view article

Figure 5
Results for the two-dimensional Fourier components [|{\widetilde {\cal M}}_{x}|^{2}], [|{\widetilde {\cal M}}_{y}|^{2}], [|{\widetilde {\cal M}}_{z}|^{2}], CT = [-({\widetilde {\cal M}}_{y} {\widetilde {\cal M}}_{z}^{*} + {\widetilde {\cal M}}_{y}^{*} {\widetilde {\cal M}}_{z})] and for the total magnetic SANS cross section [{\cal S}_{\rm M} (\upsilon, \theta_{q})] [(48[link])] using expression (40[link]). The upper row shows the results taking into account only the zero-order term in (40[link]), which corresponds to the case of a homogeneously magnetized particle. The lower row displays the results when the second-order term (ν = 1) in (40[link]) is taken into account. The parameters are eA = ez, b0 = 0.1ez (B0 ≃ 48 mT), kc = 0.1, ks = 3 and m0 = [sinβcosα, sinβsinα, cosβ]. Note that υy and υz denote the dimensionless components of the scattering vector [compare equation (34)[link]]. Since the Néel surface anisotropy effectively has a cubic symmetry (see Fig. 1[link]), we average [{\cal S}_{\rm M}] over the angles α = (45°, 135°, 225°, 315°) and β = 20°. A logarithmic colour scale is used.

Journal logoJOURNAL OF
APPLIED
CRYSTALLOGRAPHY
ISSN: 1600-5767
Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds