research papers
Preparation of pyrite concentrate powder from the Thackaringa mine for quantitative phase analysis using X-ray diffraction
aSchool of Chemistry, The University of New South Wales, Anzac Parade, Sydney, NSW 2052, Australia, bAustralian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Sydney, NSW 2232, Australia, and cCobalt Blue, 17.03 100 Miller Street, North Sydney, NSW 2060, Australia
*Correspondence e-mail: s.neville@unsw.edu.au, vanessa.peterson@ansto.gov.au, drchristophedidier@gmail.com
The quantitative phase analysis using X-ray diffraction of pyrite ore concentrate samples extracted from the Thackaringa mine is problematic due to poor particle statistics, microabsorption and
The influence of sample preparation on these issues has been evaluated, with ball milling of the powder found most suitable for accurate and precise quantitative phase analysis. The milling duration and other aspects of sample preparation have been explored, resulting in accurate phase reflection intensities when particle sizes are below 5 µm. Quantitative phase analysis on those samples yielded precise phase fractions with standard deviations below 0.3 wt%. Some discrepancy between the elemental composition obtained using X-ray powder diffraction data and that determined using wavelength-dispersive was found, and is thought to arise from unaccounted for crystalline phase substitution and the possible presence of an amorphous phase. This study provides a methodology for the precise and accurate quantitative phase analysis of X-ray powder diffraction data of pyrite ore concentrate from the Thackaringa mine and a discussion of the limitations of the method. The optimization process reveals the importance of confirming reproducibility on new samples, with as much prior knowledge as possible.CCDC references: 2223099; 2223100; 2223101; 2223102; 2223103; 2223104; 2223105; 2223106; 2223107; 2223108; 2223109; 2223110; 2223111; 2223112; 2223113; 2223114; 2223115; 2223116; 2223117; 2223118; 2223119; 2223120; 2223121; 2223122; 2223123; 2223124; 2223125; 2223126; 2223127; 2223128; 2223129; 2223130; 2223131; 2223132; 2223133; 2223134; 2223135; 2223136; 2223137; 2223138; 2223139; 2223140; 2223141; 2223142; 2223143
1. Introduction
With recent shifts towards mining of lower grade ore deposits (West, 2011; Summerfield, 2020), mineral characterization that is both precise and accurate is becoming increasingly valuable. Deteriorating ore quality has led to more complex multiphase mineral compositions, which require representative crystalline phase information for the design of effective strategies for the post-processing and elemental recovery of newly tapped sources. X-ray diffraction (XRD) is one of the most common techniques used for the characterization of mineral samples, being simple and relatively fast.
Quantitative phase analysis (QPA) from whole-pattern fitting using the ; Werner et al., 1979) is routinely used to extract information such as phase identification, weight fractions and unit-cell parameters of crystalline phases within a powder sample. The accuracy and reliability of QPA results depend strongly on sample preparation (Dermatas et al., 2007; Madsen et al., 2019). One important requirement is that the irradiated sample volume contains a sufficient number of randomly oriented crystallites. This may be prevented by poor particle statistics, and microabsorption, well known factors discussed in the literature (Klug & Alexander, 1954; Bish & Reynolds, 1989; Moore & Reynolds, 1997; Zhang et al., 2003; Dermatas et al., 2007; Kleeberg et al., 2008; Madsen et al., 2019). A number of preparation techniques have been developed to resolve those issues in multiphase samples (Klug & Alexander, 1954; Bish & Reynolds, 1989; Moore & Reynolds, 1997; Hillier, 1999; Monecke et al., 2001; Dermatas et al., 2007; Kleeberg et al., 2008).
(Rietveld, 1969Because the optimal method of sample preparation depends on sample characteristics such as composition, phase distribution, particle size and morphology, the preparation is often devised by trial and error and has not been considered for pyrite ore concentrates. In this work we evaluate and optimize the sample preparation for powder XRD of pyrite ore concentrate from the Thackaringa mine, Broken Hill (NSW, Australia), and estimate absolute and relative uncertainties on phase weight fractions extracted by QPA.
2. Materials and methods
2.1. Sample preparation
The pyrite concentrate used in this study was produced from ore originating from the Thackaringa mine in Broken Hill, New South Wales, Australia, taken from a pyrite–quartz–albite gneiss at the `Pyrite Hill' site in February 2019, containing approximately 20% pyrite by weight. The raw ore obtained by reverse cycle drilling was crushed and treated by gravity separation, followed by a scavenger float on the gravity tails. The gravity and float concentrates were combined to form the pyrite concentrate sample. The resulting coarse powder was stored under water at room temperature prior to handling.
Approximately 1 kg aliquots of this powder were washed with deionized water, vacuum filtered and dried at approximately 353 K for 3–5 h, then stored in closed containers at 258 K. Ore content variation is artificially introduced between aliquots due to manual sampling. To minimize this ore content variation, all measured samples were taken from the same
roughly homogenized by rotation of the container. Samples were hand ground using an agate mortar and pestle for 25 min. Samples were ball milled using a tungsten carbide (WC) jar and balls in an ESSA LM1-P vibratory ball mill, where 15 g of material was milled for 1, 2, 3, 5, 7 or 10 min. Magnetic separation of antiferromagnetic pyrrhotite from pyrite ore concentrate was performed by vigorously shaking 10 g sample aliquots in an inverted sample vial with a neodymium magnet on top of the vial.For comparison purposes, 15 g of pyrite ore concentrate was milled using a jar of alumina rods in a McCrone micronizing mill in 7 ml of propan-2-ol for 30 min. The sample was rinsed from the container with additional propan-2-ol (5–10 ml), which was then evaporated by heating to 353 K for 1 h.
2.2. XRD measurement
XRD measurements were performed using a Malvern Panalytical Empyrean II diffractometer with a Co Kα X-ray source (λ = 1.7891 Å) and point detector in Bragg–Brentano geometry in the 10–120° 2θ range with the sample rotated at 30 rev min−1 during measurement. Apart from the grease-prepared samples described below, all powders were partly top loaded into 30 mm diameter × 1 mm deep stainless steel holders, covered with a glass slide and turned vertical with slight tapping to reorient the grains. Loading and vertical taps were repeated until the holder was full, after which the glass slide was removed from the horizontal holder and a razor blade taken across the surface. The grease-prepared samples used silicone high-vacuum grease (Chem Supply) to coat the base of a `zero background' oriented silicon sample holder (Malvern Panalytical) onto which the sample was sprinkled in line with the lip of the holder, before gentle tapping to deposit a relatively thin layer of sample onto the grease.
The proportion of amorphous content was estimated by the ; Scarlett & Madsen, 2018). Crystalline α-Al2O3 (Baikalox, CR1, Baikowski) powder was loaded into sample holders and measured identically to the pyrite concentrate samples. The crystallinity of the alumina standard was assumed to be 99.0 (6)% according to previous amorphous content determination of this material (Cline et al., 2011). The overall profile scale factor was obtained by the as described in Section 2.3 using the ICDD (International Centre for Diffraction Data, Newtown Square, Pennsylvania, USA; https://www.icdd.com) 01-070-7019 (Pillet et al., 2001) for α-Al2O3; refined unit-cell and atomic parameters for this phase are given in Table S5 in the supporting information. The mass attenuation coefficients of the standard and concentrate were calculated according to their elemental composition using the database of Chantler (2001).
method (O'Connor & Raven, 19882.3. XRD analysis
Crystalline phases in the XRD data of the pyrite concentrate powder were identified using Malvern Panalytical's Highscore semi-quantitative analysis software with the ICDD PDF4+2021 database and the ICSD [Inorganic Database, FIZ-Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA; https://icsd.fiz-karlsruhe.de/index.xhtml] release 2020.1. QPA was performed using the (Rietveld, 1969) as implemented in the GSAS-II software (Toby & Von Dreele, 2013). The instrumental peak shape was modelled using a pseudo-Voigt function with W, X, Y, instrumental zero and asymmetry parameters determined from data for a silicon standard (Malvern Panalytical) and fixed in all subsequent refinements of sample data. The background was modelled with a seven-coefficient Chebyshev 1 polynomial and the vertical sample displacement refined.
The crystal structures used as starting structures in the phase refinements were ICDD 04-014-3191 (Wu et al., 2004) for pyrite (FeS2), ICSD 162490 (Antao et al., 2008) for quartz (SiO2), ICSD 68913 (Armbruster et al., 1990) for albite (NaAlSi3O8), ICDD 00-029-0723 (Morimoto et al., 1975) for pyrrhotite (Fe7S8) and ICSD 64987 (Shintani et al., 1975) for rutile (TiO2). Each phase had its crystallite size and phase fraction refined. of the triclinic of albite proved unstable, so the unit-cell parameters of albite were not refined for samples milled for 0, 1, 2 and 3 min but could be refined at the last step for the 5, 7 and 10 min milled samples. A March–Dollase parameter was included in the refinements to correct for the severe observed for albite, with the direction [013] yielding better agreement between calculated and observed patterns, as consistent with previous analysis (Kleeberg et al., 2008). For rutile, given its low phase fraction (<1 wt%), it was necessary to fix the crystallite size to an appropriate value (0.08 µm) for of the samples milled for 0 min to avoid divergence, but the parameter could be refined for samples milled for 1, 2, 3, 5, 7 and 10 min. of coordinates and isotropic atomic displacement parameters (ADPs) for quartz, albite, pyrrhotite and rutile often resulted in instability or non-sensible chemical composition, so these were not refined. Atomic coordinates and ADPs for the pyrite phase in the grease-prepared samples and those samples milled for 5, 7 and 10 min could be refined, with negligible change to phase fraction and crystallite size values when those were refined.
2.4. Neutron diffraction (ND)
ND measurements were performed on the Wombat high-intensity neutron powder diffractometer (Studer et al., 2006) at the Australian Nuclear Science and Technology Organisation's Centre for Neutron Scattering, Lucas Heights (NSW, Australia). Powder samples were loaded into 9 mm diameter vanadium cans and suspended in the neutron beam of wavelength 1.5430 (1) or 2.4144 (3) Å determined using the La11B6 Standard Reference Material (SRM) 660b from NIST. Rietveld refinements using neutron diffraction data have been attempted, but the precise determination of phase weight fractions in those data was prevented by difficulty in observing reflections from minor phases as a result of unfavourable neutron scattering cross sections and instrumental broadening.
2.5. Wavelength-dispersive (WD-XRF)
WD-XRF measurements were performed using a Malvern Panalytical Axios Advanced WDXRF instrument with a Rh Kα X-ray source (λ = 0.615 Å). Samples of 10–12 g were prepared by milling for 7 min as per Section 2.1. A 10:1 mass ratio of sample to Ceridust 3620 (polyethylene wax, used as a binding agent) was mixed and pressed into a pellet, and a 1074.7 mm2 area was illuminated during measurement. Two types of WD-XRF analyses were made: semiquantitative multi-elemental analysis, and quantitative analysis calibrated for Fe, S and Si.
The multi-elemental analysis provides semiquantitative elemental ratios for elements between Be and U using a fundamental parameters matrix correction (Omnian) calibrated in-house by Malvern Panalytical. In this analysis, lighter elements are slightly overestimated, probably as a result of the stronger X-ray attenuation of the pyrite concentrate compared with that of the standard (Rousseau, 2006), noting that ratios between elements with close Z are less affected. The automatic peak search and match were corrected by visual inspection of the spectra. Peaks for rhodium and phosphorus, arising from the source X-ray tube and Ceridust binder, respectively, were excluded from the analysis.
The quantitative calibrated analysis measured the Fe, S and Si content using empirical calibration curves from mixtures that matched the composition and sample preparation method of the concentrate, comprising three standards of 70:30, 80:20 and 90:10 ratios of FeS2:SiO2. These standards were produced using pyrite (iron disulfide, 99.8%, Sigma Aldrich) and acid-washed quartz (laboratory grade, Chem Supply), where 10 g of coarse quartz was first milled for 1 min and ground together with the appropriate mass of pyrite in an agate mortar before shaking in a glass vial. Pellets of this mixture were then milled and pressed identically to the pyrite concentrate samples for WD-XRF measurements. Calibration curves were obtained by linear regression between measured Kα peak intensities for Fe, S and Si and the corresponding weighed concentrations of standard mixtures.
2.6. and energy-dispersive spectroscopy (SEM-EDS)
For particle surface imaging, samples were sprinkled onto a two-sided tape-covered mount. For particle
imaging and elemental mapping, powder samples were covered in epoxy resin precursors, evacuated for 10 min and left to cure overnight. Particles were exposed by abrading the surface of cured resin samples for 1 to 5 min using P800 sandpaper; the samples were then cleaned under sonication in a distilled water bath, polished for 5 min using P1200 sandpaper and cleaned in the same manner once more. Dried resin samples were mounted using aluminium tape and coated with 10 nm of carbon using a Safematic CCU-010 compact coating unit immediately prior to analysis. SEM imaging was performed with an ST Instruments TM4000Plus tabletop microscope using a backscattered electron (BSE) detector paired with a Bruker QUANTAX energy-dispersive X-ray spectrometry (EDS) detector. Ten SEM images were taken of each pyrite concentrate powder ball milled for different times.2.7. Inductively coupled plasma (ICP-MS)
Approximately 1 g of sample was microwave digested in aqua regia mixture (3HCl + 2HNO3) to ensure all soluble materials were dissolved. It was noted that the sample contained some insoluble particles, most likely silicates. ICP-MS measurements were performed on the extracted solution using a Perkin Elmer NexIon 300D instrument.
2.8. Particle size analysis
Particle size distribution analysis was performed using a Malvern Panalytical Mastersizer 3000 laser dispersion instrument. Approximately 5 × 10−4 g ml−1 of untreated pyrite ore concentrate was used for dispersion in deionized water. Aliquots of sample were added slowly until the instrument reached the required particle obscuration rate (the rate at which specified surface can be accurately calculated and the risk from deposited particles is reduced). The samples were automatically sonicated and dispersed by the instrument during measurements, with blank measurements taken between each individual sample. Measurements were replicated three times for each sample to determine experimental uncertainty.
2.9. Sieve analysis
Sieve analysis was performed on unground pyrite concentrate using a series of Cole–Parmer stainless steel standard test sieves (ASTM E11 approved) with mesh sizes of 75, 106, 250, 600 and 1000 µm, using a Laarman LMSM 75–240 V/50 Hz horizontal sieve shaker for 1 h. The particle size distribution was obtained by weighing the material collected in each sieve [Fig. S2(a)]. Phase fractions in each portion were obtained from QPA using XRD following the optimized sample preparation outlined above.
3. Results and discussion
3.1. Qualitative analysis of samples
Before QPA was performed, the crystalline phases present in the sample needed to be identified. A powder diffraction pattern was initially obtained from XRD using a sample prepared by hand grinding in an agate mortar and top loading into a flat horizontal sample holder. This preparation was later found inappropriate for accurate QPA, as shown in Section 3.2, with ball milling necessary to obtain phase reflection intensities closer to those expected from published crystal structures. This gradual process was necessary to devise an optimal measurement strategy, with knowledge of the sample mineral content and particle distribution informing the preparation methods. XRD data for the pyrite concentrate sample ball milled for 7 min were used to identify crystalline phases present (Table 1 and Fig. 1), with elemental compositions corroborated with XRF and SEM-EDS.
Five crystalline phases were identified from the XRD data, with all reflections indexed by this phase composition. Qualitatively, pyrite was found to be the major phase, with albite and quartz as minor phases. Pyrrhotite and rutile were present as trace phases. Observed reflection intensities for albite were closest to those expected for the low albite polymorph (Armbruster et al., 1990). The 4M polymorph of pyrrhotite (Morimoto et al., 1975) was identified from the XRD pattern of a magnetically separated sample (Fig. S1).
The elemental composition of the pyrite concentrate obtained from semi-quantitative WD-XRF (for samples milled for 7 min, Table 2) and SEM-EDS (for as-received unground samples) was used to corroborate the phase identification obtained using the XRD data. Several representative images of the sample and the corresponding elemental compositions are shown in Fig. 2.
|
SEM imaging reveals phases separated into distinct particles of a relatively broad size distribution ranging from 1000 µm down to 1 µm. The measured composition of individual grains obtained using SEM-EDS is in agreement with the phase identification from XRD. The majority contain exclusively Fe and S, corresponding to the pyrite and pyrrhotite phases. The second most common compositions were silicates containing either Si and O, or Na, Al, Si and O, corresponding to the quartz and albite phases, respectively. A small number of aluminosilicate particles containing K or Ca (Fig. S3) suggests the presence of alkaline and plagioclase feldspars, noting significant miscibility between those minerals and albite, forming the feldspar family (Iddings, 1898; Zambonini & Washington, 1923). Other aluminosilicate particles containing Mg with lamellar morphology (Fig. S3) may suggest the presence of magnesium-rich mica, as observed in the ore before flotation (Plimer, 1977). No reflections for aluminosilicates other than albite were visible in the diffraction patterns as a result of their low amount, later confirmed using WD-XRF. SEM-EDS reveals Ti and O in isolated particles (light green in Fig. S3), confirming the presence of the rutile phase. Co is known to substitute for Fe in pyrite, and although no Co was detected in particles other than the iron SEM-EDS has little discrimination between Fe and Co due to the overlap of Fe Kβ (7058 eV) and Co Kα (6923 eV) (Deslattes et al., 2005) transition energies. A few isolated oxide particles containing Zr, or a mixture of La, Ce and Nd, were sometimes observed using BSE imaging. However, no Zr or lanthanoid oxides were visible using XRD, presumably because of their very low amount as confirmed by WD-XRF (Table 2).
All elements >0.5 wt% as determined using WD-XRF (S, Fe, Si, Al, Na, Ti) correspond to phase compositions detected using XRD. Other elements (Co, Ni, Ca, Mg, K, Zr, Nb, Y) consistent with those detected by SEM-EDS were identified by WD-XRF but did not correspond to the composition of crystalline phases identified using XRD, presumably because these elements are present as substituents within visible phases or belong to impurity phases below the ). The presence of trace amounts of Zr and Nb confirms the absence of visible zirconia and lanthanoid oxide phases in the XRD data. Trace amounts of As, Pb and Y may be present, but the signal is at the of the method (Fig. S4). As can substitute for S in FeS2, Pb may be a small impurity as PbS, commonly associated with pyrite (Abraitis et al., 2004), and Y is a common impurity in lanthanoid minerals. We note the presence of W, probably as contamination from the WC jars used in the milling process.
of the method. The higher energy resolution of WD-XRF compared with SEM-EDS enabled the confirmation of Co in the presence of Fe in the sample and also revealed trace amounts of Ni, possibly as a third substituent for Fe in the pyrite phase, in the molar ratio Fe:Co:Ni = 0.987 (8): 0.012 (10):0.002 (4). Trace amounts of Ca, K and Mg, alongside Na and Al, in the molar ratio Al:Na:Ca:K:Mg = 1.00 (2):0.91 (5):0.030 (9):0.02 (7):0.037 (5) are consistent with the presence of albite and the absence of other feldspars in the XRD data, and consistent with previous mineralogical analysis of samples from the Thackaringa mine (Plimer, 19773.2. Influence of preparation methods on quantitative phase analysis from XRD
For comparison with milled samples, we first prepared pyrite concentrate samples for XRD by hand grinding powder for 30 min in an agate mortar and top loading into sample holders. As expected, XRD data for hand-ground preparations lacked reproducibility as a result of poor particle statistics, microabsorption and Fig. S5). Reflection intensities differed slightly from those calculated for published crystal structures of pyrite and quartz, and differed greatly for albite (Fig. 3). Albite is known to be susceptible to due to its plate-like morphology and polysynthetic (Heidelbach et al., 2000; Jiang et al., 2000; Kleeberg et al., 2008; Vance, 1961; Donnay, 1940), with strong along the [001] direction and relatively weaker along the [010] direction in flat-plate sample preparations (Kleeberg et al., 2008). Although in albite may be better represented by complex models such as spherical harmonics, considering reflections for this phase have low intensity, a single March–Dollase parameter was selected as an approximation to reduce the number of refined parameters. The best agreement between measured and calculated reflection intensities was obtained with a correction along the [013] unique axis by trial and error for the 0 and 1 min samples, roughly approximating the determined by Kleeberg and co-workers, noting that a range of [0kl] unique axes when l > k adequately modelled the observed intensities. The choice of unique axis becomes insignificant as milling time increases and becomes negligible (the March–Dollase parameter is close to 1). For consistency, of along the [013] unique axis was used in model descriptions of all sample data.
(Several methods for the preparation of samples for XRD analysis have been suggested to correct for this effect, such as side loading of samples or sprinkling onto grease (Kleeberg et al., 2008; Unruh & Forbes, 2019). We note that top and side loading amplified different sets of reflections for albite, with the cluster of reflections at 32.6° the most susceptible, but neither method prevented Loading onto grease substantially reduced in the albite phase (Fig. 3), where the March–Dollase parameter refined to a value closer to 1, indicating a more random orientation of the powder. However, the patterns still lacked reproducibility, with this more evident for pyrite reflections, suggesting that the relatively small amount of powder in the grease preparation and the large particle size may lead to poor particle statistics. Fig. 3 shows typical profiles using XRD data of pyrite concentrate powder prepared by four different methods. residuals and the March–Dollase correction value for albite are given in Table S2.
Although pyrite is relatively soft (around 6 on the Mohs scale) (Craig & Vokes, 1993), it was later confirmed by SEM and laser diffraction that the particles remained relatively large after hand grinding in an agate mortar, perhaps due to the presence of harder quartz particles (around 7 on the Mohs scale) (Deer et al., 1962). Large crystallites are a well known source of systematic errors in powder diffraction (Moore & Reynolds, 1997). Neutron diffraction measurements with area detectors confirmed the poor particle statistics, even in larger pyrite concentrate samples, compared with XRD (Fig. S6). Although sieving is sometimes suggested to remove large crystallites (Brindley, 1945), pyrite concentrate powders are found to have a phase distribution that is correlated with grain size [Fig. S2(b)], with pyrite more represented in larger grains, so sieving would result in a modification of the sample composition. Grain size reduction has been shown to be effective in improving particle statistics and reducing and microabsorption (Madsen et al., 2019; Kleeberg et al., 2008; Klug & Alexander, 1954). A homogeneous size distribution of fine particles (<10 µm) has been stated as ideal (Brindley, 1945; Klug & Alexander, 1954). However, excessive milling can lead to the introduction of particle strain or induce chemical reactions, such as oxidation of ultrafine particles (Karim et al., 2016; Dettrick et al., 2019), and can also introduce structural defects, potentially causing further difficulty in QPA using XRD (Sakher et al., 2018; Madsen et al., 2019; O'Connor & Chang, 1986; Hillier, 2003; Dermatas et al., 2007).
Better agreement between observed and modelled reflection intensity, and improved pattern reproducibility across preparations, were obtained after ball milling the pyrite concentrate (Fig. 3), suggesting the suitability of this method of pyrite concentrate sample preparation for QPA using XRD. Because the optimal milling procedure is dependent on sample characteristics (O'Connor & Chang, 1986), the milling preparation was optimized for pyrite concentrate powder and the accuracy and precision of the QPA results were determined.
3.3. Optimization of sample milling time
The particle size distribution of pyrite concentrate powder ball milled for different times was investigated by SEM imaging and laser diffraction (Fig. 4 and Table 3).
|
The SEM and laser diffraction data follow the expected trend of a reduction in particle size with increasing milling time, where the reduction rate decreases as the milling time is further increased (O'Connor & Chang, 1986). Powders milled for 5 and 10 min contain particles of <3 µm diameter in larger agglomerates, possibly due to triboelectric effects introduced by friction in the dry milling procedure (Mirkowska et al., 2016; Landauer & Foerst, 2019), with a small portion of particles of diameter >10 µm. Laser diffraction reveals a multimodal particle size distribution (Fig. S18), probably resulting from differential grinding according to mineral hardness.
The pyrite concentrate powder milled for different times was examined using XRD, with the final phase composition calculated from Fig. S7) showed negligible changes in intensity when Co, Ni and As were substituted into the of FeS2, or when Mg, Ca and K were substituted into NaAlSi3O8, according to semi-quantitative WD-XRF elemental ratios, suggesting that XRD is not sensitive to those substitutions. Given this lack of sensitivity, the of atomic occupancies was not attempted and pure phase compositions were used for QPA.
using five separate XRD measurements of samples from the same batch of milled powder. Pattern simulations (The average results and reproducibility over the five repeat analyses are first qualitatively assessed before comparison with the composition obtained from calibrated WD-XRF. Standard deviations in refined parameters obtained for five replicates (Figs. 5 and 6) reveal a clear improvement in the reproducibility of XRD data when the sample milling time is increased. The discrepancy between observed and calculated patterns (Figs. S9–S15), as reflected in the weighted profile reliability factor Rwp (Fig. S8, Table S3), also decreases with increased milling time, with a plateau reached after about 7 min. Fig. 6 shows that the mean refined value of the March–Dollase parameter to correct for of the albite phase approaches 1, indicative of minimal in the phase, as the milling time increases. Excluding measurements with unground powder, the unit-cell parameter changes were within 0.002% (Table S4), suggesting chemical stability of the phases.
Particle size reduction causes reflection broadening, as indicated by the reduction in the refined crystallite size with milling time [Fig. 7(b), Fig. S16]. Peak broadening may cause difficulty in discriminating reflections for minor phases such as rutile and pyrrhotite [Fig. 7(a)], with significant broadening for the pyrrhotite phase causing overlap of five proximal pyrrhotite reflections in the data [Fig. 7(b)] and refined crystallite sizes below 0.05 µm. This is probably due to pyrrhotite having a much lower hardness (around 3.5–4.5 on the Mohs scale) (Chen et al., 2020) than the other phases. Reflection overlap from broadening may explain the increase in uncertainty observed for the pyrrhotite weight fraction when the milling time is increased from 7 to 10 min (Fig. 5). Milling times longer than 10 min were not investigated.
The preparation was compared with that obtained using the McCrone XRD-Mill vibratory rod mill under propan-2-ol, a particle size reduction method recommended for XRD sample preparation (Whitfield et al., 2019). Mean particle sizes equivalent to those obtained after 7 min in the ESSA mill were obtained after 30 min in the McCrone mill (Fig. S18). Although laser diffraction revealed a narrower particle size distribution using the McCrone mill, under-ground particles of around 10 µm remained. Comparison of XRD data for samples ground using the two different mills revealed slightly sharper reflections for the McCrone preparation (Fig. S19), resulting in smaller refined crystallite sizes for most phases (Table S6). Refined parameters were comparable between the two preparations, although we note that further optimization of the faster ESSA ball mill method may be achieved by considering factors such as the number, size and shape of the balls, as well as the amount of powder, number of rotations per minute, milling medium, ball and jar materials etc.
A strong correlation exists between particle size and refined parameters (Fig. S16), as expected from the influence of particle statistics and microabsorption, noting a substantial underestimation of pyrite weight fraction when the particle size is high. Microabsorption (Brindley, 1945) is expected to be problematic in pyrite concentrate samples due to the presence of phases with different mass attenuation coefficients (MACs) (FeS2 MAC = 100 cm2 g−1, SiO2 MAC = 54 cm2 g−1 at 1.79 Å); we note that although corrections exist (Brindley, 1945; Rousseau, 2006) they are often unsatisfactory (Scarlett & Madsen, 2018). Although further particle size reduction may reduce microabsorption, it may also induce excessive broadening of reflections. Shorter-wavelength instruments may be desirable for those samples. A milling time of around 7 min, corresponding to mean particle sizes close to 3 µm, was considered a suitable compromise for the preparation of pyrite concentrate samples for XRD using Co Kα wavelength.
3.4. Comparison of XRD results with elemental analysis
To confirm the validity of the refined phase fractions from XRD analysis, the results were compared with elemental analysis determined using WD-XRF. The precision of QPA from XRD was assessed by repeating the measurement and analysis over five samples taken from 1 kg aliquots of the pyrite concentrate that were subjected to 7 min milling and compared with WD-XRF analyses of the samples (Tables 4 and 5).
|
|
Table 4 shows the mean phase fractions obtained from QPA of five pyrite ore samples milled for 7 min. The standard deviations for the refined phase fractions over the five repeats lie below 0.3 wt%, confirming the good reproducibility of this preparation method. The elemental composition calculated from the refined phase fractions obtained from XRD is compared with that obtained using WD-XRF in Table 5. We note that calibration with a matrix-matching standard (Souders & Sylvester, 2010; Rousseau, 2006) was necessary in the WD-XRF method, with the major elements Fe, S and Si calibrated using FeS2/SiO2 mixtures in a composition range close to that of the pyrite concentrate sample. The elemental weight fractions for these elements obtained from the two methods are within 2 wt% (Table 5). Although in general agreement, the amount of Fe and S is slightly overestimated and Si slightly underestimated by XRD. The bias is much larger than the standard deviations across repeats (Table 5), suggesting a systematic, rather than statistical, error. Some of these discrepancies could be ascribed to elements not included in the composition of refined phases, such as Mg, K and Ca in albite, and Co, Ni and As in pyrite, or impurities containing Pb, Nd, Y and Zr in amounts too small to be visible in XRD. However, the difference should be smaller than 0.5 wt% according to multi-elemental WD-XRF data (Table 2). An overestimation of heavier elements may point to uncorrected microabsorption, despite empirical calibration being used in the XRF analysis, perhaps resulting from a different particle size distribution in the ore sample compared with purchased synthetic standards. Although particle size reduction decreases the effect of microabsorption, and samples were ball milled identically in preparations for both XRD and XRF analyses, microabsorption may still be non-negligible (Scarlett et al., 2002; Whitfield, 2016) and the degree of microabsorption may differ between characterization methods considering the different wavelengths used.
The presence of an unaccounted for amorphous phase may also explain the differences between elemental compositions determined by XRD and WD-XRF, with this phase either present in the original material or induced by high-intensity ball milling. The ) returned −9.0 (5) wt% amorphous content. This physically unrealistic negative value reveals a bias of the method, consistent with a previous investigation (Scarlett & Madsen, 2018) which showed that amorphous content estimation is notoriously inaccurate in complex samples susceptible to microabsorption, as is the case for pyrite ore concentrate samples. Correlations between refined ADPs and scale factors of the alumina standard [correlation factors were 0.81 and 0.66 for Uiso(Al) and Uiso(O), respectively] further contribute to inaccuracies (Madsen et al., 2011).
method (O'Connor & Raven, 1988Although the exact amount cannot be determined accurately, the absence of broad features in the background of the XRD patterns (Fig. S17) comparable to the fully crystalline standard suggests that the amount of amorphous phases is low in the concentrate. A bias can also be introduced from imperfectly modelled reflection intensity and peak shape. Crystal structures with calculated intensity ratios close to those observed were selected from the literature but some uncertainty remains, for example in the choice of polytype for albite being complicated by for this phase in pyrite concentrate samples. Both pyrite and albite are known to have a strong tendency to accept impurities, as suggested by multi-elemental XRF and SEM-EDS, with different compositional variances generating slightly different Bragg positions which, when superimposed, can result in slightly abnormal peak shapes that can hamper correct intensity Although refined parameters such as particle size or strain, March–Dollase correction, atomic positions and ADPs can model those differences, resulting in reasonable agreement between observed and calculated patterns, a systematic error may remain in refined weight fractions. The observed compositional bias may be the result of a combination of all previously identified sources of errors. Nevertheless, the QPA of pyrite concentrate powder ball milled to 3 µm particle size (7 min milling time) produces weight fractions within 2 wt% of those determined using calibrated WD-XRF, with standard deviations <0.3 wt%, confirming the reproducibility of the method and making it suitable at least for comparative analysis.
4. Conclusions
The quantitative phase analysis using XRD of pyrite ore concentrate powder extracted from the Thackaringa mine in Australia was problematic due to the presence of large particles, hard impurities and
of the albite phase. Milling of the powder to particle sizes around 3 µm yielded reproducible results across preparations and was found to be suitable for the quantitative phase analysis of pyrite concentrate using XRD. Complementary techniques were necessary for the detection of trace elements and minerals. Refined phase fractions using XRD data for all phases are significantly correlated with the mean volume particle size.Milling resulted in a slight broadening of XRD reflections, without appreciable phase transformation, although substantial broadening of the pyrrhotite phase was observed which may influence the phase quantification after 10 min milling.
The elemental composition obtained from XRD of pyrite concentrate powder milled for 7 min, with a mean volume particle size around 3 µm, was in general agreement with that obtained from WD-XRF. However, we note that some discrepancy remains, perhaps as a result of unaccounted elemental substitutions or amorphous phases.
The study provides a useful methodology for the precise QPA of pyrite ore concentrates using XRD, as long as the analyst is aware of the possible drawbacks of the methods as highlighted in this article. Researchers are urged not to rely on a single preparation or analysis technique for the QPA of pyrite ores and to assess reproducibility and accuracy for each new sample composition with as much knowledge about the sample as possible.
Supporting information
CCDC references: 2223099; 2223100; 2223101; 2223102; 2223103; 2223104; 2223105; 2223106; 2223107; 2223108; 2223109; 2223110; 2223111; 2223112; 2223113; 2223114; 2223115; 2223116; 2223117; 2223118; 2223119; 2223120; 2223121; 2223122; 2223123; 2223124; 2223125; 2223126; 2223127; 2223128; 2223129; 2223130; 2223131; 2223132; 2223133; 2223134; 2223135; 2223136; 2223137; 2223138; 2223139; 2223140; 2223141; 2223142; 2223143
https://doi.org/10.1107/S1600576722009888/vb5042sup1.cif
contains datablocks QPAPBMXGreaseSuspendedSamplePrep_publ, QPAPBMXGreaseSuspendedSamplePrep_overall, QPAPBMXGreaseSuspendedSamplePrep_phase_2, QPAPBMXGreaseSuspendedSamplePrep_phase_0, QPAPBMXGreaseSuspendedSamplePrep_phase_3, QPAPBMXGreaseSuspendedSamplePrep_phase_4, QPAPBMXGreaseSuspendedSamplePrep_phase_1, QPAPBMXGreaseSuspendedSamplePrep_pwd_0. DOI:https://doi.org/10.1107/S1600576722009888/vb5042sup2.cif
contains datablocks QPAPBMXHandGrindSamplePrep_publ, QPAPBMXHandGrindSamplePrep_overall, QPAPBMXHandGrindSamplePrep_phase_2, QPAPBMXHandGrindSamplePrep_phase_0, QPAPBMXHandGrindSamplePrep_phase_3, QPAPBMXHandGrindSamplePrep_phase_4, QPAPBMXHandGrindSamplePrep_phase_1, QPAPBMXHandGrindSamplePrep_pwd_0. DOI:https://doi.org/10.1107/S1600576722009888/vb5042sup3.cif
contains datablocks QPABAT3_publ, QPABAT3_overall, QPABAT3_phase_2, QPABAT3_phase_0, QPABAT3_phase_3, QPABAT3_phase_4, QPABAT3_phase_1, QPABAT3_pwd_0. DOI:https://doi.org/10.1107/S1600576722009888/vb5042sup4.cif
contains datablocks QPABAT1ug3_publ, QPABAT1ug3_overall, QPABAT1ug3_phase_2, QPABAT1ug3_phase_0, QPABAT1ug3_phase_3, QPABAT1ug3_phase_1, QPABAT1ug3_phase_4, QPABAT1ug3_pwd_0. DOI:https://doi.org/10.1107/S1600576722009888/vb5042sup5.cif
contains datablocks NEW1minmill_publ, NEW1minmill_overall, NEW1minmill_phase_0, NEW1minmill_phase_2, NEW1minmill_phase_4, NEW1minmill_phase_1, NEW1minmill_phase_3, NEW1minmill_pwd_0. DOI:https://doi.org/10.1107/S1600576722009888/vb5042sup6.cif
contains datablocks NEW2minmill_publ, NEW2minmill_overall, NEW2minmill_phase_0, NEW2minmill_phase_2, NEW2minmill_phase_4, NEW2minmill_phase_1, NEW2minmill_phase_3, NEW2minmill_pwd_0. DOI:https://doi.org/10.1107/S1600576722009888/vb5042sup7.cif
contains datablocks NEW3minmill_publ, NEW3minmill_overall, NEW3minmill_phase_0, NEW3minmill_phase_2, NEW3minmill_phase_4, NEW3minmill_phase_1, NEW3minmill_phase_3, NEW3minmill_pwd_0. DOI:https://doi.org/10.1107/S1600576722009888/vb5042sup8.cif
contains datablocks NEW5minmill_publ, NEW5minmill_overall, NEW5minmill_phase_0, NEW5minmill_phase_2, NEW5minmill_phase_4, NEW5minmill_phase_1, NEW5minmill_phase_3, NEW5minmill_pwd_0. DOI:https://doi.org/10.1107/S1600576722009888/vb5042sup9.cif
contains datablocks NEW10minmill_publ, NEW10minmill_overall, NEW10minmill_phase_0, NEW10minmill_phase_2, NEW10minmill_phase_4, NEW10minmill_phase_1, NEW10minmill_phase_3, NEW10minmill_pwd_0. DOI:Additional figures and tables. DOI: https://doi.org/10.1107/S1600576722009888/vb5042sup10.pdf
a = Å | β = ° |
b = Å | γ = ° |
c = Å | Specimen preparation: Prepared at 298 K and 101.3 kPa, cooled at N/A K min−1 |
α = ° |
AlNaO8Si3 | β = 116.5999° |
Mr = 262.22 | γ = 87.8097° |
Triclinic, C1 | V = 665.11 Å3 |
a = 8.138925 Å | Z = 4 |
b = 12.799307 Å | Dx = 2.619 Mg m−3 |
c = 7.160071 Å | T = 300 K |
α = 94.2255° |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.206(13), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: none |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.00887 | 0.16846 | 0.20805 | 0.007 | |
Si1 | 0.00375 | 0.82051 | 0.23737 | 0.006 | |
Si2 | 0.69162 | 0.11021 | 0.31466 | 0.006 | |
Si3 | 0.68129 | 0.88190 | 0.36076 | 0.006 | |
Na1 | 0.26799 | 0.98865 | 0.14650 | 0.031 | |
O1 | 0.00490 | 0.13103 | 0.96660 | 0.012 | |
O2 | 0.59176 | 0.99756 | 0.28040 | 0.008 | |
O3 | 0.81230 | 0.10966 | 0.19010 | 0.014 | |
O4 | 0.82000 | 0.85101 | 0.25870 | 0.018 | |
O5 | 0.01288 | 0.30238 | 0.27060 | 0.011 | |
O6 | 0.02329 | 0.69368 | 0.22910 | 0.011 | |
O7 | 0.20780 | 0.10896 | 0.38900 | 0.011 | |
O8 | 0.18400 | 0.86817 | 0.43620 | 0.012 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0074 | 0.0068 | 0.0061 | −0.0009 | 0.0031 | 0.0004 |
Si1 | 0.0068 | 0.0065 | 0.0055 | 0.0011 | 0.0030 | 0.0008 |
Si2 | 0.0061 | 0.0055 | 0.0073 | −0.0002 | 0.0025 | 0.0004 |
Si3 | 0.0060 | 0.0055 | 0.0074 | 0.0006 | 0.0028 | 0.0009 |
Na1 | 0.0136 | 0.0471 | 0.0315 | −0.0050 | 0.0084 | −0.0219 |
O1 | 0.0164 | 0.0122 | 0.0074 | −0.0002 | 0.0067 | 0.0014 |
O2 | 0.0074 | 0.0056 | 0.0119 | 0.0003 | 0.0033 | 0.0020 |
O3 | 0.0117 | 0.0130 | 0.0162 | −0.0040 | 0.0093 | −0.0017 |
O4 | 0.0134 | 0.0179 | 0.0216 | 0.0046 | 0.0129 | 0.0020 |
O5 | 0.0103 | 0.0076 | 0.0150 | −0.0020 | 0.0052 | −0.0009 |
O6 | 0.0101 | 0.0071 | 0.0145 | 0.0022 | 0.0034 | 0.0012 |
O7 | 0.0120 | 0.0129 | 0.0080 | 0.0024 | 0.0013 | 0.0015 |
O8 | 0.0140 | 0.0140 | 0.0084 | −0.0026 | −0.0002 | −0.0006 |
Al1—O1i | 1.7460 | O1—Al1xi | 1.7460 |
Al1—O3ii | 1.7425 | O1—Si1iii | 1.6002 |
Al1—O5 | 1.7372 | O1—Na1xii | 2.6726 |
Al1—O7 | 1.7472 | O1—Na1iii | 2.5302 |
Si1—O1iii | 1.6002 | O2—Si2x | 1.6305 |
Si1—O4ii | 1.6011 | O2—Si3 | 1.6496 |
Si1—O6 | 1.6244 | O2—Na1 | 2.3708 |
Si1—O8 | 1.6190 | O3—Al1xiii | 1.7425 |
Si2—O2iv | 1.6305 | O3—Si2 | 1.5947 |
Si2—O3 | 1.5947 | O3—Na1ix | 2.4545 |
Si2—O6v | 1.6207 | O4—Si1xiii | 1.6011 |
Si2—O8vi | 1.6171 | O4—Si3 | 1.6208 |
Si3—O2 | 1.6496 | O5—Al1 | 1.7372 |
Si3—O4 | 1.6208 | O5—Si3xiv | 1.5965 |
Si3—O5vii | 1.5965 | O6—Si1 | 1.6244 |
Si3—O7vi | 1.6024 | O6—Si2xv | 1.6207 |
Na1—O1viii | 2.6726 | O7—Al1 | 1.7472 |
Na1—O1iii | 2.5302 | O7—Si3vi | 1.6024 |
Na1—O2 | 2.3708 | O7—Na1iv | 2.4364 |
Na1—O3ix | 2.4545 | O8—Si1 | 1.6190 |
Na1—O7x | 2.4364 | O8—Si2vi | 1.6171 |
O1i—Al1—O3ii | 102.839 | O6v—Si2—O8vi | 110.392 |
O1i—Al1—O5 | 116.078 | O2—Si3—O4 | 107.348 |
O3ii—Al1—O5 | 112.16 | O2—Si3—O5vii | 105.916 |
O1i—Al1—O7 | 103.947 | O4—Si3—O5vii | 110.171 |
O3ii—Al1—O7 | 111.136 | O2—Si3—O7vi | 108.553 |
O5—Al1—O7 | 110.225 | O4—Si3—O7vi | 110.204 |
O1iii—Si1—O4ii | 109.382 | O5vii—Si3—O7vi | 114.325 |
O1iii—Si1—O6 | 112.467 | Al1xi—O1—Si1iii | 141.36 |
O4ii—Si1—O6 | 108.286 | Si2x—O2—Si3 | 130.051 |
O1iii—Si1—O8 | 107.201 | Si2x—O2—Na1 | 120.258 |
O4ii—Si1—O8 | 111.41 | Si3—O2—Na1 | 108.874 |
O6—Si1—O8 | 108.124 | Al1xiii—O3—Si2 | 139.443 |
O2iv—Si2—O3 | 111.07 | Si1xiii—O4—Si3 | 161.159 |
O2iv—Si2—O6v | 104.318 | Al1—O5—Si3xiv | 129.66 |
O3—Si2—O6v | 112.142 | Si1—O6—Si2xv | 135.75 |
O2iv—Si2—O8vi | 106.953 | Al1—O7—Si3vi | 133.908 |
O3—Si2—O8vi | 111.607 | Si1—O8—Si2vi | 151.752 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) x+1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z−1; (ix) −x+1, −y+1, −z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y−1, z+1; (xiii) x+1, y, z; (xiv) x−1/2, y−1/2, z; (xv) x−1/2, y+1/2, z. |
FeS2 | V = 159.16 (1) Å3 |
Mr = 119.97 | Z = 4 |
Cubic, Pa3 | Dx = 5.007 Mg m−3 |
a = 5.41928 (5) Å | T = 300 K |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.379(4), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.00000 | 0.00000 | 0.00000 | 0.0115 (7)* | |
S2 | 0.38435 (13) | 0.38435 | 0.38435 | 0.0087 (6)* |
Fe1—S2i | 2.2636 (2) | Fe1—S2vi | 2.2636 (7) |
Fe1—S2ii | 2.2636 (2) | S2—Fe1vii | 2.2636 (2) |
Fe1—S2iii | 2.2636 (2) | S2—Fe1viii | 2.2636 (2) |
Fe1—S2iv | 2.2636 (2) | S2—Fe1ix | 2.2636 (7) |
Fe1—S2v | 2.2636 (2) | S2—S2x | 2.1712 (8) |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −z+1/2, x−1/2, y; (iii) y, −z+1/2, x−1/2; (iv) −z, x−1/2, −y+1/2; (v) −y+1/2, −z, x−1/2; (vi) y−1/2, −z+1/2, −x; (vii) x+1/2, y, −z+1/2; (viii) −z+1/2, x+1/2, y; (ix) y, −z+1/2, x+1/2; (x) −x+1, −y+1, −z+1. |
Fe7S8 | β = 117.25 (2)° |
Mr = 647.41 | V = 933.0 (2) Å3 |
Monoclinic, C2/c | Z = 4 |
a = 11.937 (11) Å | Dx = 4.609 Mg m−3 |
b = 6.8622 (15) Å | T = 300 K |
c = 12.812 (13) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.061(4), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
S1 | 0.01800 | 0.38330 | 0.11960 | 0.010* | |
S2 | 0.02910 | 0.11420 | 0.63900 | 0.010* | |
Fe3 | 0.10860 | 0.10250 | 0.49980 | 0.010* | |
S4 | 0.23410 | 0.13550 | 0.38260 | 0.010* | |
Fe5 | 0.24180 | 0.36600 | 0.24680 | 0.010* | |
S6 | 0.26790 | 0.13400 | 0.12360 | 0.010* | |
Fe7 | 0.38720 | 0.15000 | 0.01260 | 0.010* | |
Fe8 | 0.00000 | 0.14720 | 0.25000 | 0.010* |
S1—Fe3i | 2.494 | Fe5—S2v | 2.4442 |
S1—Fe5 | 2.4125 | Fe5—S4 | 2.3841 |
S1—Fe7ii | 2.3889 | Fe5—S6 | 2.3608 |
S1—Fe7iii | 2.4406 | S6—Fe3viii | 2.4502 |
S1—Fe8 | 2.4064 | S6—Fe5 | 2.3608 |
S2—Fe3 | 2.3743 | S6—Fe7 | 2.4324 |
S2—Fe3iv | 2.3236 | S6—Fe7iii | 2.3899 |
S2—Fe5v | 2.4442 | Fe7—S1ix | 2.3889 |
S2—Fe7vi | 2.3660 | Fe7—S1iii | 2.4406 |
S2—Fe8iv | 2.4110 | Fe7—S2x | 2.3660 |
Fe3—S1i | 2.494 | Fe7—S6 | 2.4324 |
Fe3—S2 | 2.3743 | Fe7—S6iii | 2.3899 |
Fe3—S2iv | 2.3236 | Fe8—S1 | 2.4064 |
Fe3—S6vii | 2.4502 | Fe8—S1i | 2.4064 |
S4—Fe5 | 2.3841 | Fe8—S2iv | 2.4110 |
Fe5—S1 | 2.4125 | Fe8—S2viii | 2.4110 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z; (iv) −x, −y, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z+3/2; (vii) x, −y, z+3/2; (viii) x, −y, z+1/2; (ix) x+1/2, y−1/2, z; (x) x+1/2, −y+1/2, z+1/2. |
O2Ti | V = 62.61 (6) Å3 |
Mr = 79.9 | Z = 2 |
Tetragonal, P42/mnm | Dx = 4.238 Mg m−3 |
a = 4.597 (3) Å | T = 300 K |
c = 2.963 (3) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.100, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.00000 | 0.00000 | 0.00000 | 0.006 | |
O1 | 0.30493 | 0.30493 | 0.00000 | 0.006 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0070 | 0.0070 | 0.0047 | −0.0002 | 0.0000 | 0.0000 |
O1 | 0.0060 | 0.0060 | 0.0045 | −0.0019 | 0.0000 | 0.0000 |
Ti1—O1 | 1.9824 | Ti1—O1v | 1.9501 |
Ti1—O1i | 1.9501 | O1—Ti1 | 1.9824 |
Ti1—O1ii | 1.9501 | O1—Ti1vi | 1.9501 |
Ti1—O1iii | 1.9824 | O1—Ti1vii | 1.9501 |
Ti1—O1iv | 1.9501 | ||
O1—Ti1—O1i | 90 | O1iii—Ti1—O1iv | 90 |
O1—Ti1—O1ii | 90 | O1—Ti1—O1v | 90 |
O1i—Ti1—O1ii | 98.87 | O1i—Ti1—O1v | 180 |
O1—Ti1—O1iii | 180 | O1ii—Ti1—O1v | 81.13 |
O1i—Ti1—O1iii | 90 | O1iii—Ti1—O1v | 90 |
O1ii—Ti1—O1iii | 90 | O1iv—Ti1—O1v | 98.87 |
O1—Ti1—O1iv | 90 | Ti1—O1—Ti1vi | 130.565 |
O1i—Ti1—O1iv | 81.13 | Ti1—O1—Ti1vii | 130.565 |
O1ii—Ti1—O1iv | 180 | Ti1vi—O1—Ti1vii | 98.87 |
Symmetry codes: (i) −y+1/2, x−1/2, z−1/2; (ii) −y+1/2, x−1/2, z+1/2; (iii) −x, −y, z; (iv) y−1/2, −x+1/2, z−1/2; (v) y−1/2, −x+1/2, z+1/2; (vi) −y+1/2, x+1/2, z−1/2; (vii) −y+1/2, x+1/2, z+1/2. |
O2Si | V = 113.09 (1) Å3 |
Mr = 60.08 | Z = 3 |
Trigonal, P3221 | Dx = 2.647 Mg m−3 |
a = 4.9149 (5) Å | T = 300 K |
c = 5.4057 (4) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.244(15), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.47000 | 0.00000 | 0.66670 | 0.010* | |
O1 | 0.41460 | 0.26780 | 0.78543 | 0.010* |
Si1—O1 | 1.6053 | O1—Si1 | 1.6053 |
Si1—O1i | 1.6116 | O1—Si1iv | 1.6116 |
Si1—O1ii | 1.6114 | O1—Si1v | 1.6114 |
Si1—O1iii | 1.6054 | ||
O1—Si1—O1i | 110.256 | O1ii—Si1—O1iii | 110.262 |
O1—Si1—O1ii | 108.745 | Si1—O1—Si1iv | 143.832 |
O1i—Si1—O1ii | 109.685 | Si1—O1—Si1v | 143.836 |
O1—Si1—O1iii | 109.161 | Si1iv—O1—Si1v | 0.009 |
O1i—Si1—O1iii | 108.725 |
Symmetry codes: (i) −y+1, x−y, z−1/3; (ii) −x+1, y−x, −z+5/3; (iii) x−y, −y, −z+4/3; (iv) y−x+1, −x+1, z+1/3; (v) −x+1, y−x+1, −z+5/3. |
Panalytical_Reflection_Transmission diffractometer | 2θmin = 10.017°, 2θmax = 89.993°, 2θstep = 0.013° |
Radiation source: Co-Ka, Graded_Flat |
Rp = 0.081 | 6092 data points |
Rwp = 0.114 | Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 0.000, 0.000, 3.345, 2.239, -0.670, 0.034, |
Rexp = 0.064 | Background function: Background function: "chebyschev-1" function with 7 terms: 181.2(5), -233.0(9), 140.3(8), -64.2(7), 23.5(7), -5.0(5), 3.5(5), |
AlNaO8Si3 | β = 116.5972° |
Mr = 262.22 | γ = 87.7872° |
Triclinic, C1 | V = 664.64 Å3 |
a = 8.141789 Å | Z = 4 |
b = 12.787902 Å | Dx = 2.621 Mg m−3 |
c = 7.158828 Å | T = 300 K |
α = 94.2429° |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: none |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.00887 | 0.16846 | 0.20805 | 0.007 | |
Si1 | 0.00375 | 0.82051 | 0.23737 | 0.006 | |
Si2 | 0.69162 | 0.11021 | 0.31466 | 0.006 | |
Si3 | 0.68129 | 0.88190 | 0.36076 | 0.006 | |
Na1 | 0.26799 | 0.98865 | 0.14650 | 0.031 | |
O1 | 0.00490 | 0.13103 | 0.96660 | 0.012 | |
O2 | 0.59176 | 0.99756 | 0.28040 | 0.008 | |
O3 | 0.81230 | 0.10966 | 0.19010 | 0.014 | |
O4 | 0.82000 | 0.85101 | 0.25870 | 0.018 | |
O5 | 0.01288 | 0.30238 | 0.27060 | 0.011 | |
O6 | 0.02329 | 0.69368 | 0.22910 | 0.011 | |
O7 | 0.20780 | 0.10896 | 0.38900 | 0.011 | |
O8 | 0.18400 | 0.86817 | 0.43620 | 0.012 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0074 | 0.0068 | 0.0061 | −0.0009 | 0.0031 | 0.0004 |
Si1 | 0.0068 | 0.0065 | 0.0055 | 0.0011 | 0.0030 | 0.0008 |
Si2 | 0.0061 | 0.0055 | 0.0073 | −0.0002 | 0.0025 | 0.0004 |
Si3 | 0.0060 | 0.0055 | 0.0074 | 0.0006 | 0.0028 | 0.0009 |
Na1 | 0.0136 | 0.0471 | 0.0315 | −0.0050 | 0.0084 | −0.0219 |
O1 | 0.0164 | 0.0122 | 0.0074 | −0.0002 | 0.0067 | 0.0014 |
O2 | 0.0074 | 0.0056 | 0.0119 | 0.0003 | 0.0033 | 0.0020 |
O3 | 0.0117 | 0.0130 | 0.0162 | −0.0040 | 0.0093 | −0.0017 |
O4 | 0.0134 | 0.0179 | 0.0216 | 0.0046 | 0.0129 | 0.0020 |
O5 | 0.0103 | 0.0076 | 0.0150 | −0.0020 | 0.0052 | −0.0009 |
O6 | 0.0101 | 0.0071 | 0.0145 | 0.0022 | 0.0034 | 0.0012 |
O7 | 0.0120 | 0.0129 | 0.0080 | 0.0024 | 0.0013 | 0.0015 |
O8 | 0.0140 | 0.0140 | 0.0084 | −0.0026 | −0.0002 | −0.0006 |
Al1—O1i | 1.7455 | O1—Al1xi | 1.7455 |
Al1—O3ii | 1.7429 | O1—Si1iii | 1.5999 |
Al1—O5 | 1.7356 | O1—Na1xii | 2.6716 |
Al1—O7 | 1.7471 | O1—Na1iii | 2.5304 |
Si1—O1iii | 1.5999 | O2—Si2x | 1.6297 |
Si1—O4ii | 1.6013 | O2—Si3 | 1.6483 |
Si1—O6 | 1.6228 | O2—Na1 | 2.3717 |
Si1—O8 | 1.6191 | O3—Al1xiii | 1.7429 |
Si2—O2iv | 1.6297 | O3—Si2 | 1.5949 |
Si2—O3 | 1.5949 | O3—Na1ix | 2.4534 |
Si2—O6v | 1.6202 | O4—Si1xiii | 1.6013 |
Si2—O8vi | 1.6169 | O4—Si3 | 1.6208 |
Si3—O2 | 1.6483 | O5—Al1 | 1.7356 |
Si3—O4 | 1.6208 | O5—Si3xiv | 1.5965 |
Si3—O5vii | 1.5965 | O6—Si1 | 1.6228 |
Si3—O7vi | 1.6022 | O6—Si2xv | 1.6202 |
Na1—O1viii | 2.6716 | O7—Al1 | 1.7471 |
Na1—O1iii | 2.5304 | O7—Si3vi | 1.6022 |
Na1—O2 | 2.3717 | O7—Na1iv | 2.4350 |
Na1—O3ix | 2.4534 | O8—Si1 | 1.6191 |
Na1—O7x | 2.4350 | O8—Si2vi | 1.6169 |
O1i—Al1—O3ii | 102.855 | O6v—Si2—O8vi | 110.428 |
O1i—Al1—O5 | 116.061 | O2—Si3—O4 | 107.334 |
O3ii—Al1—O5 | 112.147 | O2—Si3—O5vii | 105.864 |
O1i—Al1—O7 | 103.957 | O4—Si3—O5vii | 110.228 |
O3ii—Al1—O7 | 111.182 | O2—Si3—O7vi | 108.58 |
O5—Al1—O7 | 110.191 | O4—Si3—O7vi | 110.176 |
O1iii—Si1—O4ii | 109.397 | O5vii—Si3—O7vi | 114.331 |
O1iii—Si1—O6 | 112.462 | Al1xi—O1—Si1iii | 141.388 |
O4ii—Si1—O6 | 108.255 | Si2x—O2—Si3 | 129.999 |
O1iii—Si1—O8 | 107.195 | Si2x—O2—Na1 | 120.298 |
O4ii—Si1—O8 | 111.458 | Si3—O2—Na1 | 108.885 |
O6—Si1—O8 | 108.103 | Al1xiii—O3—Si2 | 139.47 |
O2iv—Si2—O3 | 111.114 | Si1xiii—O4—Si3 | 161.161 |
O2iv—Si2—O6v | 104.247 | Al1—O5—Si3xiv | 129.633 |
O3—Si2—O6v | 112.16 | Si1—O6—Si2xv | 135.712 |
O2iv—Si2—O8vi | 106.957 | Al1—O7—Si3vi | 133.928 |
O3—Si2—O8vi | 111.575 | Si1—O8—Si2vi | 151.749 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) x+1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z−1; (ix) −x+1, −y+1, −z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y−1, z+1; (xiii) x+1, y, z; (xiv) x−1/2, y−1/2, z; (xv) x−1/2, y+1/2, z. |
FeS2 | V = 159.13 (1) Å3 |
Mr = 119.97 | Z = 4 |
Cubic, Pa3 | Dx = 5.007 Mg m−3 |
a = 5.41900 (5) Å | T = 300 K |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.389(5), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.00000 | 0.00000 | 0.00000 | 0.0281 (10)* | |
S2 | 0.38871 (17) | 0.38871 | 0.38871 | 0.0310 (8)* |
Fe1—S2i | 2.2725 (2) | Fe1—S2vi | 2.2725 (8) |
Fe1—S2ii | 2.2725 (2) | S2—Fe1vii | 2.2725 (2) |
Fe1—S2iii | 2.2725 (2) | S2—Fe1viii | 2.2725 (2) |
Fe1—S2iv | 2.2725 (2) | S2—Fe1ix | 2.2725 (8) |
Fe1—S2v | 2.2725 (2) | S2—S2x | 2.0892 (10) |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −z+1/2, x−1/2, y; (iii) y, −z+1/2, x−1/2; (iv) −z, x−1/2, −y+1/2; (v) −y+1/2, −z, x−1/2; (vi) y−1/2, −z+1/2, −x; (vii) x+1/2, y, −z+1/2; (viii) −z+1/2, x+1/2, y; (ix) y, −z+1/2, x+1/2; (x) −x+1, −y+1, −z+1. |
Fe7S8 | β = 117.08 (7)° |
Mr = 647.41 | V = 939.0 (4) Å3 |
Monoclinic, C2/c | Z = 4 |
a = 11.93 (4) Å | Dx = 4.579 Mg m−3 |
b = 6.860 (5) Å | T = 300 K |
c = 12.89 (4) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.0230(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
S1 | 0.01800 | 0.38330 | 0.11960 | 0.010* | |
S2 | 0.02910 | 0.11420 | 0.63900 | 0.010* | |
Fe3 | 0.10860 | 0.10250 | 0.49980 | 0.010* | |
S4 | 0.23410 | 0.13550 | 0.38260 | 0.010* | |
Fe5 | 0.24180 | 0.36600 | 0.24680 | 0.010* | |
S6 | 0.26790 | 0.13400 | 0.12360 | 0.010* | |
Fe7 | 0.38720 | 0.15000 | 0.01260 | 0.010* | |
Fe8 | 0.00000 | 0.14720 | 0.25000 | 0.010* |
S1—Fe3i | 2.4986 | Fe5—S2v | 2.4477 |
S1—Fe5 | 2.4174 | Fe5—S4 | 2.3913 |
S1—Fe7ii | 2.3925 | Fe5—S6 | 2.3667 |
S1—Fe7iii | 2.4473 | S6—Fe3viii | 2.4552 |
S1—Fe8 | 2.413 | S6—Fe5 | 2.3667 |
S2—Fe3 | 2.3821 | S6—Fe7 | 2.4369 |
S2—Fe3iv | 2.3308 | S6—Fe7iii | 2.3964 |
S2—Fe5v | 2.4477 | Fe7—S1ix | 2.3925 |
S2—Fe7vi | 2.3716 | Fe7—S1iii | 2.4473 |
S2—Fe8iv | 2.4155 | Fe7—S2x | 2.3716 |
Fe3—S1i | 2.4986 | Fe7—S6 | 2.4369 |
Fe3—S2 | 2.3821 | Fe7—S6iii | 2.3964 |
Fe3—S2iv | 2.3308 | Fe8—S1 | 2.413 |
Fe3—S6vii | 2.4552 | Fe8—S1i | 2.413 |
S4—Fe5 | 2.3913 | Fe8—S2iv | 2.4155 |
Fe5—S1 | 2.4174 | Fe8—S2viii | 2.4155 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z; (iv) −x, −y, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z+3/2; (vii) x, −y, z+3/2; (viii) x, −y, z+1/2; (ix) x+1/2, y−1/2, z; (x) x+1/2, −y+1/2, z+1/2. |
O2Ti | V = 62.58 (2) Å3 |
Mr = 79.9 | Z = 2 |
Tetragonal, P42/mnm | Dx = 4.240 Mg m−3 |
a = 4.5962 (7) Å | T = 300 K |
c = 2.9622 (7) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.00000 | 0.00000 | 0.00000 | 0.006 | |
O1 | 0.30493 | 0.30493 | 0.00000 | 0.006 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0070 | 0.0070 | 0.0047 | −0.0002 | 0.0000 | 0.0000 |
O1 | 0.0060 | 0.0060 | 0.0045 | −0.0019 | 0.0000 | 0.0000 |
Ti1—O1 | 1.9821 | Ti1—O1v | 1.9497 |
Ti1—O1i | 1.9497 | O1—Ti1 | 1.9821 |
Ti1—O1ii | 1.9497 | O1—Ti1vi | 1.9497 |
Ti1—O1iii | 1.9821 | O1—Ti1vii | 1.9497 |
Ti1—O1iv | 1.9497 | ||
O1—Ti1—O1i | 90 | O1iii—Ti1—O1iv | 90 |
O1—Ti1—O1ii | 90 | O1—Ti1—O1v | 90 |
O1i—Ti1—O1ii | 98.866 | O1i—Ti1—O1v | 180 |
O1—Ti1—O1iii | 180 | O1ii—Ti1—O1v | 81.134 |
O1i—Ti1—O1iii | 90 | O1iii—Ti1—O1v | 90 |
O1ii—Ti1—O1iii | 90 | O1iv—Ti1—O1v | 98.866 |
O1—Ti1—O1iv | 90 | Ti1—O1—Ti1vi | 130.567 |
O1i—Ti1—O1iv | 81.134 | Ti1—O1—Ti1vii | 130.567 |
O1ii—Ti1—O1iv | 180 | Ti1vi—O1—Ti1vii | 98.866 |
Symmetry codes: (i) −y+1/2, x−1/2, z−1/2; (ii) −y+1/2, x−1/2, z+1/2; (iii) −x, −y, z; (iv) y−1/2, −x+1/2, z−1/2; (v) y−1/2, −x+1/2, z+1/2; (vi) −y+1/2, x+1/2, z−1/2; (vii) −y+1/2, x+1/2, z+1/2. |
O2Si | V = 113.03 (1) Å3 |
Mr = 60.08 | Z = 3 |
Trigonal, P3221 | Dx = 2.648 Mg m−3 |
a = 4.9135 (3) Å | T = 300 K |
c = 5.4058 (3) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.263(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.47000 | 0.00000 | 0.66670 | 0.006 | |
O1 | 0.41460 | 0.26780 | 0.78543 | 0.011 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0073 | 0.0059 | 0.0053 | 0.0029 | 0.0003 | 0.0006 |
O1 | 0.0120 | 0.0105 | 0.0118 | 0.0065 | −0.0029 | −0.0040 |
Si1—O1 | 1.6049 | O1—Si1 | 1.6049 |
Si1—O1i | 1.6114 | O1—Si1iv | 1.6114 |
Si1—O1ii | 1.6111 | O1—Si1v | 1.6111 |
Si1—O1iii | 1.6050 | ||
O1—Si1—O1i | 110.262 | O1ii—Si1—O1iii | 110.268 |
O1—Si1—O1ii | 108.732 | Si1—O1—Si1iv | 143.832 |
O1i—Si1—O1ii | 109.697 | Si1—O1—Si1v | 143.836 |
O1—Si1—O1iii | 109.164 | Si1iv—O1—Si1v | 0.009 |
O1i—Si1—O1iii | 108.712 |
Symmetry codes: (i) −y+1, x−y, z−1/3; (ii) −x+1, y−x, −z+5/3; (iii) x−y, −y, −z+4/3; (iv) y−x+1, −x+1, z+1/3; (v) −x+1, y−x+1, −z+5/3. |
AlNaO8Si3 | β = 116.6° |
Mr = 262.22 | γ = 87.71° |
Triclinic, C1 | V = 664.01 Å3 |
a = 8.137 Å | Z = 4 |
b = 12.785 Å | Dx = 2.623 Mg m−3 |
c = 7.1583 Å | T = 300 K |
α = 94.26° |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.111(8), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: none |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.00887 | 0.16846 | 0.20805 | 0.007 | |
Si1 | 0.00375 | 0.82051 | 0.23737 | 0.006 | |
Si2 | 0.69162 | 0.11021 | 0.31466 | 0.006 | |
Si3 | 0.68129 | 0.88190 | 0.36076 | 0.006 | |
Na1 | 0.26799 | 0.98865 | 0.14650 | 0.031 | |
O1 | 0.00490 | 0.13103 | 0.96660 | 0.012 | |
O2 | 0.59176 | 0.99756 | 0.28040 | 0.008 | |
O3 | 0.81230 | 0.10966 | 0.19010 | 0.014 | |
O4 | 0.82000 | 0.85101 | 0.25870 | 0.018 | |
O5 | 0.01288 | 0.30238 | 0.27060 | 0.011 | |
O6 | 0.02329 | 0.69368 | 0.22910 | 0.011 | |
O7 | 0.20780 | 0.10896 | 0.38900 | 0.011 | |
O8 | 0.18400 | 0.86817 | 0.43620 | 0.012 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0074 | 0.0068 | 0.0061 | −0.0009 | 0.0031 | 0.0004 |
Si1 | 0.0068 | 0.0065 | 0.0055 | 0.0011 | 0.0030 | 0.0008 |
Si2 | 0.0061 | 0.0055 | 0.0073 | −0.0002 | 0.0025 | 0.0004 |
Si3 | 0.0060 | 0.0055 | 0.0074 | 0.0006 | 0.0028 | 0.0009 |
Na1 | 0.0136 | 0.0471 | 0.0315 | −0.0050 | 0.0084 | −0.0219 |
O1 | 0.0164 | 0.0122 | 0.0074 | −0.0002 | 0.0067 | 0.0014 |
O2 | 0.0074 | 0.0056 | 0.0119 | 0.0003 | 0.0033 | 0.0020 |
O3 | 0.0117 | 0.0130 | 0.0162 | −0.0040 | 0.0093 | −0.0017 |
O4 | 0.0134 | 0.0179 | 0.0216 | 0.0046 | 0.0129 | 0.0020 |
O5 | 0.0103 | 0.0076 | 0.0150 | −0.0020 | 0.0052 | −0.0009 |
O6 | 0.0101 | 0.0071 | 0.0145 | 0.0022 | 0.0034 | 0.0012 |
O7 | 0.0120 | 0.0129 | 0.0080 | 0.0024 | 0.0013 | 0.0015 |
O8 | 0.0140 | 0.0140 | 0.0084 | −0.0026 | −0.0002 | −0.0006 |
Al1—O1i | 1.7452 | O1—Al1xi | 1.7452 |
Al1—O3ii | 1.7429 | O1—Si1iii | 1.5999 |
Al1—O5 | 1.7351 | O1—Na1xii | 2.6689 |
Al1—O7 | 1.7456 | O1—Na1iii | 2.5308 |
Si1—O1iii | 1.5999 | O2—Si2x | 1.6301 |
Si1—O4ii | 1.6000 | O2—Si3 | 1.6472 |
Si1—O6 | 1.6223 | O2—Na1 | 2.3704 |
Si1—O8 | 1.6191 | O3—Al1xiii | 1.7429 |
Si2—O2iv | 1.6301 | O3—Si2 | 1.5944 |
Si2—O3 | 1.5944 | O3—Na1ix | 2.4532 |
Si2—O6v | 1.6184 | O4—Si1xiii | 1.6000 |
Si2—O8vi | 1.6168 | O4—Si3 | 1.6198 |
Si3—O2 | 1.6472 | O5—Al1 | 1.7351 |
Si3—O4 | 1.6198 | O5—Si3xiv | 1.5968 |
Si3—O5vii | 1.5968 | O6—Si1 | 1.6223 |
Si3—O7vi | 1.6020 | O6—Si2xv | 1.6184 |
Na1—O1viii | 2.6689 | O7—Al1 | 1.7456 |
Na1—O1iii | 2.5308 | O7—Si3vi | 1.6020 |
Na1—O2 | 2.3704 | O7—Na1iv | 2.4338 |
Na1—O3ix | 2.4532 | O8—Si1 | 1.6191 |
Na1—O7x | 2.4338 | O8—Si2vi | 1.6168 |
O1i—Al1—O3ii | 102.836 | O6v—Si2—O8vi | 110.422 |
O1i—Al1—O5 | 116.047 | O2—Si3—O4 | 107.269 |
O3ii—Al1—O5 | 112.215 | O2—Si3—O5vii | 105.914 |
O1i—Al1—O7 | 104.004 | O4—Si3—O5vii | 110.224 |
O3ii—Al1—O7 | 111.151 | O2—Si3—O7vi | 108.565 |
O5—Al1—O7 | 110.14 | O4—Si3—O7vi | 110.208 |
O1iii—Si1—O4ii | 109.433 | O5vii—Si3—O7vi | 114.328 |
O1iii—Si1—O6 | 112.47 | Al1xi—O1—Si1iii | 141.397 |
O4ii—Si1—O6 | 108.187 | Si2x—O2—Si3 | 130.019 |
O1iii—Si1—O8 | 107.176 | Si2x—O2—Na1 | 120.351 |
O4ii—Si1—O8 | 111.446 | Si3—O2—Na1 | 108.811 |
O6—Si1—O8 | 108.16 | Al1xiii—O3—Si2 | 139.461 |
O2iv—Si2—O3 | 111.144 | Si1xiii—O4—Si3 | 161.151 |
O2iv—Si2—O6v | 104.24 | Al1—O5—Si3xiv | 129.689 |
O3—Si2—O6v | 112.114 | Si1—O6—Si2xv | 135.676 |
O2iv—Si2—O8vi | 106.97 | Al1—O7—Si3vi | 133.943 |
O3—Si2—O8vi | 111.591 | Si1—O8—Si2vi | 151.747 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) x+1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z−1; (ix) −x+1, −y+1, −z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y−1, z+1; (xiii) x+1, y, z; (xiv) x−1/2, y−1/2, z; (xv) x−1/2, y+1/2, z. |
FeS2 | V = 159.17 (1) Å3 |
Mr = 119.97 | Z = 4 |
Cubic, Pa3 | Dx = 5.006 Mg m−3 |
a = 5.41941 (3) Å | T = 300 K |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.1809(10), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.00000 | 0.00000 | 0.00000 | 0.0051 (3)* | |
S2 | 0.38468 (9) | 0.38468 | 0.38468 | 0.0058 (3)* |
Fe1—S2i | 2.2644 (1) | Fe1—S2vi | 2.2644 (4) |
Fe1—S2ii | 2.2644 (1) | S2—Fe1vii | 2.2644 (1) |
Fe1—S2iii | 2.2644 (1) | S2—Fe1viii | 2.2644 (1) |
Fe1—S2iv | 2.2644 (1) | S2—Fe1ix | 2.2644 (4) |
Fe1—S2v | 2.2644 (1) | S2—S2x | 2.1650 (6) |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −z+1/2, x−1/2, y; (iii) y, −z+1/2, x−1/2; (iv) −z, x−1/2, −y+1/2; (v) −y+1/2, −z, x−1/2; (vi) y−1/2, −z+1/2, −x; (vii) x+1/2, y, −z+1/2; (viii) −z+1/2, x+1/2, y; (ix) y, −z+1/2, x+1/2; (x) −x+1, −y+1, −z+1. |
Fe7S8 | β = 117.25 (6)° |
Mr = 647.41 | V = 934.4 (4) Å3 |
Monoclinic, C2/c | Z = 4 |
a = 11.95 (3) Å | Dx = 4.602 Mg m−3 |
b = 6.857 (4) Å | T = 300 K |
c = 12.83 (3) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.0305(25), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
S1 | 0.01800 | 0.38330 | 0.11960 | 0.010* | |
S2 | 0.02910 | 0.11420 | 0.63900 | 0.010* | |
Fe3 | 0.10860 | 0.10250 | 0.49980 | 0.010* | |
S4 | 0.23410 | 0.13550 | 0.38260 | 0.010* | |
Fe5 | 0.24180 | 0.36600 | 0.24680 | 0.010* | |
S6 | 0.26790 | 0.13400 | 0.12360 | 0.010* | |
Fe7 | 0.38720 | 0.15000 | 0.01260 | 0.010* | |
Fe8 | 0.00000 | 0.14720 | 0.25000 | 0.010* |
S1—Fe3i | 2.4939 | Fe5—S2v | 2.4460 |
S1—Fe5 | 2.4144 | Fe5—S4 | 2.3853 |
S1—Fe7ii | 2.3887 | Fe5—S6 | 2.3618 |
S1—Fe7iii | 2.4436 | S6—Fe3viii | 2.4507 |
S1—Fe8 | 2.4075 | S6—Fe5 | 2.3618 |
S2—Fe3 | 2.3774 | S6—Fe7 | 2.4353 |
S2—Fe3iv | 2.3243 | S6—Fe7iii | 2.3907 |
S2—Fe5v | 2.4460 | Fe7—S1ix | 2.3887 |
S2—Fe7vi | 2.3665 | Fe7—S1iii | 2.4436 |
S2—Fe8iv | 2.4115 | Fe7—S2x | 2.3665 |
Fe3—S1i | 2.4939 | Fe7—S6 | 2.4353 |
Fe3—S2 | 2.3774 | Fe7—S6iii | 2.3907 |
Fe3—S2iv | 2.3243 | Fe8—S1 | 2.4075 |
Fe3—S6vii | 2.4507 | Fe8—S1i | 2.4075 |
S4—Fe5 | 2.3853 | Fe8—S2iv | 2.4115 |
Fe5—S1 | 2.4144 | Fe8—S2viii | 2.4115 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z; (iv) −x, −y, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z+3/2; (vii) x, −y, z+3/2; (viii) x, −y, z+1/2; (ix) x+1/2, y−1/2, z; (x) x+1/2, −y+1/2, z+1/2. |
O2Ti | V = 62.62 (3) Å3 |
Mr = 79.9 | Z = 2 |
Tetragonal, P42/mnm | Dx = 4.238 Mg m−3 |
a = 4.5980 (13) Å | T = 300 K |
c = 2.9619 (13) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.073(10), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.00000 | 0.00000 | 0.00000 | 0.006* | |
O1 | 0.32861 | 0.32861 | 0.00000 | 0.005* |
Ti1—O1 | 2.1368 | Ti1—O1v | 1.8534 |
Ti1—O1i | 1.8534 | O1—Ti1 | 2.1368 |
Ti1—O1ii | 1.8534 | O1—Ti1vi | 1.8534 |
Ti1—O1iii | 2.1368 | O1—Ti1vii | 1.8534 |
Ti1—O1iv | 1.8534 | ||
O1i—Ti1—O1ii | 106.075 | O1ii—Ti1—O1v | 73.925 |
O1i—Ti1—O1iv | 73.925 | O1iv—Ti1—O1v | 106.075 |
O1ii—Ti1—O1iv | 180 | Ti1vi—O1—Ti1vii | 106.075 |
O1i—Ti1—O1v | 180 |
Symmetry codes: (i) −y+1/2, x−1/2, z−1/2; (ii) −y+1/2, x−1/2, z+1/2; (iii) −x, −y, z; (iv) y−1/2, −x+1/2, z−1/2; (v) y−1/2, −x+1/2, z+1/2; (vi) −y+1/2, x+1/2, z−1/2; (vii) −y+1/2, x+1/2, z+1/2. |
O2Si | V = 113.08 (1) Å3 |
Mr = 60.08 | Z = 3 |
Trigonal, P3221 | Dx = 2.647 Mg m−3 |
a = 4.9143 (5) Å | T = 300 K |
c = 5.4067 (5) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.145(6), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.47000 | 0.00000 | 0.66670 | 0.020* | |
O1 | 0.41460 | 0.26780 | 0.78543 | 0.017* |
Si1—O1 | 1.6051 | O1—Si1 | 1.6051 |
Si1—O1i | 1.6117 | O1—Si1iv | 1.6117 |
Si1—O1ii | 1.6114 | O1—Si1v | 1.6114 |
Si1—O1iii | 1.6053 | ||
O1—Si1—O1i | 110.262 | O1ii—Si1—O1iii | 110.268 |
O1—Si1—O1ii | 108.73 | Si1—O1—Si1iv | 143.833 |
O1i—Si1—O1ii | 109.698 | Si1—O1—Si1v | 143.836 |
O1—Si1—O1iii | 109.165 | Si1iv—O1—Si1v | 0.009 |
O1i—Si1—O1iii | 108.71 |
Symmetry codes: (i) −y+1, x−y, z−1/3; (ii) −x+1, y−x, −z+5/3; (iii) x−y, −y, −z+4/3; (iv) y−x+1, −x+1, z+1/3; (v) −x+1, y−x+1, −z+5/3. |
AlNaO8Si3 | β = 116.6° |
Mr = 262.22 | γ = 87.71° |
Triclinic, C1 | V = 664.01 Å3 |
a = 8.137 Å | Z = 4 |
b = 12.785 Å | Dx = 2.623 Mg m−3 |
c = 7.1583 Å | T = 300 K |
α = 94.26° |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.233(12), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: none |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.00887 | 0.16846 | 0.20805 | 0.007 | |
Si1 | 0.00375 | 0.82051 | 0.23737 | 0.006 | |
Si2 | 0.69162 | 0.11021 | 0.31466 | 0.006 | |
Si3 | 0.68129 | 0.88190 | 0.36076 | 0.006 | |
Na1 | 0.26799 | 0.98865 | 0.14650 | 0.031 | |
O1 | 0.00490 | 0.13103 | 0.96660 | 0.012 | |
O2 | 0.59176 | 0.99756 | 0.28040 | 0.008 | |
O3 | 0.81230 | 0.10966 | 0.19010 | 0.014 | |
O4 | 0.82000 | 0.85101 | 0.25870 | 0.018 | |
O5 | 0.01288 | 0.30238 | 0.27060 | 0.011 | |
O6 | 0.02329 | 0.69368 | 0.22910 | 0.011 | |
O7 | 0.20780 | 0.10896 | 0.38900 | 0.011 | |
O8 | 0.18400 | 0.86817 | 0.43620 | 0.012 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0074 | 0.0068 | 0.0061 | −0.0009 | 0.0031 | 0.0004 |
Si1 | 0.0068 | 0.0065 | 0.0055 | 0.0011 | 0.0030 | 0.0008 |
Si2 | 0.0061 | 0.0055 | 0.0073 | −0.0002 | 0.0025 | 0.0004 |
Si3 | 0.0060 | 0.0055 | 0.0074 | 0.0006 | 0.0028 | 0.0009 |
Na1 | 0.0136 | 0.0471 | 0.0315 | −0.0050 | 0.0084 | −0.0219 |
O1 | 0.0164 | 0.0122 | 0.0074 | −0.0002 | 0.0067 | 0.0014 |
O2 | 0.0074 | 0.0056 | 0.0119 | 0.0003 | 0.0033 | 0.0020 |
O3 | 0.0117 | 0.0130 | 0.0162 | −0.0040 | 0.0093 | −0.0017 |
O4 | 0.0134 | 0.0179 | 0.0216 | 0.0046 | 0.0129 | 0.0020 |
O5 | 0.0103 | 0.0076 | 0.0150 | −0.0020 | 0.0052 | −0.0009 |
O6 | 0.0101 | 0.0071 | 0.0145 | 0.0022 | 0.0034 | 0.0012 |
O7 | 0.0120 | 0.0129 | 0.0080 | 0.0024 | 0.0013 | 0.0015 |
O8 | 0.0140 | 0.0140 | 0.0084 | −0.0026 | −0.0002 | −0.0006 |
Al1—O1i | 1.7452 | O1—Al1xi | 1.7452 |
Al1—O3ii | 1.7429 | O1—Si1iii | 1.5999 |
Al1—O5 | 1.7351 | O1—Na1xii | 2.6689 |
Al1—O7 | 1.7456 | O1—Na1iii | 2.5308 |
Si1—O1iii | 1.5999 | O2—Si2x | 1.6301 |
Si1—O4ii | 1.6000 | O2—Si3 | 1.6472 |
Si1—O6 | 1.6223 | O2—Na1 | 2.3704 |
Si1—O8 | 1.6191 | O3—Al1xiii | 1.7429 |
Si2—O2iv | 1.6301 | O3—Si2 | 1.5944 |
Si2—O3 | 1.5944 | O3—Na1ix | 2.4532 |
Si2—O6v | 1.6184 | O4—Si1xiii | 1.6000 |
Si2—O8vi | 1.6168 | O4—Si3 | 1.6198 |
Si3—O2 | 1.6472 | O5—Al1 | 1.7351 |
Si3—O4 | 1.6198 | O5—Si3xiv | 1.5968 |
Si3—O5vii | 1.5968 | O6—Si1 | 1.6223 |
Si3—O7vi | 1.6020 | O6—Si2xv | 1.6184 |
Na1—O1viii | 2.6689 | O7—Al1 | 1.7456 |
Na1—O1iii | 2.5308 | O7—Si3vi | 1.6020 |
Na1—O2 | 2.3704 | O7—Na1iv | 2.4338 |
Na1—O3ix | 2.4532 | O8—Si1 | 1.6191 |
Na1—O7x | 2.4338 | O8—Si2vi | 1.6168 |
O1i—Al1—O3ii | 102.836 | O6v—Si2—O8vi | 110.422 |
O1i—Al1—O5 | 116.047 | O2—Si3—O4 | 107.269 |
O3ii—Al1—O5 | 112.215 | O2—Si3—O5vii | 105.914 |
O1i—Al1—O7 | 104.004 | O4—Si3—O5vii | 110.224 |
O3ii—Al1—O7 | 111.151 | O2—Si3—O7vi | 108.565 |
O5—Al1—O7 | 110.14 | O4—Si3—O7vi | 110.208 |
O1iii—Si1—O4ii | 109.433 | O5vii—Si3—O7vi | 114.328 |
O1iii—Si1—O6 | 112.47 | Al1xi—O1—Si1iii | 141.397 |
O4ii—Si1—O6 | 108.187 | Si2x—O2—Si3 | 130.019 |
O1iii—Si1—O8 | 107.176 | Si2x—O2—Na1 | 120.351 |
O4ii—Si1—O8 | 111.446 | Si3—O2—Na1 | 108.811 |
O6—Si1—O8 | 108.16 | Al1xiii—O3—Si2 | 139.461 |
O2iv—Si2—O3 | 111.144 | Si1xiii—O4—Si3 | 161.151 |
O2iv—Si2—O6v | 104.24 | Al1—O5—Si3xiv | 129.689 |
O3—Si2—O6v | 112.114 | Si1—O6—Si2xv | 135.676 |
O2iv—Si2—O8vi | 106.97 | Al1—O7—Si3vi | 133.943 |
O3—Si2—O8vi | 111.591 | Si1—O8—Si2vi | 151.747 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) x+1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z−1; (ix) −x+1, −y+1, −z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y−1, z+1; (xiii) x+1, y, z; (xiv) x−1/2, y−1/2, z; (xv) x−1/2, y+1/2, z. |
FeS2 | V = 159.17 (1) Å3 |
Mr = 119.97 | Z = 4 |
Cubic, Pa3 | Dx = 5.006 Mg m−3 |
a = 5.41945 (8) Å | T = 300 K |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.373(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.00000 | 0.00000 | 0.00000 | 0.010* | |
S2 | 0.3903 (4) | 0.3903 | 0.3903 | 0.010* |
Fe1—S2i | 2.2761 (6) | Fe1—S2vi | 2.276 (2) |
Fe1—S2ii | 2.2761 (6) | S2—Fe1vii | 2.2761 (6) |
Fe1—S2iii | 2.2761 (6) | S2—Fe1viii | 2.2761 (6) |
Fe1—S2iv | 2.2761 (6) | S2—Fe1ix | 2.276 (2) |
Fe1—S2v | 2.2761 (6) | S2—S2x | 2.060 (3) |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −z+1/2, x−1/2, y; (iii) y, −z+1/2, x−1/2; (iv) −z, x−1/2, −y+1/2; (v) −y+1/2, −z, x−1/2; (vi) y−1/2, −z+1/2, −x; (vii) x+1/2, y, −z+1/2; (viii) −z+1/2, x+1/2, y; (ix) y, −z+1/2, x+1/2; (x) −x+1, −y+1, −z+1. |
Fe7S8 | β = 117.18 (5)° |
Mr = 647.41 | V = 933.3 (5) Å3 |
Monoclinic, C2/c | Z = 4 |
a = 11.92 (2) Å | Dx = 4.607 Mg m−3 |
b = 6.870 (4) Å | T = 300 K |
c = 12.81 (3) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.15(6), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
S1 | 0.01800 | 0.38330 | 0.11960 | 0.010* | |
S2 | 0.02910 | 0.11420 | 0.63900 | 0.010* | |
Fe3 | 0.10860 | 0.10250 | 0.49980 | 0.010* | |
S4 | 0.23410 | 0.13550 | 0.38260 | 0.010* | |
Fe5 | 0.24180 | 0.36600 | 0.24680 | 0.010* | |
S6 | 0.26790 | 0.13400 | 0.12360 | 0.010* | |
Fe7 | 0.38720 | 0.15000 | 0.01260 | 0.010* | |
Fe8 | 0.00000 | 0.14720 | 0.25000 | 0.010* |
S1—Fe3i | 2.4960 | Fe5—S2v | 2.4431 |
S1—Fe5 | 2.4118 | Fe5—S4 | 2.3849 |
S1—Fe7ii | 2.3906 | Fe5—S6 | 2.3614 |
S1—Fe7iii | 2.4384 | S6—Fe3viii | 2.4516 |
S1—Fe8 | 2.4072 | S6—Fe5 | 2.3614 |
S2—Fe3 | 2.3724 | S6—Fe7 | 2.4298 |
S2—Fe3iv | 2.3251 | S6—Fe7iii | 2.3913 |
S2—Fe5v | 2.4431 | Fe7—S1ix | 2.3906 |
S2—Fe7vi | 2.3676 | Fe7—S1iii | 2.4384 |
S2—Fe8iv | 2.4120 | Fe7—S2x | 2.3676 |
Fe3—S1i | 2.4960 | Fe7—S6 | 2.4298 |
Fe3—S2 | 2.3724 | Fe7—S6iii | 2.3913 |
Fe3—S2iv | 2.3251 | Fe8—S1 | 2.4072 |
Fe3—S6vii | 2.4516 | Fe8—S1i | 2.4072 |
S4—Fe5 | 2.3849 | Fe8—S2iv | 2.4120 |
Fe5—S1 | 2.4118 | Fe8—S2viii | 2.4120 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z; (iv) −x, −y, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z+3/2; (vii) x, −y, z+3/2; (viii) x, −y, z+1/2; (ix) x+1/2, y−1/2, z; (x) x+1/2, −y+1/2, z+1/2. |
O2Si | V = 113.15 (1) Å3 |
Mr = 60.08 | Z = 3 |
Trigonal, P3221 | Dx = 2.645 Mg m−3 |
a = 4.9161 (6) Å | T = 300 K |
c = 5.4061 (5) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.37(6), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.47000 | 0.00000 | 0.66670 | 0.006 | |
O1 | 0.41460 | 0.26780 | 0.78543 | 0.011 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0073 | 0.0059 | 0.0053 | 0.0029 | 0.0003 | 0.0006 |
O1 | 0.0120 | 0.0105 | 0.0118 | 0.0065 | −0.0029 | −0.0040 |
Si1—O1 | 1.6056 | O1—Si1 | 1.6056 |
Si1—O1i | 1.6118 | O1—Si1iv | 1.6118 |
Si1—O1ii | 1.6116 | O1—Si1v | 1.6116 |
Si1—O1iii | 1.6057 | ||
O1—Si1—O1i | 110.252 | O1ii—Si1—O1iii | 110.258 |
O1—Si1—O1ii | 108.753 | Si1—O1—Si1iv | 143.831 |
O1i—Si1—O1ii | 109.678 | Si1—O1—Si1v | 143.835 |
O1—Si1—O1iii | 109.158 | Si1iv—O1—Si1v | 0.009 |
O1i—Si1—O1iii | 108.733 |
Symmetry codes: (i) −y+1, x−y, z−1/3; (ii) −x+1, y−x, −z+5/3; (iii) x−y, −y, −z+4/3; (iv) y−x+1, −x+1, z+1/3; (v) −x+1, y−x+1, −z+5/3. |
O2Ti | V = 65.14 (17) Å3 |
Mr = 79.9 | Z = 2 |
Tetragonal, P42/mnm | Dx = 4.074 Mg m−3 |
a = 4.746 (8) Å | T = 300 K |
c = 2.892 (7) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.100, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.00000 | 0.00000 | 0.00000 | 0.006 | |
O1 | 0.30493 | 0.30493 | 0.00000 | 0.006 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0070 | 0.0070 | 0.0047 | −0.0002 | 0.0000 | 0.0000 |
O1 | 0.0060 | 0.0060 | 0.0045 | −0.0019 | 0.0000 | 0.0000 |
Ti1—O1 | 2.0466 | Ti1—O1v | 1.9506 |
Ti1—O1i | 1.9506 | O1—Ti1 | 2.0466 |
Ti1—O1ii | 1.9506 | O1—Ti1vi | 1.9506 |
Ti1—O1iii | 2.0466 | O1—Ti1vii | 1.9506 |
Ti1—O1iv | 1.9506 | ||
O1i—Ti1—O1ii | 95.681 | O1ii—Ti1—O1v | 84.319 |
O1i—Ti1—O1iv | 84.319 | O1iv—Ti1—O1v | 95.681 |
O1ii—Ti1—O1iv | 180 | Ti1vi—O1—Ti1vii | 95.681 |
O1i—Ti1—O1v | 180 |
Symmetry codes: (i) −y+1/2, x−1/2, z−1/2; (ii) −y+1/2, x−1/2, z+1/2; (iii) −x, −y, z; (iv) y−1/2, −x+1/2, z−1/2; (v) y−1/2, −x+1/2, z+1/2; (vi) −y+1/2, x+1/2, z−1/2; (vii) −y+1/2, x+1/2, z+1/2. |
FeS2 | V = 159.20 (1) Å3 |
Mr = 119.97 | Z = 4 |
Cubic, Pa3 | Dx = 5.005 Mg m−3 |
a = 5.41977 (4) Å | T = 300 K |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.2413(26), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.00000 | 0.00000 | 0.00000 | 0.010* | |
S2 | 0.38589 | 0.38589 | 0.38589 | 0.010* |
Fe1—S2i | 2.2669 | Fe1—S2vi | 2.2669 |
Fe1—S2ii | 2.2669 | S2—Fe1vii | 2.2669 |
Fe1—S2iii | 2.2669 | S2—Fe1viii | 2.2669 |
Fe1—S2iv | 2.2669 | S2—Fe1ix | 2.2669 |
Fe1—S2v | 2.2669 | S2—S2x | 2.1425 |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −z+1/2, x−1/2, y; (iii) y, −z+1/2, x−1/2; (iv) −z, x−1/2, −y+1/2; (v) −y+1/2, −z, x−1/2; (vi) y−1/2, −z+1/2, −x; (vii) x+1/2, y, −z+1/2; (viii) −z+1/2, x+1/2, y; (ix) y, −z+1/2, x+1/2; (x) −x+1, −y+1, −z+1. |
AlNaO8Si3 | β = 116.6° |
Mr = 262.22 | γ = 87.71° |
Triclinic, C1 | V = 664.01 Å3 |
a = 8.137 Å | Z = 4 |
b = 12.785 Å | Dx = 2.623 Mg m−3 |
c = 7.1583 Å | T = 300 K |
α = 94.26° |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.177(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: none |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.00887 | 0.16846 | 0.20805 | 0.007 | |
Si1 | 0.00375 | 0.82051 | 0.23737 | 0.006 | |
Si2 | 0.69162 | 0.11021 | 0.31466 | 0.006 | |
Si3 | 0.68129 | 0.88190 | 0.36076 | 0.006 | |
Na1 | 0.26799 | 0.98865 | 0.14650 | 0.031 | |
O1 | 0.00490 | 0.13103 | 0.96660 | 0.012 | |
O2 | 0.59176 | 0.99756 | 0.28040 | 0.008 | |
O3 | 0.81230 | 0.10966 | 0.19010 | 0.014 | |
O4 | 0.82000 | 0.85101 | 0.25870 | 0.018 | |
O5 | 0.01288 | 0.30238 | 0.27060 | 0.011 | |
O6 | 0.02329 | 0.69368 | 0.22910 | 0.011 | |
O7 | 0.20780 | 0.10896 | 0.38900 | 0.011 | |
O8 | 0.18400 | 0.86817 | 0.43620 | 0.012 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0074 | 0.0068 | 0.0061 | −0.0009 | 0.0031 | 0.0004 |
Si1 | 0.0068 | 0.0065 | 0.0055 | 0.0011 | 0.0030 | 0.0008 |
Si2 | 0.0061 | 0.0055 | 0.0073 | −0.0002 | 0.0025 | 0.0004 |
Si3 | 0.0060 | 0.0055 | 0.0074 | 0.0006 | 0.0028 | 0.0009 |
Na1 | 0.0136 | 0.0471 | 0.0315 | −0.0050 | 0.0084 | −0.0219 |
O1 | 0.0164 | 0.0122 | 0.0074 | −0.0002 | 0.0067 | 0.0014 |
O2 | 0.0074 | 0.0056 | 0.0119 | 0.0003 | 0.0033 | 0.0020 |
O3 | 0.0117 | 0.0130 | 0.0162 | −0.0040 | 0.0093 | −0.0017 |
O4 | 0.0134 | 0.0179 | 0.0216 | 0.0046 | 0.0129 | 0.0020 |
O5 | 0.0103 | 0.0076 | 0.0150 | −0.0020 | 0.0052 | −0.0009 |
O6 | 0.0101 | 0.0071 | 0.0145 | 0.0022 | 0.0034 | 0.0012 |
O7 | 0.0120 | 0.0129 | 0.0080 | 0.0024 | 0.0013 | 0.0015 |
O8 | 0.0140 | 0.0140 | 0.0084 | −0.0026 | −0.0002 | −0.0006 |
Al1—O1i | 1.7452 | O1—Al1xi | 1.7452 |
Al1—O3ii | 1.7429 | O1—Si1iii | 1.5999 |
Al1—O5 | 1.7351 | O1—Na1xii | 2.6689 |
Al1—O7 | 1.7456 | O1—Na1iii | 2.5308 |
Si1—O1iii | 1.5999 | O2—Si2x | 1.6301 |
Si1—O4ii | 1.6000 | O2—Si3 | 1.6472 |
Si1—O6 | 1.6223 | O2—Na1 | 2.3704 |
Si1—O8 | 1.6191 | O3—Al1xiii | 1.7429 |
Si2—O2iv | 1.6301 | O3—Si2 | 1.5944 |
Si2—O3 | 1.5944 | O3—Na1ix | 2.4532 |
Si2—O6v | 1.6184 | O4—Si1xiii | 1.6000 |
Si2—O8vi | 1.6168 | O4—Si3 | 1.6198 |
Si3—O2 | 1.6472 | O5—Al1 | 1.7351 |
Si3—O4 | 1.6198 | O5—Si3xiv | 1.5968 |
Si3—O5vii | 1.5968 | O6—Si1 | 1.6223 |
Si3—O7vi | 1.6020 | O6—Si2xv | 1.6184 |
Na1—O1viii | 2.6689 | O7—Al1 | 1.7456 |
Na1—O1iii | 2.5308 | O7—Si3vi | 1.6020 |
Na1—O2 | 2.3704 | O7—Na1iv | 2.4338 |
Na1—O3ix | 2.4532 | O8—Si1 | 1.6191 |
Na1—O7x | 2.4338 | O8—Si2vi | 1.6168 |
O1i—Al1—O3ii | 102.836 | O6v—Si2—O8vi | 110.422 |
O1i—Al1—O5 | 116.047 | O2—Si3—O4 | 107.269 |
O3ii—Al1—O5 | 112.215 | O2—Si3—O5vii | 105.914 |
O1i—Al1—O7 | 104.004 | O4—Si3—O5vii | 110.224 |
O3ii—Al1—O7 | 111.151 | O2—Si3—O7vi | 108.565 |
O5—Al1—O7 | 110.14 | O4—Si3—O7vi | 110.208 |
O1iii—Si1—O4ii | 109.433 | O5vii—Si3—O7vi | 114.328 |
O1iii—Si1—O6 | 112.47 | Al1xi—O1—Si1iii | 141.397 |
O4ii—Si1—O6 | 108.187 | Si2x—O2—Si3 | 130.019 |
O1iii—Si1—O8 | 107.176 | Si2x—O2—Na1 | 120.351 |
O4ii—Si1—O8 | 111.446 | Si3—O2—Na1 | 108.811 |
O6—Si1—O8 | 108.16 | Al1xiii—O3—Si2 | 139.461 |
O2iv—Si2—O3 | 111.144 | Si1xiii—O4—Si3 | 161.151 |
O2iv—Si2—O6v | 104.24 | Al1—O5—Si3xiv | 129.689 |
O3—Si2—O6v | 112.114 | Si1—O6—Si2xv | 135.676 |
O2iv—Si2—O8vi | 106.97 | Al1—O7—Si3vi | 133.943 |
O3—Si2—O8vi | 111.591 | Si1—O8—Si2vi | 151.747 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) x+1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z−1; (ix) −x+1, −y+1, −z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y−1, z+1; (xiii) x+1, y, z; (xiv) x−1/2, y−1/2, z; (xv) x−1/2, y+1/2, z. |
Fe7S8 | β = 117.12 (3)° |
Mr = 647.41 | V = 933.9 (3) Å3 |
Monoclinic, C2/c | Z = 4 |
a = 11.904 (12) Å | Dx = 4.605 Mg m−3 |
b = 6.878 (2) Å | T = 300 K |
c = 12.814 (15) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.071(6), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
S1 | 0.01800 | 0.38330 | 0.11960 | 0.010* | |
S2 | 0.02910 | 0.11420 | 0.63900 | 0.010* | |
Fe3 | 0.10860 | 0.10250 | 0.49980 | 0.010* | |
S4 | 0.23410 | 0.13550 | 0.38260 | 0.010* | |
Fe5 | 0.24180 | 0.36600 | 0.24680 | 0.010* | |
S6 | 0.26790 | 0.13400 | 0.12360 | 0.010* | |
Fe7 | 0.38720 | 0.15000 | 0.01260 | 0.010* | |
Fe8 | 0.00000 | 0.14720 | 0.25000 | 0.010* |
S1—Fe3i | 2.4981 | Fe5—S2v | 2.4412 |
S1—Fe5 | 2.4104 | Fe5—S4 | 2.3866 |
S1—Fe7ii | 2.3924 | Fe5—S6 | 2.3628 |
S1—Fe7iii | 2.4370 | S6—Fe3viii | 2.4529 |
S1—Fe8 | 2.4087 | S6—Fe5 | 2.3628 |
S2—Fe3 | 2.3713 | S6—Fe7 | 2.4277 |
S2—Fe3iv | 2.3269 | S6—Fe7iii | 2.3926 |
S2—Fe5v | 2.4412 | Fe7—S1ix | 2.3924 |
S2—Fe7vi | 2.3692 | Fe7—S1iii | 2.4370 |
S2—Fe8iv | 2.4136 | Fe7—S2x | 2.3692 |
Fe3—S1i | 2.4981 | Fe7—S6 | 2.4277 |
Fe3—S2 | 2.3713 | Fe7—S6iii | 2.3926 |
Fe3—S2iv | 2.3269 | Fe8—S1 | 2.4087 |
Fe3—S6vii | 2.4529 | Fe8—S1i | 2.4087 |
S4—Fe5 | 2.3866 | Fe8—S2iv | 2.4136 |
Fe5—S1 | 2.4104 | Fe8—S2viii | 2.4136 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z; (iv) −x, −y, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z+3/2; (vii) x, −y, z+3/2; (viii) x, −y, z+1/2; (ix) x+1/2, y−1/2, z; (x) x+1/2, −y+1/2, z+1/2. |
O2Si | V = 113.15 (1) Å3 |
Mr = 60.08 | Z = 3 |
Trigonal, P3221 | Dx = 2.645 Mg m−3 |
a = 4.9162 (4) Å | T = 300 K |
c = 5.4061 (4) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.220(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.47000 | 0.00000 | 0.66670 | 0.006 | |
O1 | 0.41460 | 0.26780 | 0.78543 | 0.011 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0073 | 0.0059 | 0.0053 | 0.0029 | 0.0003 | 0.0006 |
O1 | 0.0120 | 0.0105 | 0.0118 | 0.0065 | −0.0029 | −0.0040 |
Si1—O1 | 1.6056 | O1—Si1 | 1.6056 |
Si1—O1i | 1.6119 | O1—Si1iv | 1.6119 |
Si1—O1ii | 1.6116 | O1—Si1v | 1.6116 |
Si1—O1iii | 1.6058 | ||
O1—Si1—O1i | 110.252 | O1ii—Si1—O1iii | 110.258 |
O1—Si1—O1ii | 108.754 | Si1—O1—Si1iv | 143.831 |
O1i—Si1—O1ii | 109.677 | Si1—O1—Si1v | 143.835 |
O1—Si1—O1iii | 109.158 | Si1iv—O1—Si1v | 0.009 |
O1i—Si1—O1iii | 108.734 |
Symmetry codes: (i) −y+1, x−y, z−1/3; (ii) −x+1, y−x, −z+5/3; (iii) x−y, −y, −z+4/3; (iv) y−x+1, −x+1, z+1/3; (v) −x+1, y−x+1, −z+5/3. |
O2Ti | V = 62.62 (5) Å3 |
Mr = 79.9 | Z = 2 |
Tetragonal, P42/mnm | Dx = 4.237 Mg m−3 |
a = 4.599 (3) Å | T = 300 K |
c = 2.960 (2) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.100, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.00000 | 0.00000 | 0.00000 | 0.006 | |
O1 | 0.30493 | 0.30493 | 0.00000 | 0.006 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0070 | 0.0070 | 0.0047 | −0.0002 | 0.0000 | 0.0000 |
O1 | 0.0060 | 0.0060 | 0.0045 | −0.0019 | 0.0000 | 0.0000 |
Ti1—O1 | 1.9835 | Ti1—O1v | 1.9495 |
Ti1—O1i | 1.9495 | O1—Ti1 | 1.9835 |
Ti1—O1ii | 1.9495 | O1—Ti1vi | 1.9495 |
Ti1—O1iii | 1.9835 | O1—Ti1vii | 1.9495 |
Ti1—O1iv | 1.9495 | ||
O1—Ti1—O1i | 90 | O1iii—Ti1—O1iv | 90 |
O1—Ti1—O1ii | 90 | O1—Ti1—O1v | 90 |
O1i—Ti1—O1ii | 98.787 | O1i—Ti1—O1v | 180 |
O1—Ti1—O1iii | 180 | O1ii—Ti1—O1v | 81.213 |
O1i—Ti1—O1iii | 90 | O1iii—Ti1—O1v | 90 |
O1ii—Ti1—O1iii | 90 | O1iv—Ti1—O1v | 98.787 |
O1—Ti1—O1iv | 90 | Ti1—O1—Ti1vi | 130.606 |
O1i—Ti1—O1iv | 81.213 | Ti1—O1—Ti1vii | 130.606 |
O1ii—Ti1—O1iv | 180 | Ti1vi—O1—Ti1vii | 98.787 |
Symmetry codes: (i) −y+1/2, x−1/2, z−1/2; (ii) −y+1/2, x−1/2, z+1/2; (iii) −x, −y, z; (iv) y−1/2, −x+1/2, z−1/2; (v) y−1/2, −x+1/2, z+1/2; (vi) −y+1/2, x+1/2, z−1/2; (vii) −y+1/2, x+1/2, z+1/2. |
FeS2 | V = 159.18 (1) Å3 |
Mr = 119.97 | Z = 4 |
Cubic, Pa3 | Dx = 5.006 Mg m−3 |
a = 5.41951 (3) Å | T = 300 K |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.2643(21), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.00000 | 0.00000 | 0.00000 | 0.0063 (4)* | |
S2 | 0.38541 (12) | 0.38541 | 0.38541 | 0.0053 (4)* |
Fe1—S2i | 2.2659 (2) | Fe1—S2vi | 2.2659 (6) |
Fe1—S2ii | 2.2659 (2) | S2—Fe1vii | 2.2659 (2) |
Fe1—S2iii | 2.2659 (2) | S2—Fe1viii | 2.2659 (2) |
Fe1—S2iv | 2.2659 (2) | S2—Fe1ix | 2.2659 (6) |
Fe1—S2v | 2.2659 (2) | S2—S2x | 2.1513 (8) |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −z+1/2, x−1/2, y; (iii) y, −z+1/2, x−1/2; (iv) −z, x−1/2, −y+1/2; (v) −y+1/2, −z, x−1/2; (vi) y−1/2, −z+1/2, −x; (vii) x+1/2, y, −z+1/2; (viii) −z+1/2, x+1/2, y; (ix) y, −z+1/2, x+1/2; (x) −x+1, −y+1, −z+1. |
AlNaO8Si3 | β = 116.6° |
Mr = 262.22 | γ = 87.71° |
Triclinic, C1 | V = 664.01 Å3 |
a = 8.137 Å | Z = 4 |
b = 12.785 Å | Dx = 2.623 Mg m−3 |
c = 7.1583 Å | T = 300 K |
α = 94.26° |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.171(12), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: none |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.00887 | 0.16846 | 0.20805 | 0.007 | |
Si1 | 0.00375 | 0.82051 | 0.23737 | 0.006 | |
Si2 | 0.69162 | 0.11021 | 0.31466 | 0.006 | |
Si3 | 0.68129 | 0.88190 | 0.36076 | 0.006 | |
Na1 | 0.26799 | 0.98865 | 0.14650 | 0.031 | |
O1 | 0.00490 | 0.13103 | 0.96660 | 0.012 | |
O2 | 0.59176 | 0.99756 | 0.28040 | 0.008 | |
O3 | 0.81230 | 0.10966 | 0.19010 | 0.014 | |
O4 | 0.82000 | 0.85101 | 0.25870 | 0.018 | |
O5 | 0.01288 | 0.30238 | 0.27060 | 0.011 | |
O6 | 0.02329 | 0.69368 | 0.22910 | 0.011 | |
O7 | 0.20780 | 0.10896 | 0.38900 | 0.011 | |
O8 | 0.18400 | 0.86817 | 0.43620 | 0.012 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0074 | 0.0068 | 0.0061 | −0.0009 | 0.0031 | 0.0004 |
Si1 | 0.0068 | 0.0065 | 0.0055 | 0.0011 | 0.0030 | 0.0008 |
Si2 | 0.0061 | 0.0055 | 0.0073 | −0.0002 | 0.0025 | 0.0004 |
Si3 | 0.0060 | 0.0055 | 0.0074 | 0.0006 | 0.0028 | 0.0009 |
Na1 | 0.0136 | 0.0471 | 0.0315 | −0.0050 | 0.0084 | −0.0219 |
O1 | 0.0164 | 0.0122 | 0.0074 | −0.0002 | 0.0067 | 0.0014 |
O2 | 0.0074 | 0.0056 | 0.0119 | 0.0003 | 0.0033 | 0.0020 |
O3 | 0.0117 | 0.0130 | 0.0162 | −0.0040 | 0.0093 | −0.0017 |
O4 | 0.0134 | 0.0179 | 0.0216 | 0.0046 | 0.0129 | 0.0020 |
O5 | 0.0103 | 0.0076 | 0.0150 | −0.0020 | 0.0052 | −0.0009 |
O6 | 0.0101 | 0.0071 | 0.0145 | 0.0022 | 0.0034 | 0.0012 |
O7 | 0.0120 | 0.0129 | 0.0080 | 0.0024 | 0.0013 | 0.0015 |
O8 | 0.0140 | 0.0140 | 0.0084 | −0.0026 | −0.0002 | −0.0006 |
Al1—O1i | 1.7452 | O1—Al1xi | 1.7452 |
Al1—O3ii | 1.7429 | O1—Si1iii | 1.5999 |
Al1—O5 | 1.7351 | O1—Na1xii | 2.6689 |
Al1—O7 | 1.7456 | O1—Na1iii | 2.5308 |
Si1—O1iii | 1.5999 | O2—Si2x | 1.6301 |
Si1—O4ii | 1.6000 | O2—Si3 | 1.6472 |
Si1—O6 | 1.6223 | O2—Na1 | 2.3704 |
Si1—O8 | 1.6191 | O3—Al1xiii | 1.7429 |
Si2—O2iv | 1.6301 | O3—Si2 | 1.5944 |
Si2—O3 | 1.5944 | O3—Na1ix | 2.4532 |
Si2—O6v | 1.6184 | O4—Si1xiii | 1.6000 |
Si2—O8vi | 1.6168 | O4—Si3 | 1.6198 |
Si3—O2 | 1.6472 | O5—Al1 | 1.7351 |
Si3—O4 | 1.6198 | O5—Si3xiv | 1.5968 |
Si3—O5vii | 1.5968 | O6—Si1 | 1.6223 |
Si3—O7vi | 1.6020 | O6—Si2xv | 1.6184 |
Na1—O1viii | 2.6689 | O7—Al1 | 1.7456 |
Na1—O1iii | 2.5308 | O7—Si3vi | 1.6020 |
Na1—O2 | 2.3704 | O7—Na1iv | 2.4338 |
Na1—O3ix | 2.4532 | O8—Si1 | 1.6191 |
Na1—O7x | 2.4338 | O8—Si2vi | 1.6168 |
O1i—Al1—O3ii | 102.836 | O6v—Si2—O8vi | 110.422 |
O1i—Al1—O5 | 116.047 | O2—Si3—O4 | 107.269 |
O3ii—Al1—O5 | 112.215 | O2—Si3—O5vii | 105.914 |
O1i—Al1—O7 | 104.004 | O4—Si3—O5vii | 110.224 |
O3ii—Al1—O7 | 111.151 | O2—Si3—O7vi | 108.565 |
O5—Al1—O7 | 110.14 | O4—Si3—O7vi | 110.208 |
O1iii—Si1—O4ii | 109.433 | O5vii—Si3—O7vi | 114.328 |
O1iii—Si1—O6 | 112.47 | Al1xi—O1—Si1iii | 141.397 |
O4ii—Si1—O6 | 108.187 | Si2x—O2—Si3 | 130.019 |
O1iii—Si1—O8 | 107.176 | Si2x—O2—Na1 | 120.351 |
O4ii—Si1—O8 | 111.446 | Si3—O2—Na1 | 108.811 |
O6—Si1—O8 | 108.16 | Al1xiii—O3—Si2 | 139.461 |
O2iv—Si2—O3 | 111.144 | Si1xiii—O4—Si3 | 161.151 |
O2iv—Si2—O6v | 104.24 | Al1—O5—Si3xiv | 129.689 |
O3—Si2—O6v | 112.114 | Si1—O6—Si2xv | 135.676 |
O2iv—Si2—O8vi | 106.97 | Al1—O7—Si3vi | 133.943 |
O3—Si2—O8vi | 111.591 | Si1—O8—Si2vi | 151.747 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) x+1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z−1; (ix) −x+1, −y+1, −z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y−1, z+1; (xiii) x+1, y, z; (xiv) x−1/2, y−1/2, z; (xv) x−1/2, y+1/2, z. |
Fe7S8 | β = 117.20 (4)° |
Mr = 647.41 | V = 934.1 (3) Å3 |
Monoclinic, C2/c | Z = 4 |
a = 11.927 (18) Å | Dx = 4.603 Mg m−3 |
b = 6.869 (3) Å | T = 300 K |
c = 12.82 (2) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.049(4), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
S1 | 0.01800 | 0.38330 | 0.11960 | 0.010* | |
S2 | 0.02910 | 0.11420 | 0.63900 | 0.010* | |
Fe3 | 0.10860 | 0.10250 | 0.49980 | 0.010* | |
S4 | 0.23410 | 0.13550 | 0.38260 | 0.010* | |
Fe5 | 0.24180 | 0.36600 | 0.24680 | 0.010* | |
S6 | 0.26790 | 0.13400 | 0.12360 | 0.010* | |
Fe7 | 0.38720 | 0.15000 | 0.01260 | 0.010* | |
Fe8 | 0.00000 | 0.14720 | 0.25000 | 0.010* |
S1—Fe3i | 2.4961 | Fe5—S2v | 2.4434 |
S1—Fe5 | 2.4121 | Fe5—S4 | 2.3859 |
S1—Fe7ii | 2.3906 | Fe5—S6 | 2.3624 |
S1—Fe7iii | 2.4403 | S6—Fe3viii | 2.4517 |
S1—Fe8 | 2.4082 | S6—Fe5 | 2.3624 |
S2—Fe3 | 2.3743 | S6—Fe7 | 2.4317 |
S2—Fe3iv | 2.3254 | S6—Fe7iii | 2.3915 |
S2—Fe5v | 2.4434 | Fe7—S1ix | 2.3906 |
S2—Fe7vi | 2.3678 | Fe7—S1iii | 2.4403 |
S2—Fe8iv | 2.4128 | Fe7—S2x | 2.3678 |
Fe3—S1i | 2.4961 | Fe7—S6 | 2.4317 |
Fe3—S2 | 2.3743 | Fe7—S6iii | 2.3915 |
Fe3—S2iv | 2.3254 | Fe8—S1 | 2.4082 |
Fe3—S6vii | 2.4517 | Fe8—S1i | 2.4082 |
S4—Fe5 | 2.3859 | Fe8—S2iv | 2.4128 |
Fe5—S1 | 2.4121 | Fe8—S2viii | 2.4128 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z; (iv) −x, −y, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z+3/2; (vii) x, −y, z+3/2; (viii) x, −y, z+1/2; (ix) x+1/2, y−1/2, z; (x) x+1/2, −y+1/2, z+1/2. |
O2Si | V = 113.08 (1) Å3 |
Mr = 60.08 | Z = 3 |
Trigonal, P3221 | Dx = 2.647 Mg m−3 |
a = 4.9149 (4) Å | T = 300 K |
c = 5.4057 (3) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.220(12), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.47000 | 0.00000 | 0.66670 | 0.006 | |
O1 | 0.41460 | 0.26780 | 0.78543 | 0.011 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0073 | 0.0059 | 0.0053 | 0.0029 | 0.0003 | 0.0006 |
O1 | 0.0120 | 0.0105 | 0.0118 | 0.0065 | −0.0029 | −0.0040 |
Si1—O1 | 1.6053 | O1—Si1 | 1.6053 |
Si1—O1i | 1.6116 | O1—Si1iv | 1.6116 |
Si1—O1ii | 1.6113 | O1—Si1v | 1.6113 |
Si1—O1iii | 1.6054 | ||
O1—Si1—O1i | 110.256 | O1ii—Si1—O1iii | 110.262 |
O1—Si1—O1ii | 108.745 | Si1—O1—Si1iv | 143.832 |
O1i—Si1—O1ii | 109.685 | Si1—O1—Si1v | 143.836 |
O1—Si1—O1iii | 109.161 | Si1iv—O1—Si1v | 0.009 |
O1i—Si1—O1iii | 108.725 |
Symmetry codes: (i) −y+1, x−y, z−1/3; (ii) −x+1, y−x, −z+5/3; (iii) x−y, −y, −z+4/3; (iv) y−x+1, −x+1, z+1/3; (v) −x+1, y−x+1, −z+5/3. |
O2Ti | V = 62.59 (3) Å3 |
Mr = 79.9 | Z = 2 |
Tetragonal, P42/mnm | Dx = 4.239 Mg m−3 |
a = 4.5979 (16) Å | T = 300 K |
c = 2.9608 (14) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.13(4), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.00000 | 0.00000 | 0.00000 | 0.006 | |
O1 | 0.30493 | 0.30493 | 0.00000 | 0.006 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0070 | 0.0070 | 0.0047 | −0.0002 | 0.0000 | 0.0000 |
O1 | 0.0060 | 0.0060 | 0.0045 | −0.0019 | 0.0000 | 0.0000 |
Ti1—O1 | 1.9828 | Ti1—O1v | 1.9495 |
Ti1—O1i | 1.9495 | O1—Ti1 | 1.9828 |
Ti1—O1ii | 1.9495 | O1—Ti1vi | 1.9495 |
Ti1—O1iii | 1.9828 | O1—Ti1vii | 1.9495 |
Ti1—O1iv | 1.9495 | ||
O1—Ti1—O1i | 90 | O1iii—Ti1—O1iv | 90 |
O1—Ti1—O1ii | 90 | O1—Ti1—O1v | 90 |
O1i—Ti1—O1ii | 98.82 | O1i—Ti1—O1v | 180 |
O1—Ti1—O1iii | 180 | O1ii—Ti1—O1v | 81.18 |
O1i—Ti1—O1iii | 90 | O1iii—Ti1—O1v | 90 |
O1ii—Ti1—O1iii | 90 | O1iv—Ti1—O1v | 98.82 |
O1—Ti1—O1iv | 90 | Ti1—O1—Ti1vi | 130.59 |
O1i—Ti1—O1iv | 81.18 | Ti1—O1—Ti1vii | 130.59 |
O1ii—Ti1—O1iv | 180 | Ti1vi—O1—Ti1vii | 98.82 |
Symmetry codes: (i) −y+1/2, x−1/2, z−1/2; (ii) −y+1/2, x−1/2, z+1/2; (iii) −x, −y, z; (iv) y−1/2, −x+1/2, z−1/2; (v) y−1/2, −x+1/2, z+1/2; (vi) −y+1/2, x+1/2, z−1/2; (vii) −y+1/2, x+1/2, z+1/2. |
FeS2 | V = 159.17 (1) Å3 |
Mr = 119.97 | Z = 4 |
Cubic, Pa3 | Dx = 5.006 Mg m−3 |
a = 5.41948 (3) Å | T = 300 K |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.2508(19), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.00000 | 0.00000 | 0.00000 | 0.010* | |
S2 | 0.38680 | 0.38680 | 0.38680 | 0.010* |
Fe1—S2i | 2.2687 | Fe1—S2vi | 2.2687 |
Fe1—S2ii | 2.2687 | S2—Fe1vii | 2.2687 |
Fe1—S2iii | 2.2687 | S2—Fe1viii | 2.2687 |
Fe1—S2iv | 2.2687 | S2—Fe1ix | 2.2687 |
Fe1—S2v | 2.2687 | S2—S2x | 2.1252 |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −z+1/2, x−1/2, y; (iii) y, −z+1/2, x−1/2; (iv) −z, x−1/2, −y+1/2; (v) −y+1/2, −z, x−1/2; (vi) y−1/2, −z+1/2, −x; (vii) x+1/2, y, −z+1/2; (viii) −z+1/2, x+1/2, y; (ix) y, −z+1/2, x+1/2; (x) −x+1, −y+1, −z+1. |
AlNaO8Si3 | β = 116.6° |
Mr = 262.22 | γ = 87.71° |
Triclinic, C1 | V = 664.01 Å3 |
a = 8.137 Å | Z = 4 |
b = 12.785 Å | Dx = 2.623 Mg m−3 |
c = 7.1583 Å | T = 300 K |
α = 94.26° |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.143(10), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: none |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.00887 | 0.16846 | 0.20805 | 0.007 | |
Si1 | 0.00375 | 0.82051 | 0.23737 | 0.006 | |
Si2 | 0.69162 | 0.11021 | 0.31466 | 0.006 | |
Si3 | 0.68129 | 0.88190 | 0.36076 | 0.006 | |
Na1 | 0.26799 | 0.98865 | 0.14650 | 0.031 | |
O1 | 0.00490 | 0.13103 | 0.96660 | 0.012 | |
O2 | 0.59176 | 0.99756 | 0.28040 | 0.008 | |
O3 | 0.81230 | 0.10966 | 0.19010 | 0.014 | |
O4 | 0.82000 | 0.85101 | 0.25870 | 0.018 | |
O5 | 0.01288 | 0.30238 | 0.27060 | 0.011 | |
O6 | 0.02329 | 0.69368 | 0.22910 | 0.011 | |
O7 | 0.20780 | 0.10896 | 0.38900 | 0.011 | |
O8 | 0.18400 | 0.86817 | 0.43620 | 0.012 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0074 | 0.0068 | 0.0061 | −0.0009 | 0.0031 | 0.0004 |
Si1 | 0.0068 | 0.0065 | 0.0055 | 0.0011 | 0.0030 | 0.0008 |
Si2 | 0.0061 | 0.0055 | 0.0073 | −0.0002 | 0.0025 | 0.0004 |
Si3 | 0.0060 | 0.0055 | 0.0074 | 0.0006 | 0.0028 | 0.0009 |
Na1 | 0.0136 | 0.0471 | 0.0315 | −0.0050 | 0.0084 | −0.0219 |
O1 | 0.0164 | 0.0122 | 0.0074 | −0.0002 | 0.0067 | 0.0014 |
O2 | 0.0074 | 0.0056 | 0.0119 | 0.0003 | 0.0033 | 0.0020 |
O3 | 0.0117 | 0.0130 | 0.0162 | −0.0040 | 0.0093 | −0.0017 |
O4 | 0.0134 | 0.0179 | 0.0216 | 0.0046 | 0.0129 | 0.0020 |
O5 | 0.0103 | 0.0076 | 0.0150 | −0.0020 | 0.0052 | −0.0009 |
O6 | 0.0101 | 0.0071 | 0.0145 | 0.0022 | 0.0034 | 0.0012 |
O7 | 0.0120 | 0.0129 | 0.0080 | 0.0024 | 0.0013 | 0.0015 |
O8 | 0.0140 | 0.0140 | 0.0084 | −0.0026 | −0.0002 | −0.0006 |
Al1—O1i | 1.7452 | O1—Al1xi | 1.7452 |
Al1—O3ii | 1.7429 | O1—Si1iii | 1.5999 |
Al1—O5 | 1.7351 | O1—Na1xii | 2.6689 |
Al1—O7 | 1.7456 | O1—Na1iii | 2.5308 |
Si1—O1iii | 1.5999 | O2—Si2x | 1.6301 |
Si1—O4ii | 1.6000 | O2—Si3 | 1.6472 |
Si1—O6 | 1.6223 | O2—Na1 | 2.3704 |
Si1—O8 | 1.6191 | O3—Al1xiii | 1.7429 |
Si2—O2iv | 1.6301 | O3—Si2 | 1.5944 |
Si2—O3 | 1.5944 | O3—Na1ix | 2.4532 |
Si2—O6v | 1.6184 | O4—Si1xiii | 1.6000 |
Si2—O8vi | 1.6168 | O4—Si3 | 1.6198 |
Si3—O2 | 1.6472 | O5—Al1 | 1.7351 |
Si3—O4 | 1.6198 | O5—Si3xiv | 1.5968 |
Si3—O5vii | 1.5968 | O6—Si1 | 1.6223 |
Si3—O7vi | 1.6020 | O6—Si2xv | 1.6184 |
Na1—O1viii | 2.6689 | O7—Al1 | 1.7456 |
Na1—O1iii | 2.5308 | O7—Si3vi | 1.6020 |
Na1—O2 | 2.3704 | O7—Na1iv | 2.4338 |
Na1—O3ix | 2.4532 | O8—Si1 | 1.6191 |
Na1—O7x | 2.4338 | O8—Si2vi | 1.6168 |
O1i—Al1—O3ii | 102.836 | O6v—Si2—O8vi | 110.422 |
O1i—Al1—O5 | 116.047 | O2—Si3—O4 | 107.269 |
O3ii—Al1—O5 | 112.215 | O2—Si3—O5vii | 105.914 |
O1i—Al1—O7 | 104.004 | O4—Si3—O5vii | 110.224 |
O3ii—Al1—O7 | 111.151 | O2—Si3—O7vi | 108.565 |
O5—Al1—O7 | 110.14 | O4—Si3—O7vi | 110.208 |
O1iii—Si1—O4ii | 109.433 | O5vii—Si3—O7vi | 114.328 |
O1iii—Si1—O6 | 112.47 | Al1xi—O1—Si1iii | 141.397 |
O4ii—Si1—O6 | 108.187 | Si2x—O2—Si3 | 130.019 |
O1iii—Si1—O8 | 107.176 | Si2x—O2—Na1 | 120.351 |
O4ii—Si1—O8 | 111.446 | Si3—O2—Na1 | 108.811 |
O6—Si1—O8 | 108.16 | Al1xiii—O3—Si2 | 139.461 |
O2iv—Si2—O3 | 111.144 | Si1xiii—O4—Si3 | 161.151 |
O2iv—Si2—O6v | 104.24 | Al1—O5—Si3xiv | 129.689 |
O3—Si2—O6v | 112.114 | Si1—O6—Si2xv | 135.676 |
O2iv—Si2—O8vi | 106.97 | Al1—O7—Si3vi | 133.943 |
O3—Si2—O8vi | 111.591 | Si1—O8—Si2vi | 151.747 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) x+1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z−1; (ix) −x+1, −y+1, −z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y−1, z+1; (xiii) x+1, y, z; (xiv) x−1/2, y−1/2, z; (xv) x−1/2, y+1/2, z. |
Fe7S8 | β = 117.23 (4)° |
Mr = 647.41 | V = 934.8 (4) Å3 |
Monoclinic, C2/c | Z = 4 |
a = 11.93 (2) Å | Dx = 4.600 Mg m−3 |
b = 6.868 (3) Å | T = 300 K |
c = 12.83 (3) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.040(3), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
S1 | 0.01800 | 0.38330 | 0.11960 | 0.010* | |
S2 | 0.02910 | 0.11420 | 0.63900 | 0.010* | |
Fe3 | 0.10860 | 0.10250 | 0.49980 | 0.010* | |
S4 | 0.23410 | 0.13550 | 0.38260 | 0.010* | |
Fe5 | 0.24180 | 0.36600 | 0.24680 | 0.010* | |
S6 | 0.26790 | 0.13400 | 0.12360 | 0.010* | |
Fe7 | 0.38720 | 0.15000 | 0.01260 | 0.010* | |
Fe8 | 0.00000 | 0.14720 | 0.25000 | 0.010* |
S1—Fe3i | 2.4960 | Fe5—S2v | 2.4441 |
S1—Fe5 | 2.4127 | Fe5—S4 | 2.3865 |
S1—Fe7ii | 2.3906 | Fe5—S6 | 2.3630 |
S1—Fe7iii | 2.4419 | S6—Fe3viii | 2.4518 |
S1—Fe8 | 2.4088 | S6—Fe5 | 2.3630 |
S2—Fe3 | 2.3758 | S6—Fe7 | 2.4333 |
S2—Fe3iv | 2.3255 | S6—Fe7iii | 2.3916 |
S2—Fe5v | 2.4441 | Fe7—S1ix | 2.3906 |
S2—Fe7vi | 2.3678 | Fe7—S1iii | 2.4419 |
S2—Fe8iv | 2.4132 | Fe7—S2x | 2.3678 |
Fe3—S1i | 2.4960 | Fe7—S6 | 2.4333 |
Fe3—S2 | 2.3758 | Fe7—S6iii | 2.3916 |
Fe3—S2iv | 2.3255 | Fe8—S1 | 2.4088 |
Fe3—S6vii | 2.4518 | Fe8—S1i | 2.4088 |
S4—Fe5 | 2.3865 | Fe8—S2iv | 2.4132 |
Fe5—S1 | 2.4127 | Fe8—S2viii | 2.4132 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z; (iv) −x, −y, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z+3/2; (vii) x, −y, z+3/2; (viii) x, −y, z+1/2; (ix) x+1/2, y−1/2, z; (x) x+1/2, −y+1/2, z+1/2. |
O2Si | V = 113.09 (1) Å3 |
Mr = 60.08 | Z = 3 |
Trigonal, P3221 | Dx = 2.647 Mg m−3 |
a = 4.9151 (4) Å | T = 300 K |
c = 5.4055 (3) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.205(11), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.47000 | 0.00000 | 0.66670 | 0.006 | |
O1 | 0.41460 | 0.26780 | 0.78543 | 0.011 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0073 | 0.0059 | 0.0053 | 0.0029 | 0.0003 | 0.0006 |
O1 | 0.0120 | 0.0105 | 0.0118 | 0.0065 | −0.0029 | −0.0040 |
Si1—O1 | 1.6053 | O1—Si1 | 1.6053 |
Si1—O1i | 1.6116 | O1—Si1iv | 1.6116 |
Si1—O1ii | 1.6114 | O1—Si1v | 1.6114 |
Si1—O1iii | 1.6055 | ||
O1—Si1—O1i | 110.254 | O1ii—Si1—O1iii | 110.26 |
O1—Si1—O1ii | 108.749 | Si1—O1—Si1iv | 143.831 |
O1i—Si1—O1ii | 109.682 | Si1—O1—Si1v | 143.835 |
O1—Si1—O1iii | 109.16 | Si1iv—O1—Si1v | 0.009 |
O1i—Si1—O1iii | 108.729 |
Symmetry codes: (i) −y+1, x−y, z−1/3; (ii) −x+1, y−x, −z+5/3; (iii) x−y, −y, −z+4/3; (iv) y−x+1, −x+1, z+1/3; (v) −x+1, y−x+1, −z+5/3. |
O2Ti | V = 62.58 (2) Å3 |
Mr = 79.9 | Z = 2 |
Tetragonal, P42/mnm | Dx = 4.241 Mg m−3 |
a = 4.5969 (7) Å | T = 300 K |
c = 2.9612 (7) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.200, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.00000 | 0.00000 | 0.00000 | 0.006 | |
O1 | 0.30493 | 0.30493 | 0.00000 | 0.006 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0070 | 0.0070 | 0.0047 | −0.0002 | 0.0000 | 0.0000 |
O1 | 0.0060 | 0.0060 | 0.0045 | −0.0019 | 0.0000 | 0.0000 |
Ti1—O1 | 1.9824 | Ti1—O1v | 1.9495 |
Ti1—O1i | 1.9495 | O1—Ti1 | 1.9824 |
Ti1—O1ii | 1.9495 | O1—Ti1vi | 1.9495 |
Ti1—O1iii | 1.9824 | O1—Ti1vii | 1.9495 |
Ti1—O1iv | 1.9495 | ||
O1—Ti1—O1i | 90 | O1iii—Ti1—O1iv | 90 |
O1—Ti1—O1ii | 90 | O1—Ti1—O1v | 90 |
O1i—Ti1—O1ii | 98.838 | O1i—Ti1—O1v | 180 |
O1—Ti1—O1iii | 180 | O1ii—Ti1—O1v | 81.162 |
O1i—Ti1—O1iii | 90 | O1iii—Ti1—O1v | 90 |
O1ii—Ti1—O1iii | 90 | O1iv—Ti1—O1v | 98.838 |
O1—Ti1—O1iv | 90 | Ti1—O1—Ti1vi | 130.581 |
O1i—Ti1—O1iv | 81.162 | Ti1—O1—Ti1vii | 130.581 |
O1ii—Ti1—O1iv | 180 | Ti1vi—O1—Ti1vii | 98.838 |
Symmetry codes: (i) −y+1/2, x−1/2, z−1/2; (ii) −y+1/2, x−1/2, z+1/2; (iii) −x, −y, z; (iv) y−1/2, −x+1/2, z−1/2; (v) y−1/2, −x+1/2, z+1/2; (vi) −y+1/2, x+1/2, z−1/2; (vii) −y+1/2, x+1/2, z+1/2. |
FeS2 | V = 159.20 (1) Å3 |
Mr = 119.97 | Z = 4 |
Cubic, Pa3 | Dx = 5.005 Mg m−3 |
a = 5.41973 (3) Å | T = 300 K |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.2144(14), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.00000 | 0.00000 | 0.00000 | 0.0079 (3)* | |
S2 | 0.38533 (11) | 0.38533 | 0.38533 | 0.0097 (3)* |
Fe1—S2i | 2.2658 (2) | Fe1—S2vi | 2.2658 (5) |
Fe1—S2ii | 2.2658 (2) | S2—Fe1vii | 2.2658 (2) |
Fe1—S2iii | 2.2658 (2) | S2—Fe1viii | 2.2658 (2) |
Fe1—S2iv | 2.2658 (2) | S2—Fe1ix | 2.2658 (5) |
Fe1—S2v | 2.2658 (2) | S2—S2x | 2.1528 (7) |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −z+1/2, x−1/2, y; (iii) y, −z+1/2, x−1/2; (iv) −z, x−1/2, −y+1/2; (v) −y+1/2, −z, x−1/2; (vi) y−1/2, −z+1/2, −x; (vii) x+1/2, y, −z+1/2; (viii) −z+1/2, x+1/2, y; (ix) y, −z+1/2, x+1/2; (x) −x+1, −y+1, −z+1. |
AlNaO8Si3 | β = 116.6° |
Mr = 262.22 | γ = 87.71° |
Triclinic, C1 | V = 664.01 Å3 |
a = 8.137 Å | Z = 4 |
b = 12.785 Å | Dx = 2.623 Mg m−3 |
c = 7.1583 Å | T = 300 K |
α = 94.26° |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.129(9), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: none |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.00887 | 0.16846 | 0.20805 | 0.007 | |
Si1 | 0.00375 | 0.82051 | 0.23737 | 0.006 | |
Si2 | 0.69162 | 0.11021 | 0.31466 | 0.006 | |
Si3 | 0.68129 | 0.88190 | 0.36076 | 0.006 | |
Na1 | 0.26799 | 0.98865 | 0.14650 | 0.031 | |
O1 | 0.00490 | 0.13103 | 0.96660 | 0.012 | |
O2 | 0.59176 | 0.99756 | 0.28040 | 0.008 | |
O3 | 0.81230 | 0.10966 | 0.19010 | 0.014 | |
O4 | 0.82000 | 0.85101 | 0.25870 | 0.018 | |
O5 | 0.01288 | 0.30238 | 0.27060 | 0.011 | |
O6 | 0.02329 | 0.69368 | 0.22910 | 0.011 | |
O7 | 0.20780 | 0.10896 | 0.38900 | 0.011 | |
O8 | 0.18400 | 0.86817 | 0.43620 | 0.012 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0074 | 0.0068 | 0.0061 | −0.0009 | 0.0031 | 0.0004 |
Si1 | 0.0068 | 0.0065 | 0.0055 | 0.0011 | 0.0030 | 0.0008 |
Si2 | 0.0061 | 0.0055 | 0.0073 | −0.0002 | 0.0025 | 0.0004 |
Si3 | 0.0060 | 0.0055 | 0.0074 | 0.0006 | 0.0028 | 0.0009 |
Na1 | 0.0136 | 0.0471 | 0.0315 | −0.0050 | 0.0084 | −0.0219 |
O1 | 0.0164 | 0.0122 | 0.0074 | −0.0002 | 0.0067 | 0.0014 |
O2 | 0.0074 | 0.0056 | 0.0119 | 0.0003 | 0.0033 | 0.0020 |
O3 | 0.0117 | 0.0130 | 0.0162 | −0.0040 | 0.0093 | −0.0017 |
O4 | 0.0134 | 0.0179 | 0.0216 | 0.0046 | 0.0129 | 0.0020 |
O5 | 0.0103 | 0.0076 | 0.0150 | −0.0020 | 0.0052 | −0.0009 |
O6 | 0.0101 | 0.0071 | 0.0145 | 0.0022 | 0.0034 | 0.0012 |
O7 | 0.0120 | 0.0129 | 0.0080 | 0.0024 | 0.0013 | 0.0015 |
O8 | 0.0140 | 0.0140 | 0.0084 | −0.0026 | −0.0002 | −0.0006 |
Al1—O1i | 1.7452 | O1—Al1xi | 1.7452 |
Al1—O3ii | 1.7429 | O1—Si1iii | 1.5999 |
Al1—O5 | 1.7351 | O1—Na1xii | 2.6689 |
Al1—O7 | 1.7456 | O1—Na1iii | 2.5308 |
Si1—O1iii | 1.5999 | O2—Si2x | 1.6301 |
Si1—O4ii | 1.6000 | O2—Si3 | 1.6472 |
Si1—O6 | 1.6223 | O2—Na1 | 2.3704 |
Si1—O8 | 1.6191 | O3—Al1xiii | 1.7429 |
Si2—O2iv | 1.6301 | O3—Si2 | 1.5944 |
Si2—O3 | 1.5944 | O3—Na1ix | 2.4532 |
Si2—O6v | 1.6184 | O4—Si1xiii | 1.6000 |
Si2—O8vi | 1.6168 | O4—Si3 | 1.6198 |
Si3—O2 | 1.6472 | O5—Al1 | 1.7351 |
Si3—O4 | 1.6198 | O5—Si3xiv | 1.5968 |
Si3—O5vii | 1.5968 | O6—Si1 | 1.6223 |
Si3—O7vi | 1.6020 | O6—Si2xv | 1.6184 |
Na1—O1viii | 2.6689 | O7—Al1 | 1.7456 |
Na1—O1iii | 2.5308 | O7—Si3vi | 1.6020 |
Na1—O2 | 2.3704 | O7—Na1iv | 2.4338 |
Na1—O3ix | 2.4532 | O8—Si1 | 1.6191 |
Na1—O7x | 2.4338 | O8—Si2vi | 1.6168 |
O1i—Al1—O3ii | 102.836 | O6v—Si2—O8vi | 110.422 |
O1i—Al1—O5 | 116.047 | O2—Si3—O4 | 107.269 |
O3ii—Al1—O5 | 112.215 | O2—Si3—O5vii | 105.914 |
O1i—Al1—O7 | 104.004 | O4—Si3—O5vii | 110.224 |
O3ii—Al1—O7 | 111.151 | O2—Si3—O7vi | 108.565 |
O5—Al1—O7 | 110.14 | O4—Si3—O7vi | 110.208 |
O1iii—Si1—O4ii | 109.433 | O5vii—Si3—O7vi | 114.328 |
O1iii—Si1—O6 | 112.47 | Al1xi—O1—Si1iii | 141.397 |
O4ii—Si1—O6 | 108.187 | Si2x—O2—Si3 | 130.019 |
O1iii—Si1—O8 | 107.176 | Si2x—O2—Na1 | 120.351 |
O4ii—Si1—O8 | 111.446 | Si3—O2—Na1 | 108.811 |
O6—Si1—O8 | 108.16 | Al1xiii—O3—Si2 | 139.461 |
O2iv—Si2—O3 | 111.144 | Si1xiii—O4—Si3 | 161.151 |
O2iv—Si2—O6v | 104.24 | Al1—O5—Si3xiv | 129.689 |
O3—Si2—O6v | 112.114 | Si1—O6—Si2xv | 135.676 |
O2iv—Si2—O8vi | 106.97 | Al1—O7—Si3vi | 133.943 |
O3—Si2—O8vi | 111.591 | Si1—O8—Si2vi | 151.747 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) x+1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z−1; (ix) −x+1, −y+1, −z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y−1, z+1; (xiii) x+1, y, z; (xiv) x−1/2, y−1/2, z; (xv) x−1/2, y+1/2, z. |
Fe7S8 | β = 117.28 (6)° |
Mr = 647.41 | V = 934.2 (4) Å3 |
Monoclinic, C2/c | Z = 4 |
a = 11.94 (3) Å | Dx = 4.603 Mg m−3 |
b = 6.860 (4) Å | T = 300 K |
c = 12.83 (3) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.0309(25), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
S1 | 0.01800 | 0.38330 | 0.11960 | 0.010* | |
S2 | 0.02910 | 0.11420 | 0.63900 | 0.010* | |
Fe3 | 0.10860 | 0.10250 | 0.49980 | 0.010* | |
S4 | 0.23410 | 0.13550 | 0.38260 | 0.010* | |
Fe5 | 0.24180 | 0.36600 | 0.24680 | 0.010* | |
S6 | 0.26790 | 0.13400 | 0.12360 | 0.010* | |
Fe7 | 0.38720 | 0.15000 | 0.01260 | 0.010* | |
Fe8 | 0.00000 | 0.14720 | 0.25000 | 0.010* |
S1—Fe3i | 2.4941 | Fe5—S2v | 2.4444 |
S1—Fe5 | 2.4128 | Fe5—S4 | 2.3857 |
S1—Fe7ii | 2.3888 | Fe5—S6 | 2.3623 |
S1—Fe7iii | 2.4435 | S6—Fe3viii | 2.4504 |
S1—Fe8 | 2.4080 | S6—Fe5 | 2.3623 |
S2—Fe3 | 2.3773 | S6—Fe7 | 2.4351 |
S2—Fe3iv | 2.3241 | S6—Fe7iii | 2.3902 |
S2—Fe5v | 2.4444 | Fe7—S1ix | 2.3888 |
S2—Fe7vi | 2.3663 | Fe7—S1iii | 2.4435 |
S2—Fe8iv | 2.4122 | Fe7—S2x | 2.3663 |
Fe3—S1i | 2.4941 | Fe7—S6 | 2.4351 |
Fe3—S2 | 2.3773 | Fe7—S6iii | 2.3902 |
Fe3—S2iv | 2.3241 | Fe8—S1 | 2.4080 |
Fe3—S6vii | 2.4504 | Fe8—S1i | 2.4080 |
S4—Fe5 | 2.3857 | Fe8—S2iv | 2.4122 |
Fe5—S1 | 2.4128 | Fe8—S2viii | 2.4122 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z; (iv) −x, −y, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z+3/2; (vii) x, −y, z+3/2; (viii) x, −y, z+1/2; (ix) x+1/2, y−1/2, z; (x) x+1/2, −y+1/2, z+1/2. |
O2Si | V = 113.12 (1) Å3 |
Mr = 60.08 | Z = 3 |
Trigonal, P3221 | Dx = 2.646 Mg m−3 |
a = 4.9154 (4) Å | T = 300 K |
c = 5.4060 (4) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.183(9), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.47000 | 0.00000 | 0.66670 | 0.006 | |
O1 | 0.41460 | 0.26780 | 0.78543 | 0.011 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0073 | 0.0059 | 0.0053 | 0.0029 | 0.0003 | 0.0006 |
O1 | 0.0120 | 0.0105 | 0.0118 | 0.0065 | −0.0029 | −0.0040 |
Si1—O1 | 1.6054 | O1—Si1 | 1.6054 |
Si1—O1i | 1.6117 | O1—Si1iv | 1.6117 |
Si1—O1ii | 1.6115 | O1—Si1v | 1.6115 |
Si1—O1iii | 1.6056 | ||
O1—Si1—O1i | 110.255 | O1ii—Si1—O1iii | 110.26 |
O1—Si1—O1ii | 108.748 | Si1—O1—Si1iv | 143.832 |
O1i—Si1—O1ii | 109.683 | Si1—O1—Si1v | 143.835 |
O1—Si1—O1iii | 109.16 | Si1iv—O1—Si1v | 0.009 |
O1i—Si1—O1iii | 108.728 |
Symmetry codes: (i) −y+1, x−y, z−1/3; (ii) −x+1, y−x, −z+5/3; (iii) x−y, −y, −z+4/3; (iv) y−x+1, −x+1, z+1/3; (v) −x+1, y−x+1, −z+5/3. |
O2Ti | V = 62.64 (3) Å3 |
Mr = 79.9 | Z = 2 |
Tetragonal, P42/mnm | Dx = 4.236 Mg m−3 |
a = 4.5996 (11) Å | T = 300 K |
c = 2.9608 (10) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.150, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.00000 | 0.00000 | 0.00000 | 0.006 | |
O1 | 0.30493 | 0.30493 | 0.00000 | 0.006 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0070 | 0.0070 | 0.0047 | −0.0002 | 0.0000 | 0.0000 |
O1 | 0.0060 | 0.0060 | 0.0045 | −0.0019 | 0.0000 | 0.0000 |
Ti1—O1 | 1.9835 | Ti1—O1v | 1.9498 |
Ti1—O1i | 1.9498 | O1—Ti1 | 1.9835 |
Ti1—O1ii | 1.9498 | O1—Ti1vi | 1.9498 |
Ti1—O1iii | 1.9835 | O1—Ti1vii | 1.9498 |
Ti1—O1iv | 1.9498 | ||
O1—Ti1—O1i | 90 | O1iii—Ti1—O1iv | 90 |
O1—Ti1—O1ii | 90 | O1—Ti1—O1v | 90 |
O1i—Ti1—O1ii | 98.799 | O1i—Ti1—O1v | 180 |
O1—Ti1—O1iii | 180 | O1ii—Ti1—O1v | 81.201 |
O1i—Ti1—O1iii | 90 | O1iii—Ti1—O1v | 90 |
O1ii—Ti1—O1iii | 90 | O1iv—Ti1—O1v | 98.799 |
O1—Ti1—O1iv | 90 | Ti1—O1—Ti1vi | 130.601 |
O1i—Ti1—O1iv | 81.201 | Ti1—O1—Ti1vii | 130.601 |
O1ii—Ti1—O1iv | 180 | Ti1vi—O1—Ti1vii | 98.799 |
Symmetry codes: (i) −y+1/2, x−1/2, z−1/2; (ii) −y+1/2, x−1/2, z+1/2; (iii) −x, −y, z; (iv) y−1/2, −x+1/2, z−1/2; (v) y−1/2, −x+1/2, z+1/2; (vi) −y+1/2, x+1/2, z−1/2; (vii) −y+1/2, x+1/2, z+1/2. |
FeS2 | V = 159.21 (1) Å3 |
Mr = 119.97 | Z = 4 |
Cubic, Pa3 | Dx = 5.005 Mg m−3 |
a = 5.41988 (3) Å | T = 300 K |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.1814(11), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.00000 | 0.00000 | 0.00000 | 0.0087 (3)* | |
S2 | 0.38482 (10) | 0.38482 | 0.38482 | 0.0087 (3)* |
Fe1—S2i | 2.2648 (1) | Fe1—S2vi | 2.2648 (5) |
Fe1—S2ii | 2.2648 (1) | S2—Fe1vii | 2.2648 (1) |
Fe1—S2iii | 2.2648 (1) | S2—Fe1viii | 2.2648 (1) |
Fe1—S2iv | 2.2648 (1) | S2—Fe1ix | 2.2648 (5) |
Fe1—S2v | 2.2648 (1) | S2—S2x | 2.1625 (6) |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −z+1/2, x−1/2, y; (iii) y, −z+1/2, x−1/2; (iv) −z, x−1/2, −y+1/2; (v) −y+1/2, −z, x−1/2; (vi) y−1/2, −z+1/2, −x; (vii) x+1/2, y, −z+1/2; (viii) −z+1/2, x+1/2, y; (ix) y, −z+1/2, x+1/2; (x) −x+1, −y+1, −z+1. |
AlNaO8Si3 | β = 116.6° |
Mr = 262.22 | γ = 87.71° |
Triclinic, C1 | V = 664.01 Å3 |
a = 8.137 Å | Z = 4 |
b = 12.785 Å | Dx = 2.623 Mg m−3 |
c = 7.1583 Å | T = 300 K |
α = 94.26° |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.099(8), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: none |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.00887 | 0.16846 | 0.20805 | 0.007 | |
Si1 | 0.00375 | 0.82051 | 0.23737 | 0.006 | |
Si2 | 0.69162 | 0.11021 | 0.31466 | 0.006 | |
Si3 | 0.68129 | 0.88190 | 0.36076 | 0.006 | |
Na1 | 0.26799 | 0.98865 | 0.14650 | 0.031 | |
O1 | 0.00490 | 0.13103 | 0.96660 | 0.012 | |
O2 | 0.59176 | 0.99756 | 0.28040 | 0.008 | |
O3 | 0.81230 | 0.10966 | 0.19010 | 0.014 | |
O4 | 0.82000 | 0.85101 | 0.25870 | 0.018 | |
O5 | 0.01288 | 0.30238 | 0.27060 | 0.011 | |
O6 | 0.02329 | 0.69368 | 0.22910 | 0.011 | |
O7 | 0.20780 | 0.10896 | 0.38900 | 0.011 | |
O8 | 0.18400 | 0.86817 | 0.43620 | 0.012 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0074 | 0.0068 | 0.0061 | −0.0009 | 0.0031 | 0.0004 |
Si1 | 0.0068 | 0.0065 | 0.0055 | 0.0011 | 0.0030 | 0.0008 |
Si2 | 0.0061 | 0.0055 | 0.0073 | −0.0002 | 0.0025 | 0.0004 |
Si3 | 0.0060 | 0.0055 | 0.0074 | 0.0006 | 0.0028 | 0.0009 |
Na1 | 0.0136 | 0.0471 | 0.0315 | −0.0050 | 0.0084 | −0.0219 |
O1 | 0.0164 | 0.0122 | 0.0074 | −0.0002 | 0.0067 | 0.0014 |
O2 | 0.0074 | 0.0056 | 0.0119 | 0.0003 | 0.0033 | 0.0020 |
O3 | 0.0117 | 0.0130 | 0.0162 | −0.0040 | 0.0093 | −0.0017 |
O4 | 0.0134 | 0.0179 | 0.0216 | 0.0046 | 0.0129 | 0.0020 |
O5 | 0.0103 | 0.0076 | 0.0150 | −0.0020 | 0.0052 | −0.0009 |
O6 | 0.0101 | 0.0071 | 0.0145 | 0.0022 | 0.0034 | 0.0012 |
O7 | 0.0120 | 0.0129 | 0.0080 | 0.0024 | 0.0013 | 0.0015 |
O8 | 0.0140 | 0.0140 | 0.0084 | −0.0026 | −0.0002 | −0.0006 |
Al1—O1i | 1.7452 | O1—Al1xi | 1.7452 |
Al1—O3ii | 1.7429 | O1—Si1iii | 1.5999 |
Al1—O5 | 1.7351 | O1—Na1xii | 2.6689 |
Al1—O7 | 1.7456 | O1—Na1iii | 2.5308 |
Si1—O1iii | 1.5999 | O2—Si2x | 1.6301 |
Si1—O4ii | 1.6000 | O2—Si3 | 1.6472 |
Si1—O6 | 1.6223 | O2—Na1 | 2.3704 |
Si1—O8 | 1.6191 | O3—Al1xiii | 1.7429 |
Si2—O2iv | 1.6301 | O3—Si2 | 1.5944 |
Si2—O3 | 1.5944 | O3—Na1ix | 2.4532 |
Si2—O6v | 1.6184 | O4—Si1xiii | 1.6000 |
Si2—O8vi | 1.6168 | O4—Si3 | 1.6198 |
Si3—O2 | 1.6472 | O5—Al1 | 1.7351 |
Si3—O4 | 1.6198 | O5—Si3xiv | 1.5968 |
Si3—O5vii | 1.5968 | O6—Si1 | 1.6223 |
Si3—O7vi | 1.6020 | O6—Si2xv | 1.6184 |
Na1—O1viii | 2.6689 | O7—Al1 | 1.7456 |
Na1—O1iii | 2.5308 | O7—Si3vi | 1.6020 |
Na1—O2 | 2.3704 | O7—Na1iv | 2.4338 |
Na1—O3ix | 2.4532 | O8—Si1 | 1.6191 |
Na1—O7x | 2.4338 | O8—Si2vi | 1.6168 |
O1i—Al1—O3ii | 102.836 | O6v—Si2—O8vi | 110.422 |
O1i—Al1—O5 | 116.047 | O2—Si3—O4 | 107.269 |
O3ii—Al1—O5 | 112.215 | O2—Si3—O5vii | 105.914 |
O1i—Al1—O7 | 104.004 | O4—Si3—O5vii | 110.224 |
O3ii—Al1—O7 | 111.151 | O2—Si3—O7vi | 108.565 |
O5—Al1—O7 | 110.14 | O4—Si3—O7vi | 110.208 |
O1iii—Si1—O4ii | 109.433 | O5vii—Si3—O7vi | 114.328 |
O1iii—Si1—O6 | 112.47 | Al1xi—O1—Si1iii | 141.397 |
O4ii—Si1—O6 | 108.187 | Si2x—O2—Si3 | 130.019 |
O1iii—Si1—O8 | 107.176 | Si2x—O2—Na1 | 120.351 |
O4ii—Si1—O8 | 111.446 | Si3—O2—Na1 | 108.811 |
O6—Si1—O8 | 108.16 | Al1xiii—O3—Si2 | 139.461 |
O2iv—Si2—O3 | 111.144 | Si1xiii—O4—Si3 | 161.151 |
O2iv—Si2—O6v | 104.24 | Al1—O5—Si3xiv | 129.689 |
O3—Si2—O6v | 112.114 | Si1—O6—Si2xv | 135.676 |
O2iv—Si2—O8vi | 106.97 | Al1—O7—Si3vi | 133.943 |
O3—Si2—O8vi | 111.591 | Si1—O8—Si2vi | 151.747 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) x+1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z−1; (ix) −x+1, −y+1, −z; (x) x, y+1, z; (xi) x, y, z+1; (xii) x, y−1, z+1; (xiii) x+1, y, z; (xiv) x−1/2, y−1/2, z; (xv) x−1/2, y+1/2, z. |
Fe7S8 | β = 117.23 (8)° |
Mr = 647.41 | V = 934.4 (6) Å3 |
Monoclinic, C2/c | Z = 4 |
a = 11.95 (4) Å | Dx = 4.602 Mg m−3 |
b = 6.850 (5) Å | T = 300 K |
c = 12.84 (5) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.0294(29), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
S1 | 0.01800 | 0.38330 | 0.11960 | 0.010* | |
S2 | 0.02910 | 0.11420 | 0.63900 | 0.010* | |
Fe3 | 0.10860 | 0.10250 | 0.49980 | 0.010* | |
S4 | 0.23410 | 0.13550 | 0.38260 | 0.010* | |
Fe5 | 0.24180 | 0.36600 | 0.24680 | 0.010* | |
S6 | 0.26790 | 0.13400 | 0.12360 | 0.010* | |
Fe7 | 0.38720 | 0.15000 | 0.01260 | 0.010* | |
Fe8 | 0.00000 | 0.14720 | 0.25000 | 0.010* |
S1—Fe3i | 2.4932 | Fe5—S2v | 2.4471 |
S1—Fe5 | 2.4156 | Fe5—S4 | 2.3851 |
S1—Fe7ii | 2.3880 | Fe5—S6 | 2.3615 |
S1—Fe7iii | 2.4444 | S6—Fe3viii | 2.4506 |
S1—Fe8 | 2.4072 | S6—Fe5 | 2.3615 |
S2—Fe3 | 2.3783 | S6—Fe7 | 2.4359 |
S2—Fe3iv | 2.3245 | S6—Fe7iii | 2.3908 |
S2—Fe5v | 2.4471 | Fe7—S1ix | 2.3880 |
S2—Fe7vi | 2.3663 | Fe7—S1iii | 2.4444 |
S2—Fe8iv | 2.4108 | Fe7—S2x | 2.3663 |
Fe3—S1i | 2.4932 | Fe7—S6 | 2.4359 |
Fe3—S2 | 2.3783 | Fe7—S6iii | 2.3908 |
Fe3—S2iv | 2.3245 | Fe8—S1 | 2.4072 |
Fe3—S6vii | 2.4506 | Fe8—S1i | 2.4072 |
S4—Fe5 | 2.3851 | Fe8—S2iv | 2.4108 |
Fe5—S1 | 2.4156 | Fe8—S2viii | 2.4108 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z; (iv) −x, −y, −z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z+3/2; (vii) x, −y, z+3/2; (viii) x, −y, z+1/2; (ix) x+1/2, y−1/2, z; (x) x+1/2, −y+1/2, z+1/2. |
O2Si | V = 113.16 (1) Å3 |
Mr = 60.08 | Z = 3 |
Trigonal, P3221 | Dx = 2.645 Mg m−3 |
a = 4.9161 (5) Å | T = 300 K |
c = 5.4064 (5) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.151(8), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.47000 | 0.00000 | 0.66670 | 0.006 | |
O1 | 0.41460 | 0.26780 | 0.78543 | 0.011 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0073 | 0.0059 | 0.0053 | 0.0029 | 0.0003 | 0.0006 |
O1 | 0.0120 | 0.0105 | 0.0118 | 0.0065 | −0.0029 | −0.0040 |
Si1—O1 | 1.6056 | O1—Si1 | 1.6056 |
Si1—O1i | 1.6119 | O1—Si1iv | 1.6119 |
Si1—O1ii | 1.6117 | O1—Si1v | 1.6117 |
Si1—O1iii | 1.6058 | ||
O1—Si1—O1i | 110.253 | O1ii—Si1—O1iii | 110.259 |
O1—Si1—O1ii | 108.751 | Si1—O1—Si1iv | 143.831 |
O1i—Si1—O1ii | 109.68 | Si1—O1—Si1v | 143.835 |
O1—Si1—O1iii | 109.159 | Si1iv—O1—Si1v | 0.009 |
O1i—Si1—O1iii | 108.731 |
Symmetry codes: (i) −y+1, x−y, z−1/3; (ii) −x+1, y−x, −z+5/3; (iii) x−y, −y, −z+4/3; (iv) y−x+1, −x+1, z+1/3; (v) −x+1, y−x+1, −z+5/3. |
O2Ti | V = 62.62 (2) Å3 |
Mr = 79.9 | Z = 2 |
Tetragonal, P42/mnm | Dx = 4.238 Mg m−3 |
a = 4.5991 (7) Å | T = 300 K |
c = 2.9603 (7) Å |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 0.200, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 0.000, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.00000 | 0.00000 | 0.00000 | 0.006 | |
O1 | 0.30493 | 0.30493 | 0.00000 | 0.006 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0070 | 0.0070 | 0.0047 | −0.0002 | 0.0000 | 0.0000 |
O1 | 0.0060 | 0.0060 | 0.0045 | −0.0019 | 0.0000 | 0.0000 |
Ti1—O1 | 1.9833 | Ti1—O1v | 1.9495 |
Ti1—O1i | 1.9495 | O1—Ti1 | 1.9833 |
Ti1—O1ii | 1.9495 | O1—Ti1vi | 1.9495 |
Ti1—O1iii | 1.9833 | O1—Ti1vii | 1.9495 |
Ti1—O1iv | 1.9495 | ||
O1—Ti1—O1i | 90 | O1iii—Ti1—O1iv | 90 |
O1—Ti1—O1ii | 90 | O1—Ti1—O1v | 90 |
O1i—Ti1—O1ii | 98.795 | O1i—Ti1—O1v | 180 |
O1—Ti1—O1iii | 180 | O1ii—Ti1—O1v | 81.205 |
O1i—Ti1—O1iii | 90 | O1iii—Ti1—O1v | 90 |
O1ii—Ti1—O1iii | 90 | O1iv—Ti1—O1v | 98.795 |
O1—Ti1—O1iv | 90 | Ti1—O1—Ti1vi | 130.602 |
O1i—Ti1—O1iv | 81.205 | Ti1—O1—Ti1vii | 130.602 |
O1ii—Ti1—O1iv | 180 | Ti1vi—O1—Ti1vii | 98.795 |
Symmetry codes: (i) −y+1/2, x−1/2, z−1/2; (ii) −y+1/2, x−1/2, z+1/2; (iii) −x, −y, z; (iv) y−1/2, −x+1/2, z−1/2; (v) y−1/2, −x+1/2, z+1/2; (vi) −y+1/2, x+1/2, z−1/2; (vii) −y+1/2, x+1/2, z+1/2. |
Acknowledgements
We thank Helen Wang and Brit David for their insight and provision of the XRF laboratory and milling facilities as part of the Mark Wainwright Analytical Centre, UNSW Sydney. We would like to thank Ruoming Tian for provision and training regarding the XRD laboratory and facilities, also as part of the Mark Wainwright Analytical Centre, UNSW Sydney. We extend thanks to Simon Hager and Karen Privat for provision, training and usage of the SEM facilities as part of the Mark Wainwright Analytical Centre, UNSW. We are grateful to Fandi Chen and George Yang for their insight and assistance with particle-size laser dispersion analysis, and for provision and training in SEM sample preparation at the School of Material Science and Engineering, UNSW. We are also grateful to Deborah Wakeham for assistance with access to laboratory facilities and for providing valuable insight used in this work. We thank our industry partner Cobalt Blue for provision of samples, information and advice essential to our research. Author contributions are as follows: HM and MH contributed equally to this work. HM and MH performed the measurements. HM, MH and CD processed the experimental data and performed the analysis. HM and CD drafted the manuscript. All authors commented on the manuscript and contributed to the discussion of the results. VP and SN conceived and directed the work. VP directed and assisted with neutron diffraction data collection. Open access publishing facilitated by University of New South Wales, as part of the Wiley–University of New South Wales agreement via the Council of Australian University Librarians.
Funding information
The following funding is acknowledged: ANSTO Cooperative Research Centres Projects (CRC-P) (grant No. CRCPEIGHT000017) Future Now scholarship at ANSTO's Graduate Institute.
References
Abraitis, P. K., Pattrick, R. A. D. & Vaughan, D. J. (2004). Int. J. Miner. Process. 74, 41–59. CrossRef Google Scholar
Antao, S. M., Hassan, I., Wang, J., Lee, P. L. & Toby, B. H. (2008). Can. Mineral. 46, 1501–1509. Web of Science CrossRef ICSD CAS Google Scholar
Armbruster, T., Buergi, H. B., Kunz, M., Gnos, E., Broenniman, S. & Lienert, C. (1990). Am. Mineral. 75, 135–140. Google Scholar
Bish, D. L. & Reynolds, R. J. (1989). Sample Preparation for X-ray Diffraction. Washington, DC: Mineralogical Society of America. Google Scholar
Brindley, G. W. (1945). London Edinb. Dubl. Philos. Mag. J. Sci. 36, 347–369. CrossRef CAS Google Scholar
Chantler, C. T. (2001). J. Synchrotron Rad. 8, 1124. CrossRef IUCr Journals Google Scholar
Chen, J., Xu, Z. & Chen, Y. (2020). Electronic Structure and Surfaces of Sulfide Minerals, edited by Y. Chen, J. Chen & Z. Xu, pp. 13–81. Amsterdam: Elsevier. Google Scholar
Cline, J. P., Von Dreele, R. B., Winburn, R., Stephens, P. W. & Filliben, J. J. (2011). Acta Cryst. A67, 357–367. Web of Science CrossRef CAS IUCr Journals Google Scholar
Craig, J. & Vokes, F. (1993). Mineral. Mag. 57, 3–18. CrossRef Google Scholar
Deer, W. A., Howie, R. A. & Zussman, J. (1962). An Introduction to the Rock-Forming Minerals. London: Longmans. Google Scholar
Dermatas, D., Chrysochoou, M., Pardali, S. & Grubb, D. G. (2007). Environ. Qual. 36, p487–497. CrossRef Google Scholar
Deslattes, R. D., Kessler, E. G. Jr, Indelicato, P., de Billy, L., Lindroth, E., Anton, J., Coursey, J. S., Schwab, D. J., Chang, C., Sukumar, R., Olsen, K. & Dragoset, R. A. (2005). X-ray Transition Energies. https://physics.nist.gov/XrayTrans. National Institute of Standards and Technology, Gaithersburg, Maryland, USA. Google Scholar
Dettrick, D., Bourgeot, N., Costelloe, J., Yuen, S. & Arora, M. (2019). Mine Water Environ. 38, 735–745. CrossRef Google Scholar
Donnay, J. D. H. (1940). Am. Miner. Earth Planet. Mater. 25, 578–586. Google Scholar
Heidelbach, F., Post, A. & Tullis, J. (2000). J. Struct. Geol. 22, 1649–1661. Web of Science CrossRef Google Scholar
Hillier, S. (1999). Clay Miner. 34, 127–135. CrossRef CAS Google Scholar
Hillier, S. (2003). Spec. Publ. Int. Assoc. Sedimentol. 34, 213–251. Google Scholar
Iddings, J. P. (1898). J. Geol. 6, 219–237. CrossRef Google Scholar
Jiang, Z., Prior, D. J. & Wheeler, J. (2000). J. Struct. Geol. 22, 1663–1674. CrossRef Google Scholar
Kadachi, A. N. & Al-Eshaikh, M. A. (2012). X-ray Spectrom. 41, 350–354. CrossRef Google Scholar
Karim, W., Kleibert, A., Hartfelder, U., Balan, A., Gobrecht, J., van Bokhoven, J. A. & Ekinci, Y. (2016). Sci. Rep. 6, 18818. Google Scholar
Kleeberg, R., Monecke, T. & Hillier, S. (2008). Clays Clay Miner. 56, 404–415. Web of Science CrossRef CAS Google Scholar
Klug, H. P. & Alexander, L. E. (1954). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley and Sons Inc. Google Scholar
Landauer, J. & Foerst, P. (2019). Processes, 7, 716. Google Scholar
Loubser, M. & Verryn, S. (2008). South Afr. J. Geol. 111, 229–238. CrossRef Google Scholar
Madsen, I. C., Scarlett, N. V. Y. & Kern, A. (2011). Z. Kristallogr. 226, 944–955. Web of Science CrossRef CAS Google Scholar
Madsen, I. C., Scarlett, N. V. Y., Kleeberg, R. & Knorr, K. (2019). International Tables for Crystallography, Vol. H, Powder Diffraction, edited by C. J. Gilmore, J. A. Kaduk & H. Schenk, pp. 344–373. Chichester: Wiley. Google Scholar
Mirkowska, M., Kratzer, M., Teichert, C. & Flachberger, H. (2016). BHM Berg- Hüttenmännische Monatsh. 161, 359–382. CrossRef Google Scholar
Monecke, T., Kohler, S., Kleeberg, R., Herzig, P. M. & Gemmell, J. B. (2001). Can. Mineral. 39, 1617–1633. CrossRef Google Scholar
Moore, D. M. & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press. Google Scholar
Morimoto, N., Gyobu, A., Mukaiyama, H. & Izawa, E. (1975). Econ. Geol. 70, 824–833. CrossRef CAS Web of Science Google Scholar
O'Connor, B. H. & Chang, W. J. (1986). X-ray Spectrom. 15, p267–270. Google Scholar
O'Connor, B. H. & Raven, M. D. (1988). Powder Diffr. 3, 2–6. CAS Google Scholar
Pillet, S., Souhassou, M., Lecomte, C., Schwarz, K., Blaha, P., Rérat, M., Lichanot, A. & Roversi, P. (2001). Acta Cryst. A57, 290–303. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Plimer, I. R. (1977). Miner. Deposita, 12, 175–187. CrossRef Google Scholar
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71. CrossRef CAS IUCr Journals Web of Science Google Scholar
Rousseau, R. M. (2006). At. Spectrosc. 61, 759–777. Web of Science CrossRef Google Scholar
Sakher, E., Loudjani, N., Benchiheub, M. & Bououdina, M. (2018). J. Nanomater. 2018, 2560641. CrossRef Google Scholar
Scarlett, N. V. Y. & Madsen, I. C. (2018). Powder Diffr. 33, 26–37. Web of Science CrossRef CAS Google Scholar
Scarlett, N. V. Y., Madsen, I. C., Cranswick, L. M. D., Lwin, T., Groleau, E., Stephenson, G., Aylmore, M. & Agron-Olshina, N. (2002). J. Appl. Cryst. 35, 383–400. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shintani, H., Sato, S. & Saito, Y. (1975). Acta Cryst. B31, 1981–1982. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Souders, A. K. & Sylvester, P. J. (2010). J. Anal. At. Spectrom. 25, 975–988. CrossRef Google Scholar
Studer, A. J., Hagen, M. E. & Noakes, T. J. (2006). Physica B, 385–386, 1013–1015. Web of Science CrossRef CAS Google Scholar
Summerfield, D. (2020). Australian Resource Reviews: Iron Ore 2019. Canberra: Geoscience Australia. Google Scholar
Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549. Web of Science CrossRef CAS IUCr Journals Google Scholar
Unruh, D. K. & Forbes, T. Z. (2019). Analytical Geomicrobiology: A Handbook of Instrumental Techniques, edited by J. P. L Kenney, H. Veeramani & D. S. Alessi, pp. 215–237. Cambridge University Press. Google Scholar
Vance, J. A. (1961). Am. Mineral. 46, 1097–1119. Google Scholar
Werner, P.-E., Salomé, S., Malmros, G. & Thomas, J. O. (1979). J. Appl. Cryst. 12, 107–109. CrossRef CAS IUCr Journals Web of Science Google Scholar
West, J. (2011). J. Ind. Ecol. 15, 165–168. CrossRef Google Scholar
Whitfield, P. S. (2016). Powder Diffr. 31, 192–197. Web of Science CrossRef CAS Google Scholar
Whitfield, P. S., Huq, A. & Kaduk, J. A. (2019). International Tables for Crystallography, Vol. H, Powder Diffraction, edited by C. J. Gilmore, J. A. Kaduk & H. Schenk, pp. 200–222. Chichester: Wiley. Google Scholar
Wu, R., Zheng, Y. F., Zhang, X. G., Sun, Y. F., Xu, J. B. & Jian, J. K. (2004). J. Cryst. Growth, 266, 523–527. Web of Science CrossRef ICSD Google Scholar
Zambonini, F. & Washington, H. S. (1923). Am. Mineral. 8, 81–85. Google Scholar
Zhang, G., Germaine, J. T., Martin, R. T. & Whittle, A. J. (2003). Clays Clay Miner. 51, 218–225. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.