

research communications
H-4λ4,5λ4-dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinine
and Hirshfeld surface analysis of 5,5-difluoro-10-[5-(trimethylsilyl)furan-2-yl]-5aRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bZelinsky Institute of Organic Chemistry of RAS, 4, 7 Leninsky Prospect, 119991 Moscow, Russian Federation, cDepartment of Chemical Engineering, Baku Engineering University, Hasan Aliyev, str. 120, Baku, Absheron AZ0101, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, University of Gondar, PO Box 196, Gondar, Ethiopia
*Correspondence e-mail: [email protected]
In the title compound, C16H17BF2N2OSi, the molecular conformation is consolidated by an intramolecular C—H⋯O hydrogen bond, forming an S(6) motif. In the crystal, pairs of molecules are connected by C—H⋯π and π–π interactions [centroid-to-centroid distance = 3.6155 (8) Å] between the furan rings. These dimers are linked by π–π interactions [centroid-to-centroid distance = 3.4041 (9) Å] between similar five-membered rings of the twelve-membered ring system, forming ribbons along the a-axis direction. As a result, the van der Waals interactions between the ribbons provide crystal cohesion. Hirshfeld surface analysis indicates that H⋯H (48.6%), F⋯H/H⋯F (19.8%) and C⋯H/H⋯C (19.0%) interactions make the most significant contributions to the crystal packing.
CCDC reference: 2455268
1. Chemical context
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) complexes are strongly UV-absorbing small molecules with high quantum yields. Since their discovery in 1968 by Treibs and Kreuzer (Treibs & Kreuzer, 1968), BODIPYs have been established in several research areas. They are relatively insensitive to the polarity and pH of their environment and are reasonably stable to physiological conditions. They are acknowledged as valuable fluorescent tags with applications in bioimaging and have been investigated as part of photodynamic therapy. They have been used as efficient photosensitizers, laser dyes, fluorescent switches, photocatalysts, labeling reagents, photocages, and chemosensors (Loudet & Burgess, 2007
; Ulrich et al., 2008
; Turksoy et al., 2019
; Boens et al., 2019
; Poddar & Misra, 2020
; Agazzi et al., 2019
; Velásquez et al., 2019
). The electronic properties of BODIPY can be changed by replacing the six-membered meso-aryl substituent (the meso-position is marked on Fig. 1
) with five-membered aromatic heterocycles such as pyrrole, thiophene, furan, and selenophene. Indeed these heterocycle rings are small and may align with the plane of the BODIPY moiety and be involved in its delocalization, leading to further modification of the electronic properties of BODIPY. It has previously been shown that replacing the six-membered aryl group with five-membered heterocycles significantly alters the electronic properties, which are reflected in their structure, and the spectroscopic and electrochemical properties compared to meso-aryl BODIPY (Kim et al., 2010
; Sharma et al., 2016
). Moreover, decoration of BODIPY with non-covalent bond donor or acceptor sites can be used as a synthetic strategy in catalysis (Gurbanov et al., 2022
; Kopylovich et al., 2012
; Mahmudov & Pombeiro, 2023
), crystal engineering (Askerov et al., 2020
; Pronina et al., 2024
) and material chemistry (Khalilov, 2021
; Polyanskii et al., 2019
). Continuing our research on the chemistry of five-membered heterocycle-substituted dipyrrolmethanes and their complexes (BODIPY; Sadikhova et al., 2024
), we used 5-(trimethylsilyl)furan-5-carbaldehyde (Zubkov et al., 2016
), which, when reacted with pyrrole, gave the target dipyrrolmethane 2 in 51% yield. In the next step, meso-trimethylsilylfuryl dipyrrolmethane 2 was oxidized with DDQ (2,3-dichloro-5,6-dicyanobenzoquinone) in CH2Cl2 for 30 min, the resulting dipyrrolmethene was neutralized with DIPEA (diisopropylethylamine), and the BF2 complexation was carried out by the addition of BF3·(OEt)2. Column chromatographic purification on silica afforded the meso-furyl BODIPY 3 in 25% yield (Fig. 1
).
![]() | Figure 1 Synthesis of 5,5-difluoro-10-[5-(trimethylsilyl)furan-2-yl]-5H-4λ4,5λ4-dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinine. |
2. Structural commentary
The molecular conformation of the title compound is consolidated by an intramolecular C1—H1⋯O1 hydrogen bond, forming an S(6) motif (Fig. 2, Table 1
; Bernstein et al., 1995
). The mean plane of the twelve-membered ring system (C1–C3/N4/B5/N6/C7–C9/C9A/C10/C10A; r.m.s. deviation of fitted atoms = 0.0267 Å) makes a dihedral angle of 33.34 (6)° with the furan ring (O1/C11–C14). The torsion angles F1—B5—N4—C3 and F2—B5—N6—C7 are −64.52 (19) and −59.55 (19)°, respectively. The distances of atoms F1 and F2 to the mean plane of the twelve-membered ring system are −1.253 (1) and 1.004 (1) Å, respectively. In other words, F1 and F2 are on the opposite side of the ring system. All geometric parameters are normal and consistent with those of related compounds listed in the section Database survey.
|
![]() | Figure 2 Molecular structure of the title compound showing the atomic labelling. Displacement ellipsoids are drawn at the 50% probability level. |
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, pairs of molecules are connected by C—H⋯π interactions [C17—H17A⋯Cg4i; C17⋯Cg4i = 3.906 (2) Å, H17A⋯Cg4i = 2.93 Å, C17—H17A⋯Cg4i = 172°; symmetry code: (i) x − 1, y − 1, z − 1; Cg4 is the centroid of the six-membered central ring B5/N4/N6/C9A/C10/C10A of the large ring system] and π–π interactions between the furan rings (O1/C11–C14) [Cg1⋯Cg1i = 3.6155 (8) Å, slippage = 1.063 Å; symmetry code: (i) 1 − x, 1 − y, 1 − z; Cg1 is the centroid of the furan ring]. These dimers are linked by π–π interactions [Cg2⋯Cg2ii = 3.4041 (9) Å, slippage = 0.696 Å; symmetry code: (ii) − x,
− y, 1 − z; Cg2 is the centroid of the five-membered ring N4/C1–C3/C10A] between the five-membered rings (N4/C1–C3/C10A) of the twelve-membered ring system, forming ribbons along the a-axis direction (Table 1
; Fig. 3
). van der Waals interactions between the ribbons provide further crystal cohesion.
![]() | Figure 3 Crystal packing of the title compound viewed along the b axis showing the C—H⋯O, C—H⋯π and π–π interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted. |
Hirshfeld surfaces were generated for the molecule of the title compound using Crystal Explorer 17.5 (Spackman et al., 2021). Fingerprint plots (Fig. 4
) reveal that while H⋯H interactions (48.6%) make the largest contributions to the surface contacts (Tables 1
and 2
), F⋯H/H⋯F (19.8%) and C⋯H/H⋯C (19.0%) interactions are also important. Other, less notable interactions are C⋯C (4.8%), O⋯H/H⋯O (3.4%), N⋯H/H⋯N (3.2%), N⋯C/C⋯N (0.6%), O⋯C/C⋯O (0.4%) and F⋯C/C⋯F (0.3%).
|
![]() | Figure 4 The two-dimensional fingerprint plots for the title compound showing (a) all interactions, and those delineated into (b) H⋯H, (c) F⋯H/H⋯F and (d) C⋯H/H⋯C interactions. The di and de values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface. |
4. Database survey
A search in the Cambridge Structural Database (CSD, version 6.00, update April 2025; Groom et al., 2016) for 5,5-difluoro-10-(furan-2-yl)-5H-4l4,5l4-dipyrrolo[1,2-c:2′,1′-f][1,3,2] diazaborinine (twelve-membered ring moiety with a furan substituent) gives twelve hits, viz. GATDIQ (Khan & Ravikanth, 2012
), GATDOW (Khan & Ravikanth, 2012
), KETDAQ (Jun et al., 2012a
), NARSAC (Khan et al., 2012
), NARSEG (Khan et al., 2012
), ROZGEU (Zhao et al., 2015
), ROZHAR (Zhao et al., 2015
), ROZHEV (Zhao et al., 2015
), UKANUQ (Kim et al., 2010
), UKANUQ01 (Khan et al., 2012
), ULAQOP (Sharma et al., 2016
) and XELDAV (Jun et al., 2012b
).
GATDIQ, GATDOW, ROZGEU and ROZHAR crystallize in the triclinic P. KETDAQ and ULAQOP crystallize in the orthorhombic space groups Pbca and Pna21, respectively. NARSAC, ROZHEV, UKANUQ and UKANUQ01 crystallize in the monoclinic P21/c, while NARSEG and XELDAV crystallize in the monoclinic space groups P21/n and C2/c, respectively.
The dihedral angle between the two ring systems (furan substituent and twelve-membered ring moiety) varies between 25.93 (10) and 88.13 (14)°, and is influenced by the substitution pattern and molecular environment. In GATDIG, with two independent molecules in the
the dihedral angles are 33.31 (10) and 33.85 (9)°, in GATDOW 44.4 (5)°, in KETDAQ 88.13 (14)°, in ROZHAR 84.82 (8)°, in ROZHEV 78.02 (9)°, in ULAQOP 31.24 (16)°, in XELDAV 75.60 (13)°, and in NARSAC, with two independent molecules in the 29.4 (2) and 32.2 (2)°, respectively. In NARSEG, the furan ring is disordered over two positions, the dihedral angles are 83.0 (3) and 36.9 (2)°, respectively. In UKANUQ, with two independent molecules in the the dihedral angles are 26.59 (16) and 26.92 (17)°, with similar values for UKANUQ01 [26.65 (10) and 25.93 (10)°].In KETDAQ, ROZGEU and ROZHEV, C—H⋯F intramolecular interactions are observed, while in ROZHAR there are C—H⋯S and C—H⋯F interactions. In the remaining compounds, there are intramolecular C—H⋯O hydrogen bonds involving the O atom of the furan ring. Additionally, in NARSEG and ULAQOP, besides C—H⋯O, there are also C—H⋯F interactions, and in XELDAV, intramolecular C—H⋯S interactions are present as well.
5. Synthesis and crystallization
5-(Trimethylsilyl)furan-2-carbaldehyde 1 (100 mg, 0.6 mmol) was dissolved in excess of pyrrole (1 mL, 15 mmol) at room temperature under argon. Trifluoroacetic acid (TFA, 4.6 µl, 0.06 mmol) was added dropwise, and the reaction was stirred for 1 h (TLC control). Then Et3N (50 µL) was added to pH ∼7. The reaction mixture was poured into water (30 mL) and extracted with ethyl acetate (3 × 10 mL). The target product was purified by (eluent: ethyl acetate/hexane 1:10), yield 51%, 86.9 mg (0.306 mmol), dark-brown oil. IR (KBr), ν (cm−1): 3398 (NH). 1H NMR (700.2 MHz, CDCl3) (J, Hz): δ 8.10 (br.s, 2H, NH), 6.72–6.71 (m, 2H, H Pyr), 6.57 (d, J = 3.1, 1H, H Fur), 6.17–6.16 (m, 2H, H Pyr), 6.09 (d, J = 3.1, 1H, H Fur), 6.00–5.99 (m, 2H, H Pyr), 5.55 (s, 1H, CH), 0.27 (s, 9H, CH3). 13C{1H} NMR (176.1 MHz, CDCl3): δ 159.9, 158.4, 130.3 (2C), 120.4, 117.4 (2C), 108.2 (2C), 107.1, 106.7 (2C), 37.9, −1.57 (3C). MS (ESI) m/z: [M + H]+ 285.
Dipyrrolmethane 2 (80 mg, 0.3 mmol) was dissolved in dry DCM (5 ml), after 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ, 192 mg, 0.6 mmol) was added; the reaction mixture was stirred for 30 min (TLC control), poured into water (30 mL) and extracted with DCM (3 × 10 mL). The organic layer was dried with anhydrous Na2SO4, concentrated in vacuo and the residue was dissolved in dry DCM (5 ml) without further purification. Boron trifluoride etherate (700 µl, 6 mmol) and an equal volume of diisopropylethylamine (DIPEA, 700 µl, 4 mmol) were added. The solution was stirred under room temperature for 1 h (TLC control) and then poured into water (30 mL), extracted with DCM (3 × 10 mL) and washed with saturated Na2CO3 (3 × 10 mL). The organic layer was dried with anhydrous Na2SO4, the target product 3 was purified by (eluent: ethyl acetate/hexane 1:10); red crystals, yield 25%, 24.8 mg (0.075 mmol), m.p. 393–395 K. Single crystals of the title compound were grown from a mixture of ethyl acetate/hexane. IR (KBr), ν (cm−1): 1566, 1539, 1412, 1386, 1119, 1081, 841. 1H NMR (700.2 MHz, CDCl3) (J, Hz): δ 7.89 (br.s, 2H, H Pyr), 7.47 (br.d, J = 4.3, 2H, H Pyr), 7.21 (d, J = 3.3, 1H, H Fur), 6.89 (d, J = 3.3, 1H, H Fur), 6.00-5.99 (br.dd, J = 4.3, 1.2, 2H, H Pyr), 0.40 (s, 9H, CH3). 13C{1H} NMR (176.1 MHz, CDCl3): δ 168.5, 152.4, 142.7 (2C), 132.2, 130.4 (2C), 122.5 (2C), 121.0 (2C), 118.1 (2C), −1.81 (3C). 19F{1H} NMR (658.8 MHz, CDCl3): −145.8 (q, J = 28.6). MS (ESI) m/z: [M]+ 330.
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and included as riding contributions with isotropic displacement parameters fixed at 1.2Ueq(C) (1.5 for methyl groups).
|
Supporting information
CCDC reference: 2455268
https://doi.org/10.1107/S2056989025004888/vm2314sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025004888/vm2314Isup2.hkl
C16H17BF2N2OSi | F(000) = 1376 |
Mr = 330.21 | Dx = 1.368 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 19.2621 (2) Å | Cell parameters from 10600 reflections |
b = 7.20455 (11) Å | θ = 3.8–78.8° |
c = 23.1309 (3) Å | µ = 1.52 mm−1 |
β = 92.2617 (12)° | T = 100 K |
V = 3207.48 (7) Å3 | Plate, red |
Z = 8 | 0.30 × 0.15 × 0.03 mm |
Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector diffractometer | 3119 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.047 |
φ and ω scans | θmax = 80.1°, θmin = 3.8° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −23→24 |
Tmin = 0.704, Tmax = 0.955 | k = −6→8 |
21486 measured reflections | l = −29→29 |
3453 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0491P)2 + 3.5578P] where P = (Fo2 + 2Fc2)/3 |
3453 reflections | (Δ/σ)max = 0.001 |
211 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
Experimental. CrysAlisPro 1.171.43.143a (Rigaku OD, 2021). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.43746 (2) | 0.28241 (6) | 0.64368 (2) | 0.02098 (13) | |
F1 | 0.20739 (5) | 0.77309 (15) | 0.34832 (4) | 0.0325 (2) | |
F2 | 0.30413 (6) | 0.91603 (13) | 0.31804 (4) | 0.0316 (2) | |
O1 | 0.38976 (5) | 0.42058 (15) | 0.53488 (4) | 0.0188 (2) | |
C1 | 0.34470 (7) | 0.8007 (2) | 0.51052 (6) | 0.0204 (3) | |
H1 | 0.367195 | 0.754235 | 0.544828 | 0.025* | |
C2 | 0.31332 (8) | 0.9727 (2) | 0.50384 (7) | 0.0221 (3) | |
H2 | 0.310273 | 1.066288 | 0.532573 | 0.027* | |
C3 | 0.28701 (8) | 0.9823 (2) | 0.44676 (7) | 0.0215 (3) | |
H3 | 0.262664 | 1.085502 | 0.430357 | 0.026* | |
N4 | 0.30104 (6) | 0.82473 (18) | 0.41836 (5) | 0.0188 (3) | |
B5 | 0.27939 (9) | 0.7816 (2) | 0.35470 (7) | 0.0220 (3) | |
N6 | 0.31188 (6) | 0.59102 (18) | 0.34116 (5) | 0.0187 (3) | |
C7 | 0.30625 (8) | 0.5016 (2) | 0.29015 (6) | 0.0215 (3) | |
H7 | 0.285003 | 0.551110 | 0.255735 | 0.026* | |
C8 | 0.33624 (8) | 0.3250 (2) | 0.29513 (6) | 0.0217 (3) | |
H8 | 0.339222 | 0.235224 | 0.265252 | 0.026* | |
C9 | 0.36070 (8) | 0.3063 (2) | 0.35182 (6) | 0.0203 (3) | |
H9 | 0.383070 | 0.200181 | 0.368307 | 0.024* | |
C9A | 0.34630 (7) | 0.4743 (2) | 0.38085 (6) | 0.0180 (3) | |
C10 | 0.36032 (7) | 0.5326 (2) | 0.43820 (6) | 0.0178 (3) | |
C10A | 0.33712 (7) | 0.7069 (2) | 0.45689 (6) | 0.0181 (3) | |
C11 | 0.40153 (7) | 0.4126 (2) | 0.47664 (6) | 0.0181 (3) | |
C12 | 0.45553 (7) | 0.2958 (2) | 0.46751 (6) | 0.0198 (3) | |
H12 | 0.474219 | 0.265782 | 0.431281 | 0.024* | |
C13 | 0.47852 (7) | 0.2275 (2) | 0.52241 (6) | 0.0196 (3) | |
H13 | 0.515816 | 0.143437 | 0.529818 | 0.023* | |
C14 | 0.43752 (7) | 0.3042 (2) | 0.56265 (6) | 0.0181 (3) | |
C15 | 0.45176 (9) | 0.5176 (3) | 0.67517 (7) | 0.0297 (4) | |
H15A | 0.416726 | 0.603296 | 0.658774 | 0.044* | |
H15B | 0.498208 | 0.561639 | 0.666085 | 0.044* | |
H15C | 0.447867 | 0.511655 | 0.717248 | 0.044* | |
C16 | 0.35303 (9) | 0.1850 (3) | 0.66563 (7) | 0.0304 (4) | |
H16A | 0.354477 | 0.165501 | 0.707587 | 0.046* | |
H16B | 0.344600 | 0.066182 | 0.645926 | 0.046* | |
H16C | 0.315546 | 0.271840 | 0.654924 | 0.046* | |
C17 | 0.51091 (10) | 0.1209 (3) | 0.66193 (8) | 0.0396 (5) | |
H17A | 0.553132 | 0.165821 | 0.644222 | 0.059* | |
H17B | 0.499544 | −0.003364 | 0.647107 | 0.059* | |
H17C | 0.518595 | 0.115323 | 0.704025 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0198 (2) | 0.0267 (2) | 0.0164 (2) | 0.00247 (16) | 0.00028 (14) | 0.00248 (15) |
F1 | 0.0254 (5) | 0.0357 (6) | 0.0355 (5) | 0.0059 (4) | −0.0103 (4) | −0.0078 (4) |
F2 | 0.0547 (6) | 0.0184 (5) | 0.0213 (4) | −0.0038 (4) | −0.0022 (4) | 0.0043 (4) |
O1 | 0.0192 (5) | 0.0213 (5) | 0.0158 (5) | 0.0014 (4) | 0.0004 (4) | 0.0009 (4) |
C1 | 0.0191 (7) | 0.0228 (8) | 0.0194 (7) | −0.0020 (5) | 0.0007 (5) | −0.0011 (6) |
C2 | 0.0208 (7) | 0.0208 (8) | 0.0248 (7) | −0.0017 (6) | 0.0028 (5) | −0.0044 (6) |
C3 | 0.0211 (7) | 0.0181 (7) | 0.0255 (7) | 0.0009 (6) | 0.0024 (5) | 0.0000 (6) |
N4 | 0.0187 (6) | 0.0173 (6) | 0.0206 (6) | −0.0011 (5) | 0.0008 (4) | 0.0015 (5) |
B5 | 0.0253 (8) | 0.0186 (8) | 0.0216 (8) | −0.0002 (6) | −0.0034 (6) | 0.0012 (6) |
N6 | 0.0217 (6) | 0.0185 (6) | 0.0159 (5) | −0.0038 (5) | −0.0006 (4) | 0.0020 (5) |
C7 | 0.0242 (7) | 0.0231 (8) | 0.0169 (6) | −0.0059 (6) | −0.0009 (5) | 0.0017 (6) |
C8 | 0.0246 (7) | 0.0210 (8) | 0.0194 (7) | −0.0051 (6) | 0.0019 (5) | −0.0024 (6) |
C9 | 0.0221 (7) | 0.0182 (7) | 0.0207 (7) | −0.0024 (5) | 0.0011 (5) | 0.0001 (6) |
C9A | 0.0184 (6) | 0.0171 (7) | 0.0184 (7) | −0.0031 (5) | 0.0002 (5) | 0.0015 (5) |
C10 | 0.0161 (6) | 0.0192 (7) | 0.0183 (6) | −0.0039 (5) | 0.0021 (5) | 0.0017 (5) |
C10A | 0.0165 (6) | 0.0194 (7) | 0.0184 (6) | −0.0028 (5) | 0.0001 (5) | 0.0014 (5) |
C11 | 0.0195 (6) | 0.0190 (7) | 0.0159 (6) | −0.0032 (5) | 0.0007 (5) | −0.0003 (5) |
C12 | 0.0202 (7) | 0.0198 (7) | 0.0195 (7) | −0.0015 (5) | 0.0024 (5) | −0.0002 (5) |
C13 | 0.0184 (6) | 0.0184 (7) | 0.0217 (7) | −0.0008 (5) | −0.0008 (5) | 0.0001 (6) |
C14 | 0.0173 (6) | 0.0186 (7) | 0.0182 (6) | −0.0016 (5) | −0.0014 (5) | 0.0022 (5) |
C15 | 0.0274 (8) | 0.0377 (10) | 0.0239 (8) | −0.0045 (7) | 0.0016 (6) | −0.0065 (7) |
C16 | 0.0317 (8) | 0.0351 (10) | 0.0249 (8) | −0.0066 (7) | 0.0059 (6) | 0.0014 (7) |
C17 | 0.0413 (10) | 0.0517 (12) | 0.0257 (8) | 0.0206 (9) | 0.0009 (7) | 0.0094 (8) |
Si1—C16 | 1.8602 (17) | C8—C9 | 1.382 (2) |
Si1—C15 | 1.8604 (19) | C8—H8 | 0.9500 |
Si1—C17 | 1.8675 (18) | C9—C9A | 1.417 (2) |
Si1—C14 | 1.8809 (15) | C9—H9 | 0.9500 |
F1—B5 | 1.390 (2) | C9A—C10 | 1.407 (2) |
F2—B5 | 1.384 (2) | C10—C10A | 1.406 (2) |
O1—C11 | 1.3760 (17) | C10—C11 | 1.453 (2) |
O1—C14 | 1.3841 (17) | C11—C12 | 1.361 (2) |
C1—C2 | 1.385 (2) | C12—C13 | 1.416 (2) |
C1—C10A | 1.415 (2) | C12—H12 | 0.9500 |
C1—H1 | 0.9500 | C13—C14 | 1.361 (2) |
C2—C3 | 1.397 (2) | C13—H13 | 0.9500 |
C2—H2 | 0.9500 | C15—H15A | 0.9800 |
C3—N4 | 1.345 (2) | C15—H15B | 0.9800 |
C3—H3 | 0.9500 | C15—H15C | 0.9800 |
N4—C10A | 1.3961 (19) | C16—H16A | 0.9800 |
N4—B5 | 1.546 (2) | C16—H16B | 0.9800 |
B5—N6 | 1.546 (2) | C16—H16C | 0.9800 |
N6—C7 | 1.3450 (19) | C17—H17A | 0.9800 |
N6—C9A | 1.3932 (19) | C17—H17B | 0.9800 |
C7—C8 | 1.400 (2) | C17—H17C | 0.9800 |
C7—H7 | 0.9500 | ||
C16—Si1—C15 | 110.75 (8) | N6—C9A—C9 | 107.48 (12) |
C16—Si1—C17 | 111.45 (9) | C10—C9A—C9 | 131.89 (14) |
C15—Si1—C17 | 112.33 (9) | C10A—C10—C9A | 120.31 (13) |
C16—Si1—C14 | 109.78 (7) | C10A—C10—C11 | 121.03 (13) |
C15—Si1—C14 | 107.96 (7) | C9A—C10—C11 | 118.62 (13) |
C17—Si1—C14 | 104.30 (7) | N4—C10A—C10 | 120.19 (13) |
C11—O1—C14 | 107.27 (11) | N4—C10A—C1 | 107.49 (13) |
C2—C1—C10A | 107.47 (13) | C10—C10A—C1 | 132.29 (14) |
C2—C1—H1 | 126.3 | C12—C11—O1 | 109.51 (12) |
C10A—C1—H1 | 126.3 | C12—C11—C10 | 132.48 (13) |
C1—C2—C3 | 106.87 (14) | O1—C11—C10 | 117.84 (12) |
C1—C2—H2 | 126.6 | C11—C12—C13 | 106.83 (13) |
C3—C2—H2 | 126.6 | C11—C12—H12 | 126.6 |
N4—C3—C2 | 110.34 (14) | C13—C12—H12 | 126.6 |
N4—C3—H3 | 124.8 | C14—C13—C12 | 107.62 (13) |
C2—C3—H3 | 124.8 | C14—C13—H13 | 126.2 |
C3—N4—C10A | 107.83 (12) | C12—C13—H13 | 126.2 |
C3—N4—B5 | 125.69 (13) | C13—C14—O1 | 108.76 (12) |
C10A—N4—B5 | 126.47 (13) | C13—C14—Si1 | 132.11 (11) |
F2—B5—F1 | 109.38 (13) | O1—C14—Si1 | 119.11 (10) |
F2—B5—N6 | 110.22 (13) | Si1—C15—H15A | 109.5 |
F1—B5—N6 | 110.46 (13) | Si1—C15—H15B | 109.5 |
F2—B5—N4 | 110.87 (13) | H15A—C15—H15B | 109.5 |
F1—B5—N4 | 109.90 (13) | Si1—C15—H15C | 109.5 |
N6—B5—N4 | 105.98 (12) | H15A—C15—H15C | 109.5 |
C7—N6—C9A | 107.99 (13) | H15B—C15—H15C | 109.5 |
C7—N6—B5 | 125.70 (13) | Si1—C16—H16A | 109.5 |
C9A—N6—B5 | 126.05 (12) | Si1—C16—H16B | 109.5 |
N6—C7—C8 | 110.13 (13) | H16A—C16—H16B | 109.5 |
N6—C7—H7 | 124.9 | Si1—C16—H16C | 109.5 |
C8—C7—H7 | 124.9 | H16A—C16—H16C | 109.5 |
C9—C8—C7 | 106.90 (13) | H16B—C16—H16C | 109.5 |
C9—C8—H8 | 126.5 | Si1—C17—H17A | 109.5 |
C7—C8—H8 | 126.5 | Si1—C17—H17B | 109.5 |
C8—C9—C9A | 107.48 (14) | H17A—C17—H17B | 109.5 |
C8—C9—H9 | 126.3 | Si1—C17—H17C | 109.5 |
C9A—C9—H9 | 126.3 | H17A—C17—H17C | 109.5 |
N6—C9A—C10 | 120.63 (13) | H17B—C17—H17C | 109.5 |
C10A—C1—C2—C3 | 0.08 (16) | C3—N4—C10A—C10 | −178.23 (13) |
C1—C2—C3—N4 | −0.19 (17) | B5—N4—C10A—C10 | 3.0 (2) |
C2—C3—N4—C10A | 0.21 (17) | C3—N4—C10A—C1 | −0.15 (16) |
C2—C3—N4—B5 | 179.00 (13) | B5—N4—C10A—C1 | −178.93 (13) |
C3—N4—B5—F2 | 56.52 (19) | C9A—C10—C10A—N4 | −1.1 (2) |
C10A—N4—B5—F2 | −124.92 (15) | C11—C10—C10A—N4 | 176.29 (12) |
C3—N4—B5—F1 | −64.52 (19) | C9A—C10—C10A—C1 | −178.63 (15) |
C10A—N4—B5—F1 | 114.04 (16) | C11—C10—C10A—C1 | −1.2 (2) |
C3—N4—B5—N6 | 176.11 (13) | C2—C1—C10A—N4 | 0.04 (16) |
C10A—N4—B5—N6 | −5.32 (19) | C2—C1—C10A—C10 | 177.79 (15) |
F2—B5—N6—C7 | −59.55 (19) | C14—O1—C11—C12 | −0.46 (16) |
F1—B5—N6—C7 | 61.44 (19) | C14—O1—C11—C10 | −176.34 (12) |
N4—B5—N6—C7 | −179.57 (13) | C10A—C10—C11—C12 | −143.13 (16) |
F2—B5—N6—C9A | 126.96 (14) | C9A—C10—C11—C12 | 34.3 (2) |
F1—B5—N6—C9A | −112.05 (15) | C10A—C10—C11—O1 | 31.60 (19) |
N4—B5—N6—C9A | 6.94 (19) | C9A—C10—C11—O1 | −150.95 (13) |
C9A—N6—C7—C8 | 0.33 (16) | O1—C11—C12—C13 | 0.06 (17) |
B5—N6—C7—C8 | −174.14 (13) | C10—C11—C12—C13 | 175.12 (15) |
N6—C7—C8—C9 | 0.42 (17) | C11—C12—C13—C14 | 0.38 (17) |
C7—C8—C9—C9A | −0.98 (16) | C12—C13—C14—O1 | −0.67 (17) |
C7—N6—C9A—C10 | 179.29 (13) | C12—C13—C14—Si1 | −178.96 (12) |
B5—N6—C9A—C10 | −6.3 (2) | C11—O1—C14—C13 | 0.70 (15) |
C7—N6—C9A—C9 | −0.93 (15) | C11—O1—C14—Si1 | 179.25 (10) |
B5—N6—C9A—C9 | 173.51 (13) | C16—Si1—C14—C13 | −119.49 (15) |
C8—C9—C9A—N6 | 1.19 (16) | C15—Si1—C14—C13 | 119.69 (15) |
C8—C9—C9A—C10 | −179.06 (15) | C17—Si1—C14—C13 | 0.03 (18) |
N6—C9A—C10—C10A | 2.7 (2) | C16—Si1—C14—O1 | 62.36 (13) |
C9—C9A—C10—C10A | −177.04 (14) | C15—Si1—C14—O1 | −58.47 (13) |
N6—C9A—C10—C11 | −174.78 (12) | C17—Si1—C14—O1 | −178.13 (12) |
C9—C9A—C10—C11 | 5.5 (2) |
Cg4 is the centroid of the B5/N4/N6/C9A/C10/C10A ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1 | 0.95 | 2.46 | 2.9210 (18) | 110 |
C17—H17A···Cg4i | 0.98 | 2.93 | 3.906 (2) | 172 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Contact | Distance | Symmetry operation |
F2···H7 | 2.56 | 1/2 - x, 1/2 + y, 1/2 - z |
H15A···F1 | 2.55 | 1/2 - x, 3/2 - y, 1 - z |
H16B···F1 | 2.65 | 1/2 - x, 1/2 - y, 1 - z |
F2···H8 | 2.70 | x, 1 + y, z |
F2···H16A | 2.83 | x, 1 - y, -1/2 + z |
H13···C1 | 2.91 | 1 - x, 1 - y, 1 - z |
H13···H13 | 2.55 | 1 - x, -y, 1 - z |
H17C···H17C | 2.27 | 1 - x, y, 3/2 - z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, MA and GMM; synthesis, DMS and AGK; NMR analysis, AGK; X-ray analysis, VNK, NAG; writing (review and editing of the manuscript) MA and GMM; funding acquisition KIH; supervision, MA and GMM.
Funding information
This publication was supported by the RUDN University Scientific Projects Grant System, project No. 021408–2-000, as well as by the Baku Engineering University (Azerbaijan) and Azerbaijan Medical University.
References
Agazzi, M. L., Ballatore, M. B., Durantini, A. M., Durantini, E. N. & Tomé, A. C. (2019). J. Photochem. Photobiol. Photochem. Rev. 40, 21–48. CrossRef CAS Google Scholar
Askerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007–1011. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boens, N., Verbelen, B., Ortiz, M. J., Jiao, L. & Dehaen, W. (2019). Coord. Chem. Rev. 399, 213024–213108. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jun, T., Kim, K., Lee, K. M., Benniston, A. C. & Churchill, D. G. (2012a). J. Coord. Chem. 65, 4299–4314. CSD CrossRef CAS Google Scholar
Jun, T., Kim, K., Lee, K. M., Murale, D. P., Singh, A. P., Natsagdorj, A., Liew, H., Suh, Y.-H. & Churchill, D. G. (2012b). J. Porphyrins Phthalocyanines 16, 1201–1208. CSD CrossRef CAS Google Scholar
Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723. Google Scholar
Khan, T. K., Jana, S. K., Rao, M. R., Shaikh, M. S. & Ravikanth, M. (2012). Inorg. Chim. Acta 383, 257–266. CSD CrossRef CAS Google Scholar
Khan, T. K. & Ravikanth, M. (2012). Tetrahedron 68, 830–840. CSD CrossRef CAS Google Scholar
Kim, K., Jo, C., Easwaramoorthi, S., Sung, J., Kim, D. H. & Churchill, D. G. (2010). Inorg. Chem. 49, 4881–4894. CSD CrossRef CAS PubMed Google Scholar
Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). J. Inorg. Biochem. 115, 72–77. Web of Science CSD CrossRef CAS PubMed Google Scholar
Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932. Web of Science CrossRef PubMed CAS Google Scholar
Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. Eur. J. 29, e202203861. CrossRef PubMed Google Scholar
Poddar, M. & Misra, R. (2020). Coord. Chem. Rev. 421, 213462–213483. CrossRef CAS Google Scholar
Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pronina, A. A., Podrezova, A. G., Grigoriev, M. S., Hasanov, K. I., Sadikhova, N. D., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 777–782. CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sadikhova, N. D., Atioğlu, Z., Guliyeva, N. A., Shelukho, E. R., Polyanskaya, D. K., Khrustalev, V. N., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 72–77. CSD CrossRef IUCr Journals Google Scholar
Sharma, R., Lakshmi, V., Chatterjee, T. & Ravikanth, M. (2016). New J. Chem. 40, 5855–5860. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Treibs, A. & Kreuzer, F.-H. (1968). Justus Liebigs Ann. Chem. 718, 208–223. CrossRef CAS Google Scholar
Turksoy, A., Yildiz, D. & Akkaya, E. U. (2019). Coord. Chem. Rev. 379, 47–64. CrossRef CAS Google Scholar
Ulrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184–1201. Web of Science CrossRef CAS Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm 21, 6018–6025. Google Scholar
Zhao, N., Vicente, M. G. H., Fronczek, F. R. & Smith, K. M. (2015). Chem. Eur. J. 21, 6181–6192. CSD CrossRef CAS PubMed Google Scholar
Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron 72, 2239–2253. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.