research papers
Synthesis and physical properties of ferrocene derivatives. XXI.
of a liquid crystalline ferrocene derivative, 1,1'-bis[3-[4-(4-methoxyphenoxycarbonyl)phenoxy]propyloxycarbonyl]ferroceneaDepartment of Applied Chemistry, College of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan, and bInstitut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Groupe des Matériaux Organiques, 23 rue du Loess, BP43, F-67034 Strasbourg Cedex 2, France
*Correspondence e-mail: nakamura@sk.ritsumei.ac.jp
The gauche conformation. These conformations are strongly related to the formation of a rod-like shape, which favors liquid crystalline behavior. In the C—H⋯π, π–π and T-stacking interactions were observed. It is considered that these interactions play a major role in stabilizing the molecular packing arrangement and the mesomorphism.
of the title 1,1′-disubstituted ferrocene derivative was determined by X-ray diffraction using a single crystal. This compound exhibits a only. The X-ray structure analysis revealed that the two substituents lie in the same direction (`U' shape) and the flexible spacer adopts a1. Introduction
Ferrocene is a metallocene that shows a remarkable aromaticity combined with thermal stability. It is well known that ferrocene derivatives have the potential to be liquid crystalline materials with unique properties, such as electrochemical (Carano et al., 2002) and (Even et al., 2001) properties. As substitution reactions occur easily at the cyclopentadienyl rings in the ferrocene molecule, just like in benzene, many different types of liquid crystalline ferrocene derivative have been synthesized and investigated. A number of papers concerned with ferrocene-containing liquid crystals have been published already. These papers deal with the thermal and mesomorphic properties of monosubstituted ferrocenes (Malthête & Billard, 1976; Imrie et al., 2001, 2003; Nakamura, Hanasaki & Onoi, 1993; Nakamura, Hanasaki, Onoi & Oida, 1993; Hanasaki et al., 1993; Nakamura et al., 1994, 1995; Nakamura & Takayama, 1997; Nakamura & Setodoi, 1998a,b, 1999a,b; Nakamura & Oida, 1999; Nakamura, Maekawahara et al., 2000; Nakamura, Setodoi & Hanasaki, 2000; Nakamura, Setodoi & Takayama, 2000; Nakamura et al., 2002; Nakamura et al., 2006a,b; Zhao et al., 2001; Deschenaux, Marendaz et al., 1995; Loubser et al., 1993; Loubser & Imrie, 1997), 1,1′-, 1,3- and 1,2-disubstituted ferrocenes (see next paragraph), 1,1′,3-trisubstituted ferrocene derivatives (Deschenaux, Kosztics & Nocolet, 1995), polycatenar ferrocenes (Deschenaux, Monnet et al., 1998), and ferrocene-containing liquid crystalline dendromers (Carano et al., 2002; Even et al., 2001; Chuard & Deschenaux, 2003; Deschenaux et al., 1997; Dardel et al., 1999; Deschenaux, Even & Guillon, 1998; Campidelli et al., 2004) [see also the reviews by Donnio et al. (2003) and Bruce et al. (2007a)].
From the structural viewpoint, disubstituted ferrocene derivatives can be classified into three families according to the positions of the substituent: 1,1′-, 1,2- and 1,3-disubstituted ferrocene derivatives. It is well known that the 1,1′-disubstituted ferrocene derivatives can adopt an `S' (Nakamura et al., 2005), a `U' (Nakamura & Okabe, 2004; Nakamura et al., 2007) or a `Z' (Nakamura & Nishikawa, 2005) shaped conformation. On the other hand, the 1,3-disubstituted ferrocene derivatives give a `T' (Deschenaux et al., 1993) shaped conformation. In the `S', the `T' and the `Z' shaped conformations, the two substituents lie in opposite directions with respect to the ferrocenyl group, but the `U' shape means that the two substituents lie in the same direction. In general, it is advantageous for the appearance of liquid crystallinity that the aspect ratio of molecular length to breadth should be relatively large. Therefore, it is considered that the `S' and the `T' shaped conformations are typical for liquid crystals of 1,1′-disubstituted ferrocene derivatives. In addition, it has been reported that 1,2-disubstituted ferrocene derivatives do not show liquid crystalline properties because of their unique hairpin structures (Bruce et al., 2007b).
A series of disubstituted ferrocene derivatives, 1,1′-bis[ω-[4-(4-methoxyphenoxycarbonyl)phenoxy]alkyloxycarbonyl]ferrocene (abbreviated hereafter as bMAF-n, n = 2–12, where n is the number of C atoms in the methylene chain), have been prepared in our laboratory. The general structure of bMAF-n is shown in Fig. 1. In the homologous series, bMAF-3 and bMAF-5–bMAF-12 show liquid crystallinity, with nematic and smectic (except n = 3) phases. In contrast, bMAF-2 and bMAF-4 do not exhibit any liquid crystallinity (Hanasaki et al., 1994; Nakamura et al., 1998). The crystal structures of bMAF-2 (Nakamura & Nishikawa, 2005), bMAF-5 (Nakamura et al., 2005), bMAF-9 (Nakamura et al., 2007) and bMAF-10 (Nakamura & Okabe, 2004) have already been determined. In the crystal of bMAF-2 (Nakamura & Nishikawa, 2005), the molecule adopts the `Z' shaped conformation, and bMAF-5 (Nakamura et al., 2005) adopts the `S' shaped one, whereas in the crystals of bMAF-9 (Nakamura et al., 2007) and bMAF-10 (Nakamura & Okabe, 2004), the molecules exhibit the `U' shaped conformation.
Correlations between the
and some physical properties can be deduced from the structure analyses.In this study, the crystal and molecular structures of bMAF-3 were determined by X-ray diffraction methods using single crystals. Some interesting interactions will be discussed.
2. Experimental
Single crystals of the title compound were obtained from a mixed solvent solution of ethylacetate and heptane (1:1) by slow evaporation. The single crystals obtained are orange in color and plate-like. The sample, which had approximate dimensions of 0.75 × 0.10 × 0.05 mm, was mounted on a goniometer.
Data collection was carried out at 294 K, using a Rigaku AFC5R four-circle diffractometer with graphite-monochoromated Cu Kα (λ = 1.54178 Å) radiation, operated at 50 kV and 200 mA.
The unit-cell parameters were obtained from a least-squares θ < 26.62°. The data were collected using the ω–2θ scan technique to a maximum 2θ value of 140.3°.
using the setting angle of 22 reflections in the range 18.27 < 26153 reflections were measured, of which 4059 were unique. The intensities of three standard reflections were measured after every 150 reflections. Over the course of the data collection, the intensity of the standards decreased by 0.88%. The data were also corrected for Lorentz and polarization effects and for absorption [numerical (Coppens et al., 1965); the minimum and maximum transmission factors were 0.60091 and 0.83876, respectively].
All calculations were performed using the WinGX crystallographic software package (Farrugia, 1999). The atomic scattering factors were taken from Cromer & Waber (1974). The structure was solved by (SIR92; Altomare et al., 1994) and expanded using the Fourier technique. All non-H atoms were refined anisotropically, and all H atoms were refined isotropically. The H atoms were introduced at their theoretical positions and allowed to ride with the C atoms to which they are attached. The final was made by full-matrix least-squares analysis based on 4059 observed reflections. The cycles converged to R = 0.038, wR(F2) = 0.098, w = 1/[σ2(Fo2) + (0.0211P)2 + 1.2943P], where P = [Max(Fo2, 0) + 2Fc2]/3, and S = 1.052. The maximum shift s.u. ratio for all atoms in the final cycle is less than 0.001. The final cycles of the resulted in a residual electron density in the range −0.369–0.346 eÅ−3.
Experimental details are summarized in Table 1.1
|
3. Results and discussion
3.1. Molecular structure
An ORTEPIII (Johnson & Burnett, 1996) drawing showing the molecular structure with the numbering for each atom is presented in Fig. 2, where the H atoms have been omitted for simplification.
In the ferrocenyl group, the two cyclopentadienyl rings are almost parallel; the dihedral angle is 1.0 (2)° (Table 2). The average values of the Fe—C and C—C bond distances in the ferrocenyl unit of bMAF-3 are 2.050 (5) and 1.421 (7) Å, respectively. The C—C—C bond angles in the cyclopentadienyl rings are 108.0 (4)°. These values agree with those of ferrocene reported elsewhere (Nakamura & Setodoi, 1998a,b, 1999a,b; Nakamura et al., 2002, 2005, 2006a,b, 2007; Nakamura, Setodoi & Takayama, 2000; Nakamura & Okabe, 2004; Nakamura & Nishikawa, 2005; Dunitz et al., 1956) within experimental error.
|
In the flexible spacers (C7–C9 and C30–C32), the C—C—C bond angles are 111.3 (4) and 113.1 (5)°, the average values of the C—C bond length are 1.509 (7) and 1.496 (8) Å, and the lengths of the chains are 2.488 (7) and 2.497 (7) Å, respectively. These values are nearly equal to the values determined for n-paraffin [e.g. the average C—C bond distance is approximately 1.54 Å and the length of the –CH2—CH2—CH2– unit is 2.54 Å (Bunn, 1939)].
The molecular structure of bMAF-3 is somewhat different from that of the previously analyzed `U' shaped homologues bMAF-9 (Nakamura et al., 2007) and bMAF-10 (Nakamura & Okabe, 2004). The dihedral angles of the two phenyl rings (Plane 2–Plane 5 and Plane 3–Plane 6) in the are estimated to be 65.8 (2) and 58.6 (2)°, respectively, as shown in Table 2. In contrast, the dihedral angles between the two phenyl rings of bMAF-9 (Nakamura et al., 2007) and bMAF-10 (Nakamura & Okabe, 2004) are 3.5–11.2°, indicating that these phenyl rings are almost parallel.
The two substituents of bMAF-3 lie in the same direction (`U' shape), and the molecular length of bMAF-3 (C4–C23) is estimated to be 20.856 (16) Å. As the C6—O1—C7—C8, C7—C8—C9—O3, C29—O7—C30—C31 and C30—C31—C32—O9 fragments adopt a gauche conformation in the flexible spacer, the molecules can be considered as rod-like molecules, as shown in Table 3. A new shape of bMAF-n molecule was found by Nakamura & Nishikawa (2005), who reported a novel molecular structure for bMAF-2, the name of which was associated with a `Z' shape. The aspect ratio of bMAF-2 (Nakamura & Nishikawa, 2005) is rather low, which is not advantageous for the appearance of liquid crystallinity. Therefore, the rod-like shape obtained with the molecules analyzed in this paper is an important factor for obtaining a mesomorphic behavior.
|
3.2. Crystal structure
Projections of the ab and bc planes of bMAF-3 are shown in Figs. 3(a) and 3(b), respectively. In both projections, herringbone layer structures were observed. Among the other homologues of bMAF-n for which the molecular and crystal structures have been analyzed, only bMAF-3 exhibits such a structure.
The following intermolecular interactions were identified in bMAF-3:
(i) Two C—H⋯π interactions. One is between the H atoms on C8 and C9 of the methylene chains and the C40–C45 benzene ring of the (Fig. 4a). The other is between the H atom on C32 and the C10–C15 benzene ring (Fig. 4b).
(ii) One T-stacking π–π interaction, between the H atom on C4 of the Cp ring and the C17–C22 benzene ring in a neighboring layer (Fig. 4c).
(iii) A π–π interaction between the C1–C5 Cp ring and the C33–C38 benzene ring (Fig. 4d).
In addition, two intramolecular interactions are identified between the two substituents of the molecule. As shown in Fig. 5, they are two T-stacking interactions between H atoms (on C18, C19 and C37, C38) of the phenyl groups of the mesogenic units and the benzene rings C40–C45 and C10–C15, respectively. Therefore, bMAF-3 has four intermolecular interactions and two intramolecular interactions.
bMAF-3 exhibits only a monotropic et al., 2007), for example, possesses a monotropic and a smectic one. The difference between the occurrences of these phases is attributed to the different features of the inter- and intramolecular interactions in bMAF-3 and bMAF-9 (Nakamura et al., 2007). In the cooling process from the isotropic liquid phase, bMAF-3 gradually aggregates through the above-mentioned intramolecular interactions between the two substituents of bMAF-3 and the intermolecular interactions between neighboring molecules, while bMAF-9 (Nakamura et al., 2007) aggregates through the only intermolecular interactions between the two substituents of bMAF-9. Consequently, the presence of the different interactions may play an important role in giving rise to the mesomorphism.
On the other hand, bMAF-9 (NakamuraSupporting information
10.1107/S0021889808042039/dd5042sup1.cif
contains datablocks global, bMAF-3. DOI:Structure factors: contains datablock shelx. DOI: 10.1107/S0021889808042039/dd5042sup2.hkl
Program(s) used to solve structure: SIR92; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
C46H42FeO12 | F(000) = 880 |
Mr = 842.65 | Dx = 1.411 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2yb | Cell parameters from 22 reflections |
a = 5.857 (4) Å | θ = 9.1–13.3° |
b = 24.105 (3) Å | µ = 3.61 mm−1 |
c = 14.069 (4) Å | T = 294 K |
β = 93.15 (4)° | Plate, orange |
V = 1983.5 (14) Å3 | 0.75 × 0.10 × 0.05 mm |
Z = 2 |
Rigaku AFC5R diffractometer | Rint = 0.051 |
ω–2θ scans | θmax = 70.2°, θmin = 3.2° |
Absorption correction: numerical Coppens numerical | h = −2→7 |
Tmin = 0.601, Tmax = 0.839 | k = −2→29 |
6153 measured reflections | l = −17→17 |
4059 independent reflections | 3 standard reflections every 150 reflections |
3409 reflections with I > 2σ(I) | intensity decay: 0.9% |
Refinement on F2 | w = 1/[σ2(Fo2) + (0.0211P)2 + 1.2943P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max < 0.001 |
R[F2 > 2σ(F2)] = 0.038 | Δρmax = 0.35 e Å−3 |
wR(F2) = 0.098 | Δρmin = −0.37 e Å−3 |
S = 1.05 | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
4059 reflections | Extinction coefficient: 0.00185 (16) |
533 parameters | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
1 restraint | Absolute structure parameter: −0.005 (5) |
All H-atom parameters refined |
C46H42FeO12 | V = 1983.5 (14) Å3 |
Mr = 842.65 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 5.857 (4) Å | µ = 3.61 mm−1 |
b = 24.105 (3) Å | T = 294 K |
c = 14.069 (4) Å | 0.75 × 0.10 × 0.05 mm |
β = 93.15 (4)° |
Rigaku AFC5R diffractometer | 3409 reflections with I > 2σ(I) |
Absorption correction: numerical Coppens numerical | Rint = 0.051 |
Tmin = 0.601, Tmax = 0.839 | 3 standard reflections every 150 reflections |
6153 measured reflections | intensity decay: 0.9% |
4059 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | All H-atom parameters refined |
wR(F2) = 0.098 | Δρmax = 0.35 e Å−3 |
S = 1.05 | Δρmin = −0.37 e Å−3 |
4059 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
533 parameters | Absolute structure parameter: −0.005 (5) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.36555 (11) | 0.09290 (3) | 0.77259 (5) | 0.03429 (17) | |
O1 | 0.7952 (5) | 0.19366 (14) | 0.6861 (2) | 0.0405 (8) | |
O2 | 0.4474 (6) | 0.23080 (16) | 0.6539 (3) | 0.0506 (9) | |
O3 | 0.8731 (7) | 0.30617 (18) | 0.4651 (3) | 0.0594 (11) | |
O4 | 1.1620 (6) | 0.44284 (16) | 0.1083 (2) | 0.0463 (9) | |
O5 | 0.8655 (8) | 0.3937 (2) | 0.0433 (3) | 0.0747 (14) | |
O6 | 1.2161 (8) | 0.56414 (18) | −0.2226 (3) | 0.0646 (11) | |
O7 | 0.2608 (6) | 0.13152 (17) | 0.5087 (2) | 0.0502 (9) | |
O8 | 0.6241 (5) | 0.1026 (2) | 0.5283 (2) | 0.0606 (11) | |
O9 | 0.3436 (7) | 0.18467 (17) | 0.2281 (3) | 0.0623 (11) | |
O10 | 0.5471 (7) | 0.33786 (16) | −0.1202 (3) | 0.0553 (10) | |
O11 | 0.8438 (8) | 0.27876 (19) | −0.1262 (3) | 0.0700 (13) | |
O12 | 0.7716 (10) | 0.4582 (2) | −0.4357 (4) | 0.0979 (18) | |
C1 | 0.5083 (7) | 0.1697 (2) | 0.7853 (3) | 0.0361 (10) | |
C2 | 0.2857 (8) | 0.1705 (2) | 0.8218 (3) | 0.0397 (11) | |
H2 | 0.1634 | 0.1925 | 0.8 | 0.048* | |
C3 | 0.2849 (9) | 0.1316 (2) | 0.8970 (3) | 0.0452 (12) | |
H3 | 0.1614 | 0.1236 | 0.9335 | 0.054* | |
C4 | 0.5058 (8) | 0.1070 (2) | 0.9074 (3) | 0.0457 (13) | |
H4 | 0.5517 | 0.0802 | 0.952 | 0.055* | |
C5 | 0.6440 (8) | 0.1305 (2) | 0.8380 (3) | 0.0397 (11) | |
H5 | 0.7958 | 0.1217 | 0.8288 | 0.048* | |
C6 | 0.5757 (8) | 0.2019 (2) | 0.7021 (3) | 0.0353 (10) | |
C7 | 0.8831 (9) | 0.2222 (2) | 0.6044 (3) | 0.0405 (11) | |
H7A | 0.7726 | 0.2195 | 0.5507 | 0.049* | |
H7B | 1.0233 | 0.2044 | 0.5869 | 0.049* | |
C8 | 0.9294 (9) | 0.2822 (2) | 0.6271 (3) | 0.0421 (11) | |
H8A | 1.0324 | 0.2848 | 0.6833 | 0.051* | |
H8B | 0.7874 | 0.3004 | 0.6409 | 0.051* | |
C9 | 1.0345 (9) | 0.3114 (2) | 0.5450 (3) | 0.0460 (12) | |
H9A | 1.0617 | 0.3502 | 0.5601 | 0.055* | |
H9B | 1.1789 | 0.2943 | 0.5312 | 0.055* | |
C10 | 0.9208 (9) | 0.3316 (2) | 0.3826 (4) | 0.0449 (12) | |
C11 | 0.7601 (10) | 0.3232 (3) | 0.3075 (4) | 0.0558 (15) | |
H11 | 0.6319 | 0.3015 | 0.3168 | 0.067* | |
C12 | 0.7881 (9) | 0.3462 (2) | 0.2208 (4) | 0.0530 (14) | |
H12 | 0.6805 | 0.3396 | 0.171 | 0.064* | |
C13 | 0.9773 (8) | 0.3796 (2) | 0.2061 (3) | 0.0375 (10) | |
C14 | 1.1339 (9) | 0.3882 (2) | 0.2799 (3) | 0.0442 (12) | |
H14 | 1.2599 | 0.4107 | 0.2706 | 0.053* | |
C15 | 1.1096 (9) | 0.3642 (2) | 0.3688 (3) | 0.0481 (13) | |
H15 | 1.2192 | 0.3701 | 0.4181 | 0.058* | |
C16 | 0.9922 (9) | 0.4048 (2) | 0.1111 (3) | 0.0446 (12) | |
C17 | 1.1743 (9) | 0.4723 (2) | 0.0216 (3) | 0.0409 (11) | |
C18 | 1.3590 (9) | 0.4635 (2) | −0.0315 (4) | 0.0475 (13) | |
H18 | 1.469 | 0.4372 | −0.0129 | 0.057* | |
C19 | 1.3795 (10) | 0.4947 (2) | −0.1142 (4) | 0.0482 (13) | |
H19 | 1.5044 | 0.4893 | −0.1512 | 0.058* | |
C20 | 1.2166 (9) | 0.5330 (2) | −0.1411 (3) | 0.0443 (11) | |
C21 | 1.0319 (9) | 0.5415 (2) | −0.0855 (4) | 0.0499 (13) | |
H21 | 0.9214 | 0.5677 | −0.1034 | 0.06* | |
C22 | 1.0117 (9) | 0.5111 (2) | −0.0038 (4) | 0.0471 (12) | |
H22 | 0.8884 | 0.5168 | 0.034 | 0.057* | |
C23 | 1.4000 (13) | 0.5555 (3) | −0.2841 (4) | 0.084 (2) | |
H23A | 1.3805 | 0.5795 | −0.3385 | 0.126* | |
H23B | 1.4001 | 0.5176 | −0.3048 | 0.126* | |
H23C | 1.5427 | 0.5638 | −0.2502 | 0.126* | |
C24 | 0.3464 (8) | 0.0703 (2) | 0.6321 (3) | 0.0395 (10) | |
C25 | 0.1221 (7) | 0.0711 (2) | 0.6687 (3) | 0.0378 (10) | |
H25 | −0.0012 | 0.0928 | 0.647 | 0.045* | |
C26 | 0.1257 (9) | 0.0323 (2) | 0.7444 (4) | 0.0461 (12) | |
H26 | 0.0024 | 0.0239 | 0.7808 | 0.055* | |
C27 | 0.3455 (9) | 0.0083 (2) | 0.7560 (4) | 0.0471 (12) | |
H27 | 0.3908 | −0.0182 | 0.8012 | 0.057* | |
C28 | 0.4833 (8) | 0.0313 (2) | 0.6881 (4) | 0.0437 (11) | |
H28 | 0.6362 | 0.0229 | 0.6804 | 0.052* | |
C29 | 0.4314 (8) | 0.1026 (2) | 0.5522 (3) | 0.0403 (11) | |
C30 | 0.3165 (9) | 0.1675 (2) | 0.4313 (4) | 0.0493 (13) | |
H30A | 0.4526 | 0.1542 | 0.4023 | 0.059* | |
H30B | 0.3457 | 0.2048 | 0.4546 | 0.059* | |
C31 | 0.1195 (10) | 0.1675 (3) | 0.3604 (4) | 0.0595 (15) | |
H31A | −0.0165 | 0.179 | 0.3914 | 0.071* | |
H31B | 0.0943 | 0.13 | 0.3372 | 0.071* | |
C32 | 0.1536 (10) | 0.2052 (3) | 0.2768 (4) | 0.0631 (16) | |
H32A | 0.0173 | 0.2056 | 0.2344 | 0.076* | |
H32B | 0.1837 | 0.2428 | 0.2988 | 0.076* | |
C33 | 0.4093 (9) | 0.2131 (2) | 0.1500 (3) | 0.0469 (12) | |
C34 | 0.6066 (11) | 0.1948 (3) | 0.1117 (4) | 0.0529 (15) | |
H34 | 0.6849 | 0.1646 | 0.1388 | 0.064* | |
C35 | 0.6892 (10) | 0.2208 (3) | 0.0334 (4) | 0.0498 (14) | |
H35 | 0.8218 | 0.208 | 0.0074 | 0.06* | |
C36 | 0.5739 (9) | 0.2664 (2) | −0.0066 (4) | 0.0460 (12) | |
C37 | 0.3739 (10) | 0.2834 (2) | 0.0302 (4) | 0.0521 (13) | |
H37 | 0.2931 | 0.3127 | 0.0016 | 0.062* | |
C38 | 0.2894 (10) | 0.2579 (3) | 0.1090 (4) | 0.0542 (14) | |
H38 | 0.1552 | 0.2704 | 0.1342 | 0.065* | |
C39 | 0.6755 (10) | 0.2934 (2) | −0.0898 (4) | 0.0488 (13) | |
C40 | 0.6171 (9) | 0.3676 (2) | −0.1985 (4) | 0.0466 (12) | |
C41 | 0.4730 (10) | 0.3699 (2) | −0.2775 (4) | 0.0542 (13) | |
H41 | 0.3357 | 0.3505 | −0.2793 | 0.065* | |
C42 | 0.5295 (11) | 0.4008 (3) | −0.3543 (4) | 0.0608 (16) | |
H42 | 0.4297 | 0.4024 | −0.408 | 0.073* | |
C43 | 0.7321 (11) | 0.4295 (2) | −0.3530 (4) | 0.0551 (14) | |
C44 | 0.8769 (11) | 0.4278 (3) | −0.2745 (4) | 0.0584 (15) | |
H44 | 1.0132 | 0.4477 | −0.2728 | 0.07* | |
C45 | 0.8203 (10) | 0.3960 (2) | −0.1956 (4) | 0.0537 (14) | |
H45 | 0.9198 | 0.3941 | −0.1419 | 0.064* | |
C46 | 0.960 (2) | 0.4893 (5) | −0.4419 (8) | 0.137 (4) | |
H46A | 0.9592 | 0.5062 | −0.5037 | 0.206* | |
H46B | 1.093 | 0.4662 | −0.4325 | 0.206* | |
H46C | 0.9627 | 0.5176 | −0.3939 | 0.206* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0345 (4) | 0.0346 (3) | 0.0338 (3) | −0.0033 (4) | 0.0016 (2) | 0.0035 (4) |
O1 | 0.0391 (18) | 0.0422 (18) | 0.0410 (17) | −0.0005 (15) | 0.0097 (14) | 0.0097 (15) |
O2 | 0.0392 (19) | 0.054 (2) | 0.058 (2) | 0.0044 (18) | −0.0008 (16) | 0.0193 (19) |
O3 | 0.066 (2) | 0.070 (3) | 0.0418 (19) | −0.023 (2) | −0.0051 (17) | 0.024 (2) |
O4 | 0.054 (2) | 0.049 (2) | 0.0347 (16) | −0.0147 (18) | 0.0006 (15) | 0.0069 (16) |
O5 | 0.094 (3) | 0.084 (3) | 0.043 (2) | −0.036 (3) | −0.016 (2) | 0.014 (2) |
O6 | 0.096 (3) | 0.052 (2) | 0.047 (2) | 0.000 (2) | 0.015 (2) | 0.012 (2) |
O7 | 0.048 (2) | 0.062 (2) | 0.0420 (18) | 0.0029 (19) | 0.0125 (15) | 0.0117 (18) |
O8 | 0.0466 (18) | 0.085 (3) | 0.0512 (18) | 0.000 (2) | 0.0138 (15) | 0.006 (2) |
O9 | 0.083 (3) | 0.061 (3) | 0.045 (2) | 0.007 (2) | 0.0212 (19) | 0.0107 (19) |
O10 | 0.061 (2) | 0.055 (2) | 0.051 (2) | 0.005 (2) | 0.0120 (18) | 0.0078 (19) |
O11 | 0.079 (3) | 0.064 (3) | 0.071 (3) | 0.018 (2) | 0.031 (2) | 0.009 (2) |
O12 | 0.112 (4) | 0.086 (4) | 0.098 (4) | −0.025 (4) | 0.025 (3) | 0.029 (3) |
C1 | 0.031 (2) | 0.040 (2) | 0.037 (2) | 0.004 (2) | 0.0021 (18) | 0.007 (2) |
C2 | 0.040 (3) | 0.040 (3) | 0.039 (2) | 0.001 (2) | 0.005 (2) | −0.001 (2) |
C3 | 0.049 (3) | 0.049 (3) | 0.038 (2) | −0.013 (2) | 0.007 (2) | 0.003 (2) |
C4 | 0.053 (3) | 0.048 (3) | 0.035 (2) | −0.006 (2) | −0.0062 (19) | 0.010 (2) |
C5 | 0.039 (3) | 0.045 (3) | 0.035 (2) | 0.002 (2) | 0.0010 (19) | 0.002 (2) |
C6 | 0.033 (2) | 0.032 (2) | 0.041 (2) | −0.003 (2) | 0.0039 (19) | 0.001 (2) |
C7 | 0.045 (3) | 0.039 (3) | 0.038 (2) | −0.004 (2) | 0.014 (2) | 0.004 (2) |
C8 | 0.047 (3) | 0.041 (3) | 0.039 (2) | −0.005 (2) | 0.008 (2) | 0.003 (2) |
C9 | 0.047 (3) | 0.051 (3) | 0.040 (2) | −0.012 (3) | −0.001 (2) | 0.006 (2) |
C10 | 0.049 (3) | 0.045 (3) | 0.041 (3) | −0.007 (2) | 0.004 (2) | 0.011 (2) |
C11 | 0.048 (3) | 0.065 (4) | 0.054 (3) | −0.017 (3) | −0.002 (3) | 0.011 (3) |
C12 | 0.051 (3) | 0.063 (4) | 0.044 (3) | −0.008 (3) | −0.005 (2) | 0.006 (3) |
C13 | 0.041 (3) | 0.035 (2) | 0.036 (2) | −0.006 (2) | 0.0027 (19) | 0.003 (2) |
C14 | 0.046 (3) | 0.044 (3) | 0.042 (3) | −0.007 (2) | 0.004 (2) | 0.004 (2) |
C15 | 0.055 (3) | 0.050 (3) | 0.038 (3) | −0.013 (3) | −0.002 (2) | 0.010 (2) |
C16 | 0.054 (3) | 0.045 (3) | 0.034 (2) | 0.002 (3) | 0.001 (2) | 0.004 (2) |
C17 | 0.051 (3) | 0.038 (3) | 0.034 (2) | −0.003 (2) | 0.003 (2) | 0.004 (2) |
C18 | 0.051 (3) | 0.042 (3) | 0.050 (3) | 0.006 (3) | 0.009 (2) | 0.001 (2) |
C19 | 0.056 (3) | 0.045 (3) | 0.045 (3) | 0.000 (3) | 0.012 (3) | −0.006 (3) |
C20 | 0.059 (3) | 0.035 (2) | 0.038 (2) | −0.006 (2) | 0.001 (2) | 0.001 (2) |
C21 | 0.059 (3) | 0.044 (3) | 0.048 (3) | 0.002 (3) | 0.005 (2) | 0.005 (2) |
C22 | 0.055 (3) | 0.048 (3) | 0.039 (2) | 0.007 (3) | 0.010 (2) | 0.005 (2) |
C23 | 0.122 (6) | 0.081 (5) | 0.054 (4) | −0.009 (5) | 0.040 (4) | 0.017 (4) |
C24 | 0.044 (3) | 0.036 (2) | 0.038 (2) | 0.002 (2) | −0.001 (2) | −0.002 (2) |
C25 | 0.033 (2) | 0.042 (2) | 0.038 (2) | −0.003 (2) | −0.0025 (19) | −0.002 (2) |
C26 | 0.045 (3) | 0.043 (3) | 0.050 (3) | −0.018 (2) | 0.001 (2) | 0.000 (2) |
C27 | 0.055 (3) | 0.027 (2) | 0.059 (3) | −0.004 (2) | 0.000 (2) | 0.005 (2) |
C28 | 0.038 (3) | 0.042 (3) | 0.051 (3) | 0.000 (2) | 0.003 (2) | −0.009 (2) |
C29 | 0.045 (2) | 0.045 (3) | 0.0307 (19) | 0.000 (3) | 0.0055 (17) | −0.006 (2) |
C30 | 0.062 (3) | 0.049 (3) | 0.038 (3) | 0.002 (3) | 0.014 (2) | 0.005 (2) |
C31 | 0.061 (3) | 0.077 (4) | 0.040 (3) | −0.007 (3) | 0.005 (2) | 0.008 (3) |
C32 | 0.061 (4) | 0.081 (4) | 0.048 (3) | 0.010 (4) | 0.008 (3) | 0.014 (3) |
C33 | 0.057 (3) | 0.050 (3) | 0.034 (2) | −0.007 (3) | 0.004 (2) | 0.002 (2) |
C34 | 0.062 (4) | 0.047 (3) | 0.051 (3) | 0.003 (3) | 0.011 (3) | 0.000 (3) |
C35 | 0.055 (3) | 0.048 (3) | 0.047 (3) | 0.002 (3) | 0.006 (2) | −0.007 (3) |
C36 | 0.052 (3) | 0.045 (3) | 0.041 (3) | −0.002 (2) | 0.002 (2) | −0.003 (2) |
C37 | 0.058 (3) | 0.052 (3) | 0.047 (3) | 0.003 (3) | 0.007 (2) | 0.002 (3) |
C38 | 0.052 (3) | 0.058 (3) | 0.054 (3) | 0.008 (3) | 0.012 (3) | 0.006 (3) |
C39 | 0.054 (3) | 0.051 (3) | 0.043 (3) | −0.003 (3) | 0.010 (2) | −0.005 (2) |
C40 | 0.053 (3) | 0.043 (3) | 0.045 (3) | −0.007 (2) | 0.012 (2) | −0.003 (2) |
C41 | 0.053 (3) | 0.047 (3) | 0.061 (3) | −0.004 (3) | −0.005 (3) | 0.001 (3) |
C42 | 0.071 (4) | 0.056 (3) | 0.054 (3) | 0.004 (3) | −0.014 (3) | 0.006 (3) |
C43 | 0.062 (4) | 0.048 (3) | 0.055 (3) | −0.008 (3) | 0.007 (3) | 0.002 (3) |
C44 | 0.058 (4) | 0.058 (4) | 0.060 (3) | −0.014 (3) | 0.008 (3) | −0.006 (3) |
C45 | 0.059 (3) | 0.060 (3) | 0.042 (3) | −0.005 (3) | 0.002 (2) | −0.010 (3) |
C46 | 0.150 (9) | 0.123 (9) | 0.140 (9) | 0.011 (8) | 0.019 (8) | 0.054 (8) |
O1—C6 | 1.332 (5) | C21—H21 | 0.93 |
O1—C7 | 1.457 (5) | C22—H22 | 0.93 |
O2—C6 | 1.206 (6) | C23—H23A | 0.96 |
O3—C10 | 1.356 (6) | C23—H23B | 0.96 |
O3—C9 | 1.433 (6) | C23—H23C | 0.96 |
O4—C16 | 1.354 (6) | C24—C25 | 1.437 (6) |
O4—C17 | 1.417 (6) | C24—C28 | 1.441 (7) |
O5—C16 | 1.206 (6) | C24—C29 | 1.477 (6) |
O6—C20 | 1.370 (6) | C25—C26 | 1.416 (7) |
O6—C23 | 1.433 (7) | C25—H25 | 0.93 |
O7—C29 | 1.338 (6) | C26—C27 | 1.412 (7) |
O7—C30 | 1.444 (6) | C26—H26 | 0.93 |
O8—C29 | 1.195 (5) | C27—C28 | 1.399 (7) |
O9—C33 | 1.367 (6) | C27—H27 | 0.93 |
O9—C32 | 1.428 (6) | C28—H28 | 0.93 |
O10—C39 | 1.364 (7) | C30—C31 | 1.483 (7) |
O10—C40 | 1.395 (6) | C30—H30A | 0.97 |
O11—C39 | 1.189 (6) | C30—H30B | 0.97 |
O12—C46 | 1.340 (11) | C31—C32 | 1.509 (8) |
O12—C43 | 1.384 (7) | C31—H31A | 0.97 |
C1—C5 | 1.418 (6) | C31—H31B | 0.97 |
C1—C2 | 1.427 (6) | C32—H32A | 0.97 |
C1—C6 | 1.476 (6) | C32—H32B | 0.97 |
C2—C3 | 1.414 (7) | C33—C34 | 1.375 (8) |
C2—H2 | 0.93 | C33—C38 | 1.396 (8) |
C3—C4 | 1.424 (7) | C34—C35 | 1.378 (8) |
C3—H3 | 0.93 | C34—H34 | 0.93 |
C4—C5 | 1.419 (6) | C35—C36 | 1.392 (8) |
C4—H4 | 0.93 | C35—H35 | 0.93 |
C5—H5 | 0.93 | C36—C37 | 1.369 (7) |
C7—C8 | 1.504 (7) | C36—C39 | 1.492 (7) |
C7—H7A | 0.97 | C37—C38 | 1.382 (7) |
C7—H7B | 0.97 | C37—H37 | 0.93 |
C8—C9 | 1.513 (6) | C38—H38 | 0.93 |
C8—H8A | 0.97 | C40—C41 | 1.359 (8) |
C8—H8B | 0.97 | C40—C45 | 1.371 (7) |
C9—H9A | 0.97 | C41—C42 | 1.369 (8) |
C9—H9B | 0.97 | C41—H41 | 0.93 |
C10—C15 | 1.379 (7) | C42—C43 | 1.373 (8) |
C10—C11 | 1.391 (7) | C42—H42 | 0.93 |
C11—C12 | 1.358 (7) | C43—C44 | 1.356 (8) |
C11—H11 | 0.93 | C44—C45 | 1.404 (8) |
C12—C13 | 1.395 (7) | C44—H44 | 0.93 |
C12—H12 | 0.93 | C45—H45 | 0.93 |
C13—C14 | 1.362 (7) | C46—H46A | 0.96 |
C13—C16 | 1.476 (6) | C46—H46B | 0.96 |
C14—C15 | 1.393 (7) | C46—H46C | 0.96 |
C14—H14 | 0.93 | Fe1—C1 | 2.035 (5) |
C15—H15 | 0.93 | Fe1—C2 | 2.057 (5) |
C17—C18 | 1.365 (7) | Fe1—C3 | 2.061 (5) |
C17—C22 | 1.368 (7) | Fe1—C4 | 2.053 (5) |
C18—C19 | 1.396 (8) | Fe1—C5 | 2.040 (5) |
C18—H18 | 0.93 | Fe1—C24 | 2.047 (5) |
C19—C20 | 1.367 (8) | Fe1—C25 | 2.053 (4) |
C19—H19 | 0.93 | Fe1—C26 | 2.050 (5) |
C20—C21 | 1.385 (7) | Fe1—C27 | 2.055 (5) |
C21—C22 | 1.373 (7) | Fe1—C28 | 2.045 (5) |
C6—O1—C7 | 116.7 (4) | H23A—C23—H23B | 109.5 |
C10—O3—C9 | 118.2 (4) | O6—C23—H23C | 109.5 |
C16—O4—C17 | 115.9 (4) | H23A—C23—H23C | 109.5 |
C20—O6—C23 | 117.3 (5) | H23B—C23—H23C | 109.5 |
C29—O7—C30 | 117.6 (4) | C25—C24—C28 | 107.8 (4) |
C33—O9—C32 | 118.2 (5) | C25—C24—C29 | 128.2 (4) |
C39—O10—C40 | 118.1 (4) | C28—C24—C29 | 124.0 (4) |
C46—O12—C43 | 120.7 (7) | C26—C25—C24 | 106.5 (4) |
C5—C1—C2 | 108.5 (4) | C26—C25—H25 | 126.7 |
C5—C1—C6 | 126.7 (4) | C24—C25—H25 | 126.7 |
C2—C1—C6 | 124.6 (4) | C27—C26—C25 | 109.4 (4) |
C3—C2—C1 | 107.5 (4) | C27—C26—H26 | 125.3 |
C3—C2—H2 | 126.2 | C25—C26—H26 | 125.3 |
C1—C2—H2 | 126.2 | C28—C27—C26 | 108.4 (5) |
C2—C3—C4 | 108.2 (4) | C28—C27—H27 | 125.8 |
C2—C3—H3 | 125.9 | C26—C27—H27 | 125.8 |
C4—C3—H3 | 125.9 | C27—C28—C24 | 107.9 (4) |
C5—C4—C3 | 108.2 (4) | C27—C28—H28 | 126.1 |
C5—C4—H4 | 125.9 | C24—C28—H28 | 126.1 |
C3—C4—H4 | 125.9 | O8—C29—O7 | 124.4 (5) |
C1—C5—C4 | 107.5 (4) | O8—C29—C24 | 125.2 (5) |
C1—C5—H5 | 126.2 | O7—C29—C24 | 110.4 (4) |
C4—C5—H5 | 126.2 | O7—C30—C31 | 107.9 (5) |
O2—C6—O1 | 124.7 (4) | O7—C30—H30A | 110.1 |
O2—C6—C1 | 124.3 (4) | C31—C30—H30A | 110.1 |
O1—C6—C1 | 111.0 (4) | O7—C30—H30B | 110.1 |
O1—C7—C8 | 110.8 (4) | C31—C30—H30B | 110.1 |
O1—C7—H7A | 109.5 | H30A—C30—H30B | 108.4 |
C8—C7—H7A | 109.5 | C30—C31—C32 | 113.1 (5) |
O1—C7—H7B | 109.5 | C30—C31—H31A | 109 |
C8—C7—H7B | 109.5 | C32—C31—H31A | 109 |
H7A—C7—H7B | 108.1 | C30—C31—H31B | 109 |
C7—C8—C9 | 111.3 (4) | C32—C31—H31B | 109 |
C7—C8—H8A | 109.4 | H31A—C31—H31B | 107.8 |
C9—C8—H8A | 109.4 | O9—C32—C31 | 107.7 (5) |
C7—C8—H8B | 109.4 | O9—C32—H32A | 110.2 |
C9—C8—H8B | 109.4 | C31—C32—H32A | 110.2 |
H8A—C8—H8B | 108 | O9—C32—H32B | 110.2 |
O3—C9—C8 | 106.2 (4) | C31—C32—H32B | 110.2 |
O3—C9—H9A | 110.5 | H32A—C32—H32B | 108.5 |
C8—C9—H9A | 110.5 | O9—C33—C34 | 115.8 (5) |
O3—C9—H9B | 110.5 | O9—C33—C38 | 124.2 (5) |
C8—C9—H9B | 110.5 | C34—C33—C38 | 120.0 (5) |
H9A—C9—H9B | 108.7 | C33—C34—C35 | 120.5 (6) |
O3—C10—C15 | 125.7 (5) | C33—C34—H34 | 119.7 |
O3—C10—C11 | 114.9 (4) | C35—C34—H34 | 119.7 |
C15—C10—C11 | 119.4 (5) | C34—C35—C36 | 119.9 (6) |
C12—C11—C10 | 120.8 (5) | C34—C35—H35 | 120.1 |
C12—C11—H11 | 119.6 | C36—C35—H35 | 120.1 |
C10—C11—H11 | 119.6 | C37—C36—C35 | 119.3 (5) |
C11—C12—C13 | 120.4 (5) | C37—C36—C39 | 123.5 (5) |
C11—C12—H12 | 119.8 | C35—C36—C39 | 117.2 (5) |
C13—C12—H12 | 119.8 | C36—C37—C38 | 121.5 (5) |
C14—C13—C12 | 118.8 (4) | C36—C37—H37 | 119.3 |
C14—C13—C16 | 123.8 (4) | C38—C37—H37 | 119.3 |
C12—C13—C16 | 117.4 (4) | C37—C38—C33 | 118.8 (5) |
C13—C14—C15 | 121.5 (5) | C37—C38—H38 | 120.6 |
C13—C14—H14 | 119.2 | C33—C38—H38 | 120.6 |
C15—C14—H14 | 119.2 | O11—C39—O10 | 123.7 (5) |
C10—C15—C14 | 119.0 (5) | O11—C39—C36 | 125.7 (6) |
C10—C15—H15 | 120.5 | O10—C39—C36 | 110.6 (4) |
C14—C15—H15 | 120.5 | C41—C40—C45 | 120.2 (5) |
O5—C16—O4 | 123.3 (5) | C41—C40—O10 | 118.1 (5) |
O5—C16—C13 | 124.1 (5) | C45—C40—O10 | 121.7 (5) |
O4—C16—C13 | 112.7 (4) | C40—C41—C42 | 120.1 (5) |
C18—C17—C22 | 121.7 (5) | C40—C41—H41 | 119.9 |
C18—C17—O4 | 118.2 (5) | C42—C41—H41 | 119.9 |
C22—C17—O4 | 120.0 (4) | C41—C42—C43 | 120.6 (6) |
C17—C18—C19 | 118.6 (5) | C41—C42—H42 | 119.7 |
C17—C18—H18 | 120.7 | C43—C42—H42 | 119.7 |
C19—C18—H18 | 120.7 | C44—C43—C42 | 119.8 (6) |
C20—C19—C18 | 120.3 (5) | C44—C43—O12 | 125.0 (6) |
C20—C19—H19 | 119.9 | C42—C43—O12 | 115.1 (6) |
C18—C19—H19 | 119.9 | C43—C44—C45 | 119.7 (6) |
C19—C20—O6 | 124.8 (5) | C43—C44—H44 | 120.1 |
C19—C20—C21 | 119.9 (5) | C45—C44—H44 | 120.1 |
O6—C20—C21 | 115.3 (5) | C40—C45—C44 | 119.5 (5) |
C22—C21—C20 | 120.0 (5) | C40—C45—H45 | 120.3 |
C22—C21—H21 | 120 | C44—C45—H45 | 120.3 |
C20—C21—H21 | 120 | O12—C46—H46A | 109.5 |
C17—C22—C21 | 119.5 (5) | O12—C46—H46B | 109.5 |
C17—C22—H22 | 120.2 | H46A—C46—H46B | 109.5 |
C21—C22—H22 | 120.2 | O12—C46—H46C | 109.5 |
O6—C23—H23A | 109.5 | H46A—C46—H46C | 109.5 |
O6—C23—H23B | 109.5 | H46B—C46—H46C | 109.5 |
C5—C1—C2—C3 | 0.0 (6) | C25—C24—C28—C27 | 0.9 (6) |
C6—C1—C2—C3 | 176.0 (5) | C29—C24—C28—C27 | −179.3 (5) |
C1—C2—C3—C4 | 0.1 (6) | C30—O7—C29—O8 | −3.7 (8) |
C2—C3—C4—C5 | −0.3 (6) | C30—O7—C29—C24 | 177.3 (4) |
C2—C1—C5—C4 | −0.2 (5) | C25—C24—C29—O8 | 175.5 (5) |
C6—C1—C5—C4 | −176.0 (5) | C28—C24—C29—O8 | −4.3 (8) |
C3—C4—C5—C1 | 0.3 (6) | C25—C24—C29—O7 | −5.6 (7) |
C7—O1—C6—O2 | 0.2 (7) | C28—C24—C29—O7 | 174.6 (5) |
C7—O1—C6—C1 | 178.8 (4) | C29—O7—C30—C31 | 145.9 (5) |
C5—C1—C6—O2 | 172.5 (5) | O7—C30—C31—C32 | 178.1 (5) |
C2—C1—C6—O2 | −2.6 (8) | C33—O9—C32—C31 | −178.9 (5) |
C5—C1—C6—O1 | −6.1 (7) | C30—C31—C32—O9 | 63.2 (7) |
C2—C1—C6—O1 | 178.8 (4) | C32—O9—C33—C34 | 173.7 (5) |
C6—O1—C7—C8 | 78.0 (5) | C32—O9—C33—C38 | −6.6 (8) |
O1—C7—C8—C9 | 176.5 (4) | O9—C33—C34—C35 | −179.4 (5) |
C10—O3—C9—C8 | 176.5 (5) | C38—C33—C34—C35 | 0.8 (9) |
C7—C8—C9—O3 | 59.4 (6) | C33—C34—C35—C36 | 0.7 (9) |
C9—O3—C10—C15 | −2.3 (9) | C34—C35—C36—C37 | −2.6 (8) |
C9—O3—C10—C11 | 178.0 (5) | C34—C35—C36—C39 | 178.6 (5) |
O3—C10—C11—C12 | −179.7 (6) | C35—C36—C37—C38 | 3.0 (8) |
C15—C10—C11—C12 | 0.6 (9) | C39—C36—C37—C38 | −178.3 (5) |
C10—C11—C12—C13 | −1.1 (10) | C36—C37—C38—C33 | −1.5 (9) |
C11—C12—C13—C14 | 0.6 (8) | O9—C33—C38—C37 | 179.8 (5) |
C11—C12—C13—C16 | −177.8 (6) | C34—C33—C38—C37 | −0.5 (9) |
C12—C13—C14—C15 | 0.4 (8) | C40—O10—C39—O11 | 0.1 (8) |
C16—C13—C14—C15 | 178.7 (5) | C40—O10—C39—C36 | −179.3 (4) |
O3—C10—C15—C14 | −179.3 (5) | C37—C36—C39—O11 | −177.0 (6) |
C11—C10—C15—C14 | 0.4 (9) | C35—C36—C39—O11 | 1.8 (9) |
C13—C14—C15—C10 | −0.9 (9) | C37—C36—C39—O10 | 2.4 (7) |
C17—O4—C16—O5 | 4.2 (8) | C35—C36—C39—O10 | −178.9 (5) |
C17—O4—C16—C13 | −174.7 (4) | C39—O10—C40—C41 | 118.7 (6) |
C14—C13—C16—O5 | 173.4 (6) | C39—O10—C40—C45 | −64.1 (7) |
C12—C13—C16—O5 | −8.3 (8) | C45—C40—C41—C42 | −0.4 (9) |
C14—C13—C16—O4 | −7.7 (7) | O10—C40—C41—C42 | 176.9 (5) |
C12—C13—C16—O4 | 170.7 (5) | C40—C41—C42—C43 | 0.4 (9) |
C16—O4—C17—C18 | −113.0 (5) | C41—C42—C43—C44 | −0.7 (10) |
C16—O4—C17—C22 | 71.2 (6) | C41—C42—C43—O12 | 178.7 (6) |
C22—C17—C18—C19 | −0.6 (8) | C46—O12—C43—C44 | −2.7 (11) |
O4—C17—C18—C19 | −176.4 (5) | C46—O12—C43—C42 | 177.8 (8) |
C17—C18—C19—C20 | −0.2 (9) | C42—C43—C44—C45 | 1.1 (10) |
C18—C19—C20—O6 | −177.4 (5) | O12—C43—C44—C45 | −178.3 (6) |
C18—C19—C20—C21 | 0.7 (8) | C41—C40—C45—C44 | 0.7 (9) |
C23—O6—C20—C19 | 0.1 (8) | O10—C40—C45—C44 | −176.4 (5) |
C23—O6—C20—C21 | −178.0 (5) | C43—C44—C45—C40 | −1.1 (9) |
C19—C20—C21—C22 | −0.4 (8) | C24—Fe1—C1—C6 | 1.8 (4) |
O6—C20—C21—C22 | 177.9 (5) | C8—C9—O3—C10 | 176.6 (4) |
C18—C17—C22—C21 | 1.0 (8) | C13—C16—O4—C17 | −174.8 (4) |
O4—C17—C22—C21 | 176.6 (5) | O5—C16—O4—C17 | 4.1 (7) |
C20—C21—C22—C17 | −0.4 (8) | C1—Fe1—C24—C29 | 2.7 (5) |
C28—C24—C25—C26 | −1.0 (5) | O8—C29—O7—C30 | −3.7 (7) |
C29—C24—C25—C26 | 179.2 (5) | C31—C32—O9—C33 | −178.9 (5) |
C24—C25—C26—C27 | 0.7 (5) | C36—C39—O10—C40 | −179.3 (4) |
C25—C26—C27—C28 | −0.2 (6) | O11—C39—O10—C40 | 0.2 (8) |
C26—C27—C28—C24 | −0.4 (6) |
Experimental details
Crystal data | |
Chemical formula | C46H42FeO12 |
Mr | 842.65 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 294 |
a, b, c (Å) | 5.857 (4), 24.105 (3), 14.069 (4) |
β (°) | 93.15 (4) |
V (Å3) | 1983.5 (14) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 3.61 |
Crystal size (mm) | 0.75 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Rigaku AFC5R diffractometer |
Absorption correction | Numerical Coppens numerical |
Tmin, Tmax | 0.601, 0.839 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6153, 4059, 3409 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.098, 1.05 |
No. of reflections | 4059 |
No. of parameters | 533 |
No. of restraints | 1 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.35, −0.37 |
Absolute structure | Flack H D (1983), Acta Cryst. A39, 876-881 |
Absolute structure parameter | −0.005 (5) |
Computer programs: SIR92, SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).
Footnotes
‡Present address: Film Customer Solution Department, Films Division, Unitika Ltd, 31-3 Uji-Hinojiri, Uji-City, Kyoto 611-0021, Japan.
1Supplementary data for this paper are available from the IUCr electronic archives (Reference: DD5042 ). Services for accessing these data are described at the back of the journal.
Acknowledgements
A High-Tech Research Center Project for Private Universities matching subsidy from the Ministry of Education, Culture, Sports, Science and Technology, 2006–2010, is gratefully acknowledged for partial financial support of the present work. We are grateful to Associate Professor T. Hanasaki and Dr K. Uno, Ritsumeikan University, Japan, for useful discussions.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bruce, D. W., Deschenaux, R., Donnio, B. & Guillon, D. (2007a). Comprehensive Organometallic Chemistry III, edited by R. Crabtree & M. Mingos, Vol. 12, ch. 12.05, pp. 221–238. Oxford: Elsevier. Google Scholar
Bruce, D. W., Deshenaux, R., Donnio, B. & Guillon, D. (2007b). Comprehensive Organometallic Chemistry III, edited by R. Crabtree & M. Mingos, Vol. 12, ch. 12.05, p. 230. Oxford: Elsevier. Google Scholar
Bunn, C. W. (1939). Trans. Faraday Soc. 35, 482–491. CSD CrossRef CAS Google Scholar
Campidelli, S., Vázquez, E., Milic, D., Prato, M., Barberá, J., Guldi, D. M., Marcaccio, M., Paolucci, D., Paolucci, F. & Deschenaux, R. (2004). J. Mater. Chem. 14, 1266–1272. Web of Science CrossRef CAS Google Scholar
Carano, M., Chuard, T., Deschenaux, R., Even, M., Maraccio, M., Paolucci, F., Parato, M. & Roffia, S. (2002). J. Mater. Chem. 12, 829–833. Web of Science CrossRef CAS Google Scholar
Chuard, T. & Deschenaux, R. (2003). Chimia, 57, 597–600. Web of Science CrossRef CAS Google Scholar
Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038. CrossRef CAS IUCr Journals Web of Science Google Scholar
Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. 4. Birmingham: Kynoch Press. Google Scholar
Dardel, B., Deschenaux, R., Even, M. & Serrano, E. (1999). Macromolecules, 32, 5191–5193. Web of Science CrossRef Google Scholar
Deschenaux, R., Even, M. & Guillon, D. (1998). Chem. Commun. pp. 537–538. Web of Science CrossRef Google Scholar
Deschenaux, R., Kosztics, I., Marendaz, J.-L. & Stoeckli-Evans, H. (1993). Chimia, 47, 206–210. CAS Google Scholar
Deschenaux, R., Kosztics, I. & Nocolet, B. (1995). J. Mater. Chem. 5, 2291–2295. CrossRef CAS Web of Science Google Scholar
Deschenaux, R., Marendaz, J.-L., Santiago, J. & Goodby, J. W. (1995). Helv. Chim. Acta, 78, 1215–1218. CrossRef CAS Web of Science Google Scholar
Deschenaux, R., Monnet, F., Serrano, E., Turpin, F. & Levelut, A.-M. (1998). Helv. Chim. Acta, 81, 2072–2077. CrossRef CAS Google Scholar
Deschenaux, R., Serrano, E. & Levelut, A.-M. (1997). Chem. Commun. pp. 1577–1578. CrossRef Web of Science Google Scholar
Donnio, B., Guillon, D., Deschenaux, R. & Bruce, D. W. (2003). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, Vol. 7, ch. 7.9, pp. 585–596. Oxford: Elsevier. Google Scholar
Dunitz, J. D., Orgel, L. E. & Rich, A. (1956). Acta Cryst. 9, 373–375. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Even, M., Heinrich, B., Guillon, D., Guldi, D. M., Parato, M. & Deschenaux, R. (2001). Chem. Eur. J. 7, 2595–2604. CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hanasaki, T., Ueda, M. & Nakamura, N. (1993). Mol. Cryst. Liq. Cryst. 237, 329–336. CrossRef CAS Web of Science Google Scholar
Hanasaki, T., Ueda, M. & Nakamura, N. (1994). Mol. Cryst. Liq. Cryst. 250, 257–267. CrossRef CAS Web of Science Google Scholar
Imrie, C., Engelbrecht, P., Loubser, C. & McCleland, C. W. (2001). Appl. Organomet. Chem. 15, 1–15. Web of Science CrossRef CAS Google Scholar
Imrie, C., Loubser, C., Engelbrecht, P., McCleland, C. W. & Zheng, Y. (2003). J. Organomet. Chem. 665, 48–64. Web of Science CSD CrossRef CAS Google Scholar
Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Loubser, C. & Imrie, C. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 399–410. CrossRef Google Scholar
Loubser, C., Imrie, C. & van Rooyen, P. H. (1993). Adv. Mater. 5, 45–47. CSD CrossRef CAS Web of Science Google Scholar
Malthête, J. & Billard, J. (1976). Mol. Cryst. Liq. Cryst. 34, 117–121. Google Scholar
Nakamura, N., Hanasaki, T. & Onoi, H. (1993). Mol. Cryst. Liq. Cryst. 225, 269–277. CrossRef CAS Web of Science Google Scholar
Nakamura, N., Hanasaki, T., Onoi, H. & Oida, T. (1993). Chem. Express, 8, 467–470. CAS Google Scholar
Nakamura, N., Maekawahara, H., Hanasaki, T. & Yamaguchi, T. (2000). Mol. Cryst. Liq. Cryst. 352, 125–132. CrossRef CAS Google Scholar
Nakamura, N., Mizoguchi, R., Ueda, M. & Hanasaki, T. (1998). Mol. Cryst. Liq. Cryst. 312, 127–136. Web of Science CrossRef CAS Google Scholar
Nakamura, N., Nio, T. & Okabe, T. (2006a). Mol. Cryst. Liq. Cryst. 460, 85–92. Web of Science CSD CrossRef CAS Google Scholar
Nakamura, N., Nio, T. & Okabe, T. (2006b). Mol. Cryst. Liq. Cryst. 461, 29–36. Web of Science CSD CrossRef CAS Google Scholar
Nakamura, N., Nio, T., Okabe, T., Donnio, B., Guillon, D. & Gallani, J.-L. (2007). Mol. Cryst. Liq. Cryst. 466, 3–12. Web of Science CSD CrossRef CAS Google Scholar
Nakamura, N. & Nishikawa, M. (2005). Chem. Lett. 34, 1544–1545. Web of Science CSD CrossRef CAS Google Scholar
Nakamura, N. & Oida, T. (1999). Mol. Cryst. Liq. Cryst. 326, 55–64. Web of Science CrossRef CAS Google Scholar
Nakamura, N., Oida, T., Shonago, M., Onoi, H. & Hanasaki, T. (1995). Mol. Cryst. Liq. Cryst. 265, 1–8. CrossRef Web of Science Google Scholar
Nakamura, N. & Okabe, T. (2004). Chem. Lett. 33, 358–359. Web of Science CSD CrossRef CAS Google Scholar
Nakamura, N., Okabe, T. & Takahashi, T. (2005). Mol. Cryst. Liq. Cryst. 441, 243–250. Web of Science CrossRef CAS Google Scholar
Nakamura, N., Onoi, H., Oida, T. & Hanasaki, T. (1994). Mol. Cryst. Liq. Cryst. 257, 43–48. CrossRef CAS Web of Science Google Scholar
Nakamura, N. & Setodoi, S. (1998a). Mol. Cryst. Liq. Cryst. 312, 253–261. Web of Science CrossRef CAS Google Scholar
Nakamura, N. & Setodoi, S. (1998b). Mol. Cryst. Liq. Cryst. 319, 173–181. Web of Science CrossRef CAS Google Scholar
Nakamura, N. & Setodoi, S. (1999a). Mol. Cryst. Liq. Cryst. 326, 177–187. Web of Science CrossRef CAS Google Scholar
Nakamura, N. & Setodoi, S. (1999b). Mol. Cryst. Liq. Cryst. 333, 151–163. Web of Science CrossRef CAS Google Scholar
Nakamura, N., Setodoi, S. & Hanasaki, T. (2000). Mol. Cryst. Liq. Cryst. 350, 93–101. Web of Science CrossRef CAS Google Scholar
Nakamura, N., Setodoi, S. & Takayama, T. (2000). Mol. Cryst. Liq. Cryst. 346, 19–28. Web of Science CrossRef CAS Google Scholar
Nakamura, N., Takahashi, T., Uno, K. & Hanasaki, T. (2002). Mol. Cryst. Liq. Cryst. 383, 27–35. Web of Science CrossRef CAS Google Scholar
Nakamura, N. & Takayama, T. (1997). Mol. Cryst. Liq. Cryst. 307, 145–154. CrossRef CAS Web of Science Google Scholar
Zhao, K.-Q., Hu, P., Xu, H.-B., Wan, W., Zhou, Z.-Y. & Zhang, L.-F. (2001). Mol. Cryst. Liq. Cryst. 364, 759–768. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
# Insert blank lines between paragraphs ?