research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 5,5-di­fluoro-10-[5-(tri­methyl­sil­yl)furan-2-yl]-5H-4λ4,5λ4-di­pyrrolo­[1,2-c:2′,1′-f][1,3,2]di­aza­borinine

crossmark logo

aRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bZelinsky Institute of Organic Chemistry of RAS, 4, 7 Leninsky Prospect, 119991 Moscow, Russian Federation, cDepartment of Chemical Engineering, Baku Engineering University, Hasan Aliyev, str. 120, Baku, Absheron AZ0101, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, University of Gondar, PO Box 196, Gondar, Ethiopia
*Correspondence e-mail: [email protected]

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 23 May 2025; accepted 29 May 2025; online 6 June 2025)

In the title compound, C16H17BF2N2OSi, the mol­ecular conformation is consolidated by an intra­molecular C—H⋯O hydrogen bond, forming an S(6) motif. In the crystal, pairs of mol­ecules are connected by C—H⋯π and ππ inter­actions [centroid-to-centroid distance = 3.6155 (8) Å] between the furan rings. These dimers are linked by ππ inter­actions [centroid-to-centroid distance = 3.4041 (9) Å] between similar five-membered rings of the twelve-membered ring system, forming ribbons along the a-axis direction. As a result, the van der Waals inter­actions between the ribbons provide crystal cohesion. Hirshfeld surface analysis indicates that H⋯H (48.6%), F⋯H/H⋯F (19.8%) and C⋯H/H⋯C (19.0%) inter­actions make the most significant contributions to the crystal packing.

1. Chemical context

4,4-Di­fluoro-4-bora-3a,4a-di­aza-s-indacene (BODIPY) complexes are strongly UV-absorbing small mol­ecules with high quantum yields. Since their discovery in 1968 by Treibs and Kreuzer (Treibs & Kreuzer, 1968[Treibs, A. & Kreuzer, F.-H. (1968). Justus Liebigs Ann. Chem. 718, 208-223.]), BODIPYs have been established in several research areas. They are relatively insensitive to the polarity and pH of their environment and are reasonably stable to physiological conditions. They are acknowledged as valuable fluorescent tags with applications in bioimaging and have been investigated as part of photodynamic therapy. They have been used as efficient photosensitizers, laser dyes, fluorescent switches, photocatalysts, labeling reagents, photocages, and chemosensors (Loudet & Burgess, 2007[Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.]; Ulrich et al., 2008[Ulrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184-1201.]; Turksoy et al., 2019[Turksoy, A., Yildiz, D. & Akkaya, E. U. (2019). Coord. Chem. Rev. 379, 47-64.]; Boens et al., 2019[Boens, N., Verbelen, B., Ortiz, M. J., Jiao, L. & Dehaen, W. (2019). Coord. Chem. Rev. 399, 213024-213108.]; Poddar & Misra, 2020[Poddar, M. & Misra, R. (2020). Coord. Chem. Rev. 421, 213462-213483.]; Agazzi et al., 2019[Agazzi, M. L., Ballatore, M. B., Durantini, A. M., Durantini, E. N. & Tomé, A. C. (2019). J. Photochem. Photobiol. Photochem. Rev. 40, 21-48.]; Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm 21, 6018-6025.]). The electronic properties of BODIPY can be changed by replacing the six-membered meso-aryl substituent (the meso-position is marked on Fig. 1[link]) with five-membered aromatic heterocycles such as pyrrole, thio­phene, furan, and seleno­phene. Indeed these heterocycle rings are small and may align with the plane of the BODIPY moiety and be involved in its delocalization, leading to further modification of the electronic properties of BODIPY. It has previously been shown that replacing the six-membered aryl group with five-membered heterocycles significantly alters the electronic properties, which are reflected in their structure, and the spectroscopic and electrochemical properties compared to meso-aryl BODIPY (Kim et al., 2010[Kim, K., Jo, C., Easwaramoorthi, S., Sung, J., Kim, D. H. & Churchill, D. G. (2010). Inorg. Chem. 49, 4881-4894.]; Sharma et al., 2016[Sharma, R., Lakshmi, V., Chatterjee, T. & Ravikanth, M. (2016). New J. Chem. 40, 5855-5860.]). Moreover, decoration of BODIPY with non-covalent bond donor or acceptor sites can be used as a synthetic strategy in catalysis (Gurbanov et al., 2022[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019-1031.]; Kopylovich et al., 2012[Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). J. Inorg. Biochem. 115, 72-77.]; Mahmudov & Pombeiro, 2023[Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. Eur. J. 29, e202203861.]), crystal engineering (Askerov et al., 2020[Askerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007-1011.]; Pronina et al., 2024[Pronina, A. A., Podrezova, A. G., Grigoriev, M. S., Hasanov, K. I., Sadikhova, N. D., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 777-782.]) and material chemistry (Khalilov, 2021[Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719-723.]; Polyanskii et al., 2019[Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769-779.]). Continuing our research on the chemistry of five-membered heterocycle-substituted dipyrrolmethanes and their complexes (BODIPY; Sadikhova et al., 2024[Sadikhova, N. D., Atioğlu, Z., Guliyeva, N. A., Shelukho, E. R., Polyanskaya, D. K., Khrustalev, V. N., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 72-77.]), we used 5-(tri­methyl­sil­yl)furan-5-carbaldehyde (Zubkov et al., 2016[Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron 72, 2239-2253.]), which, when reacted with pyrrole, gave the target dipyrrolmethane 2 in 51% yield. In the next step, meso-tri­methyl­silylfuryl dipyrrolmethane 2 was oxidized with DDQ (2,3-di­chloro-5,6-di­cyano­benzo­quinone) in CH2Cl2 for 30 min, the resulting dipyrrolmethene was neutralized with DIPEA (diiso­propyl­ethyl­amine), and the BF2 complexation was carried out by the addition of BF3·(OEt)2. Column chromatographic purification on silica afforded the meso-furyl BODIPY 3 in 25% yield (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of 5,5-di­fluoro-10-[5-(tri­methyl­sil­yl)furan-2-yl]-5H-4λ4,5λ4-di­pyrrolo­[1,2-c:2′,1′-f][1,3,2]di­aza­borinine.

2. Structural commentary

The mol­ecular conformation of the title compound is consolidated by an intra­molecular C1—H1⋯O1 hydrogen bond, forming an S(6) motif (Fig. 2[link], Table 1[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The mean plane of the twelve-membered ring system (C1–C3/N4/B5/N6/C7–C9/C9A/C10/C10A; r.m.s. deviation of fitted atoms = 0.0267 Å) makes a dihedral angle of 33.34 (6)° with the furan ring (O1/C11–C14). The torsion angles F1—B5—N4—C3 and F2—B5—N6—C7 are −64.52 (19) and −59.55 (19)°, respectively. The distances of atoms F1 and F2 to the mean plane of the twelve-membered ring system are −1.253 (1) and 1.004 (1) Å, respectively. In other words, F1 and F2 are on the opposite side of the ring system. All geometric parameters are normal and consistent with those of related compounds listed in the section Database survey.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the B5/N4/N6/C9A/C10/C10A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.95 2.46 2.9210 (18) 110
C17—H17ACg4i 0.98 2.93 3.906 (2) 172
Symmetry code: (i) [x-1, y-1, z-1].
[Figure 2]
Figure 2
Mol­ecular structure of the title compound showing the atomic labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of mol­ecules are connected by C—H⋯π inter­actions [C17—H17ACg4i; C17⋯Cg4i = 3.906 (2) Å, H17ACg4i = 2.93 Å, C17—H17ACg4i = 172°; symmetry code: (i) x − 1, y − 1, z − 1; Cg4 is the centroid of the six-membered central ring B5/N4/N6/C9A/C10/C10A of the large ring system] and ππ inter­actions between the furan rings (O1/C11–C14) [Cg1⋯Cg1i = 3.6155 (8) Å, slippage = 1.063 Å; symmetry code: (i) 1 − x, 1 − y, 1 − z; Cg1 is the centroid of the furan ring]. These dimers are linked by ππ inter­actions [Cg2Cg2ii = 3.4041 (9) Å, slippage = 0.696 Å; symmetry code: (ii) [{1\over 2}] − x, [{3\over 2}] − y, 1 − z; Cg2 is the centroid of the five-membered ring N4/C1–C3/C10A] between the five-membered rings (N4/C1–C3/C10A) of the twelve-membered ring system, forming ribbons along the a-axis direction (Table 1[link]; Fig. 3[link]). van der Waals inter­actions between the ribbons provide further crystal cohesion.

[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the b axis showing the C—H⋯O, C—H⋯π and ππ inter­actions (dashed lines). H atoms not involved in hydrogen bonding have been omitted.

Hirshfeld surfaces were generated for the mol­ecule of the title compound using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fingerprint plots (Fig. 4[link]) reveal that while H⋯H inter­actions (48.6%) make the largest contributions to the surface contacts (Tables 1[link] and 2[link]), F⋯H/H⋯F (19.8%) and C⋯H/H⋯C (19.0%) inter­actions are also important. Other, less notable inter­actions are C⋯C (4.8%), O⋯H/H⋯O (3.4%), N⋯H/H⋯N (3.2%), N⋯C/C⋯N (0.6%), O⋯C/C⋯O (0.4%) and F⋯C/C⋯F (0.3%).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
F2⋯H7 2.56 [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
H15A⋯F1 2.55 [{1\over 2}] − x, [{3\over 2}] − y, 1 − z
H16B⋯F1 2.65 [{1\over 2}] − x, [{1\over 2}] − y, 1 − z
F2⋯H8 2.70 x, 1 + y, z
F2⋯H16A 2.83 x, 1 − y, −[{1\over 2}] + z
H13⋯C1 2.91 1 − x, 1 − y, 1 − z
H13⋯H13 2.55 1 − x, −y, 1 − z
H17C⋯H17C 2.27 1 − x, y, [{3\over 2}] − z
[Figure 4]
Figure 4
The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) F⋯H/H⋯F and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 6.00, update April 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 5,5-di­fluoro-10-(furan-2-yl)-5H-4l4,5l4-di­pyrrolo­[1,2-c:2′,1′-f][1,3,2] di­aza­borinine (twelve-membered ring moiety with a furan substituent) gives twelve hits, viz. GATDIQ (Khan & Ravikanth, 2012[Khan, T. K. & Ravikanth, M. (2012). Tetrahedron 68, 830-840.]), GATDOW (Khan & Ravikanth, 2012[Khan, T. K. & Ravikanth, M. (2012). Tetrahedron 68, 830-840.]), KETDAQ (Jun et al., 2012a[Jun, T., Kim, K., Lee, K. M., Benniston, A. C. & Churchill, D. G. (2012a). J. Coord. Chem. 65, 4299-4314.]), NARSAC (Khan et al., 2012[Khan, T. K., Jana, S. K., Rao, M. R., Shaikh, M. S. & Ravikanth, M. (2012). Inorg. Chim. Acta 383, 257-266.]), NARSEG (Khan et al., 2012[Khan, T. K., Jana, S. K., Rao, M. R., Shaikh, M. S. & Ravikanth, M. (2012). Inorg. Chim. Acta 383, 257-266.]), ROZGEU (Zhao et al., 2015[Zhao, N., Vicente, M. G. H., Fronczek, F. R. & Smith, K. M. (2015). Chem. Eur. J. 21, 6181-6192.]), ROZHAR (Zhao et al., 2015[Zhao, N., Vicente, M. G. H., Fronczek, F. R. & Smith, K. M. (2015). Chem. Eur. J. 21, 6181-6192.]), ROZHEV (Zhao et al., 2015[Zhao, N., Vicente, M. G. H., Fronczek, F. R. & Smith, K. M. (2015). Chem. Eur. J. 21, 6181-6192.]), UKANUQ (Kim et al., 2010[Kim, K., Jo, C., Easwaramoorthi, S., Sung, J., Kim, D. H. & Churchill, D. G. (2010). Inorg. Chem. 49, 4881-4894.]), UKANUQ01 (Khan et al., 2012[Khan, T. K., Jana, S. K., Rao, M. R., Shaikh, M. S. & Ravikanth, M. (2012). Inorg. Chim. Acta 383, 257-266.]), ULAQOP (Sharma et al., 2016[Sharma, R., Lakshmi, V., Chatterjee, T. & Ravikanth, M. (2016). New J. Chem. 40, 5855-5860.]) and XELDAV (Jun et al., 2012b[Jun, T., Kim, K., Lee, K. M., Murale, D. P., Singh, A. P., Natsagdorj, A., Liew, H., Suh, Y.-H. & Churchill, D. G. (2012b). J. Porphyrins Phthalocyanines 16, 1201-1208.]).

GATDIQ, GATDOW, ROZGEU and ROZHAR crystallize in the triclinic space group P[\overline{1}]. KETDAQ and ULAQOP crystallize in the ortho­rhom­bic space groups Pbca and Pna21, respectively. NARSAC, ROZHEV, UKANUQ and UKANUQ01 crystallize in the monoclinic space group P21/c, while NARSEG and XELDAV crystallize in the monoclinic space groups P21/n and C2/c, respectively.

The dihedral angle between the two ring systems (furan substituent and twelve-membered ring moiety) varies between 25.93 (10) and 88.13 (14)°, and is influenced by the substitution pattern and mol­ecular environment. In GATDIG, with two independent mol­ecules in the asymmetric unit, the dihedral angles are 33.31 (10) and 33.85 (9)°, in GATDOW 44.4 (5)°, in KETDAQ 88.13 (14)°, in ROZHAR 84.82 (8)°, in ROZHEV 78.02 (9)°, in ULAQOP 31.24 (16)°, in XELDAV 75.60 (13)°, and in NARSAC, with two independent mol­ecules in the asymmetric unit, 29.4 (2) and 32.2 (2)°, respectively. In NARSEG, the furan ring is disordered over two positions, the dihedral angles are 83.0 (3) and 36.9 (2)°, respectively. In UKANUQ, with two independent mol­ecules in the asymmetric unit, the dihedral angles are 26.59 (16) and 26.92 (17)°, with similar values for UKANUQ01 [26.65 (10) and 25.93 (10)°].

In KETDAQ, ROZGEU and ROZHEV, C—H⋯F intra­molecular inter­actions are observed, while in ROZHAR there are C—H⋯S and C—H⋯F inter­actions. In the remaining compounds, there are intra­molecular C—H⋯O hydrogen bonds involving the O atom of the furan ring. Additionally, in NARSEG and ULAQOP, besides C—H⋯O, there are also C—H⋯F inter­actions, and in XELDAV, intra­molecular C—H⋯S inter­actions are present as well.

5. Synthesis and crystallization

5-(Tri­methyl­sil­yl)furan-2-carbaldehyde 1 (100 mg, 0.6 mmol) was dissolved in excess of pyrrole (1 mL, 15 mmol) at room temperature under argon. Tri­fluoro­acetic acid (TFA, 4.6 µl, 0.06 mmol) was added dropwise, and the reaction was stirred for 1 h (TLC control). Then Et3N (50 µL) was added to pH ∼7. The reaction mixture was poured into water (30 mL) and extracted with ethyl acetate (3 × 10 mL). The target product was purified by column chromatography (eluent: ethyl acetate/hexane 1:10), yield 51%, 86.9 mg (0.306 mmol), dark-brown oil. IR (KBr), ν (cm−1): 3398 (NH). 1H NMR (700.2 MHz, CDCl3) (J, Hz): δ 8.10 (br.s, 2H, NH), 6.72–6.71 (m, 2H, H Pyr), 6.57 (d, J = 3.1, 1H, H Fur), 6.17–6.16 (m, 2H, H Pyr), 6.09 (d, J = 3.1, 1H, H Fur), 6.00–5.99 (m, 2H, H Pyr), 5.55 (s, 1H, CH), 0.27 (s, 9H, CH3). 13C{1H} NMR (176.1 MHz, CDCl3): δ 159.9, 158.4, 130.3 (2C), 120.4, 117.4 (2C), 108.2 (2C), 107.1, 106.7 (2C), 37.9, −1.57 (3C). MS (ESI) m/z: [M + H]+ 285.

Dipyrrolmethane 2 (80 mg, 0.3 mmol) was dissolved in dry DCM (5 ml), after 2,3-di­chloro-5,6-di­cyano­benzo­quinone (DDQ, 192 mg, 0.6 mmol) was added; the reaction mixture was stirred for 30 min (TLC control), poured into water (30 mL) and extracted with DCM (3 × 10 mL). The organic layer was dried with anhydrous Na2SO4, concentrated in vacuo and the residue was dissolved in dry DCM (5 ml) without further purification. Boron trifluoride etherate (700 µl, 6 mmol) and an equal volume of diiso­propyl­ethyl­amine (DIPEA, 700 µl, 4 mmol) were added. The solution was stirred under room temperature for 1 h (TLC control) and then poured into water (30 mL), extracted with DCM (3 × 10 mL) and washed with saturated Na2CO3 (3 × 10 mL). The organic layer was dried with anhydrous Na2SO4, the target product 3 was purified by column chromatography (eluent: ethyl acetate/hexane 1:10); red crystals, yield 25%, 24.8 mg (0.075 mmol), m.p. 393–395 K. Single crystals of the title compound were grown from a mixture of ethyl acetate/hexane. IR (KBr), ν (cm−1): 1566, 1539, 1412, 1386, 1119, 1081, 841. 1H NMR (700.2 MHz, CDCl3) (J, Hz): δ 7.89 (br.s, 2H, H Pyr), 7.47 (br.d, J = 4.3, 2H, H Pyr), 7.21 (d, J = 3.3, 1H, H Fur), 6.89 (d, J = 3.3, 1H, H Fur), 6.00-5.99 (br.dd, J = 4.3, 1.2, 2H, H Pyr), 0.40 (s, 9H, CH3). 13C{1H} NMR (176.1 MHz, CDCl3): δ 168.5, 152.4, 142.7 (2C), 132.2, 130.4 (2C), 122.5 (2C), 121.0 (2C), 118.1 (2C), −1.81 (3C). 19F{1H} NMR (658.8 MHz, CDCl3): −145.8 (q, J = 28.6). MS (ESI) m/z: [M]+ 330.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and included as riding contributions with isotropic displacement parameters fixed at 1.2Ueq(C) (1.5 for methyl groups).

Table 3
Experimental details

Crystal data
Chemical formula C16H17BF2N2OSi
Mr 330.21
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 19.2621 (2), 7.20455 (11), 23.1309 (3)
β (°) 92.2617 (12)
V3) 3207.48 (7)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.52
Crystal size (mm) 0.30 × 0.15 × 0.03
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.704, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 21486, 3453, 3119
Rint 0.047
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.06
No. of reflections 3453
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.], ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

5,5-Difluoro-10-[5-(trimethylsilyl)furan-2-yl]-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine top
Crystal data top
C16H17BF2N2OSiF(000) = 1376
Mr = 330.21Dx = 1.368 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 19.2621 (2) ÅCell parameters from 10600 reflections
b = 7.20455 (11) Åθ = 3.8–78.8°
c = 23.1309 (3) ŵ = 1.52 mm1
β = 92.2617 (12)°T = 100 K
V = 3207.48 (7) Å3Plate, red
Z = 80.30 × 0.15 × 0.03 mm
Data collection top
Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
diffractometer
3119 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.047
φ and ω scansθmax = 80.1°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 2324
Tmin = 0.704, Tmax = 0.955k = 68
21486 measured reflectionsl = 2929
3453 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0491P)2 + 3.5578P]
where P = (Fo2 + 2Fc2)/3
3453 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Experimental. CrysAlisPro 1.171.43.143a (Rigaku OD, 2021). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.43746 (2)0.28241 (6)0.64368 (2)0.02098 (13)
F10.20739 (5)0.77309 (15)0.34832 (4)0.0325 (2)
F20.30413 (6)0.91603 (13)0.31804 (4)0.0316 (2)
O10.38976 (5)0.42058 (15)0.53488 (4)0.0188 (2)
C10.34470 (7)0.8007 (2)0.51052 (6)0.0204 (3)
H10.3671950.7542350.5448280.025*
C20.31332 (8)0.9727 (2)0.50384 (7)0.0221 (3)
H20.3102731.0662880.5325730.027*
C30.28701 (8)0.9823 (2)0.44676 (7)0.0215 (3)
H30.2626641.0855020.4303570.026*
N40.30104 (6)0.82473 (18)0.41836 (5)0.0188 (3)
B50.27939 (9)0.7816 (2)0.35470 (7)0.0220 (3)
N60.31188 (6)0.59102 (18)0.34116 (5)0.0187 (3)
C70.30625 (8)0.5016 (2)0.29015 (6)0.0215 (3)
H70.2850030.5511100.2557350.026*
C80.33624 (8)0.3250 (2)0.29513 (6)0.0217 (3)
H80.3392220.2352240.2652520.026*
C90.36070 (8)0.3063 (2)0.35182 (6)0.0203 (3)
H90.3830700.2001810.3683070.024*
C9A0.34630 (7)0.4743 (2)0.38085 (6)0.0180 (3)
C100.36032 (7)0.5326 (2)0.43820 (6)0.0178 (3)
C10A0.33712 (7)0.7069 (2)0.45689 (6)0.0181 (3)
C110.40153 (7)0.4126 (2)0.47664 (6)0.0181 (3)
C120.45553 (7)0.2958 (2)0.46751 (6)0.0198 (3)
H120.4742190.2657820.4312810.024*
C130.47852 (7)0.2275 (2)0.52241 (6)0.0196 (3)
H130.5158160.1434370.5298180.023*
C140.43752 (7)0.3042 (2)0.56265 (6)0.0181 (3)
C150.45176 (9)0.5176 (3)0.67517 (7)0.0297 (4)
H15A0.4167260.6032960.6587740.044*
H15B0.4982080.5616390.6660850.044*
H15C0.4478670.5116550.7172480.044*
C160.35303 (9)0.1850 (3)0.66563 (7)0.0304 (4)
H16A0.3544770.1655010.7075870.046*
H16B0.3446000.0661820.6459260.046*
H16C0.3155460.2718400.6549240.046*
C170.51091 (10)0.1209 (3)0.66193 (8)0.0396 (5)
H17A0.5531320.1658210.6442220.059*
H17B0.4995440.0033640.6471070.059*
H17C0.5185950.1153230.7040250.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0198 (2)0.0267 (2)0.0164 (2)0.00247 (16)0.00028 (14)0.00248 (15)
F10.0254 (5)0.0357 (6)0.0355 (5)0.0059 (4)0.0103 (4)0.0078 (4)
F20.0547 (6)0.0184 (5)0.0213 (4)0.0038 (4)0.0022 (4)0.0043 (4)
O10.0192 (5)0.0213 (5)0.0158 (5)0.0014 (4)0.0004 (4)0.0009 (4)
C10.0191 (7)0.0228 (8)0.0194 (7)0.0020 (5)0.0007 (5)0.0011 (6)
C20.0208 (7)0.0208 (8)0.0248 (7)0.0017 (6)0.0028 (5)0.0044 (6)
C30.0211 (7)0.0181 (7)0.0255 (7)0.0009 (6)0.0024 (5)0.0000 (6)
N40.0187 (6)0.0173 (6)0.0206 (6)0.0011 (5)0.0008 (4)0.0015 (5)
B50.0253 (8)0.0186 (8)0.0216 (8)0.0002 (6)0.0034 (6)0.0012 (6)
N60.0217 (6)0.0185 (6)0.0159 (5)0.0038 (5)0.0006 (4)0.0020 (5)
C70.0242 (7)0.0231 (8)0.0169 (6)0.0059 (6)0.0009 (5)0.0017 (6)
C80.0246 (7)0.0210 (8)0.0194 (7)0.0051 (6)0.0019 (5)0.0024 (6)
C90.0221 (7)0.0182 (7)0.0207 (7)0.0024 (5)0.0011 (5)0.0001 (6)
C9A0.0184 (6)0.0171 (7)0.0184 (7)0.0031 (5)0.0002 (5)0.0015 (5)
C100.0161 (6)0.0192 (7)0.0183 (6)0.0039 (5)0.0021 (5)0.0017 (5)
C10A0.0165 (6)0.0194 (7)0.0184 (6)0.0028 (5)0.0001 (5)0.0014 (5)
C110.0195 (6)0.0190 (7)0.0159 (6)0.0032 (5)0.0007 (5)0.0003 (5)
C120.0202 (7)0.0198 (7)0.0195 (7)0.0015 (5)0.0024 (5)0.0002 (5)
C130.0184 (6)0.0184 (7)0.0217 (7)0.0008 (5)0.0008 (5)0.0001 (6)
C140.0173 (6)0.0186 (7)0.0182 (6)0.0016 (5)0.0014 (5)0.0022 (5)
C150.0274 (8)0.0377 (10)0.0239 (8)0.0045 (7)0.0016 (6)0.0065 (7)
C160.0317 (8)0.0351 (10)0.0249 (8)0.0066 (7)0.0059 (6)0.0014 (7)
C170.0413 (10)0.0517 (12)0.0257 (8)0.0206 (9)0.0009 (7)0.0094 (8)
Geometric parameters (Å, º) top
Si1—C161.8602 (17)C8—C91.382 (2)
Si1—C151.8604 (19)C8—H80.9500
Si1—C171.8675 (18)C9—C9A1.417 (2)
Si1—C141.8809 (15)C9—H90.9500
F1—B51.390 (2)C9A—C101.407 (2)
F2—B51.384 (2)C10—C10A1.406 (2)
O1—C111.3760 (17)C10—C111.453 (2)
O1—C141.3841 (17)C11—C121.361 (2)
C1—C21.385 (2)C12—C131.416 (2)
C1—C10A1.415 (2)C12—H120.9500
C1—H10.9500C13—C141.361 (2)
C2—C31.397 (2)C13—H130.9500
C2—H20.9500C15—H15A0.9800
C3—N41.345 (2)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
N4—C10A1.3961 (19)C16—H16A0.9800
N4—B51.546 (2)C16—H16B0.9800
B5—N61.546 (2)C16—H16C0.9800
N6—C71.3450 (19)C17—H17A0.9800
N6—C9A1.3932 (19)C17—H17B0.9800
C7—C81.400 (2)C17—H17C0.9800
C7—H70.9500
C16—Si1—C15110.75 (8)N6—C9A—C9107.48 (12)
C16—Si1—C17111.45 (9)C10—C9A—C9131.89 (14)
C15—Si1—C17112.33 (9)C10A—C10—C9A120.31 (13)
C16—Si1—C14109.78 (7)C10A—C10—C11121.03 (13)
C15—Si1—C14107.96 (7)C9A—C10—C11118.62 (13)
C17—Si1—C14104.30 (7)N4—C10A—C10120.19 (13)
C11—O1—C14107.27 (11)N4—C10A—C1107.49 (13)
C2—C1—C10A107.47 (13)C10—C10A—C1132.29 (14)
C2—C1—H1126.3C12—C11—O1109.51 (12)
C10A—C1—H1126.3C12—C11—C10132.48 (13)
C1—C2—C3106.87 (14)O1—C11—C10117.84 (12)
C1—C2—H2126.6C11—C12—C13106.83 (13)
C3—C2—H2126.6C11—C12—H12126.6
N4—C3—C2110.34 (14)C13—C12—H12126.6
N4—C3—H3124.8C14—C13—C12107.62 (13)
C2—C3—H3124.8C14—C13—H13126.2
C3—N4—C10A107.83 (12)C12—C13—H13126.2
C3—N4—B5125.69 (13)C13—C14—O1108.76 (12)
C10A—N4—B5126.47 (13)C13—C14—Si1132.11 (11)
F2—B5—F1109.38 (13)O1—C14—Si1119.11 (10)
F2—B5—N6110.22 (13)Si1—C15—H15A109.5
F1—B5—N6110.46 (13)Si1—C15—H15B109.5
F2—B5—N4110.87 (13)H15A—C15—H15B109.5
F1—B5—N4109.90 (13)Si1—C15—H15C109.5
N6—B5—N4105.98 (12)H15A—C15—H15C109.5
C7—N6—C9A107.99 (13)H15B—C15—H15C109.5
C7—N6—B5125.70 (13)Si1—C16—H16A109.5
C9A—N6—B5126.05 (12)Si1—C16—H16B109.5
N6—C7—C8110.13 (13)H16A—C16—H16B109.5
N6—C7—H7124.9Si1—C16—H16C109.5
C8—C7—H7124.9H16A—C16—H16C109.5
C9—C8—C7106.90 (13)H16B—C16—H16C109.5
C9—C8—H8126.5Si1—C17—H17A109.5
C7—C8—H8126.5Si1—C17—H17B109.5
C8—C9—C9A107.48 (14)H17A—C17—H17B109.5
C8—C9—H9126.3Si1—C17—H17C109.5
C9A—C9—H9126.3H17A—C17—H17C109.5
N6—C9A—C10120.63 (13)H17B—C17—H17C109.5
C10A—C1—C2—C30.08 (16)C3—N4—C10A—C10178.23 (13)
C1—C2—C3—N40.19 (17)B5—N4—C10A—C103.0 (2)
C2—C3—N4—C10A0.21 (17)C3—N4—C10A—C10.15 (16)
C2—C3—N4—B5179.00 (13)B5—N4—C10A—C1178.93 (13)
C3—N4—B5—F256.52 (19)C9A—C10—C10A—N41.1 (2)
C10A—N4—B5—F2124.92 (15)C11—C10—C10A—N4176.29 (12)
C3—N4—B5—F164.52 (19)C9A—C10—C10A—C1178.63 (15)
C10A—N4—B5—F1114.04 (16)C11—C10—C10A—C11.2 (2)
C3—N4—B5—N6176.11 (13)C2—C1—C10A—N40.04 (16)
C10A—N4—B5—N65.32 (19)C2—C1—C10A—C10177.79 (15)
F2—B5—N6—C759.55 (19)C14—O1—C11—C120.46 (16)
F1—B5—N6—C761.44 (19)C14—O1—C11—C10176.34 (12)
N4—B5—N6—C7179.57 (13)C10A—C10—C11—C12143.13 (16)
F2—B5—N6—C9A126.96 (14)C9A—C10—C11—C1234.3 (2)
F1—B5—N6—C9A112.05 (15)C10A—C10—C11—O131.60 (19)
N4—B5—N6—C9A6.94 (19)C9A—C10—C11—O1150.95 (13)
C9A—N6—C7—C80.33 (16)O1—C11—C12—C130.06 (17)
B5—N6—C7—C8174.14 (13)C10—C11—C12—C13175.12 (15)
N6—C7—C8—C90.42 (17)C11—C12—C13—C140.38 (17)
C7—C8—C9—C9A0.98 (16)C12—C13—C14—O10.67 (17)
C7—N6—C9A—C10179.29 (13)C12—C13—C14—Si1178.96 (12)
B5—N6—C9A—C106.3 (2)C11—O1—C14—C130.70 (15)
C7—N6—C9A—C90.93 (15)C11—O1—C14—Si1179.25 (10)
B5—N6—C9A—C9173.51 (13)C16—Si1—C14—C13119.49 (15)
C8—C9—C9A—N61.19 (16)C15—Si1—C14—C13119.69 (15)
C8—C9—C9A—C10179.06 (15)C17—Si1—C14—C130.03 (18)
N6—C9A—C10—C10A2.7 (2)C16—Si1—C14—O162.36 (13)
C9—C9A—C10—C10A177.04 (14)C15—Si1—C14—O158.47 (13)
N6—C9A—C10—C11174.78 (12)C17—Si1—C14—O1178.13 (12)
C9—C9A—C10—C115.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the B5/N4/N6/C9A/C10/C10A ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.952.462.9210 (18)110
C17—H17A···Cg4i0.982.933.906 (2)172
Symmetry code: (i) x+1, y+1, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
F2···H72.561/2 - x, 1/2 + y, 1/2 - z
H15A···F12.551/2 - x, 3/2 - y, 1 - z
H16B···F12.651/2 - x, 1/2 - y, 1 - z
F2···H82.70x, 1 + y, z
F2···H16A2.83x, 1 - y, -1/2 + z
H13···C12.911 - x, 1 - y, 1 - z
H13···H132.551 - x, -y, 1 - z
H17C···H17C2.271 - x, y, 3/2 - z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and GMM; synthesis, DMS and AGK; NMR analysis, AGK; X-ray analysis, VNK, NAG; writing (review and editing of the manuscript) MA and GMM; funding acquisition KIH; supervision, MA and GMM.

Funding information

This publication was supported by the RUDN University Scientific Projects Grant System, project No. 021408–2-000, as well as by the Baku Engineering University (Azerbaijan) and Azerbaijan Medical University.

References

First citationAgazzi, M. L., Ballatore, M. B., Durantini, A. M., Durantini, E. N. & Tomé, A. C. (2019). J. Photochem. Photobiol. Photochem. Rev. 40, 21–48.  CrossRef CAS Google Scholar
First citationAskerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007–1011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoens, N., Verbelen, B., Ortiz, M. J., Jiao, L. & Dehaen, W. (2019). Coord. Chem. Rev. 399, 213024–213108.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJun, T., Kim, K., Lee, K. M., Benniston, A. C. & Churchill, D. G. (2012a). J. Coord. Chem. 65, 4299–4314.  CSD CrossRef CAS Google Scholar
First citationJun, T., Kim, K., Lee, K. M., Murale, D. P., Singh, A. P., Natsagdorj, A., Liew, H., Suh, Y.-H. & Churchill, D. G. (2012b). J. Porphyrins Phthalocyanines 16, 1201–1208.  CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.  Google Scholar
First citationKhan, T. K., Jana, S. K., Rao, M. R., Shaikh, M. S. & Ravikanth, M. (2012). Inorg. Chim. Acta 383, 257–266.  CSD CrossRef CAS Google Scholar
First citationKhan, T. K. & Ravikanth, M. (2012). Tetrahedron 68, 830–840.  CSD CrossRef CAS Google Scholar
First citationKim, K., Jo, C., Easwaramoorthi, S., Sung, J., Kim, D. H. & Churchill, D. G. (2010). Inorg. Chem. 49, 4881–4894.  CSD CrossRef CAS PubMed Google Scholar
First citationKopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). J. Inorg. Biochem. 115, 72–77.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLoudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. Eur. J. 29, e202203861.  CrossRef PubMed Google Scholar
First citationPoddar, M. & Misra, R. (2020). Coord. Chem. Rev. 421, 213462–213483.  CrossRef CAS Google Scholar
First citationPolyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPronina, A. A., Podrezova, A. G., Grigoriev, M. S., Hasanov, K. I., Sadikhova, N. D., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 777–782.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSadikhova, N. D., Atioğlu, Z., Guliyeva, N. A., Shelukho, E. R., Polyanskaya, D. K., Khrustalev, V. N., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 72–77.  CSD CrossRef IUCr Journals Google Scholar
First citationSharma, R., Lakshmi, V., Chatterjee, T. & Ravikanth, M. (2016). New J. Chem. 40, 5855–5860.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTreibs, A. & Kreuzer, F.-H. (1968). Justus Liebigs Ann. Chem. 718, 208–223.  CrossRef CAS Google Scholar
First citationTurksoy, A., Yildiz, D. & Akkaya, E. U. (2019). Coord. Chem. Rev. 379, 47–64.  CrossRef CAS Google Scholar
First citationUlrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184–1201.  Web of Science CrossRef CAS Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm 21, 6018–6025.  Google Scholar
First citationZhao, N., Vicente, M. G. H., Fronczek, F. R. & Smith, K. M. (2015). Chem. Eur. J. 21, 6181–6192.  CSD CrossRef CAS PubMed Google Scholar
First citationZubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron 72, 2239–2253.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds