research papers
Derivation of the small-angle scattering profile of a target biomacromolecule from a profile deteriorated by aggregates. AUC–SAS
aInstitute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka 590-0494, Japan
*Correspondence e-mail: sugiyama.masaaki.5n@kyoto-u.ac.jp
Aggregates cause a fatal problem in the structural analysis of a biomacromolecule in solution using small-angle X-ray or neutron scattering (SAS): they deteriorate the scattering profile of the target molecule and lead to an incorrect structure. Recently, an integrated method of analytical ultracentrifugation (AUC) and SAS, abbreviated AUC–SAS, was developed as a new approach to overcome this problem. However, the original version of AUC–SAS does not offer a correct scattering profile of the target molecule when the weight fraction of aggregates is higher than ca 10%. In this study, the obstacle point in the original AUC–SAS approach is identified. The improved AUC–SAS method is then applicable to a solution with a relatively larger weight fraction of aggregates (≤20%).
Keywords: small-angle X-ray scattering; small-angle neutron scattering; analytical ultracentrifugation; protein solutions; aggregates; biomacromolecules.
1. Introduction
Small-angle X-ray and neutron scattering (SAXS and SANS), collectively abbreviated as SAS, are increasingly being used to reveal structures of biomacromolecules in solution (Svergun & Koch, 2003; Bernadó et al., 2018; Mahieu & Gabel, 2018). Modern computational analysis methods for SAS offer a detailed three-dimensional structural model (Grant, 2018; Bengtsen et al., 2020; Gräwert & Svergun, 2020; Matsumoto et al., 2020; Okuda et al., 2021; Shimizu et al., 2022; Yunoki et al., 2022). To build a reliable structural model using these methods, it is crucial to obtain an experimental scattering profile that purely corresponds to the target molecule. However, even with a small content of aggregates (<10%), the scattering profile deteriorates from that of the target molecule and can result in an incorrect structural model. Moreover, there is another serious problem related to aggregates. Typically, an abnormal upturn of the scattering profile in the lowest scattering-angle region is recognized as experimental evidence of aggregate contamination. However, the scattering profile cannot show such clear evidence when the weight fraction of the aggregates is low. For example, the Guinier approximation holds for a sample with a small weight fraction of aggregates, and the scattering profile is expressed as a straight line in the which gives the gyration radius of the sample biomacromolecule. However, when the gyration radius is larger than the expected radius, it is difficult to determine whether the solution includes aggregates or whether the target molecule itself is deformed from the expected structure. Accordingly, to solve the `aggregation problems' of the identification and removal of aggregates, SAS coupled with other methods, such as (SEC–SAXS), has been explored (David & Pérez, 2009; Ryan et al., 2018; Inoue et al., 2019).
Recently, another integrated approach using analytical ultracentrifugation (AUC) and SAS, abbreviated AUC–SAS (Morishima et al., 2020), has been developed to overcome aggregation problems. AUC–SAS derives a scattering profile of the target molecule in the solution including aggregates by utilizing the molecular distribution obtained with AUC. AUC–SAS reportedly offers precise scattering profiles of several biomacromolecules in solution (Hirano et al., 2021; Okuda et al., 2021). Because AUC–SAS does not require a large amount of sample or a very high intensity instrument, as needed by synchrotron-light SAXS, it has the potential to be applied to laboratory-based SAXS. AUC–SAS is also applicable to SANS, which faces the same aggregation problem.
Improvement of AUC–SAS will expand the scope of wider applications. For example, the first version of AUC–SAS (`first AUC–SAS') was constrained by the weight fraction of the aggregates (less than ∼10%). In the present study, we have improved AUC–SAS, making it applicable to samples with relatively large weight fractions of aggregates (>10%). Furthermore, we provide software for the improved AUC–SAS, which is available to any SAS experimenter.
2. Experimental
2.1. Samples
Bovine serum albumin (BSA), apoferritin (AF), catalase (Cat), lysozyme (Lyz), ovalbumin (OVA) and ribonuclease A (RNaseA) were purchased from Merck, Sigma–Aldrich (Darmstadt, Germany). Human βB2-crystallin (βB2-cry) clone (consistent with NCBI sequence NM 000496) in a pET3a plasmid was obtained from Genscript (Piscataway, New Jersey, USA). The recombinant βB2-cry plasmid was then used to transform competent BL21(DE3)pLysS cells (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Purification of βB2-cry was performed by following previous reports (Lampi et al., 2006).
BSA, AF, Lyz, OVA and RNaseA were dissolved in 100 mM Tris–HCl buffer (pH 7.5) containing 100 mM NaCl. Cat and βB2-cry were dissolved in 50 mM Tris–HCl buffer (pH 8.0) containing 150 mM NaCl. The protein solutions were purified by SEC with a Superdex 200 Increase 10/300 GL column (for BSA, Cat, βB2-cry and OVA), Superose 6 Increase 10/300 GL column (for AF) and Superdex 75 Increase 10/300 GL column (for Lyz and RNaseA). The protein solutions were prepared by mixing the main component and its aggregate fractions while keeping the weight fraction of aggregates (ra) ≤ 0.2. Sample codes are expressed as [protein + number] (e.g. BSA6), where the number corresponds to ra. The mass concentrations for the AUC and SAXS measurements were 2.0 mg ml−1 for BSA6, BSA13, BSA20, AF5, AF15 and AF21; 2.1 mg ml−1 for Cat3 and Cat8; 1.1 mg ml−1 for Lyz6; 2.3 mg ml−1 for βB2-cry11; 2.2 mg ml−1 for OVA4; and 2.0 mg ml−1 for RNaseA8. BSA3 was subjected to AUC and SANS measurements after dialysis in D2O buffer.
2.2. AUC measurements
−1 for BSA, AF, Cat, βB2-cry and OVA; and 60 000 r min−1 for Lyz and RNaseA. The time evolution of the sedimentation data was analyzed using the multi-component Lamm equation (Lebowitz et al., 2002). The weight-concentration distribution c(s20,w) as a function of the and frictional ratio f/f0 was computed using the SEDFIT software (version 15.01c) (Schuck, 2000). The was normalized to be the value at 293 K in pure water, s20,w. The weight fraction of the j-mer, rj, was obtained from the corresponding of c(s20,w). The molecular weight, Mj, of the j-mer was calculated using the corresponding peak positions s20,w,j and f/f0 (Brown & Schuck, 2006) as
AUC measurements were performed using ProteomeLab XL-I (Beckman Coulter, USA). The samples were loaded into cells equipped with 1.5 mm path length titanium center pieces (Nanolytics, Germany). All measurements were performed using Rayleigh interference optics at 298 K. The rotor speed was set at 45 000 r minwhere η, ρ, NA and are the viscosity of water at 293 K, the density of water at 293 K, Avogadro's number and the of the protein, respectively.
2.3. SAXS measurements
SAXS measurements were performed using a laboratory-based instrument (NANOPIX, Rigaku, Japan) equipped with a high-brilliance point-focused generator of a Cu Kα source (MicroMAX-007 HFMR, Rigaku, Japan) (wavelength = 1.54 Å). Scattered X-rays were measured using a HyPix-6000 hybrid detector (Rigaku, Japan) composed of 765 × 813 pixels with a spatial resolution of 100 µm. For all samples, the sample-to-detector distance (SDD) was set to 1330 mm, with which the covered q range was 0.01 ≤ q ≤ 0.20 Å−1 (where q is the magnitude of the scattering vector). Two-dimensional scattering patterns were converted to one-dimensional scattering profiles using the SAngler software (Shimizu et al., 2016). After correction by the transmittance and subtraction of buffer scattering, the absolute scattering intensity was obtained using the standard scattering intensity of water (1.632 × 10−2 cm−1) (Orthaber et al., 2000). All measurements were performed at 298 K.
2.4. SEC–SAXS measurements
SEC–SAXS measurements were conducted with a laboratory-based SEC–SAXS system (La-SSS) (Inoue et al., 2019), which is made up of a NANOPIX combined with a Prominence high-performance system (SHIMADZU, Japan). A Superdex 200 Increase 10/300 GL for BSA, Cat, βB2-cry and OVA, a Superose 6 Increase 10/300 GL for AF, and a Superdex 75 Increase 10/300 GL for Lyz and RNaseA were utilized as the SEC column. All measurements were performed at a flow rate of 0.02 ml min−1 at 298 K.
2.5. SANS measurements
SANS measurements were performed using the SANS-U instrument located at JRR-3 (Japan Atomic Energy Agency, JAEA). A neutron beam at a wavelength of 6.0 Å with 10% resolution was irradiated on the samples. Scattered neutrons were counted using a two-dimensional detector (Ordela, USA). The SDDs were set to 4000 and 1030 mm, which covered a q range of 0.010–0.35 Å−1. Two-dimensional scattering patterns were converted to one-dimensional scattering profiles using the Red2D software (https://github.com/hurxl/Red2D). After correction by the transmittance and subtraction of buffer scattering, the absolute scattering intensity was obtained with the standard scattering intensity of H2O (0.89 cm−1) (Shibayama et al., 2005). All measurements were performed at 298 K.
3. Methodology
In this section, we explain how to derive the scattering profile of a monomer from that of a solution that includes aggregates by the AUC–SAS method (see §1 of the supporting information for further details), and present the problems in applying the first AUC–SAS to a solution with a high weight fraction of aggregates.
3.1. Derivation of the scattering profile of protein monomer from an ensemble-averaged scattering profile
The scattering profile of the monomer and its aggregates, I(q), is represented as
where j denotes the association number (1 ≤ j ≤ n); Ij(q), cj and ij(q) are the scattering profile, weight concentration and concentration-normalized scattering profile [ij(q) = Ij(q)/cj] for the j-mer, respectively; and c and rj are the total concentration () and weight fraction for the j-mer (rj = cj/c), respectively. Since a j-mer could have diverse configurations, Ij(q) indicates the ensemble-average scattering profile of all j-mers. Here, c is low, as the scattering profile is free from the interparticle interference effect.
To solve equation (2) for I1(q), the weight fractions of all components, {rj} (j ≥ 1) (#1), and the scattering profiles of aggregates, ij(q) (j ≥ 2) (#2), are required. As a prerequisite, highly denatured proteins and high-order aggregates are removed from the sample solution through the purification for a general SAS measurement. Hence, it is reasonable to assume that the residual aggregates are 4-mer at most (j ≤ 4) and that the total weight fraction of the aggregates, ra (≡ 1 − r1), is <0.2. If this prerequisite is not satisfied (i.e. j > 4 and/or ra > 0.2), the sample should be re-purified. Under these conditions, AUC offers information #1 ({rj}) (§2 of the supporting information). Next, to obtain information #2 [ij(q) (j ≥ 2)], we divided ij(q) into two q regions, ijH(q) and ijL(q), in the sufficiently high and lower q regions, respectively. Here, ijH(q) (j ≥ 2) could be identical to i1H(q) [ijH(q) ≃ i1H(q)] because there is no difference in the inner local structure between the monomer and the aggregates under the prerequisite conditions (no highly denatured aggregates in the sample). Therefore, I1H(q) is obtained using I(q) and r1 as follows (see §1 of the supporting information for further details):
where I(q) and r1 are experimentally offered by SAS and AUC, respectively.
On the other hand, extrapolation of equation (3) to the lower q region, ijL(q) ≃ i1L(q), does not hold (open magenta circles in Fig. S1 of the supporting information.). Therefore, I1L(q) is considered as follows. First, the intensity, I1(0), is obtained with I(0), rj and Mj, which are experimentally given by SAS and AUC, as follows (see §1 of the supporting information for further details):
The remaining issue is a way to obtain I1L(q) (q > 0); namely, connecting between I1H(q) and I1(0). The first AUC–SAS (Morishima et al., 2020) connects them with the Guinier formula:
where Rg1 is the gyration radius of the target monomer. As Rg1 is an adjustable parameter, a reasonable I1L(q) is found by a smooth joint with I1H(q) at joint point qc. Finally, I1(q) is derived from I1L(q) (q ≤ qc) and I1H(q) (q > qc), and the appropriate Rg1 is also provided (see §1 of the supporting information for further details).
3.2. Problems in first AUC–SAS
Figs. 1(a)–1(c) show the concentration-normalized scattering profiles, i1(q) [= I1(q)/c1], that were derived with the first AUC–SAS. The samples were BSA solutions with different weight fractions of aggregates (a) ra = 0.06, (b) 0.13 and (c) 0.20. The experimental AUC and SAXS data are shown in §2 of the supporting information and as open black circles in Figs. 1(a)–1(c), respectively. The black lines in Figs. 1(a)–1(c) represent the concentration-normalized scattering profiles, i1(q)Xtal, calculated from the of the BSA monomer (PDB code 4f5s; Bujacz, 2012). Here, i1(q)Xtal is identical to that obtained using SEC–SAXS for a BSA solution (Bucciarelli et al., 2018). Fig. 1(d) shows the deviations between the scattering profile derived from the first AUC–SAS, i1(q), and that calculated from the i1(q)Xtal, i.e. Δi1(q)/σ(q). Here, Δi1(q) = i1(q) − i1(q)Xtal and σ(q) is the error of i1(q). The first AUC–SAS successfully offered reasonable i1(q) at ra = 0.06 [Δi1(q)/σ(q) < 1] but produced a large deviation in the middle q region (0.5 ≤ qRg1 ≤ 3) at ra = 0.13 and 0.20 [Δi1(q)/σ(q) > 1]. As a result, Rg1 at ra = 0.06 (Rg1 = 27.2 ± 0.2 Å) is consistent with that of the (Rg1,Xtal = 27.1 Å), whereas the Rg1s at ra = 0.13 and 0.20 (Rg1 = 27.5 ± 0.2 Å and Rg1 = 28.1 ± 0.2 Å, respectively) are larger than Rg1,Xtal [Rg1 and i1(0) are listed in Table S1 of the supporting information].
As shown in Figs. 1(e)–1(h), i1H(q) [= I1H(q)/c1], which is given by equation (3), deviated from i1(q)Xtal even more in the higher q region than in the Guinier region (1.3 < qRg1 < 3) at ra = 0.13 and 0.20. The large deviations, Δi1H(q)/σ(q), at ra = 0.13 and 0.20 in the middle q region make the connection points, qc, shift to the out-of-Guinier region (qcRg1 ≃ 1.6 and 1.9, respectively). Consequently, incorrect Rg1 and scattering profiles were obtained. To solve this problem, the connection should be performed in the Guinier region, that is, I1H(q) is correctly extrapolated to the inside of the Guinier region. In this study, we have developed a method to correctly extrapolate I1H(q) and offer a reasonable I1(q), even for relatively large ra.
4. Results and discussion
4.1. Scattering profile of aggregates
The approximation of ijH(q) ≃ i1H(q), which gives I1H(q) [equation (3)], holds in the sufficiently high q region (qRg1 > 3), as shown in Figs. 1(e)–1(h). To derive the appropriate I1H(q) that is correctly extrapolated to the inside of the Guinier region, we carefully reconsidered the scattering profile of an aggregate. First, the concentration-normalized scattering profile of the j-mer, ij(q), is represented as follows:
where Rk,l and Fk,l(q) are the position vectors of the center of mass (COM) and the form factors of the k- or l-th subunit, respectively [Fig. 2(a)]. The form factor is normalized to be 〈|Fk,l(0)|2〉 = 1, where 〈…〉 denotes the orientational average. The asterisk (*) denotes the complex conjugate.
Next, we assumed that the subunits were randomly arranged in the aggregate. According to the `decoupling approximation method' (Kotlarchyk & Chen, 1983), the form factor is independent of the position in the aggregate: and exp[−iq · (Rk − Rl)] in equation (6) can be decoupled, as in equation (S3) of the supporting information. Therefore, ij(q) can be expressed as follows (also see §4 of the supporting information):
where
and
Tj(q) is the inter-subunit defined by the Debye function [equation (8)] with the distance between the COMs of the kth and lth subunits, Dkl. Considering the random arrangement of the subunits, Tj(q) is expressed with the random flight model as equation (10). This model was originally developed for a synthetic polymer chain (Burchard & Kajiwara, 1970) and has been subsequently applied to randomly associated proteins (Larsen et al., 2020).
where D is the average distance between neighboring subunits (= 〈Dk,k+1〉). Assuming that the gyration radius of a subunit, Rg1, is the effective radius of the subunit, we defined D ≡ 2Rg1 (see §5 of the supporting information).
β(q) indicates the shape anisotropy of the subunit [equation (9)]. Because the form factor of a subunit, F(q), is unknown prior to structural analysis of the monomer, we assumed that the subunit is an ellipsoid whose semi-axes are r and pr (p is the axial ratio), as shown in Fig. 2(b). Its form factor is then represented as follows:
where
Then
and
where α is the orientation angle between the axis of the ellipsoid and q [Fig. 2(b)]. β(q) was obtained by substituting equations (11)–(14) into equation (9). The axial ratio, p, is estimated using the frictional ratio f/f0, which is offered by the AUC measurement (Lebowitz et al., 2002) (see further details in §6 of the supporting information).
4.2. Improved AUC–SAS
By substituting equation (7) into equation (2), I1(q) is expressed as follows:
For this improvement, I1H(q) was calculated using equation (15), instead of equation (3). To estimate Rg1 in Tj(q) and β(q) [equations (10)–(14)], the first AUC–SAS was initially used.
The improved method was demonstrated for BSA and AF solutions with ra = 0.20 (BSA20) and ra = 0.21 (AF21), respectively. Their experimental AUC data are shown in §2 of the supporting information. Fig. 3(a) shows i1(q) [= I1(q)/c1] which was derived using the first AUC–SAS (purple circles) and improved AUC–SAS (cyan circles) for BSA20. As shown in Fig. 3(b), the deviations Δi1(q)/σ(q) for the improved AUC–SAS were sufficiently small [Δi1(q)/σ(q) < 1] in the entire q region. As shown in Figs. 3(c) and 3(d) and Table 1, the improved AUC–SAS yielded more reasonable structural parameters [Rg1, i1(0), P1(r) (pair distance distribution function) and Dmax] than the first AUC–SAXS. For the larger protein, AF solution (AF21), the improved AUC–SAS successfully gave reasonable i1(q) and structural parameters [Figs. 3(e)–3(h) and Table 1]. Thus, the improved AUC–SAS was applicable to a solution with a relatively large ra (≤ 0.2), which is the general condition for most SAS measurements.
‡PDB code 4v1w; Russo & Passmore (2014). |
Furthermore, we demonstrated the improved AUC–SAS for various proteins with different shapes and sizes (AUC results of the samples are shown in §2 of the supporting information). As shown in Fig. 4 and Table 2, the scattering profiles i1(q) and structural parameters [Rg1 and i1(0)] offered by the improved AUC–SAS are consistent with those of SEC–SAXS for these proteins at various ra (≤ 0.2).
|
AUC–SAS is applicable to SANS, which faces the same aggregation problem, as well as SAXS. We examined the AUC–SANS for a BSA solution (BSA3) using the improved AUC–SAS (§7 of the supporting information). For the SANS data of BSA3, the improved AUC–SAS successfully offered a reasonable scattering profile and gyration radius (Rg1 = 26.5 ± 0.2 Å) that were consistent with those of the (Rg1,Xtal = 26.7 Å). For neutron facilities without a SEC–SANS system (Jordan et al., 2016; Johansen et al., 2018; Sato et al., 2021), AUC–SANS is the most promising method for obtaining the aggregation-free scattering profile.
In §8 and §9 of the supporting information, we evaluate the maximum errors originated by the random flight model and ellipsoidal approximation. The error in I1(q) is several per cent at most, even though the extreme cases are assumed.
It is often worthwhile analyzing the structure of the aggregate (Kovalchuk et al., 2019). Programs such as SASREFMX and OLIGOMER in the ATSAS package (Petoukhov et al., 2012; Manalastas-Cantos et al., 2021) are well known for modeling of aggregates. However, these programs require the structure of the monomer. Hence, the complementary use of AUC–SAS and these programs is a promising strategy.
Implementing the improved AUC–SAS, Igor Pro-based software (Kline, 2006) has been developed for the utilization of AUC–SAS by SAS experimenters. The required information is the data set of molecular weights (or association number), weight fractions and the frictional ratio, which are given by AUC. The scattering profile of the target monomer is obtained just by inputting the AUC information and SAS profile for the solution. The software is available at https://www.rri.kyoto-u.ac.jp/NSBNG/activity.html. Its usage is described in §10 of the supporting information.
5. Related literature
The following additional references are only cited in the supporting information for this article: Perkins (2001), Perrin (1934), Pierce et al. (2014).
Supporting information
Supporting information. DOI: https://doi.org/10.1107/S1600576723002406/ge5127sup1.pdf
Acknowledgements
We appreciate Dr Takumi Takata (Kyoto University) for kindly providing the βB2-cry sample. We are also grateful to Drs Koichi Mayumi, Tatsuro Oda (The University of Tokyo) and Xiang Li (Hokkaido University) for their assistance with the SANS measurements. We also thank Drs Nobuhiro Sato, Aya Okuda and Yasuhiro Yunoki and Professor Reiko Urade (Kyoto University) for their help and valuable comments.
Funding information
This work was supported by MEXT/JSPS KAKENHI grant Nos. (JP19K16088 and 21K15051 to KM; JP19KK0071 and JP20K06579 to RI; and JP18H05229, JP18H05534, JP18H03681 and JP21K18602 to MS) and by the Fund for Project Research at Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS). This work was also partially supported by the Project for the Construction of the Basis for Advanced Materials Science and Analytical Study by the Innovative Use of Quantum Beams and Nuclear Sciences in KURNS. SAXS and AUC measurements were performed at KURNS under proposal Nos. 30056, R3069 and R4010. This study was also partially supported by the Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] from AMED (JP22ama121001j0001) to MS. SANS measurements were conducted with the approval of the Institute for Solid State Physics (ISSP), The University of Tokyo, at the Japan Atomic Energy Agency (JAEA) under proposal Nos. 21531, 21537, 22569 and 222914.
References
Bengtsen, T., Holm, V. L., Kjølbye, L. R., Midtgaard, S. R., Johansen, N. T., Tesei, G., Bottaro, S., Schiøtt, B., Arleth, L. & Lindorff-Larsen, K. (2020). Elife, 9, e56518. Web of Science CrossRef PubMed Google Scholar
Bernadó, P., Shimizu, N., Zaccai, G., Kamikubo, H. & Sugiyama, M. (2018). Biochim. Biophys. Acta, 1862, 253–274. Google Scholar
Brown, P. H. & Schuck, P. (2006). Biophys. J. 90, 4651–4661. Web of Science CrossRef PubMed CAS Google Scholar
Bucciarelli, S., Midtgaard, S. R., Nors Pedersen, M., Skou, S., Arleth, L. & Vestergaard, B. (2018). J. Appl. Cryst. 51, 1623–1632. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bujacz, A. (2012). Acta Cryst. D68, 1278–1289. Web of Science CrossRef IUCr Journals Google Scholar
Burchard, W. & Kajiwara, K. (1970). Proc. R. Soc. Lond. Ser. A, 316, 185–199. CAS Google Scholar
David, G. & Pérez, J. (2009). J. Appl. Cryst. 42, 892–900. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grant, T. D. (2018). Nat. Methods, 15, 191–193. Web of Science CrossRef CAS PubMed Google Scholar
Gräwert, T. W. & Svergun, D. I. (2020). J. Mol. Biol. 432, 3078–3092. Web of Science PubMed Google Scholar
Hirano, R., Arimura, Y., Kujirai, T., Shibata, M., Okuda, A., Morishima, K., Inoue, R., Sugiyama, M. & Kurumizaka, H. (2021). Commun. Biol. 4, 191. Web of Science CrossRef PubMed Google Scholar
Inoue, R., Nakagawa, T., Morishima, K., Sato, N., Okuda, A., Urade, R., Yogo, R., Yanaka, S., Yagi-Utsumi, M., Kato, K., Omoto, K., Ito, K. & Sugiyama, M. (2019). Sci. Rep. 9, 12610. Web of Science CrossRef PubMed Google Scholar
Johansen, N. T., Pedersen, M. C., Porcar, L., Martel, A. & Arleth, L. (2018). Acta Cryst. D74, 1178–1191. Web of Science CrossRef IUCr Journals Google Scholar
Jordan, A., Jacques, M., Merrick, C., Devos, J., Forsyth, V. T., Porcar, L. & Martel, A. (2016). J. Appl. Cryst. 49, 2015–2020. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kline, S. R. (2006). J. Appl. Cryst. 39, 895–900. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kotlarchyk, M. & Chen, S. H. (1983). J. Chem. Phys. 79, 2461–2469. CrossRef CAS Web of Science Google Scholar
Kovalchuk, M. V., Boikova, A. S., Dyakova, Y. A., Ilina, K. B., Konarev, P. V., Kryukova, A. E., Marchenkova, M. A., Pisarevsky, Y. V. & Timofeev, V. I. (2019). J. Biomol. Struct. Dyn. 37, 3058–3064. Web of Science CrossRef CAS PubMed Google Scholar
Lampi, K. J., Amyx, K. K., Ahmann, P. & Steel, E. A. (2006). Biochemistry, 45, 3146–3153. Web of Science CrossRef PubMed CAS Google Scholar
Larsen, A. H., Pedersen, J. S. & Arleth, L. (2020). J. Appl. Cryst. 53, 991–1005. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lebowitz, J., Lewis, M. S. & Schuck, P. (2002). Protein Sci. 11, 2067–2079. Web of Science CrossRef PubMed CAS Google Scholar
Mahieu, E. & Gabel, F. (2018). Acta Cryst. D74, 715–726. Web of Science CrossRef IUCr Journals Google Scholar
Manalastas-Cantos, K., Konarev, P. V., Hajizadeh, N. R., Kikhney, A. G., Petoukhov, M. V., Molodenskiy, D. S., Panjkovich, A., Mertens, H. D. T., Gruzinov, A., Borges, C., Jeffries, C. M., Svergun, D. I. & Franke, D. (2021). J. Appl. Cryst. 54, 343–355. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matsumoto, A., Sugiyama, M., Li, Z., Martel, A., Porcar, L., Inoue, R., Kato, D., Osakabe, A., Kurumizaka, H. & Kono, H. (2020). Biophys. J. 118, 2209–2219. Web of Science CrossRef CAS PubMed Google Scholar
Morishima, K., Okuda, A., Inoue, R., Sato, N., Miyamoto, Y., Urade, R., Yagi-Utsumi, M., Kato, K., Hirano, R., Kujirai, T., Kurumizaka, H. & Sugiyama, M. (2020). Commun. Biol. 3, 294. Web of Science CrossRef PubMed Google Scholar
Okuda, A., Shimizu, M., Morishima, K., Inoue, R., Sato, N., Urade, R. & Sugiyama, M. (2021). Sci. Rep. 11, 5655. Web of Science CrossRef PubMed Google Scholar
Orthaber, D., Bergmann, A. & Glatter, O. (2000). J. Appl. Cryst. 33, 218–225. Web of Science CrossRef CAS IUCr Journals Google Scholar
Perkins, S. J. (2001). Biophys. Chem. 93, 129–139. Web of Science CrossRef PubMed CAS Google Scholar
Perrin, F. (1934). J. Phys. Radium, 5, 497. CrossRef Google Scholar
Petoukhov, M. V., Franke, D., Shkumatov, A. V., Tria, G., Kikhney, A. G., Gajda, M., Gorba, C., Mertens, H. D. T., Konarev, P. V. & Svergun, D. I. (2012). J. Appl. Cryst. 45, 342–350. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pierce, B. G., Wiehe, K., Hwang, H., Kim, B.-H., Vreven, T. & Weng, Z. (2014). Bioinformatics, 30, 1771–1773. Web of Science CrossRef CAS PubMed Google Scholar
Russo, C. J. & Passmore, L. A. (2014). Science, 346, 1377–1380. Web of Science CrossRef CAS PubMed Google Scholar
Ryan, T. M., Trewhella, J., Murphy, J. M., Keown, J. R., Casey, L., Pearce, F. G., Goldstone, D. C., Chen, K., Luo, Z., Kobe, B., McDevitt, C. A., Watkin, S. A., Hawley, A. M., Mudie, S. T., Samardzic Boban, V. & Kirby, N. (2018). J. Appl. Cryst. 51, 97–111. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sato, N., Yogo, R., Yanaka, S., Martel, A., Porcar, L., Morishima, K., Inoue, R., Tominaga, T., Arimori, T., Takagi, J., Sugiyama, M. & Kato, K. (2021). J. Biochem. 169, 701–708. Web of Science CrossRef CAS PubMed Google Scholar
Schuck, P. (2000). Biophys. J. 78, 1606–1619. Web of Science CrossRef PubMed CAS Google Scholar
Shibayama, M., Nagao, M., Okabe, S. & Karino, T. (2005). J. Phys. Soc. Jpn, 74, 2728–2736. Web of Science CrossRef CAS Google Scholar
Shimizu, M., Okuda, A., Morishima, K., Inoue, R., Sato, N., Yunoki, Y., Urade, R. & Sugiyama, M. (2022). Sci. Rep. 12, 9970. Web of Science CrossRef PubMed Google Scholar
Shimizu, N., Yatabe, K., Nagatani, Y., Saijyo, S., Kosuge, T. & Igarashi, N. (2016). AIP Conf. Proc. 1741, 050017. Google Scholar
Svergun, D. I. & Koch, M. H. (2003). Rep. Prog. Phys. 66, 1735–1782. Web of Science CrossRef CAS Google Scholar
Yunoki, Y., Matsumoto, A., Morishima, K., Martel, A., Porcar, L., Sato, N., Yogo, R., Tominaga, T., Inoue, R., Yagi-Utsumi, M., Okuda, A., Shimizu, M., Urade, R., Terauchi, K., Kono, H., Yagi, H., Kato, K. & Sugiyama, M. (2022). Commun. Biol. 5, 184. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.