research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of bis­­[2-amino-5-(ethyl­sulfan­yl)-1,3,4-thia­diazol-3-ium] bis­­(perchlorato-κO)bis­­(picolinato-κ2N,O)copper(II)

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, bPhysical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India, cAcademy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru, Nagar, Ghaziabad, Uttar Pradesh 201002, India, dKarakalpak State University, 1 Ch. Abdirov St. Nukus, 230112, Uzbekistan, and eTermez University of Economics and Service, 41B Farovon St., Termiz, 190111, Uzbekistan
*Correspondence e-mail: [email protected]

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 19 May 2025; accepted 2 June 2025; online 12 June 2025)

In the title coordination complex, (C4H8N3S2)2[Cu(C6H4NO2)2(ClO4)2], the CuII center exhibits a distorted octa­hedral geometry with an equatorial plane formed by two bidentate picolinato ligands and axial coordination from two perchlorate anions, consistent with a Jahn–Teller distortion. The crystal structure is further consolidated by a network of hydrogen bonds involving the thia­diazole-based cations, which reside in the outer coordination sphere in a unique protonated state. Hirshfeld surface analysis reveals that O⋯H/H⋯O contacts dominate the inter­molecular inter­actions, contributing significantly to the crystal packing.

1. Chemical context

The coordination chemistry of transition-metal complexes with heterocyclic ligands has attracted substantial attention because of their diverse applications in catalysis, medicinal chemistry, and materials science. Among such ligands, picolinate anions and 1,3,4-thia­diazole derivatives are especially prominent due to their strong metal-binding abilities and biological relevance. Picolinic acid and its derivatives are well-known for their bidentate coordination modes, often employed in the design of metal–organic complexes to modulate metal center reactivity and bioactivity (Lavrenova et al., 2023[Lavrenova, L. G., Sukhikh, T. S., Glinskaya, L. A., Trubina, S. V., Zvereva, V. V., Lavrov, A. N., Klyushova, L. S. & Artem'ev, A. V. (2023). Int. J. Mol. Sci. 24, 13024.]). Similarly, 1,3,4-thia­diazole derivatives are recognized for their wide spectrum of biological properties, including anti­microbial, anti­cancer, and anti­diabetic activities (Hu et al., 2014[Hu, Y., Li, C. Y., Wang, X. M., Yang, Y. H. & Zhu, H. L. (2014). Chem. Rev. 114, 5572-5610.]; Gond et al., 2022[Gond, M. K., Pandey, S. K., Chandra, S., Tiwari, N., Bharty, M. K., Maiti, B., Katiyar, D. & Butcher, R. J. (2022). J. Mol. Struct. 1267, 133586.]; Dani et al., 2015[Dani, R. K., Bharty, M. K., Prakash, O., Singh, R. K., Prashanth, B., Singh, S. & Singh, N. K. (2015). J. Coord. Chem. 68, 2666-2681.]). These heterocycles, containing electron-donating nitro­gen and sulfur atoms, readily coordinate with transition metals, thereby influencing the physicochemical and pharmacological properties of the resulting complexes (Kadirova et al., 2022[Kadirova, S., Torambetov, B., Razzokova, S., Uzakbergenova, Z., Abdreymov, A., Raxmonova, D. & Parpiev, N. (2022). AIP Conf. Proc. 2471, 050034.]; Atashov et al., 2024[Atashov, A., Azamova, M., Ziyatov, D., Uzakbergenova, Z., Torambetov, B., Holczbauer, T., Ashurov, J. & Kadirova, S. (2024). Acta Cryst. E80, 408-412.]). Transition metals such as zinc(II), nickel(II), and cobalt(II) have been extensively studied in coordination with thia­diazole-based ligands. Zinc(II) complexes have shown promise in drug delivery and enzyme mimicry (Shen et al., 2004[Shen, X. Q., Zhong, H. J., Zheng, H., Zhang, H. Y., Zhao, G. H., Wu, Q. A., Mao, H., Wang, E. & Zhu, Y. (2004). Polyhedron 23, 1851-1857.]), while nickel(II) and cobalt(II) derivatives exhibit significant catalytic activity and electrochemical potential (Song et al., 2012[Song, Y., Ji, Y.-F., Kang, M.-Y. & Liu, Z.-L. (2012). Acta Cryst. E68, m772.]; Ishankhodzhaeva et al., 2001[Ishankhodzhaeva, M. M., Kadyrova, S. A., Talipov, S. A., Ibragimov, B. T., Fun, K. K., Sundara Razh, S. S. & Parpiev, N. A. (2001). Russ. J. Gen. Chem. 71, 1066-1069.]; Ma et al., 2018[Ma, Y., Mu, B. & Huang, R. D. (2018). Transit. Met. Chem. 43, 103-113.]; Nuralieva et al., 2025[Nuralieva, G., Alieva, M., Torambetov, B., Christopher Leslee, D. B., Senthilkumar, B., Kaur, S., Dabke, N. D., Vanka, K., Ashurov, J., Kadirova, Sh. & Gonnade, R. (2025). J. Mol. Struct. 1338, 142274.]). These findings underscore the versatility of thia­diazole coordination chemistry across various metal centers. Among transition metals, copper(II) occupies a unique position due to its redox flexibility and biological significance. Copper(II) complexes incorporating 1,3,4-thia­diazole ligands have been investigated extensively for their enhanced anti­microbial and anti­cancer properties compared to the free ligands (Karcz et al., 2020[Karcz, D., Matwijczuk, A., Kamiński, D., Creaven, B., Ciszkowicz, E., Lecka-Szlachta, K. & Starzak, K. (2020). Int. J. Mol. Sci. 21, 5735.]; Heidari et al., 2020[Heidari, L., Ghassemzadeh, M., Fenske, D., Fuhr, O., Saeidifar, M. & Mohsenzadeh, F. (2020). New J. Chem. 44, 16769-16775.]). The synergistic effect between the copper center and heterocyclic ligand often leads to improved biological efficacy, making them attractive scaffolds for drug development (Gurbanov et al., 2023[Gurbanov, A. V., Aliyeva, V. A., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. (2023). Cryst. Growth Des. 23, 7335-7344.]; Camí et al., 2005[Camí, G. E., Liu González, M., Sanz Ruiz, F. & Pedregosa, J. C. (2005). J. Phys. Chem. Solids 66, 936-945.]).

[Scheme 1]

In this context, we present the synthesis, structural characterization, and Hirshfeld surface analysis of the complex (HL)2[Cu(Pic)2(ClO4)2], where Pic is the picolinate anion and HL is the 2-amino-5-ethyl­thio-1,3,4-thia­diazol-3-ium cation. The structural investigation, carried out using single-crystal X-ray diffraction (SC-XRD), aimed to elucidate the coordination environment, inter­molecular inter­actions, and potential implications for biological activity.

2. Structural commentary

Single-crystal X-ray diffraction analysis reveals that (HL)2[Cu(Pic)2(ClO4)2] crystallizes in the triclinic P[\overline{1}] space group. The asymmetric unit consists of half of a CuII cation, one picolinate anion, one perchlorate anion and one protonated 2-amino-5-ethyl­thio-1,3,4-thia­diazole (HL) ligand. The CuII cation is positioned on an inversion center and adopts an axially elongated octa­hedral coordination geometry (Fig. 1[link]). The equatorial plane consists of two nitro­gen atoms (N1) and two carboxyl­ate oxygen atoms from symmetry-related picolinate ligands, forming a nearly planar Cu(pic)2 moiety. The axial sites are occupied by two perchlorate anions, each weakly coordinating to the CuII center. The elongated Cu1—O6 distance of 2.532 (2) Å exceeds the typical Cu—O coordination bond range (1.8–2.0 Å) (Veidis et al., 1969[Veidis, M. V., Schreiber, G. H., Gough, T. E. & Palenik, G. J. (1969). J. Am. Chem. Soc. 91, 1859-1860.]), consistent with a Jahn–Teller distortion along the O6–Cu–O6 axis. The Cu(Pic)2 moiety is nearly planar, with the root-mean-square (r.m.s.) deviations of the oxygen atoms being 0.039 Å for O1 and 0.073 Å for O2, indicating a high degree of planarity in this coordination environment. The geometry and bond lengths of the coordinated picolinato ligands are characteristic of a deprotonated carboxyl­ate group (Fábry, 2018[Fábry, J. (2018). Acta Cryst. E74, 1344-1357.]), with the coordinated C—O bond length [1.281 (3) Å] being slightly longer than the C=O bond [1.231 (3) Å].

[Figure 1]
Figure 1
Mol­ecular structure of the title copper(II) complex showing the coordination environment around the CuII center. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by blue dashed lines.

3. Supra­molecular features

In the extended structure, the [Cu(pic)2(ClO4)2]2− units are assembled into a supra­molecular network through hydrogen-bonding inter­actions with the HL protonated thia­diazole cations (Fig. 2[link], Table 1[link]). The crystal packing is governed by two distinct types of hydrogen bonds: inter­molecular and intra­molecular. Inter­molecular hydrogen bonds are observed between the O3 atom of the perchlorate anion and the amine hydrogen atom of the thia­diazole cation (O3⋯H4B = 2.21 Å), as well as between the O5 atom of the perchlorate anion and the hydrogen atom of the methyl group of the thia­diazole cation (O5⋯H10B = 2.32 Å). Intra­molecular hydrogen bonds occur between the protonated H2A atom and atom H4A of the thiadiazole ring with carboxyl­ate atoms O2 and O1 in the pic ligands (H2A⋯O2 = 1.80 Å, H4A⋯O1 = 2.14 Å), forming eight-membered ring motifs with an R22(8) graph set (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). These non-covalent inter­actions play a crucial role in the cohesion of the three-dimensional crystal architecture.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1 0.86 2.14 2.940 (3) 156
N4—H4A⋯O5 0.86 2.59 2.951 (3) 106
N4—H4B⋯O3i 0.86 2.21 2.981 (3) 150
N4—H4B⋯O6i 0.86 2.57 3.005 (3) 113
N2—H2⋯O2 0.86 1.81 2.656 (3) 170
Symmetry code: (i) [x-1, y, z].
[Figure 2]
Figure 2
Packing diagram of the title complex showing inter­molecular hydrogen bonding (blue dashed lines) between the thia­diazole cation and coordinated perchlorate anions, contributing to the supra­molecular architecture. Different mol­ecular fragments are color-coded for clarity. Displacement ellipsoids are drawn at the 50% probability level.

4. Hirshfeld Surface Analysis

Hirshfeld surface (HS) analysis was performed and two-dimensional fingerprint (FP) plots were generated using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to systematically examine the inter­molecular inter­actions governing the crystal packing. In the HS diagram, contacts with inter­atomic distances equal to the sum of van der Waals radii are represented in white, while those shorter and longer than this threshold appear in red and blue, respectively. The FP plots provide a qu­anti­tative assessment of the relative contributions of distinct inter­molecular inter­actions. These plots were generated based on the distances de (the distance from the HS to the nearest external atom) and di (the distance from the HS to the nearest inter­nal atom). Prior to HS calculations, O—H bond lengths were standardized to neutron diffraction values (0.983 Å) to ensure computational accuracy. HS analysis was conducted separately for the cationic and anionic motifs to delineate their individual contributions to the overall crystal packing. The inter­molecular O⋯H/H⋯O inter­actions were found to be predominant, contributing 22% to the HS area in the thia­diazole (HL) cation and 63% in the picolinate/perchlorate anions. Additionally, H⋯H contacts accounted 33% for thia­diazole (HL) cation and 13% for picolinate/perchlorate anions. The FP plots (Fig. 3[link]) further elucidate these contributions. The HS analysis unequivocally reveals that the title compound is primarily consolidated by a network of O—H⋯O hydrogen bonds, which facilitate the formation of an extended three-dimensional supra­molecular architecture in the solid state.

[Figure 3]
Figure 3
Different views of the Hirshfeld surfaces (a) thia­diazole (HL) cation, (b) two-dimensional fingerprint plots of the HL cation, (c) picolinate/perchlorate anions and (d) two-dimensional fingerprint plots of the sulfate anion and picolinate/perchlorate anions.

5. Database survey

A survey conducted using ConQuest software (CSD, Version 5.46, November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) within the Cambridge Structural Database revealed 311 metal complex crystal structures in which two picolinate anions are coordinated bidentately to a metal center. Among these, only two structures [NEBQAP (Csonka et al., 2018[Csonka, R., Lakk-Bogáth, D., Gömöry, Á., Drahos, L., Giorgi, M., Speier, G., Szilágyi, R. K. & Kaizer, J. (2018). Inorg. Chim. Acta 472, 307-319.]) and TAFNAQ (Guo et al., 2003[Guo, G. H., Guo, G. C., Zhou, G. W., Wang, M. S., Cai, L. Z., Wu, A. Q. & Huang, J. S. (2003). Chin. J. Inorg. Chem. 19, 95-98.])] feature a perchlorate anion directly coordinated to a copper(II) atom. Additionally, 22 organometallic crystal structures containing 2-amino-5-mercapto-1,3,4-thia­diazole derivatives have been reported, and in all cases, the thia­diazole ligand binds to the metal through the nitro­gen atom at the 3-position [CADMIH (Heidari et al., 2020[Heidari, L., Ghassemzadeh, M., Fenske, D., Fuhr, O., Saeidifar, M. & Mohsenzadeh, F. (2020). New J. Chem. 44, 16769-16775.]); CEDSEM (Slyvka, 2017a[Slyvka, Y. (2017a). Visnyk Lviv Univ. Ser. Chem. 58, 172.]); ESIBUG (Slyvka et al., 2021[Slyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys'kiv, M. (2021). Acta Cryst. C77, 249-256.]); FEXPUX (Zou et al., 2023[Zou, Y., Gao, Q., Sun, N., Han, S., Li, X. & Wang, G. (2023). Chin. Chem. Lett. 34, 107390.]); GAKMOX (Mu et al., 2016[Mu, B., Wang, Q. & Huang, R. (2016). RSC Adv. 6, 12114-12122.]); HAJLUC, HAJMAJ and HAJMIR (Ardan et al., 2017[Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk`yanov, M., Lis, T. & Mys`kiv, M. (2017). Acta Cryst. C73, 36-46.]); HONDOG (Torambetov et al., 2019[Torambetov, B., Kadirova, S., Toshmurodov, T., Ashurov, J. M., Parpiev, N. A. & Ziyaev, A. (2019). Acta Cryst. E75, 1239-1242.]); JIYTEU (Gurbanov et al., 2023[Gurbanov, A. V., Aliyeva, V. A., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. (2023). Cryst. Growth Des. 23, 7335-7344.]); JIZKEK and JIZKEK01 (Soudani et al., 2014[Soudani, S., Zeller, M., Wenger, E., Jelsch, C., Lefebvre, F. & Nasr, C. B. (2014). J. Mol. Struct. 1075, 442-449.]); JOJLUT (Kadirova et al., 2022[Kadirova, S., Torambetov, B., Razzokova, S., Uzakbergenova, Z., Abdreymov, A., Raxmonova, D. & Parpiev, N. (2022). AIP Conf. Proc. 2471, 050034.]); LIFCEK (Hu et al.., 2012a[Hu, B., Yao, X.-Q., Lu, Y.-Y., Zhou, Y.-M. & Wei, T.-B. (2012). Wuji Huaxue Xuebao, 28, 2581.]); LOKYIX (Atashov et al., 2024[Atashov, A., Azamova, M., Ziyatov, D., Uzakbergenova, Z., Torambetov, B., Holczbauer, T., Ashurov, J. & Kadirova, S. (2024). Acta Cryst. E80, 408-412.]); ODAPOC (Slyvka et al., 2022[Slyvka, Y. I., Goreshnik, E., Pokhodylo, N. T. & Mys'kiv, M. G. (2022). J. Chem. Crystallogr. 52, 205-213.]); TEGWIN (Hu et al., 2012b>[Hu, S., Yu, F.., Zhang, P. & Zhou, A.. (2012). Eur. J. Inorg. Chem. pp. 3669-3673.]); XIGWEQ, XIGWIU, XIGWOA and XIGWUG (Camí et al., 2005[Camí, G. E., Liu González, M., Sanz Ruiz, F. & Pedregosa, J. C. (2005). J. Phys. Chem. Solids 66, 936-945.]); YEBNAX (Slyvka, 2017b[Slyvka, Y. I. (2017b). J. Struct. Chem. 58, 356-357.]). Remarkably, no crystal structures have been reported in which the 1,3,4-thia­diazole-based ligand exists in a protonated form and is located in the outer coordination sphere of the complex as a cation. These observations underscore the novelty of the structural motif reported in the present work.

6. Synthesis and crystallization

Cu(ClO4)2·6H2O (0.185 g, 0.5 mmol) and picolinic acid (0.123 g, 1 mmol) were each dissolved separately in methanol (3 mL). The two solutions were then mixed and stirred at 323 K for 1 h. A solution of L (2-amino-5-ethyl­thio-1,3,4-thia­diazole) was prepared by dissolving L (0.161 g, 1 mmol) in 3 mL of methanol. This solution was added dropwise to the previously prepared copper(II) perchlorate–picolinic acid solution, resulting in the formation of a blue solution. Upon continuous stirring at 323 K for 4 h, the color of the reaction mixture gradually changed to green. The solution was then filtered and left to crystallize. Single crystals of the title complex, suitable for X-ray diffraction analysis, were obtained by slow evaporation of the filtrate over a period of 7 days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(N, C) or 1.5Ueq(C-meth­yl). The ethyl group of the thia­diazole mol­ecule is disordered over two positions, C9 and C10, with equal occupancies.

Table 2
Experimental details

Crystal data
Chemical formula (C4H8N3S2)2[Cu(C6H4NO2)2(ClO4)2]
Mr 828.13
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 299
a, b, c (Å) 6.3100 (2), 9.8179 (2), 13.3493 (4)
α, β, γ (°) 90.522 (1), 98.818 (1), 99.478 (1)
V3) 805.57 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.17
Crystal size (mm) 0.11 × 0.1 × 0.06
 
Data collection
Diffractometer Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.633, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 28717, 3315, 2937
Rint 0.057
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.03
No. of reflections 3315
No. of parameters 233
No. of restraints 24
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.30
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis[2-amino-5-(ethylsulfanyl)-1,3,4-thiadiazol-3-ium] bis(perchlorato-κO)bis(picolinato-κ2N,O)copper(II) top
Crystal data top
(C4H8N3S2)2[Cu(C6H4NO2)2(ClO4)2]Z = 1
Mr = 828.13F(000) = 420
Triclinic, P1Dx = 1.707 Mg m3
a = 6.3100 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8179 (2) ÅCell parameters from 9876 reflections
c = 13.3493 (4) Åθ = 2.6–26.4°
α = 90.522 (1)°µ = 1.17 mm1
β = 98.818 (1)°T = 299 K
γ = 99.478 (1)°Block, green
V = 805.57 (4) Å30.11 × 0.1 × 0.06 mm
Data collection top
Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
diffractometer
2937 reflections with I > 2σ(I)
Detector resolution: 7.39 pixels mm-1Rint = 0.057
φ and ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.633, Tmax = 0.745k = 1212
28717 measured reflectionsl = 1616
3315 independent reflections
Refinement top
Refinement on F224 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.4379P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3315 reflectionsΔρmax = 0.40 e Å3
233 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.5000000.5000000.0000000.04229 (13)
S10.22380 (12)0.45846 (8)0.36426 (6)0.0638 (2)
S20.33608 (16)0.66980 (10)0.50029 (7)0.0859 (3)
Cl10.55824 (9)0.20197 (6)0.16167 (5)0.05452 (17)
O10.3708 (2)0.55987 (16)0.11468 (13)0.0472 (4)
O20.4332 (3)0.72184 (19)0.23898 (14)0.0593 (5)
O30.7223 (4)0.1767 (2)0.24227 (18)0.0776 (6)
O40.4945 (4)0.0857 (2)0.0948 (2)0.0889 (7)
O50.3737 (4)0.2359 (3)0.1990 (2)0.0906 (7)
O60.6536 (3)0.3183 (2)0.10864 (18)0.0729 (6)
N30.0062 (4)0.7053 (2)0.39137 (18)0.0620 (6)
N40.0747 (4)0.4205 (3)0.24606 (18)0.0657 (6)
H4A0.1891530.4495540.2196410.079*
H4B0.0088290.3366850.2343880.079*
N10.7410 (3)0.65204 (18)0.05284 (14)0.0404 (4)
N20.0878 (3)0.6329 (2)0.32667 (16)0.0558 (5)
H20.2002390.6711030.3018870.067*
C10.6886 (3)0.7281 (2)0.12672 (16)0.0400 (4)
C20.8134 (4)0.8502 (2)0.16490 (19)0.0488 (5)
H2A0.7723260.9006720.2158210.059*
C31.0027 (4)0.8970 (3)0.1258 (2)0.0541 (6)
H31.0895720.9804440.1492720.065*
C41.0600 (4)0.8186 (3)0.0522 (2)0.0521 (6)
H41.1881090.8472960.0263280.063*
C50.9263 (3)0.6967 (2)0.01687 (18)0.0471 (5)
H50.9658210.6439830.0332730.057*
C60.4818 (4)0.6673 (2)0.16415 (17)0.0434 (5)
C70.0006 (4)0.5040 (3)0.30408 (18)0.0503 (5)
C80.1698 (4)0.6261 (3)0.4178 (2)0.0572 (6)
C90.218 (3)0.8510 (10)0.5248 (9)0.089 (3)0.5
H9B0.0631950.8565230.5467300.106*0.5
H9A0.2364350.8973430.4609170.106*0.5
C100.299 (2)0.9253 (9)0.5957 (8)0.124 (4)0.5
H10A0.2321391.0206800.5969170.186*0.5
H10B0.2655970.8886420.6616330.186*0.5
H10C0.4533770.9177100.5774370.186*0.5
C9A0.297 (3)0.869 (2)0.4976 (17)0.180 (9)0.5
H9AA0.2414570.9062020.4379620.215*0.5
H9AB0.4248550.9064730.5082590.215*0.5
C10A0.135 (3)0.878 (2)0.5860 (14)0.169 (6)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0311 (2)0.0428 (2)0.0522 (2)0.00334 (14)0.01479 (15)0.00666 (16)
S10.0555 (4)0.0684 (4)0.0696 (4)0.0064 (3)0.0344 (3)0.0101 (3)
S20.0874 (6)0.0956 (6)0.0854 (6)0.0158 (5)0.0478 (5)0.0145 (5)
Cl10.0440 (3)0.0499 (3)0.0709 (4)0.0048 (2)0.0168 (3)0.0048 (3)
O10.0375 (8)0.0445 (8)0.0598 (9)0.0041 (6)0.0203 (7)0.0047 (7)
O20.0535 (10)0.0640 (11)0.0612 (10)0.0048 (8)0.0277 (8)0.0129 (8)
O30.0809 (14)0.0635 (12)0.0845 (14)0.0103 (10)0.0026 (11)0.0113 (10)
O40.0774 (15)0.0731 (14)0.1099 (18)0.0060 (11)0.0173 (13)0.0357 (13)
O50.0708 (14)0.0922 (16)0.123 (2)0.0205 (12)0.0520 (14)0.0009 (14)
O60.0512 (11)0.0727 (12)0.0931 (15)0.0042 (9)0.0114 (10)0.0221 (11)
N30.0627 (14)0.0594 (13)0.0663 (14)0.0038 (10)0.0249 (11)0.0047 (10)
N40.0539 (13)0.0712 (14)0.0735 (15)0.0049 (11)0.0320 (11)0.0152 (12)
N10.0308 (8)0.0420 (9)0.0477 (10)0.0006 (7)0.0104 (7)0.0008 (7)
N20.0483 (11)0.0608 (12)0.0595 (12)0.0003 (9)0.0222 (10)0.0002 (10)
C10.0336 (10)0.0408 (10)0.0459 (11)0.0036 (8)0.0104 (8)0.0037 (9)
C20.0479 (13)0.0439 (12)0.0541 (13)0.0015 (9)0.0137 (10)0.0053 (10)
C30.0463 (13)0.0447 (12)0.0662 (15)0.0089 (10)0.0115 (11)0.0027 (11)
C40.0361 (11)0.0539 (13)0.0639 (14)0.0057 (9)0.0147 (10)0.0025 (11)
C50.0343 (11)0.0526 (12)0.0543 (13)0.0006 (9)0.0143 (9)0.0026 (10)
C60.0379 (11)0.0455 (11)0.0484 (12)0.0040 (9)0.0152 (9)0.0027 (9)
C70.0390 (12)0.0634 (14)0.0485 (12)0.0019 (10)0.0143 (10)0.0012 (10)
C80.0541 (14)0.0659 (15)0.0543 (14)0.0088 (12)0.0187 (11)0.0031 (12)
C90.127 (7)0.068 (4)0.079 (5)0.030 (4)0.030 (5)0.018 (4)
C100.186 (10)0.082 (5)0.125 (7)0.023 (6)0.089 (7)0.013 (5)
C9A0.159 (12)0.198 (12)0.192 (12)0.038 (8)0.054 (8)0.039 (8)
C10A0.175 (12)0.194 (13)0.141 (11)0.025 (11)0.041 (10)0.023 (10)
Geometric parameters (Å, º) top
Cu1—O1i1.9693 (15)N1—C51.341 (3)
Cu1—O11.9693 (15)N2—H20.8600
Cu1—N11.9854 (17)N2—C71.307 (3)
Cu1—N1i1.9854 (17)C1—C21.368 (3)
S1—C71.731 (2)C1—C61.503 (3)
S1—C81.748 (3)C2—H2A0.9300
S2—C81.730 (3)C2—C31.387 (3)
S2—C91.818 (10)C3—H30.9300
S2—C9A1.93 (2)C3—C41.369 (4)
Cl1—O31.428 (2)C4—H40.9300
Cl1—O41.408 (2)C4—C51.379 (3)
Cl1—O51.421 (2)C5—H50.9300
Cl1—O61.444 (2)C9—H9B0.9700
O1—C61.281 (3)C9—H9A0.9700
O2—C61.231 (3)C9—C101.394 (12)
N3—N21.374 (3)C10—H10A0.9600
N3—C81.284 (3)C10—H10B0.9600
N4—H4A0.8600C10—H10C0.9600
N4—H4B0.8600C9A—H9AA0.9700
N4—C71.310 (3)C9A—H9AB0.9700
N1—C11.344 (3)C9A—C10A1.43 (2)
O1i—Cu1—O1180.0C4—C3—H3120.4
O1—Cu1—N1i97.01 (7)C3—C4—H4120.3
O1—Cu1—N182.99 (7)C3—C4—C5119.5 (2)
O1i—Cu1—N1i82.99 (7)C5—C4—H4120.3
O1i—Cu1—N197.01 (7)N1—C5—C4121.8 (2)
N1i—Cu1—N1180.0N1—C5—H5119.1
C7—S1—C887.51 (12)C4—C5—H5119.1
C8—S2—C999.3 (4)O1—C6—C1115.90 (19)
C8—S2—C9A103.8 (7)O2—C6—O1125.3 (2)
O3—Cl1—O6106.67 (13)O2—C6—C1118.8 (2)
O4—Cl1—O3110.34 (15)N4—C7—S1124.9 (2)
O4—Cl1—O5109.73 (15)N2—C7—S1110.12 (18)
O4—Cl1—O6109.64 (16)N2—C7—N4125.0 (2)
O5—Cl1—O3111.56 (16)S2—C8—S1118.33 (16)
O5—Cl1—O6108.82 (14)N3—C8—S1115.4 (2)
C6—O1—Cu1114.18 (13)N3—C8—S2126.3 (2)
C8—N3—N2109.2 (2)S2—C9—H9B107.8
H4A—N4—H4B120.0S2—C9—H9A107.8
C7—N4—H4A120.0H9B—C9—H9A107.1
C7—N4—H4B120.0C10—C9—S2118.0 (9)
C1—N1—Cu1111.77 (13)C10—C9—H9B107.8
C5—N1—Cu1129.29 (15)C10—C9—H9A107.8
C5—N1—C1118.30 (19)C9—C10—H10A109.5
N3—N2—H2121.1C9—C10—H10B109.5
C7—N2—N3117.7 (2)C9—C10—H10C109.5
C7—N2—H2121.1H10A—C10—H10B109.5
N1—C1—C2122.9 (2)H10A—C10—H10C109.5
N1—C1—C6114.28 (18)H10B—C10—H10C109.5
C2—C1—C6122.8 (2)S2—C9A—H9AA113.7
C1—C2—H2A120.8S2—C9A—H9AB113.7
C1—C2—C3118.4 (2)H9AA—C9A—H9AB110.9
C3—C2—H2A120.8C10A—C9A—S289.9 (15)
C2—C3—H3120.4C10A—C9A—H9AA113.7
C4—C3—C2119.1 (2)C10A—C9A—H9AB113.7
Cu1—O1—C6—O2179.2 (2)C2—C3—C4—C51.5 (4)
Cu1—O1—C6—C10.1 (2)C3—C4—C5—N10.2 (4)
Cu1—N1—C1—C2170.09 (18)C5—N1—C1—C21.6 (3)
Cu1—N1—C1—C610.1 (2)C5—N1—C1—C6178.19 (19)
Cu1—N1—C5—C4168.70 (18)C6—C1—C2—C3179.4 (2)
N3—N2—C7—S10.7 (3)C7—S1—C8—S2178.53 (18)
N3—N2—C7—N4178.0 (3)C7—S1—C8—N31.2 (2)
N1—C1—C2—C30.3 (4)C8—S1—C7—N4177.7 (3)
N1—C1—C6—O16.9 (3)C8—S1—C7—N21.0 (2)
N1—C1—C6—O2172.3 (2)C8—S2—C9—C10175.6 (12)
N2—N3—C8—S11.0 (3)C8—N3—N2—C70.2 (3)
N2—N3—C8—S2178.7 (2)C9—S2—C8—S1176.8 (5)
C1—N1—C5—C41.3 (3)C9—S2—C8—N33.5 (6)
C1—C2—C3—C41.2 (4)C9A—S2—C8—S1158.3 (6)
C2—C1—C6—O1173.3 (2)C9A—S2—C8—N322.0 (7)
C2—C1—C6—O27.5 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.862.142.940 (3)156
N4—H4A···O50.862.592.951 (3)106
N4—H4B···O3ii0.862.212.981 (3)150
N4—H4B···O6ii0.862.573.005 (3)113
N2—H2···O20.861.812.656 (3)170
Symmetry code: (ii) x1, y, z.
 

Acknowledgements

BT would like to acknowledge the CSIR–TWAS fellowship and the FAIRE programme provided by the Cambridge Crystallographic Data Centre (CCDC) for the use of the Cambridge Structural Database (CSD) and associated software.

References

First citationArdan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk`yanov, M., Lis, T. & Mys`kiv, M. (2017). Acta Cryst. C73, 36–46.  Google Scholar
First citationAtashov, A., Azamova, M., Ziyatov, D., Uzakbergenova, Z., Torambetov, B., Holczbauer, T., Ashurov, J. & Kadirova, S. (2024). Acta Cryst. E80, 408–412.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamí, G. E., Liu González, M., Sanz Ruiz, F. & Pedregosa, J. C. (2005). J. Phys. Chem. Solids 66, 936–945.  Google Scholar
First citationCsonka, R., Lakk-Bogáth, D., Gömöry, Á., Drahos, L., Giorgi, M., Speier, G., Szilágyi, R. K. & Kaizer, J. (2018). Inorg. Chim. Acta 472, 307–319.  CSD CrossRef CAS Google Scholar
First citationDani, R. K., Bharty, M. K., Prakash, O., Singh, R. K., Prashanth, B., Singh, S. & Singh, N. K. (2015). J. Coord. Chem. 68, 2666–2681.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFábry, J. (2018). Acta Cryst. E74, 1344–1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGond, M. K., Pandey, S. K., Chandra, S., Tiwari, N., Bharty, M. K., Maiti, B., Katiyar, D. & Butcher, R. J. (2022). J. Mol. Struct. 1267, 133586.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, G. H., Guo, G. C., Zhou, G. W., Wang, M. S., Cai, L. Z., Wu, A. Q. & Huang, J. S. (2003). Chin. J. Inorg. Chem. 19, 95–98.  CAS Google Scholar
First citationGurbanov, A. V., Aliyeva, V. A., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. (2023). Cryst. Growth Des. 23, 7335–7344.  CSD CrossRef CAS Google Scholar
First citationHeidari, L., Ghassemzadeh, M., Fenske, D., Fuhr, O., Saeidifar, M. & Mohsenzadeh, F. (2020). New J. Chem. 44, 16769–16775.  CSD CrossRef CAS Google Scholar
First citationHu, B., Yao, X.-Q., Lu, Y.-Y., Zhou, Y.-M. & Wei, T.-B. (2012). Wuji Huaxue Xuebao, 28, 2581.  Google Scholar
First citationHu, S., Yu, F.., Zhang, P. & Zhou, A.. (2012). Eur. J. Inorg. Chem. pp. 3669–3673.  CSD CrossRef Google Scholar
First citationHu, Y., Li, C. Y., Wang, X. M., Yang, Y. H. & Zhu, H. L. (2014). Chem. Rev. 114, 5572–5610.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIshankhodzhaeva, M. M., Kadyrova, S. A., Talipov, S. A., Ibragimov, B. T., Fun, K. K., Sundara Razh, S. S. & Parpiev, N. A. (2001). Russ. J. Gen. Chem. 71, 1066–1069.  CrossRef CAS Google Scholar
First citationKadirova, S., Torambetov, B., Razzokova, S., Uzakbergenova, Z., Abdreymov, A., Raxmonova, D. & Parpiev, N. (2022). AIP Conf. Proc. 2471, 050034.  Google Scholar
First citationKarcz, D., Matwijczuk, A., Kamiński, D., Creaven, B., Ciszkowicz, E., Lecka-Szlachta, K. & Starzak, K. (2020). Int. J. Mol. Sci. 21, 5735.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLavrenova, L. G., Sukhikh, T. S., Glinskaya, L. A., Trubina, S. V., Zvereva, V. V., Lavrov, A. N., Klyushova, L. S. & Artem'ev, A. V. (2023). Int. J. Mol. Sci. 24, 13024.  CSD CrossRef PubMed Google Scholar
First citationMa, Y., Mu, B. & Huang, R. D. (2018). Transit. Met. Chem. 43, 103–113.  CSD CrossRef CAS Google Scholar
First citationMu, B., Wang, Q. & Huang, R. (2016). RSC Adv. 6, 12114–12122.  CSD CrossRef CAS Google Scholar
First citationNuralieva, G., Alieva, M., Torambetov, B., Christopher Leslee, D. B., Senthilkumar, B., Kaur, S., Dabke, N. D., Vanka, K., Ashurov, J., Kadirova, Sh. & Gonnade, R. (2025). J. Mol. Struct. 1338, 142274.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, X. Q., Zhong, H. J., Zheng, H., Zhang, H. Y., Zhao, G. H., Wu, Q. A., Mao, H., Wang, E. & Zhu, Y. (2004). Polyhedron 23, 1851–1857.  CSD CrossRef CAS Google Scholar
First citationSlyvka, Y. (2017a). Visnyk Lviv Univ. Ser. Chem. 58, 172.  Google Scholar
First citationSlyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys'kiv, M. (2021). Acta Cryst. C77, 249–256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSlyvka, Y. I. (2017b). J. Struct. Chem. 58, 356–357.  CSD CrossRef CAS Google Scholar
First citationSlyvka, Y. I., Goreshnik, E., Pokhodylo, N. T. & Mys'kiv, M. G. (2022). J. Chem. Crystallogr. 52, 205–213.  CSD CrossRef CAS Google Scholar
First citationSong, Y., Ji, Y.-F., Kang, M.-Y. & Liu, Z.-L. (2012). Acta Cryst. E68, m772.  CSD CrossRef IUCr Journals Google Scholar
First citationSoudani, S., Zeller, M., Wenger, E., Jelsch, C., Lefebvre, F. & Nasr, C. B. (2014). J. Mol. Struct. 1075, 442–449.  CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorambetov, B., Kadirova, S., Toshmurodov, T., Ashurov, J. M., Parpiev, N. A. & Ziyaev, A. (2019). Acta Cryst. E75, 1239–1242.  CSD CrossRef IUCr Journals Google Scholar
First citationVeidis, M. V., Schreiber, G. H., Gough, T. E. & Palenik, G. J. (1969). J. Am. Chem. Soc. 91, 1859–1860.  CSD CrossRef CAS Google Scholar
First citationZou, Y., Gao, Q., Sun, N., Han, S., Li, X. & Wang, G. (2023). Chin. Chem. Lett. 34, 107390.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds