research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoJOURNAL OF
APPLIED
CRYSTALLOGRAPHY
ISSN: 1600-5767

Preparation of pyrite concentrate powder from the Thackaringa mine for qu­antitative phase analysis using X-ray diffraction

crossmark logo

aSchool of Chemistry, The University of New South Wales, Anzac Parade, Sydney, NSW 2052, Australia, bAustralian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Sydney, NSW 2232, Australia, and cCobalt Blue, 17.03 100 Miller Street, North Sydney, NSW 2060, Australia
*Correspondence e-mail: s.neville@unsw.edu.au, vanessa.peterson@ansto.gov.au, drchristophedidier@gmail.com

Edited by H. Brand, Australian Synchrotron, ANSTO, Australia (Received 10 May 2022; accepted 10 October 2022; online 29 November 2022)

The quantitative phase analysis using X-ray diffraction of pyrite ore concentrate samples extracted from the Thackaringa mine is problematic due to poor particle statistics, microabsorption and preferred orientation. The influence of sample preparation on these issues has been evaluated, with ball milling of the powder found most suitable for accurate and precise quantitative phase analysis. The milling duration and other aspects of sample preparation have been explored, resulting in accurate phase reflection intensities when particle sizes are below 5 µm. Quantitative phase analysis on those samples yielded precise phase fractions with standard deviations below 0.3 wt%. Some discrepancy between the elemental composition obtained using X-ray powder diffraction data and that determined using wavelength-dispersive X-ray fluorescence was found, and is thought to arise from unaccounted for crystalline phase substitution and the possible presence of an amorphous phase. This study provides a methodology for the precise and accurate quantitative phase analysis of X-ray powder diffraction data of pyrite ore concentrate from the Thackaringa mine and a discussion of the limitations of the method. The optimization process reveals the importance of confirming reproducibility on new samples, with as much prior knowledge as possible.

1. Introduction

With recent shifts towards mining of lower grade ore deposits (West, 2011[West, J. (2011). J. Ind. Ecol. 15, 165-168.]; Summerfield, 2020[Summerfield, D. (2020). Australian Resource Reviews: Iron Ore 2019. Canberra: Geoscience Australia.]), mineral characterization that is both precise and accurate is becoming increasingly valuable. Deteriorating ore quality has led to more complex multiphase mineral compositions, which require representative crystalline phase information for the design of effective strategies for the post-processing and elemental recovery of newly tapped sources. X-ray diffraction (XRD) is one of the most common techniques used for the characterization of mineral samples, being simple and relatively fast.

Quantitative phase analysis (QPA) from whole-pattern fitting using the Rietveld method (Rietveld, 1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]; Werner et al., 1979[Werner, P.-E., Salomé, S., Malmros, G. & Thomas, J. O. (1979). J. Appl. Cryst. 12, 107-109.]) is routinely used to extract information such as phase identification, weight fractions and unit-cell parameters of crystalline phases within a powder sample. The accuracy and reliability of QPA results depend strongly on sample preparation (Dermatas et al., 2007[Dermatas, D., Chrysochoou, M., Pardali, S. & Grubb, D. G. (2007). Environ. Qual. 36, p487-497.]; Madsen et al., 2019[Madsen, I. C., Scarlett, N. V. Y., Kleeberg, R. & Knorr, K. (2019). International Tables for Crystallography, Vol. H, Powder Diffraction, edited by C. J. Gilmore, J. A. Kaduk & H. Schenk, pp. 344-373. Chichester: Wiley.]). One important requirement is that the irradiated sample volume contains a sufficient number of randomly oriented crystallites. This may be prevented by poor particle statistics, preferred orientation and microabsorption, well known factors discussed in the literature (Klug & Alexander, 1954[Klug, H. P. & Alexander, L. E. (1954). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley and Sons Inc.]; Bish & Reynolds, 1989[Bish, D. L. & Reynolds, R. J. (1989). Sample Preparation for X-ray Diffraction. Washington, DC: Mineralogical Society of America.]; Moore & Reynolds, 1997[Moore, D. M. & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press.]; Zhang et al., 2003[Zhang, G., Germaine, J. T., Martin, R. T. & Whittle, A. J. (2003). Clays Clay Miner. 51, 218-225.]; Dermatas et al., 2007[Dermatas, D., Chrysochoou, M., Pardali, S. & Grubb, D. G. (2007). Environ. Qual. 36, p487-497.]; Kleeberg et al., 2008[Kleeberg, R., Monecke, T. & Hillier, S. (2008). Clays Clay Miner. 56, 404-415.]; Madsen et al., 2019[Madsen, I. C., Scarlett, N. V. Y., Kleeberg, R. & Knorr, K. (2019). International Tables for Crystallography, Vol. H, Powder Diffraction, edited by C. J. Gilmore, J. A. Kaduk & H. Schenk, pp. 344-373. Chichester: Wiley.]). A number of preparation techniques have been developed to resolve those issues in multiphase samples (Klug & Alexander, 1954[Klug, H. P. & Alexander, L. E. (1954). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley and Sons Inc.]; Bish & Reynolds, 1989[Bish, D. L. & Reynolds, R. J. (1989). Sample Preparation for X-ray Diffraction. Washington, DC: Mineralogical Society of America.]; Moore & Reynolds, 1997[Moore, D. M. & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press.]; Hillier, 1999[Hillier, S. (1999). Clay Miner. 34, 127-135.]; Monecke et al., 2001[Monecke, T., Kohler, S., Kleeberg, R., Herzig, P. M. & Gemmell, J. B. (2001). Can. Mineral. 39, 1617-1633.]; Dermatas et al., 2007[Dermatas, D., Chrysochoou, M., Pardali, S. & Grubb, D. G. (2007). Environ. Qual. 36, p487-497.]; Kleeberg et al., 2008[Kleeberg, R., Monecke, T. & Hillier, S. (2008). Clays Clay Miner. 56, 404-415.]).

Because the optimal method of sample preparation depends on sample characteristics such as composition, phase distribution, particle size and morphology, the preparation is often devised by trial and error and has not been considered for pyrite ore concentrates. In this work we evaluate and optimize the sample preparation for powder XRD of pyrite ore concentrate from the Thackaringa mine, Broken Hill (NSW, Australia), and estimate absolute and relative uncertainties on phase weight fractions extracted by QPA.

2. Materials and methods

2.1. Sample preparation

The pyrite concentrate used in this study was produced from ore originating from the Thackaringa mine in Broken Hill, New South Wales, Australia, taken from a pyrite–quartz–albite gneiss at the `Pyrite Hill' site in February 2019, containing approximately 20% pyrite by weight. The raw ore obtained by reverse cycle drilling was crushed and treated by gravity separation, followed by a scavenger float on the gravity tails. The gravity and float concentrates were combined to form the pyrite concentrate sample. The resulting coarse powder was stored under water at room temperature prior to handling.

Approximately 1 kg aliquots of this powder were washed with deionized water, vacuum filtered and dried at approximately 353 K for 3–5 h, then stored in closed containers at 258 K. Ore content variation is artificially introduced between aliquots due to manual sampling. To minimize this ore content variation, all measured samples were taken from the same aliquot roughly homogenized by rotation of the container. Samples were hand ground using an agate mortar and pestle for 25 min. Samples were ball milled using a tungsten carbide (WC) jar and balls in an ESSA LM1-P vibratory ball mill, where 15 g of material was milled for 1, 2, 3, 5, 7 or 10 min. Magnetic separation of antiferromagnetic pyrrhotite from pyrite ore concentrate was performed by vigorously shaking 10 g sample aliquots in an inverted sample vial with a neodymium magnet on top of the vial.

For comparison purposes, 15 g of pyrite ore concentrate was milled using a jar of alumina rods in a McCrone micronizing mill in 7 ml of propan-2-ol for 30 min. The sample was rinsed from the container with additional propan-2-ol (5–10 ml), which was then evaporated by heating to 353 K for 1 h.

2.2. XRD measurement

XRD measurements were performed using a Malvern Panalytical Empyrean II diffractometer with a Co Kα X-ray source (λ = 1.7891 Å) and point detector in Bragg–Brentano geometry in the 10–120° 2θ range with the sample rotated at 30 rev min−1 during measurement. Apart from the grease-prepared samples described below, all powders were partly top loaded into 30 mm diameter × 1 mm deep stainless steel holders, covered with a glass slide and turned vertical with slight tapping to reorient the grains. Loading and vertical taps were repeated until the holder was full, after which the glass slide was removed from the horizontal holder and a razor blade taken across the surface. The grease-prepared samples used silicone high-vacuum grease (Chem Supply) to coat the base of a `zero background' oriented silicon sample holder (Malvern Panalytical) onto which the sample was sprinkled in line with the lip of the holder, before gentle tapping to deposit a relatively thin layer of sample onto the grease.

The proportion of amorphous content was estimated by the external standard method (O'Connor & Raven, 1988[O'Connor, B. H. & Raven, M. D. (1988). Powder Diffr. 3, 2-6.]; Scarlett & Madsen, 2018[Scarlett, N. V. Y. & Madsen, I. C. (2018). Powder Diffr. 33, 26-37.]). Crystalline α-Al2O3 (Baikalox, CR1, Baikowski) powder was loaded into sample holders and measured identically to the pyrite concentrate samples. The crystallinity of the alumina standard was assumed to be 99.0 (6)% according to previous amorphous content determination of this material (Cline et al., 2011[Cline, J. P., Von Dreele, R. B., Winburn, R., Stephens, P. W. & Filliben, J. J. (2011). Acta Cryst. A67, 357-367.]). The overall profile scale factor was obtained by the Rietveld method as described in Section 2.3[link] using the ICDD (International Centre for Diffraction Data, Newtown Square, Pennsylvania, USA; https://www.icdd.com) 01-070-7019 (Pillet et al., 2001[Pillet, S., Souhassou, M., Lecomte, C., Schwarz, K., Blaha, P., Rérat, M., Lichanot, A. & Roversi, P. (2001). Acta Cryst. A57, 290-303.]) crystal structure for α-Al2O3; refined unit-cell and atomic parameters for this phase are given in Table S5 in the supporting information. The mass attenuation coefficients of the standard and concentrate were calculated according to their elemental composition using the database of Chantler (2001[Chantler, C. T. (2001). J. Synchrotron Rad. 8, 1124.]).

2.3. XRD analysis

Crystalline phases in the XRD data of the pyrite concentrate powder were identified using Malvern Panalytical's Highscore semi-quantitative analysis software with the ICDD PDF4+2021 database and the ICSD [Inorganic Crystal Structure Database, FIZ-Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA; https://icsd.fiz-karlsruhe.de/index.xhtml] release 2020.1. QPA was performed using the Rietveld method (Rietveld, 1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]) as implemented in the GSAS-II software (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]). The instrumental peak shape was modelled using a pseudo-Voigt function with W, X, Y, instrumental zero and asymmetry parameters determined from data for a silicon standard (Malvern Panalytical) and fixed in all subsequent refinements of sample data. The background was modelled with a seven-coefficient Chebyshev 1 polynomial and the vertical sample displacement refined.

The crystal structures used as starting structures in the phase refinements were ICDD 04-014-3191 (Wu et al., 2004[Wu, R., Zheng, Y. F., Zhang, X. G., Sun, Y. F., Xu, J. B. & Jian, J. K. (2004). J. Cryst. Growth, 266, 523-527.]) for pyrite (FeS2), ICSD 162490 (Antao et al., 2008[Antao, S. M., Hassan, I., Wang, J., Lee, P. L. & Toby, B. H. (2008). Can. Mineral. 46, 1501-1509.]) for quartz (SiO2), ICSD 68913 (Armbruster et al., 1990[Armbruster, T., Buergi, H. B., Kunz, M., Gnos, E., Broenniman, S. & Lienert, C. (1990). Am. Mineral. 75, 135-140.]) for albite (NaAlSi3O8), ICDD 00-029-0723 (Morimoto et al., 1975[Morimoto, N., Gyobu, A., Mukaiyama, H. & Izawa, E. (1975). Econ. Geol. 70, 824-833.]) for pyrrhotite (Fe7S8) and ICSD 64987 (Shintani et al., 1975[Shintani, H., Sato, S. & Saito, Y. (1975). Acta Cryst. B31, 1981-1982.]) for rutile (TiO2). Each phase had its unit cell, crystallite size and phase fraction refined. Refinement of the triclinic unit cell of albite proved unstable, so the unit-cell parameters of albite were not refined for samples milled for 0, 1, 2 and 3 min but could be refined at the last refinement step for the 5, 7 and 10 min milled samples. A March–Dollase parameter was included in the refinements to correct for the severe preferred orientation observed for albite, with the direction [013] yielding better agreement between calculated and observed patterns, as consistent with previous analysis (Kleeberg et al., 2008[Kleeberg, R., Monecke, T. & Hillier, S. (2008). Clays Clay Miner. 56, 404-415.]). For rutile, given its low phase fraction (<1 wt%), it was necessary to fix the crystallite size to an appropriate value (0.08 µm) for refinement of the samples milled for 0 min to avoid refinement divergence, but the parameter could be refined for samples milled for 1, 2, 3, 5, 7 and 10 min. Refinement of coordinates and isotropic atomic displacement parameters (ADPs) for quartz, albite, pyrrhotite and rutile often resulted in refinement instability or non-sensible chemical composition, so these were not refined. Atomic coordinates and ADPs for the pyrite phase in the grease-prepared samples and those samples milled for 5, 7 and 10 min could be refined, with negligible change to phase fraction and crystallite size values when those were refined.

2.4. Neutron diffraction (ND)

ND measurements were performed on the Wombat high-intensity neutron powder diffractometer (Studer et al., 2006[Studer, A. J., Hagen, M. E. & Noakes, T. J. (2006). Physica B, 385-386, 1013-1015.]) at the Australian Nuclear Science and Technology Organisation's Centre for Neutron Scattering, Lucas Heights (NSW, Australia). Powder samples were loaded into 9 mm diameter vanadium cans and suspended in the neutron beam of wavelength 1.5430 (1) or 2.4144 (3) Å determined using the La11B6 Standard Reference Material (SRM) 660b from NIST. Rietveld refinements using neutron diffraction data have been attempted, but the precise determination of phase weight fractions in those data was prevented by difficulty in observing reflections from minor phases as a result of un­favourable neutron scattering cross sections and instrumental broadening.

2.5. Wavelength-dispersive X-ray fluorescence (WD-XRF)

WD-XRF measurements were performed using a Malvern Panalytical Axios Advanced WDXRF instrument with a Rh Kα X-ray source (λ = 0.615 Å). Samples of 10–12 g were prepared by milling for 7 min as per Section 2.1[link]. A 10:1 mass ratio of sample to Ceridust 3620 (polyethylene wax, used as a binding agent) was mixed and pressed into a pellet, and a 1074.7 mm2 area was illuminated during measurement. Two types of WD-XRF analyses were made: semiquantitative multi-elemental analysis, and quantitative analysis calibrated for Fe, S and Si.

The multi-elemental analysis provides semiquantitative elemental ratios for elements between Be and U using a fundamental parameters matrix correction (Omnian) calibrated in-house by Malvern Panalytical. In this analysis, lighter elements are slightly overestimated, probably as a result of the stronger X-ray attenuation of the pyrite concentrate compared with that of the standard (Rousseau, 2006[Rousseau, R. M. (2006). At. Spectrosc. 61, 759-777.]), noting that ratios between elements with close Z are less affected. The automatic peak search and match were corrected by visual inspection of the spectra. Peaks for rhodium and phosphorus, arising from the source X-ray tube and Ceridust binder, respectively, were excluded from the analysis.

The quantitative calibrated analysis measured the Fe, S and Si content using empirical calibration curves from mixtures that matched the composition and sample preparation method of the concentrate, comprising three standards of 70:30, 80:20 and 90:10 ratios of FeS2:SiO2. These standards were produced using pyrite (iron disulfide, 99.8%, Sigma Aldrich) and acid-washed quartz (laboratory grade, Chem Supply), where 10 g of coarse quartz was first milled for 1 min and ground together with the appropriate mass of pyrite in an agate mortar before shaking in a glass vial. Pellets of this mixture were then milled and pressed identically to the pyrite concentrate samples for WD-XRF measurements. Calibration curves were obtained by linear regression between measured Kα peak intensities for Fe, S and Si and the corresponding weighed concentrations of standard mixtures.

2.6. Scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS)

For particle surface imaging, samples were sprinkled onto a two-sided tape-covered mount. For particle cross-section imaging and elemental mapping, powder samples were covered in epoxy resin precursors, evacuated for 10 min and left to cure overnight. Particles were exposed by abrading the surface of cured resin samples for 1 to 5 min using P800 sandpaper; the samples were then cleaned under sonication in a distilled water bath, polished for 5 min using P1200 sandpaper and cleaned in the same manner once more. Dried resin samples were mounted using aluminium tape and coated with 10 nm of carbon using a Safematic CCU-010 compact coating unit immediately prior to analysis. SEM imaging was performed with an ST Instruments TM4000Plus tabletop microscope using a backscattered electron (BSE) detector paired with a Bruker QUANTAX energy-dispersive X-ray spectrometry (EDS) detector. Ten SEM images were taken of each pyrite concentrate powder ball milled for different times.

2.7. Inductively coupled plasma mass spectrometry (ICP-MS)

Approximately 1 g of sample was microwave digested in aqua regia mixture (3HCl + 2HNO3) to ensure all soluble materials were dissolved. It was noted that the sample contained some insoluble particles, most likely silicates. ICP-MS measurements were performed on the extracted solution using a Perkin Elmer NexIon 300D instrument.

2.8. Particle size analysis

Particle size distribution analysis was performed using a Malvern Panalytical Mastersizer 3000 laser dispersion instrument. Approximately 5 × 10−4 g ml−1 of untreated pyrite ore concentrate was used for dispersion in deionized water. Aliquots of sample were added slowly until the instrument reached the required particle obscuration rate (the rate at which specified surface can be accurately calculated and the risk from deposited particles is reduced). The samples were automatically sonicated and dispersed by the instrument during measurements, with blank measurements taken between each individual sample. Measurements were replicated three times for each sample to determine experimental uncertainty.

2.9. Sieve analysis

Sieve analysis was performed on unground pyrite concentrate using a series of Cole–Parmer stainless steel standard test sieves (ASTM E11 approved) with mesh sizes of 75, 106, 250, 600 and 1000 µm, using a Laarman LMSM 75–240 V/50 Hz horizontal sieve shaker for 1 h. The particle size distribution was obtained by weighing the material collected in each sieve [Fig. S2(a)]. Phase fractions in each portion were obtained from QPA using XRD following the optimized sample preparation outlined above.

3. Results and discussion

3.1. Qualitative analysis of samples

Before QPA was performed, the crystalline phases present in the sample needed to be identified. A powder diffraction pattern was initially obtained from XRD using a sample prepared by hand grinding in an agate mortar and top loading into a flat horizontal sample holder. This preparation was later found inappropriate for accurate QPA, as shown in Section 3.2[link], with ball milling necessary to obtain phase reflection intensities closer to those expected from published crystal structures. This gradual process was necessary to devise an optimal measurement strategy, with knowledge of the sample mineral content and particle distribution informing the preparation methods. XRD data for the pyrite concentrate sample ball milled for 7 min were used to identify crystalline phases present (Table 1[link] and Fig. 1[link]), with elemental compositions corroborated with XRF and SEM-EDS.

Table 1
Crystalline phases identified from XRD data of pyrite powder concentrate ball milled for 7 min

Phase name Formula Matching crystal structure reference
Pyrite FeS2 Wu et al. (2004[Wu, R., Zheng, Y. F., Zhang, X. G., Sun, Y. F., Xu, J. B. & Jian, J. K. (2004). J. Cryst. Growth, 266, 523-527.])
Quartz α SiO2 Antao et al. (2008[Antao, S. M., Hassan, I., Wang, J., Lee, P. L. & Toby, B. H. (2008). Can. Mineral. 46, 1501-1509.])
Albite, low NaAlSi3O8 Armbruster et al. (1990[Armbruster, T., Buergi, H. B., Kunz, M., Gnos, E., Broenniman, S. & Lienert, C. (1990). Am. Mineral. 75, 135-140.])
Pyrrhotite, 4M Fe7S8 Morimoto et al. (1975[Morimoto, N., Gyobu, A., Mukaiyama, H. & Izawa, E. (1975). Econ. Geol. 70, 824-833.])
Rutile TiO2 Shintani et al. (1975[Shintani, H., Sato, S. & Saito, Y. (1975). Acta Cryst. B31, 1981-1982.])
[Figure 1]
Figure 1
Phase identification using the Highscore software analysis of XRD data of pyrite concentrate powder ball milled for 7 min. Data are shown as a black line and all peaks can be indexed to one of five crystalline phases.

Five crystalline phases were identified from the XRD data, with all reflections indexed by this phase composition. Qualitatively, pyrite was found to be the major phase, with albite and quartz as minor phases. Pyrrhotite and rutile were present as trace phases. Observed reflection intensities for albite were closest to those expected for the low albite polymorph (Armbruster et al., 1990[Armbruster, T., Buergi, H. B., Kunz, M., Gnos, E., Broenniman, S. & Lienert, C. (1990). Am. Mineral. 75, 135-140.]). The 4M polymorph of pyrrhotite (Morimoto et al., 1975[Morimoto, N., Gyobu, A., Mukaiyama, H. & Izawa, E. (1975). Econ. Geol. 70, 824-833.]) was identified from the XRD pattern of a magnetically separated sample (Fig. S1).

The elemental composition of the pyrite concentrate obtained from semi-quantitative WD-XRF (for samples milled for 7 min, Table 2[link]) and SEM-EDS (for as-received unground samples) was used to corroborate the phase identification obtained using the XRD data. Several representative images of the sample and the corresponding elemental compositions are shown in Fig. 2[link].

Table 2
Mean elemental weight fractions of pyrite concentrate powder ball milled for 7 min determined using semi-quantitative WD-XRF data, and standard deviations from five repeat samples

The Kα peak of oxygen was visible but O was excluded from the analysis due to the lack of accuracy for this element. The presence of trace elements with overlapping energies, such as As Kα and Pb Lα, or W Lβ and Au Lα, was confirmed by ICP-MS (Table S1). Other elements are below the detection/quantification limit of the technique (Loubser & Verryn, 2008[Loubser, M. & Verryn, S. (2008). South Afr. J. Geol. 111, 229-238.]; Kadachi & Al-Eshaikh, 2012[Kadachi, A. N. & Al-Eshaikh, M. A. (2012). X-ray Spectrom. 41, 350-354.]). Elemental fractions were obtained from fundamental parameter analysis.

Element Wt% Element Wt%
S 52.2 (6) Mg 0.032 (4)
Fe 35.8 (3) K 0.03 (10)
Si 4.51 (10) Zr 0.01 (2)
Al 0.95 (2) W <0.01
Na 0.74 (4) As <0.01
Ti 0.57 (4) Pb <0.01
Co 0.45 (2) Nd <0.01
Ni 0.058 (8) Y <0.01
Ca 0.042 (13)    
[Figure 2]
Figure 2
(a) SEM BSE image and (b) the corresponding elemental mapping (EDS) of unground pyrite concentrate powder encased in resin. (c)–(f) Individual maps for Al, Si, Fe and S, respectively. Ten areas and the corresponding elemental maps were measured and are shown in Fig. S3, and this area was chosen as representative.

SEM imaging reveals phases separated into distinct particles of a relatively broad size distribution ranging from 1000 µm down to 1 µm. The measured composition of individual grains obtained using SEM-EDS is in agreement with the phase identification from XRD. The majority contain exclusively Fe and S, corresponding to the pyrite and pyrrhotite phases. The second most common compositions were silicates containing either Si and O, or Na, Al, Si and O, corresponding to the quartz and albite phases, respectively. A small number of aluminosilicate particles containing K or Ca (Fig. S3) suggests the presence of alkaline and plagioclase feldspars, noting significant miscibility between those minerals and albite, forming the feldspar family (Iddings, 1898[Iddings, J. P. (1898). J. Geol. 6, 219-237.]; Zambonini & Washington, 1923[Zambonini, F. & Washington, H. S. (1923). Am. Mineral. 8, 81-85.]). Other aluminosilicate particles con­taining Mg with lamellar morphology (Fig. S3) may suggest the presence of magnesium-rich mica, as observed in the ore before flotation (Plimer, 1977[Plimer, I. R. (1977). Miner. Deposita, 12, 175-187.]). No reflections for alumino­silicates other than albite were visible in the diffraction patterns as a result of their low amount, later confirmed using WD-XRF. SEM-EDS reveals Ti and O in isolated particles (light green in Fig. S3), confirming the presence of the rutile phase. Co is known to substitute for Fe in pyrite, and although no Co was detected in particles other than the iron sulfides, SEM-EDS has little discrimination between Fe and Co due to the overlap of Fe Kβ (7058 eV) and Co Kα (6923 eV) (Deslattes et al., 2005[Deslattes, R. D., Kessler, E. G. Jr, Indelicato, P., de Billy, L., Lindroth, E., Anton, J., Coursey, J. S., Schwab, D. J., Chang, C., Sukumar, R., Olsen, K. & Dragoset, R. A. (2005). X-ray Transition Energies. https://physics.nist.gov/XrayTrans. National Institute of Standards and Technology, Gaithersburg, Maryland, USA.]) transition energies. A few isolated oxide particles containing Zr, or a mixture of La, Ce and Nd, were sometimes observed using BSE imaging. However, no Zr or lanthanoid oxides were visible using XRD, presumably because of their very low amount as confirmed by WD-XRF (Table 2[link]).

All elements >0.5 wt% as determined using WD-XRF (S, Fe, Si, Al, Na, Ti) correspond to phase compositions detected using XRD. Other elements (Co, Ni, Ca, Mg, K, Zr, Nb, Y) consistent with those detected by SEM-EDS were identified by WD-XRF but did not correspond to the composition of crystalline phases identified using XRD, presumably because these elements are present as substituents within visible phases or belong to impurity phases below the detection limit of the method. The higher energy resolution of WD-XRF compared with SEM-EDS enabled the confirmation of Co in the presence of Fe in the sample and also revealed trace amounts of Ni, possibly as a third substituent for Fe in the pyrite phase, in the molar ratio Fe:Co:Ni = 0.987 (8): 0.012 (10):0.002 (4). Trace amounts of Ca, K and Mg, alongside Na and Al, in the molar ratio Al:Na:Ca:K:Mg = 1.00 (2):0.91 (5):0.030 (9):0.02 (7):0.037 (5) are consistent with the presence of albite and the absence of other feldspars in the XRD data, and consistent with previous mineralogical analysis of samples from the Thackaringa mine (Plimer, 1977[Plimer, I. R. (1977). Miner. Deposita, 12, 175-187.]). The presence of trace amounts of Zr and Nb confirms the absence of visible zirconia and lanthanoid oxide phases in the XRD data. Trace amounts of As, Pb and Y may be present, but the signal is at the detection limit of the method (Fig. S4). As can substitute for S in FeS2, Pb may be a small impurity as PbS, commonly associated with pyrite (Abraitis et al., 2004[Abraitis, P. K., Pattrick, R. A. D. & Vaughan, D. J. (2004). Int. J. Miner. Process. 74, 41-59.]), and Y is a common impurity in lanthanoid minerals. We note the presence of W, probably as contamination from the WC jars used in the milling process.

3.2. Influence of preparation methods on quantitative phase analysis from XRD

For comparison with milled samples, we first prepared pyrite concentrate samples for XRD by hand grinding powder for 30 min in an agate mortar and top loading into sample holders. As expected, XRD data for hand-ground preparations lacked reproducibility as a result of poor particle statistics, microabsorption and preferred orientation (Fig. S5). Reflection intensities differed slightly from those calculated for published crystal structures of pyrite and quartz, and differed greatly for albite (Fig. 3[link]). Albite is known to be susceptible to preferred orientation due to its plate-like morphology and polysynthetic twinning (Heidelbach et al., 2000[Heidelbach, F., Post, A. & Tullis, J. (2000). J. Struct. Geol. 22, 1649-1661.]; Jiang et al., 2000[Jiang, Z., Prior, D. J. & Wheeler, J. (2000). J. Struct. Geol. 22, 1663-1674.]; Kleeberg et al., 2008[Kleeberg, R., Monecke, T. & Hillier, S. (2008). Clays Clay Miner. 56, 404-415.]; Vance, 1961[Vance, J. A. (1961). Am. Mineral. 46, 1097-1119.]; Donnay, 1940[Donnay, J. D. H. (1940). Am. Miner. Earth Planet. Mater. 25, 578-586.]), with preferred orientation strong along the [001] direction and relatively weaker along the [010] direction in flat-plate sample preparations (Kleeberg et al., 2008[Kleeberg, R., Monecke, T. & Hillier, S. (2008). Clays Clay Miner. 56, 404-415.]). Although preferred orientation in albite may be better represented by complex models such as spherical harmonics, considering reflections for this phase have low intensity, a single March–Dollase parameter was selected as an approximation to reduce the number of refined parameters. The best agreement between measured and calculated reflection intensities was obtained with a correction along the [013] unique axis by trial and error for the 0 and 1 min samples, roughly approximating the preferred orientation determined by Kleeberg and co-workers, noting that a range of [0kl] unique axes when l > k adequately modelled the observed intensities. The choice of unique axis becomes insignificant as milling time increases and preferred orientation becomes negligible (the March–Dollase parameter is close to 1). For consistency, refinement of preferred orientation along the [013] unique axis was used in model descriptions of all sample data.

[Figure 3]
Figure 3
Rietveld refinement profiles using XRD data of pyrite concentrate powder as (a) an unground control, and prepared by (b) hand grinding, (c) grease loading and (d) 7 min ball milling. The relative percentage differences between the observed (Io) and calculated (Ic) intensities are shown beneath each profile. Rietveld refinement residuals for each sample preparation are given in Table S2.

Several methods for the preparation of samples for XRD analysis have been suggested to correct for this effect, such as side loading of samples or sprinkling onto grease (Kleeberg et al., 2008[Kleeberg, R., Monecke, T. & Hillier, S. (2008). Clays Clay Miner. 56, 404-415.]; Unruh & Forbes, 2019[Unruh, D. K. & Forbes, T. Z. (2019). Analytical Geomicrobiology: A Handbook of Instrumental Techniques, edited by J. P. L Kenney, H. Veeramani & D. S. Alessi, pp. 215-237. Cambridge University Press.]). We note that top and side loading amplified different sets of reflections for albite, with the cluster of reflections at 32.6° the most susceptible, but neither method prevented preferred orientation. Loading onto grease substantially reduced preferred orientation in the albite phase (Fig. 3[link]), where the March–Dollase parameter refined to a value closer to 1, indicating a more random orientation of the powder. However, the patterns still lacked reproducibility, with this more evident for pyrite reflections, suggesting that the relatively small amount of powder in the grease preparation and the large particle size may lead to poor particle statistics. Fig. 3[link] shows typical Rietveld refinement profiles using XRD data of pyrite concentrate powder prepared by four different methods. Refinement residuals and the March–Dollase correction value for albite are given in Table S2.

Although pyrite is relatively soft (around 6 on the Mohs scale) (Craig & Vokes, 1993[Craig, J. & Vokes, F. (1993). Mineral. Mag. 57, 3-18.]), it was later confirmed by SEM and laser diffraction that the particles remained relatively large after hand grinding in an agate mortar, perhaps due to the presence of harder quartz particles (around 7 on the Mohs scale) (Deer et al., 1962[Deer, W. A., Howie, R. A. & Zussman, J. (1962). An Introduction to the Rock-Forming Minerals. London: Longmans.]). Large crystallites are a well known source of systematic errors in powder diffraction (Moore & Reynolds, 1997[Moore, D. M. & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press.]). Neutron diffraction measurements with area detectors confirmed the poor particle statistics, even in larger pyrite concentrate samples, compared with XRD (Fig. S6). Although sieving is sometimes suggested to remove large crystallites (Brindley, 1945[Brindley, G. W. (1945). London Edinb. Dubl. Philos. Mag. J. Sci. 36, 347-369.]), pyrite concentrate powders are found to have a phase distribution that is correlated with grain size [Fig. S2(b)], with pyrite more represented in larger grains, so sieving would result in a modification of the sample composition. Grain size reduction has been shown to be effective in improving particle statistics and reducing preferred orientation and microabsorption (Madsen et al., 2019[Madsen, I. C., Scarlett, N. V. Y., Kleeberg, R. & Knorr, K. (2019). International Tables for Crystallography, Vol. H, Powder Diffraction, edited by C. J. Gilmore, J. A. Kaduk & H. Schenk, pp. 344-373. Chichester: Wiley.]; Kleeberg et al., 2008[Kleeberg, R., Monecke, T. & Hillier, S. (2008). Clays Clay Miner. 56, 404-415.]; Klug & Alexander, 1954[Klug, H. P. & Alexander, L. E. (1954). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley and Sons Inc.]). A homogeneous size distribution of fine particles (<10 µm) has been stated as ideal (Brindley, 1945[Brindley, G. W. (1945). London Edinb. Dubl. Philos. Mag. J. Sci. 36, 347-369.]; Klug & Alexander, 1954[Klug, H. P. & Alexander, L. E. (1954). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley and Sons Inc.]). However, excessive milling can lead to the introduction of particle strain or induce chemical reactions, such as oxidation of ultrafine particles (Karim et al., 2016[Karim, W., Kleibert, A., Hartfelder, U., Balan, A., Gobrecht, J., van Bokhoven, J. A. & Ekinci, Y. (2016). Sci. Rep. 6, 18818. ]; Dettrick et al., 2019[Dettrick, D., Bourgeot, N., Costelloe, J., Yuen, S. & Arora, M. (2019). Mine Water Environ. 38, 735-745.]), and can also introduce structural defects, potentially causing further difficulty in QPA using XRD (Sakher et al., 2018[Sakher, E., Loudjani, N., Benchiheub, M. & Bououdina, M. (2018). J. Nanomater. 2018, 2560641.]; Madsen et al., 2019[Madsen, I. C., Scarlett, N. V. Y., Kleeberg, R. & Knorr, K. (2019). International Tables for Crystallography, Vol. H, Powder Diffraction, edited by C. J. Gilmore, J. A. Kaduk & H. Schenk, pp. 344-373. Chichester: Wiley.]; O'Connor & Chang, 1986[O'Connor, B. H. & Chang, W. J. (1986). X-ray Spectrom. 15, p267-270.]; Hillier, 2003[Hillier, S. (2003). Spec. Publ. Int. Assoc. Sedimentol. 34, 213-251.]; Dermatas et al., 2007[Dermatas, D., Chrysochoou, M., Pardali, S. & Grubb, D. G. (2007). Environ. Qual. 36, p487-497.]).

Better agreement between observed and modelled reflection intensity, and improved pattern reproducibility across preparations, were obtained after ball milling the pyrite concentrate (Fig. 3[link]), suggesting the suitability of this method of pyrite concentrate sample preparation for QPA using XRD. Because the optimal milling procedure is dependent on sample characteristics (O'Connor & Chang, 1986[O'Connor, B. H. & Chang, W. J. (1986). X-ray Spectrom. 15, p267-270.]), the milling preparation was optimized for pyrite concentrate powder and the accuracy and precision of the QPA results were determined.

3.3. Optimization of sample milling time

The particle size distribution of pyrite concentrate powder ball milled for different times was investigated by SEM imaging and laser diffraction (Fig. 4[link] and Table 3[link]).

Table 3
Volume moment mean diameter D[4,3] from laser diffraction of ball-milled pyrite concentrate powder samples

Milling time (min) Mean particle size D[4,3] (µm)
0 129 (3)
1 42 (3)
2 10.5 (2)
3 5.62 (14)
5 3.83 (8)
7 2.72 (11)
10 2.19 (11)
[Figure 4]
Figure 4
Representative SEM BSE images of pyrite concentrate powder samples ball milled for 0, 1, 5 and 10 min.

The SEM and laser diffraction data follow the expected trend of a reduction in particle size with increasing milling time, where the reduction rate decreases as the milling time is further increased (O'Connor & Chang, 1986[O'Connor, B. H. & Chang, W. J. (1986). X-ray Spectrom. 15, p267-270.]). Powders milled for 5 and 10 min contain particles of <3 µm diameter in larger agglomerates, possibly due to triboelectric effects introduced by friction in the dry milling procedure (Mirkowska et al., 2016[Mirkowska, M., Kratzer, M., Teichert, C. & Flachberger, H. (2016). BHM Berg- Hüttenmännische Monatsh. 161, 359-382.]; Landauer & Foerst, 2019[Landauer, J. & Foerst, P. (2019). Processes, 7, 716. ]), with a small portion of particles of diameter >10 µm. Laser diffraction reveals a multimodal particle size distribution (Fig. S18), probably resulting from differential grinding according to mineral hardness.

The pyrite concentrate powder milled for different times was examined using XRD, with the final phase composition calculated from Rietveld refinement using five separate XRD measurements of samples from the same batch of milled powder. Pattern simulations (Fig. S7) showed negligible changes in intensity when Co, Ni and As were substituted into the crystal structure of FeS2, or when Mg, Ca and K were substituted into NaAlSi3O8, according to semi-quantitative WD-XRF elemental ratios, suggesting that XRD is not sensitive to those substitutions. Given this lack of sensitivity, the refinement of atomic occupancies was not attempted and pure phase compositions were used for QPA.

The average results and reproducibility over the five repeat analyses are first qualitatively assessed before comparison with the composition obtained from calibrated WD-XRF. Standard deviations in refined parameters obtained for five replicates (Figs. 5[link] and 6[link]) reveal a clear improvement in the reproducibility of XRD data when the sample milling time is increased. The discrepancy between observed and calculated patterns (Figs. S9–S15), as reflected in the weighted profile reliability factor Rwp (Fig. S8, Table S3), also decreases with increased milling time, with a plateau reached after about 7 min. Fig. 6[link] shows that the mean refined value of the March–Dollase parameter to correct for preferred orientation of the albite phase approaches 1, indicative of minimal preferred orientation in the phase, as the milling time increases. Excluding measurements with unground powder, the unit-cell parameter changes were within 0.002% (Table S4), suggesting chemical stability of the phases.

[Figure 5]
Figure 5
(a) Mean phase fractions and (b) mean crystallite sizes for phases determined using XRD of five pyrite concentrate powder samples milled for different times. For the 0 min milling time sample, the crystallite size of rutile was fixed to 0.1 µm to prevent correlations between crystallite size and weight fraction parameters. Error bars represent sample standard deviations of the mean values for the five repeats at each milling time. Values of the Rietveld refinement residual Rwp are plotted in Fig. S8 and given in Table S3 with other residuals. Typical refinement profiles are shown in Fig. S9–15.
[Figure 6]
Figure 6
The mean March–Dollase ratio for the albite phase obtained from Rietveld refinements using XRD data of five pyrite concentrate powders milled for different times. A March–Dollase ratio of 1 indicates random powder orientation with respect to the chosen unique reflection direction [013]. Reflection intensities in very low milling time samples with poor particle statistics may also be partially modelled by this parameter. Error bars represent sample standard deviations of the mean values for the five repeats at each milling time. Values are given in Table S3.

Particle size reduction causes reflection broadening, as indicated by the reduction in the refined crystallite size with milling time [Fig. 7[link](b), Fig. S16]. Peak broadening may cause difficulty in discriminating reflections for minor phases such as rutile and pyrrhotite [Fig. 7[link](a)], with significant broadening for the pyrrhotite phase causing overlap of five proximal pyrrhotite reflections in the data [Fig. 7[link](b)] and refined crystallite sizes below 0.05 µm. This is probably due to pyrrhotite having a much lower hardness (around 3.5–4.5 on the Mohs scale) (Chen et al., 2020[Chen, J., Xu, Z. & Chen, Y. (2020). Electronic Structure and Surfaces of Sulfide Minerals, edited by Y. Chen, J. Chen & Z. Xu, pp. 13-81. Amsterdam: Elsevier.]) than the other phases. Reflection overlap from broadening may explain the increase in uncertainty observed for the pyrrhotite weight fraction when the milling time is increased from 7 to 10 min (Fig. 5[link]). Milling times longer than 10 min were not investigated.

[Figure 7]
Figure 7
XRD data, shown as solid lines for clarity, of pyrite concentrate powder milled for 1 and 5 min, showing broadening of (a) the pyrite overlapped reflections 312 and 321, and (b) the pyrrhotite overlapped reflections 402, 223, [2 2 {\overline 5}], [4 0 {\overline 6}] and 313.

The preparation was compared with that obtained using the McCrone XRD-Mill vibratory rod mill under propan-2-ol, a particle size reduction method recommended for XRD sample preparation (Whitfield et al., 2019[Whitfield, P. S., Huq, A. & Kaduk, J. A. (2019). International Tables for Crystallography, Vol. H, Powder Diffraction, edited by C. J. Gilmore, J. A. Kaduk & H. Schenk, pp. 200-222. Chichester: Wiley.]). Mean particle sizes equivalent to those obtained after 7 min in the ESSA mill were obtained after 30 min in the McCrone mill (Fig. S18). Although laser diffraction revealed a narrower particle size distribution using the McCrone mill, under-ground particles of around 10 µm remained. Comparison of XRD data for samples ground using the two different mills revealed slightly sharper reflections for the McCrone preparation (Fig. S19), resulting in smaller refined crystallite sizes for most phases (Table S6). Refined parameters were comparable between the two preparations, although we note that further optimization of the faster ESSA ball mill method may be achieved by considering factors such as the number, size and shape of the balls, as well as the amount of powder, number of rotations per minute, milling medium, ball and jar materials etc.

A strong correlation exists between particle size and refined parameters (Fig. S16), as expected from the influence of particle statistics and microabsorption, noting a substantial underestimation of pyrite weight fraction when the particle size is high. Microabsorption (Brindley, 1945[Brindley, G. W. (1945). London Edinb. Dubl. Philos. Mag. J. Sci. 36, 347-369.]) is expected to be problematic in pyrite concentrate samples due to the presence of phases with different mass attenuation coefficients (MACs) (FeS2 MAC = 100 cm2 g−1, SiO2 MAC = 54 cm2 g−1 at 1.79 Å); we note that although corrections exist (Brindley, 1945[Brindley, G. W. (1945). London Edinb. Dubl. Philos. Mag. J. Sci. 36, 347-369.]; Rousseau, 2006[Rousseau, R. M. (2006). At. Spectrosc. 61, 759-777.]) they are often unsatisfactory (Scarlett & Madsen, 2018[Scarlett, N. V. Y. & Madsen, I. C. (2018). Powder Diffr. 33, 26-37.]). Although further particle size reduction may reduce microabsorption, it may also induce excessive broadening of reflections. Shorter-wavelength instruments may be desirable for those samples. A milling time of around 7 min, corresponding to mean particle sizes close to 3 µm, was considered a suitable compromise for the preparation of pyrite concentrate samples for XRD using Co Kα wavelength.

3.4. Comparison of XRD results with elemental analysis

To confirm the validity of the refined phase fractions from XRD analysis, the results were compared with elemental analysis determined using WD-XRF. The precision of QPA from XRD was assessed by repeating the measurement and analysis over five samples taken from 1 kg aliquots of the pyrite concentrate that were subjected to 7 min milling and compared with WD-XRF analyses of the samples (Tables 4[link] and 5[link]).

Table 4
Mean phase fractions obtained from Rietveld analysis using XRD data from five samples of the same pyrite ore concentrate aliquot, each individually milled for 7 min

Sample standard deviations of the mean values from the five repeats are indicated. Note the similarity to the estimated standard deviations from Rietveld analysis.

Phase Pyrite Albite Quartz Pyrrhotite Rutile
Mean phase fraction (wt%) 82.7 (3) 8.4 (2) 4.94 (12) 3.07 (10) 0.92 (2)

Table 5
Comparison of the mean elemental weight fractions obtained using XRD and calibrated WD-XRF weight fractions for five pyrite concentrate samples from the same aliquot, each individually ball milled for 7 min

WD-XRF data were empirically calibrated using standard mixtures to correct for matrix effects (Rousseau, 2006[Rousseau, R. M. (2006). At. Spectrosc. 61, 759-777.]). Sample standard deviations of the mean values from the five repeats are indicated.

  Wt%
Element XRD WD-XRF
S 45.4 (2) 47.2 (2)
Fe 40.3 (2) 42.04 (14)
Si 5.00 (11) 4.03 (10)

Table 4[link] shows the mean phase fractions obtained from QPA of five pyrite ore samples milled for 7 min. The standard deviations for the refined phase fractions over the five repeats lie below 0.3 wt%, confirming the good reproducibility of this preparation method. The elemental composition calculated from the refined phase fractions obtained from XRD is compared with that obtained using WD-XRF in Table 5[link]. We note that calibration with a matrix-matching standard (Souders & Sylvester, 2010[Souders, A. K. & Sylvester, P. J. (2010). J. Anal. At. Spectrom. 25, 975-988.]; Rousseau, 2006[Rousseau, R. M. (2006). At. Spectrosc. 61, 759-777.]) was necessary in the WD-XRF method, with the major elements Fe, S and Si calibrated using FeS2/SiO2 mixtures in a composition range close to that of the pyrite concentrate sample. The elemental weight fractions for these elements obtained from the two methods are within 2 wt% (Table 5[link]). Although in general agreement, the amount of Fe and S is slightly overestimated and Si slightly underestimated by XRD. The bias is much larger than the standard deviations across repeats (Table 5[link]), suggesting a systematic, rather than statistical, error. Some of these discrepancies could be ascribed to elements not included in the composition of refined phases, such as Mg, K and Ca in albite, and Co, Ni and As in pyrite, or impurities containing Pb, Nd, Y and Zr in amounts too small to be visible in XRD. However, the difference should be smaller than 0.5 wt% according to multi-elemental WD-XRF data (Table 2[link]). An overestimation of heavier elements may point to uncorrected microabsorption, despite empirical calibration being used in the XRF analysis, perhaps resulting from a different particle size distribution in the ore sample compared with purchased synthetic standards. Although particle size reduction decreases the effect of microabsorption, and samples were ball milled identically in preparations for both XRD and XRF analyses, microabsorption may still be non-negligible (Scarlett et al., 2002[Scarlett, N. V. Y., Madsen, I. C., Cranswick, L. M. D., Lwin, T., Groleau, E., Stephenson, G., Aylmore, M. & Agron-Olshina, N. (2002). J. Appl. Cryst. 35, 383-400.]; Whitfield, 2016[Whitfield, P. S. (2016). Powder Diffr. 31, 192-197.]) and the degree of microabsorption may differ between characterization methods considering the different wavelengths used.

The presence of an unaccounted for amorphous phase may also explain the differences between elemental compositions determined by XRD and WD-XRF, with this phase either present in the original material or induced by high-intensity ball milling. The external standard method (O'Connor & Raven, 1988[O'Connor, B. H. & Raven, M. D. (1988). Powder Diffr. 3, 2-6.]) returned −9.0 (5) wt% amorphous content. This physically unrealistic negative value reveals a bias of the method, consistent with a previous investigation (Scarlett & Madsen, 2018[Scarlett, N. V. Y. & Madsen, I. C. (2018). Powder Diffr. 33, 26-37.]) which showed that amorphous content estimation is notoriously inaccurate in complex samples susceptible to microabsorption, as is the case for pyrite ore concentrate samples. Correlations between refined ADPs and scale factors of the alumina standard [correlation factors were 0.81 and 0.66 for Uiso(Al) and Uiso(O), respectively] further contribute to inaccuracies (Madsen et al., 2011[Madsen, I. C., Scarlett, N. V. Y. & Kern, A. (2011). Z. Kristallogr. 226, 944-955.]).

Although the exact amount cannot be determined accurately, the absence of broad features in the background of the XRD patterns (Fig. S17) comparable to the fully crystalline standard suggests that the amount of amorphous phases is low in the concentrate. A bias can also be introduced from imperfectly modelled reflection intensity and peak shape. Crystal structures with calculated intensity ratios close to those observed were selected from the literature but some uncertainty remains, for example in the choice of polytype for albite being complicated by preferred orientation for this phase in pyrite concentrate samples. Both pyrite and albite are known to have a strong tendency to accept impurities, as suggested by multi-elemental XRF and SEM-EDS, with different compositional variances generating slightly different Bragg positions which, when superimposed, can result in slightly abnormal peak shapes that can hamper correct intensity refinement. Although refined parameters such as particle size or strain, March–Dollase correction, atomic positions and ADPs can model those differences, resulting in reasonable agreement between observed and calculated patterns, a systematic error may remain in refined weight fractions. The observed compositional bias may be the result of a combination of all previously identified sources of errors. Nevertheless, the QPA of pyrite concentrate powder ball milled to 3 µm particle size (7 min milling time) produces weight fractions within 2 wt% of those determined using calibrated WD-XRF, with standard deviations <0.3 wt%, confirming the reproducibility of the method and making it suitable at least for comparative analysis.

4. Conclusions

The quantitative phase analysis using XRD of pyrite ore concentrate powder extracted from the Thackaringa mine in Australia was problematic due to the presence of large particles, hard impurities and preferred orientation of the albite phase. Milling of the powder to particle sizes around 3 µm yielded reproducible results across preparations and was found to be suitable for the quantitative phase analysis of pyrite concentrate using XRD. Complementary techniques were necessary for the detection of trace elements and minerals. Refined phase fractions using XRD data for all phases are significantly correlated with the mean volume particle size.

Milling resulted in a slight broadening of XRD reflections, without appreciable phase transformation, although substantial broadening of the pyrrhotite phase was observed which may influence the phase quantification after 10 min milling.

The elemental composition obtained from XRD of pyrite concentrate powder milled for 7 min, with a mean volume particle size around 3 µm, was in general agreement with that obtained from WD-XRF. However, we note that some discrepancy remains, perhaps as a result of unaccounted elemental substitutions or amorphous phases.

The study provides a useful methodology for the precise QPA of pyrite ore concentrates using XRD, as long as the analyst is aware of the possible drawbacks of the methods as highlighted in this article. Researchers are urged not to rely on a single preparation or analysis technique for the QPA of pyrite ores and to assess reproducibility and accuracy for each new sample composition with as much knowledge about the sample as possible.

Supporting information


Computing details top

(QPAPBMXGreaseSuspendedSamplePrep_publ) top
Crystal data top
a = Åβ = °
b = Åγ = °
c = ÅSpecimen preparation: Prepared at 298 K and 101.3 kPa, cooled at N/A K min1
α = °
(QPAPBMXGreaseSuspendedSamplePrep_overall) top
Crystal data top
a = Åα = °
b = Åβ = °
c = Åγ = °
Refinement top
Least-squares matrix: full(Δ/σ)max = 1.315
30 parameters
(QPAPBMXGreaseSuspendedSamplePrep_phase_2) top
Crystal data top
AlNaO8Si3β = 116.5999°
Mr = 262.22γ = 87.8097°
Triclinic, C1V = 665.11 Å3
a = 8.138925 ÅZ = 4
b = 12.799307 ÅDx = 2.619 Mg m3
c = 7.160071 ÅT = 300 K
α = 94.2255°
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.206(13), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: none
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.008870.168460.208050.007
Si10.003750.820510.237370.006
Si20.691620.110210.314660.006
Si30.681290.881900.360760.006
Na10.267990.988650.146500.031
O10.004900.131030.966600.012
O20.591760.997560.280400.008
O30.812300.109660.190100.014
O40.820000.851010.258700.018
O50.012880.302380.270600.011
O60.023290.693680.229100.011
O70.207800.108960.389000.011
O80.184000.868170.436200.012
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.00740.00680.00610.00090.00310.0004
Si10.00680.00650.00550.00110.00300.0008
Si20.00610.00550.00730.00020.00250.0004
Si30.00600.00550.00740.00060.00280.0009
Na10.01360.04710.03150.00500.00840.0219
O10.01640.01220.00740.00020.00670.0014
O20.00740.00560.01190.00030.00330.0020
O30.01170.01300.01620.00400.00930.0017
O40.01340.01790.02160.00460.01290.0020
O50.01030.00760.01500.00200.00520.0009
O60.01010.00710.01450.00220.00340.0012
O70.01200.01290.00800.00240.00130.0015
O80.01400.01400.00840.00260.00020.0006
Geometric parameters (Å, º) top
Al1—O1i1.7460O1—Al1xi1.7460
Al1—O3ii1.7425O1—Si1iii1.6002
Al1—O51.7372O1—Na1xii2.6726
Al1—O71.7472O1—Na1iii2.5302
Si1—O1iii1.6002O2—Si2x1.6305
Si1—O4ii1.6011O2—Si31.6496
Si1—O61.6244O2—Na12.3708
Si1—O81.6190O3—Al1xiii1.7425
Si2—O2iv1.6305O3—Si21.5947
Si2—O31.5947O3—Na1ix2.4545
Si2—O6v1.6207O4—Si1xiii1.6011
Si2—O8vi1.6171O4—Si31.6208
Si3—O21.6496O5—Al11.7372
Si3—O41.6208O5—Si3xiv1.5965
Si3—O5vii1.5965O6—Si11.6244
Si3—O7vi1.6024O6—Si2xv1.6207
Na1—O1viii2.6726O7—Al11.7472
Na1—O1iii2.5302O7—Si3vi1.6024
Na1—O22.3708O7—Na1iv2.4364
Na1—O3ix2.4545O8—Si11.6190
Na1—O7x2.4364O8—Si2vi1.6171
O1i—Al1—O3ii102.839O6v—Si2—O8vi110.392
O1i—Al1—O5116.078O2—Si3—O4107.348
O3ii—Al1—O5112.16O2—Si3—O5vii105.916
O1i—Al1—O7103.947O4—Si3—O5vii110.171
O3ii—Al1—O7111.136O2—Si3—O7vi108.553
O5—Al1—O7110.225O4—Si3—O7vi110.204
O1iii—Si1—O4ii109.382O5vii—Si3—O7vi114.325
O1iii—Si1—O6112.467Al1xi—O1—Si1iii141.36
O4ii—Si1—O6108.286Si2x—O2—Si3130.051
O1iii—Si1—O8107.201Si2x—O2—Na1120.258
O4ii—Si1—O8111.41Si3—O2—Na1108.874
O6—Si1—O8108.124Al1xiii—O3—Si2139.443
O2iv—Si2—O3111.07Si1xiii—O4—Si3161.159
O2iv—Si2—O6v104.318Al1—O5—Si3xiv129.66
O3—Si2—O6v112.142Si1—O6—Si2xv135.75
O2iv—Si2—O8vi106.953Al1—O7—Si3vi133.908
O3—Si2—O8vi111.607Si1—O8—Si2vi151.752
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1/2, y1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z1; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y1, z+1; (xiii) x+1, y, z; (xiv) x1/2, y1/2, z; (xv) x1/2, y+1/2, z.
(QPAPBMXGreaseSuspendedSamplePrep_phase_0) top
Crystal data top
FeS2V = 159.16 (1) Å3
Mr = 119.97Z = 4
Cubic, Pa3Dx = 5.007 Mg m3
a = 5.41928 (5) ÅT = 300 K
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.379(4), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.0115 (7)*
S20.38435 (13)0.384350.384350.0087 (6)*
Bond lengths (Å) top
Fe1—S2i2.2636 (2)Fe1—S2vi2.2636 (7)
Fe1—S2ii2.2636 (2)S2—Fe1vii2.2636 (2)
Fe1—S2iii2.2636 (2)S2—Fe1viii2.2636 (2)
Fe1—S2iv2.2636 (2)S2—Fe1ix2.2636 (7)
Fe1—S2v2.2636 (2)S2—S2x2.1712 (8)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) z+1/2, x1/2, y; (iii) y, z+1/2, x1/2; (iv) z, x1/2, y+1/2; (v) y+1/2, z, x1/2; (vi) y1/2, z+1/2, x; (vii) x+1/2, y, z+1/2; (viii) z+1/2, x+1/2, y; (ix) y, z+1/2, x+1/2; (x) x+1, y+1, z+1.
(QPAPBMXGreaseSuspendedSamplePrep_phase_3) top
Crystal data top
Fe7S8β = 117.25 (2)°
Mr = 647.41V = 933.0 (2) Å3
Monoclinic, C2/cZ = 4
a = 11.937 (11) ÅDx = 4.609 Mg m3
b = 6.8622 (15) ÅT = 300 K
c = 12.812 (13) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.061(4), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.018000.383300.119600.010*
S20.029100.114200.639000.010*
Fe30.108600.102500.499800.010*
S40.234100.135500.382600.010*
Fe50.241800.366000.246800.010*
S60.267900.134000.123600.010*
Fe70.387200.150000.012600.010*
Fe80.000000.147200.250000.010*
Bond lengths (Å) top
S1—Fe3i2.494Fe5—S2v2.4442
S1—Fe52.4125Fe5—S42.3841
S1—Fe7ii2.3889Fe5—S62.3608
S1—Fe7iii2.4406S6—Fe3viii2.4502
S1—Fe82.4064S6—Fe52.3608
S2—Fe32.3743S6—Fe72.4324
S2—Fe3iv2.3236S6—Fe7iii2.3899
S2—Fe5v2.4442Fe7—S1ix2.3889
S2—Fe7vi2.3660Fe7—S1iii2.4406
S2—Fe8iv2.4110Fe7—S2x2.3660
Fe3—S1i2.494Fe7—S62.4324
Fe3—S22.3743Fe7—S6iii2.3899
Fe3—S2iv2.3236Fe8—S12.4064
Fe3—S6vii2.4502Fe8—S1i2.4064
S4—Fe52.3841Fe8—S2iv2.4110
Fe5—S12.4125Fe8—S2viii2.4110
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+3/2; (vii) x, y, z+3/2; (viii) x, y, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z+1/2.
(QPAPBMXGreaseSuspendedSamplePrep_phase_4) top
Crystal data top
O2TiV = 62.61 (6) Å3
Mr = 79.9Z = 2
Tetragonal, P42/mnmDx = 4.238 Mg m3
a = 4.597 (3) ÅT = 300 K
c = 2.963 (3) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.100, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.000000.000000.000000.006
O10.304930.304930.000000.006
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.00700.00700.00470.00020.00000.0000
O10.00600.00600.00450.00190.00000.0000
Geometric parameters (Å, º) top
Ti1—O11.9824Ti1—O1v1.9501
Ti1—O1i1.9501O1—Ti11.9824
Ti1—O1ii1.9501O1—Ti1vi1.9501
Ti1—O1iii1.9824O1—Ti1vii1.9501
Ti1—O1iv1.9501
O1—Ti1—O1i90O1iii—Ti1—O1iv90
O1—Ti1—O1ii90O1—Ti1—O1v90
O1i—Ti1—O1ii98.87O1i—Ti1—O1v180
O1—Ti1—O1iii180O1ii—Ti1—O1v81.13
O1i—Ti1—O1iii90O1iii—Ti1—O1v90
O1ii—Ti1—O1iii90O1iv—Ti1—O1v98.87
O1—Ti1—O1iv90Ti1—O1—Ti1vi130.565
O1i—Ti1—O1iv81.13Ti1—O1—Ti1vii130.565
O1ii—Ti1—O1iv180Ti1vi—O1—Ti1vii98.87
Symmetry codes: (i) y+1/2, x1/2, z1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x, y, z; (iv) y1/2, x+1/2, z1/2; (v) y1/2, x+1/2, z+1/2; (vi) y+1/2, x+1/2, z1/2; (vii) y+1/2, x+1/2, z+1/2.
(QPAPBMXGreaseSuspendedSamplePrep_phase_1) top
Crystal data top
O2SiV = 113.09 (1) Å3
Mr = 60.08Z = 3
Trigonal, P3221Dx = 2.647 Mg m3
a = 4.9149 (5) ÅT = 300 K
c = 5.4057 (4) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.244(15), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.470000.000000.666700.010*
O10.414600.267800.785430.010*
Geometric parameters (Å, º) top
Si1—O11.6053O1—Si11.6053
Si1—O1i1.6116O1—Si1iv1.6116
Si1—O1ii1.6114O1—Si1v1.6114
Si1—O1iii1.6054
O1—Si1—O1i110.256O1ii—Si1—O1iii110.262
O1—Si1—O1ii108.745Si1—O1—Si1iv143.832
O1i—Si1—O1ii109.685Si1—O1—Si1v143.836
O1—Si1—O1iii109.161Si1iv—O1—Si1v0.009
O1i—Si1—O1iii108.725
Symmetry codes: (i) y+1, xy, z1/3; (ii) x+1, yx, z+5/3; (iii) xy, y, z+4/3; (iv) yx+1, x+1, z+1/3; (v) x+1, yx+1, z+5/3.
(QPAPBMXGreaseSuspendedSamplePrep_pwd_0) top
Crystal data top
a = Åβ = °
b = Åγ = °
c = Å Kα1,2 radiation
α = °T = 300 K
Data collection top
Panalytical_Reflection_Transmission
diffractometer
2θmin = 10.017°, 2θmax = 89.993°, 2θstep = 0.013°
Radiation source: Co-Ka, Graded_Flat
Refinement top
Rp = 0.0816092 data points
Rwp = 0.114Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 0.000, 0.000, 3.345, 2.239, -0.670, 0.034,
Rexp = 0.064Background function: Background function: "chebyschev-1" function with 7 terms: 181.2(5), -233.0(9), 140.3(8), -64.2(7), 23.5(7), -5.0(5), 3.5(5),
 
(QPAPBMXHandGrindSamplePrep_phase_2) top
Crystal data top
AlNaO8Si3β = 116.5972°
Mr = 262.22γ = 87.7872°
Triclinic, C1V = 664.64 Å3
a = 8.141789 ÅZ = 4
b = 12.787902 ÅDx = 2.621 Mg m3
c = 7.158828 ÅT = 300 K
α = 94.2429°
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: none
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.008870.168460.208050.007
Si10.003750.820510.237370.006
Si20.691620.110210.314660.006
Si30.681290.881900.360760.006
Na10.267990.988650.146500.031
O10.004900.131030.966600.012
O20.591760.997560.280400.008
O30.812300.109660.190100.014
O40.820000.851010.258700.018
O50.012880.302380.270600.011
O60.023290.693680.229100.011
O70.207800.108960.389000.011
O80.184000.868170.436200.012
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.00740.00680.00610.00090.00310.0004
Si10.00680.00650.00550.00110.00300.0008
Si20.00610.00550.00730.00020.00250.0004
Si30.00600.00550.00740.00060.00280.0009
Na10.01360.04710.03150.00500.00840.0219
O10.01640.01220.00740.00020.00670.0014
O20.00740.00560.01190.00030.00330.0020
O30.01170.01300.01620.00400.00930.0017
O40.01340.01790.02160.00460.01290.0020
O50.01030.00760.01500.00200.00520.0009
O60.01010.00710.01450.00220.00340.0012
O70.01200.01290.00800.00240.00130.0015
O80.01400.01400.00840.00260.00020.0006
Geometric parameters (Å, º) top
Al1—O1i1.7455O1—Al1xi1.7455
Al1—O3ii1.7429O1—Si1iii1.5999
Al1—O51.7356O1—Na1xii2.6716
Al1—O71.7471O1—Na1iii2.5304
Si1—O1iii1.5999O2—Si2x1.6297
Si1—O4ii1.6013O2—Si31.6483
Si1—O61.6228O2—Na12.3717
Si1—O81.6191O3—Al1xiii1.7429
Si2—O2iv1.6297O3—Si21.5949
Si2—O31.5949O3—Na1ix2.4534
Si2—O6v1.6202O4—Si1xiii1.6013
Si2—O8vi1.6169O4—Si31.6208
Si3—O21.6483O5—Al11.7356
Si3—O41.6208O5—Si3xiv1.5965
Si3—O5vii1.5965O6—Si11.6228
Si3—O7vi1.6022O6—Si2xv1.6202
Na1—O1viii2.6716O7—Al11.7471
Na1—O1iii2.5304O7—Si3vi1.6022
Na1—O22.3717O7—Na1iv2.4350
Na1—O3ix2.4534O8—Si11.6191
Na1—O7x2.4350O8—Si2vi1.6169
O1i—Al1—O3ii102.855O6v—Si2—O8vi110.428
O1i—Al1—O5116.061O2—Si3—O4107.334
O3ii—Al1—O5112.147O2—Si3—O5vii105.864
O1i—Al1—O7103.957O4—Si3—O5vii110.228
O3ii—Al1—O7111.182O2—Si3—O7vi108.58
O5—Al1—O7110.191O4—Si3—O7vi110.176
O1iii—Si1—O4ii109.397O5vii—Si3—O7vi114.331
O1iii—Si1—O6112.462Al1xi—O1—Si1iii141.388
O4ii—Si1—O6108.255Si2x—O2—Si3129.999
O1iii—Si1—O8107.195Si2x—O2—Na1120.298
O4ii—Si1—O8111.458Si3—O2—Na1108.885
O6—Si1—O8108.103Al1xiii—O3—Si2139.47
O2iv—Si2—O3111.114Si1xiii—O4—Si3161.161
O2iv—Si2—O6v104.247Al1—O5—Si3xiv129.633
O3—Si2—O6v112.16Si1—O6—Si2xv135.712
O2iv—Si2—O8vi106.957Al1—O7—Si3vi133.928
O3—Si2—O8vi111.575Si1—O8—Si2vi151.749
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1/2, y1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z1; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y1, z+1; (xiii) x+1, y, z; (xiv) x1/2, y1/2, z; (xv) x1/2, y+1/2, z.
(QPAPBMXHandGrindSamplePrep_phase_0) top
Crystal data top
FeS2V = 159.13 (1) Å3
Mr = 119.97Z = 4
Cubic, Pa3Dx = 5.007 Mg m3
a = 5.41900 (5) ÅT = 300 K
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.389(5), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.0281 (10)*
S20.38871 (17)0.388710.388710.0310 (8)*
Bond lengths (Å) top
Fe1—S2i2.2725 (2)Fe1—S2vi2.2725 (8)
Fe1—S2ii2.2725 (2)S2—Fe1vii2.2725 (2)
Fe1—S2iii2.2725 (2)S2—Fe1viii2.2725 (2)
Fe1—S2iv2.2725 (2)S2—Fe1ix2.2725 (8)
Fe1—S2v2.2725 (2)S2—S2x2.0892 (10)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) z+1/2, x1/2, y; (iii) y, z+1/2, x1/2; (iv) z, x1/2, y+1/2; (v) y+1/2, z, x1/2; (vi) y1/2, z+1/2, x; (vii) x+1/2, y, z+1/2; (viii) z+1/2, x+1/2, y; (ix) y, z+1/2, x+1/2; (x) x+1, y+1, z+1.
(QPAPBMXHandGrindSamplePrep_phase_3) top
Crystal data top
Fe7S8β = 117.08 (7)°
Mr = 647.41V = 939.0 (4) Å3
Monoclinic, C2/cZ = 4
a = 11.93 (4) ÅDx = 4.579 Mg m3
b = 6.860 (5) ÅT = 300 K
c = 12.89 (4) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.0230(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.018000.383300.119600.010*
S20.029100.114200.639000.010*
Fe30.108600.102500.499800.010*
S40.234100.135500.382600.010*
Fe50.241800.366000.246800.010*
S60.267900.134000.123600.010*
Fe70.387200.150000.012600.010*
Fe80.000000.147200.250000.010*
Bond lengths (Å) top
S1—Fe3i2.4986Fe5—S2v2.4477
S1—Fe52.4174Fe5—S42.3913
S1—Fe7ii2.3925Fe5—S62.3667
S1—Fe7iii2.4473S6—Fe3viii2.4552
S1—Fe82.413S6—Fe52.3667
S2—Fe32.3821S6—Fe72.4369
S2—Fe3iv2.3308S6—Fe7iii2.3964
S2—Fe5v2.4477Fe7—S1ix2.3925
S2—Fe7vi2.3716Fe7—S1iii2.4473
S2—Fe8iv2.4155Fe7—S2x2.3716
Fe3—S1i2.4986Fe7—S62.4369
Fe3—S22.3821Fe7—S6iii2.3964
Fe3—S2iv2.3308Fe8—S12.413
Fe3—S6vii2.4552Fe8—S1i2.413
S4—Fe52.3913Fe8—S2iv2.4155
Fe5—S12.4174Fe8—S2viii2.4155
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+3/2; (vii) x, y, z+3/2; (viii) x, y, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z+1/2.
(QPAPBMXHandGrindSamplePrep_phase_4) top
Crystal data top
O2TiV = 62.58 (2) Å3
Mr = 79.9Z = 2
Tetragonal, P42/mnmDx = 4.240 Mg m3
a = 4.5962 (7) ÅT = 300 K
c = 2.9622 (7) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.000000.000000.000000.006
O10.304930.304930.000000.006
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.00700.00700.00470.00020.00000.0000
O10.00600.00600.00450.00190.00000.0000
Geometric parameters (Å, º) top
Ti1—O11.9821Ti1—O1v1.9497
Ti1—O1i1.9497O1—Ti11.9821
Ti1—O1ii1.9497O1—Ti1vi1.9497
Ti1—O1iii1.9821O1—Ti1vii1.9497
Ti1—O1iv1.9497
O1—Ti1—O1i90O1iii—Ti1—O1iv90
O1—Ti1—O1ii90O1—Ti1—O1v90
O1i—Ti1—O1ii98.866O1i—Ti1—O1v180
O1—Ti1—O1iii180O1ii—Ti1—O1v81.134
O1i—Ti1—O1iii90O1iii—Ti1—O1v90
O1ii—Ti1—O1iii90O1iv—Ti1—O1v98.866
O1—Ti1—O1iv90Ti1—O1—Ti1vi130.567
O1i—Ti1—O1iv81.134Ti1—O1—Ti1vii130.567
O1ii—Ti1—O1iv180Ti1vi—O1—Ti1vii98.866
Symmetry codes: (i) y+1/2, x1/2, z1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x, y, z; (iv) y1/2, x+1/2, z1/2; (v) y1/2, x+1/2, z+1/2; (vi) y+1/2, x+1/2, z1/2; (vii) y+1/2, x+1/2, z+1/2.
(QPAPBMXHandGrindSamplePrep_phase_1) top
Crystal data top
O2SiV = 113.03 (1) Å3
Mr = 60.08Z = 3
Trigonal, P3221Dx = 2.648 Mg m3
a = 4.9135 (3) ÅT = 300 K
c = 5.4058 (3) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.263(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.470000.000000.666700.006
O10.414600.267800.785430.011
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.00730.00590.00530.00290.00030.0006
O10.01200.01050.01180.00650.00290.0040
Geometric parameters (Å, º) top
Si1—O11.6049O1—Si11.6049
Si1—O1i1.6114O1—Si1iv1.6114
Si1—O1ii1.6111O1—Si1v1.6111
Si1—O1iii1.6050
O1—Si1—O1i110.262O1ii—Si1—O1iii110.268
O1—Si1—O1ii108.732Si1—O1—Si1iv143.832
O1i—Si1—O1ii109.697Si1—O1—Si1v143.836
O1—Si1—O1iii109.164Si1iv—O1—Si1v0.009
O1i—Si1—O1iii108.712
Symmetry codes: (i) y+1, xy, z1/3; (ii) x+1, yx, z+5/3; (iii) xy, y, z+4/3; (iv) yx+1, x+1, z+1/3; (v) x+1, yx+1, z+5/3.
 
(QPABAT3_phase_2) top
Crystal data top
AlNaO8Si3β = 116.6°
Mr = 262.22γ = 87.71°
Triclinic, C1V = 664.01 Å3
a = 8.137 ÅZ = 4
b = 12.785 ÅDx = 2.623 Mg m3
c = 7.1583 ÅT = 300 K
α = 94.26°
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.111(8), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: none
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.008870.168460.208050.007
Si10.003750.820510.237370.006
Si20.691620.110210.314660.006
Si30.681290.881900.360760.006
Na10.267990.988650.146500.031
O10.004900.131030.966600.012
O20.591760.997560.280400.008
O30.812300.109660.190100.014
O40.820000.851010.258700.018
O50.012880.302380.270600.011
O60.023290.693680.229100.011
O70.207800.108960.389000.011
O80.184000.868170.436200.012
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.00740.00680.00610.00090.00310.0004
Si10.00680.00650.00550.00110.00300.0008
Si20.00610.00550.00730.00020.00250.0004
Si30.00600.00550.00740.00060.00280.0009
Na10.01360.04710.03150.00500.00840.0219
O10.01640.01220.00740.00020.00670.0014
O20.00740.00560.01190.00030.00330.0020
O30.01170.01300.01620.00400.00930.0017
O40.01340.01790.02160.00460.01290.0020
O50.01030.00760.01500.00200.00520.0009
O60.01010.00710.01450.00220.00340.0012
O70.01200.01290.00800.00240.00130.0015
O80.01400.01400.00840.00260.00020.0006
Geometric parameters (Å, º) top
Al1—O1i1.7452O1—Al1xi1.7452
Al1—O3ii1.7429O1—Si1iii1.5999
Al1—O51.7351O1—Na1xii2.6689
Al1—O71.7456O1—Na1iii2.5308
Si1—O1iii1.5999O2—Si2x1.6301
Si1—O4ii1.6000O2—Si31.6472
Si1—O61.6223O2—Na12.3704
Si1—O81.6191O3—Al1xiii1.7429
Si2—O2iv1.6301O3—Si21.5944
Si2—O31.5944O3—Na1ix2.4532
Si2—O6v1.6184O4—Si1xiii1.6000
Si2—O8vi1.6168O4—Si31.6198
Si3—O21.6472O5—Al11.7351
Si3—O41.6198O5—Si3xiv1.5968
Si3—O5vii1.5968O6—Si11.6223
Si3—O7vi1.6020O6—Si2xv1.6184
Na1—O1viii2.6689O7—Al11.7456
Na1—O1iii2.5308O7—Si3vi1.6020
Na1—O22.3704O7—Na1iv2.4338
Na1—O3ix2.4532O8—Si11.6191
Na1—O7x2.4338O8—Si2vi1.6168
O1i—Al1—O3ii102.836O6v—Si2—O8vi110.422
O1i—Al1—O5116.047O2—Si3—O4107.269
O3ii—Al1—O5112.215O2—Si3—O5vii105.914
O1i—Al1—O7104.004O4—Si3—O5vii110.224
O3ii—Al1—O7111.151O2—Si3—O7vi108.565
O5—Al1—O7110.14O4—Si3—O7vi110.208
O1iii—Si1—O4ii109.433O5vii—Si3—O7vi114.328
O1iii—Si1—O6112.47Al1xi—O1—Si1iii141.397
O4ii—Si1—O6108.187Si2x—O2—Si3130.019
O1iii—Si1—O8107.176Si2x—O2—Na1120.351
O4ii—Si1—O8111.446Si3—O2—Na1108.811
O6—Si1—O8108.16Al1xiii—O3—Si2139.461
O2iv—Si2—O3111.144Si1xiii—O4—Si3161.151
O2iv—Si2—O6v104.24Al1—O5—Si3xiv129.689
O3—Si2—O6v112.114Si1—O6—Si2xv135.676
O2iv—Si2—O8vi106.97Al1—O7—Si3vi133.943
O3—Si2—O8vi111.591Si1—O8—Si2vi151.747
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1/2, y1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z1; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y1, z+1; (xiii) x+1, y, z; (xiv) x1/2, y1/2, z; (xv) x1/2, y+1/2, z.
(QPABAT3_phase_0) top
Crystal data top
FeS2V = 159.17 (1) Å3
Mr = 119.97Z = 4
Cubic, Pa3Dx = 5.006 Mg m3
a = 5.41941 (3) ÅT = 300 K
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.1809(10), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.0051 (3)*
S20.38468 (9)0.384680.384680.0058 (3)*
Bond lengths (Å) top
Fe1—S2i2.2644 (1)Fe1—S2vi2.2644 (4)
Fe1—S2ii2.2644 (1)S2—Fe1vii2.2644 (1)
Fe1—S2iii2.2644 (1)S2—Fe1viii2.2644 (1)
Fe1—S2iv2.2644 (1)S2—Fe1ix2.2644 (4)
Fe1—S2v2.2644 (1)S2—S2x2.1650 (6)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) z+1/2, x1/2, y; (iii) y, z+1/2, x1/2; (iv) z, x1/2, y+1/2; (v) y+1/2, z, x1/2; (vi) y1/2, z+1/2, x; (vii) x+1/2, y, z+1/2; (viii) z+1/2, x+1/2, y; (ix) y, z+1/2, x+1/2; (x) x+1, y+1, z+1.
(QPABAT3_phase_3) top
Crystal data top
Fe7S8β = 117.25 (6)°
Mr = 647.41V = 934.4 (4) Å3
Monoclinic, C2/cZ = 4
a = 11.95 (3) ÅDx = 4.602 Mg m3
b = 6.857 (4) ÅT = 300 K
c = 12.83 (3) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.0305(25), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.018000.383300.119600.010*
S20.029100.114200.639000.010*
Fe30.108600.102500.499800.010*
S40.234100.135500.382600.010*
Fe50.241800.366000.246800.010*
S60.267900.134000.123600.010*
Fe70.387200.150000.012600.010*
Fe80.000000.147200.250000.010*
Bond lengths (Å) top
S1—Fe3i2.4939Fe5—S2v2.4460
S1—Fe52.4144Fe5—S42.3853
S1—Fe7ii2.3887Fe5—S62.3618
S1—Fe7iii2.4436S6—Fe3viii2.4507
S1—Fe82.4075S6—Fe52.3618
S2—Fe32.3774S6—Fe72.4353
S2—Fe3iv2.3243S6—Fe7iii2.3907
S2—Fe5v2.4460Fe7—S1ix2.3887
S2—Fe7vi2.3665Fe7—S1iii2.4436
S2—Fe8iv2.4115Fe7—S2x2.3665
Fe3—S1i2.4939Fe7—S62.4353
Fe3—S22.3774Fe7—S6iii2.3907
Fe3—S2iv2.3243Fe8—S12.4075
Fe3—S6vii2.4507Fe8—S1i2.4075
S4—Fe52.3853Fe8—S2iv2.4115
Fe5—S12.4144Fe8—S2viii2.4115
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+3/2; (vii) x, y, z+3/2; (viii) x, y, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z+1/2.
(QPABAT3_phase_4) top
Crystal data top
O2TiV = 62.62 (3) Å3
Mr = 79.9Z = 2
Tetragonal, P42/mnmDx = 4.238 Mg m3
a = 4.5980 (13) ÅT = 300 K
c = 2.9619 (13) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.073(10), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.000000.000000.000000.006*
O10.328610.328610.000000.005*
Geometric parameters (Å, º) top
Ti1—O12.1368Ti1—O1v1.8534
Ti1—O1i1.8534O1—Ti12.1368
Ti1—O1ii1.8534O1—Ti1vi1.8534
Ti1—O1iii2.1368O1—Ti1vii1.8534
Ti1—O1iv1.8534
O1i—Ti1—O1ii106.075O1ii—Ti1—O1v73.925
O1i—Ti1—O1iv73.925O1iv—Ti1—O1v106.075
O1ii—Ti1—O1iv180Ti1vi—O1—Ti1vii106.075
O1i—Ti1—O1v180
Symmetry codes: (i) y+1/2, x1/2, z1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x, y, z; (iv) y1/2, x+1/2, z1/2; (v) y1/2, x+1/2, z+1/2; (vi) y+1/2, x+1/2, z1/2; (vii) y+1/2, x+1/2, z+1/2.
(QPABAT3_phase_1) top
Crystal data top
O2SiV = 113.08 (1) Å3
Mr = 60.08Z = 3
Trigonal, P3221Dx = 2.647 Mg m3
a = 4.9143 (5) ÅT = 300 K
c = 5.4067 (5) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.145(6), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.470000.000000.666700.020*
O10.414600.267800.785430.017*
Geometric parameters (Å, º) top
Si1—O11.6051O1—Si11.6051
Si1—O1i1.6117O1—Si1iv1.6117
Si1—O1ii1.6114O1—Si1v1.6114
Si1—O1iii1.6053
O1—Si1—O1i110.262O1ii—Si1—O1iii110.268
O1—Si1—O1ii108.73Si1—O1—Si1iv143.833
O1i—Si1—O1ii109.698Si1—O1—Si1v143.836
O1—Si1—O1iii109.165Si1iv—O1—Si1v0.009
O1i—Si1—O1iii108.71
Symmetry codes: (i) y+1, xy, z1/3; (ii) x+1, yx, z+5/3; (iii) xy, y, z+4/3; (iv) yx+1, x+1, z+1/3; (v) x+1, yx+1, z+5/3.
 
(QPABAT1ug3_phase_2) top
Crystal data top
AlNaO8Si3β = 116.6°
Mr = 262.22γ = 87.71°
Triclinic, C1V = 664.01 Å3
a = 8.137 ÅZ = 4
b = 12.785 ÅDx = 2.623 Mg m3
c = 7.1583 ÅT = 300 K
α = 94.26°
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.233(12), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: none
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.008870.168460.208050.007
Si10.003750.820510.237370.006
Si20.691620.110210.314660.006
Si30.681290.881900.360760.006
Na10.267990.988650.146500.031
O10.004900.131030.966600.012
O20.591760.997560.280400.008
O30.812300.109660.190100.014
O40.820000.851010.258700.018
O50.012880.302380.270600.011
O60.023290.693680.229100.011
O70.207800.108960.389000.011
O80.184000.868170.436200.012
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.00740.00680.00610.00090.00310.0004
Si10.00680.00650.00550.00110.00300.0008
Si20.00610.00550.00730.00020.00250.0004
Si30.00600.00550.00740.00060.00280.0009
Na10.01360.04710.03150.00500.00840.0219
O10.01640.01220.00740.00020.00670.0014
O20.00740.00560.01190.00030.00330.0020
O30.01170.01300.01620.00400.00930.0017
O40.01340.01790.02160.00460.01290.0020
O50.01030.00760.01500.00200.00520.0009
O60.01010.00710.01450.00220.00340.0012
O70.01200.01290.00800.00240.00130.0015
O80.01400.01400.00840.00260.00020.0006
Geometric parameters (Å, º) top
Al1—O1i1.7452O1—Al1xi1.7452
Al1—O3ii1.7429O1—Si1iii1.5999
Al1—O51.7351O1—Na1xii2.6689
Al1—O71.7456O1—Na1iii2.5308
Si1—O1iii1.5999O2—Si2x1.6301
Si1—O4ii1.6000O2—Si31.6472
Si1—O61.6223O2—Na12.3704
Si1—O81.6191O3—Al1xiii1.7429
Si2—O2iv1.6301O3—Si21.5944
Si2—O31.5944O3—Na1ix2.4532
Si2—O6v1.6184O4—Si1xiii1.6000
Si2—O8vi1.6168O4—Si31.6198
Si3—O21.6472O5—Al11.7351
Si3—O41.6198O5—Si3xiv1.5968
Si3—O5vii1.5968O6—Si11.6223
Si3—O7vi1.6020O6—Si2xv1.6184
Na1—O1viii2.6689O7—Al11.7456
Na1—O1iii2.5308O7—Si3vi1.6020
Na1—O22.3704O7—Na1iv2.4338
Na1—O3ix2.4532O8—Si11.6191
Na1—O7x2.4338O8—Si2vi1.6168
O1i—Al1—O3ii102.836O6v—Si2—O8vi110.422
O1i—Al1—O5116.047O2—Si3—O4107.269
O3ii—Al1—O5112.215O2—Si3—O5vii105.914
O1i—Al1—O7104.004O4—Si3—O5vii110.224
O3ii—Al1—O7111.151O2—Si3—O7vi108.565
O5—Al1—O7110.14O4—Si3—O7vi110.208
O1iii—Si1—O4ii109.433O5vii—Si3—O7vi114.328
O1iii—Si1—O6112.47Al1xi—O1—Si1iii141.397
O4ii—Si1—O6108.187Si2x—O2—Si3130.019
O1iii—Si1—O8107.176Si2x—O2—Na1120.351
O4ii—Si1—O8111.446Si3—O2—Na1108.811
O6—Si1—O8108.16Al1xiii—O3—Si2139.461
O2iv—Si2—O3111.144Si1xiii—O4—Si3161.151
O2iv—Si2—O6v104.24Al1—O5—Si3xiv129.689
O3—Si2—O6v112.114Si1—O6—Si2xv135.676
O2iv—Si2—O8vi106.97Al1—O7—Si3vi133.943
O3—Si2—O8vi111.591Si1—O8—Si2vi151.747
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1/2, y1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z1; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y1, z+1; (xiii) x+1, y, z; (xiv) x1/2, y1/2, z; (xv) x1/2, y+1/2, z.
(QPABAT1ug3_phase_0) top
Crystal data top
FeS2V = 159.17 (1) Å3
Mr = 119.97Z = 4
Cubic, Pa3Dx = 5.006 Mg m3
a = 5.41945 (8) ÅT = 300 K
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.373(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.010*
S20.3903 (4)0.39030.39030.010*
Bond lengths (Å) top
Fe1—S2i2.2761 (6)Fe1—S2vi2.276 (2)
Fe1—S2ii2.2761 (6)S2—Fe1vii2.2761 (6)
Fe1—S2iii2.2761 (6)S2—Fe1viii2.2761 (6)
Fe1—S2iv2.2761 (6)S2—Fe1ix2.276 (2)
Fe1—S2v2.2761 (6)S2—S2x2.060 (3)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) z+1/2, x1/2, y; (iii) y, z+1/2, x1/2; (iv) z, x1/2, y+1/2; (v) y+1/2, z, x1/2; (vi) y1/2, z+1/2, x; (vii) x+1/2, y, z+1/2; (viii) z+1/2, x+1/2, y; (ix) y, z+1/2, x+1/2; (x) x+1, y+1, z+1.
(QPABAT1ug3_phase_3) top
Crystal data top
Fe7S8β = 117.18 (5)°
Mr = 647.41V = 933.3 (5) Å3
Monoclinic, C2/cZ = 4
a = 11.92 (2) ÅDx = 4.607 Mg m3
b = 6.870 (4) ÅT = 300 K
c = 12.81 (3) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.15(6), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.018000.383300.119600.010*
S20.029100.114200.639000.010*
Fe30.108600.102500.499800.010*
S40.234100.135500.382600.010*
Fe50.241800.366000.246800.010*
S60.267900.134000.123600.010*
Fe70.387200.150000.012600.010*
Fe80.000000.147200.250000.010*
Bond lengths (Å) top
S1—Fe3i2.4960Fe5—S2v2.4431
S1—Fe52.4118Fe5—S42.3849
S1—Fe7ii2.3906Fe5—S62.3614
S1—Fe7iii2.4384S6—Fe3viii2.4516
S1—Fe82.4072S6—Fe52.3614
S2—Fe32.3724S6—Fe72.4298
S2—Fe3iv2.3251S6—Fe7iii2.3913
S2—Fe5v2.4431Fe7—S1ix2.3906
S2—Fe7vi2.3676Fe7—S1iii2.4384
S2—Fe8iv2.4120Fe7—S2x2.3676
Fe3—S1i2.4960Fe7—S62.4298
Fe3—S22.3724Fe7—S6iii2.3913
Fe3—S2iv2.3251Fe8—S12.4072
Fe3—S6vii2.4516Fe8—S1i2.4072
S4—Fe52.3849Fe8—S2iv2.4120
Fe5—S12.4118Fe8—S2viii2.4120
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+3/2; (vii) x, y, z+3/2; (viii) x, y, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z+1/2.
(QPABAT1ug3_phase_1) top
Crystal data top
O2SiV = 113.15 (1) Å3
Mr = 60.08Z = 3
Trigonal, P3221Dx = 2.645 Mg m3
a = 4.9161 (6) ÅT = 300 K
c = 5.4061 (5) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.37(6), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.470000.000000.666700.006
O10.414600.267800.785430.011
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.00730.00590.00530.00290.00030.0006
O10.01200.01050.01180.00650.00290.0040
Geometric parameters (Å, º) top
Si1—O11.6056O1—Si11.6056
Si1—O1i1.6118O1—Si1iv1.6118
Si1—O1ii1.6116O1—Si1v1.6116
Si1—O1iii1.6057
O1—Si1—O1i110.252O1ii—Si1—O1iii110.258
O1—Si1—O1ii108.753Si1—O1—Si1iv143.831
O1i—Si1—O1ii109.678Si1—O1—Si1v143.835
O1—Si1—O1iii109.158Si1iv—O1—Si1v0.009
O1i—Si1—O1iii108.733
Symmetry codes: (i) y+1, xy, z1/3; (ii) x+1, yx, z+5/3; (iii) xy, y, z+4/3; (iv) yx+1, x+1, z+1/3; (v) x+1, yx+1, z+5/3.
(QPABAT1ug3_phase_4) top
Crystal data top
O2TiV = 65.14 (17) Å3
Mr = 79.9Z = 2
Tetragonal, P42/mnmDx = 4.074 Mg m3
a = 4.746 (8) ÅT = 300 K
c = 2.892 (7) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.100, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.000000.000000.000000.006
O10.304930.304930.000000.006
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.00700.00700.00470.00020.00000.0000
O10.00600.00600.00450.00190.00000.0000
Geometric parameters (Å, º) top
Ti1—O12.0466Ti1—O1v1.9506
Ti1—O1i1.9506O1—Ti12.0466
Ti1—O1ii1.9506O1—Ti1vi1.9506
Ti1—O1iii2.0466O1—Ti1vii1.9506
Ti1—O1iv1.9506
O1i—Ti1—O1ii95.681O1ii—Ti1—O1v84.319
O1i—Ti1—O1iv84.319O1iv—Ti1—O1v95.681
O1ii—Ti1—O1iv180Ti1vi—O1—Ti1vii95.681
O1i—Ti1—O1v180
Symmetry codes: (i) y+1/2, x1/2, z1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x, y, z; (iv) y1/2, x+1/2, z1/2; (v) y1/2, x+1/2, z+1/2; (vi) y+1/2, x+1/2, z1/2; (vii) y+1/2, x+1/2, z+1/2.
 
(NEW1minmill_phase_0) top
Crystal data top
FeS2V = 159.20 (1) Å3
Mr = 119.97Z = 4
Cubic, Pa3Dx = 5.005 Mg m3
a = 5.41977 (4) ÅT = 300 K
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.2413(26), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.010*
S20.385890.385890.385890.010*
Bond lengths (Å) top
Fe1—S2i2.2669Fe1—S2vi2.2669
Fe1—S2ii2.2669S2—Fe1vii2.2669
Fe1—S2iii2.2669S2—Fe1viii2.2669
Fe1—S2iv2.2669S2—Fe1ix2.2669
Fe1—S2v2.2669S2—S2x2.1425
Symmetry codes: (i) x1/2, y, z+1/2; (ii) z+1/2, x1/2, y; (iii) y, z+1/2, x1/2; (iv) z, x1/2, y+1/2; (v) y+1/2, z, x1/2; (vi) y1/2, z+1/2, x; (vii) x+1/2, y, z+1/2; (viii) z+1/2, x+1/2, y; (ix) y, z+1/2, x+1/2; (x) x+1, y+1, z+1.
(NEW1minmill_phase_2) top
Crystal data top
AlNaO8Si3β = 116.6°
Mr = 262.22γ = 87.71°
Triclinic, C1V = 664.01 Å3
a = 8.137 ÅZ = 4
b = 12.785 ÅDx = 2.623 Mg m3
c = 7.1583 ÅT = 300 K
α = 94.26°
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.177(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: none
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.008870.168460.208050.007
Si10.003750.820510.237370.006
Si20.691620.110210.314660.006
Si30.681290.881900.360760.006
Na10.267990.988650.146500.031
O10.004900.131030.966600.012
O20.591760.997560.280400.008
O30.812300.109660.190100.014
O40.820000.851010.258700.018
O50.012880.302380.270600.011
O60.023290.693680.229100.011
O70.207800.108960.389000.011
O80.184000.868170.436200.012
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.00740.00680.00610.00090.00310.0004
Si10.00680.00650.00550.00110.00300.0008
Si20.00610.00550.00730.00020.00250.0004
Si30.00600.00550.00740.00060.00280.0009
Na10.01360.04710.03150.00500.00840.0219
O10.01640.01220.00740.00020.00670.0014
O20.00740.00560.01190.00030.00330.0020
O30.01170.01300.01620.00400.00930.0017
O40.01340.01790.02160.00460.01290.0020
O50.01030.00760.01500.00200.00520.0009
O60.01010.00710.01450.00220.00340.0012
O70.01200.01290.00800.00240.00130.0015
O80.01400.01400.00840.00260.00020.0006
Geometric parameters (Å, º) top
Al1—O1i1.7452O1—Al1xi1.7452
Al1—O3ii1.7429O1—Si1iii1.5999
Al1—O51.7351O1—Na1xii2.6689
Al1—O71.7456O1—Na1iii2.5308
Si1—O1iii1.5999O2—Si2x1.6301
Si1—O4ii1.6000O2—Si31.6472
Si1—O61.6223O2—Na12.3704
Si1—O81.6191O3—Al1xiii1.7429
Si2—O2iv1.6301O3—Si21.5944
Si2—O31.5944O3—Na1ix2.4532
Si2—O6v1.6184O4—Si1xiii1.6000
Si2—O8vi1.6168O4—Si31.6198
Si3—O21.6472O5—Al11.7351
Si3—O41.6198O5—Si3xiv1.5968
Si3—O5vii1.5968O6—Si11.6223
Si3—O7vi1.6020O6—Si2xv1.6184
Na1—O1viii2.6689O7—Al11.7456
Na1—O1iii2.5308O7—Si3vi1.6020
Na1—O22.3704O7—Na1iv2.4338
Na1—O3ix2.4532O8—Si11.6191
Na1—O7x2.4338O8—Si2vi1.6168
O1i—Al1—O3ii102.836O6v—Si2—O8vi110.422
O1i—Al1—O5116.047O2—Si3—O4107.269
O3ii—Al1—O5112.215O2—Si3—O5vii105.914
O1i—Al1—O7104.004O4—Si3—O5vii110.224
O3ii—Al1—O7111.151O2—Si3—O7vi108.565
O5—Al1—O7110.14O4—Si3—O7vi110.208
O1iii—Si1—O4ii109.433O5vii—Si3—O7vi114.328
O1iii—Si1—O6112.47Al1xi—O1—Si1iii141.397
O4ii—Si1—O6108.187Si2x—O2—Si3130.019
O1iii—Si1—O8107.176Si2x—O2—Na1120.351
O4ii—Si1—O8111.446Si3—O2—Na1108.811
O6—Si1—O8108.16Al1xiii—O3—Si2139.461
O2iv—Si2—O3111.144Si1xiii—O4—Si3161.151
O2iv—Si2—O6v104.24Al1—O5—Si3xiv129.689
O3—Si2—O6v112.114Si1—O6—Si2xv135.676
O2iv—Si2—O8vi106.97Al1—O7—Si3vi133.943
O3—Si2—O8vi111.591Si1—O8—Si2vi151.747
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1/2, y1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z1; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y1, z+1; (xiii) x+1, y, z; (xiv) x1/2, y1/2, z; (xv) x1/2, y+1/2, z.
(NEW1minmill_phase_4) top
Crystal data top
Fe7S8β = 117.12 (3)°
Mr = 647.41V = 933.9 (3) Å3
Monoclinic, C2/cZ = 4
a = 11.904 (12) ÅDx = 4.605 Mg m3
b = 6.878 (2) ÅT = 300 K
c = 12.814 (15) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.071(6), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.018000.383300.119600.010*
S20.029100.114200.639000.010*
Fe30.108600.102500.499800.010*
S40.234100.135500.382600.010*
Fe50.241800.366000.246800.010*
S60.267900.134000.123600.010*
Fe70.387200.150000.012600.010*
Fe80.000000.147200.250000.010*
Bond lengths (Å) top
S1—Fe3i2.4981Fe5—S2v2.4412
S1—Fe52.4104Fe5—S42.3866
S1—Fe7ii2.3924Fe5—S62.3628
S1—Fe7iii2.4370S6—Fe3viii2.4529
S1—Fe82.4087S6—Fe52.3628
S2—Fe32.3713S6—Fe72.4277
S2—Fe3iv2.3269S6—Fe7iii2.3926
S2—Fe5v2.4412Fe7—S1ix2.3924
S2—Fe7vi2.3692Fe7—S1iii2.4370
S2—Fe8iv2.4136Fe7—S2x2.3692
Fe3—S1i2.4981Fe7—S62.4277
Fe3—S22.3713Fe7—S6iii2.3926
Fe3—S2iv2.3269Fe8—S12.4087
Fe3—S6vii2.4529Fe8—S1i2.4087
S4—Fe52.3866Fe8—S2iv2.4136
Fe5—S12.4104Fe8—S2viii2.4136
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+3/2; (vii) x, y, z+3/2; (viii) x, y, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z+1/2.
(NEW1minmill_phase_1) top
Crystal data top
O2SiV = 113.15 (1) Å3
Mr = 60.08Z = 3
Trigonal, P3221Dx = 2.645 Mg m3
a = 4.9162 (4) ÅT = 300 K
c = 5.4061 (4) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.220(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.470000.000000.666700.006
O10.414600.267800.785430.011
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.00730.00590.00530.00290.00030.0006
O10.01200.01050.01180.00650.00290.0040
Geometric parameters (Å, º) top
Si1—O11.6056O1—Si11.6056
Si1—O1i1.6119O1—Si1iv1.6119
Si1—O1ii1.6116O1—Si1v1.6116
Si1—O1iii1.6058
O1—Si1—O1i110.252O1ii—Si1—O1iii110.258
O1—Si1—O1ii108.754Si1—O1—Si1iv143.831
O1i—Si1—O1ii109.677Si1—O1—Si1v143.835
O1—Si1—O1iii109.158Si1iv—O1—Si1v0.009
O1i—Si1—O1iii108.734
Symmetry codes: (i) y+1, xy, z1/3; (ii) x+1, yx, z+5/3; (iii) xy, y, z+4/3; (iv) yx+1, x+1, z+1/3; (v) x+1, yx+1, z+5/3.
(NEW1minmill_phase_3) top
Crystal data top
O2TiV = 62.62 (5) Å3
Mr = 79.9Z = 2
Tetragonal, P42/mnmDx = 4.237 Mg m3
a = 4.599 (3) ÅT = 300 K
c = 2.960 (2) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.100, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.000000.000000.000000.006
O10.304930.304930.000000.006
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.00700.00700.00470.00020.00000.0000
O10.00600.00600.00450.00190.00000.0000
Geometric parameters (Å, º) top
Ti1—O11.9835Ti1—O1v1.9495
Ti1—O1i1.9495O1—Ti11.9835
Ti1—O1ii1.9495O1—Ti1vi1.9495
Ti1—O1iii1.9835O1—Ti1vii1.9495
Ti1—O1iv1.9495
O1—Ti1—O1i90O1iii—Ti1—O1iv90
O1—Ti1—O1ii90O1—Ti1—O1v90
O1i—Ti1—O1ii98.787O1i—Ti1—O1v180
O1—Ti1—O1iii180O1ii—Ti1—O1v81.213
O1i—Ti1—O1iii90O1iii—Ti1—O1v90
O1ii—Ti1—O1iii90O1iv—Ti1—O1v98.787
O1—Ti1—O1iv90Ti1—O1—Ti1vi130.606
O1i—Ti1—O1iv81.213Ti1—O1—Ti1vii130.606
O1ii—Ti1—O1iv180Ti1vi—O1—Ti1vii98.787
Symmetry codes: (i) y+1/2, x1/2, z1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x, y, z; (iv) y1/2, x+1/2, z1/2; (v) y1/2, x+1/2, z+1/2; (vi) y+1/2, x+1/2, z1/2; (vii) y+1/2, x+1/2, z+1/2.
 
(NEW2minmill_phase_0) top
Crystal data top
FeS2V = 159.18 (1) Å3
Mr = 119.97Z = 4
Cubic, Pa3Dx = 5.006 Mg m3
a = 5.41951 (3) ÅT = 300 K
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.2643(21), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.0063 (4)*
S20.38541 (12)0.385410.385410.0053 (4)*
Bond lengths (Å) top
Fe1—S2i2.2659 (2)Fe1—S2vi2.2659 (6)
Fe1—S2ii2.2659 (2)S2—Fe1vii2.2659 (2)
Fe1—S2iii2.2659 (2)S2—Fe1viii2.2659 (2)
Fe1—S2iv2.2659 (2)S2—Fe1ix2.2659 (6)
Fe1—S2v2.2659 (2)S2—S2x2.1513 (8)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) z+1/2, x1/2, y; (iii) y, z+1/2, x1/2; (iv) z, x1/2, y+1/2; (v) y+1/2, z, x1/2; (vi) y1/2, z+1/2, x; (vii) x+1/2, y, z+1/2; (viii) z+1/2, x+1/2, y; (ix) y, z+1/2, x+1/2; (x) x+1, y+1, z+1.
(NEW2minmill_phase_2) top
Crystal data top
AlNaO8Si3β = 116.6°
Mr = 262.22γ = 87.71°
Triclinic, C1V = 664.01 Å3
a = 8.137 ÅZ = 4
b = 12.785 ÅDx = 2.623 Mg m3
c = 7.1583 ÅT = 300 K
α = 94.26°
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.171(12), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: none
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.008870.168460.208050.007
Si10.003750.820510.237370.006
Si20.691620.110210.314660.006
Si30.681290.881900.360760.006
Na10.267990.988650.146500.031
O10.004900.131030.966600.012
O20.591760.997560.280400.008
O30.812300.109660.190100.014
O40.820000.851010.258700.018
O50.012880.302380.270600.011
O60.023290.693680.229100.011
O70.207800.108960.389000.011
O80.184000.868170.436200.012
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.00740.00680.00610.00090.00310.0004
Si10.00680.00650.00550.00110.00300.0008
Si20.00610.00550.00730.00020.00250.0004
Si30.00600.00550.00740.00060.00280.0009
Na10.01360.04710.03150.00500.00840.0219
O10.01640.01220.00740.00020.00670.0014
O20.00740.00560.01190.00030.00330.0020
O30.01170.01300.01620.00400.00930.0017
O40.01340.01790.02160.00460.01290.0020
O50.01030.00760.01500.00200.00520.0009
O60.01010.00710.01450.00220.00340.0012
O70.01200.01290.00800.00240.00130.0015
O80.01400.01400.00840.00260.00020.0006
Geometric parameters (Å, º) top
Al1—O1i1.7452O1—Al1xi1.7452
Al1—O3ii1.7429O1—Si1iii1.5999
Al1—O51.7351O1—Na1xii2.6689
Al1—O71.7456O1—Na1iii2.5308
Si1—O1iii1.5999O2—Si2x1.6301
Si1—O4ii1.6000O2—Si31.6472
Si1—O61.6223O2—Na12.3704
Si1—O81.6191O3—Al1xiii1.7429
Si2—O2iv1.6301O3—Si21.5944
Si2—O31.5944O3—Na1ix2.4532
Si2—O6v1.6184O4—Si1xiii1.6000
Si2—O8vi1.6168O4—Si31.6198
Si3—O21.6472O5—Al11.7351
Si3—O41.6198O5—Si3xiv1.5968
Si3—O5vii1.5968O6—Si11.6223
Si3—O7vi1.6020O6—Si2xv1.6184
Na1—O1viii2.6689O7—Al11.7456
Na1—O1iii2.5308O7—Si3vi1.6020
Na1—O22.3704O7—Na1iv2.4338
Na1—O3ix2.4532O8—Si11.6191
Na1—O7x2.4338O8—Si2vi1.6168
O1i—Al1—O3ii102.836O6v—Si2—O8vi110.422
O1i—Al1—O5116.047O2—Si3—O4107.269
O3ii—Al1—O5112.215O2—Si3—O5vii105.914
O1i—Al1—O7104.004O4—Si3—O5vii110.224
O3ii—Al1—O7111.151O2—Si3—O7vi108.565
O5—Al1—O7110.14O4—Si3—O7vi110.208
O1iii—Si1—O4ii109.433O5vii—Si3—O7vi114.328
O1iii—Si1—O6112.47Al1xi—O1—Si1iii141.397
O4ii—Si1—O6108.187Si2x—O2—Si3130.019
O1iii—Si1—O8107.176Si2x—O2—Na1120.351
O4ii—Si1—O8111.446Si3—O2—Na1108.811
O6—Si1—O8108.16Al1xiii—O3—Si2139.461
O2iv—Si2—O3111.144Si1xiii—O4—Si3161.151
O2iv—Si2—O6v104.24Al1—O5—Si3xiv129.689
O3—Si2—O6v112.114Si1—O6—Si2xv135.676
O2iv—Si2—O8vi106.97Al1—O7—Si3vi133.943
O3—Si2—O8vi111.591Si1—O8—Si2vi151.747
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1/2, y1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z1; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y1, z+1; (xiii) x+1, y, z; (xiv) x1/2, y1/2, z; (xv) x1/2, y+1/2, z.
(NEW2minmill_phase_4) top
Crystal data top
Fe7S8β = 117.20 (4)°
Mr = 647.41V = 934.1 (3) Å3
Monoclinic, C2/cZ = 4
a = 11.927 (18) ÅDx = 4.603 Mg m3
b = 6.869 (3) ÅT = 300 K
c = 12.82 (2) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.049(4), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.018000.383300.119600.010*
S20.029100.114200.639000.010*
Fe30.108600.102500.499800.010*
S40.234100.135500.382600.010*
Fe50.241800.366000.246800.010*
S60.267900.134000.123600.010*
Fe70.387200.150000.012600.010*
Fe80.000000.147200.250000.010*
Bond lengths (Å) top
S1—Fe3i2.4961Fe5—S2v2.4434
S1—Fe52.4121Fe5—S42.3859
S1—Fe7ii2.3906Fe5—S62.3624
S1—Fe7iii2.4403S6—Fe3viii2.4517
S1—Fe82.4082S6—Fe52.3624
S2—Fe32.3743S6—Fe72.4317
S2—Fe3iv2.3254S6—Fe7iii2.3915
S2—Fe5v2.4434Fe7—S1ix2.3906
S2—Fe7vi2.3678Fe7—S1iii2.4403
S2—Fe8iv2.4128Fe7—S2x2.3678
Fe3—S1i2.4961Fe7—S62.4317
Fe3—S22.3743Fe7—S6iii2.3915
Fe3—S2iv2.3254Fe8—S12.4082
Fe3—S6vii2.4517Fe8—S1i2.4082
S4—Fe52.3859Fe8—S2iv2.4128
Fe5—S12.4121Fe8—S2viii2.4128
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+3/2; (vii) x, y, z+3/2; (viii) x, y, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z+1/2.
(NEW2minmill_phase_1) top
Crystal data top
O2SiV = 113.08 (1) Å3
Mr = 60.08Z = 3
Trigonal, P3221Dx = 2.647 Mg m3
a = 4.9149 (4) ÅT = 300 K
c = 5.4057 (3) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.220(12), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.470000.000000.666700.006
O10.414600.267800.785430.011
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.00730.00590.00530.00290.00030.0006
O10.01200.01050.01180.00650.00290.0040
Geometric parameters (Å, º) top
Si1—O11.6053O1—Si11.6053
Si1—O1i1.6116O1—Si1iv1.6116
Si1—O1ii1.6113O1—Si1v1.6113
Si1—O1iii1.6054
O1—Si1—O1i110.256O1ii—Si1—O1iii110.262
O1—Si1—O1ii108.745Si1—O1—Si1iv143.832
O1i—Si1—O1ii109.685Si1—O1—Si1v143.836
O1—Si1—O1iii109.161Si1iv—O1—Si1v0.009
O1i—Si1—O1iii108.725
Symmetry codes: (i) y+1, xy, z1/3; (ii) x+1, yx, z+5/3; (iii) xy, y, z+4/3; (iv) yx+1, x+1, z+1/3; (v) x+1, yx+1, z+5/3.
(NEW2minmill_phase_3) top
Crystal data top
O2TiV = 62.59 (3) Å3
Mr = 79.9Z = 2
Tetragonal, P42/mnmDx = 4.239 Mg m3
a = 4.5979 (16) ÅT = 300 K
c = 2.9608 (14) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.13(4), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.000000.000000.000000.006
O10.304930.304930.000000.006
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.00700.00700.00470.00020.00000.0000
O10.00600.00600.00450.00190.00000.0000
Geometric parameters (Å, º) top
Ti1—O11.9828Ti1—O1v1.9495
Ti1—O1i1.9495O1—Ti11.9828
Ti1—O1ii1.9495O1—Ti1vi1.9495
Ti1—O1iii1.9828O1—Ti1vii1.9495
Ti1—O1iv1.9495
O1—Ti1—O1i90O1iii—Ti1—O1iv90
O1—Ti1—O1ii90O1—Ti1—O1v90
O1i—Ti1—O1ii98.82O1i—Ti1—O1v180
O1—Ti1—O1iii180O1ii—Ti1—O1v81.18
O1i—Ti1—O1iii90O1iii—Ti1—O1v90
O1ii—Ti1—O1iii90O1iv—Ti1—O1v98.82
O1—Ti1—O1iv90Ti1—O1—Ti1vi130.59
O1i—Ti1—O1iv81.18Ti1—O1—Ti1vii130.59
O1ii—Ti1—O1iv180Ti1vi—O1—Ti1vii98.82
Symmetry codes: (i) y+1/2, x1/2, z1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x, y, z; (iv) y1/2, x+1/2, z1/2; (v) y1/2, x+1/2, z+1/2; (vi) y+1/2, x+1/2, z1/2; (vii) y+1/2, x+1/2, z+1/2.
 
(NEW3minmill_phase_0) top
Crystal data top
FeS2V = 159.17 (1) Å3
Mr = 119.97Z = 4
Cubic, Pa3Dx = 5.006 Mg m3
a = 5.41948 (3) ÅT = 300 K
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.2508(19), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.010*
S20.386800.386800.386800.010*
Bond lengths (Å) top
Fe1—S2i2.2687Fe1—S2vi2.2687
Fe1—S2ii2.2687S2—Fe1vii2.2687
Fe1—S2iii2.2687S2—Fe1viii2.2687
Fe1—S2iv2.2687S2—Fe1ix2.2687
Fe1—S2v2.2687S2—S2x2.1252
Symmetry codes: (i) x1/2, y, z+1/2; (ii) z+1/2, x1/2, y; (iii) y, z+1/2, x1/2; (iv) z, x1/2, y+1/2; (v) y+1/2, z, x1/2; (vi) y1/2, z+1/2, x; (vii) x+1/2, y, z+1/2; (viii) z+1/2, x+1/2, y; (ix) y, z+1/2, x+1/2; (x) x+1, y+1, z+1.
(NEW3minmill_phase_2) top
Crystal data top
AlNaO8Si3β = 116.6°
Mr = 262.22γ = 87.71°
Triclinic, C1V = 664.01 Å3
a = 8.137 ÅZ = 4
b = 12.785 ÅDx = 2.623 Mg m3
c = 7.1583 ÅT = 300 K
α = 94.26°
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.143(10), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: none
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.008870.168460.208050.007
Si10.003750.820510.237370.006
Si20.691620.110210.314660.006
Si30.681290.881900.360760.006
Na10.267990.988650.146500.031
O10.004900.131030.966600.012
O20.591760.997560.280400.008
O30.812300.109660.190100.014
O40.820000.851010.258700.018
O50.012880.302380.270600.011
O60.023290.693680.229100.011
O70.207800.108960.389000.011
O80.184000.868170.436200.012
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.00740.00680.00610.00090.00310.0004
Si10.00680.00650.00550.00110.00300.0008
Si20.00610.00550.00730.00020.00250.0004
Si30.00600.00550.00740.00060.00280.0009
Na10.01360.04710.03150.00500.00840.0219
O10.01640.01220.00740.00020.00670.0014
O20.00740.00560.01190.00030.00330.0020
O30.01170.01300.01620.00400.00930.0017
O40.01340.01790.02160.00460.01290.0020
O50.01030.00760.01500.00200.00520.0009
O60.01010.00710.01450.00220.00340.0012
O70.01200.01290.00800.00240.00130.0015
O80.01400.01400.00840.00260.00020.0006
Geometric parameters (Å, º) top
Al1—O1i1.7452O1—Al1xi1.7452
Al1—O3ii1.7429O1—Si1iii1.5999
Al1—O51.7351O1—Na1xii2.6689
Al1—O71.7456O1—Na1iii2.5308
Si1—O1iii1.5999O2—Si2x1.6301
Si1—O4ii1.6000O2—Si31.6472
Si1—O61.6223O2—Na12.3704
Si1—O81.6191O3—Al1xiii1.7429
Si2—O2iv1.6301O3—Si21.5944
Si2—O31.5944O3—Na1ix2.4532
Si2—O6v1.6184O4—Si1xiii1.6000
Si2—O8vi1.6168O4—Si31.6198
Si3—O21.6472O5—Al11.7351
Si3—O41.6198O5—Si3xiv1.5968
Si3—O5vii1.5968O6—Si11.6223
Si3—O7vi1.6020O6—Si2xv1.6184
Na1—O1viii2.6689O7—Al11.7456
Na1—O1iii2.5308O7—Si3vi1.6020
Na1—O22.3704O7—Na1iv2.4338
Na1—O3ix2.4532O8—Si11.6191
Na1—O7x2.4338O8—Si2vi1.6168
O1i—Al1—O3ii102.836O6v—Si2—O8vi110.422
O1i—Al1—O5116.047O2—Si3—O4107.269
O3ii—Al1—O5112.215O2—Si3—O5vii105.914
O1i—Al1—O7104.004O4—Si3—O5vii110.224
O3ii—Al1—O7111.151O2—Si3—O7vi108.565
O5—Al1—O7110.14O4—Si3—O7vi110.208
O1iii—Si1—O4ii109.433O5vii—Si3—O7vi114.328
O1iii—Si1—O6112.47Al1xi—O1—Si1iii141.397
O4ii—Si1—O6108.187Si2x—O2—Si3130.019
O1iii—Si1—O8107.176Si2x—O2—Na1120.351
O4ii—Si1—O8111.446Si3—O2—Na1108.811
O6—Si1—O8108.16Al1xiii—O3—Si2139.461
O2iv—Si2—O3111.144Si1xiii—O4—Si3161.151
O2iv—Si2—O6v104.24Al1—O5—Si3xiv129.689
O3—Si2—O6v112.114Si1—O6—Si2xv135.676
O2iv—Si2—O8vi106.97Al1—O7—Si3vi133.943
O3—Si2—O8vi111.591Si1—O8—Si2vi151.747
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1/2, y1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z1; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y1, z+1; (xiii) x+1, y, z; (xiv) x1/2, y1/2, z; (xv) x1/2, y+1/2, z.
(NEW3minmill_phase_4) top
Crystal data top
Fe7S8β = 117.23 (4)°
Mr = 647.41V = 934.8 (4) Å3
Monoclinic, C2/cZ = 4
a = 11.93 (2) ÅDx = 4.600 Mg m3
b = 6.868 (3) ÅT = 300 K
c = 12.83 (3) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.040(3), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.018000.383300.119600.010*
S20.029100.114200.639000.010*
Fe30.108600.102500.499800.010*
S40.234100.135500.382600.010*
Fe50.241800.366000.246800.010*
S60.267900.134000.123600.010*
Fe70.387200.150000.012600.010*
Fe80.000000.147200.250000.010*
Bond lengths (Å) top
S1—Fe3i2.4960Fe5—S2v2.4441
S1—Fe52.4127Fe5—S42.3865
S1—Fe7ii2.3906Fe5—S62.3630
S1—Fe7iii2.4419S6—Fe3viii2.4518
S1—Fe82.4088S6—Fe52.3630
S2—Fe32.3758S6—Fe72.4333
S2—Fe3iv2.3255S6—Fe7iii2.3916
S2—Fe5v2.4441Fe7—S1ix2.3906
S2—Fe7vi2.3678Fe7—S1iii2.4419
S2—Fe8iv2.4132Fe7—S2x2.3678
Fe3—S1i2.4960Fe7—S62.4333
Fe3—S22.3758Fe7—S6iii2.3916
Fe3—S2iv2.3255Fe8—S12.4088
Fe3—S6vii2.4518Fe8—S1i2.4088
S4—Fe52.3865Fe8—S2iv2.4132
Fe5—S12.4127Fe8—S2viii2.4132
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+3/2; (vii) x, y, z+3/2; (viii) x, y, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z+1/2.
(NEW3minmill_phase_1) top
Crystal data top
O2SiV = 113.09 (1) Å3
Mr = 60.08Z = 3
Trigonal, P3221Dx = 2.647 Mg m3
a = 4.9151 (4) ÅT = 300 K
c = 5.4055 (3) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.205(11), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.470000.000000.666700.006
O10.414600.267800.785430.011
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.00730.00590.00530.00290.00030.0006
O10.01200.01050.01180.00650.00290.0040
Geometric parameters (Å, º) top
Si1—O11.6053O1—Si11.6053
Si1—O1i1.6116O1—Si1iv1.6116
Si1—O1ii1.6114O1—Si1v1.6114
Si1—O1iii1.6055
O1—Si1—O1i110.254O1ii—Si1—O1iii110.26
O1—Si1—O1ii108.749Si1—O1—Si1iv143.831
O1i—Si1—O1ii109.682Si1—O1—Si1v143.835
O1—Si1—O1iii109.16Si1iv—O1—Si1v0.009
O1i—Si1—O1iii108.729
Symmetry codes: (i) y+1, xy, z1/3; (ii) x+1, yx, z+5/3; (iii) xy, y, z+4/3; (iv) yx+1, x+1, z+1/3; (v) x+1, yx+1, z+5/3.
(NEW3minmill_phase_3) top
Crystal data top
O2TiV = 62.58 (2) Å3
Mr = 79.9Z = 2
Tetragonal, P42/mnmDx = 4.241 Mg m3
a = 4.5969 (7) ÅT = 300 K
c = 2.9612 (7) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.200, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.000000.000000.000000.006
O10.304930.304930.000000.006
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.00700.00700.00470.00020.00000.0000
O10.00600.00600.00450.00190.00000.0000
Geometric parameters (Å, º) top
Ti1—O11.9824Ti1—O1v1.9495
Ti1—O1i1.9495O1—Ti11.9824
Ti1—O1ii1.9495O1—Ti1vi1.9495
Ti1—O1iii1.9824O1—Ti1vii1.9495
Ti1—O1iv1.9495
O1—Ti1—O1i90O1iii—Ti1—O1iv90
O1—Ti1—O1ii90O1—Ti1—O1v90
O1i—Ti1—O1ii98.838O1i—Ti1—O1v180
O1—Ti1—O1iii180O1ii—Ti1—O1v81.162
O1i—Ti1—O1iii90O1iii—Ti1—O1v90
O1ii—Ti1—O1iii90O1iv—Ti1—O1v98.838
O1—Ti1—O1iv90Ti1—O1—Ti1vi130.581
O1i—Ti1—O1iv81.162Ti1—O1—Ti1vii130.581
O1ii—Ti1—O1iv180Ti1vi—O1—Ti1vii98.838
Symmetry codes: (i) y+1/2, x1/2, z1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x, y, z; (iv) y1/2, x+1/2, z1/2; (v) y1/2, x+1/2, z+1/2; (vi) y+1/2, x+1/2, z1/2; (vii) y+1/2, x+1/2, z+1/2.
 
(NEW5minmill_phase_0) top
Crystal data top
FeS2V = 159.20 (1) Å3
Mr = 119.97Z = 4
Cubic, Pa3Dx = 5.005 Mg m3
a = 5.41973 (3) ÅT = 300 K
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.2144(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.0079 (3)*
S20.38533 (11)0.385330.385330.0097 (3)*
Bond lengths (Å) top
Fe1—S2i2.2658 (2)Fe1—S2vi2.2658 (5)
Fe1—S2ii2.2658 (2)S2—Fe1vii2.2658 (2)
Fe1—S2iii2.2658 (2)S2—Fe1viii2.2658 (2)
Fe1—S2iv2.2658 (2)S2—Fe1ix2.2658 (5)
Fe1—S2v2.2658 (2)S2—S2x2.1528 (7)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) z+1/2, x1/2, y; (iii) y, z+1/2, x1/2; (iv) z, x1/2, y+1/2; (v) y+1/2, z, x1/2; (vi) y1/2, z+1/2, x; (vii) x+1/2, y, z+1/2; (viii) z+1/2, x+1/2, y; (ix) y, z+1/2, x+1/2; (x) x+1, y+1, z+1.
(NEW5minmill_phase_2) top
Crystal data top
AlNaO8Si3β = 116.6°
Mr = 262.22γ = 87.71°
Triclinic, C1V = 664.01 Å3
a = 8.137 ÅZ = 4
b = 12.785 ÅDx = 2.623 Mg m3
c = 7.1583 ÅT = 300 K
α = 94.26°
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.129(9), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: none
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.008870.168460.208050.007
Si10.003750.820510.237370.006
Si20.691620.110210.314660.006
Si30.681290.881900.360760.006
Na10.267990.988650.146500.031
O10.004900.131030.966600.012
O20.591760.997560.280400.008
O30.812300.109660.190100.014
O40.820000.851010.258700.018
O50.012880.302380.270600.011
O60.023290.693680.229100.011
O70.207800.108960.389000.011
O80.184000.868170.436200.012
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.00740.00680.00610.00090.00310.0004
Si10.00680.00650.00550.00110.00300.0008
Si20.00610.00550.00730.00020.00250.0004
Si30.00600.00550.00740.00060.00280.0009
Na10.01360.04710.03150.00500.00840.0219
O10.01640.01220.00740.00020.00670.0014
O20.00740.00560.01190.00030.00330.0020
O30.01170.01300.01620.00400.00930.0017
O40.01340.01790.02160.00460.01290.0020
O50.01030.00760.01500.00200.00520.0009
O60.01010.00710.01450.00220.00340.0012
O70.01200.01290.00800.00240.00130.0015
O80.01400.01400.00840.00260.00020.0006
Geometric parameters (Å, º) top
Al1—O1i1.7452O1—Al1xi1.7452
Al1—O3ii1.7429O1—Si1iii1.5999
Al1—O51.7351O1—Na1xii2.6689
Al1—O71.7456O1—Na1iii2.5308
Si1—O1iii1.5999O2—Si2x1.6301
Si1—O4ii1.6000O2—Si31.6472
Si1—O61.6223O2—Na12.3704
Si1—O81.6191O3—Al1xiii1.7429
Si2—O2iv1.6301O3—Si21.5944
Si2—O31.5944O3—Na1ix2.4532
Si2—O6v1.6184O4—Si1xiii1.6000
Si2—O8vi1.6168O4—Si31.6198
Si3—O21.6472O5—Al11.7351
Si3—O41.6198O5—Si3xiv1.5968
Si3—O5vii1.5968O6—Si11.6223
Si3—O7vi1.6020O6—Si2xv1.6184
Na1—O1viii2.6689O7—Al11.7456
Na1—O1iii2.5308O7—Si3vi1.6020
Na1—O22.3704O7—Na1iv2.4338
Na1—O3ix2.4532O8—Si11.6191
Na1—O7x2.4338O8—Si2vi1.6168
O1i—Al1—O3ii102.836O6v—Si2—O8vi110.422
O1i—Al1—O5116.047O2—Si3—O4107.269
O3ii—Al1—O5112.215O2—Si3—O5vii105.914
O1i—Al1—O7104.004O4—Si3—O5vii110.224
O3ii—Al1—O7111.151O2—Si3—O7vi108.565
O5—Al1—O7110.14O4—Si3—O7vi110.208
O1iii—Si1—O4ii109.433O5vii—Si3—O7vi114.328
O1iii—Si1—O6112.47Al1xi—O1—Si1iii141.397
O4ii—Si1—O6108.187Si2x—O2—Si3130.019
O1iii—Si1—O8107.176Si2x—O2—Na1120.351
O4ii—Si1—O8111.446Si3—O2—Na1108.811
O6—Si1—O8108.16Al1xiii—O3—Si2139.461
O2iv—Si2—O3111.144Si1xiii—O4—Si3161.151
O2iv—Si2—O6v104.24Al1—O5—Si3xiv129.689
O3—Si2—O6v112.114Si1—O6—Si2xv135.676
O2iv—Si2—O8vi106.97Al1—O7—Si3vi133.943
O3—Si2—O8vi111.591Si1—O8—Si2vi151.747
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1/2, y1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z1; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y1, z+1; (xiii) x+1, y, z; (xiv) x1/2, y1/2, z; (xv) x1/2, y+1/2, z.
(NEW5minmill_phase_4) top
Crystal data top
Fe7S8β = 117.28 (6)°
Mr = 647.41V = 934.2 (4) Å3
Monoclinic, C2/cZ = 4
a = 11.94 (3) ÅDx = 4.603 Mg m3
b = 6.860 (4) ÅT = 300 K
c = 12.83 (3) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.0309(25), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.018000.383300.119600.010*
S20.029100.114200.639000.010*
Fe30.108600.102500.499800.010*
S40.234100.135500.382600.010*
Fe50.241800.366000.246800.010*
S60.267900.134000.123600.010*
Fe70.387200.150000.012600.010*
Fe80.000000.147200.250000.010*
Bond lengths (Å) top
S1—Fe3i2.4941Fe5—S2v2.4444
S1—Fe52.4128Fe5—S42.3857
S1—Fe7ii2.3888Fe5—S62.3623
S1—Fe7iii2.4435S6—Fe3viii2.4504
S1—Fe82.4080S6—Fe52.3623
S2—Fe32.3773S6—Fe72.4351
S2—Fe3iv2.3241S6—Fe7iii2.3902
S2—Fe5v2.4444Fe7—S1ix2.3888
S2—Fe7vi2.3663Fe7—S1iii2.4435
S2—Fe8iv2.4122Fe7—S2x2.3663
Fe3—S1i2.4941Fe7—S62.4351
Fe3—S22.3773Fe7—S6iii2.3902
Fe3—S2iv2.3241Fe8—S12.4080
Fe3—S6vii2.4504Fe8—S1i2.4080
S4—Fe52.3857Fe8—S2iv2.4122
Fe5—S12.4128Fe8—S2viii2.4122
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+3/2; (vii) x, y, z+3/2; (viii) x, y, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z+1/2.
(NEW5minmill_phase_1) top
Crystal data top
O2SiV = 113.12 (1) Å3
Mr = 60.08Z = 3
Trigonal, P3221Dx = 2.646 Mg m3
a = 4.9154 (4) ÅT = 300 K
c = 5.4060 (4) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.183(9), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.470000.000000.666700.006
O10.414600.267800.785430.011
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.00730.00590.00530.00290.00030.0006
O10.01200.01050.01180.00650.00290.0040
Geometric parameters (Å, º) top
Si1—O11.6054O1—Si11.6054
Si1—O1i1.6117O1—Si1iv1.6117
Si1—O1ii1.6115O1—Si1v1.6115
Si1—O1iii1.6056
O1—Si1—O1i110.255O1ii—Si1—O1iii110.26
O1—Si1—O1ii108.748Si1—O1—Si1iv143.832
O1i—Si1—O1ii109.683Si1—O1—Si1v143.835
O1—Si1—O1iii109.16Si1iv—O1—Si1v0.009
O1i—Si1—O1iii108.728
Symmetry codes: (i) y+1, xy, z1/3; (ii) x+1, yx, z+5/3; (iii) xy, y, z+4/3; (iv) yx+1, x+1, z+1/3; (v) x+1, yx+1, z+5/3.
(NEW5minmill_phase_3) top
Crystal data top
O2TiV = 62.64 (3) Å3
Mr = 79.9Z = 2
Tetragonal, P42/mnmDx = 4.236 Mg m3
a = 4.5996 (11) ÅT = 300 K
c = 2.9608 (10) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.150, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.000000.000000.000000.006
O10.304930.304930.000000.006
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.00700.00700.00470.00020.00000.0000
O10.00600.00600.00450.00190.00000.0000
Geometric parameters (Å, º) top
Ti1—O11.9835Ti1—O1v1.9498
Ti1—O1i1.9498O1—Ti11.9835
Ti1—O1ii1.9498O1—Ti1vi1.9498
Ti1—O1iii1.9835O1—Ti1vii1.9498
Ti1—O1iv1.9498
O1—Ti1—O1i90O1iii—Ti1—O1iv90
O1—Ti1—O1ii90O1—Ti1—O1v90
O1i—Ti1—O1ii98.799O1i—Ti1—O1v180
O1—Ti1—O1iii180O1ii—Ti1—O1v81.201
O1i—Ti1—O1iii90O1iii—Ti1—O1v90
O1ii—Ti1—O1iii90O1iv—Ti1—O1v98.799
O1—Ti1—O1iv90Ti1—O1—Ti1vi130.601
O1i—Ti1—O1iv81.201Ti1—O1—Ti1vii130.601
O1ii—Ti1—O1iv180Ti1vi—O1—Ti1vii98.799
Symmetry codes: (i) y+1/2, x1/2, z1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x, y, z; (iv) y1/2, x+1/2, z1/2; (v) y1/2, x+1/2, z+1/2; (vi) y+1/2, x+1/2, z1/2; (vii) y+1/2, x+1/2, z+1/2.
 
(NEW10minmill_phase_0) top
Crystal data top
FeS2V = 159.21 (1) Å3
Mr = 119.97Z = 4
Cubic, Pa3Dx = 5.005 Mg m3
a = 5.41988 (3) ÅT = 300 K
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.1814(11), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.0087 (3)*
S20.38482 (10)0.384820.384820.0087 (3)*
Bond lengths (Å) top
Fe1—S2i2.2648 (1)Fe1—S2vi2.2648 (5)
Fe1—S2ii2.2648 (1)S2—Fe1vii2.2648 (1)
Fe1—S2iii2.2648 (1)S2—Fe1viii2.2648 (1)
Fe1—S2iv2.2648 (1)S2—Fe1ix2.2648 (5)
Fe1—S2v2.2648 (1)S2—S2x2.1625 (6)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) z+1/2, x1/2, y; (iii) y, z+1/2, x1/2; (iv) z, x1/2, y+1/2; (v) y+1/2, z, x1/2; (vi) y1/2, z+1/2, x; (vii) x+1/2, y, z+1/2; (viii) z+1/2, x+1/2, y; (ix) y, z+1/2, x+1/2; (x) x+1, y+1, z+1.
(NEW10minmill_phase_2) top
Crystal data top
AlNaO8Si3β = 116.6°
Mr = 262.22γ = 87.71°
Triclinic, C1V = 664.01 Å3
a = 8.137 ÅZ = 4
b = 12.785 ÅDx = 2.623 Mg m3
c = 7.1583 ÅT = 300 K
α = 94.26°
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.099(8), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: none
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.008870.168460.208050.007
Si10.003750.820510.237370.006
Si20.691620.110210.314660.006
Si30.681290.881900.360760.006
Na10.267990.988650.146500.031
O10.004900.131030.966600.012
O20.591760.997560.280400.008
O30.812300.109660.190100.014
O40.820000.851010.258700.018
O50.012880.302380.270600.011
O60.023290.693680.229100.011
O70.207800.108960.389000.011
O80.184000.868170.436200.012
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.00740.00680.00610.00090.00310.0004
Si10.00680.00650.00550.00110.00300.0008
Si20.00610.00550.00730.00020.00250.0004
Si30.00600.00550.00740.00060.00280.0009
Na10.01360.04710.03150.00500.00840.0219
O10.01640.01220.00740.00020.00670.0014
O20.00740.00560.01190.00030.00330.0020
O30.01170.01300.01620.00400.00930.0017
O40.01340.01790.02160.00460.01290.0020
O50.01030.00760.01500.00200.00520.0009
O60.01010.00710.01450.00220.00340.0012
O70.01200.01290.00800.00240.00130.0015
O80.01400.01400.00840.00260.00020.0006
Geometric parameters (Å, º) top
Al1—O1i1.7452O1—Al1xi1.7452
Al1—O3ii1.7429O1—Si1iii1.5999
Al1—O51.7351O1—Na1xii2.6689
Al1—O71.7456O1—Na1iii2.5308
Si1—O1iii1.5999O2—Si2x1.6301
Si1—O4ii1.6000O2—Si31.6472
Si1—O61.6223O2—Na12.3704
Si1—O81.6191O3—Al1xiii1.7429
Si2—O2iv1.6301O3—Si21.5944
Si2—O31.5944O3—Na1ix2.4532
Si2—O6v1.6184O4—Si1xiii1.6000
Si2—O8vi1.6168O4—Si31.6198
Si3—O21.6472O5—Al11.7351
Si3—O41.6198O5—Si3xiv1.5968
Si3—O5vii1.5968O6—Si11.6223
Si3—O7vi1.6020O6—Si2xv1.6184
Na1—O1viii2.6689O7—Al11.7456
Na1—O1iii2.5308O7—Si3vi1.6020
Na1—O22.3704O7—Na1iv2.4338
Na1—O3ix2.4532O8—Si11.6191
Na1—O7x2.4338O8—Si2vi1.6168
O1i—Al1—O3ii102.836O6v—Si2—O8vi110.422
O1i—Al1—O5116.047O2—Si3—O4107.269
O3ii—Al1—O5112.215O2—Si3—O5vii105.914
O1i—Al1—O7104.004O4—Si3—O5vii110.224
O3ii—Al1—O7111.151O2—Si3—O7vi108.565
O5—Al1—O7110.14O4—Si3—O7vi110.208
O1iii—Si1—O4ii109.433O5vii—Si3—O7vi114.328
O1iii—Si1—O6112.47Al1xi—O1—Si1iii141.397
O4ii—Si1—O6108.187Si2x—O2—Si3130.019
O1iii—Si1—O8107.176Si2x—O2—Na1120.351
O4ii—Si1—O8111.446Si3—O2—Na1108.811
O6—Si1—O8108.16Al1xiii—O3—Si2139.461
O2iv—Si2—O3111.144Si1xiii—O4—Si3161.151
O2iv—Si2—O6v104.24Al1—O5—Si3xiv129.689
O3—Si2—O6v112.114Si1—O6—Si2xv135.676
O2iv—Si2—O8vi106.97Al1—O7—Si3vi133.943
O3—Si2—O8vi111.591Si1—O8—Si2vi151.747
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1/2, y1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z1; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y1, z+1; (xiii) x+1, y, z; (xiv) x1/2, y1/2, z; (xv) x1/2, y+1/2, z.
(NEW10minmill_phase_4) top
Crystal data top
Fe7S8β = 117.23 (8)°
Mr = 647.41V = 934.4 (6) Å3
Monoclinic, C2/cZ = 4
a = 11.95 (4) ÅDx = 4.602 Mg m3
b = 6.850 (5) ÅT = 300 K
c = 12.84 (5) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.0294(29), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.018000.383300.119600.010*
S20.029100.114200.639000.010*
Fe30.108600.102500.499800.010*
S40.234100.135500.382600.010*
Fe50.241800.366000.246800.010*
S60.267900.134000.123600.010*
Fe70.387200.150000.012600.010*
Fe80.000000.147200.250000.010*
Bond lengths (Å) top
S1—Fe3i2.4932Fe5—S2v2.4471
S1—Fe52.4156Fe5—S42.3851
S1—Fe7ii2.3880Fe5—S62.3615
S1—Fe7iii2.4444S6—Fe3viii2.4506
S1—Fe82.4072S6—Fe52.3615
S2—Fe32.3783S6—Fe72.4359
S2—Fe3iv2.3245S6—Fe7iii2.3908
S2—Fe5v2.4471Fe7—S1ix2.3880
S2—Fe7vi2.3663Fe7—S1iii2.4444
S2—Fe8iv2.4108Fe7—S2x2.3663
Fe3—S1i2.4932Fe7—S62.4359
Fe3—S22.3783Fe7—S6iii2.3908
Fe3—S2iv2.3245Fe8—S12.4072
Fe3—S6vii2.4506Fe8—S1i2.4072
S4—Fe52.3851Fe8—S2iv2.4108
Fe5—S12.4156Fe8—S2viii2.4108
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+3/2; (vii) x, y, z+3/2; (viii) x, y, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z+1/2.
(NEW10minmill_phase_1) top
Crystal data top
O2SiV = 113.16 (1) Å3
Mr = 60.08Z = 3
Trigonal, P3221Dx = 2.645 Mg m3
a = 4.9161 (5) ÅT = 300 K
c = 5.4064 (5) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.151(8), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.470000.000000.666700.006
O10.414600.267800.785430.011
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.00730.00590.00530.00290.00030.0006
O10.01200.01050.01180.00650.00290.0040
Geometric parameters (Å, º) top
Si1—O11.6056O1—Si11.6056
Si1—O1i1.6119O1—Si1iv1.6119
Si1—O1ii1.6117O1—Si1v1.6117
Si1—O1iii1.6058
O1—Si1—O1i110.253O1ii—Si1—O1iii110.259
O1—Si1—O1ii108.751Si1—O1—Si1iv143.831
O1i—Si1—O1ii109.68Si1—O1—Si1v143.835
O1—Si1—O1iii109.159Si1iv—O1—Si1v0.009
O1i—Si1—O1iii108.731
Symmetry codes: (i) y+1, xy, z1/3; (ii) x+1, yx, z+5/3; (iii) xy, y, z+4/3; (iv) yx+1, x+1, z+1/3; (v) x+1, yx+1, z+5/3.
(NEW10minmill_phase_3) top
Crystal data top
O2TiV = 62.62 (2) Å3
Mr = 79.9Z = 2
Tetragonal, P42/mnmDx = 4.238 Mg m3
a = 4.5991 (7) ÅT = 300 K
c = 2.9603 (7) Å
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.200, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.000000.000000.000000.006
O10.304930.304930.000000.006
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.00700.00700.00470.00020.00000.0000
O10.00600.00600.00450.00190.00000.0000
Geometric parameters (Å, º) top
Ti1—O11.9833Ti1—O1v1.9495
Ti1—O1i1.9495O1—Ti11.9833
Ti1—O1ii1.9495O1—Ti1vi1.9495
Ti1—O1iii1.9833O1—Ti1vii1.9495
Ti1—O1iv1.9495
O1—Ti1—O1i90O1iii—Ti1—O1iv90
O1—Ti1—O1ii90O1—Ti1—O1v90
O1i—Ti1—O1ii98.795O1i—Ti1—O1v180
O1—Ti1—O1iii180O1ii—Ti1—O1v81.205
O1i—Ti1—O1iii90O1iii—Ti1—O1v90
O1ii—Ti1—O1iii90O1iv—Ti1—O1v98.795
O1—Ti1—O1iv90Ti1—O1—Ti1vi130.602
O1i—Ti1—O1iv81.205Ti1—O1—Ti1vii130.602
O1ii—Ti1—O1iv180Ti1vi—O1—Ti1vii98.795
Symmetry codes: (i) y+1/2, x1/2, z1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x, y, z; (iv) y1/2, x+1/2, z1/2; (v) y1/2, x+1/2, z+1/2; (vi) y+1/2, x+1/2, z1/2; (vii) y+1/2, x+1/2, z+1/2.
 

Acknowledgements

We thank Helen Wang and Brit David for their insight and provision of the XRF laboratory and milling facilities as part of the Mark Wainwright Analytical Centre, UNSW Sydney. We would like to thank Ruoming Tian for provision and training regarding the XRD laboratory and facilities, also as part of the Mark Wainwright Analytical Centre, UNSW Sydney. We extend thanks to Simon Hager and Karen Privat for provision, training and usage of the SEM facilities as part of the Mark Wainwright Analytical Centre, UNSW. We are grateful to Fandi Chen and George Yang for their insight and assistance with particle-size laser dispersion analysis, and for provision and training in SEM sample preparation at the School of Material Science and Engineering, UNSW. We are also grateful to Deborah Wakeham for assistance with access to laboratory facilities and for providing valuable insight used in this work. We thank our industry partner Cobalt Blue for provision of samples, information and advice essential to our research. Author contributions are as follows: HM and MH contributed equally to this work. HM and MH performed the measurements. HM, MH and CD processed the experimental data and performed the analysis. HM and CD drafted the manuscript. All authors commented on the manuscript and contributed to the discussion of the results. VP and SN conceived and directed the work. VP directed and assisted with neutron diffraction data collection. Open access publishing facilitated by University of New South Wales, as part of the Wiley–University of New South Wales agreement via the Council of Australian University Librarians.

Funding information

The following funding is acknowledged: ANSTO Cooperative Research Centres Projects (CRC-P) (grant No. CRCPEIGHT000017) Future Now scholarship at ANSTO's Graduate Institute.

References

First citationAbraitis, P. K., Pattrick, R. A. D. & Vaughan, D. J. (2004). Int. J. Miner. Process. 74, 41–59.  CrossRef Google Scholar
First citationAntao, S. M., Hassan, I., Wang, J., Lee, P. L. & Toby, B. H. (2008). Can. Mineral. 46, 1501–1509.  Web of Science CrossRef ICSD CAS Google Scholar
First citationArmbruster, T., Buergi, H. B., Kunz, M., Gnos, E., Broenniman, S. & Lienert, C. (1990). Am. Mineral. 75, 135–140.  Google Scholar
First citationBish, D. L. & Reynolds, R. J. (1989). Sample Preparation for X-ray Diffraction. Washington, DC: Mineralogical Society of America.  Google Scholar
First citationBrindley, G. W. (1945). London Edinb. Dubl. Philos. Mag. J. Sci. 36, 347–369.  CrossRef CAS Google Scholar
First citationChantler, C. T. (2001). J. Synchrotron Rad. 8, 1124.  CrossRef IUCr Journals Google Scholar
First citationChen, J., Xu, Z. & Chen, Y. (2020). Electronic Structure and Surfaces of Sulfide Minerals, edited by Y. Chen, J. Chen & Z. Xu, pp. 13–81. Amsterdam: Elsevier.  Google Scholar
First citationCline, J. P., Von Dreele, R. B., Winburn, R., Stephens, P. W. & Filliben, J. J. (2011). Acta Cryst. A67, 357–367.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCraig, J. & Vokes, F. (1993). Mineral. Mag. 57, 3–18.  CrossRef Google Scholar
First citationDeer, W. A., Howie, R. A. & Zussman, J. (1962). An Introduction to the Rock-Forming Minerals. London: Longmans.  Google Scholar
First citationDermatas, D., Chrysochoou, M., Pardali, S. & Grubb, D. G. (2007). Environ. Qual. 36, p487–497.  CrossRef Google Scholar
First citationDeslattes, R. D., Kessler, E. G. Jr, Indelicato, P., de Billy, L., Lindroth, E., Anton, J., Coursey, J. S., Schwab, D. J., Chang, C., Sukumar, R., Olsen, K. & Dragoset, R. A. (2005). X-ray Transition Energies. https://physics.nist.gov/XrayTrans. National Institute of Standards and Technology, Gaithersburg, Maryland, USA.  Google Scholar
First citationDettrick, D., Bourgeot, N., Costelloe, J., Yuen, S. & Arora, M. (2019). Mine Water Environ. 38, 735–745.  CrossRef Google Scholar
First citationDonnay, J. D. H. (1940). Am. Miner. Earth Planet. Mater. 25, 578–586.  Google Scholar
First citationHeidelbach, F., Post, A. & Tullis, J. (2000). J. Struct. Geol. 22, 1649–1661.  Web of Science CrossRef Google Scholar
First citationHillier, S. (1999). Clay Miner. 34, 127–135.  CrossRef CAS Google Scholar
First citationHillier, S. (2003). Spec. Publ. Int. Assoc. Sedimentol. 34, 213–251.  Google Scholar
First citationIddings, J. P. (1898). J. Geol. 6, 219–237.  CrossRef Google Scholar
First citationJiang, Z., Prior, D. J. & Wheeler, J. (2000). J. Struct. Geol. 22, 1663–1674.  CrossRef Google Scholar
First citationKadachi, A. N. & Al-Eshaikh, M. A. (2012). X-ray Spectrom. 41, 350–354.  CrossRef Google Scholar
First citationKarim, W., Kleibert, A., Hartfelder, U., Balan, A., Gobrecht, J., van Bokhoven, J. A. & Ekinci, Y. (2016). Sci. Rep. 6, 18818.   Google Scholar
First citationKleeberg, R., Monecke, T. & Hillier, S. (2008). Clays Clay Miner. 56, 404–415.  Web of Science CrossRef CAS Google Scholar
First citationKlug, H. P. & Alexander, L. E. (1954). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley and Sons Inc.  Google Scholar
First citationLandauer, J. & Foerst, P. (2019). Processes, 7, 716.   Google Scholar
First citationLoubser, M. & Verryn, S. (2008). South Afr. J. Geol. 111, 229–238.  CrossRef Google Scholar
First citationMadsen, I. C., Scarlett, N. V. Y. & Kern, A. (2011). Z. Kristallogr. 226, 944–955.  Web of Science CrossRef CAS Google Scholar
First citationMadsen, I. C., Scarlett, N. V. Y., Kleeberg, R. & Knorr, K. (2019). International Tables for Crystallography, Vol. H, Powder Diffraction, edited by C. J. Gilmore, J. A. Kaduk & H. Schenk, pp. 344–373. Chichester: Wiley.  Google Scholar
First citationMirkowska, M., Kratzer, M., Teichert, C. & Flachberger, H. (2016). BHM Berg- Hüttenmännische Monatsh. 161, 359–382.  CrossRef Google Scholar
First citationMonecke, T., Kohler, S., Kleeberg, R., Herzig, P. M. & Gemmell, J. B. (2001). Can. Mineral. 39, 1617–1633.  CrossRef Google Scholar
First citationMoore, D. M. & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press.  Google Scholar
First citationMorimoto, N., Gyobu, A., Mukaiyama, H. & Izawa, E. (1975). Econ. Geol. 70, 824–833.  CrossRef CAS Web of Science Google Scholar
First citationO'Connor, B. H. & Chang, W. J. (1986). X-ray Spectrom. 15, p267–270.  Google Scholar
First citationO'Connor, B. H. & Raven, M. D. (1988). Powder Diffr. 3, 2–6.  CAS Google Scholar
First citationPillet, S., Souhassou, M., Lecomte, C., Schwarz, K., Blaha, P., Rérat, M., Lichanot, A. & Roversi, P. (2001). Acta Cryst. A57, 290–303.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPlimer, I. R. (1977). Miner. Deposita, 12, 175–187.  CrossRef Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRousseau, R. M. (2006). At. Spectrosc. 61, 759–777.  Web of Science CrossRef Google Scholar
First citationSakher, E., Loudjani, N., Benchiheub, M. & Bououdina, M. (2018). J. Nanomater. 2018, 2560641.  CrossRef Google Scholar
First citationScarlett, N. V. Y. & Madsen, I. C. (2018). Powder Diffr. 33, 26–37.  Web of Science CrossRef CAS Google Scholar
First citationScarlett, N. V. Y., Madsen, I. C., Cranswick, L. M. D., Lwin, T., Groleau, E., Stephenson, G., Aylmore, M. & Agron-Olshina, N. (2002). J. Appl. Cryst. 35, 383–400.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShintani, H., Sato, S. & Saito, Y. (1975). Acta Cryst. B31, 1981–1982.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationSouders, A. K. & Sylvester, P. J. (2010). J. Anal. At. Spectrom. 25, 975–988.  CrossRef Google Scholar
First citationStuder, A. J., Hagen, M. E. & Noakes, T. J. (2006). Physica B, 385–386, 1013–1015.  Web of Science CrossRef CAS Google Scholar
First citationSummerfield, D. (2020). Australian Resource Reviews: Iron Ore 2019. Canberra: Geoscience Australia.  Google Scholar
First citationToby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUnruh, D. K. & Forbes, T. Z. (2019). Analytical Geomicrobiology: A Handbook of Instrumental Techniques, edited by J. P. L Kenney, H. Veeramani & D. S. Alessi, pp. 215–237. Cambridge University Press.  Google Scholar
First citationVance, J. A. (1961). Am. Mineral. 46, 1097–1119.  Google Scholar
First citationWerner, P.-E., Salomé, S., Malmros, G. & Thomas, J. O. (1979). J. Appl. Cryst. 12, 107–109.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWest, J. (2011). J. Ind. Ecol. 15, 165–168.  CrossRef Google Scholar
First citationWhitfield, P. S. (2016). Powder Diffr. 31, 192–197.  Web of Science CrossRef CAS Google Scholar
First citationWhitfield, P. S., Huq, A. & Kaduk, J. A. (2019). International Tables for Crystallography, Vol. H, Powder Diffraction, edited by C. J. Gilmore, J. A. Kaduk & H. Schenk, pp. 200–222. Chichester: Wiley.  Google Scholar
First citationWu, R., Zheng, Y. F., Zhang, X. G., Sun, Y. F., Xu, J. B. & Jian, J. K. (2004). J. Cryst. Growth, 266, 523–527.  Web of Science CrossRef ICSD Google Scholar
First citationZambonini, F. & Washington, H. S. (1923). Am. Mineral. 8, 81–85.  Google Scholar
First citationZhang, G., Germaine, J. T., Martin, R. T. & Whittle, A. J. (2003). Clays Clay Miner. 51, 218–225.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoJOURNAL OF
APPLIED
CRYSTALLOGRAPHY
ISSN: 1600-5767
Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds