

research communications
Synthesis, κO)bis(picolinato-κ2N,O)copper(II)
and Hirshfeld surface analysis of bis[2-amino-5-(ethylsulfanyl)-1,3,4-thiadiazol-3-ium] bis(perchlorato-aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, bPhysical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India, cAcademy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru, Nagar, Ghaziabad, Uttar Pradesh 201002, India, dKarakalpak State University, 1 Ch. Abdirov St. Nukus, 230112, Uzbekistan, and eTermez University of Economics and Service, 41B Farovon St., Termiz, 190111, Uzbekistan
*Correspondence e-mail: [email protected]
In the title coordination complex, (C4H8N3S2)2[Cu(C6H4NO2)2(ClO4)2], the CuII center exhibits a distorted octahedral geometry with an equatorial plane formed by two bidentate picolinato ligands and axial coordination from two perchlorate anions, consistent with a Jahn–Teller distortion. The is further consolidated by a network of hydrogen bonds involving the thiadiazole-based cations, which reside in the outer coordination sphere in a unique protonated state. Hirshfeld surface analysis reveals that O⋯H/H⋯O contacts dominate the intermolecular interactions, contributing significantly to the crystal packing.
Keywords: crystal structure; copper(II) complex; picolinate ligand; thiadiazole cation; Hirshfeld surface analysis; hydrogen bonding; supramolecular interactions; Jahn–Teller distortion.
CCDC reference: 2455854
1. Chemical context
The coordination chemistry of transition-metal complexes with heterocyclic ligands has attracted substantial attention because of their diverse applications in catalysis, medicinal chemistry, and materials science. Among such ligands, picolinate anions and 1,3,4-thiadiazole derivatives are especially prominent due to their strong metal-binding abilities and biological relevance. Picolinic acid and its derivatives are well-known for their bidentate coordination modes, often employed in the design of metal–organic complexes to modulate metal center reactivity and bioactivity (Lavrenova et al., 2023). Similarly, 1,3,4-thiadiazole derivatives are recognized for their wide spectrum of biological properties, including antimicrobial, anticancer, and antidiabetic activities (Hu et al., 2014
; Gond et al., 2022
; Dani et al., 2015
). These heterocycles, containing electron-donating nitrogen and sulfur atoms, readily coordinate with transition metals, thereby influencing the physicochemical and pharmacological properties of the resulting complexes (Kadirova et al., 2022
; Atashov et al., 2024
). Transition metals such as zinc(II), nickel(II), and cobalt(II) have been extensively studied in coordination with thiadiazole-based ligands. Zinc(II) complexes have shown promise in drug delivery and enzyme mimicry (Shen et al., 2004
), while nickel(II) and cobalt(II) derivatives exhibit significant and (Song et al., 2012
; Ishankhodzhaeva et al., 2001
; Ma et al., 2018
; Nuralieva et al., 2025
). These findings underscore the versatility of thiadiazole coordination chemistry across various metal centers. Among transition metals, copper(II) occupies a unique position due to its redox flexibility and biological significance. Copper(II) complexes incorporating 1,3,4-thiadiazole ligands have been investigated extensively for their enhanced antimicrobial and anticancer properties compared to the free ligands (Karcz et al., 2020
; Heidari et al., 2020
). The synergistic effect between the copper center and heterocyclic ligand often leads to improved biological efficacy, making them attractive scaffolds for drug development (Gurbanov et al., 2023
; Camí et al., 2005
).
In this context, we present the synthesis, structural characterization, and Hirshfeld surface analysis of the complex (HL)2[Cu(Pic)2(ClO4)2], where Pic is the picolinate anion and HL is the 2-amino-5-ethylthio-1,3,4-thiadiazol-3-ium cation. The structural investigation, carried out using single-crystal X-ray diffraction (SC-XRD), aimed to elucidate the coordination environment, intermolecular interactions, and potential implications for biological activity.
2. Structural commentary
Single-crystal X-ray L)2[Cu(Pic)2(ClO4)2] crystallizes in the triclinic P The consists of half of a CuII cation, one picolinate anion, one perchlorate anion and one protonated 2-amino-5-ethylthio-1,3,4-thiadiazole (HL) ligand. The CuII cation is positioned on an inversion center and adopts an axially elongated octahedral coordination geometry (Fig. 1
). The equatorial plane consists of two nitrogen atoms (N1) and two carboxylate oxygen atoms from symmetry-related picolinate ligands, forming a nearly planar Cu(pic)2 moiety. The axial sites are occupied by two perchlorate anions, each weakly coordinating to the CuII center. The elongated Cu1—O6 distance of 2.532 (2) Å exceeds the typical Cu—O coordination bond range (1.8–2.0 Å) (Veidis et al., 1969
), consistent with a Jahn–Teller distortion along the O6–Cu–O6 axis. The Cu(Pic)2 moiety is nearly planar, with the root-mean-square (r.m.s.) deviations of the oxygen atoms being 0.039 Å for O1 and 0.073 Å for O2, indicating a high degree of planarity in this coordination environment. The geometry and bond lengths of the coordinated picolinato ligands are characteristic of a deprotonated carboxylate group (Fábry, 2018
), with the coordinated C—O bond length [1.281 (3) Å] being slightly longer than the C=O bond [1.231 (3) Å].
![]() | Figure 1 Molecular structure of the title copper(II) complex showing the coordination environment around the CuII center. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by blue dashed lines. |
3. Supramolecular features
In the extended structure, the [Cu(pic)2(ClO4)2]2− units are assembled into a supramolecular network through hydrogen-bonding interactions with the HL protonated thiadiazole cations (Fig. 2, Table 1
). The crystal packing is governed by two distinct types of hydrogen bonds: intermolecular and intramolecular. Intermolecular hydrogen bonds are observed between the O3 atom of the perchlorate anion and the amine hydrogen atom of the thiadiazole cation (O3⋯H4B = 2.21 Å), as well as between the O5 atom of the perchlorate anion and the hydrogen atom of the methyl group of the thiadiazole cation (O5⋯H10B = 2.32 Å). Intramolecular hydrogen bonds occur between the protonated H2A atom and atom H4A of the thiadiazole ring with carboxylate atoms O2 and O1 in the pic ligands (H2A⋯O2 = 1.80 Å, H4A⋯O1 = 2.14 Å), forming eight-membered ring motifs with an R22(8) graph set (Bernstein et al., 1995
). These non-covalent interactions play a crucial role in the cohesion of the three-dimensional crystal architecture.
|
![]() | Figure 2 Packing diagram of the title complex showing intermolecular hydrogen bonding (blue dashed lines) between the thiadiazole cation and coordinated perchlorate anions, contributing to the supramolecular architecture. Different molecular fragments are color-coded for clarity. Displacement ellipsoids are drawn at the 50% probability level. |
4. Hirshfeld Surface Analysis
Hirshfeld surface (HS) analysis was performed and two-dimensional fingerprint (FP) plots were generated using CrystalExplorer 21.5 (Spackman et al., 2021) to systematically examine the intermolecular interactions governing the crystal packing. In the HS diagram, contacts with interatomic distances equal to the sum of van der Waals radii are represented in white, while those shorter and longer than this threshold appear in red and blue, respectively. The FP plots provide a quantitative assessment of the relative contributions of distinct intermolecular interactions. These plots were generated based on the distances de (the distance from the HS to the nearest external atom) and di (the distance from the HS to the nearest internal atom). Prior to HS calculations, O—H bond lengths were standardized to neutron diffraction values (0.983 Å) to ensure computational accuracy. HS analysis was conducted separately for the cationic and anionic motifs to delineate their individual contributions to the overall crystal packing. The intermolecular O⋯H/H⋯O interactions were found to be predominant, contributing 22% to the HS area in the thiadiazole (HL) cation and 63% in the picolinate/perchlorate anions. Additionally, H⋯H contacts accounted 33% for thiadiazole (HL) cation and 13% for picolinate/perchlorate anions. The FP plots (Fig. 3
) further elucidate these contributions. The HS analysis unequivocally reveals that the title compound is primarily consolidated by a network of O—H⋯O hydrogen bonds, which facilitate the formation of an extended three-dimensional supramolecular architecture in the solid state.
![]() | Figure 3 Different views of the Hirshfeld surfaces (a) thiadiazole (HL) cation, (b) two-dimensional fingerprint plots of the HL cation, (c) picolinate/perchlorate anions and (d) two-dimensional fingerprint plots of the sulfate anion and picolinate/perchlorate anions. |
5. Database survey
A survey conducted using ConQuest software (CSD, Version 5.46, November 2024; Groom et al., 2016) within the Cambridge Structural Database revealed 311 metal complex crystal structures in which two picolinate anions are coordinated bidentately to a metal center. Among these, only two structures [NEBQAP (Csonka et al., 2018
) and TAFNAQ (Guo et al., 2003
)] feature a perchlorate anion directly coordinated to a copper(II) atom. Additionally, 22 organometallic crystal structures containing 2-amino-5-mercapto-1,3,4-thiadiazole derivatives have been reported, and in all cases, the thiadiazole ligand binds to the metal through the nitrogen atom at the 3-position [CADMIH (Heidari et al., 2020
); CEDSEM (Slyvka, 2017a
); ESIBUG (Slyvka et al., 2021
); FEXPUX (Zou et al., 2023
); GAKMOX (Mu et al., 2016
); HAJLUC, HAJMAJ and HAJMIR (Ardan et al., 2017
); HONDOG (Torambetov et al., 2019
); JIYTEU (Gurbanov et al., 2023
); JIZKEK and JIZKEK01 (Soudani et al., 2014
); JOJLUT (Kadirova et al., 2022
); LIFCEK (Hu et al.., 2012a
); LOKYIX (Atashov et al., 2024
); ODAPOC (Slyvka et al., 2022
); TEGWIN (Hu et al., 2012b>
); XIGWEQ, XIGWIU, XIGWOA and XIGWUG (Camí et al., 2005
); YEBNAX (Slyvka, 2017b
). Remarkably, no crystal structures have been reported in which the 1,3,4-thiadiazole-based ligand exists in a protonated form and is located in the outer coordination sphere of the complex as a cation. These observations underscore the novelty of the structural motif reported in the present work.
6. Synthesis and crystallization
Cu(ClO4)2·6H2O (0.185 g, 0.5 mmol) and picolinic acid (0.123 g, 1 mmol) were each dissolved separately in methanol (3 mL). The two solutions were then mixed and stirred at 323 K for 1 h. A solution of L (2-amino-5-ethylthio-1,3,4-thiadiazole) was prepared by dissolving L (0.161 g, 1 mmol) in 3 mL of methanol. This solution was added dropwise to the previously prepared copper(II) perchlorate–picolinic acid solution, resulting in the formation of a blue solution. Upon continuous stirring at 323 K for 4 h, the color of the reaction mixture gradually changed to green. The solution was then filtered and left to crystallize. Single crystals of the title complex, suitable for X-ray were obtained by slow evaporation of the filtrate over a period of 7 days.
7. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(N, C) or 1.5Ueq(C-methyl). The ethyl group of the thiadiazole molecule is disordered over two positions, C9 and C10, with equal occupancies.
|
Supporting information
CCDC reference: 2455854
https://doi.org/10.1107/S2056989025004992/tx2099sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025004992/tx2099Isup2.hkl
(C4H8N3S2)2[Cu(C6H4NO2)2(ClO4)2] | Z = 1 |
Mr = 828.13 | F(000) = 420 |
Triclinic, P1 | Dx = 1.707 Mg m−3 |
a = 6.3100 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8179 (2) Å | Cell parameters from 9876 reflections |
c = 13.3493 (4) Å | θ = 2.6–26.4° |
α = 90.522 (1)° | µ = 1.17 mm−1 |
β = 98.818 (1)° | T = 299 K |
γ = 99.478 (1)° | Block, green |
V = 805.57 (4) Å3 | 0.11 × 0.1 × 0.06 mm |
Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer | 2937 reflections with I > 2σ(I) |
Detector resolution: 7.39 pixels mm-1 | Rint = 0.057 |
φ and ω scans | θmax = 26.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −7→7 |
Tmin = 0.633, Tmax = 0.745 | k = −12→12 |
28717 measured reflections | l = −16→16 |
3315 independent reflections |
Refinement on F2 | 24 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0476P)2 + 0.4379P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3315 reflections | Δρmax = 0.40 e Å−3 |
233 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.500000 | 0.500000 | 0.000000 | 0.04229 (13) | |
S1 | −0.22380 (12) | 0.45846 (8) | 0.36426 (6) | 0.0638 (2) | |
S2 | −0.33608 (16) | 0.66980 (10) | 0.50029 (7) | 0.0859 (3) | |
Cl1 | 0.55824 (9) | 0.20197 (6) | 0.16167 (5) | 0.05452 (17) | |
O1 | 0.3708 (2) | 0.55987 (16) | 0.11468 (13) | 0.0472 (4) | |
O2 | 0.4332 (3) | 0.72184 (19) | 0.23898 (14) | 0.0593 (5) | |
O3 | 0.7223 (4) | 0.1767 (2) | 0.24227 (18) | 0.0776 (6) | |
O4 | 0.4945 (4) | 0.0857 (2) | 0.0948 (2) | 0.0889 (7) | |
O5 | 0.3737 (4) | 0.2359 (3) | 0.1990 (2) | 0.0906 (7) | |
O6 | 0.6536 (3) | 0.3183 (2) | 0.10864 (18) | 0.0729 (6) | |
N3 | −0.0062 (4) | 0.7053 (2) | 0.39137 (18) | 0.0620 (6) | |
N4 | 0.0747 (4) | 0.4205 (3) | 0.24606 (18) | 0.0657 (6) | |
H4A | 0.189153 | 0.449554 | 0.219641 | 0.079* | |
H4B | 0.008829 | 0.336685 | 0.234388 | 0.079* | |
N1 | 0.7410 (3) | 0.65204 (18) | 0.05284 (14) | 0.0404 (4) | |
N2 | 0.0878 (3) | 0.6329 (2) | 0.32667 (16) | 0.0558 (5) | |
H2 | 0.200239 | 0.671103 | 0.301887 | 0.067* | |
C1 | 0.6886 (3) | 0.7281 (2) | 0.12672 (16) | 0.0400 (4) | |
C2 | 0.8134 (4) | 0.8502 (2) | 0.16490 (19) | 0.0488 (5) | |
H2A | 0.772326 | 0.900672 | 0.215821 | 0.059* | |
C3 | 1.0027 (4) | 0.8970 (3) | 0.1258 (2) | 0.0541 (6) | |
H3 | 1.089572 | 0.980444 | 0.149272 | 0.065* | |
C4 | 1.0600 (4) | 0.8186 (3) | 0.0522 (2) | 0.0521 (6) | |
H4 | 1.188109 | 0.847296 | 0.026328 | 0.063* | |
C5 | 0.9263 (3) | 0.6967 (2) | 0.01687 (18) | 0.0471 (5) | |
H5 | 0.965821 | 0.643983 | −0.033273 | 0.057* | |
C6 | 0.4818 (4) | 0.6673 (2) | 0.16415 (17) | 0.0434 (5) | |
C7 | 0.0006 (4) | 0.5040 (3) | 0.30408 (18) | 0.0503 (5) | |
C8 | −0.1698 (4) | 0.6261 (3) | 0.4178 (2) | 0.0572 (6) | |
C9 | −0.218 (3) | 0.8510 (10) | 0.5248 (9) | 0.089 (3) | 0.5 |
H9B | −0.063195 | 0.856523 | 0.546730 | 0.106* | 0.5 |
H9A | −0.236435 | 0.897343 | 0.460917 | 0.106* | 0.5 |
C10 | −0.299 (2) | 0.9253 (9) | 0.5957 (8) | 0.124 (4) | 0.5 |
H10A | −0.232139 | 1.020680 | 0.596917 | 0.186* | 0.5 |
H10B | −0.265597 | 0.888642 | 0.661633 | 0.186* | 0.5 |
H10C | −0.453377 | 0.917710 | 0.577437 | 0.186* | 0.5 |
C9A | −0.297 (3) | 0.869 (2) | 0.4976 (17) | 0.180 (9) | 0.5 |
H9AA | −0.241457 | 0.906202 | 0.437962 | 0.215* | 0.5 |
H9AB | −0.424855 | 0.906473 | 0.508259 | 0.215* | 0.5 |
C10A | −0.135 (3) | 0.878 (2) | 0.5860 (14) | 0.169 (6) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0311 (2) | 0.0428 (2) | 0.0522 (2) | −0.00334 (14) | 0.01479 (15) | −0.00666 (16) |
S1 | 0.0555 (4) | 0.0684 (4) | 0.0696 (4) | −0.0064 (3) | 0.0344 (3) | −0.0101 (3) |
S2 | 0.0874 (6) | 0.0956 (6) | 0.0854 (6) | 0.0158 (5) | 0.0478 (5) | −0.0145 (5) |
Cl1 | 0.0440 (3) | 0.0499 (3) | 0.0709 (4) | 0.0048 (2) | 0.0168 (3) | −0.0048 (3) |
O1 | 0.0375 (8) | 0.0445 (8) | 0.0598 (9) | −0.0041 (6) | 0.0203 (7) | −0.0047 (7) |
O2 | 0.0535 (10) | 0.0640 (11) | 0.0612 (10) | −0.0048 (8) | 0.0277 (8) | −0.0129 (8) |
O3 | 0.0809 (14) | 0.0635 (12) | 0.0845 (14) | 0.0103 (10) | 0.0026 (11) | 0.0113 (10) |
O4 | 0.0774 (15) | 0.0731 (14) | 0.1099 (18) | −0.0060 (11) | 0.0173 (13) | −0.0357 (13) |
O5 | 0.0708 (14) | 0.0922 (16) | 0.123 (2) | 0.0205 (12) | 0.0520 (14) | 0.0009 (14) |
O6 | 0.0512 (11) | 0.0727 (12) | 0.0931 (15) | 0.0042 (9) | 0.0114 (10) | 0.0221 (11) |
N3 | 0.0627 (14) | 0.0594 (13) | 0.0663 (14) | 0.0038 (10) | 0.0249 (11) | −0.0047 (10) |
N4 | 0.0539 (13) | 0.0712 (14) | 0.0735 (15) | −0.0049 (11) | 0.0320 (11) | −0.0152 (12) |
N1 | 0.0308 (8) | 0.0420 (9) | 0.0477 (10) | 0.0006 (7) | 0.0104 (7) | −0.0008 (7) |
N2 | 0.0483 (11) | 0.0608 (12) | 0.0595 (12) | 0.0003 (9) | 0.0222 (10) | 0.0002 (10) |
C1 | 0.0336 (10) | 0.0408 (10) | 0.0459 (11) | 0.0036 (8) | 0.0104 (8) | 0.0037 (9) |
C2 | 0.0479 (13) | 0.0439 (12) | 0.0541 (13) | 0.0015 (9) | 0.0137 (10) | −0.0053 (10) |
C3 | 0.0463 (13) | 0.0447 (12) | 0.0662 (15) | −0.0089 (10) | 0.0115 (11) | −0.0027 (11) |
C4 | 0.0361 (11) | 0.0539 (13) | 0.0639 (14) | −0.0057 (9) | 0.0147 (10) | 0.0025 (11) |
C5 | 0.0343 (11) | 0.0526 (12) | 0.0543 (13) | 0.0006 (9) | 0.0143 (9) | −0.0026 (10) |
C6 | 0.0379 (11) | 0.0455 (11) | 0.0484 (12) | 0.0040 (9) | 0.0152 (9) | 0.0027 (9) |
C7 | 0.0390 (12) | 0.0634 (14) | 0.0485 (12) | 0.0019 (10) | 0.0143 (10) | −0.0012 (10) |
C8 | 0.0541 (14) | 0.0659 (15) | 0.0543 (14) | 0.0088 (12) | 0.0187 (11) | −0.0031 (12) |
C9 | 0.127 (7) | 0.068 (4) | 0.079 (5) | 0.030 (4) | 0.030 (5) | −0.018 (4) |
C10 | 0.186 (10) | 0.082 (5) | 0.125 (7) | 0.023 (6) | 0.089 (7) | −0.013 (5) |
C9A | 0.159 (12) | 0.198 (12) | 0.192 (12) | 0.038 (8) | 0.054 (8) | −0.039 (8) |
C10A | 0.175 (12) | 0.194 (13) | 0.141 (11) | 0.025 (11) | 0.041 (10) | 0.023 (10) |
Cu1—O1i | 1.9693 (15) | N1—C5 | 1.341 (3) |
Cu1—O1 | 1.9693 (15) | N2—H2 | 0.8600 |
Cu1—N1 | 1.9854 (17) | N2—C7 | 1.307 (3) |
Cu1—N1i | 1.9854 (17) | C1—C2 | 1.368 (3) |
S1—C7 | 1.731 (2) | C1—C6 | 1.503 (3) |
S1—C8 | 1.748 (3) | C2—H2A | 0.9300 |
S2—C8 | 1.730 (3) | C2—C3 | 1.387 (3) |
S2—C9 | 1.818 (10) | C3—H3 | 0.9300 |
S2—C9A | 1.93 (2) | C3—C4 | 1.369 (4) |
Cl1—O3 | 1.428 (2) | C4—H4 | 0.9300 |
Cl1—O4 | 1.408 (2) | C4—C5 | 1.379 (3) |
Cl1—O5 | 1.421 (2) | C5—H5 | 0.9300 |
Cl1—O6 | 1.444 (2) | C9—H9B | 0.9700 |
O1—C6 | 1.281 (3) | C9—H9A | 0.9700 |
O2—C6 | 1.231 (3) | C9—C10 | 1.394 (12) |
N3—N2 | 1.374 (3) | C10—H10A | 0.9600 |
N3—C8 | 1.284 (3) | C10—H10B | 0.9600 |
N4—H4A | 0.8600 | C10—H10C | 0.9600 |
N4—H4B | 0.8600 | C9A—H9AA | 0.9700 |
N4—C7 | 1.310 (3) | C9A—H9AB | 0.9700 |
N1—C1 | 1.344 (3) | C9A—C10A | 1.43 (2) |
O1i—Cu1—O1 | 180.0 | C4—C3—H3 | 120.4 |
O1—Cu1—N1i | 97.01 (7) | C3—C4—H4 | 120.3 |
O1—Cu1—N1 | 82.99 (7) | C3—C4—C5 | 119.5 (2) |
O1i—Cu1—N1i | 82.99 (7) | C5—C4—H4 | 120.3 |
O1i—Cu1—N1 | 97.01 (7) | N1—C5—C4 | 121.8 (2) |
N1i—Cu1—N1 | 180.0 | N1—C5—H5 | 119.1 |
C7—S1—C8 | 87.51 (12) | C4—C5—H5 | 119.1 |
C8—S2—C9 | 99.3 (4) | O1—C6—C1 | 115.90 (19) |
C8—S2—C9A | 103.8 (7) | O2—C6—O1 | 125.3 (2) |
O3—Cl1—O6 | 106.67 (13) | O2—C6—C1 | 118.8 (2) |
O4—Cl1—O3 | 110.34 (15) | N4—C7—S1 | 124.9 (2) |
O4—Cl1—O5 | 109.73 (15) | N2—C7—S1 | 110.12 (18) |
O4—Cl1—O6 | 109.64 (16) | N2—C7—N4 | 125.0 (2) |
O5—Cl1—O3 | 111.56 (16) | S2—C8—S1 | 118.33 (16) |
O5—Cl1—O6 | 108.82 (14) | N3—C8—S1 | 115.4 (2) |
C6—O1—Cu1 | 114.18 (13) | N3—C8—S2 | 126.3 (2) |
C8—N3—N2 | 109.2 (2) | S2—C9—H9B | 107.8 |
H4A—N4—H4B | 120.0 | S2—C9—H9A | 107.8 |
C7—N4—H4A | 120.0 | H9B—C9—H9A | 107.1 |
C7—N4—H4B | 120.0 | C10—C9—S2 | 118.0 (9) |
C1—N1—Cu1 | 111.77 (13) | C10—C9—H9B | 107.8 |
C5—N1—Cu1 | 129.29 (15) | C10—C9—H9A | 107.8 |
C5—N1—C1 | 118.30 (19) | C9—C10—H10A | 109.5 |
N3—N2—H2 | 121.1 | C9—C10—H10B | 109.5 |
C7—N2—N3 | 117.7 (2) | C9—C10—H10C | 109.5 |
C7—N2—H2 | 121.1 | H10A—C10—H10B | 109.5 |
N1—C1—C2 | 122.9 (2) | H10A—C10—H10C | 109.5 |
N1—C1—C6 | 114.28 (18) | H10B—C10—H10C | 109.5 |
C2—C1—C6 | 122.8 (2) | S2—C9A—H9AA | 113.7 |
C1—C2—H2A | 120.8 | S2—C9A—H9AB | 113.7 |
C1—C2—C3 | 118.4 (2) | H9AA—C9A—H9AB | 110.9 |
C3—C2—H2A | 120.8 | C10A—C9A—S2 | 89.9 (15) |
C2—C3—H3 | 120.4 | C10A—C9A—H9AA | 113.7 |
C4—C3—C2 | 119.1 (2) | C10A—C9A—H9AB | 113.7 |
Cu1—O1—C6—O2 | −179.2 (2) | C2—C3—C4—C5 | 1.5 (4) |
Cu1—O1—C6—C1 | −0.1 (2) | C3—C4—C5—N1 | −0.2 (4) |
Cu1—N1—C1—C2 | −170.09 (18) | C5—N1—C1—C2 | 1.6 (3) |
Cu1—N1—C1—C6 | 10.1 (2) | C5—N1—C1—C6 | −178.19 (19) |
Cu1—N1—C5—C4 | 168.70 (18) | C6—C1—C2—C3 | 179.4 (2) |
N3—N2—C7—S1 | 0.7 (3) | C7—S1—C8—S2 | −178.53 (18) |
N3—N2—C7—N4 | −178.0 (3) | C7—S1—C8—N3 | 1.2 (2) |
N1—C1—C2—C3 | −0.3 (4) | C8—S1—C7—N4 | 177.7 (3) |
N1—C1—C6—O1 | −6.9 (3) | C8—S1—C7—N2 | −1.0 (2) |
N1—C1—C6—O2 | 172.3 (2) | C8—S2—C9—C10 | −175.6 (12) |
N2—N3—C8—S1 | −1.0 (3) | C8—N3—N2—C7 | 0.2 (3) |
N2—N3—C8—S2 | 178.7 (2) | C9—S2—C8—S1 | −176.8 (5) |
C1—N1—C5—C4 | −1.3 (3) | C9—S2—C8—N3 | 3.5 (6) |
C1—C2—C3—C4 | −1.2 (4) | C9A—S2—C8—S1 | −158.3 (6) |
C2—C1—C6—O1 | 173.3 (2) | C9A—S2—C8—N3 | 22.0 (7) |
C2—C1—C6—O2 | −7.5 (3) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O1 | 0.86 | 2.14 | 2.940 (3) | 156 |
N4—H4A···O5 | 0.86 | 2.59 | 2.951 (3) | 106 |
N4—H4B···O3ii | 0.86 | 2.21 | 2.981 (3) | 150 |
N4—H4B···O6ii | 0.86 | 2.57 | 3.005 (3) | 113 |
N2—H2···O2 | 0.86 | 1.81 | 2.656 (3) | 170 |
Symmetry code: (ii) x−1, y, z. |
Acknowledgements
BT would like to acknowledge the CSIR–TWAS fellowship and the FAIRE programme provided by the Cambridge Crystallographic Data Centre (CCDC) for the use of the Cambridge Structural Database (CSD) and associated software.
References
Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk`yanov, M., Lis, T. & Mys`kiv, M. (2017). Acta Cryst. C73, 36–46. Google Scholar
Atashov, A., Azamova, M., Ziyatov, D., Uzakbergenova, Z., Torambetov, B., Holczbauer, T., Ashurov, J. & Kadirova, S. (2024). Acta Cryst. E80, 408–412. CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Camí, G. E., Liu González, M., Sanz Ruiz, F. & Pedregosa, J. C. (2005). J. Phys. Chem. Solids 66, 936–945. Google Scholar
Csonka, R., Lakk-Bogáth, D., Gömöry, Á., Drahos, L., Giorgi, M., Speier, G., Szilágyi, R. K. & Kaizer, J. (2018). Inorg. Chim. Acta 472, 307–319. CSD CrossRef CAS Google Scholar
Dani, R. K., Bharty, M. K., Prakash, O., Singh, R. K., Prashanth, B., Singh, S. & Singh, N. K. (2015). J. Coord. Chem. 68, 2666–2681. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fábry, J. (2018). Acta Cryst. E74, 1344–1357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gond, M. K., Pandey, S. K., Chandra, S., Tiwari, N., Bharty, M. K., Maiti, B., Katiyar, D. & Butcher, R. J. (2022). J. Mol. Struct. 1267, 133586. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, G. H., Guo, G. C., Zhou, G. W., Wang, M. S., Cai, L. Z., Wu, A. Q. & Huang, J. S. (2003). Chin. J. Inorg. Chem. 19, 95–98. CAS Google Scholar
Gurbanov, A. V., Aliyeva, V. A., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. (2023). Cryst. Growth Des. 23, 7335–7344. CSD CrossRef CAS Google Scholar
Heidari, L., Ghassemzadeh, M., Fenske, D., Fuhr, O., Saeidifar, M. & Mohsenzadeh, F. (2020). New J. Chem. 44, 16769–16775. CSD CrossRef CAS Google Scholar
Hu, B., Yao, X.-Q., Lu, Y.-Y., Zhou, Y.-M. & Wei, T.-B. (2012). Wuji Huaxue Xuebao, 28, 2581. Google Scholar
Hu, S., Yu, F.., Zhang, P. & Zhou, A.. (2012). Eur. J. Inorg. Chem. pp. 3669–3673. CSD CrossRef Google Scholar
Hu, Y., Li, C. Y., Wang, X. M., Yang, Y. H. & Zhu, H. L. (2014). Chem. Rev. 114, 5572–5610. Web of Science CrossRef CAS PubMed Google Scholar
Ishankhodzhaeva, M. M., Kadyrova, S. A., Talipov, S. A., Ibragimov, B. T., Fun, K. K., Sundara Razh, S. S. & Parpiev, N. A. (2001). Russ. J. Gen. Chem. 71, 1066–1069. CrossRef CAS Google Scholar
Kadirova, S., Torambetov, B., Razzokova, S., Uzakbergenova, Z., Abdreymov, A., Raxmonova, D. & Parpiev, N. (2022). AIP Conf. Proc. 2471, 050034. Google Scholar
Karcz, D., Matwijczuk, A., Kamiński, D., Creaven, B., Ciszkowicz, E., Lecka-Szlachta, K. & Starzak, K. (2020). Int. J. Mol. Sci. 21, 5735. CrossRef PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lavrenova, L. G., Sukhikh, T. S., Glinskaya, L. A., Trubina, S. V., Zvereva, V. V., Lavrov, A. N., Klyushova, L. S. & Artem'ev, A. V. (2023). Int. J. Mol. Sci. 24, 13024. CSD CrossRef PubMed Google Scholar
Ma, Y., Mu, B. & Huang, R. D. (2018). Transit. Met. Chem. 43, 103–113. CSD CrossRef CAS Google Scholar
Mu, B., Wang, Q. & Huang, R. (2016). RSC Adv. 6, 12114–12122. CSD CrossRef CAS Google Scholar
Nuralieva, G., Alieva, M., Torambetov, B., Christopher Leslee, D. B., Senthilkumar, B., Kaur, S., Dabke, N. D., Vanka, K., Ashurov, J., Kadirova, Sh. & Gonnade, R. (2025). J. Mol. Struct. 1338, 142274. CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, X. Q., Zhong, H. J., Zheng, H., Zhang, H. Y., Zhao, G. H., Wu, Q. A., Mao, H., Wang, E. & Zhu, Y. (2004). Polyhedron 23, 1851–1857. CSD CrossRef CAS Google Scholar
Slyvka, Y. (2017a). Visnyk Lviv Univ. Ser. Chem. 58, 172. Google Scholar
Slyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys'kiv, M. (2021). Acta Cryst. C77, 249–256. Web of Science CSD CrossRef IUCr Journals Google Scholar
Slyvka, Y. I. (2017b). J. Struct. Chem. 58, 356–357. CSD CrossRef CAS Google Scholar
Slyvka, Y. I., Goreshnik, E., Pokhodylo, N. T. & Mys'kiv, M. G. (2022). J. Chem. Crystallogr. 52, 205–213. CSD CrossRef CAS Google Scholar
Song, Y., Ji, Y.-F., Kang, M.-Y. & Liu, Z.-L. (2012). Acta Cryst. E68, m772. CSD CrossRef IUCr Journals Google Scholar
Soudani, S., Zeller, M., Wenger, E., Jelsch, C., Lefebvre, F. & Nasr, C. B. (2014). J. Mol. Struct. 1075, 442–449. CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Torambetov, B., Kadirova, S., Toshmurodov, T., Ashurov, J. M., Parpiev, N. A. & Ziyaev, A. (2019). Acta Cryst. E75, 1239–1242. CSD CrossRef IUCr Journals Google Scholar
Veidis, M. V., Schreiber, G. H., Gough, T. E. & Palenik, G. J. (1969). J. Am. Chem. Soc. 91, 1859–1860. CSD CrossRef CAS Google Scholar
Zou, Y., Gao, Q., Sun, N., Han, S., Li, X. & Wang, G. (2023). Chin. Chem. Lett. 34, 107390. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.