (12)0.0024 (12)0.0037 (11)
C90.0280 (17)0.0181 (14)0.0154 (15)0.0044 (13)0.0055 (13)0.0054 (12)
C100.0248 (17)0.0261 (17)0.0211 (17)0.0098 (14)0.0033 (14)0.0076 (14)
C110.0210 (17)0.0272 (18)0.030 (2)0.0083 (14)0.0032 (14)0.0125 (16)
C120.0238 (17)0.0245 (16)0.0217 (17)0.0102 (14)0.0055 (14)0.0107 (14)
C130.0234 (17)0.0226 (16)0.0281 (19)0.0018 (14)0.0070 (15)0.0100 (15)
C140.0262 (19)0.039 (2)0.040 (2)0.0144 (17)0.0116 (17)0.025 (2)
C150.0154 (14)0.0140 (13)0.0248 (17)0.0000 (11)0.0043 (13)0.0036 (12)
C160.0201 (16)0.0214 (15)0.0216 (17)0.0060 (13)0.0092 (13)0.0040 (13)
C170.0255 (18)0.040 (2)0.0127 (16)0.0054 (16)0.0041 (13)0.0028 (15)
C180.033 (2)0.093 (4)0.0161 (19)0.002 (3)0.0097 (17)0.016 (2)
C190.029 (2)0.096 (5)0.024 (2)0.003 (3)0.0153 (18)0.006 (3)
C200.0187 (18)0.051 (3)0.031 (2)0.0007 (18)0.0075 (16)0.007 (2)
C210.0205 (17)0.0224 (16)0.032 (2)0.0028 (13)0.0060 (15)0.0046 (15)
C220.028 (2)0.048 (3)0.0192 (18)0.0027 (18)0.0010 (15)0.0124 (18)
C230.025 (2)0.028 (2)0.065 (3)0.0054 (16)0.007 (2)0.016 (2)
Geometric parameters (Å, º) top
Pt1—C151.910 (3)C11—C121.398 (5)
Pt1—C11.979 (3)C11—H110.9500
Pt1—N12.048 (3)C12—C141.504 (5)
Pt1—Cl12.3709 (9)C13—H13A0.9800
N1—C21.340 (5)C13—H13B0.9800
N1—C61.355 (4)C13—H13C0.9800
N2—C21.350 (4)C13—H13D0.9800
N2—C11.404 (4)C13—H13E0.9800
N2—H20.80 (6)C13—H13F0.9800
N3—C11.291 (4)C14—H14A0.9800
N3—C71.413 (4)C14—H14B0.9800
N4—C151.157 (5)C14—H14C0.9800
N4—C161.394 (4)C16—C211.396 (6)
C2—C31.405 (5)C16—C171.398 (6)
C3—C41.377 (5)C17—C181.394 (6)
C3—H30.9500C17—C221.505 (6)
C4—C51.401 (6)C18—C191.387 (8)
C4—H40.9500C18—H180.9500
C5—C61.369 (5)C19—C201.382 (8)
C5—H50.9500C19—H190.9500
C6—H60.9500C20—C211.394 (6)
C7—C121.401 (5)C20—H200.9500
C7—C81.408 (5)C21—C231.496 (7)
C8—C91.399 (5)C22—H22A0.9800
C8—C131.506 (5)C22—H22B0.9800
C9—C101.390 (6)C22—H22C0.9800
C9—H90.9500C23—H23A0.9800
C10—C111.389 (5)C23—H23B0.9800
C10—H100.9500C23—H23C0.9800
C15—Pt1—C198.97 (14)C11—C12—C14120.3 (4)
C15—Pt1—N1178.85 (14)C7—C12—C14120.7 (3)
C1—Pt1—N180.71 (12)C8—C13—H13A109.5
C15—Pt1—Cl185.69 (10)C8—C13—H13B109.5
C1—Pt1—Cl1175.33 (10)H13A—C13—H13B109.5
N1—Pt1—Cl194.63 (9)C8—C13—H13C109.5
C2—N1—C6119.7 (3)H13A—C13—H13C109.5
C2—N1—Pt1113.5 (2)H13B—C13—H13C109.5
C6—N1—Pt1126.8 (3)H13D—C13—H13E109.5
C2—N2—C1119.2 (3)H13D—C13—H13F109.5
C2—N2—H2125 (4)H13E—C13—H13F109.5
C1—N2—H2115 (4)C12—C14—H14A109.5
C1—N3—C7123.1 (3)C12—C14—H14B109.5
C15—N4—C16166.0 (4)H14A—C14—H14B109.5
N3—C1—N2114.0 (3)C12—C14—H14C109.5
N3—C1—Pt1134.9 (3)H14A—C14—H14C109.5
N2—C1—Pt1111.2 (2)H14B—C14—H14C109.5
N1—C2—N2115.2 (3)N4—C15—Pt1171.2 (3)
N1—C2—C3121.3 (3)N4—C16—C21117.0 (4)
N2—C2—C3123.4 (3)N4—C16—C17118.8 (4)
C4—C3—C2118.6 (3)C21—C16—C17124.2 (4)
C4—C3—H3120.7C18—C17—C16116.4 (4)
C2—C3—H3120.7C18—C17—C22121.9 (4)
C3—C4—C5119.7 (3)C16—C17—C22121.7 (3)
C3—C4—H4120.2C19—C18—C17120.8 (5)
C5—C4—H4120.2C19—C18—H18119.6
C6—C5—C4118.7 (3)C17—C18—H18119.6
C6—C5—H5120.6C20—C19—C18121.3 (4)
C4—C5—H5120.6C20—C19—H19119.4
N1—C6—C5122.0 (4)C18—C19—H19119.4
N1—C6—H6119.0C19—C20—C21120.2 (4)
C5—C6—H6119.0C19—C20—H20119.9
C12—C7—C8121.0 (3)C21—C20—H20119.9
C12—C7—N3119.4 (3)C20—C21—C16117.2 (4)
C8—C7—N3119.2 (3)C20—C21—C23122.2 (4)
C9—C8—C7118.4 (3)C16—C21—C23120.6 (4)
C9—C8—C13122.2 (3)C17—C22—H22A109.5
C7—C8—C13119.4 (3)C17—C22—H22B109.5
C10—C9—C8120.9 (3)H22A—C22—H22B109.5
C10—C9—H9119.5C17—C22—H22C109.5
C8—C9—H9119.5H22A—C22—H22C109.5
C11—C10—C9120.0 (3)H22B—C22—H22C109.5
C11—C10—H10120.0C21—C23—H23A109.5
C9—C10—H10120.0C21—C23—H23B109.5
C10—C11—C12120.5 (4)H23A—C23—H23B109.5
C10—C11—H11119.7C21—C23—H23C109.5
C12—C11—H11119.7H23A—C23—H23C109.5
C11—C12—C7119.0 (3)H23B—C23—H23C109.5
C7—N3—C1—N2172.0 (3)C8—C9—C10—C111.8 (6)
C7—N3—C1—Pt18.2 (6)C9—C10—C11—C123.1 (6)
C2—N2—C1—N3175.3 (3)C10—C11—C12—C71.2 (6)
C2—N2—C1—Pt14.9 (4)C10—C11—C12—C14179.6 (4)
C6—N1—C2—N2179.5 (3)C8—C7—C12—C112.0 (6)
Pt1—N1—C2—N22.6 (4)N3—C7—C12—C11170.8 (3)
C6—N1—C2—C32.1 (5)C8—C7—C12—C14177.2 (4)
Pt1—N1—C2—C3175.9 (3)N3—C7—C12—C1410.0 (5)
C1—N2—C2—N15.0 (5)C15—N4—C16—C219.9 (16)
C1—N2—C2—C3173.4 (3)C15—N4—C16—C17169.7 (13)
N1—C2—C3—C40.5 (5)N4—C16—C17—C18177.9 (4)
N2—C2—C3—C4178.8 (4)C21—C16—C17—C181.6 (6)
C2—C3—C4—C51.0 (6)N4—C16—C17—C223.0 (6)
C3—C4—C5—C61.0 (6)C21—C16—C17—C22177.4 (4)
C2—N1—C6—C52.1 (6)C16—C17—C18—C190.7 (8)
Pt1—N1—C6—C5175.6 (3)C22—C17—C18—C19178.3 (5)
C4—C5—C6—N10.6 (6)C17—C18—C19—C200.8 (9)
C1—N3—C7—C1280.3 (5)C18—C19—C20—C211.5 (8)
C1—N3—C7—C8106.8 (4)C19—C20—C21—C160.7 (7)
C12—C7—C8—C93.3 (5)C19—C20—C21—C23179.2 (5)
N3—C7—C8—C9169.5 (3)N4—C16—C21—C20178.6 (3)
C12—C7—C8—C13175.0 (3)C17—C16—C21—C201.0 (6)
N3—C7—C8—C1312.2 (5)N4—C16—C21—C231.2 (6)
C7—C8—C9—C101.4 (5)C17—C16—C21—C23179.2 (4)
C13—C8—C9—C10176.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 benzene ring attached to the N3 atom.
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.80 (6)2.15 (6)2.943 (4)173 (6)
C6—H6···Cl10.952.703.308 (4)123
C13—H13A···N30.982.362.848 (5)110
C22—H22B···Cl1ii0.982.783.660 (5)150
C3—H3···Cg3i0.952.993.898 (4)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
Interatomic contacts (Å) top
ContactDistanceSymmetry operation
H6···H13B2.09x, -1 + y, z
H13A···H112.32-1 + x, y, z
H19···Cl12.962 - x, -y, -z
H22B···Cl12.781 - x, -y, -z
H2···N32.151 - x, 1 - y, 1 - z
H14B···H42.591 - x, -y, 1 - z
H4···C42.98-x, -y, 1 - z
H18···H102.462 - x, 1 - y, -z
H14C···C142.942 - x, 1 - y, 1 - z
 

Acknowledgements

The author's contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, AAS, EAD, ASK and ASN; X-ray analysis, VNK and MA; writing (review and editing of the manuscript) MMG, MA and AB; funding acquisition, NQS, EVD and MRK; supervision, NQS and AGT.

Funding information

This work was performed with the support of the Russian Science Foundation (award No. 25–23-00043).

References

First citationAlder, R. W., Allen, P. R., Murray, M. & Orpen, A. G. (1996). Angew. Chem. Int. Ed. Engl. 35, 1121–1123.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGee, J. C., Fuller, B. A., Lockett, H.-M., Sedghi, G., Robertson, C. M. & Luzyanin, K. V. (2018). Chem. Commun. 54, 9450–9453.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeck, R. F. & Nolley, J. P. (1972). J. Org. Chem. 37, 2320–2322.  CrossRef CAS Web of Science Google Scholar
First citationKinzhalov, M. A. & Luzyanin, K. V. (2022). Russ. J. Inorg. Chem. 67, 48–90.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLuzyanin, K. V., Pombeiro, A. J. L., Haukka, M. & Kukushkin, V. Yu. (2008). Organometallics 27, 5379–5389.  CSD CrossRef Google Scholar
First citationLuzyanin, K. V., Tskhovrebov, A. G., Carias, M. C., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2009). Organometallics 28, 6559–6566.  CSD CrossRef Google Scholar
First citationMichelin, R. A., Pombeiro, A. J. L. & Guedes da Silva, M. F. (2001). Coord. Chem. Rev. 218, 75–112.  CrossRef Google Scholar
First citationMikhaylov, V. N., Sorokoumov, V. N., Novikov, A. S., Melnik, M. V., Tskhovrebov, A. G. & Balova, I. A. (2020). J. Organomet. Chem. 912, 121174.  CSD CrossRef Google Scholar
First citationMiyaura, N., Yamada, K. & Suzuki, A. (1979). Tetrahedron Lett. 20, 3437–3440.  CrossRef Web of Science Google Scholar
First citationMizoroki, T., Mori, T. & Ozaki, A. (1971). Bull. Chem. Soc. Jpn 44, 581–581.  CrossRef Google Scholar
First citationRepina, O. V., Kubasov, A. S., Vologzhanina, A. V., Borisov, A. V., Kritchenkov, I. S., Voroshilkina, K. M., Nazarov, A. A., Shchevnikov, D. M., Grudova, M. V., Gomila, R. M., Frontera, A., Nenajdenko, V. G., Kritchenkov, A. S. & Tskhovrebov, A. G. (2025). Int. J. Mol. Sci. https://doi. org/10.3390/ijms26020483.  Google Scholar
First citationShaw, J. L., Dockery, C. R., Lewis, S. E., Harris, L. & Bettis, R. (2009). J. Chem. Educ. 86, 1416–1418.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, A. (1999). J. Organomet. Chem. 576, 147–168.  Web of Science CrossRef CAS Google Scholar
First citationTskhovrebov, A., Solari, E., Scopelliti, R. & Severin, K. (2013). Inorg. Chem. 52, 11688–11690.  CSD CrossRef PubMed Google Scholar
First citationTskhovrebov, A. G., Goddard, R. & Fürstner, A. (2018). Angew. Chem. Int. Ed. 57, 8089–8094.  CSD CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Luzyanin, K. V., Dolgushin, F. M., Guedes da Silva, M. F. C., Pombeiro, A. J. L. & Kukushkin, V. Y. (2011). Organometallics 30, 3362–3370.  CrossRef Google Scholar
First citationTskhovrebov, A. G., Luzyanin, K. V., Haukka, M. & Kukushkin, V. Y. (2012). J. Chem. Crystallogr. 42, 1170–1175.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds