research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 2-azido-N-(2,6-di­methyl­phen­yl)acetamide

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom, cUniversity of Jeddah, Jeddah 21589, Saudi Arabia, dLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and eDepartment of Chemistry, Tulane University, New Orleans, LA, 70118, USA
*Correspondence e-mail: [email protected], [email protected]

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 5 March 2025; accepted 21 May 2025; online 17 June 2025)

The asymmetric unit of the title compound, C10H12N4O, consists of two independent mol­ecules differing in the rotational orientation of the 2-azido­acetamido group. In the crystal, inspection of the contacts of the methyl groups shows an intra­molecular H⋯O distance of 2.47 Å in one mol­ecule and inter­molecular H⋯N distances of 2.75 Å in both independent mol­ecules. Both are definitely van der Waals contacts with the latter quite short as the H⋯O distance is 0.39 Å less than the sum of the respective van der Waals radii. A Hirshfeld surface analysis indicates that the H⋯H contacts make the largest contribution. In the absence of any specific C—H⋯N hydrogen bonds, the significant contribution of N⋯H/H⋯N contacts (24.7%) might seem surprising, but with the azide group projecting away from the rest of the mol­ecule, there is considerable opportunity for such contacts to occur.

1. Chemical context

Amides play an essential role in the structure of numerous natural products, agrochemicals, peptides, polymers, proteins, biologically active compounds, and functional materials (Humphrey & Chamberlin, 1997[Humphrey, J. M. & Chamberlin, A. R. (1997). Chem. Rev. 97, 2243-2266.]). The amide bond is among the most remarkable functional groups in nature due to its strong polarity, high stability, and conformational versatility (Wieland & Bodanszky, 2012[Wieland, T. & Bodanszky, M. (2012). The World of Peptides: A Brief History of Peptide Chemistry. Berlin/Heidelberg: Springer Science & Business Media.]). Furthermore, amides participate in a wide range of functional group transformations and organic reactions, enabling the synthesis of nitriles, carbonyl compounds, esters, amino acids, azides, amines, hydro­carbons, and pharmaceutical compounds. (Lectka, 2001[Lectka, T. (2001). Angew. Chem. 113, 4429-4430.]). Among the compounds derived from N-aryl­acetamides under the action of sodium azide (Scriven & Turnbull, 1988[Scriven, E. F. V. & Turnbull, K. (1988). Chem. Rev. 88, 297-368.]; Missioui et al., 2022a[Missioui, M., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2022a). IUCrData 7, x220621.]), azides stand out for their valuable applications in medicinal chemistry and mol­ecular biology (Khandelwal et al., 2024[Khandelwal, R., Vasava, M., Abhirami, R. B. & Karsharma, M. (2024). Bioorg. Med. Chem. Lett. 112, 129927-129965.]). Increasingly studied in organic synthesis, they play a key role as inter­mediates in the preparation of heterocycles such as triazolines and triazoles, typically formed through 1,3-dipolar cyclo­addition reactions (Tron et al., 2008[Tron, G. C., Pirali, T., Billington, R. A., Canonico, P. L., Sorba, G. & Genazzani, A. A. (2008). Med. Res. Rev. 28, 278-308.]). Herein we report the synthesis and spectroscopic characterization of the new azide derived from N-aryl­acetamide 3. A colorless plate-like specimen of the title compound (Fig. 1[link]) was used for the X-ray crystallographic analysis. A Hirshfeld surface analysis was performed to analyze the inter­molecular inter­actions.

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit with 50% probability ellipsoids for non-hydrogen atoms and 5% probability ellipsoids for hydrogen atoms.

2. Structural commentary

The asymmetric unit consists of two independent mol­ecules differing in the rotational orientation of the 2-azido­acetamido group. Thus, the O1—C9—N1—C1 and the C9—C10—N2—N3 torsion angles in the first mol­ecule are −6.3 (9) and −86.3 (7)°, respectively, while in the second mol­ecule, the O2—C19—N5—C11 and the C19—C20—N6—N7 torsion angles are 6.8 (8) and 86.6 (7)°, respectively. The sums of angles about N1 and N5 are both 360° within experimental error, indicating involvement of their lone pairs in N→C π bonding. This occurs primarily with the carbonyl carbon atom as expected with the N1—C9 and N1—C1 distances being 1.351 (7) and 1.430 (7) Å, respectively, and the N5—C19 and the N5—C11 distances at 1.350 (6) and 1.433 (6) Å, respectively. The dihedral angle between the mean plane of the C1—C6 phenyl ring and that defined by C1, N1, C9 and O1 is 60.6 (4)° while the corresponding angle in the second mol­ecule is 61.4 (3)°. These angles are considerably larger than the corresponding ones in the most closely related mol­ecules (vide infra) and are likely due to steric considerations resulting from the presence of the two methyl groups ortho to the acetamido group. Inspection of the contacts of the C7 and C8 methyl groups shows an intra­molecular distance H8B⋯O1 of 2.47 Å and an inter­molecular distance H7B⋯N4 (at −x, −y + 1, −z) of 2.75 Å. Both are definitely van der Waals contacts but with the former having an H⋯O distance 0.39 Å less than the sum of the respective van der Waals radii, one might consider it a C—H⋯O hydrogen bond. However, the C—H⋯O angle is less than 120° so it is best considered a very short van der Waals contact. The contacts are oriented such that a diminution of the above-mentioned dihedral angle would decrease both these distances, which would be unfavorable. For the second mol­ecule, a similar situation obtains for the C17 and C18 methyl groups with an intra­molecular H18A⋯O2 contact of 2.86 Å and an inter­molecular H17B⋯N8 (at −x + 1, −y + 1, −z + 1) contact of 2.75 Å, both about the sum of the relevant van der Waals radii. Again, a diminution of the dihedral angle here would shorten these contacts.

3. Supra­molecular features

In the crystal, chains of the mol­ecule containing N1 and extending along the a-axis direction are formed by N1—H1⋯O1 hydrogen bonds and reinforced by C10—H10A⋯O1 hydrogen bonds and C7—H7CCg1 inter­actions (Table 1[link]). Analogous chains of the mol­ecule containing N5 are formed by N5—H5A⋯O2 and C20—H20B⋯O2 hydrogen bonds plus C17—H17ACg2 inter­actions (Table 1[link] and Fig. 2[link]). The chains pack with largely normal van der Waals contacts (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (8) 2.10 (8) 2.973 (6) 163 (7)
N5—H5A⋯O2i 0.91 (6) 2.13 (6) 2.995 (5) 160 (5)
C8—H8B⋯O1 0.96 2.47 3.046 (10) 118
C10—H10A⋯O1i 0.97 2.38 3.266 (7) 151
C18—H18B⋯N5 0.96 2.47 2.911 (9) 108
C20—H20B⋯O2i 0.97 2.39 3.278 (6) 152
C7—H7CCg1i 0.96 2.97 3.745 (7) 138
C17—H17ACg2i 0.96 2.87 3.722 (6) 148
Symmetry code: (i) [x+1, y, z].
[Figure 2]
Figure 2
Portions of the two independent chains viewed along the b-axis direction with N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by violet and black dashed lines. The C—H⋯π(ring) inter­actions are depicted by green dashed lines and hydrogen atoms not involved in these inter­actions are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by violet and black dashed lines. The C—H⋯π(ring) inter­actions are depicted by green dashed lines and hydrogen atoms not involved in these inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to January 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the search fragment shown in Fig. 4[link]a (R = R′ = nothing) generated 24 hits of which 10 were similar to the title mol­ecule. The remainder were triazole derivatives. The similar mol­ecules have R = R′ = H (ASEDIO; Guerrab et al., 2021[Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133-134.]) and R′ = H, R = (2,3,4,6-tetra-O-acetyl-α-D-galacto­pyran­oside) (BEBPIJ; Cecioni et al., 2012[Cecioni, S., Praly, J.-P., Matthews, S. E., Wimmerová, M., Imberty, A. & Vidal, S. (2012). Chem. Eur. J. 18, 6250-6263.]), Me (BEKRES; Missioui et al., 2022a[Missioui, M., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2022a). IUCrData 7, x220621.]), F (BEKRIW; Missioui et al., 2022b[Missioui, M., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2022b). Acta Cryst. E78, 855-859.]), R = (C≡CH) (DAPYOM; Madhusudhanan et al., 2021[Madhusudhanan, M. C., Balan, H., Werz, D. B. & Sureshan, K. M. (2021). Angew. Chem. Int. Ed. 60, 22797-22803.]. DAPYOM01; Raju et al., 2023[Raju, C., Mridula, K., Srinivasan, N., Kunnikuruvan, S. & Sureshan, K. M. (2023). Angew. Chem. Int. Ed. 62, e202306504.]), NO2 (QAGNOF; Missioui et al., 2020[Missioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429-1430.]) and OMe (TARHIH; Missioui et al., 2022d[Missioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022d). J. Mol. Struct. 1253, 132132-132143.]). Of the last two, one has R = Cl and R′ = 2-chloro­benzoyl (VIFVOX; Cortes-Maya et al., 2012[Cortes-Maya, S., Cortes Cortes, E., Hernandez-Ortega, S., Ramirez Apan, T., Nieto Camacho, A., Lijanova, I. V. & Martínez-García Marcos, S. (2012). Anticancer Agents Med. Chem. 12, 611-618.]) and the other is shown in Fig. 4[link]b (LETTIR; Guirado-Moreno et al., 2023[Guirado-Moreno, J. C., González-Ceballos, L., Carreira-Barral, I., Ibeas, S., Fernández-Muiño, M. A., Teresa Sancho, M., García, J. M. & Vallejos, S. (2023). Spectrochim. Acta A Mol. Biomol. Spectrosc. 284, 121820-121828.]). As in the present structure, the asymmetric units of ASEDIO, BEKRIW, DAPYOM, DAPYOM01, LETTIR and VIFVOX consist of two independent mol­ecules (Z′ = 2) while in BEKRES there are three. The remainder have Z′ = 1. The dihedral angles between the mean plane of the phenyl ring and that defined by the acetamido group as described in Section 2 vary from 1.21 (8)° in LETTIR to 28.62 (10)° in ASEDIO with most others in the 15 to 25° range.

[Figure 4]
Figure 4
The search fragment used for the database survey (a) and LETTIR (b).

5. Hirshfeld surface analysis

To apportion the inter­molecular inter­actions into specific atom–atom contacts, a Hishfeld surface analysis was performed with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Full descriptions of the plots obtained and their inter­pretations have been published (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Fig. 5[link] shows the dnorm surface together with several neighboring mol­ecules. The N—H⋯O and C—H⋯O hydrogen bonds are depicted by red dashed lines and comparison with Fig. 2[link] shows that this figure is another view of portions of the chain motif. The dark-red spots on the surface correspond to the N—H⋯O hydrogen bonds and the lighter red spots to the C—H⋯O hydrogen bonds. Fig. 6[link]a shows the 2-D fingerprint plots for all inter­molecular contacts while Fig. 6[link]b–6e show those delineated into H⋯H, N⋯H/H⋯N, C⋯H/H⋯C and O⋯H/H⋯O inter­actions, respectively, together with their percentage contributions. As expected, the H⋯H contacts contribute the largest amount since the hydrogen atoms constitute a large portion of the periphery of the mol­ecule. In the absence of any specific C—H⋯N hydrogen bonds, the significant contribution of N⋯H/H⋯N contacts might seem surprising, but with the azide group projecting away from the rest of the mol­ecule, there is considerable opportunity for such contacts to occur. Indeed, N2 and N6 each interact with a C—H hydrogen from a neighboring mol­ecule while the terminal nitro­gen atoms (N4 and N8) each interact with two C—H hydrogen atoms. The next largest contribution is from C⋯H/H⋯C contacts, which can be attributed to the C7—H7Cπ(ring) inter­actions followed by the O⋯H/H⋯O inter­actions, which appear as a pair of sharp spikes at de + di ≃ 1.95 Å with broader shoulders at de + di ≃ 2.5 Å. These can be attributed, respectively, to the N—H⋯O and C—H⋯O hydrogen bonds. All other atom–atom contacts contribute less than 2% each, except for the N⋯N contacts which amount to 4.9%. These result from van der Waals contacts between inversion-related azide groups, which can be seen in Fig. 3[link].

[Figure 5]
Figure 5
The Hirshfeld dnorm surface for the asymmetric unit with several neighboring mol­ecules. The N—H⋯O and C—H⋯O hydrogen bonds are depicted by red dashed lines.
[Figure 6]
Figure 6
2-D fingerprint plots for all inter­molecular inter­actions (a) and those delineated into H⋯H (b), C⋯H/H⋯C (c), N⋯H/H⋯N (d) and O⋯H/H⋯O (e) inter­actions.

6. Synthesis and crystallization

2-Chloro-N-(2,6-di­methyl­phen­yl)acetamide, 1, was obtained according to our previous work (Missioui, et al., 2022c[Missioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022c). Acta Cryst. E78, 687-690.]; El Moutaouakil Ala Allah et al., 2024[El Moutaouakil Ala Allah, A., Kariuki, B. M., Ameziane El Hassani, I., Alsubari, A., Guerrab, W., Said, M. & Ramli, Y. (2024). IUCrData 9, x241015.]). 2.50 mmol of compound 1 and sodium azide (3.75 mmol) were dissolved in an ethanol/water mixture (8/2) and then refluxed for 24 h at 353 K. Upon completion of the reaction (TLC), the precipitate of 2-azido-N-(2,6-di­methyl­phen­yl)acetamide, 3, was filtered off and washed with cold water. The obtained precipitate was then recrystallized in ethanol. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent (Fig. 7[link]).

[Figure 7]
Figure 7
Reaction scheme for the formation of the title compound 3.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Data processing revealed crystal twinning by twofold rotation around [001] and the SHELXL HKLF 5 instruction was used for refinement. In the final cycles of refinement, hydrogen-atom geometry was idealized, and a riding model was used with Uiso(H) set at 1.2 or 1.5 × Ueq(parent atom).

Table 2
Experimental details

Crystal data
Chemical formula C10H12N4O
Mr 204.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 4.8530 (3), 7.3504 (5), 29.862 (3)
α, β, γ (°) 93.584 (6), 90.385 (5), 99.905 (5)
V3) 1047.14 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.73
Crystal size (mm) 0.81 × 0.13 × 0.04
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.245, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4441, 4441, 2956
Rint 0.077
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.244, 1.08
No. of reflections 4441
No. of parameters 284
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.28
Computer programs: CrysAlis PRO CCD (Rigaku OD, 2024[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2024). CrysAlis PRO CCD. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

2-Azido-N-(2,6-dimethylphenyl)acetamide top
Crystal data top
C10H12N4OZ = 4
Mr = 204.24F(000) = 432
Triclinic, P1Dx = 1.295 Mg m3
a = 4.8530 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.3504 (5) ÅCell parameters from 2419 reflections
c = 29.862 (3) Åθ = 5.9–72.6°
α = 93.584 (6)°µ = 0.73 mm1
β = 90.385 (5)°T = 296 K
γ = 99.905 (5)°Plate, yellow
V = 1047.14 (13) Å30.81 × 0.13 × 0.04 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
2956 reflections with I > 2σ(I)
Detector resolution: 10.5082 pixels mm-1Rint = 0.077
ω scansθmax = 72.7°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 55
Tmin = 0.245, Tmax = 1.000k = 88
4441 measured reflectionsl = 3634
4441 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.076H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.244 w = 1/[σ2(Fo2) + (0.1273P)2 + 0.4349P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4441 reflectionsΔρmax = 0.26 e Å3
284 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3914 (11)0.7296 (8)0.14237 (17)0.0451 (13)
C20.5308 (11)0.9109 (9)0.13628 (19)0.0490 (13)
C30.4650 (15)1.0525 (10)0.1654 (2)0.0632 (17)
H30.5511461.1738250.1619310.076*
C40.2775 (16)1.0172 (10)0.1989 (2)0.0672 (18)
H40.2362131.1139370.2178310.081*
C50.1491 (14)0.8378 (11)0.2047 (2)0.0638 (18)
H50.0217240.8143860.2276670.077*
C60.2078 (12)0.6919 (9)0.17669 (18)0.0496 (13)
C70.7373 (14)0.9541 (11)0.0994 (2)0.0645 (17)
H7A0.8065931.0848550.1007520.097*
H7B0.6466710.9161930.0708560.097*
H7C0.8903670.8889510.1031250.097*
C80.0716 (16)0.4984 (12)0.1860 (3)0.073 (2)
H8A0.2063300.4171900.1826890.109*
H8B0.0812670.4571380.1651920.109*
H8C0.0029230.4975480.2160770.109*
C90.2520 (10)0.4849 (8)0.08358 (17)0.0467 (13)
C100.3565 (11)0.3436 (9)0.05193 (18)0.0522 (14)
H10A0.5589680.3717790.0509040.063*
H10B0.3047290.2216440.0631710.063*
C110.8588 (9)0.6601 (6)0.35827 (17)0.0345 (10)
C120.9938 (9)0.8443 (7)0.36511 (18)0.0372 (11)
C130.9229 (12)0.9725 (8)0.3366 (2)0.0508 (13)
H131.0129051.0949930.3399350.061*
C140.7215 (14)0.9201 (9)0.3034 (2)0.0565 (15)
H140.6691151.0084700.2857330.068*
C150.5969 (12)0.7371 (9)0.2964 (2)0.0530 (14)
H150.4659690.7031640.2731310.064*
C160.6628 (10)0.6023 (7)0.32321 (19)0.0425 (12)
C171.2093 (11)0.9010 (8)0.4015 (2)0.0527 (14)
H17A1.3721370.8474940.3945430.079*
H17B1.1348560.8584550.4294650.079*
H17C1.2594381.0334120.4040190.079*
C180.5361 (15)0.4039 (9)0.3133 (3)0.0652 (17)
H18A0.3440750.3841690.3222050.098*
H18B0.6369470.3271690.3296670.098*
H18C0.5458430.3726520.2817420.098*
C190.7322 (9)0.4416 (6)0.41601 (17)0.0356 (10)
C200.8437 (9)0.3184 (7)0.44798 (17)0.0394 (11)
H20A0.7899560.1901840.4369060.047*
H20B1.0464250.3473500.4489740.047*
N10.4497 (9)0.5850 (7)0.11149 (15)0.0452 (11)
N20.2389 (11)0.3427 (8)0.00639 (16)0.0575 (13)
N30.0103 (11)0.2437 (8)0.00052 (15)0.0552 (13)
N40.1938 (12)0.1562 (10)0.0128 (2)0.0742 (17)
N50.9233 (7)0.5280 (5)0.38826 (15)0.0356 (9)
N60.7382 (9)0.3418 (6)0.49305 (17)0.0509 (11)
N70.5103 (9)0.2455 (6)0.50054 (15)0.0421 (10)
N80.3088 (10)0.1657 (8)0.5130 (2)0.0650 (15)
O10.0030 (8)0.4970 (7)0.08450 (15)0.0596 (12)
O20.4864 (7)0.4538 (6)0.41561 (14)0.0493 (10)
H5A1.108 (12)0.534 (8)0.3946 (18)0.040 (14)*
H10.630 (16)0.583 (11)0.105 (2)0.07 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (3)0.058 (4)0.039 (3)0.016 (2)0.009 (2)0.007 (2)
C20.045 (3)0.052 (3)0.049 (3)0.009 (2)0.010 (2)0.003 (2)
C30.074 (4)0.052 (4)0.063 (4)0.018 (3)0.009 (3)0.009 (3)
C40.086 (5)0.068 (5)0.051 (4)0.026 (4)0.002 (3)0.010 (3)
C50.068 (4)0.086 (5)0.042 (3)0.026 (4)0.007 (3)0.001 (3)
C60.051 (3)0.057 (4)0.042 (3)0.013 (3)0.005 (2)0.001 (2)
C70.055 (4)0.075 (5)0.063 (4)0.013 (3)0.000 (3)0.002 (3)
C80.076 (5)0.081 (5)0.059 (4)0.004 (4)0.008 (3)0.016 (4)
C90.034 (3)0.068 (4)0.037 (3)0.008 (2)0.0043 (19)0.003 (2)
C100.044 (3)0.067 (4)0.043 (3)0.010 (3)0.008 (2)0.013 (3)
C110.0232 (19)0.030 (2)0.054 (3)0.0115 (16)0.0014 (18)0.006 (2)
C120.029 (2)0.028 (2)0.057 (3)0.0096 (17)0.0047 (18)0.005 (2)
C130.054 (3)0.033 (3)0.067 (4)0.012 (2)0.009 (3)0.011 (2)
C140.072 (4)0.048 (3)0.055 (4)0.024 (3)0.001 (3)0.012 (3)
C150.056 (3)0.056 (4)0.051 (3)0.021 (3)0.009 (2)0.007 (3)
C160.037 (3)0.038 (3)0.053 (3)0.011 (2)0.005 (2)0.001 (2)
C170.037 (3)0.048 (3)0.070 (4)0.002 (2)0.003 (3)0.004 (3)
C180.073 (4)0.046 (4)0.073 (4)0.003 (3)0.018 (3)0.003 (3)
C190.025 (2)0.025 (2)0.058 (3)0.0070 (16)0.0036 (18)0.0067 (19)
C200.030 (2)0.032 (2)0.061 (3)0.0122 (17)0.003 (2)0.016 (2)
N10.033 (2)0.057 (3)0.046 (2)0.0126 (19)0.0036 (18)0.008 (2)
N20.046 (3)0.080 (4)0.043 (3)0.004 (2)0.001 (2)0.003 (2)
N30.047 (3)0.077 (4)0.041 (3)0.014 (2)0.0020 (19)0.008 (2)
N40.050 (3)0.100 (5)0.067 (4)0.008 (3)0.016 (3)0.017 (3)
N50.0171 (16)0.032 (2)0.060 (3)0.0073 (13)0.0003 (16)0.0102 (17)
N60.044 (3)0.044 (3)0.062 (3)0.0020 (19)0.002 (2)0.008 (2)
N70.034 (2)0.037 (2)0.058 (3)0.0117 (16)0.0012 (17)0.0084 (19)
N80.037 (3)0.071 (4)0.089 (4)0.009 (2)0.006 (2)0.014 (3)
O10.031 (2)0.085 (3)0.062 (3)0.0177 (19)0.0070 (16)0.016 (2)
O20.0211 (17)0.058 (2)0.073 (3)0.0146 (15)0.0032 (15)0.0188 (19)
Geometric parameters (Å, º) top
C1—C61.373 (8)C12—C131.393 (7)
C1—C21.410 (9)C12—C171.493 (7)
C1—N11.430 (7)C13—C141.375 (9)
C2—C31.396 (8)C13—H130.9300
C2—C71.505 (9)C14—C151.379 (9)
C3—C41.363 (10)C14—H140.9300
C3—H30.9300C15—C161.390 (8)
C4—C51.380 (10)C15—H150.9300
C4—H40.9300C16—C181.492 (8)
C5—C61.389 (9)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—C81.505 (10)C17—H17C0.9600
C7—H7A0.9600C18—H18A0.9600
C7—H7B0.9600C18—H18B0.9600
C7—H7C0.9600C18—H18C0.9600
C8—H8A0.9600C19—O21.212 (5)
C8—H8B0.9600C19—N51.350 (6)
C8—H8C0.9600C19—C201.514 (6)
C9—O11.227 (6)C20—N61.454 (7)
C9—N11.351 (7)C20—H20A0.9700
C9—C101.515 (7)C20—H20B0.9700
C10—N21.470 (7)N1—H10.90 (8)
C10—H10A0.9700N2—N31.226 (7)
C10—H10B0.9700N3—N41.129 (7)
C11—C121.401 (7)N5—H5A0.91 (6)
C11—C161.405 (7)N6—N71.236 (6)
C11—N51.433 (6)N7—N81.129 (7)
C6—C1—C2121.7 (6)C11—C12—C17121.0 (5)
C6—C1—N1120.9 (6)C14—C13—C12120.8 (5)
C2—C1—N1117.4 (5)C14—C13—H13119.6
C3—C2—C1117.2 (6)C12—C13—H13119.6
C3—C2—C7120.4 (6)C13—C14—C15120.4 (6)
C1—C2—C7122.4 (6)C13—C14—H14119.8
C4—C3—C2121.6 (7)C15—C14—H14119.8
C4—C3—H3119.2C14—C15—C16121.4 (5)
C2—C3—H3119.2C14—C15—H15119.3
C3—C4—C5119.9 (7)C16—C15—H15119.3
C3—C4—H4120.0C15—C16—C11117.4 (5)
C5—C4—H4120.0C15—C16—C18120.3 (5)
C4—C5—C6120.7 (6)C11—C16—C18122.3 (5)
C4—C5—H5119.6C12—C17—H17A109.5
C6—C5—H5119.6C12—C17—H17B109.5
C1—C6—C5118.8 (6)H17A—C17—H17B109.5
C1—C6—C8122.9 (6)C12—C17—H17C109.5
C5—C6—C8118.3 (6)H17A—C17—H17C109.5
C2—C7—H7A109.5H17B—C17—H17C109.5
C2—C7—H7B109.5C16—C18—H18A109.5
H7A—C7—H7B109.5C16—C18—H18B109.5
C2—C7—H7C109.5H18A—C18—H18B109.5
H7A—C7—H7C109.5C16—C18—H18C109.5
H7B—C7—H7C109.5H18A—C18—H18C109.5
C6—C8—H8A109.5H18B—C18—H18C109.5
C6—C8—H8B109.5O2—C19—N5124.4 (4)
H8A—C8—H8B109.5O2—C19—C20120.5 (4)
C6—C8—H8C109.5N5—C19—C20115.1 (4)
H8A—C8—H8C109.5N6—C20—C19111.9 (4)
H8B—C8—H8C109.5N6—C20—H20A109.2
O1—C9—N1124.2 (5)C19—C20—H20A109.2
O1—C9—C10120.9 (5)N6—C20—H20B109.2
N1—C9—C10114.8 (4)C19—C20—H20B109.2
N2—C10—C9111.5 (5)H20A—C20—H20B107.9
N2—C10—H10A109.3C9—N1—C1122.5 (4)
C9—C10—H10A109.3C9—N1—H1118 (5)
N2—C10—H10B109.3C1—N1—H1117 (5)
C9—C10—H10B109.3N3—N2—C10115.4 (5)
H10A—C10—H10B108.0N4—N3—N2170.7 (6)
C12—C11—C16122.0 (5)C19—N5—C11122.4 (3)
C12—C11—N5118.5 (4)C19—N5—H5A119 (4)
C16—C11—N5119.5 (4)C11—N5—H5A115 (4)
C13—C12—C11117.9 (5)N7—N6—C20115.9 (5)
C13—C12—C17121.1 (5)N8—N7—N6171.1 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (8)2.10 (8)2.973 (6)163 (7)
N5—H5A···O2i0.91 (6)2.13 (6)2.995 (5)160 (5)
C8—H8B···O10.962.473.046 (10)118
C10—H10A···O1i0.972.383.266 (7)151
C18—H18B···N50.962.472.911 (9)108
C20—H20B···O2i0.972.393.278 (6)152
C7—H7C···Cg1i0.962.973.745 (7)138
C17—H17A···Cg2i0.962.873.722 (6)148
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Author contributions are as follows: conceptualization, YR; methodology, AA; investigation, AEMAA; writing (original draft), JTM and AEMAA; writing (review and editing of the manuscript), YR; formal analysis, AIA and JTM; supervision, YR; crystal structure determination, BMK; resources, BHA and MTB

References

First citationCecioni, S., Praly, J.-P., Matthews, S. E., Wimmerová, M., Imberty, A. & Vidal, S. (2012). Chem. Eur. J. 18, 6250–6263.  CSD CrossRef CAS PubMed Google Scholar
First citationCortes-Maya, S., Cortes Cortes, E., Hernandez-Ortega, S., Ramirez Apan, T., Nieto Camacho, A., Lijanova, I. V. & Martínez-García Marcos, S. (2012). Anticancer Agents Med. Chem. 12, 611–618.  PubMed Google Scholar
First citationEl Moutaouakil Ala Allah, A., Kariuki, B. M., Ameziane El Hassani, I., Alsubari, A., Guerrab, W., Said, M. & Ramli, Y. (2024). IUCrData 9, x241015.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuirado-Moreno, J. C., González-Ceballos, L., Carreira-Barral, I., Ibeas, S., Fernández-Muiño, M. A., Teresa Sancho, M., García, J. M. & Vallejos, S. (2023). Spectrochim. Acta A Mol. Biomol. Spectrosc. 284, 121820–121828.  CAS PubMed Google Scholar
First citationHumphrey, J. M. & Chamberlin, A. R. (1997). Chem. Rev. 97, 2243–2266.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKhandelwal, R., Vasava, M., Abhirami, R. B. & Karsharma, M. (2024). Bioorg. Med. Chem. Lett. 112, 129927–129965.  CAS PubMed Google Scholar
First citationLectka, T. (2001). Angew. Chem. 113, 4429–4430.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadhusudhanan, M. C., Balan, H., Werz, D. B. & Sureshan, K. M. (2021). Angew. Chem. Int. Ed. 60, 22797–22803.  Web of Science CSD CrossRef CAS Google Scholar
First citationMissioui, M., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2022a). IUCrData 7, x220621.  Google Scholar
First citationMissioui, M., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2022b). Acta Cryst. E78, 855–859.  CSD CrossRef IUCr Journals Google Scholar
First citationMissioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429–1430.  Web of Science CSD CrossRef CAS Google Scholar
First citationMissioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022c). Acta Cryst. E78, 687–690.  CSD CrossRef IUCr Journals Google Scholar
First citationMissioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022d). J. Mol. Struct. 1253, 132132–132143.  CAS Google Scholar
First citationRaju, C., Mridula, K., Srinivasan, N., Kunnikuruvan, S. & Sureshan, K. M. (2023). Angew. Chem. Int. Ed. 62, e202306504.  Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRigaku OD (2024). CrysAlis PRO CCD. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationScriven, E. F. V. & Turnbull, K. (1988). Chem. Rev. 88, 297–368.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTron, G. C., Pirali, T., Billington, R. A., Canonico, P. L., Sorba, G. & Genazzani, A. A. (2008). Med. Res. Rev. 28, 278–308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieland, T. & Bodanszky, M. (2012). The World of Peptides: A Brief History of Peptide Chemistry. Berlin/Heidelberg: Springer Science & Business Media.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds