research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
ISSN: 2052-2525

Crystal landscape in the orcinol:4,4′-bi­pyridine system: synthon modularity, polymorphism and transferability of multipole charge density parameters

aSolid State and Structural Chemistry Unit, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
*Correspondence e-mail: ssctng@sscu.iisc.ernet.in, desiraju@sscu.iisc.ernet.in

Edited by C. Lecomte, Université de Lorraine, France (Received 25 June 2013; accepted 2 September 2013; online 1 October 2013)

Polymorphism in the orcinol:4,4′-bipyridine cocrystal system is analyzed in terms of a robust convergent modular phenol⋯pyridine supramolecular synthon. Employing the Synthon Based Fragments Approach (SBFA) to transfer the multipole charge density parameters, it is demonstrated that the crystal landscape can be quantified in terms of intermolecular interaction energies in the five crystal forms so far isolated in this complex system. There are five crystal forms. The first has an open, divergent O—H⋯N based structure with alternating orcinol and bipyridine molecules. The other four polymorphs have different three-dimensional packing but all of them are similar at an interaction level, and are based on a modular O—H⋯N mediated supramolecular synthon that consists of two orcinol and two bipyridine molecules in a closed, convergent structure. The SBFA method, which depends on the modularity of synthons, provides good agreement between experiment and theory because it takes into account the supramolecular contribution to charge density. The existence of five crystal forms in this system shows that polymorphism in cocrystals need not be considered to be an unusual phenomenon. Studies of the crystal landscape could lead to an understanding of the kinetic pathways that control the crystallization processes, in other words the valleys in the landscape. These pathways are traditionally not considered in exercises pertaining to computational crystal structure prediction, which rather monitors the thermodynamics of the various stable forms in the system, in other words the peaks in the landscape.

1. Introduction

Crystal engineering is concerned with the development of logical design strategies based on the concept of the supramolecular synthon (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.]) and the execution of such strategies to obtain entire families of related crystal forms of a series of chemically similar molecules. The purpose of obtaining these engineered structures is to achieve physical and chemical properties of interest and utility (Desiraju, 1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]; Desiraju et al., 2011[Desiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engineering: A Textbook. Singapore: World Scientific Publishing.]). At a more fundamental level, crystal engineering may be reduced to elucidating the mechanism of crystallization (Weissbuch et al., 2003[Weissbuch, I., Lahav, M. & Leiserowitz, L. (2003). Cryst. Growth Des. 3, 125-150.]; Erdemir et al., 2009[Erdemir, D., Lee, A. Y. & Myerson, A. S. (2009). Acc. Chem. Res. 42, 621-629.]). Given any molecular structure, what is the crystal structure that would be obtained? If this question could be answered fully, the essential problem of crystal engineering would be solved because any pre-desired crystal structure could then be obtained at will. However, it is not likely that such an answer will be available anytime soon. The issues involved in the aggregation of molecules into clusters, larger ensembles and finally the events that lead up to nucleation and beyond are still way too complex to be addressed experimentally or computationally, in any general sense. Crystallography provides images of the `final' outcomes of the crystallization event, but the constraints of long-range periodicity that are implicit for any species that gives a three-dimensional diffraction pattern hardly reveal the multiplicity and variety of chemical events that have taken place before the crystal is obtained. Perhaps there is still some justification in Ruzicka's dismissal of solids as chemical cemeteries (Dunitz et al., 1988[Dunitz, J. D., Schomaker, V. & Trueblood, K. N. (1988). J. Phys. Chem. 92, 856-867.]).

Still, and even within the limits imposed by diffraction-based crystallography, one might explore a small portion of the structural panorama that just precedes the `final' crystal because there are several higher energy crystal forms that may be isolated and characterized with crystallography that provide a hint about the mechanism of crystallization, at least in the later stages (Davey et al., 2006[Davey, R. J., Dent, G., Mughal, R. K. & Parveen, S. (2006). Cryst. Growth Des. 6, 1788-1796.]; Kulkarni et al., 2012[Kulkarni, S. A., McGarrity, E. S., Meekes, H. & ter Horst, J. H. (2012). Chem. Commun. 48, 4983-4985.]; Hunter et al., 2012[Hunter, C. A., McCabe, J. F. & Spitaleri, A. (2012). CrystEngComm, 14, 7115-7117.]; Davey et al., 2013[Davey, R. J., Schroeder, S. L. M. & ter Horst, J. H. (2013). Angew. Chem. Int. Ed. 52, 2166-2179.]). These forms could include polymorphs with higher values of Z′, various solvates, kinetically labile species and other metastable and higher energy forms of the compound in question (Mukherjee et al., 2011[Mukherjee, A., Grobelny, P., Thakur, T. S. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 2637-2653.]; Braun et al., 2012[Braun, D. E., Bhardwaj, R. M., Florence, A. J., Tocher, D. A. & Price, S. L. (2012). Cryst. Growth Des. 13, 19-23.]). Taken collectively, one might envisage these forms as constituting a kind of landscape that profiles the structural and energetic changes that take place during the late stages of crystallization of an organic compound (Gavezzotti, 2003[Gavezzotti, A. (2003). CrystEngComm, 5, 439-446.]; Blagden & Davey, 2003[Blagden, N. & Davey, R. J. (2003). Cryst. Growth Des. 3, 873-885.]; Price, 2008[Price, S. L. (2008). Acc. Chem. Res. 42, 117-126.]). Some of us have shown recently, using the example of fluoro-substitution in benzoic acids, that subtle chemical variation of a molecular scaffold permits the exploration of structural space that would otherwise be experimentally inaccessible (Dubey et al., 2012[Dubey, R., Pavan, M. S. & Desiraju, G. R. (2012). Chem. Commun. 48, 9020-9022.]).

The formation of two-component molecular crystals, or cocrystals (Desiraju, 2003[Desiraju, G. R. (2003). CrystEngComm, 5, 466-467.]; Dunitz, 2003[Dunitz, J. D. (2003). CrystEngComm, 5, 506.]), is a well researched aspect of modern crystal engineering (Herbstein, 2005[Herbstein, F. H. (2005). Crystalline Molecular Complexes and Compounds: Structures and Principles. Oxford University Press.]; Bond, 2007[Bond, A. D. (2007). CrystEngComm, 9, 833-834.]; Stahly, 2009[Stahly, G. P. (2009). Cryst. Growth Des. 9, 4212-4229.]; Wouters et al., 2011[Wouters, J., Quéré, L. & Martinez, A. (2011). Pharmaceutical Salts and Co-Crystals. Cambridge: Royal Society of Chemistry.]), although the phenomenon itself has been known since the isolation of quinhydrone more than 150 years ago (Wöhler, 1844[Wöhler, F. (1844). Annalen Chem. Pharm. 51, 145-163.]). An interesting aspect of recent research on cocrystals, and indeed this was hinted at more than a decade ago when cocrystals came into the foreground, is that they may be less prone to form polymorphs than single-component crystals (Vishweshwar et al., 2005[Vishweshwar, P., McMahon, J. A., Peterson, M. L., Hickey, M. B., Shattock, T. R. & Zaworotko, M. J. (2005). Chem. Commun. pp. 4601-4603.]). This type of thinking possibly arose from the idea that cocrystal formation is only possible if very specific interactions between the two components are optimized and as such, these substances are less likely to form multiple crystal forms. Of course, such a contention can hardly be proved or disproved because it is, in Zaworotko's words, like `proving the negative' (Almarsson & Zaworotko, 2004[Almarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889-1896.]). However, there has always been an interest in this matter. Recently, one of us co-authored a report on two polymorphs of the 2:3 cocrystal of orcinol (5-methylresorcinol) and 4,4′-bipyridine, I and II (Tothadi et al., 2011[Tothadi, S., Mukherjee, A. & Desiraju, G. R. (2011). Chem. Commun. 47, 12080-12082.]). Subsequently, the present group of authors were able to isolate two more polymorphs, III and IV, and one 1:1 cocrystal, V, which might be termed pseudopolymorphs[link]. Noting that it was quite unusual to obtain five crystal forms in a cocrystal system, a systematic investigation of these forms was initiated, in the context of the structural landscape. In the course of this study, it was noted that the five forms are related through some basic supramolecular synthons and this confers a certain element of modularity (Desiraju, 2010[Desiraju, G. R. (2010). J. Chem. Sci. 122, 667-675.]; MacGillivray et al., 2000[MacGillivray, L. R., Reid, J. L. & Ripmeester, J. A. (2000). J. Am. Chem. Soc. 122, 7817-7818.]) in these crystal structures. We have previously shown that the modularity of the supramolecular synthon is responsible for the successful transferability of charge density derived multipole parameters for structural fragments, thus creating a possibility for the derivation of charge density maps for new compounds, in effect opening up an opportunity for the large scale application of charge density maps as a general structural tool in crystal engineering. We termed this methodology the Supramolecular Synthon Based Fragments Approach (SBFA) (Hathwar, Thakur, Row et al., 2011[Hathwar, V. R., Thakur, T. S., Row, T. N. G. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 616-623.]). We also showed that the SBFA method is applicable not only to single-component crystal structures but also to two-component crystals, or cocrystals (Hathwar, Thakur, Dubey et al., 2011[Hathwar, V. R., Thakur, T. S., Dubey, R., Pavan, M. S., Row, T. N. G. & Desiraju, G. R. (2011). J. Phys. Chem. A, 115, 12852-12863.]). The SBFA approach is applied here to the crystal forms in the present study, in other words to polymorphs of cocrystals. The purpose of the transferability was to quantify the various intermolecular interactions present in the different polymorphic forms of the crystal landscape of the multi-component system. In effect, the utility of transferability of multipole parameters among the robust synthons in the various polymorphic modifications in cocrystals is demonstrated. The link between charge density distribution associated with transferable synthons and the possible aggregation pathways indicated in the landscape offers a unique possibility to quantify intermolecular interaction energies associated with kinetically stable polymorphic forms.

[Scheme 1]

2. Experimental

2.1. Materials

Orcinol was purchased from Sigma Aldrich and 4,4′-bipyridine from Alfa Aesar and used without further purification. For the crystallization of all compounds, several stoichiometric ratios such as 1:1, 1:2, 2:1 and 2:3 were tried along with various crystallization methods such as solvent evaporation, sublimation and use of anti-solvent. After a week, good quality single crystals, which were suitable for the single-crystal diffraction experiments, were obtained. The ratio of the two compounds obtained in the crystal is not necessarily the ratio in which they are taken for the crystallization. Table 1[link] gives salient details of the cocrystals investigated in this study. Despite several attempts, it was not possible to obtain cocrystal I again. It may be noted that form III is obtained via sublimation, a technique that is not generally customary for multi-component crystals.

Table 1
Crystallographic details of forms II through to V

  II III IV V
CCDC No. 944960 944963 944961 944962
Stoichiometric ratio (taken) 2:3 1:2 1:2 2:1
Stoichiometric ratio (in the crystal) 2:3 2:3 6:9 4:4
Method of crystallization Solvent evaporation Melt sublimation From polymorph III at around 150 K Solvent evaporation
Solvent CH3NO2 CH3NO2
Crystal color Light yellow Colorless Colorless Yellow
Melting point (K) 453.2 453.4 448.9
Molecular formula C7H8O2·C15H12N3 C7H8O2·C15H12N3 C21H24O6·C45H36N10 C28H32O8·C40H32N8
Formula weight 358.42 358.42 1075.26 1121.31
Crystal system Triclinic Monoclinic Monoclinic Monoclinic
Space group [P\bar 1] P21/n P21/n P21/c
a (Å) 8.7711 (6) 9.0828 (3) 9.2118 (2) 17.8201 (5)
b (Å) 10.011 (1) 12.3446 (4) 36.2075 (7) 8.3288 (2)
c (Å) 12.0057 (9) 16.6095 (4) 16.5458 (4) 39.3222 (9)
α (°) 67.978 (8) 90 90 90
β (°) 78.030 (6) 96.320 (2) 97.923 (2) 91.901 (4)
γ (°) 69.224 (8) 90 90 90
V3) 910.4 (1) 1851.0 (1) 5465.9 (2) 5833.0 (3)
ρcalc (g cm−3) 1.307 1.286 1.307 1.277
F(000) 378 756 2268 2368
μ (mm−1) 0.086 0.084 0.085 0.085
T (K) 100 (2) 160 (2) 100 (2) 100 (2)
λ (Å) 0.71073 0.71073 0.71073 0.71073
Reflections collected 16 503 12 420 49 748 39 460
Unique reflections 3998 4066 11 990 12 764
Completeness (%) 99.9 100 99.9 99.9
Redundancy 4.0 3.1 4.1 3.1
Rint 0.035 0.029 0.050 0.075
R1 (F) 0.039 0.052 0.056 0.073
wR2 (F2) 0.102 0.149 0.121 0.196
Goodness-of-fit 1.042 1.060 1.013 1.024
2θmax 54 54 54 54

2.2. Data collection and structure refinement details

Routine data sets for compounds II, IV and V were collected at 100 K on an Oxford Xcalibur diffractometer with a microfocus X-ray source (Mo Kα), equipped with a Cryojet-HT nitrogen gas-stream cooling device. The variable-temperature data sets for III were collected at 293, 200, 160, 140 and 120 K. In all these cases, data were processed with CrysAlisPro (Oxford Diffraction, 2011[Oxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). Structure solution and refinements were performed with SHELX2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) using the WinGX suite (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

2.3. High-resolution charge density data collection and structure refinement details of 4-hydroxybenzoic acid:isonicotinamide cocrystal

These data provide the required O—H⋯N synthon data entry into the in-house library which can be used for the subsequent analysis of the polymorphs of orcinol:bipyridine. Data were collected on a single crystal of reasonable size and quality (as was examined under a polarizing microscope) which was affixed to a Hampton Research cryoloop using Paratone-N oil. The crystal was cooled to 100 K with a liquid nitrogen stream using an Oxford cryosystems N2 open-flow cryostat. High-resolution X-ray data up to (sinθ/λ)max = 1.08 Å−1 with redundancy (∼ 14) and completeness (∼ 100%) were collected on a Bruker Kappa Apex II CCD diffractometer using Mo Kα radiation at 100 K. Data collection strategies were generated using the COSMO module of the Bruker software suite (Bruker, 2006[Bruker (2006). APEX2, Version 1.0.22, BIS, Version 1.2.08, COSMO, Version 1.48, SAINT, Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.]). The crystal-to-detector distance was fixed at 40 mm and the scan width was 0.5° per frame during the data collection. Cell refinement, data integration and reduction were carried out using the SAINTPLUS program. Numerical absorption correction was done by crystal face indexing. Sorting, scaling and merging of the collected data sets were carried out using the SORTAV program (Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]). The crystal structure was solved by direct meth­ods and refined in the spherical-atom approximation using SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) from the WinGX suite (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). The crystallographic information and multipole refinement details are provided in the supporting information .

2.4. Transferability of multipole parameters using the SBFA

Polymorphs of orcinol (5-methylresorcinol) and 4,4′-bipyridine studied in the present work were divided into chemically reasonable molecular fragments based on their supramolecular environments (supramolecular synthons; Fig. 1[link]). The refined multipole parameters (Pval, Plm, κ and κ′) present in the in-house library of experimental charge density data sets were used for SBFA transferability to all these target molecules. Scaling and initial refinement of the positional and displacement parameters of all atoms were carried out using the XD2006 package (Volkov et al., 2006[Volkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P. R., Richter, T. & Koritsanszky, T. S. (2006). XD2006, Version 5.34. University at Buffalo, State University of New York, USA.]). The H atoms were fixed to neutron values and the anisotropic displacement parameters of H atoms were computed using the SHADE2 server (Madsen, 2006[Madsen, A. Ø. (2006). J. Appl. Cryst. 39, 757-758.]; Munshi et al., 2008[Munshi, P., Madsen, A. Ø., Spackman, M. A., Larsen, S. & Destro, R. (2008). Acta Cryst. A64, 465-475.]). Charge neutralization was obtained by fixing the individual atomic monopole to neutral atom values, followed by the refinement of atomic monopoles for all atoms which allowed realistic atomic charge values to be obtained. All other multipole parameters including κ and κ′ were kept fixed during the refinements.

[Figure 1]
Figure 1
Logical fragments based on supramolecular synthons (color shaded) in forms II through to V. Notice the brown synthon which consists only of a weak C—H⋯N interaction. These fragments may be transferred from structure to structure to generate a `synthetic' charge density map.

2.5. Theoretical evaluation of charge density to authenticate the multipole parameters derived from SBFA

Single-point periodic quantum mechanical calculations at the B3LYP/6-31G(d,p) level were carried out using CRYSTAL09 (Dovesi et al., 2009[Dovesi, R., Saunders, V. R., Roetti, C., Orlando, R., Zicovich-Wilson, C. M., Pascale, F., Civalleri, B., Doll, K., Harrison, N. M., Bush, I. J., D'Arco, P. & Llunell, M. (2009). CRYSTAL09 User's Manual. University of Torino, Italy.]) with the neutron-normalized geometries obtained from experimental structure refinement. The shrinking factors (IS1, IS2 and IS3) along with the reciprocal lattice vectors were set to 4 (30 k-points in the irreducible Brillouin zone). The bi-electronic Coulomb and exchange series values for the truncation parameter were set as ITOL1 − ITOL4 = 8 and ITOL5 = 17, respectively, for the CRYSTAL09 calculations. The level shifter was set to 0.7 Hartree per cycle. The self-consistent field convergence limit was chosen as ∼ 10−7 Hartree. The cohesive energy calculation was performed in all cases and the Grimme dispersion corrections along with the basis set superposition error corrections were included in the calculations. For a definition of the cohesive energy and details of its calculation refer to the supporting information . Theoretical structure factors obtained from the CRYSTAL09 single-point calculations for II and III were used in the multipole refinements using the XD software package (Volkov et al., 2006[Volkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P. R., Richter, T. & Koritsanszky, T. S. (2006). XD2006, Version 5.34. University at Buffalo, State University of New York, USA.]). Molecular geometry and the atomic displacement parameters for all atoms were kept fixed throughout the multipole refinement of the static model. Refinements and analysis of the theoretically obtained charge density data were performed with an unrestricted multipole model to compare the results from the transferred SBFA model. The purpose of the theoretical modeling in the above two cases was to benchmark the quality of SBFA modeled densities.

3. Results and discussion

3.1. Analysis of crystal forms

All five solid forms of orcinol–bipyridine are characterized by O—H⋯N hydrogen bonds between the two components (Fig. 2[link]). These hydrogen bonds form a finite divergent pattern (synthon A) that consists of two orcinol molecules and three bipyridine molecules, seen in form I, or a closed convergent pattern (synthon B) that consists of two orcinol and two bipyridine molecules, seen in the related forms II through to V. The latter pattern was first identified by MacGillivray in his extensive studies of solid-state topochemical reactions of phenol–pyridine cocrystals (Gao et al., 2004[Gao, X., Friščić, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232-236.]; MacGillivray et al., 2008[MacGillivray, L. R., Papaefstathiou, G. S., Friscić, T., Hamilton, T. D., Bučar, D.-K., Chu, Q., Varshney, D. B. & Georgiev, I. G. (2008). Acc. Chem. Res. 41, 280-291.]; MacGillivray, 2008[MacGillivray, L. R. (2008). J. Org. Chem. 73, 3311-3317.]). Because synthon B is a zero-dimensional entity, it is possible that it persists in solution. Still, both divergent and convergent possibilities seem to be efficient molecular arrangements that use four O—H⋯N hydrogen bonds each. These assemblies are further supported by weak intermolecular interactions such as C—H⋯N, C—H⋯O, C—H⋯π and ππ interactions.

[Figure 2]
Figure 2
Divergent and convergent arrangement of O—H⋯N hydrogen bonds in (a) form I (synthon A), and (b) forms IIV (synthon B) of orcinol:4,4′-bipyridine cocrystals.

In the triclinic form II (Fig. 3[link]b), the O—H⋯N hydrogen bonds in synthon B are normal (d, θ; 1.74 Å, 177.5°; 1.77 Å, 168.8°) and the arrangement is supported by weak C—H⋯N interactions (2.63 Å, 123.1°) from the orcinol C—H. The structure also contains a `free' bipyridine molecule which is sandwiched between two hydrogen-bonded tetramers (that is, synthon B) and stabilized by ππ and C—H⋯N interactions (2.62 Å, 148.5°) from bipyridine C—H.

[Figure 3]
Figure 3
Orcinol–bipyridine: (a) overlay diagram of forms II and III; (b) arrangement of LSAMs in form II, right, and form III, left; (c) schematic of molecular arrangement along the21-screw axis in form III.

The structure of form II is closely related to that of the new monoclinic form III (P21/n), which is also a 2:3 cocrystal. The tetramer synthons B (O—H⋯N, 1.75 Å, 175.2°; 1.76 Å, 175.3°) sandwich the free bipyridine in nearly the same manner. This larger assembly consisting of two tetramers and the sandwiched bipyridine is termed a Long Range Synthon Aufbau Module (LSAM) (Ganguly & Desiraju, 2008[Ganguly, P. & Desiraju, G. R. (2008). Chem. Asian J. 3, 868-880.], 2010[Ganguly, P. & Desiraju, G. R. (2010). CrystEngComm, 12, 817-833.]). The LSAM is a late synthon and Fig. 3[link](a) shows that the LSAMs in forms II and III are exceedingly similar. The advantage in differentiating between small and large synthons lies in the fact that the small synthons do not serve to distinguish well between polymorphs – the larger synthons include degrees of structural detail that permit such an exercise. In other words, the dissimilarity between the forms pertain not to the hydrogen bonding itself but rather to the arrangement of the LSAMs with respect to the crystallographic axes (Fig. 3[link]b). All this clearly indicates that at a molecular recognition level (small supramolecular synthons) both forms are nearly the same, but as the molecular assembly becomes increasingly larger, the forms become different (Fig. 3[link]b). Incidentally, orcinol molecules are nearly parallel to the crystallographic b-axis in form III. Taken with the mutually perpendicular arrangement of orcinol and bipyridine molecules, this leads to a pseudo [P\bar 1] character for the P21/n structure (Fig. 3[link]c) (Sarma & Desiraju, 1986[Sarma, J. A. R. P. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222-228.]).

We collected single-crystal data of form III at five different temperatures and this showed evidence of a reversible phase transition between 140 and 160 K (Fig. 4[link]). The structural details are given in the supporting information . After cooling through the phase transition, form III provides a new low-temperature crystal structure, form IV, which is modulated along the unique axis so that it is nearly three times the value of that in form III (Fig. 5[link]). The O—H⋯N hydrogen bonds (1.74 Å, 173.9°; 1.74 Å, 176.8°; 1.75 Å, 170.6°; 1.76 Å, 171.9°; 1.77 Å, 177.3°) are again normal and there are also some other weak interactions. Form IV has a better packing than form III as shown from the Kitaigorodskii Packing Indices (KPI) (Table 2[link]).

Table 2
KPI, crystal densities and energies for the compounds in this study

        Normalized Per molecule energy
  KPI (%) Calculated crystal density (g cm−3) Energy CRYSTAL09 (kJ mol−1) CRYSTAL09 (kJ mol−1) EML (kJ mol−1) CRYSTAL09 (kJ mol−1) EML (kJ mol−1)
Form I§ 69.9 1.305 −684.88 −684.88 −143.89
Form II 70.7 1.308 −567.74 −1135.48 −957.0 −155.10 −153.46
Form III§ 69.3 1.286 −634.77 −1269.54 −716.6 −141.54 −130.45
Form IV 70.6 1.307 −1888.43 −1259.58 −697.4 −144.18 −139.54
Form V 68.9 1.282 −925.59 −144.64
†Normalized: energy as a multiple of the (2:3) asymmetric unit.
‡The calculation has been described in the supporting information .
§Data collection at 150 K.
[Figure 4]
Figure 4
Thermodynamic (DSC) profile of forms II, III and V. Low temperature reversible IIIIV phase transition (inset).
[Figure 5]
Figure 5
Orcinol–bipyridine: structure along the unique axis (shown in red) in forms III (left) and IV (right). Notice the triple modulation in the low temperature form.

It may be noted that the molecular and packing changes in the IIIIV transition are subtle. The conformations of the orcinol and bipyridine are largely the same as the corresponding molecular orientations along the unique axis (Fig. 5[link]). The relationship between modulated structures has traditionally been understood in terms of relaxation of symmetry; a translation becomes a pseudo-translation and so on. In the context of the structural landscape, it may be suggested that this relaxed structure represents events that occur later in the reaction coordinate for crystallization. Table 2[link] shows that the low temperature form IV is more dense and better packed than form III. The relaxation of symmetry allows for a better packing and is in keeping with the idea of a landscape that is a profile of the energy events during crystallization. Fig. 6[link] shows the positions of the centers and pseudo-centers of inversion in form IV especially with respect to synthon B. In this figure, the symmetry designation of molecules is color coded.

[Figure 6]
Figure 6
Arrangement of center and pseudo-center related synthons in form IV. Color coding is based on symmetry equivalence: blue: center of inversion; red: pseudo-center of inversion. Molecules of the same color are related by symmetry.

In form V (P21/c), the same type of hydrogen bonding (synthon B) is observed that is seen in forms II through to IV. The O—H⋯N hydrogen bonds are normal (1.76 Å, 176.1°; 1.76 Å, 179°; 1.78 Å, 178.5°; 1.78 Å, 175.2°; 1.79 Å, 173.4°; 1.80 Å, 174.8°; 1.80 Å, 173.3°; 1.81 Å, 169.4°). However, form V is different from forms II through to IV in that the `free' bipyridine is missing. We suggest that synthon B can develop into structures II or III by picking up a free bipyridine, or that alternatively it can nucleate and grow as form V so that it is effectively a branch point in the landscape from which the crystallization events can proceed in two entirely different ways, depending on the experimental conditions.

The thermal profile of forms II, III and V in Fig. 4[link] shows that while form II has a clean single endotherm, the differential scanning calorimetry (DSC) of form III indicates some degree of conversion to form II and possibly the existence of form IV or some other uncharacterized form. Form V is in any case less stable and shows a broad endotherm lower than any of the other forms. Form III is accessible on the landscape and leads to other forms.

3.2. Supramolecular synthon based fragments approach (SBFA) for the compounds in this study and their relative stabilities

The effectiveness of the SBFA method for transferability of multipole charge density parameters is due largely to the ability of the supramolecular synthon to act mechanistically as a modular unit. The electronic features of the synthon may be moved from one structure to another in the charge density analysis; such a procedure provides detail over and above what is obtained at the atomic and covalent bond level in the construction of `synthetic' charge density maps, thereby giving a fine degree of agreement between theory and experiment (Hathwar, Thakur, Dubey et al., 2011[Hathwar, V. R., Thakur, T. S., Dubey, R., Pavan, M. S., Row, T. N. G. & Desiraju, G. R. (2011). J. Phys. Chem. A, 115, 12852-12863.]; Hathwar, Thakur, Row et al., 2011[Hathwar, V. R., Thakur, T. S., Row, T. N. G. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 616-623.]).

In the context of the crystal landscape, the experimental crystal structures of the compound in question are generally mapped using the computational approach of Crystal Structure Prediction (CSP) (Sarma & Desiraju, 2002[Sarma, J. A. R. P. & Desiraju, G. R. (2002). Cryst. Growth Des. 2, 93-100.]; Neumann et al., 2008[Neumann, M. A., Leusen, F. J. J. & Kendrick, J. (2008). Angew. Chem. Int. Ed. 47, 2427-2430.]), in which possible crystal structures are predicted based on the energy–density profile. In spite of recent advances both in the algorithms as well as in increasing computational power, CSP of a multi-component system is still a challenge. Further, CSP protocol only takes into account the thermodynamic factors associated with packing, geometry optimization and clustering. It usually does not consider kinetic factors which are involved during the course of crystallization events. In order to fill this conceptual gap, experimental as well as theoretical charge density methods could be used (Koritsanszky & Coppens, 2001[Koritsanszky, T. S. & Coppens, P. (2001). Chem. Rev. 101, 1583-1628.]) which provide an energy profile of the immediate molecular vicinity because they address the system in terms of individual interactions. However, these rigorous methods have several hurdles such as the fact that very good crystals are needed, which diffract at high resolution (sinθ/λ ≥ 1.0), that the structures should be free from disorder and modulation, and that limitations like extinction and absorption should not be present. In the present study the multi-component orcinol–bipyridine system is both modulated and disordered and a rigorous charge density study is difficult. The utility of the transferable pseudo-atom databases approach in such situations is documented (Pichon-Pesme et al., 1995[Pichon-Pesme, V., Lecomte, C. & Lachekar, H. (1995). J. Phys. Chem. 99, 6242-6250.]; Domagala et al., 2012[Domagala, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337-351.]; Dittrich et al., 2006[Dittrich, B., Hübschle, C. B., Luger, P. & Spackman, M. A. (2006). Acta Cryst. D62, 1325-1335.], 2013[Dittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T. & Holstein, J. J. (2013). Acta Cryst. B69, 91-104.]; Dominiak et al., 2009[Dominiak, P. M., Volkov, A., Dominiak, A. P., Jarzembska, K. N. & Coppens, P. (2009). Acta Cryst. D65, 485-499.]; Volkov et al., 2007[Volkov, A., Messerschmidt, M. & Coppens, P. (2007). Acta Cryst. D63, 160-170.]); we have used the SBFA protocol which we have developed and which is well suited to this situation.

Forms II through to V were accordingly quantitatively rationalized with SBFA. Based on the structural description it is clear that the robustness and modular nature of hydrogen bonds associated with synthon B are the critical factors in applying SBFA to forms II through to V. This is quantified via multipole parameters of the O—H⋯N hydrogen bonds derived from high-resolution X-ray diffraction data. The transferability of the multipole parameters of the O—H⋯N hydrogen bonds in synthon B, and other interactions, in forms II through to V, generate charge density maps and provide the quantitative insights of electronic distribution in the intermolecular region through their topological parameters.

The multi-component systems were divided, as described previously (Hathwar, Thakur, Dubey et al., 2011[Hathwar, V. R., Thakur, T. S., Dubey, R., Pavan, M. S., Row, T. N. G. & Desiraju, G. R. (2011). J. Phys. Chem. A, 115, 12852-12863.]), into logical fragments based on their synthons, which involve both strong and weak interactions (Fig. 1[link]). Multipole parameters for the strong hydrogen bonds (O—H⋯N) present in all the structures were taken from the experimental data of the 4-hydroxybenzoic acid:isonicotinamide (4HBA:INA) cocrystal (Vishweshwar et al., 2003[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164-168.]), while the weaker ones C—H⋯O, C—H⋯N, C—H⋯π were chosen from an in-house library of synthons. The synthesized charge density features from SBFA were visualized through their deformation and Laplacian plots, which were in agreement with multipole refinements done on structure factors obtained from high-level density-functional theory calculations in CRYSTAL09 (Dovesi et al., 2009[Dovesi, R., Saunders, V. R., Roetti, C., Orlando, R., Zicovich-Wilson, C. M., Pascale, F., Civalleri, B., Doll, K., Harrison, N. M., Bush, I. J., D'Arco, P. & Llunell, M. (2009). CRYSTAL09 User's Manual. University of Torino, Italy.]) (Fig. 7[link]). The topological analysis of the intermolecular region was performed using the Quantum Theory of Atoms in Molecules (QTAIM), resulting in the location of bond-critical points between the strong as well as the weak interactions present in the crystal structures. The comparison was restricted to only forms II and III as our purpose was to verify the validity of the transferred model so that we could gain confidence in proceeding with the two other forms. In forms IV and V, which are more complex, the synthesized features were not compared with their theoretical values and were taken as they are. For form I we felt that the exercise itself was unfeasible because of the non-reproducibility of the form, as well as the slightly poor data quality of the already reported structure.

[Figure 7]
Figure 7
Comparison of deformation density and Laplacian maps [Δρ(r) and ∇2ρ(r)] maps, obtained from SBFA (left) and theoretical calculations based on CRYSTAL09 (right), in O2—H2⋯N1 (a, b) and O1—H1⋯N2 (c, d) intermolecular space, respectively. Δρ(r) contours are drawn at ±0.05 e Å−3. ∇2ρ(r) (e Å−5) drawn in logarithmic scale.

In form II, the topological analysis confirmed that O—H⋯N is the strongest interaction in the crystal structure. The remaining interactions present in the structure reflect their strengths in terms of their lower values of ρ and ∇2ρ. Comparison of the topological parameters between the SBFA model and theory deviates in only certain regions particularly for the strong O—H⋯N hydrogen bonds. The observed deviation in the Laplacian can be explained based on our previous work on the carboxylic dimer synthons, where it was attributed to the elongation of the O—H bonds. The comparable values between SBFA and theoretical topological parameters of covalent bonds and other weak intermolecular interactions support the validity of the transferred model (Table 3[link]). The comparison of form III with theory and the topological parameters of forms IV and V have been summarized in the supporting information .

Table 3
Numerical (top) and graphical (bottom) comparison of the topological parameters, SBFA and theory (italics), of form II

Synthon ρ (e Å−3) 2ρ (e Å−5) Rij (Å) G (kJ mol−1 bohr−3) V(kJ mol−1 bohr−3) |V|/G
O2—H2⋯N1 0.34 2.5 1.738 0.05 97.24 −127.61 1.31
0.41 0.8 1.734 0.03 84.77 147.80 1.74
O1—H1⋯N2 0.31 2.4 1.7663 0.06 85.87 −107.93 1.26
0.36 1.5 1.7666 0.04 83.58 125.43 1.50
C9—H9⋯O1 0.05 0.8 2.5076 0.21 16.64 −10.98 0.66
0.05 0.7 2.4816 0.19 15.02 −10.68 0.71
C20—H20⋯O2 0.03 0.6 2.6806 0.44 11.30 −7.16 0.63
0.03 0.6 2.6167 0.21 12.12 −7.98 0.66
C11—H11⋯C6 0.04 0.8 2.5472 0.97 16.42 −10.58 0.64
0.08 0.5 2.5301 0.08 14.02 −13.24 0.94
C4—H4⋯N1 0.04 0.5 2.7078 0.44 9.45 −6.65 0.70
0.04 0.5 2.6603 0.11 14.71 −9.92 0.67
C8—H8⋯N3 0.03 0.6 2.6795 1.18 12.15 −7.66 0.63
0.03 0.6 2.633 0.01 11.66 −8.69 0.75

For the calculation of binding energies, it was also found convenient to define a molecular shell based on a coordination envelope around the asymmetric unit. In practice, all molecules that are found 0.2 Å beyond the van der Waals surface of the asymmetric unit (defined in terms of the closest group of bipyridine and orcinol molecules) constitute the shell. The shell consists of O—H⋯N hydrogen bonds, C—H⋯N and C—H⋯O hydrogen bonds and several weak C⋯C interactions. A critical-point search within the shell provides all the required contacts to be considered in the calculation. The Espinosa–Molins–Lecomte method (Espinosa et al., 1998[Espinosa, E., Molins, E. & Lecomte, C. (1998). Chem. Phys. Lett. 285, 170-173.]) was used to calculate the interaction energy (Eint) using the Abramov expression (Abramov, 1997[Abramov, Yu. A. (1997). Acta Cryst. A53, 264-272.]) which gives the kinetic and the potential energy density at the bond-critical points. The magnitude of the energy obtained by this approach is an indicator and not an absolute value, and hence a direct comparison with the values obtained from periodic DFT calculation may not be appropriate.

The binding energy, that is the energy of a molecular shell, was used to compute the relative stabilities of the different forms using the EML method (Nelyubina et al., 2010[Nelyubina, Y. V., Glukhov, I. V., Antipin, M. Y. & Lyssenko, K. A. (2010). Chem. Commun. 46, 3469-3471.]). This was compared with the cohesive energy calculations performed using CRYSTAL09. In single-component crystals with Z′ = 1, the treatment of the cohesive energy is straightforward. When Z′ > 1 the computations are more involved but still manageable. In multi-component systems, however, the complexity of the calculations increases to a level that is unworkably tedious. In our system, the various forms do not even have the same Z′ values and one of them is also a pseudopolymorph. In such a scenario, the SBFA and EML methods provide a simplified method for calculation of energies, and this is a distinct advantage. The CRYSTAL09 and EML methods also have a slightly different physical interpretation which will be more clearly outlined in the next section.

The energies reported in Table 2[link] are obtained with CRYSTAL09 and EML, where the energy Ecoh corresponds to the energy of the defined asymmetric unit. The calculated energies cannot be used directly because the volume of the asymmetric unit is different in the five forms. Still, we attempted the quantification of forms I through to IV as they have the same 2:3 stoichiometric ratio. Even here we need to normalize the values because the number of molecules in the asymmetric unit is different in each of the forms. In this way, we find that form I is the least stable, and that forms II and III are equi­energetic. It was conjectured that the energy values are biased considerably by the complexity of the cocrystal formation and the values of Z′ and hence another calculation based on energy per molecule was performed.

3.3. Structural landscape

The concept of the landscape follows naturally from the phenomena of polymorphism (Bernstein, 2002[Bernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford University Press.]) and pseudopolymorphism and is conveniently applied to mono-component systems. In two-component systems, like the present case, it seems natural to assume that the earliest stages of recognition (smallest synthons) are heteromolecular in nature, for how else would a two-component system be obtained? The very fact that a two-component crystal AB is even obtained suggests that one or more interactions of the type AB are better than any of the interactions of the type AA or BB (Sarma & Desiraju, 1985[Sarma, J. A. R. P. & Desiraju, G. R. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1905-1912.]). In turn, these stable AB heterosynthons permute themselves in different ways to give various polymorphs, so that one is, in effect, traversing the landscape. It may be supposed that the simple synthon B associates with other such synthons in solution without any symmetry constraints, and as crystallization becomes more enthalpy controlled, these clusters (aggregates, shell) gradually approach the final configurations as seen in forms II and III (more symmetry constraints), and forms IV and V (less symmetry constraints). In effect, the small synthons represent a certain `irreversible' point and all subsequent events follow from it.

Structures II through to V may be understood as representing alternative arrangements of modules, that we have termed LSAMs. At this point, it is worth noting that the LSAM, as we have defined, has some similarity with the `growth unit' as defined by Davey (Davey et al., 2002[Davey, R. J., Allen, K., Blagden, N., Cross, W. I., Lieberman, H. F., Quayle, M. J., Righini, S., Seton, L. & Tiddy, G. J. T. (2002). CrystEngComm, 4, 257-264.]) with the caveat that Davey`s growth unit may also incorporate solvent. The similarity stems from the fact that all these species are pre-nucleation entities. The modularity of LSAMs permits an analysis of charge density data in terms of contributions from structural fragments that are treated in a similar way to the pseudo-atoms in the classical charge density transferability approaches. The modularity of these structural fragments also helps in their analysis from the viewpoint of the structural landscape. Modularity is the key link that connects all the structures that constitute the landscape.

If there are two steps in the late stages of crystallization, finite strands of alternating bipyridine (three molecules) and orcinol (two molecules), which we have defined as synthon A, crystallize, in the first step, to give form I with O—H⋯N hydrogen bonds in the distance range 1.75–1.81 Å and an angle range 164–179°. This is shown in Fig. 8[link](a). It is not at all difficult to conceive a process in which successive O—H⋯N hydrogen bonds are made and broken (Fig. 8[link]b) and orcinol molecules rotate nearly 180° so that the structure evolves into that of form II with its closed synthon (Fig. 8[link]c). In this scenario, form I would be a kinetic form. Although not proof, the fact that we were unable to obtain form I again would hint that it is also metastable. To summarize, there are two aggregation possibilities of the LSAMs. In both possibilities the third bipyridine is an active participant either being hydrogen bonded (form I) or facilitating close packing (forms II through to IV). Form V is different and develops independently from synthon B not requiring the free bipyridine. This is shown in Fig. 9[link].

[Figure 8]
Figure 8
(a) Finite divergent arrangement (synthon A) of molecules in form I. (b) Possible rearrangement of molecules during the course of crystallization. (c) Finite convergent arrangement (synthon B) of molecules in forms II through to V.
[Figure 9]
Figure 9
(a) Molecular recognition based on O—H⋯N hydrogen bonds and the formation of synthon B. (b) Various topologies of forms II through to V, anticlockwise, based on synthon B.

During navigation of the nucleation pathway of forms II through to IV, the system exploits the modular nature of synthon B as a means of achieving the structures based on their energies. As we have already discussed, forms II and III are similar at the smaller aggregate, and this suggests that up to a certain point the modular unit follows the same nucleation path, but as the aggregation level becomes larger and larger there are shifts leading to a choice between two different pathways – finally this results in two different crystal structures. The quantitative analysis leading to the estimates of interaction energies using two different approaches (CRYSTAL09 and SBFA/EML) brings out the significance of the regions of the landscape between forms II and III. In practical terms, both forms appear to be practically equivalent in that they lie in nearly the same region of the energy–density plot. On the other hand, form II shows slightly better packing than form III, and after the phase transition, form III converts into form IV which is packed as efficiently as form II (Table 2[link]). This emergence of better packing is the result of the relaxation in the symmetry constraints in form III. In the context of the landscape, such behaviour is interesting. Forms II and IV have nearly the same densities, energies and packing efficiencies but they represent entirely different pathways in the landscape, and their structures are also quite different. The relative stabilities of forms II, III and IV with similar asymmetric units are selected below.

[\eqalign{&{\rm least}\,\,{\rm stable} \rightarrow {\rm most}\,\, {\rm stable}\cr &{\bf III} \lt {\bf IV} \lt {\bf II}\quad CRYSTAL09\cr &{\bf III} \lt {\bf IV} \lt {\bf II}\quad {\rm SBFA/EML}}]

It is unlikely that forms II and IV can interconvert easily, but they have the lowest energies among the forms isolated and studied here. Which is the global minimum? Is there another, yet undiscovered form, which is of even lower energy? If not, is it fair to speak of two independent crystallization pathways, each leading to a stable outcome? In this case, how relevant were early versions of the CSP blind tests that demanded only the top three choices for a molecule or a cocrystal? Information, such as is obtained here, regarding various possibilities of nucleation pathways in the reaction coordinate during the course of crystallization, such as the existence of form III, and which finally leads to form IV, which seems to be just as favourable as form II, conveys that there need not be just one structure at the global minimum. More than ever, there is now a compelling feeling that the concept of `crystal structure' is not unique. The comment needs emphasis: rather than speak of the crystal structure of a molecule, a term that may have only a limited meaning in the landscape context, it may be fairer to speak of a crystal structure of a molecule (in this case a molecular system, because we are dealing with cocrystals). A particular structure is just one of many.

During the solution → crystal pathway, there could be various metastable forms and structural fragments which may not appear in the final crystal structure. These metastable structures are the outcome of crystal synthesis because of the competition between kinetic and thermodynamic factors associated with the transition from an entropy dominated scenario in solution to an enthalpically determined crystal. These (metastable) crystal structures (known as polymorphs or pseudopolymorphs) which encapsulate thermodynamic factors as well as energy–density profiling constitute a large landscape which may be accessed either by the hydrogen-bond hierarchies during the solution to the supersaturated state or via thermal transformations in the final stages of crystallization. In solution, molecules recognize one another based on their complementary hydrogen-bonding functionalities which define the basic kinetic units of the crystal structure, namely supramolecular synthons. Even as the hydrogen-bond hierarchies are established, and based on their respective energies, synthons optimize themselves right from the initial to intermediate to final stages of crystallization until chemically (kinetic) or geometrically (thermodynamic) reasonable structures are obtained for the organic compound in question. This is the final stage of crystallization in which the dichotomies between synthon versus close packing become fully manifest. Alternatively, one might reduce the molecule → crystal progression in the landscape into a discussion of packing (thermodynamic aspects) and synthon theory (kinetic aspects). We would urge an appreciation of both these viewpoints in the current scenario (Kitaigorodskii, 1973[Kitaigorodskii, A. (1973). Molecular Crystals and Molecules. New York: Academic Press.]; Dunitz & Gavezzotti, 2005[Dunitz, J. D. & Gavezzotti, A. (2005). Angew. Chem. Int. Ed. 44, 1766-1787.]; Desiraju, 2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]).

4. Conclusions

This work addresses several questions that highlight the difficulties faced in dealing with complex systems in crystal engineering. Our approaches have posed questions that future methodologies should hopefully address. We have shown that the closed zero-dimensional convergent phenol⋯pyridine synthon (synthon B) is robust and constitutes the element of modularity that causes extensive polymorphism in the orcinol−bipyridine system. Within the context of the present example, it is therefore not possible to state that cocrystal formation decreases the likelihood of polymorphism. It is true that the major interaction, namely O—H⋯N, is conserved in all the forms but the polymorphism is caused by a variation in the more minor interactions, in other words in the ways in which synthon B modules are arranged with respect to one another. Larger assemblies of synthon B may be termed as Long Range Synthon Aufbau Modules or LSAM. This work also shows that this collection of polymorphs of orcinol−bipyridine constitutes a landscape which may be studied by an energy profiling and interaction profiling, both of which may be carried out with charge density studies, more particularly with our newly suggested technique of Supramolecular Synthon Based Fragments Approach (SBFA) for transferability of multipole parameters. The synthon is a modular structural unit that lends itself particularly well to the transferability of electron density information in a crystal structure. The polymorphs of orcinol−bipyridine are structurally complex in a manner that renders them problematic for other methods of charge density analysis and our method offers some choice in this regard. The idea of a structural landscape that is defined by polymorphs, solvates and computed structures provides an indication about events in the late stages of crystallization. While computational CSP inputs on the thermodynamics of these events, or vertical profiling of the landscape, charge density methods give information on the interactions themselves and therefore, in principle, can lead to horizontal profiling and a measure of the kinetics that underlie crystallization events because in the end it is the energy and distance dependence of individual interactions that determine actual crystallization pathways which are essentially kinetically governed.

Supporting information


Experimental top

(type here to add preparation details)

Refinement top

(type here to add refinement details)

Computing details top

For all compounds, data collection: CrysAlis PRO, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11); cell refinement: CrysAlis PRO, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11); data reduction: CrysAlis PRO, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
(II) top
Crystal data top
1.5(C10H8N2)·1(C7H8O2)Z = 2
Mr = 358.42F(000) = 378
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7711 (6) ÅCell parameters from 7563 reflections
b = 10.0113 (10) Åθ = 2.4–27.4°
c = 12.0057 (9) ŵ = 0.09 mm1
α = 67.978 (8)°T = 100 K
β = 78.030 (6)°Block, colourless
γ = 69.224 (8)°0.60 × 0.40 × 0.40 mm
V = 910.38 (15) Å3
Data collection top
Xcalibur, Eos, Nova
diffractometer
3998 independent reflections
Radiation source: Mova (Mo) X-ray Source3516 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 16.0839 pixels mm-1θmax = 27.1°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1312
Tmin = 0.872, Tmax = 1.000l = 1515
16515 measured reflections
Refinement top
Refinement on F2324 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.102All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.046P)2 + 0.2125P]
where P = (Fo2 + 2Fc2)/3
3998 reflections(Δ/σ)max < 0.001
Crystal data top
1.5(C10H8N2)·1(C7H8O2)γ = 69.224 (8)°
Mr = 358.42V = 910.38 (15) Å3
Triclinic, P1Z = 2
a = 8.7711 (6) ÅMo Kα radiation
b = 10.0113 (10) ŵ = 0.09 mm1
c = 12.0057 (9) ÅT = 100 K
α = 67.978 (8)°0.60 × 0.40 × 0.40 mm
β = 78.030 (6)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
3998 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
3516 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 1.000Rint = 0.035
16515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039324 parameters
wR(F2) = 0.1020 restraints
S = 1.04All H-atom parameters refined
3998 reflections
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.40093 (12)0.65915 (11)0.66072 (9)0.0226 (3)
N20.38717 (12)0.72785 (12)0.98189 (9)0.0249 (3)
C80.34906 (15)0.73831 (14)0.73715 (11)0.0230 (4)
C90.19775 (15)0.75425 (13)0.80320 (10)0.0217 (4)
C100.09106 (14)0.68628 (13)0.79026 (10)0.0182 (3)
C110.14375 (15)0.60707 (14)0.70862 (11)0.0227 (4)
C120.29698 (15)0.59614 (14)0.64716 (11)0.0242 (4)
C130.07250 (14)0.69849 (13)0.85881 (10)0.0188 (3)
C140.15520 (15)0.82019 (14)0.89995 (11)0.0228 (4)
C150.30936 (15)0.82972 (14)0.96018 (11)0.0258 (4)
C160.30589 (16)0.60951 (14)0.94350 (11)0.0250 (4)
C170.15130 (15)0.59012 (14)0.88303 (11)0.0231 (4)
N30.39800 (13)0.98261 (12)0.64115 (9)0.0268 (3)
C180.17371 (15)1.08465 (14)0.60104 (11)0.0241 (4)
C190.32696 (16)1.07400 (15)0.65361 (12)0.0275 (4)
C200.31088 (16)0.89950 (15)0.57191 (12)0.0300 (4)
C210.15692 (15)0.90195 (15)0.51580 (12)0.0275 (4)
C220.08276 (14)0.99691 (12)0.52930 (10)0.0182 (3)
O10.28063 (10)0.84314 (9)0.02579 (7)0.0229 (3)
O20.28284 (10)0.46048 (9)0.41895 (7)0.0223 (3)
C10.05196 (14)0.75442 (13)0.24908 (10)0.0182 (3)
C20.03294 (14)0.82291 (13)0.14395 (10)0.0193 (4)
C30.20311 (14)0.77033 (13)0.13028 (10)0.0180 (3)
C40.29084 (14)0.64851 (12)0.22090 (10)0.0171 (3)
C50.20490 (14)0.57987 (12)0.32630 (10)0.0171 (4)
C60.03467 (14)0.63362 (13)0.34024 (10)0.0177 (3)
C70.23684 (15)0.80785 (15)0.26339 (11)0.0266 (4)
H80.433810.790350.744940.0393
H90.168150.818820.863930.0373
H110.063580.556800.691930.0349
H120.340100.533970.584020.0356
H140.102740.909660.883110.0374
H150.374620.923740.993100.0406
H160.371640.528790.963070.0412
H170.095910.490810.855370.0371
H180.125431.160760.617310.0381
H190.397641.142300.709490.0399
H200.365490.824480.560420.0370
H210.095290.828500.462340.0340
H10.400010.790890.019390.0339
H20.396970.414600.389880.0336
H2A0.032610.917350.072370.0352
H40.423310.609300.210140.0364
H60.028560.579670.423300.0348
H7A0.286040.761730.216170.0431
H7B0.287680.771950.355400.0423
H7C0.289600.928440.224580.0424
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0172 (6)0.0219 (5)0.0251 (5)0.0039 (4)0.0005 (4)0.0066 (4)
N20.0198 (6)0.0294 (6)0.0241 (5)0.0087 (5)0.0028 (4)0.0088 (5)
C80.0183 (7)0.0248 (7)0.0277 (6)0.0082 (5)0.0022 (5)0.0089 (5)
C90.0196 (7)0.0240 (6)0.0248 (6)0.0072 (5)0.0003 (5)0.0119 (5)
C100.0165 (6)0.0172 (6)0.0196 (6)0.0048 (5)0.0019 (5)0.0048 (5)
C110.0202 (7)0.0244 (6)0.0274 (6)0.0089 (5)0.0001 (5)0.0118 (5)
C120.0229 (7)0.0247 (6)0.0255 (6)0.0061 (5)0.0017 (5)0.0120 (5)
C130.0165 (6)0.0217 (6)0.0180 (6)0.0058 (5)0.0016 (5)0.0064 (5)
C140.0199 (7)0.0238 (6)0.0281 (6)0.0095 (5)0.0008 (5)0.0112 (5)
C150.0203 (7)0.0278 (7)0.0306 (7)0.0063 (5)0.0030 (5)0.0146 (6)
C160.0222 (7)0.0267 (7)0.0273 (6)0.0132 (5)0.0030 (5)0.0076 (5)
C170.0218 (7)0.0223 (6)0.0264 (6)0.0077 (5)0.0004 (5)0.0098 (5)
H80.03130.04920.04770.02000.00030.0217
H90.03610.04270.04210.01440.00230.0245
H110.03160.04030.04140.01760.00220.0194
H120.03260.04050.03790.01070.00400.0214
H140.03560.03550.04760.01640.00370.0194
H150.03590.04120.04850.00950.00680.0266
H160.04000.04630.04670.02610.01010.0206
H170.03820.03470.04340.01420.00700.0207
N30.0191 (6)0.0308 (6)0.0330 (6)0.0092 (5)0.0030 (5)0.0144 (5)
C180.0210 (7)0.0271 (7)0.0308 (7)0.0111 (5)0.0034 (5)0.0163 (6)
C190.0208 (7)0.0339 (7)0.0341 (7)0.0104 (6)0.0065 (5)0.0207 (6)
C200.0226 (8)0.0333 (7)0.0442 (8)0.0142 (6)0.0048 (6)0.0226 (6)
C210.0195 (7)0.0313 (7)0.0402 (7)0.0103 (6)0.0065 (6)0.0234 (6)
C220.0159 (6)0.0179 (6)0.0193 (5)0.0039 (5)0.0021 (5)0.0053 (5)
H180.03750.03710.04880.01600.00030.0220
H190.03400.04270.04700.00790.00510.0272
H200.03050.04350.04700.01870.00390.0227
H210.02930.03640.04170.01130.00560.0220
O10.0184 (5)0.0249 (5)0.0206 (4)0.0086 (4)0.0039 (3)0.0033 (4)
O20.0183 (5)0.0219 (4)0.0198 (4)0.0026 (3)0.0008 (3)0.0040 (4)
C10.0159 (6)0.0187 (6)0.0235 (6)0.0066 (5)0.0020 (5)0.0114 (5)
C20.0179 (7)0.0181 (6)0.0203 (6)0.0047 (5)0.0016 (5)0.0055 (5)
C30.0202 (7)0.0179 (6)0.0186 (5)0.0097 (5)0.0027 (5)0.0076 (5)
C40.0142 (6)0.0181 (6)0.0210 (6)0.0058 (5)0.0013 (5)0.0092 (5)
C50.0198 (7)0.0151 (6)0.0186 (6)0.0058 (5)0.0010 (5)0.0078 (5)
C60.0179 (6)0.0190 (6)0.0185 (6)0.0090 (5)0.0037 (4)0.0084 (5)
C70.0164 (7)0.0305 (7)0.0278 (6)0.0052 (5)0.0018 (5)0.0080 (6)
H10.02430.03530.03490.00680.00210.0082
H20.02790.03350.03200.00350.00180.0105
H2A0.03030.03210.03460.00620.00490.0037
H40.02220.04030.03830.00560.00150.0097
H60.03200.03710.03140.01520.00490.0069
H7A0.03540.05450.05360.01710.00340.0305
H7B0.03350.05580.03300.01610.00450.0112
H7C0.03270.03070.05650.00700.00340.0092
Geometric parameters (Å, º) top
O1—C31.3709 (14)C16—H161.0800
O2—C51.3682 (14)C17—H171.0800
O1—H10.9900C18—C191.384 (2)
O2—H20.9900C18—C221.3911 (18)
N1—C81.3392 (17)C20—C211.383 (2)
N1—C121.3425 (18)C21—C221.3968 (19)
N2—C151.3396 (18)C22—C22i1.4879 (18)
N2—C161.3410 (18)C18—H181.0800
N3—C191.3392 (19)C19—H191.0800
N3—C201.3309 (18)C20—H201.0800
C8—C91.3870 (19)C21—H211.0800
C9—C101.3979 (19)C1—C71.511 (2)
C10—C131.4872 (18)C1—C21.3932 (17)
C10—C111.3922 (18)C1—C61.3922 (17)
C11—C121.381 (2)C2—C31.3920 (19)
C13—C141.3893 (19)C3—C41.3963 (17)
C13—C171.3969 (19)C4—C51.4005 (17)
C14—C151.384 (2)C5—C61.3931 (19)
C16—C171.383 (2)C2—H2A1.0800
C8—H81.0800C4—H41.0800
C9—H91.0800C6—H61.0800
C11—H111.0800C7—H7A1.0800
C12—H121.0800C7—H7B1.0800
C14—H141.0800C7—H7C1.0800
C15—H151.0800
O1···N2ii2.7447 (15)H1···C16ii2.7800
O1···C9iii3.3926 (15)H1···H42.3200
O2···N1iv2.7285 (15)H2···H20vi2.3400
O1···H9iii2.4800H2···H42.3400
O1···H2Av2.6700H2···C8iv2.7500
O1···H14i2.8900H2···N1iv1.7400
O1···H15i2.6600H2···C12iv2.6000
O2···H122.5500H2A···H14iii2.5100
O2···H7Bvi2.8300H2A···C2v2.9100
O2···H20vi2.6100H2A···H2Av2.0500
O2···H6vi2.6500H2A···H7C2.5900
N1···C5iv3.4319 (17)H2A···C14iii3.0900
N1···C4iv3.3495 (17)H2A···O1v2.6700
N1···O2iv2.7285 (15)H4···C12iv2.9500
N2···O1vii2.7447 (15)H4···N1iv2.6300
N3···C7viii3.3891 (19)H4···H22.3400
N1···H4iv2.6300H4···H12.3200
N1···H20ix2.8800H6···O2vi2.6500
N1···H2iv1.7400H6···H7B2.4500
N2···H1vii1.7600H6···H11vi2.4000
N3···H8x2.6200H6···C6vi2.8400
N3···H7Cviii2.9000H6···H212.5500
C4···N1iv3.3495 (17)H6···H6vi1.9500
C5···N1iv3.4319 (17)H7A···C15iii2.9200
C6···C11vi3.5659 (19)H7B···O2vi2.8300
C7···N3viii3.3891 (19)H7B···H62.4500
C9···O1xi3.3926 (15)H7C···N3viii2.9000
C11···C6vi3.5659 (19)H7C···H2A2.5900
C11···C213.594 (2)H8···H20ix2.5200
C12···C18i3.4648 (18)H8···C20ix2.9400
C14···C193.3121 (19)H8···N3ix2.6200
C14···C183.5673 (18)H9···O1xi2.4800
C15···C193.5734 (19)H9···H142.2200
C18···C12i3.4648 (18)H9···C142.7700
C18···C143.5673 (18)H11···C172.6900
C19···C153.5734 (19)H11···H6vi2.4000
C19···C143.3121 (19)H11···C1vi2.9600
C21···C113.594 (2)H11···C6vi2.5300
C1···H18i2.9500H11···H172.1900
C1···H11vi2.9600H12···O22.5500
C1···H212.8400H14···C92.7300
C1···H17vi2.9400H14···H92.2200
C2···H17vi2.9900H14···C3i2.9600
C2···H2Av2.9100H14···C2i2.8400
C2···H14i2.8400H14···H2Axi2.5100
C3···H17vi3.0100H14···O1i2.8900
C3···H14i2.9600H15···H15xii2.2000
C4···H19i3.0000H15···O1i2.6600
C4···H18i3.0300H16···H16xiii2.4300
C4···H17vi3.0000H17···C4vi3.0000
C5···H18i2.7400H17···C5vi2.9500
C5···H17vi2.9500H17···C112.7500
C6···H18i2.6900H17···H112.1900
C6···H6vi2.8400H17···C3vi3.0100
C6···H11vi2.5300H17···C2vi2.9900
C6···H212.6700H17···C6vi2.9200
C6···H17vi2.9200H17···C1vi2.9400
C7···H19viii3.0300H18···C1i2.9500
C7···H213.0100H18···C4i3.0300
C8···H2iv2.7500H18···C5i2.7400
C8···H20ix3.0800H18···C6i2.6900
C9···H142.7300H18···H21i1.9900
C11···H172.7500H18···C21i2.6600
C12···H2iv2.6000H19···C4i3.0000
C12···H4iv2.9500H19···C7viii3.0300
C14···H2Axi3.0900H20···N1x2.8800
C14···H92.7700H20···C8x3.0800
C15···H1vii2.6300H20···H8x2.5200
C15···H7Axi2.9200H20···O2vi2.6100
C16···H1vii2.7800H20···H2vi2.3400
C17···H112.6900H21···C73.0100
C18···H21i2.6700H21···C18i2.6700
C20···H8x2.9400H21···H18i1.9900
C21···H18i2.6600H21···H62.5500
H1···C15ii2.6300H21···C12.8400
H1···N2ii1.7600H21···C62.6700
C3—O1—H1112.00N3—C20—C21124.51 (14)
C5—O2—H2110.00C20—C21—C22120.13 (13)
C8—N1—C12116.87 (12)C18—C22—C21115.59 (12)
C15—N2—C16116.26 (12)C21—C22—C22i121.95 (11)
C19—N3—C20115.27 (13)C18—C22—C22i122.46 (12)
N1—C8—C9123.39 (13)C22—C18—H18121.00
C8—C9—C10119.50 (11)C19—C18—H18119.00
C11—C10—C13120.87 (12)N3—C19—H19116.00
C9—C10—C13122.16 (11)C18—C19—H19120.00
C9—C10—C11116.97 (12)N3—C20—H20117.00
C10—C11—C12119.64 (13)C21—C20—H20119.00
N1—C12—C11123.60 (12)C20—C21—H21119.00
C10—C13—C14121.27 (12)C22—C21—H21121.00
C14—C13—C17116.93 (12)C2—C1—C7120.51 (11)
C10—C13—C17121.79 (12)C2—C1—C6119.51 (12)
C13—C14—C15119.48 (13)C6—C1—C7119.96 (11)
N2—C15—C14124.03 (13)C1—C2—C3120.10 (11)
N2—C16—C17123.78 (13)O1—C3—C2117.71 (11)
C13—C17—C16119.51 (12)C2—C3—C4120.74 (11)
C9—C8—H8121.00O1—C3—C4121.55 (12)
N1—C8—H8116.00C3—C4—C5118.94 (12)
C10—C9—H9123.00O2—C5—C4122.10 (11)
C8—C9—H9118.00O2—C5—C6117.68 (10)
C12—C11—H11120.00C4—C5—C6120.21 (11)
C10—C11—H11120.00C1—C6—C5120.49 (11)
C11—C12—H12120.00C1—C2—H2A120.00
N1—C12—H12116.00C3—C2—H2A119.00
C13—C14—H14121.00C3—C4—H4120.00
C15—C14—H14119.00C5—C4—H4121.00
C14—C15—H15120.00C1—C6—H6121.00
N2—C15—H15116.00C5—C6—H6119.00
N2—C16—H16114.00C1—C7—H7A111.00
C17—C16—H16122.00C1—C7—H7B114.00
C13—C17—H17122.00C1—C7—H7C114.00
C16—C17—H17118.00H7A—C7—H7B105.00
C19—C18—C22119.99 (13)H7A—C7—H7C104.00
N3—C19—C18124.51 (13)H7B—C7—H7C109.00
C12—N1—C8—C91.55 (19)C22—C18—C19—N30.2 (2)
C8—N1—C12—C111.09 (19)C19—C18—C22—C210.08 (18)
C16—N2—C15—C141.21 (19)C19—C18—C22—C22i179.83 (12)
C15—N2—C16—C170.90 (19)N3—C20—C21—C220.4 (2)
C20—N3—C19—C180.5 (2)C20—C21—C22—C180.02 (19)
C19—N3—C20—C210.6 (2)C20—C21—C22—C22i179.93 (13)
N1—C8—C9—C100.53 (19)C18—C22—C22i—C18i180.00 (11)
C8—C9—C10—C13179.73 (11)C18—C22—C22i—C21i0.09 (18)
C8—C9—C10—C110.98 (18)C21—C22—C22i—C18i0.09 (18)
C13—C10—C11—C12179.29 (12)C21—C22—C22i—C21i180.00 (12)
C9—C10—C13—C1426.07 (18)C6—C1—C2—C30.22 (19)
C11—C10—C13—C14153.19 (12)C7—C1—C2—C3178.32 (12)
C11—C10—C13—C1725.68 (18)C2—C1—C6—C50.83 (19)
C9—C10—C13—C17155.06 (12)C7—C1—C6—C5177.71 (12)
C9—C10—C11—C121.41 (18)C1—C2—C3—O1179.11 (11)
C10—C11—C12—N10.4 (2)C1—C2—C3—C40.26 (19)
C17—C13—C14—C150.90 (18)O1—C3—C4—C5179.21 (11)
C10—C13—C17—C16177.74 (11)C2—C3—C4—C50.14 (19)
C10—C13—C14—C15178.02 (11)C3—C4—C5—O2179.74 (11)
C14—C13—C17—C161.18 (18)C3—C4—C5—C60.47 (18)
C13—C14—C15—N20.3 (2)O2—C5—C6—C1179.74 (11)
N2—C16—C17—C130.3 (2)C4—C5—C6—C10.96 (19)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z1; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x, y+2, z; (vi) x, y+1, z+1; (vii) x1, y, z+1; (viii) x1, y+2, z+1; (ix) x+1, y, z; (x) x1, y, z; (xi) x, y, z+1; (xii) x1, y+2, z+2; (xiii) x1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2ii0.99001.76002.7447 (15)169.00
O2—H2···N1iv0.99001.74002.7285 (15)177.00
C8—H8···N3ix1.08002.62003.5926 (19)149.00
C9—H9···O1xi1.08002.48003.3926 (15)142.00
C12—H12···O21.08002.55003.5238 (16)150.00
Symmetry codes: (ii) x+1, y, z1; (iv) x+1, y+1, z+1; (ix) x+1, y, z; (xi) x, y, z+1.
(III_120K) top
Crystal data top
4.5(C10H8N2)·3(C7H8O2)F(000) = 2268
Mr = 1075.26Dx = 1.298 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6738 reflections
a = 9.2233 (3) Åθ = 2.4–27.5°
b = 36.2938 (12) ŵ = 0.09 mm1
c = 16.5853 (5) ÅT = 120 K
β = 97.827 (3)°Block, colourless
V = 5500.2 (3) Å30.5 × 0.3 × 0.2 mm
Z = 4
Data collection top
Xcalibur, Eos, Nova
diffractometer
12593 independent reflections
Radiation source: Mova (Mo) X-ray Source8330 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 16.0839 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: analytical
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
k = 4547
Tmin = 0.998, Tmax = 0.999l = 2121
38087 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067All H-atom parameters refined
wR(F2) = 0.164 W = 1/[Σ2(FO2) + (0.0474P)2 + 3.2861P] WHERE P = (FO2 + 2FC2)/3
S = 1.03(Δ/σ)max < 0.001
12593 reflectionsΔρmax = 0.25 e Å3
970 parametersΔρmin = 0.28 e Å3
Crystal data top
4.5(C10H8N2)·3(C7H8O2)V = 5500.2 (3) Å3
Mr = 1075.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2233 (3) ŵ = 0.09 mm1
b = 36.2938 (12) ÅT = 120 K
c = 16.5853 (5) Å0.5 × 0.3 × 0.2 mm
β = 97.827 (3)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
12593 independent reflections
Absorption correction: analytical
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
8330 reflections with I > 2σ(I)
Tmin = 0.998, Tmax = 0.999Rint = 0.051
38087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.164All H-atom parameters refined
S = 1.03Δρmax = 0.25 e Å3
12593 reflectionsΔρmin = 0.28 e Å3
970 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2618 (2)0.79179 (6)0.65147 (12)0.0324 (7)
N20.8824 (2)0.74557 (6)0.46066 (12)0.0308 (7)
C10.8944 (3)0.75097 (7)0.54140 (15)0.0310 (8)
C20.7767 (3)0.75950 (7)0.58146 (15)0.0292 (8)
C30.7480 (3)0.74810 (9)0.41943 (15)0.0396 (9)
C40.6253 (3)0.75706 (8)0.45426 (15)0.0361 (9)
C50.6384 (2)0.76324 (6)0.53763 (13)0.0232 (7)
C60.5087 (2)0.77355 (6)0.57725 (13)0.0232 (7)
C70.4939 (3)0.76140 (8)0.65540 (15)0.0328 (8)
C80.3959 (3)0.79505 (7)0.53733 (15)0.0287 (8)
C90.3706 (3)0.77104 (9)0.68916 (16)0.0391 (9)
C100.2768 (3)0.80338 (8)0.57622 (16)0.0323 (8)
N30.3059 (2)0.58399 (6)1.09124 (12)0.0303 (7)
N40.3135 (2)0.63038 (6)0.89798 (12)0.0306 (7)
C180.2026 (3)0.61013 (8)0.86000 (15)0.0314 (8)
C190.0798 (3)0.60072 (7)0.89410 (14)0.0279 (8)
C200.0670 (2)0.61216 (7)0.97302 (13)0.0248 (7)
C210.1811 (3)0.63344 (7)1.01320 (15)0.0296 (8)
C220.2997 (3)0.64165 (8)0.97374 (16)0.0332 (8)
C230.0619 (2)0.60189 (6)1.01328 (13)0.0242 (7)
C240.1967 (3)0.59313 (7)0.96907 (14)0.0301 (8)
C250.3143 (3)0.58463 (7)1.00978 (14)0.0302 (8)
C260.0530 (3)0.60087 (8)1.09805 (14)0.0319 (8)
C270.1752 (3)0.59195 (8)1.13323 (15)0.0363 (9)
N50.6627 (2)0.47585 (7)0.07082 (13)0.0371 (7)
C280.6821 (3)0.47290 (9)0.00673 (16)0.0396 (9)
C290.8104 (3)0.48145 (8)0.03679 (15)0.0346 (9)
C300.9298 (2)0.49499 (6)0.01470 (13)0.0233 (7)
C310.9106 (3)0.49828 (8)0.09612 (15)0.0368 (9)
C320.7785 (3)0.48858 (9)0.12037 (16)0.0424 (9)
N60.7857 (2)0.31760 (7)0.38913 (13)0.0389 (8)
N70.1250 (2)0.35882 (6)0.54868 (13)0.0353 (7)
C400.2545 (3)0.35779 (8)0.59698 (15)0.0341 (9)
C410.3858 (3)0.35021 (7)0.56971 (14)0.0297 (8)
C420.3879 (2)0.34282 (6)0.48730 (13)0.0234 (7)
C430.2548 (3)0.34352 (7)0.43687 (15)0.0291 (8)
C440.1281 (3)0.35139 (8)0.46984 (15)0.0325 (8)
C450.5256 (2)0.33419 (7)0.45424 (13)0.0241 (7)
C460.6434 (3)0.31668 (7)0.50043 (15)0.0285 (8)
C470.7685 (3)0.30950 (8)0.46625 (16)0.0342 (8)
C480.6721 (3)0.33434 (9)0.34478 (15)0.0376 (9)
C490.5432 (3)0.34324 (7)0.37381 (14)0.0287 (7)
N80.1887 (2)0.57674 (6)0.58157 (12)0.0309 (7)
N90.8119 (2)0.54224 (6)0.38343 (12)0.0317 (7)
C570.6999 (3)0.54862 (8)0.50467 (15)0.0319 (8)
C580.5627 (2)0.55411 (6)0.46063 (13)0.0237 (7)
C590.5535 (3)0.55279 (7)0.37595 (14)0.0274 (7)
C600.6792 (3)0.54682 (7)0.34079 (15)0.0304 (8)
C610.4325 (2)0.56153 (7)0.50177 (13)0.0237 (7)
C620.3125 (3)0.58126 (7)0.46376 (14)0.0284 (7)
C630.1948 (3)0.58819 (7)0.50483 (14)0.0302 (8)
C640.4258 (3)0.54956 (7)0.58133 (15)0.0301 (8)
C650.3041 (3)0.55761 (8)0.61755 (15)0.0331 (8)
C660.8196 (3)0.54315 (8)0.46482 (15)0.0351 (9)
O10.02758 (18)0.40989 (5)0.32165 (10)0.0318 (6)
O20.05751 (19)0.54226 (5)0.30823 (11)0.0340 (6)
C110.4290 (3)0.46728 (8)0.20436 (16)0.0295 (8)
C120.1101 (2)0.50788 (6)0.29647 (13)0.0239 (7)
C130.0377 (2)0.47633 (7)0.31745 (13)0.0231 (7)
C140.0935 (2)0.44174 (6)0.30247 (13)0.0223 (7)
C150.2220 (2)0.43879 (7)0.26715 (13)0.0236 (7)
C160.2932 (2)0.47027 (7)0.24528 (12)0.0229 (7)
C170.2372 (2)0.50482 (7)0.26016 (13)0.0232 (7)
O30.56744 (18)0.62949 (5)0.82942 (10)0.0303 (5)
O40.61199 (18)0.76073 (4)0.87034 (10)0.0299 (5)
C330.9995 (3)0.69318 (8)0.76193 (18)0.0320 (8)
C340.7959 (2)0.72682 (7)0.81755 (13)0.0222 (6)
C350.8539 (2)0.69394 (7)0.79328 (13)0.0228 (7)
C360.7763 (2)0.66132 (7)0.79943 (14)0.0241 (7)
C370.6411 (2)0.66200 (6)0.82850 (13)0.0227 (7)
C380.5844 (2)0.69492 (6)0.85336 (13)0.0228 (7)
C390.6625 (2)0.72734 (6)0.84810 (12)0.0213 (7)
O50.51448 (18)0.70657 (5)0.22719 (10)0.0307 (5)
O60.46109 (18)0.57615 (4)0.17579 (10)0.0289 (5)
C500.0851 (3)0.64267 (8)0.29712 (17)0.0300 (8)
C510.4144 (2)0.60914 (6)0.20237 (12)0.0226 (7)
C520.2828 (2)0.60909 (7)0.23535 (13)0.0223 (7)
C530.2286 (2)0.64185 (7)0.26304 (13)0.0231 (7)
C540.3067 (2)0.67438 (7)0.25820 (14)0.0247 (7)
C550.4397 (2)0.67421 (6)0.22718 (13)0.0227 (7)
C560.4937 (2)0.64149 (6)0.19844 (13)0.0224 (7)
H10.998 (3)0.7487 (8)0.5716 (17)0.049 (8)*
H20.793 (3)0.7643 (7)0.6389 (16)0.039 (7)*
H30.738 (3)0.7421 (8)0.3608 (17)0.050 (8)*
H40.532 (3)0.7576 (8)0.4220 (16)0.043 (8)*
H70.571 (3)0.7461 (8)0.6867 (16)0.044 (8)*
H80.405 (3)0.8054 (7)0.4856 (16)0.037 (7)*
H90.356 (3)0.7618 (8)0.7446 (16)0.043 (8)*
H100.197 (3)0.8186 (8)0.5476 (16)0.046 (8)*
H180.215 (3)0.6015 (7)0.8056 (16)0.039 (7)*
H190.002 (3)0.5851 (8)0.8631 (16)0.045 (8)*
H210.182 (3)0.6430 (8)1.0699 (17)0.049 (8)*
H220.382 (3)0.6571 (7)1.0020 (15)0.035 (7)*
H240.213 (3)0.5932 (7)0.9070 (16)0.043 (8)*
H250.410 (3)0.5781 (7)0.9780 (15)0.038 (7)*
H260.039 (3)0.6074 (7)1.1328 (15)0.033 (7)*
H270.171 (3)0.5912 (8)1.1931 (18)0.055 (9)*
H280.597 (3)0.4618 (7)0.0443 (15)0.040 (7)*
H290.817 (3)0.4795 (8)0.0942 (16)0.045 (8)*
H310.990 (3)0.5065 (8)0.1387 (17)0.050 (8)*
H320.765 (3)0.4913 (9)0.1795 (19)0.063 (9)*
H400.254 (2)0.3632 (7)0.6588 (15)0.032 (7)*
H410.473 (2)0.3513 (6)0.6077 (14)0.023 (6)*
H430.248 (3)0.3392 (7)0.3783 (15)0.035 (7)*
H440.032 (3)0.3524 (7)0.4329 (15)0.036 (7)*
H460.635 (3)0.3081 (7)0.5574 (16)0.044 (8)*
H470.849 (3)0.2959 (8)0.4986 (16)0.045 (8)*
H480.685 (3)0.3398 (8)0.2859 (17)0.050 (8)*
H490.462 (3)0.3549 (7)0.3371 (15)0.039 (7)*
H570.717 (3)0.5485 (7)0.5645 (16)0.041 (8)*
H590.462 (3)0.5558 (7)0.3405 (15)0.034 (7)*
H600.672 (2)0.5465 (6)0.2802 (14)0.026 (6)*
H620.311 (3)0.5907 (7)0.4080 (16)0.039 (7)*
H630.109 (3)0.6034 (8)0.4796 (16)0.042 (8)*
H640.508 (3)0.5348 (8)0.6107 (16)0.049 (8)*
H650.299 (3)0.5507 (8)0.6764 (17)0.048 (8)*
H660.920 (3)0.5411 (7)0.4949 (15)0.033 (7)*
H1A0.052 (3)0.4173 (9)0.357 (2)0.077 (11)*
H2A0.040 (3)0.5413 (9)0.3367 (19)0.071 (10)*
H11A0.502 (3)0.4840 (8)0.2252 (16)0.040 (8)*
H11B0.409 (3)0.4716 (8)0.1454 (18)0.054 (9)*
H11C0.477 (3)0.4412 (9)0.2121 (17)0.055 (9)*
H130.053 (2)0.4787 (6)0.3442 (13)0.020 (6)*
H150.262 (2)0.4141 (7)0.2586 (14)0.028 (6)*
H170.281 (2)0.5258 (7)0.2438 (14)0.027 (7)*
H3A0.473 (3)0.6333 (8)0.8541 (17)0.059 (9)*
H4A0.526 (3)0.7582 (8)0.9020 (18)0.060 (9)*
H33A1.025 (3)0.7160 (9)0.7404 (17)0.048 (8)*
H33B1.079 (3)0.6882 (8)0.8055 (19)0.059 (9)*
H33C1.008 (3)0.6730 (9)0.7235 (19)0.059 (9)*
H340.847 (3)0.7496 (7)0.8124 (15)0.034 (7)*
H360.815 (3)0.6374 (7)0.7820 (14)0.033 (7)*
H380.490 (3)0.6964 (7)0.8739 (14)0.031 (7)*
H50.606 (3)0.7041 (9)0.1981 (19)0.065 (10)*
H60.550 (3)0.5788 (9)0.1432 (18)0.066 (10)*
H50A0.052 (3)0.6167 (8)0.3082 (16)0.042 (8)*
H50B0.090 (3)0.6578 (8)0.3488 (18)0.055 (9)*
H50C0.005 (3)0.6530 (8)0.2598 (17)0.046 (8)*
H520.232 (2)0.5866 (7)0.2405 (14)0.027 (6)*
H540.271 (2)0.6968 (6)0.2783 (13)0.020 (6)*
H560.588 (2)0.6419 (7)0.1746 (14)0.029 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0266 (11)0.0398 (13)0.0320 (11)0.0043 (10)0.0085 (9)0.0030 (10)
N20.0266 (11)0.0326 (12)0.0352 (11)0.0026 (9)0.0114 (9)0.0035 (9)
C10.0220 (13)0.0360 (15)0.0352 (13)0.0009 (11)0.0052 (10)0.0024 (11)
C20.0243 (12)0.0357 (15)0.0272 (12)0.0035 (11)0.0024 (10)0.0029 (11)
C30.0367 (15)0.060 (2)0.0242 (12)0.0075 (14)0.0113 (11)0.0001 (13)
C40.0288 (14)0.0568 (19)0.0230 (12)0.0075 (13)0.0049 (10)0.0013 (12)
C50.0212 (11)0.0246 (12)0.0244 (11)0.0017 (10)0.0050 (9)0.0014 (9)
C60.0214 (11)0.0242 (12)0.0240 (11)0.0021 (10)0.0034 (9)0.0039 (9)
C70.0242 (13)0.0480 (17)0.0265 (12)0.0063 (12)0.0050 (10)0.0044 (12)
C80.0271 (13)0.0321 (14)0.0274 (12)0.0033 (11)0.0053 (10)0.0052 (11)
C90.0318 (14)0.060 (2)0.0272 (13)0.0052 (14)0.0097 (11)0.0051 (13)
C100.0254 (13)0.0344 (15)0.0374 (14)0.0054 (12)0.0049 (11)0.0009 (12)
N30.0275 (11)0.0330 (12)0.0318 (11)0.0002 (9)0.0090 (9)0.0029 (9)
N40.0265 (11)0.0317 (12)0.0347 (11)0.0007 (9)0.0078 (9)0.0034 (9)
C180.0281 (13)0.0376 (15)0.0296 (12)0.0019 (12)0.0079 (10)0.0003 (11)
C190.0213 (12)0.0355 (15)0.0268 (12)0.0023 (11)0.0027 (9)0.0017 (11)
C200.0218 (12)0.0251 (12)0.0276 (11)0.0022 (10)0.0034 (9)0.0031 (10)
C210.0266 (13)0.0330 (14)0.0285 (12)0.0034 (11)0.0016 (10)0.0020 (11)
C220.0294 (14)0.0351 (15)0.0355 (13)0.0063 (12)0.0060 (11)0.0004 (12)
C230.0237 (12)0.0226 (12)0.0266 (11)0.0012 (10)0.0041 (9)0.0002 (10)
C240.0250 (12)0.0398 (15)0.0254 (12)0.0003 (11)0.0035 (10)0.0014 (11)
C250.0225 (12)0.0385 (15)0.0291 (12)0.0004 (11)0.0021 (10)0.0037 (11)
C260.0280 (13)0.0405 (16)0.0264 (12)0.0028 (12)0.0014 (10)0.0015 (11)
C270.0329 (14)0.0493 (18)0.0275 (13)0.0048 (13)0.0067 (11)0.0044 (12)
N50.0304 (12)0.0458 (14)0.0362 (12)0.0019 (11)0.0086 (9)0.0050 (11)
C280.0280 (14)0.0568 (19)0.0332 (13)0.0104 (14)0.0015 (11)0.0013 (13)
C290.0304 (14)0.0498 (18)0.0235 (12)0.0057 (13)0.0034 (10)0.0008 (12)
C300.0233 (12)0.0214 (12)0.0252 (11)0.0033 (10)0.0036 (9)0.0019 (9)
C310.0309 (14)0.0552 (19)0.0248 (12)0.0054 (13)0.0056 (11)0.0057 (12)
C320.0344 (15)0.068 (2)0.0269 (13)0.0022 (14)0.0113 (11)0.0037 (13)
N60.0280 (11)0.0564 (16)0.0339 (12)0.0047 (11)0.0103 (9)0.0010 (11)
N70.0303 (12)0.0421 (14)0.0355 (12)0.0055 (10)0.0118 (9)0.0027 (10)
C400.0328 (14)0.0432 (17)0.0275 (13)0.0053 (12)0.0089 (11)0.0014 (12)
C410.0275 (13)0.0376 (15)0.0236 (11)0.0028 (12)0.0017 (10)0.0003 (11)
C420.0250 (12)0.0219 (12)0.0234 (11)0.0019 (10)0.0036 (9)0.0020 (9)
C430.0246 (12)0.0357 (15)0.0272 (12)0.0006 (11)0.0043 (10)0.0016 (11)
C440.0250 (13)0.0385 (16)0.0344 (13)0.0005 (12)0.0051 (10)0.0044 (12)
C450.0216 (12)0.0261 (13)0.0245 (11)0.0012 (10)0.0031 (9)0.0010 (10)
C460.0276 (13)0.0313 (14)0.0270 (12)0.0036 (11)0.0057 (10)0.0060 (11)
C470.0250 (13)0.0428 (17)0.0356 (13)0.0096 (12)0.0074 (11)0.0061 (12)
C480.0283 (14)0.0583 (19)0.0265 (12)0.0019 (13)0.0053 (10)0.0009 (13)
C490.0229 (12)0.0390 (15)0.0237 (11)0.0012 (11)0.0013 (9)0.0024 (11)
N80.0235 (10)0.0365 (13)0.0342 (11)0.0020 (10)0.0091 (9)0.0048 (10)
N90.0290 (11)0.0324 (12)0.0349 (11)0.0036 (10)0.0089 (9)0.0034 (9)
C570.0242 (13)0.0437 (16)0.0268 (12)0.0043 (12)0.0004 (10)0.0016 (11)
C580.0240 (12)0.0224 (12)0.0245 (11)0.0010 (10)0.0025 (9)0.0014 (9)
C590.0235 (12)0.0312 (14)0.0263 (11)0.0006 (11)0.0006 (10)0.0004 (10)
C600.0333 (14)0.0317 (14)0.0269 (12)0.0026 (11)0.0063 (10)0.0021 (11)
C610.0196 (11)0.0264 (13)0.0247 (11)0.0004 (10)0.0017 (9)0.0005 (10)
C620.0252 (12)0.0343 (14)0.0258 (12)0.0056 (11)0.0035 (10)0.0043 (11)
C630.0254 (13)0.0352 (15)0.0303 (12)0.0032 (11)0.0045 (10)0.0058 (11)
C640.0240 (13)0.0344 (15)0.0315 (12)0.0025 (11)0.0029 (10)0.0073 (11)
C650.0282 (13)0.0415 (16)0.0302 (13)0.0003 (12)0.0065 (10)0.0067 (12)
C660.0226 (13)0.0491 (18)0.0330 (13)0.0058 (12)0.0021 (10)0.0014 (12)
O10.0348 (10)0.0248 (9)0.0388 (10)0.0054 (8)0.0159 (8)0.0011 (8)
O20.0342 (10)0.0235 (9)0.0477 (11)0.0031 (8)0.0180 (8)0.0018 (8)
C110.0259 (13)0.0315 (15)0.0327 (13)0.0010 (12)0.0096 (11)0.0027 (11)
C120.0254 (12)0.0229 (12)0.0233 (11)0.0013 (10)0.0034 (9)0.0011 (9)
C130.0209 (11)0.0286 (13)0.0203 (10)0.0002 (10)0.0047 (9)0.0013 (10)
C140.0246 (12)0.0214 (12)0.0205 (10)0.0044 (10)0.0013 (9)0.0007 (9)
C150.0265 (12)0.0217 (12)0.0225 (11)0.0011 (10)0.0032 (9)0.0035 (9)
C160.0208 (11)0.0281 (13)0.0194 (10)0.0011 (10)0.0013 (8)0.0025 (9)
C170.0236 (12)0.0229 (12)0.0231 (11)0.0049 (10)0.0031 (9)0.0004 (10)
O30.0256 (9)0.0243 (9)0.0423 (10)0.0042 (7)0.0093 (7)0.0034 (8)
O40.0309 (9)0.0225 (9)0.0388 (10)0.0012 (8)0.0143 (8)0.0024 (7)
C330.0247 (14)0.0343 (16)0.0387 (14)0.0012 (12)0.0101 (11)0.0009 (13)
C340.0214 (11)0.0238 (12)0.0209 (10)0.0013 (10)0.0008 (9)0.0034 (9)
C350.0209 (11)0.0287 (13)0.0192 (10)0.0001 (10)0.0042 (8)0.0012 (9)
C360.0232 (12)0.0224 (12)0.0273 (11)0.0010 (10)0.0054 (9)0.0045 (10)
C370.0230 (12)0.0223 (12)0.0217 (10)0.0041 (10)0.0010 (9)0.0001 (9)
C380.0202 (12)0.0264 (13)0.0225 (11)0.0014 (10)0.0051 (9)0.0004 (9)
C390.0238 (12)0.0209 (12)0.0189 (10)0.0004 (10)0.0018 (9)0.0008 (9)
O50.0291 (9)0.0239 (9)0.0408 (10)0.0064 (8)0.0111 (8)0.0015 (8)
O60.0307 (9)0.0223 (9)0.0360 (9)0.0009 (7)0.0131 (7)0.0041 (7)
C500.0251 (13)0.0291 (14)0.0382 (14)0.0035 (11)0.0125 (11)0.0020 (12)
C510.0260 (12)0.0228 (12)0.0184 (10)0.0016 (10)0.0010 (9)0.0015 (9)
C520.0237 (12)0.0210 (12)0.0223 (11)0.0023 (10)0.0035 (9)0.0025 (9)
C530.0216 (11)0.0278 (13)0.0203 (10)0.0002 (10)0.0039 (9)0.0020 (9)
C540.0242 (12)0.0241 (13)0.0266 (11)0.0010 (10)0.0064 (9)0.0011 (10)
C550.0225 (11)0.0222 (12)0.0232 (11)0.0033 (10)0.0027 (9)0.0008 (9)
C560.0190 (11)0.0265 (13)0.0222 (11)0.0013 (10)0.0051 (9)0.0010 (9)
Geometric parameters (Å, º) top
N1—C91.339 (4)C40—C411.377 (4)
N1—C101.342 (3)C41—C421.396 (3)
O1—C141.364 (3)C42—C451.484 (3)
N2—C31.335 (3)C42—C431.388 (3)
O2—C121.362 (3)C43—C441.386 (4)
N2—C11.343 (3)C45—C491.405 (3)
O1—H1A1.04 (3)C45—C461.395 (3)
O2—H2A1.07 (3)C46—C471.378 (4)
N3—C251.343 (3)C48—C491.380 (4)
N3—C271.339 (3)C40—H401.05 (2)
O3—C371.363 (3)C41—H410.95 (2)
N4—C221.344 (3)C43—H430.98 (2)
O4—C391.367 (3)C44—H441.01 (3)
N4—C181.345 (3)C46—H461.01 (3)
O3—H3A1.02 (3)C47—H470.99 (3)
O4—H4A1.01 (3)C48—H481.02 (3)
O5—C551.362 (3)C49—H490.99 (3)
N5—C281.327 (3)C57—C661.376 (4)
N5—C321.338 (3)C57—C581.387 (3)
O6—C511.366 (3)C58—C591.396 (3)
O5—H51.03 (3)C58—C611.484 (3)
O6—H61.05 (3)C59—C601.384 (4)
N6—C481.341 (4)C61—C641.399 (3)
N6—C471.343 (3)C61—C621.395 (3)
N7—C401.345 (3)C62—C631.381 (4)
N7—C441.339 (3)C64—C651.375 (4)
N8—C631.347 (3)C57—H570.98 (3)
N8—C651.341 (3)C59—H590.97 (3)
N9—C601.338 (3)C60—H601.00 (2)
N9—C661.343 (3)C62—H620.99 (3)
C1—C21.383 (4)C63—H631.01 (3)
C2—C51.386 (3)C64—H641.00 (3)
C3—C41.378 (4)C65—H651.02 (3)
C4—C51.390 (3)C66—H660.99 (3)
C5—C61.489 (3)C11—C161.508 (3)
C6—C71.393 (3)C12—C131.393 (3)
C6—C81.394 (3)C12—C171.393 (3)
C7—C91.379 (4)C13—C141.392 (3)
C8—C101.381 (4)C14—C151.396 (3)
C1—H11.02 (3)C15—C161.390 (3)
C2—H20.96 (3)C16—C171.391 (3)
C3—H30.99 (3)C11—H11C1.05 (3)
C4—H40.95 (3)C11—H11B0.98 (3)
C7—H70.99 (3)C11—H11A0.94 (3)
C8—H80.95 (3)C13—H131.003 (19)
C9—H91.01 (3)C15—H150.99 (2)
C10—H100.99 (3)C17—H170.92 (2)
C18—C191.376 (4)C33—C351.505 (3)
C19—C201.393 (3)C34—C351.390 (3)
C20—C211.399 (3)C34—C391.393 (3)
C20—C231.488 (3)C35—C361.394 (3)
C21—C221.382 (4)C36—C371.397 (3)
C23—C261.398 (3)C37—C381.389 (3)
C23—C241.392 (3)C38—C391.389 (3)
C24—C251.388 (4)C33—H33C0.98 (3)
C26—C271.377 (4)C33—H33A0.94 (3)
C18—H180.98 (3)C33—H33B0.97 (3)
C19—H191.00 (3)C34—H340.96 (3)
C21—H211.00 (3)C36—H361.00 (3)
C22—H221.01 (3)C38—H380.98 (3)
C24—H241.02 (3)C50—C531.509 (3)
C25—H250.99 (3)C51—C561.390 (3)
C26—H260.99 (3)C51—C521.398 (3)
C27—H270.99 (3)C52—C531.392 (3)
C28—C291.381 (4)C53—C541.391 (3)
C29—C301.388 (3)C54—C551.393 (3)
C30—C30i1.490 (3)C55—C561.397 (3)
C30—C311.391 (3)C50—H50A1.02 (3)
C31—C321.380 (4)C50—H50B1.01 (3)
C28—H281.02 (3)C50—H50C0.97 (3)
C29—H290.97 (3)C52—H520.95 (2)
C31—H310.99 (3)C54—H540.96 (2)
C32—H321.01 (3)C56—H561.003 (19)
C9—N1—C10116.4 (2)N7—C44—H44116.9 (15)
C1—N2—C3116.5 (2)C47—C46—H46120.2 (16)
C14—O1—H1A106.6 (18)C45—C46—H46120.2 (16)
C12—O2—H2A111.7 (18)C46—C47—H47118.8 (16)
C25—N3—C27116.4 (2)N6—C47—H47116.7 (16)
C18—N4—C22116.2 (2)C49—C48—H48120.5 (16)
C37—O3—H3A109.9 (16)N6—C48—H48115.4 (16)
C39—O4—H4A112.3 (17)C45—C49—H49120.5 (16)
C28—N5—C32114.9 (2)C48—C49—H49120.0 (15)
C55—O5—H5111.8 (18)C58—C57—C66120.1 (2)
C51—O6—H6113.0 (18)C57—C58—C59116.8 (2)
C47—N6—C48115.9 (2)C59—C58—C61121.8 (2)
C40—N7—C44116.1 (2)C57—C58—C61121.4 (2)
C63—N8—C65116.6 (2)C58—C59—C60119.3 (2)
C60—N9—C66116.6 (2)N9—C60—C59123.7 (2)
N2—C1—C2123.3 (2)C62—C61—C64116.9 (2)
C1—C2—C5119.8 (2)C58—C61—C62121.8 (2)
N2—C3—C4124.1 (2)C58—C61—C64121.3 (2)
C3—C4—C5119.4 (2)C61—C62—C63120.0 (2)
C2—C5—C6122.0 (2)N8—C63—C62123.1 (2)
C2—C5—C4117.1 (2)C61—C64—C65119.3 (2)
C4—C5—C6120.9 (2)N8—C65—C64124.2 (2)
C7—C6—C8117.3 (2)N9—C66—C57123.4 (2)
C5—C6—C8121.6 (2)C58—C57—H57122.8 (16)
C5—C6—C7121.2 (2)C66—C57—H57117.1 (16)
C6—C7—C9119.2 (2)C60—C59—H59118.3 (16)
C6—C8—C10119.4 (2)C58—C59—H59122.4 (16)
N1—C9—C7124.1 (2)C59—C60—H60118.8 (11)
N1—C10—C8123.7 (2)N9—C60—H60117.5 (11)
N2—C1—H1115.0 (16)C61—C62—H62120.8 (16)
C2—C1—H1121.8 (16)C63—C62—H62119.2 (16)
C1—C2—H2119.4 (17)N8—C63—H63115.5 (16)
C5—C2—H2120.8 (17)C62—C63—H63121.4 (16)
C4—C3—H3119.5 (16)C65—C64—H64120.8 (15)
N2—C3—H3116.4 (16)C61—C64—H64119.9 (15)
C5—C4—H4120.4 (17)N8—C65—H65114.7 (16)
C3—C4—H4120.1 (17)C64—C65—H65121.0 (16)
C9—C7—H7120.1 (16)N9—C66—H66114.9 (15)
C6—C7—H7120.7 (16)C57—C66—H66121.6 (15)
C10—C8—H8120.6 (17)O2—C12—C17118.2 (2)
C6—C8—H8119.9 (17)C13—C12—C17120.2 (2)
N1—C9—H9115.4 (16)O2—C12—C13121.66 (18)
C7—C9—H9120.5 (16)C12—C13—C14119.68 (18)
N1—C10—H10117.2 (16)O1—C14—C15117.6 (2)
C8—C10—H10119.1 (16)C13—C14—C15120.0 (2)
N4—C18—C19124.0 (2)O1—C14—C13122.37 (18)
C18—C19—C20119.5 (2)C14—C15—C16120.3 (2)
C19—C20—C21117.2 (2)C11—C16—C15120.6 (2)
C19—C20—C23121.5 (2)C15—C16—C17119.64 (18)
C21—C20—C23121.3 (2)C11—C16—C17119.7 (2)
C20—C21—C22119.1 (2)C12—C17—C16120.2 (2)
N4—C22—C21124.0 (2)C16—C11—H11A112.8 (17)
C20—C23—C26121.1 (2)C16—C11—H11B112.4 (17)
C20—C23—C24122.1 (2)H11B—C11—H11C107 (2)
C24—C23—C26116.7 (2)H11A—C11—H11B107 (2)
C23—C24—C25119.7 (2)C16—C11—H11C112.0 (16)
N3—C25—C24123.5 (2)H11A—C11—H11C106 (2)
C23—C26—C27119.6 (2)C14—C13—H13120.5 (13)
N3—C27—C26124.2 (2)C12—C13—H13119.8 (13)
N4—C18—H18115.5 (16)C14—C15—H15119.0 (12)
C19—C18—H18120.4 (16)C16—C15—H15120.6 (12)
C20—C19—H19120.3 (16)C16—C17—H17120.3 (13)
C18—C19—H19120.2 (16)C12—C17—H17119.4 (13)
C22—C21—H21117.7 (16)C35—C34—C39120.7 (2)
C20—C21—H21123.2 (16)C33—C35—C36120.1 (2)
C21—C22—H22119.7 (15)C34—C35—C36119.10 (18)
N4—C22—H22116.3 (15)C33—C35—C34120.8 (2)
C23—C24—H24122.0 (16)C35—C36—C37120.1 (2)
C25—C24—H24118.3 (16)C36—C37—C38120.5 (2)
N3—C25—H25117.1 (15)O3—C37—C38122.21 (18)
C24—C25—H25119.5 (15)O3—C37—C36117.3 (2)
C23—C26—H26120.6 (15)C37—C38—C39119.39 (18)
C27—C26—H26119.8 (15)C34—C39—C38120.2 (2)
N3—C27—H27115.2 (16)O4—C39—C34117.42 (19)
C26—C27—H27120.7 (17)O4—C39—C38122.38 (17)
N5—C28—C29124.6 (2)C35—C33—H33B111.4 (17)
C28—C29—C30120.3 (2)C35—C33—H33A113.2 (17)
C29—C30—C30i122.5 (2)H33A—C33—H33C111 (3)
C30i—C30—C31121.9 (2)H33B—C33—H33C103 (2)
C29—C30—C31115.6 (2)C35—C33—H33C113.1 (17)
C30—C31—C32119.7 (2)H33A—C33—H33B104 (2)
N5—C32—C31124.9 (2)C35—C34—H34120.0 (16)
N5—C28—H28115.6 (15)C39—C34—H34119.3 (16)
C29—C28—H28119.7 (15)C35—C36—H36120.7 (16)
C30—C29—H29118.8 (17)C37—C36—H36119.2 (16)
C28—C29—H29120.8 (17)C37—C38—H38122.6 (15)
C32—C31—H31117.7 (16)C39—C38—H38118.0 (15)
C30—C31—H31122.6 (16)O6—C51—C56122.31 (17)
N5—C32—H32115.9 (16)O6—C51—C52117.00 (19)
C31—C32—H32119.3 (17)C52—C51—C56120.7 (2)
N7—C40—C41124.0 (2)C51—C52—C53119.9 (2)
C40—C41—C42119.4 (2)C50—C53—C52120.9 (2)
C41—C42—C45122.0 (2)C52—C53—C54119.60 (18)
C43—C42—C45120.8 (2)C50—C53—C54119.5 (2)
C41—C42—C43117.2 (2)C53—C54—C55120.4 (2)
C42—C43—C44119.3 (2)O5—C55—C54117.9 (2)
N7—C44—C43123.9 (2)O5—C55—C56121.95 (18)
C46—C45—C49116.5 (2)C54—C55—C56120.2 (2)
C42—C45—C46122.4 (2)C51—C56—C55119.21 (18)
C42—C45—C49121.1 (2)C53—C50—H50A110.5 (16)
C45—C46—C47119.6 (2)C53—C50—H50B112.8 (16)
N6—C47—C46124.4 (2)C53—C50—H50C113.5 (17)
N6—C48—C49124.1 (2)H50A—C50—H50B109 (2)
C45—C49—C48119.5 (2)H50A—C50—H50C105 (2)
N7—C40—H40117.2 (11)H50B—C50—H50C106 (2)
C41—C40—H40118.8 (11)C51—C52—H52120.1 (13)
C42—C41—H41122.2 (13)C53—C52—H52120.0 (13)
C40—C41—H41118.4 (13)C53—C54—H54119.8 (12)
C44—C43—H43118.8 (16)C55—C54—H54119.7 (12)
C42—C43—H43121.8 (16)C51—C56—H56121.4 (15)
C43—C44—H44119.2 (15)C55—C56—H56119.4 (15)
C10—N1—C9—C70.2 (4)C43—C42—C45—C4930.4 (3)
C9—N1—C10—C80.0 (4)C41—C42—C45—C49150.2 (2)
C1—N2—C3—C42.4 (4)C45—C42—C43—C44179.5 (2)
C3—N2—C1—C21.3 (4)C41—C42—C43—C440.0 (4)
C25—N3—C27—C260.7 (4)C43—C42—C45—C46149.3 (2)
C27—N3—C25—C240.3 (4)C42—C43—C44—N70.5 (4)
C18—N4—C22—C210.4 (4)C49—C45—C46—C470.5 (4)
C22—N4—C18—C190.1 (4)C46—C45—C49—C480.6 (4)
C28—N5—C32—C310.1 (5)C42—C45—C46—C47179.9 (2)
C32—N5—C28—C290.9 (5)C42—C45—C49—C48179.1 (2)
C47—N6—C48—C490.0 (4)C45—C46—C47—N61.4 (4)
C48—N6—C47—C461.2 (4)N6—C48—C49—C450.8 (4)
C44—N7—C40—C410.9 (4)C58—C57—C66—N91.0 (4)
C40—N7—C44—C431.0 (4)C66—C57—C58—C591.6 (4)
C65—N8—C63—C620.4 (4)C66—C57—C58—C61177.6 (2)
C63—N8—C65—C640.6 (4)C57—C58—C61—C62153.4 (2)
C60—N9—C66—C570.3 (4)C59—C58—C61—C64155.4 (2)
C66—N9—C60—C590.9 (4)C57—C58—C61—C6425.5 (4)
N2—C1—C2—C50.7 (4)C59—C58—C61—C6225.8 (4)
C1—C2—C5—C6178.0 (2)C57—C58—C59—C601.1 (4)
C1—C2—C5—C41.7 (4)C61—C58—C59—C60178.1 (2)
N2—C3—C4—C51.4 (5)C58—C59—C60—N90.2 (4)
C3—C4—C5—C6179.0 (2)C62—C61—C64—C650.0 (4)
C3—C4—C5—C20.7 (4)C58—C61—C62—C63178.7 (2)
C4—C5—C6—C833.5 (3)C58—C61—C64—C65178.9 (2)
C4—C5—C6—C7145.1 (3)C64—C61—C62—C630.2 (4)
C2—C5—C6—C8146.2 (2)C61—C62—C63—N80.0 (4)
C2—C5—C6—C735.1 (3)C61—C64—C65—N80.4 (4)
C8—C6—C7—C90.1 (4)O2—C12—C13—C14178.4 (2)
C7—C6—C8—C100.3 (4)C17—C12—C13—C140.4 (3)
C5—C6—C8—C10179.0 (2)O2—C12—C17—C16178.58 (19)
C5—C6—C7—C9178.8 (2)C13—C12—C17—C160.5 (3)
C6—C7—C9—N10.2 (4)C12—C13—C14—O1180.00 (19)
C6—C8—C10—N10.3 (4)C12—C13—C14—C150.5 (3)
N4—C18—C19—C200.7 (4)O1—C14—C15—C16179.17 (19)
C18—C19—C20—C211.0 (4)C13—C14—C15—C161.3 (3)
C18—C19—C20—C23178.5 (2)C14—C15—C16—C11177.8 (2)
C21—C20—C23—C24156.0 (2)C14—C15—C16—C171.2 (3)
C23—C20—C21—C22178.8 (2)C11—C16—C17—C12178.7 (2)
C19—C20—C23—C2424.6 (4)C15—C16—C17—C120.3 (3)
C19—C20—C21—C220.6 (4)C39—C34—C35—C33178.7 (2)
C19—C20—C23—C26155.9 (2)C39—C34—C35—C360.4 (3)
C21—C20—C23—C2623.5 (4)C35—C34—C39—O4179.66 (19)
C20—C21—C22—N40.1 (4)C35—C34—C39—C381.1 (3)
C20—C23—C26—C27178.7 (2)C33—C35—C36—C37180.0 (2)
C24—C23—C26—C270.8 (4)C34—C35—C36—C371.0 (3)
C26—C23—C24—C251.2 (4)C35—C36—C37—O3176.95 (19)
C20—C23—C24—C25178.4 (2)C35—C36—C37—C381.6 (3)
C23—C24—C25—N30.6 (4)O3—C37—C38—C39177.62 (19)
C23—C26—C27—N30.1 (4)C36—C37—C38—C390.8 (3)
N5—C28—C29—C301.6 (5)C37—C38—C39—O4178.98 (19)
C28—C29—C30—C311.3 (4)C37—C38—C39—C340.5 (3)
C28—C29—C30—C30i179.4 (2)O6—C51—C52—C53179.55 (19)
C29—C30—C30i—C29i180.0 (2)C56—C51—C52—C531.4 (3)
C29—C30—C30i—C31i0.7 (4)O6—C51—C56—C55179.65 (19)
C31—C30—C30i—C31i180.0 (2)C52—C51—C56—C550.6 (3)
C31—C30—C30i—C29i0.7 (4)C51—C52—C53—C50178.6 (2)
C30i—C30—C31—C32179.9 (2)C51—C52—C53—C540.5 (3)
C29—C30—C31—C320.5 (4)C50—C53—C54—C55179.8 (2)
C30—C31—C32—N50.1 (5)C52—C53—C54—C551.1 (3)
N7—C40—C41—C420.4 (4)C53—C54—C55—O5177.2 (2)
C40—C41—C42—C430.1 (3)C53—C54—C55—C561.9 (3)
C40—C41—C42—C45179.5 (2)O5—C55—C56—C51178.02 (19)
C41—C42—C45—C4630.1 (4)C54—C55—C56—C511.0 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N8ii1.04 (3)1.74 (3)2.768 (3)172 (3)
O3—H3A···N41.02 (3)1.73 (3)2.740 (3)169 (3)
O4—H4A···N2iii1.01 (3)1.75 (3)2.765 (3)178 (2)
O5—H5···N1iv1.03 (3)1.73 (3)2.750 (3)170 (3)
O6—H6···N3v1.05 (3)1.69 (3)2.736 (3)179 (3)
C2—H2···O5vi0.96 (3)2.57 (3)3.275 (3)130 (2)
C28—H28···O6vii1.02 (3)2.57 (3)3.430 (3)142 (2)
C47—H47···O4viii0.99 (3)2.50 (3)3.298 (3)137 (2)
Symmetry codes: (ii) x, y+1, z+1; (iii) x1/2, y+3/2, z+1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1, y, z1; (vi) x+1/2, y+3/2, z+1/2; (vii) x+1, y+1, z; (viii) x+3/2, y1/2, z+3/2.
(III_140K) top
Crystal data top
4.5(C10H8N2)·3(C7H8O2)F(000) = 2268
Mr = 1075.26Dx = 1.298 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6337 reflections
a = 9.2233 (3) Åθ = 2.4–27.5°
b = 36.2938 (12) ŵ = 0.09 mm1
c = 16.5853 (5) ÅT = 140 K
β = 97.827 (3)°Block, colourless
V = 5500.2 (3) Å30.5 × 0.3 × 0.2 mm
Z = 4
Data collection top
Xcalibur, Eos, Nova
diffractometer
12593 independent reflections
Radiation source: Mova (Mo) X-ray Source8330 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 16.0839 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: analytical
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
k = 4547
Tmin = 0.998, Tmax = 0.999l = 2121
38087 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067All H-atom parameters refined
wR(F2) = 0.164 W = 1/[Σ2(FO2) + (0.0475P)2 + 3.2803P] WHERE P = (FO2 + 2FC2)/3
S = 1.03(Δ/σ)max = 0.001
12593 reflectionsΔρmax = 0.25 e Å3
970 parametersΔρmin = 0.28 e Å3
Crystal data top
4.5(C10H8N2)·3(C7H8O2)V = 5500.2 (3) Å3
Mr = 1075.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2233 (3) ŵ = 0.09 mm1
b = 36.2938 (12) ÅT = 140 K
c = 16.5853 (5) Å0.5 × 0.3 × 0.2 mm
β = 97.827 (3)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
12593 independent reflections
Absorption correction: analytical
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
8330 reflections with I > 2σ(I)
Tmin = 0.998, Tmax = 0.999Rint = 0.051
38087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.164All H-atom parameters refined
S = 1.03Δρmax = 0.25 e Å3
12593 reflectionsΔρmin = 0.28 e Å3
970 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2618 (2)0.79179 (6)0.65147 (12)0.0324 (7)
N20.8824 (2)0.74557 (6)0.46066 (12)0.0308 (7)
C10.8944 (3)0.75097 (7)0.54140 (15)0.0310 (8)
C20.7767 (3)0.75950 (7)0.58146 (15)0.0292 (8)
C30.7480 (3)0.74810 (9)0.41943 (15)0.0396 (9)
C40.6253 (3)0.75706 (8)0.45426 (15)0.0361 (9)
C50.6384 (2)0.76324 (6)0.53763 (13)0.0232 (7)
C60.5087 (2)0.77355 (6)0.57725 (13)0.0232 (7)
C70.4939 (3)0.76140 (8)0.65540 (15)0.0328 (8)
C80.3959 (3)0.79505 (7)0.53733 (15)0.0287 (8)
C90.3706 (3)0.77104 (9)0.68916 (16)0.0391 (9)
C100.2768 (3)0.80338 (8)0.57622 (16)0.0323 (8)
N30.3059 (2)0.58399 (6)1.09124 (12)0.0303 (7)
N40.3135 (2)0.63038 (6)0.89798 (12)0.0306 (7)
C180.2026 (3)0.61013 (8)0.86000 (15)0.0314 (8)
C190.0798 (3)0.60072 (7)0.89410 (14)0.0279 (8)
C200.0670 (2)0.61216 (7)0.97302 (13)0.0248 (7)
C210.1811 (3)0.63344 (7)1.01320 (15)0.0296 (8)
C220.2997 (3)0.64165 (8)0.97374 (16)0.0332 (8)
C230.0619 (2)0.60189 (6)1.01328 (13)0.0242 (7)
C240.1967 (3)0.59313 (7)0.96907 (14)0.0301 (8)
C250.3143 (3)0.58463 (7)1.00978 (14)0.0302 (8)
C260.0530 (3)0.60087 (8)1.09805 (14)0.0319 (8)
C270.1752 (3)0.59195 (8)1.13323 (15)0.0363 (9)
N50.6627 (2)0.47585 (7)0.07082 (13)0.0371 (7)
C280.6821 (3)0.47290 (9)0.00673 (16)0.0396 (9)
C290.8104 (3)0.48145 (8)0.03679 (15)0.0346 (9)
C300.9298 (2)0.49499 (6)0.01470 (13)0.0233 (7)
C310.9106 (3)0.49828 (8)0.09612 (15)0.0368 (9)
C320.7785 (3)0.48858 (9)0.12037 (16)0.0424 (9)
N60.7857 (2)0.31760 (7)0.38913 (13)0.0389 (8)
N70.1250 (2)0.35882 (6)0.54868 (13)0.0353 (7)
C400.2545 (3)0.35779 (8)0.59698 (15)0.0341 (9)
C410.3858 (3)0.35021 (7)0.56971 (14)0.0297 (8)
C420.3879 (2)0.34282 (6)0.48730 (13)0.0234 (7)
C430.2548 (3)0.34352 (7)0.43687 (15)0.0291 (8)
C440.1281 (3)0.35139 (8)0.46984 (15)0.0325 (8)
C450.5256 (2)0.33419 (7)0.45424 (13)0.0241 (7)
C460.6434 (3)0.31668 (7)0.50043 (15)0.0285 (8)
C470.7685 (3)0.30950 (8)0.46625 (16)0.0342 (8)
C480.6721 (3)0.33434 (9)0.34478 (15)0.0376 (9)
C490.5432 (3)0.34324 (7)0.37381 (14)0.0287 (7)
N80.1887 (2)0.57674 (6)0.58157 (12)0.0309 (7)
N90.8119 (2)0.54224 (6)0.38343 (12)0.0317 (7)
C570.6999 (3)0.54862 (8)0.50467 (15)0.0319 (8)
C580.5627 (2)0.55411 (6)0.46063 (13)0.0237 (7)
C590.5535 (3)0.55279 (7)0.37595 (14)0.0274 (7)
C600.6792 (3)0.54682 (7)0.34079 (15)0.0304 (8)
C610.4325 (2)0.56153 (7)0.50177 (13)0.0237 (7)
C620.3125 (3)0.58126 (7)0.46376 (14)0.0284 (7)
C630.1948 (3)0.58819 (7)0.50483 (14)0.0302 (8)
C640.4258 (3)0.54956 (7)0.58133 (15)0.0301 (8)
C650.3041 (3)0.55761 (8)0.61755 (15)0.0331 (8)
C660.8196 (3)0.54315 (8)0.46482 (15)0.0351 (9)
O10.02758 (18)0.40989 (5)0.32165 (10)0.0318 (6)
O20.05751 (19)0.54226 (5)0.30823 (11)0.0340 (6)
C110.4290 (3)0.46728 (8)0.20436 (16)0.0295 (8)
C120.1101 (2)0.50788 (6)0.29647 (13)0.0239 (7)
C130.0377 (2)0.47633 (7)0.31745 (13)0.0231 (7)
C140.0935 (2)0.44174 (6)0.30247 (13)0.0223 (7)
C150.2220 (2)0.43879 (7)0.26715 (13)0.0236 (7)
C160.2932 (2)0.47027 (7)0.24528 (12)0.0229 (7)
C170.2372 (2)0.50482 (7)0.26016 (13)0.0232 (7)
O30.56744 (18)0.62949 (5)0.82942 (10)0.0303 (5)
O40.61199 (18)0.76073 (4)0.87034 (10)0.0299 (5)
C330.9995 (3)0.69318 (8)0.76193 (18)0.0320 (8)
C340.7959 (2)0.72682 (7)0.81755 (13)0.0222 (6)
C350.8539 (2)0.69394 (7)0.79328 (13)0.0228 (7)
C360.7763 (2)0.66132 (7)0.79943 (14)0.0241 (7)
C370.6411 (2)0.66200 (6)0.82850 (13)0.0227 (7)
C380.5844 (2)0.69492 (6)0.85336 (13)0.0228 (7)
C390.6625 (2)0.72734 (6)0.84810 (12)0.0213 (7)
O50.51448 (18)0.70657 (5)0.22719 (10)0.0307 (5)
O60.46109 (18)0.57615 (4)0.17579 (10)0.0289 (5)
C500.0851 (3)0.64267 (8)0.29712 (17)0.0300 (8)
C510.4144 (2)0.60914 (6)0.20237 (12)0.0226 (7)
C520.2828 (2)0.60909 (7)0.23535 (13)0.0223 (7)
C530.2286 (2)0.64185 (7)0.26304 (13)0.0231 (7)
C540.3067 (2)0.67438 (7)0.25820 (14)0.0247 (7)
C550.4397 (2)0.67421 (6)0.22718 (13)0.0227 (7)
C560.4937 (2)0.64149 (6)0.19844 (13)0.0224 (7)
H10.998 (3)0.7487 (8)0.5716 (17)0.049 (8)*
H20.793 (3)0.7643 (7)0.6389 (16)0.039 (7)*
H30.738 (3)0.7421 (8)0.3608 (17)0.050 (8)*
H40.532 (3)0.7576 (8)0.4220 (16)0.043 (8)*
H70.571 (3)0.7461 (8)0.6867 (16)0.044 (8)*
H80.405 (3)0.8054 (7)0.4856 (16)0.037 (7)*
H90.356 (3)0.7618 (8)0.7446 (16)0.043 (8)*
H100.197 (3)0.8186 (8)0.5476 (16)0.046 (8)*
H180.215 (3)0.6015 (7)0.8056 (16)0.039 (7)*
H190.002 (3)0.5851 (8)0.8631 (16)0.045 (8)*
H210.182 (3)0.6430 (8)1.0699 (17)0.049 (8)*
H220.382 (3)0.6571 (7)1.0020 (15)0.035 (7)*
H240.213 (3)0.5932 (7)0.9070 (16)0.043 (8)*
H250.410 (3)0.5781 (7)0.9780 (15)0.038 (7)*
H260.039 (3)0.6074 (7)1.1328 (15)0.033 (7)*
H270.171 (3)0.5912 (8)1.1931 (18)0.055 (9)*
H280.597 (3)0.4618 (7)0.0443 (15)0.040 (7)*
H290.817 (3)0.4795 (8)0.0942 (16)0.045 (8)*
H310.990 (3)0.5065 (8)0.1387 (17)0.050 (8)*
H320.765 (3)0.4913 (9)0.1795 (19)0.063 (9)*
H400.254 (2)0.3632 (7)0.6588 (15)0.032 (7)*
H410.473 (2)0.3513 (6)0.6077 (14)0.023 (6)*
H430.248 (3)0.3392 (7)0.3783 (15)0.035 (7)*
H440.032 (3)0.3524 (7)0.4329 (15)0.036 (7)*
H460.635 (3)0.3081 (7)0.5574 (16)0.044 (8)*
H470.849 (3)0.2959 (8)0.4986 (16)0.045 (8)*
H480.685 (3)0.3398 (8)0.2859 (17)0.050 (8)*
H490.462 (3)0.3549 (7)0.3371 (15)0.039 (7)*
H570.717 (3)0.5485 (7)0.5645 (16)0.041 (8)*
H590.462 (3)0.5558 (7)0.3405 (15)0.034 (7)*
H600.672 (2)0.5465 (6)0.2802 (14)0.026 (6)*
H620.311 (3)0.5907 (7)0.4080 (16)0.039 (7)*
H630.109 (3)0.6034 (8)0.4796 (16)0.042 (8)*
H640.508 (3)0.5348 (8)0.6107 (16)0.049 (8)*
H650.299 (3)0.5507 (8)0.6764 (17)0.048 (8)*
H660.920 (3)0.5411 (7)0.4949 (15)0.033 (7)*
H1A0.052 (3)0.4173 (9)0.357 (2)0.077 (11)*
H2A0.040 (3)0.5413 (9)0.3367 (19)0.071 (10)*
H11A0.502 (3)0.4840 (8)0.2252 (16)0.040 (8)*
H11B0.409 (3)0.4716 (8)0.1454 (18)0.054 (9)*
H11C0.477 (3)0.4412 (9)0.2121 (17)0.055 (9)*
H130.053 (2)0.4787 (6)0.3442 (13)0.020 (6)*
H150.262 (2)0.4141 (7)0.2586 (14)0.028 (6)*
H170.281 (2)0.5258 (7)0.2438 (14)0.027 (7)*
H3A0.473 (3)0.6333 (8)0.8541 (17)0.059 (9)*
H4A0.526 (3)0.7582 (8)0.9020 (18)0.060 (9)*
H33A1.025 (3)0.7160 (9)0.7404 (17)0.048 (8)*
H33B1.079 (3)0.6882 (8)0.8055 (19)0.059 (9)*
H33C1.008 (3)0.6730 (9)0.7235 (19)0.059 (9)*
H340.847 (3)0.7496 (7)0.8124 (15)0.034 (7)*
H360.815 (3)0.6374 (7)0.7820 (14)0.033 (7)*
H380.490 (3)0.6964 (7)0.8739 (14)0.031 (7)*
H50.606 (3)0.7041 (9)0.1981 (19)0.065 (10)*
H60.550 (3)0.5788 (9)0.1432 (18)0.066 (10)*
H50A0.052 (3)0.6167 (8)0.3082 (16)0.042 (8)*
H50B0.090 (3)0.6578 (8)0.3488 (18)0.055 (9)*
H50C0.005 (3)0.6530 (8)0.2598 (17)0.046 (8)*
H520.232 (2)0.5866 (7)0.2405 (14)0.027 (6)*
H540.271 (2)0.6968 (6)0.2783 (13)0.020 (6)*
H560.588 (2)0.6419 (7)0.1746 (14)0.029 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0266 (11)0.0398 (13)0.0320 (11)0.0043 (10)0.0085 (9)0.0030 (10)
N20.0266 (11)0.0326 (12)0.0352 (11)0.0026 (9)0.0114 (9)0.0035 (9)
C10.0220 (13)0.0360 (15)0.0352 (13)0.0009 (11)0.0052 (10)0.0024 (11)
C20.0243 (12)0.0357 (15)0.0272 (12)0.0035 (11)0.0024 (10)0.0029 (11)
C30.0367 (15)0.060 (2)0.0242 (12)0.0075 (14)0.0113 (11)0.0001 (13)
C40.0288 (14)0.0568 (19)0.0230 (12)0.0075 (13)0.0049 (10)0.0013 (12)
C50.0212 (11)0.0246 (12)0.0244 (11)0.0017 (10)0.0050 (9)0.0014 (9)
C60.0214 (11)0.0242 (12)0.0240 (11)0.0021 (10)0.0034 (9)0.0039 (9)
C70.0242 (13)0.0480 (17)0.0265 (12)0.0063 (12)0.0050 (10)0.0044 (12)
C80.0271 (13)0.0321 (14)0.0274 (12)0.0033 (11)0.0053 (10)0.0052 (11)
C90.0318 (14)0.060 (2)0.0272 (13)0.0052 (14)0.0097 (11)0.0051 (13)
C100.0254 (13)0.0344 (15)0.0374 (14)0.0054 (12)0.0049 (11)0.0009 (12)
N30.0275 (11)0.0330 (12)0.0318 (11)0.0002 (9)0.0090 (9)0.0029 (9)
N40.0265 (11)0.0317 (12)0.0347 (11)0.0007 (9)0.0078 (9)0.0034 (9)
C180.0281 (13)0.0376 (15)0.0296 (12)0.0019 (12)0.0079 (10)0.0003 (11)
C190.0213 (12)0.0355 (15)0.0268 (12)0.0023 (11)0.0027 (9)0.0017 (11)
C200.0218 (12)0.0251 (12)0.0276 (11)0.0022 (10)0.0034 (9)0.0031 (10)
C210.0266 (13)0.0330 (14)0.0285 (12)0.0034 (11)0.0016 (10)0.0020 (11)
C220.0294 (14)0.0351 (15)0.0355 (13)0.0063 (12)0.0060 (11)0.0004 (12)
C230.0237 (12)0.0226 (12)0.0266 (11)0.0012 (10)0.0041 (9)0.0002 (10)
C240.0250 (12)0.0398 (15)0.0254 (12)0.0003 (11)0.0035 (10)0.0014 (11)
C250.0225 (12)0.0385 (15)0.0291 (12)0.0004 (11)0.0021 (10)0.0037 (11)
C260.0280 (13)0.0405 (16)0.0264 (12)0.0028 (12)0.0014 (10)0.0015 (11)
C270.0329 (14)0.0493 (18)0.0275 (13)0.0048 (13)0.0067 (11)0.0044 (12)
N50.0304 (12)0.0458 (14)0.0362 (12)0.0019 (11)0.0086 (9)0.0050 (11)
C280.0280 (14)0.0568 (19)0.0332 (13)0.0104 (14)0.0015 (11)0.0013 (13)
C290.0304 (14)0.0498 (18)0.0235 (12)0.0057 (13)0.0034 (10)0.0008 (12)
C300.0233 (12)0.0214 (12)0.0252 (11)0.0033 (10)0.0036 (9)0.0019 (9)
C310.0309 (14)0.0552 (19)0.0248 (12)0.0054 (13)0.0056 (11)0.0057 (12)
C320.0344 (15)0.068 (2)0.0269 (13)0.0022 (14)0.0113 (11)0.0037 (13)
N60.0280 (11)0.0564 (16)0.0339 (12)0.0047 (11)0.0103 (9)0.0010 (11)
N70.0303 (12)0.0421 (14)0.0355 (12)0.0055 (10)0.0118 (9)0.0027 (10)
C400.0328 (14)0.0432 (17)0.0275 (13)0.0053 (12)0.0089 (11)0.0014 (12)
C410.0275 (13)0.0376 (15)0.0236 (11)0.0028 (12)0.0017 (10)0.0003 (11)
C420.0250 (12)0.0219 (12)0.0234 (11)0.0019 (10)0.0036 (9)0.0020 (9)
C430.0246 (12)0.0357 (15)0.0272 (12)0.0006 (11)0.0043 (10)0.0016 (11)
C440.0250 (13)0.0385 (16)0.0344 (13)0.0005 (12)0.0051 (10)0.0044 (12)
C450.0216 (12)0.0261 (13)0.0245 (11)0.0012 (10)0.0031 (9)0.0010 (10)
C460.0276 (13)0.0313 (14)0.0270 (12)0.0036 (11)0.0057 (10)0.0060 (11)
C470.0250 (13)0.0428 (17)0.0356 (13)0.0096 (12)0.0074 (11)0.0061 (12)
C480.0283 (14)0.0583 (19)0.0265 (12)0.0019 (13)0.0053 (10)0.0009 (13)
C490.0229 (12)0.0390 (15)0.0237 (11)0.0012 (11)0.0013 (9)0.0024 (11)
N80.0235 (10)0.0365 (13)0.0342 (11)0.0020 (10)0.0091 (9)0.0048 (10)
N90.0290 (11)0.0324 (12)0.0349 (11)0.0036 (10)0.0089 (9)0.0034 (9)
C570.0242 (13)0.0437 (16)0.0268 (12)0.0043 (12)0.0004 (10)0.0016 (11)
C580.0240 (12)0.0224 (12)0.0245 (11)0.0010 (10)0.0025 (9)0.0014 (9)
C590.0235 (12)0.0312 (14)0.0263 (11)0.0006 (11)0.0006 (10)0.0004 (10)
C600.0333 (14)0.0317 (14)0.0269 (12)0.0026 (11)0.0063 (10)0.0021 (11)
C610.0196 (11)0.0264 (13)0.0247 (11)0.0004 (10)0.0017 (9)0.0005 (10)
C620.0252 (12)0.0343 (14)0.0258 (12)0.0056 (11)0.0035 (10)0.0043 (11)
C630.0254 (13)0.0352 (15)0.0303 (12)0.0032 (11)0.0045 (10)0.0058 (11)
C640.0240 (13)0.0344 (15)0.0315 (12)0.0025 (11)0.0029 (10)0.0073 (11)
C650.0282 (13)0.0415 (16)0.0302 (13)0.0003 (12)0.0065 (10)0.0067 (12)
C660.0226 (13)0.0491 (18)0.0330 (13)0.0058 (12)0.0021 (10)0.0014 (12)
O10.0348 (10)0.0248 (9)0.0388 (10)0.0054 (8)0.0159 (8)0.0011 (8)
O20.0342 (10)0.0235 (9)0.0477 (11)0.0031 (8)0.0180 (8)0.0018 (8)
C110.0259 (13)0.0315 (15)0.0327 (13)0.0010 (12)0.0096 (11)0.0027 (11)
C120.0254 (12)0.0229 (12)0.0233 (11)0.0013 (10)0.0034 (9)0.0011 (9)
C130.0209 (11)0.0286 (13)0.0203 (10)0.0002 (10)0.0047 (9)0.0013 (10)
C140.0246 (12)0.0214 (12)0.0205 (10)0.0044 (10)0.0013 (9)0.0007 (9)
C150.0265 (12)0.0217 (12)0.0225 (11)0.0011 (10)0.0032 (9)0.0035 (9)
C160.0208 (11)0.0281 (13)0.0194 (10)0.0011 (10)0.0013 (8)0.0025 (9)
C170.0236 (12)0.0229 (12)0.0231 (11)0.0049 (10)0.0031 (9)0.0004 (10)
O30.0256 (9)0.0243 (9)0.0423 (10)0.0042 (7)0.0093 (7)0.0034 (8)
O40.0309 (9)0.0225 (9)0.0388 (10)0.0012 (8)0.0143 (8)0.0024 (7)
C330.0247 (14)0.0343 (16)0.0387 (14)0.0012 (12)0.0101 (11)0.0009 (13)
C340.0214 (11)0.0238 (12)0.0209 (10)0.0013 (10)0.0008 (9)0.0034 (9)
C350.0209 (11)0.0287 (13)0.0192 (10)0.0001 (10)0.0042 (8)0.0012 (9)
C360.0232 (12)0.0224 (12)0.0273 (11)0.0010 (10)0.0054 (9)0.0045 (10)
C370.0230 (12)0.0223 (12)0.0217 (10)0.0041 (10)0.0010 (9)0.0001 (9)
C380.0202 (12)0.0264 (13)0.0225 (11)0.0014 (10)0.0051 (9)0.0004 (9)
C390.0238 (12)0.0209 (12)0.0189 (10)0.0004 (10)0.0018 (9)0.0008 (9)
O50.0291 (9)0.0239 (9)0.0408 (10)0.0064 (8)0.0111 (8)0.0015 (8)
O60.0307 (9)0.0223 (9)0.0360 (9)0.0009 (7)0.0131 (7)0.0041 (7)
C500.0251 (13)0.0291 (14)0.0382 (14)0.0035 (11)0.0125 (11)0.0020 (12)
C510.0260 (12)0.0228 (12)0.0184 (10)0.0016 (10)0.0010 (9)0.0015 (9)
C520.0237 (12)0.0210 (12)0.0223 (11)0.0023 (10)0.0035 (9)0.0025 (9)
C530.0216 (11)0.0278 (13)0.0203 (10)0.0002 (10)0.0039 (9)0.0020 (9)
C540.0242 (12)0.0241 (13)0.0266 (11)0.0010 (10)0.0064 (9)0.0011 (10)
C550.0225 (11)0.0222 (12)0.0232 (11)0.0033 (10)0.0027 (9)0.0008 (9)
C560.0190 (11)0.0265 (13)0.0222 (11)0.0013 (10)0.0051 (9)0.0010 (9)
Geometric parameters (Å, º) top
N1—C91.339 (4)C40—C411.377 (4)
N1—C101.342 (3)C41—C421.396 (3)
O1—C141.364 (3)C42—C451.484 (3)
N2—C31.335 (3)C42—C431.388 (3)
O2—C121.362 (3)C43—C441.386 (4)
N2—C11.343 (3)C45—C491.405 (3)
O1—H1A1.04 (3)C45—C461.395 (3)
O2—H2A1.07 (3)C46—C471.378 (4)
N3—C251.343 (3)C48—C491.380 (4)
N3—C271.339 (3)C40—H401.05 (2)
O3—C371.363 (3)C41—H410.95 (2)
N4—C221.344 (3)C43—H430.98 (2)
O4—C391.367 (3)C44—H441.01 (3)
N4—C181.345 (3)C46—H461.01 (3)
O3—H3A1.02 (3)C47—H470.99 (3)
O4—H4A1.01 (3)C48—H481.02 (3)
O5—C551.362 (3)C49—H490.99 (3)
N5—C281.327 (3)C57—C661.376 (4)
N5—C321.338 (3)C57—C581.387 (3)
O6—C511.366 (3)C58—C591.396 (3)
O5—H51.03 (3)C58—C611.484 (3)
O6—H61.05 (3)C59—C601.384 (4)
N6—C481.341 (4)C61—C641.399 (3)
N6—C471.343 (3)C61—C621.395 (3)
N7—C401.345 (3)C62—C631.381 (4)
N7—C441.339 (3)C64—C651.375 (4)
N8—C631.347 (3)C57—H570.98 (3)
N8—C651.341 (3)C59—H590.97 (3)
N9—C601.338 (3)C60—H601.00 (2)
N9—C661.343 (3)C62—H620.99 (3)
C1—C21.383 (4)C63—H631.01 (3)
C2—C51.386 (3)C64—H641.00 (3)
C3—C41.378 (4)C65—H651.02 (3)
C4—C51.390 (3)C66—H660.99 (3)
C5—C61.489 (3)C11—C161.508 (3)
C6—C71.393 (3)C12—C131.393 (3)
C6—C81.394 (3)C12—C171.393 (3)
C7—C91.379 (4)C13—C141.392 (3)
C8—C101.381 (4)C14—C151.396 (3)
C1—H11.02 (3)C15—C161.390 (3)
C2—H20.96 (3)C16—C171.391 (3)
C3—H30.99 (3)C11—H11C1.05 (3)
C4—H40.95 (3)C11—H11B0.98 (3)
C7—H70.99 (3)C11—H11A0.94 (3)
C8—H80.95 (3)C13—H131.003 (19)
C9—H91.01 (3)C15—H150.99 (2)
C10—H100.99 (3)C17—H170.92 (2)
C18—C191.376 (4)C33—C351.505 (3)
C19—C201.393 (3)C34—C351.390 (3)
C20—C211.399 (3)C34—C391.393 (3)
C20—C231.488 (3)C35—C361.394 (3)
C21—C221.382 (4)C36—C371.397 (3)
C23—C261.398 (3)C37—C381.389 (3)
C23—C241.392 (3)C38—C391.389 (3)
C24—C251.388 (4)C33—H33C0.98 (3)
C26—C271.377 (4)C33—H33A0.94 (3)
C18—H180.98 (3)C33—H33B0.97 (3)
C19—H191.00 (3)C34—H340.96 (3)
C21—H211.00 (3)C36—H361.00 (3)
C22—H221.01 (3)C38—H380.98 (3)
C24—H241.02 (3)C50—C531.509 (3)
C25—H250.99 (3)C51—C561.390 (3)
C26—H260.99 (3)C51—C521.398 (3)
C27—H270.99 (3)C52—C531.392 (3)
C28—C291.381 (4)C53—C541.391 (3)
C29—C301.388 (3)C54—C551.393 (3)
C30—C30i1.490 (3)C55—C561.397 (3)
C30—C311.391 (3)C50—H50A1.02 (3)
C31—C321.380 (4)C50—H50B1.01 (3)
C28—H281.02 (3)C50—H50C0.97 (3)
C29—H290.97 (3)C52—H520.95 (2)
C31—H310.99 (3)C54—H540.96 (2)
C32—H321.01 (3)C56—H561.003 (19)
C9—N1—C10116.4 (2)N7—C44—H44116.9 (15)
C1—N2—C3116.5 (2)C47—C46—H46120.2 (16)
C14—O1—H1A106.6 (18)C45—C46—H46120.2 (16)
C12—O2—H2A111.7 (18)C46—C47—H47118.8 (16)
C25—N3—C27116.4 (2)N6—C47—H47116.7 (16)
C18—N4—C22116.2 (2)C49—C48—H48120.5 (16)
C37—O3—H3A109.9 (16)N6—C48—H48115.4 (16)
C39—O4—H4A112.3 (17)C45—C49—H49120.5 (16)
C28—N5—C32114.9 (2)C48—C49—H49120.0 (15)
C55—O5—H5111.8 (18)C58—C57—C66120.1 (2)
C51—O6—H6113.0 (18)C57—C58—C59116.8 (2)
C47—N6—C48115.9 (2)C59—C58—C61121.8 (2)
C40—N7—C44116.1 (2)C57—C58—C61121.4 (2)
C63—N8—C65116.6 (2)C58—C59—C60119.3 (2)
C60—N9—C66116.6 (2)N9—C60—C59123.7 (2)
N2—C1—C2123.3 (2)C62—C61—C64116.9 (2)
C1—C2—C5119.8 (2)C58—C61—C62121.8 (2)
N2—C3—C4124.1 (2)C58—C61—C64121.3 (2)
C3—C4—C5119.4 (2)C61—C62—C63120.0 (2)
C2—C5—C6122.0 (2)N8—C63—C62123.1 (2)
C2—C5—C4117.1 (2)C61—C64—C65119.3 (2)
C4—C5—C6120.9 (2)N8—C65—C64124.2 (2)
C7—C6—C8117.3 (2)N9—C66—C57123.4 (2)
C5—C6—C8121.6 (2)C58—C57—H57122.8 (16)
C5—C6—C7121.2 (2)C66—C57—H57117.1 (16)
C6—C7—C9119.2 (2)C60—C59—H59118.3 (16)
C6—C8—C10119.4 (2)C58—C59—H59122.4 (16)
N1—C9—C7124.1 (2)C59—C60—H60118.8 (11)
N1—C10—C8123.7 (2)N9—C60—H60117.5 (11)
N2—C1—H1115.0 (16)C61—C62—H62120.8 (16)
C2—C1—H1121.8 (16)C63—C62—H62119.2 (16)
C1—C2—H2119.4 (17)N8—C63—H63115.5 (16)
C5—C2—H2120.8 (17)C62—C63—H63121.4 (16)
C4—C3—H3119.5 (16)C65—C64—H64120.8 (15)
N2—C3—H3116.4 (16)C61—C64—H64119.9 (15)
C5—C4—H4120.4 (17)N8—C65—H65114.7 (16)
C3—C4—H4120.1 (17)C64—C65—H65121.0 (16)
C9—C7—H7120.1 (16)N9—C66—H66114.9 (15)
C6—C7—H7120.7 (16)C57—C66—H66121.6 (15)
C10—C8—H8120.6 (17)O2—C12—C17118.2 (2)
C6—C8—H8119.9 (17)C13—C12—C17120.2 (2)
N1—C9—H9115.4 (16)O2—C12—C13121.66 (18)
C7—C9—H9120.5 (16)C12—C13—C14119.68 (18)
N1—C10—H10117.2 (16)O1—C14—C15117.6 (2)
C8—C10—H10119.1 (16)C13—C14—C15120.0 (2)
N4—C18—C19124.0 (2)O1—C14—C13122.37 (18)
C18—C19—C20119.5 (2)C14—C15—C16120.3 (2)
C19—C20—C21117.2 (2)C11—C16—C15120.6 (2)
C19—C20—C23121.5 (2)C15—C16—C17119.64 (18)
C21—C20—C23121.3 (2)C11—C16—C17119.7 (2)
C20—C21—C22119.1 (2)C12—C17—C16120.2 (2)
N4—C22—C21124.0 (2)C16—C11—H11A112.8 (17)
C20—C23—C26121.1 (2)C16—C11—H11B112.4 (17)
C20—C23—C24122.1 (2)H11B—C11—H11C107 (2)
C24—C23—C26116.7 (2)H11A—C11—H11B107 (2)
C23—C24—C25119.7 (2)C16—C11—H11C112.0 (16)
N3—C25—C24123.5 (2)H11A—C11—H11C106 (2)
C23—C26—C27119.6 (2)C14—C13—H13120.5 (13)
N3—C27—C26124.2 (2)C12—C13—H13119.8 (13)
N4—C18—H18115.5 (16)C14—C15—H15119.0 (12)
C19—C18—H18120.4 (16)C16—C15—H15120.6 (12)
C20—C19—H19120.3 (16)C16—C17—H17120.3 (13)
C18—C19—H19120.2 (16)C12—C17—H17119.4 (13)
C22—C21—H21117.7 (16)C35—C34—C39120.7 (2)
C20—C21—H21123.2 (16)C33—C35—C36120.1 (2)
C21—C22—H22119.7 (15)C34—C35—C36119.10 (18)
N4—C22—H22116.3 (15)C33—C35—C34120.8 (2)
C23—C24—H24122.0 (16)C35—C36—C37120.1 (2)
C25—C24—H24118.3 (16)C36—C37—C38120.5 (2)
N3—C25—H25117.1 (15)O3—C37—C38122.21 (18)
C24—C25—H25119.5 (15)O3—C37—C36117.3 (2)
C23—C26—H26120.6 (15)C37—C38—C39119.39 (18)
C27—C26—H26119.8 (15)C34—C39—C38120.2 (2)
N3—C27—H27115.2 (16)O4—C39—C34117.42 (19)
C26—C27—H27120.7 (17)O4—C39—C38122.38 (17)
N5—C28—C29124.6 (2)C35—C33—H33B111.4 (17)
C28—C29—C30120.3 (2)C35—C33—H33A113.2 (17)
C29—C30—C30i122.5 (2)H33A—C33—H33C111 (3)
C30i—C30—C31121.9 (2)H33B—C33—H33C103 (2)
C29—C30—C31115.6 (2)C35—C33—H33C113.1 (17)
C30—C31—C32119.7 (2)H33A—C33—H33B104 (2)
N5—C32—C31124.9 (2)C35—C34—H34120.0 (16)
N5—C28—H28115.6 (15)C39—C34—H34119.3 (16)
C29—C28—H28119.7 (15)C35—C36—H36120.7 (16)
C30—C29—H29118.8 (17)C37—C36—H36119.2 (16)
C28—C29—H29120.8 (17)C37—C38—H38122.6 (15)
C32—C31—H31117.7 (16)C39—C38—H38118.0 (15)
C30—C31—H31122.6 (16)O6—C51—C56122.31 (17)
N5—C32—H32115.9 (16)O6—C51—C52117.00 (19)
C31—C32—H32119.3 (17)C52—C51—C56120.7 (2)
N7—C40—C41124.0 (2)C51—C52—C53119.9 (2)
C40—C41—C42119.4 (2)C50—C53—C52120.9 (2)
C41—C42—C45122.0 (2)C52—C53—C54119.60 (18)
C43—C42—C45120.8 (2)C50—C53—C54119.5 (2)
C41—C42—C43117.2 (2)C53—C54—C55120.4 (2)
C42—C43—C44119.3 (2)O5—C55—C54117.9 (2)
N7—C44—C43123.9 (2)O5—C55—C56121.95 (18)
C46—C45—C49116.5 (2)C54—C55—C56120.2 (2)
C42—C45—C46122.4 (2)C51—C56—C55119.21 (18)
C42—C45—C49121.1 (2)C53—C50—H50A110.5 (16)
C45—C46—C47119.6 (2)C53—C50—H50B112.8 (16)
N6—C47—C46124.4 (2)C53—C50—H50C113.5 (17)
N6—C48—C49124.1 (2)H50A—C50—H50B109 (2)
C45—C49—C48119.5 (2)H50A—C50—H50C105 (2)
N7—C40—H40117.2 (11)H50B—C50—H50C106 (2)
C41—C40—H40118.8 (11)C51—C52—H52120.1 (13)
C42—C41—H41122.2 (13)C53—C52—H52120.0 (13)
C40—C41—H41118.4 (13)C53—C54—H54119.8 (12)
C44—C43—H43118.8 (16)C55—C54—H54119.7 (12)
C42—C43—H43121.8 (16)C51—C56—H56121.4 (15)
C43—C44—H44119.2 (15)C55—C56—H56119.4 (15)
C10—N1—C9—C70.2 (4)C43—C42—C45—C4930.4 (3)
C9—N1—C10—C80.0 (4)C41—C42—C45—C49150.2 (2)
C1—N2—C3—C42.4 (4)C45—C42—C43—C44179.5 (2)
C3—N2—C1—C21.3 (4)C41—C42—C43—C440.0 (4)
C25—N3—C27—C260.7 (4)C43—C42—C45—C46149.3 (2)
C27—N3—C25—C240.3 (4)C42—C43—C44—N70.5 (4)
C18—N4—C22—C210.4 (4)C49—C45—C46—C470.5 (4)
C22—N4—C18—C190.1 (4)C46—C45—C49—C480.6 (4)
C28—N5—C32—C310.1 (5)C42—C45—C46—C47179.9 (2)
C32—N5—C28—C290.9 (5)C42—C45—C49—C48179.1 (2)
C47—N6—C48—C490.0 (4)C45—C46—C47—N61.4 (4)
C48—N6—C47—C461.2 (4)N6—C48—C49—C450.8 (4)
C44—N7—C40—C410.9 (4)C58—C57—C66—N91.0 (4)
C40—N7—C44—C431.0 (4)C66—C57—C58—C591.6 (4)
C65—N8—C63—C620.4 (4)C66—C57—C58—C61177.6 (2)
C63—N8—C65—C640.6 (4)C57—C58—C61—C62153.4 (2)
C60—N9—C66—C570.3 (4)C59—C58—C61—C64155.4 (2)
C66—N9—C60—C590.9 (4)C57—C58—C61—C6425.5 (4)
N2—C1—C2—C50.7 (4)C59—C58—C61—C6225.8 (4)
C1—C2—C5—C6178.0 (2)C57—C58—C59—C601.1 (4)
C1—C2—C5—C41.7 (4)C61—C58—C59—C60178.1 (2)
N2—C3—C4—C51.4 (5)C58—C59—C60—N90.2 (4)
C3—C4—C5—C6179.0 (2)C62—C61—C64—C650.0 (4)
C3—C4—C5—C20.7 (4)C58—C61—C62—C63178.7 (2)
C4—C5—C6—C833.5 (3)C58—C61—C64—C65178.9 (2)
C4—C5—C6—C7145.1 (3)C64—C61—C62—C630.2 (4)
C2—C5—C6—C8146.2 (2)C61—C62—C63—N80.0 (4)
C2—C5—C6—C735.1 (3)C61—C64—C65—N80.4 (4)
C8—C6—C7—C90.1 (4)O2—C12—C13—C14178.4 (2)
C7—C6—C8—C100.3 (4)C17—C12—C13—C140.4 (3)
C5—C6—C8—C10179.0 (2)O2—C12—C17—C16178.58 (19)
C5—C6—C7—C9178.8 (2)C13—C12—C17—C160.5 (3)
C6—C7—C9—N10.2 (4)C12—C13—C14—O1180.00 (19)
C6—C8—C10—N10.3 (4)C12—C13—C14—C150.5 (3)
N4—C18—C19—C200.7 (4)O1—C14—C15—C16179.17 (19)
C18—C19—C20—C211.0 (4)C13—C14—C15—C161.3 (3)
C18—C19—C20—C23178.5 (2)C14—C15—C16—C11177.8 (2)
C21—C20—C23—C24156.0 (2)C14—C15—C16—C171.2 (3)
C23—C20—C21—C22178.8 (2)C11—C16—C17—C12178.7 (2)
C19—C20—C23—C2424.6 (4)C15—C16—C17—C120.3 (3)
C19—C20—C21—C220.6 (4)C39—C34—C35—C33178.7 (2)
C19—C20—C23—C26155.9 (2)C39—C34—C35—C360.4 (3)
C21—C20—C23—C2623.5 (4)C35—C34—C39—O4179.66 (19)
C20—C21—C22—N40.1 (4)C35—C34—C39—C381.1 (3)
C20—C23—C26—C27178.7 (2)C33—C35—C36—C37180.0 (2)
C24—C23—C26—C270.8 (4)C34—C35—C36—C371.0 (3)
C26—C23—C24—C251.2 (4)C35—C36—C37—O3176.95 (19)
C20—C23—C24—C25178.4 (2)C35—C36—C37—C381.6 (3)
C23—C24—C25—N30.6 (4)O3—C37—C38—C39177.62 (19)
C23—C26—C27—N30.1 (4)C36—C37—C38—C390.8 (3)
N5—C28—C29—C301.6 (5)C37—C38—C39—O4178.98 (19)
C28—C29—C30—C311.3 (4)C37—C38—C39—C340.5 (3)
C28—C29—C30—C30i179.4 (2)O6—C51—C52—C53179.55 (19)
C29—C30—C30i—C29i180.0 (2)C56—C51—C52—C531.4 (3)
C29—C30—C30i—C31i0.7 (4)O6—C51—C56—C55179.65 (19)
C31—C30—C30i—C31i180.0 (2)C52—C51—C56—C550.6 (3)
C31—C30—C30i—C29i0.7 (4)C51—C52—C53—C50178.6 (2)
C30i—C30—C31—C32179.9 (2)C51—C52—C53—C540.5 (3)
C29—C30—C31—C320.5 (4)C50—C53—C54—C55179.8 (2)
C30—C31—C32—N50.1 (5)C52—C53—C54—C551.1 (3)
N7—C40—C41—C420.4 (4)C53—C54—C55—O5177.2 (2)
C40—C41—C42—C430.1 (3)C53—C54—C55—C561.9 (3)
C40—C41—C42—C45179.5 (2)O5—C55—C56—C51178.02 (19)
C41—C42—C45—C4630.1 (4)C54—C55—C56—C511.0 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N8ii1.04 (3)1.74 (3)2.768 (3)172 (3)
O3—H3A···N41.02 (3)1.73 (3)2.740 (3)169 (3)
O4—H4A···N2iii1.01 (3)1.75 (3)2.765 (3)178 (2)
O5—H5···N1iv1.03 (3)1.73 (3)2.750 (3)170 (3)
O6—H6···N3v1.05 (3)1.69 (3)2.736 (3)179 (3)
C2—H2···O5vi0.96 (3)2.57 (3)3.275 (3)130 (2)
C28—H28···O6vii1.02 (3)2.57 (3)3.430 (3)142 (2)
C47—H47···O4viii0.99 (3)2.50 (3)3.298 (3)137 (2)
Symmetry codes: (ii) x, y+1, z+1; (iii) x1/2, y+3/2, z+1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1, y, z1; (vi) x+1/2, y+3/2, z+1/2; (vii) x+1, y+1, z; (viii) x+3/2, y1/2, z+3/2.
(III_160K) top
Crystal data top
1.5(C10H8N2)·1(C7H8O2)F(000) = 756
Mr = 358.42Dx = 1.286 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3251 reflections
a = 9.0828 (3) Åθ = 2.4–27.4°
b = 12.3446 (4) ŵ = 0.08 mm1
c = 16.6095 (4) ÅT = 160 K
β = 96.320 (2)°Block, colourless
V = 1851.00 (10) Å30.5 × 0.4 × 0.36 mm
Z = 4
Data collection top
Xcalibur, Eos, Nova
diffractometer
4043 independent reflections
Radiation source: Mova (Mo) X-ray Source3006 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 16.0839 pixels mm-1θmax = 27.0°, θmin = 2.5°
ω scansh = 1111
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1515
Tmin = 0.762, Tmax = 1.000l = 2121
12370 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.052Secondary atom site location: difference Fourier map
wR(F2) = 0.149Hydrogen site location: inferred from neighbouring sites
S = 1.06H atoms treated by a mixture of independent and constrained refinement
4066 reflections w = 1/[σ2(Fo2) + (0.0684P)2 + 0.2541P]
where P = (Fo2 + 2Fc2)/3
324 parameters(Δ/σ)max < 0.001
Crystal data top
1.5(C10H8N2)·1(C7H8O2)V = 1851.00 (10) Å3
Mr = 358.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0828 (3) ŵ = 0.08 mm1
b = 12.3446 (4) ÅT = 160 K
c = 16.6095 (4) Å0.5 × 0.4 × 0.36 mm
β = 96.320 (2)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
4043 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
3006 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 1.000Rint = 0.029
12370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052324 parameters
wR(F2) = 0.1490 restraints
S = 1.06H atoms treated by a mixture of independent and constrained refinement
4066 reflections
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.71125 (18)0.08114 (13)0.10674 (9)0.0399 (6)
N21.31872 (18)0.27921 (14)0.08523 (10)0.0388 (6)
C81.3371 (2)0.24452 (19)0.00875 (12)0.0449 (8)
C91.2241 (2)0.20383 (18)0.03128 (11)0.0412 (7)
C101.0819 (2)0.19782 (15)0.00788 (10)0.0301 (6)
C111.0615 (2)0.23741 (18)0.08656 (11)0.0423 (8)
C121.1807 (2)0.27638 (19)0.12211 (12)0.0462 (8)
C130.9560 (2)0.15390 (15)0.03177 (10)0.0297 (6)
C140.9568 (2)0.15316 (19)0.11543 (11)0.0469 (8)
C150.8344 (2)0.11578 (19)0.14932 (11)0.0477 (8)
C160.7122 (2)0.07981 (18)0.02634 (12)0.0453 (8)
C170.8294 (2)0.11450 (17)0.01273 (11)0.0399 (7)
N30.66703 (19)0.39633 (15)0.06610 (10)0.0496 (7)
C180.9222 (2)0.4458 (2)0.09287 (12)0.0529 (9)
C190.7908 (3)0.4061 (2)0.11530 (13)0.0581 (9)
C200.6761 (2)0.4276 (2)0.00922 (13)0.0596 (9)
C210.8023 (2)0.4680 (2)0.03755 (11)0.0511 (8)
C220.93084 (19)0.47847 (15)0.01388 (10)0.0293 (6)
O10.53975 (14)0.08776 (10)0.18443 (8)0.0398 (5)
O20.54191 (14)0.30244 (10)0.18291 (7)0.0367 (5)
C10.8012 (2)0.10741 (15)0.25035 (10)0.0292 (6)
C20.7349 (2)0.01028 (15)0.23313 (11)0.0311 (6)
C30.6015 (2)0.01024 (15)0.19917 (10)0.0293 (6)
C40.53419 (19)0.10721 (15)0.18196 (10)0.0278 (6)
C50.6021 (2)0.20429 (15)0.19843 (10)0.0274 (6)
C60.7348 (2)0.20400 (15)0.23331 (10)0.0294 (6)
C70.9461 (2)0.10721 (17)0.28667 (12)0.0446 (8)
H81.448730.248200.021650.0610
H91.250680.175960.093000.0592
H110.952820.240730.120620.0483
H121.160670.310490.182400.0526
H141.053690.180000.154130.0595
H150.836810.119320.214600.0650
H160.612520.049830.008290.0525
H170.820540.108950.078160.0488
H181.016570.447010.138820.0565
H190.790100.378140.177070.0593
H200.574390.421100.049570.0516
H210.798650.489100.101030.0506
H10.451300.082080.154570.0476
H20.462610.297910.146470.0460
H2A0.785740.065790.247140.0500
H40.428750.106120.157210.0485
H60.783790.280840.247180.0480
H7A0.978180.184820.308670.0577
H7B1.037390.091670.241080.0576
H7C0.960230.039060.325560.0586
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0347 (11)0.0485 (11)0.0380 (9)0.0074 (9)0.0102 (8)0.0036 (8)
N20.0319 (10)0.0441 (11)0.0428 (10)0.0037 (9)0.0144 (8)0.0069 (9)
C80.0277 (12)0.0613 (16)0.0460 (12)0.0041 (11)0.0056 (10)0.0020 (11)
C90.0298 (12)0.0589 (15)0.0349 (11)0.0045 (11)0.0034 (9)0.0015 (10)
C100.0284 (11)0.0344 (11)0.0281 (10)0.0015 (10)0.0061 (8)0.0040 (9)
C110.0312 (13)0.0619 (15)0.0338 (11)0.0082 (11)0.0030 (9)0.0022 (10)
C120.0448 (14)0.0599 (15)0.0356 (11)0.0081 (13)0.0126 (10)0.0025 (11)
C130.0258 (11)0.0352 (11)0.0286 (10)0.0005 (10)0.0057 (8)0.0001 (9)
C140.0325 (13)0.0784 (17)0.0296 (11)0.0108 (12)0.0020 (9)0.0011 (11)
C150.0403 (14)0.0733 (17)0.0303 (11)0.0095 (13)0.0078 (10)0.0024 (11)
C160.0376 (13)0.0610 (16)0.0375 (11)0.0170 (12)0.0047 (10)0.0009 (11)
C170.0349 (13)0.0563 (14)0.0286 (10)0.0111 (11)0.0045 (9)0.0017 (10)
H80.03720.08280.06230.00610.00210.0010
H90.04920.08020.04730.00420.00080.0097
H110.03740.06370.04410.00530.00580.0041
H120.04900.06720.04320.00910.01270.0043
H140.04880.08430.04440.01230.00040.0044
H150.06480.09460.03630.01640.00890.0076
H160.04360.06910.04550.01260.00760.0026
H170.04640.06420.03690.00640.00950.0027
N30.0383 (11)0.0682 (14)0.0444 (11)0.0097 (10)0.0134 (9)0.0005 (10)
C180.0330 (13)0.0917 (19)0.0335 (11)0.0081 (13)0.0021 (9)0.0160 (12)
C190.0391 (14)0.095 (2)0.0414 (13)0.0075 (14)0.0105 (11)0.0203 (13)
C200.0352 (14)0.106 (2)0.0379 (12)0.0218 (14)0.0059 (10)0.0058 (13)
C210.0364 (13)0.0908 (19)0.0264 (10)0.0163 (13)0.0044 (9)0.0008 (11)
C220.0278 (11)0.0331 (11)0.0275 (10)0.0008 (9)0.0054 (8)0.0031 (9)
H180.04350.08340.04200.01040.00250.0034
H190.05290.08890.03740.01270.01110.0012
H200.04010.06690.04710.00660.00270.0064
H210.05060.06250.03910.00760.00680.0002
O10.0393 (9)0.0311 (8)0.0523 (9)0.0069 (7)0.0195 (7)0.0009 (6)
O20.0385 (9)0.0311 (8)0.0434 (8)0.0035 (7)0.0170 (7)0.0021 (6)
C10.0259 (11)0.0371 (11)0.0255 (9)0.0008 (10)0.0064 (8)0.0003 (9)
C20.0323 (12)0.0304 (11)0.0317 (10)0.0021 (10)0.0087 (9)0.0047 (9)
C30.0300 (11)0.0329 (12)0.0249 (9)0.0053 (10)0.0033 (8)0.0018 (9)
C40.0252 (11)0.0356 (11)0.0234 (9)0.0026 (9)0.0070 (8)0.0005 (8)
C50.0287 (11)0.0308 (12)0.0226 (9)0.0025 (10)0.0030 (8)0.0011 (8)
C60.0299 (12)0.0302 (11)0.0291 (10)0.0040 (9)0.0078 (8)0.0040 (8)
C70.0396 (13)0.0447 (13)0.0538 (13)0.0028 (11)0.0249 (11)0.0044 (11)
H10.04190.04970.05370.00410.01630.0023
H20.04210.05010.04750.00210.01280.0045
H2A0.04660.04430.06140.00270.01630.0013
H40.03910.05360.05570.00320.01760.0016
H60.05110.04420.05070.00850.01500.0022
H7A0.05930.05250.06520.00850.02500.0049
H7B0.04340.07920.05100.00050.00820.0026
H7C0.05660.05900.06410.00730.02310.0176
Geometric parameters (Å, º) top
O1—C31.367 (2)C16—H161.0800
O2—C51.365 (2)C17—H171.0800
O1—H10.9900C18—C191.379 (3)
O2—H20.9900C18—C221.383 (3)
N1—C151.327 (2)C20—C211.379 (3)
N1—C161.337 (2)C21—C221.375 (3)
N2—C81.334 (3)C22—C22i1.484 (2)
N2—C121.334 (2)C18—H181.0800
N3—C191.321 (3)C19—H191.0800
N3—C201.320 (3)C20—H201.0800
C8—C91.378 (3)C21—H211.0800
C9—C101.383 (3)C1—C71.507 (3)
C10—C131.484 (3)C1—C21.386 (3)
C10—C111.388 (3)C1—C61.380 (3)
C11—C121.376 (3)C2—C31.392 (3)
C13—C141.389 (2)C3—C41.388 (3)
C13—C171.385 (3)C4—C51.389 (3)
C14—C151.380 (3)C5—C61.394 (3)
C16—C171.375 (3)C2—H2A1.0800
C8—H81.0800C4—H41.0800
C9—H91.0800C6—H61.0800
C11—H111.0800C7—H7A1.0800
C12—H121.0800C7—H7B1.0800
C14—H141.0800C7—H7C1.0800
C15—H151.0800
O1···N1ii2.742 (2)H2···N2iv1.7600
O2···C15iii3.344 (2)H2···H202.3600
O2···N2iv2.747 (2)H2···H42.3900
O2···C203.380 (2)H2A···H14v2.4500
O2···C14iii3.398 (2)H2A···C6vi2.8600
O1···H9v2.5500H2A···H7C2.5200
O1···H6vi2.6300H2A···H6vi1.9900
O1···H7Avi2.8100H2A···O2vi2.6200
O2···H15iii2.5700H4···H22.3900
O2···H2Avii2.6200H4···N1ii2.8100
O2···H202.6400H4···H12.3300
O2···H14iii2.7300H4···N2iv2.6900
N1···O1ii2.742 (2)H6···O1vii2.6300
N2···O2viii2.747 (2)H6···H7A2.4400
N2···C4viii3.408 (2)H6···H112.5100
N3···C7ix3.330 (3)H6···H14iii2.5600
N1···H1ii1.7500H6···C2vii2.8500
N1···H4ii2.8100H6···H2Avii1.9900
N2···H20viii2.9200H7A···H62.4400
N2···H2viii1.7600H7A···O1vii2.8100
N2···H4viii2.6900H7C···H2A2.5200
N3···H7Cix2.8500H7C···H20vi2.5300
N3···H8iv2.7400H7C···N3x2.8500
C4···N2iv3.408 (2)H8···N3viii2.7400
C7···N3x3.330 (3)H9···H142.1500
C14···C193.467 (3)H9···O1v2.5500
C14···O2xi3.398 (2)H9···C142.7500
C15···O2xi3.344 (2)H11···C12.9300
C19···C143.467 (3)H11···C62.6100
C20···O23.380 (2)H11···C172.7100
C1···H18iii3.0800H11···H62.5100
C1···H172.8500H11···H172.1800
C1···H21vi2.9300H14···C92.7100
C1···H112.9300H14···H92.1500
C2···H6vi2.8500H14···H2Av2.4500
C2···H21vi2.7500H14···C6xi2.7500
C2···H172.8800H14···O2xi2.7300
C2···H18iii2.7900H14···C5xi2.8300
C3···H18iii2.7700H14···H6xi2.5600
C3···H172.9300H15···O2xi2.5700
C4···H18iii3.0400H16···H16ii2.4300
C4···H162.9800H16···C42.9800
C4···H19iii3.0500H17···C12.8500
C4···H172.9600H17···C22.8800
C5···H172.9100H17···C32.9300
C5···H14iii2.8300H17···C42.9600
C6···H112.6100H17···C52.9100
C6···H172.8600H17···C62.8600
C6···H2Avii2.8600H17···C112.7200
C6···H14iii2.7500H17···H112.1800
C8···H2viii2.7500H18···C21i2.6900
C9···H142.7100H18···H21i2.0200
C11···H172.7200H18···C1xi3.0800
C12···H2viii2.6500H18···C2xi2.7900
C14···H92.7500H18···C3xi2.7700
C15···H1ii2.6400H18···C4xi3.0400
C16···H1ii2.7300H19···C4xi3.0500
C17···H112.7100H20···O22.6400
C18···H21i2.6500H20···N2iv2.9200
C21···H18i2.6900H20···H22.3600
H1···N1ii1.7500H20···H7Cvii2.5300
H1···C15ii2.6400H21···C1vii2.9300
H1···H42.3300H21···C2vii2.7500
H1···C16ii2.7300H21···C18i2.6500
H2···C8iv2.7500H21···H18i2.0200
H2···C12iv2.6500
C3—O1—H1113.00N3—C20—C21124.73 (18)
C5—O2—H2113.00C20—C21—C22120.18 (18)
C15—N1—C16116.03 (16)C18—C22—C21115.41 (17)
C8—N2—C12116.22 (17)C21—C22—C22i122.06 (16)
C19—N3—C20114.96 (18)C18—C22—C22i122.53 (16)
N2—C8—C9123.71 (17)C22—C18—H18123.00
C8—C9—C10119.97 (17)C19—C18—H18117.00
C11—C10—C13121.13 (16)N3—C19—H19118.00
C9—C10—C13122.45 (16)C18—C19—H19118.00
C9—C10—C11116.41 (17)N3—C20—H20115.00
C10—C11—C12119.82 (17)C21—C20—H20120.00
N2—C12—C11123.80 (18)C20—C21—H21119.00
C10—C13—C14121.81 (16)C22—C21—H21121.00
C14—C13—C17116.38 (17)C2—C1—C7119.98 (17)
C10—C13—C17121.78 (15)C2—C1—C6119.72 (17)
C13—C14—C15119.65 (17)C6—C1—C7120.29 (17)
N1—C15—C14124.08 (17)C1—C2—C3120.10 (17)
N1—C16—C17123.94 (18)O1—C3—C2117.75 (16)
C13—C17—C16119.87 (17)C2—C3—C4120.40 (17)
C9—C8—H8120.00O1—C3—C4121.85 (16)
N2—C8—H8116.00C3—C4—C5119.23 (16)
C10—C9—H9122.00O2—C5—C4122.20 (16)
C8—C9—H9118.00O2—C5—C6117.60 (16)
C12—C11—H11119.00C4—C5—C6120.19 (17)
C10—C11—H11122.00C1—C6—C5120.34 (17)
C11—C12—H12118.00C1—C2—H2A120.00
N2—C12—H12118.00C3—C2—H2A120.00
C13—C14—H14120.00C3—C4—H4120.00
C15—C14—H14120.00C5—C4—H4121.00
C14—C15—H15118.00C1—C6—H6121.00
N1—C15—H15118.00C5—C6—H6119.00
N1—C16—H16116.00C1—C7—H7A115.00
C17—C16—H16120.00C1—C7—H7B111.00
C13—C17—H17122.00C1—C7—H7C114.00
C16—C17—H17119.00H7A—C7—H7B100.00
C19—C18—C22120.08 (18)H7A—C7—H7C116.00
N3—C19—C18124.6 (2)H7B—C7—H7C99.00
C16—N1—C15—C142.6 (3)C22—C18—C19—N30.2 (4)
C15—N1—C16—C171.9 (3)C19—C18—C22—C210.0 (3)
C12—N2—C8—C92.3 (3)C19—C18—C22—C22i179.8 (2)
C8—N2—C12—C112.0 (3)N3—C20—C21—C220.2 (4)
C20—N3—C19—C180.2 (4)C20—C21—C22—C180.2 (3)
C19—N3—C20—C210.0 (3)C20—C21—C22—C22i180.0 (2)
N2—C8—C9—C100.3 (3)C18—C22—C22i—C18i180.0 (2)
C8—C9—C10—C13179.44 (19)C18—C22—C22i—C21i0.2 (3)
C8—C9—C10—C111.9 (3)C21—C22—C22i—C18i0.2 (3)
C13—C10—C11—C12179.18 (19)C21—C22—C22i—C21i180.0 (2)
C9—C10—C13—C1424.1 (3)C6—C1—C2—C30.3 (3)
C11—C10—C13—C14154.6 (2)C7—C1—C2—C3179.64 (16)
C11—C10—C13—C1723.4 (3)C2—C1—C6—C50.4 (3)
C9—C10—C13—C17158.0 (2)C7—C1—C6—C5178.89 (16)
C9—C10—C11—C122.1 (3)C1—C2—C3—O1179.10 (16)
C10—C11—C12—N20.2 (3)C1—C2—C3—C40.3 (3)
C17—C13—C14—C150.9 (3)O1—C3—C4—C5179.86 (15)
C10—C13—C17—C16176.58 (19)C2—C3—C4—C50.5 (3)
C10—C13—C14—C15177.19 (19)C3—C4—C5—O2179.94 (16)
C14—C13—C17—C161.5 (3)C3—C4—C5—C61.3 (3)
C13—C14—C15—N11.2 (3)O2—C5—C6—C1179.92 (15)
N1—C16—C17—C130.1 (3)C4—C5—C6—C11.2 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x1/2, y+1/2, z1/2; (iv) x1, y, z; (v) x+2, y, z; (vi) x+3/2, y1/2, z1/2; (vii) x+3/2, y+1/2, z1/2; (viii) x+1, y, z; (ix) x1/2, y+1/2, z+1/2; (x) x+1/2, y+1/2, z1/2; (xi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.99001.75002.742 (2)175.00
O2—H2···N2iv0.99001.76002.747 (2)175.00
C9—H9···O1v1.08002.55003.453 (2)141.00
C15—H15···O2xi1.08002.57003.344 (2)128.00
Symmetry codes: (ii) x+1, y, z; (iv) x1, y, z; (v) x+2, y, z; (xi) x+1/2, y+1/2, z+1/2.
(III_200K) top
Crystal data top
1.5(C10H8N2)·1(C7H8O2)Z = 4
Mr = 358.42F(000) = 756
Monoclinic, P21/nDx = 1.279 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.1180 (3) ŵ = 0.08 mm1
b = 12.3427 (4) ÅT = 200 K
c = 16.6400 (4) ÅBlock, colourless
β = 96.381 (3)°0.50 × 0.30 × 0.20 mm
V = 1861.08 (10) Å3
Data collection top
Xcalibur, Eos, Nova
diffractometer
4065 independent reflections
Radiation source: Mova (Mo) X-ray Source2819 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 16.0839 pixels mm-1θmax = 27.0°, θmin = 2.5°
ω scansh = 1111
Absorption correction: analytical
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
k = 1515
Tmin = 0.998, Tmax = 0.999l = 2121
12473 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168 WHERE P = (FO2 + 2FC2)/3
S = 1.08(Δ/σ)max < 0.001
4065 reflectionsΔρmax = 0.29 e Å3
252 parametersΔρmin = 0.21 e Å3
Crystal data top
1.5(C10H8N2)·1(C7H8O2)V = 1861.08 (10) Å3
Mr = 358.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1180 (3) ŵ = 0.08 mm1
b = 12.3427 (4) ÅT = 200 K
c = 16.6400 (4) Å0.50 × 0.30 × 0.20 mm
β = 96.381 (3)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
4065 independent reflections
Absorption correction: analytical
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
2819 reflections with I > 2σ(I)
Tmin = 0.998, Tmax = 0.999Rint = 0.028
12473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.29 e Å3
4065 reflectionsΔρmin = 0.21 e Å3
252 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.45565 (15)0.70157 (10)0.17978 (8)0.0476 (4)
O20.46038 (16)1.09128 (10)0.18582 (9)0.0508 (5)
C160.19886 (19)0.89584 (14)0.24919 (10)0.0378 (5)
C170.26404 (19)0.79897 (14)0.23078 (10)0.0378 (5)
C180.39671 (19)0.79956 (14)0.19626 (9)0.0353 (5)
C190.46426 (18)0.89638 (14)0.18081 (9)0.0349 (5)
C200.39825 (19)0.99301 (14)0.19919 (10)0.0371 (5)
C210.26539 (19)0.99268 (15)0.23299 (10)0.0400 (6)
C220.0541 (2)0.89544 (17)0.28589 (13)0.0540 (7)
N10.78816 (18)0.58550 (14)0.39080 (10)0.0519 (6)
N20.18020 (17)0.77434 (14)0.58332 (10)0.0505 (6)
C60.7861 (2)0.58091 (19)0.47052 (12)0.0586 (8)
C70.6689 (2)0.61418 (18)0.50977 (11)0.0515 (7)
C80.54411 (19)0.65516 (15)0.46580 (10)0.0392 (5)
C90.5438 (2)0.6570 (2)0.38255 (12)0.0608 (8)
C100.6659 (2)0.6214 (2)0.34874 (12)0.0632 (8)
C110.41744 (19)0.69716 (15)0.50584 (10)0.0390 (5)
C120.4357 (2)0.7326 (2)0.58518 (11)0.0580 (8)
C130.3161 (2)0.7698 (2)0.62074 (12)0.0634 (8)
C140.1639 (2)0.7450 (2)0.50619 (12)0.0573 (8)
C150.2771 (2)0.70567 (19)0.46592 (12)0.0546 (7)
N60.6683 (2)0.40089 (17)0.06817 (11)0.0641 (7)
C10.9219 (2)0.4508 (2)0.09376 (12)0.0691 (9)
C20.7908 (3)0.4128 (2)0.11679 (14)0.0772 (12)
C40.6777 (2)0.4278 (2)0.00732 (13)0.0712 (9)
C50.8035 (2)0.4664 (2)0.03679 (12)0.0624 (8)
C230.93106 (18)0.47943 (15)0.01427 (10)0.0386 (6)
H1O0.535 (3)0.706 (2)0.1433 (16)0.100 (9)*
H2O0.544 (3)1.0831 (19)0.1571 (14)0.077 (8)*
H170.218500.732100.241700.0450*
H190.555100.896700.157800.0420*
H210.220301.059300.245000.0480*
H22A0.022600.820500.293200.0810*0.500
H22B0.021100.933500.249800.0810*0.500
H22C0.067200.932100.338500.0810*0.500
H22D0.023200.970200.294500.0810*0.500
H22E0.066900.857200.337800.0810*0.500
H22F0.021400.858700.249200.0810*0.500
H60.870700.553000.502300.0700*
H70.674000.608900.567000.0620*
H90.459800.682700.349100.0730*
H100.662300.622500.291500.0760*
H120.530600.731200.615100.0700*
H130.331900.793700.675300.0760*
H140.068700.751500.476900.0690*
H150.258400.684500.410800.0660*
H11.006100.457200.132600.0830*
H20.788900.393900.172000.0930*
H40.591500.420200.044600.0850*
H50.801700.483900.092500.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0490 (8)0.0403 (7)0.0572 (8)0.0037 (6)0.0226 (6)0.0011 (6)
O20.0491 (9)0.0415 (8)0.0654 (9)0.0077 (6)0.0230 (7)0.0009 (6)
C160.0343 (9)0.0477 (11)0.0326 (8)0.0023 (8)0.0094 (7)0.0017 (7)
C170.0359 (9)0.0412 (10)0.0376 (9)0.0039 (8)0.0105 (7)0.0039 (7)
C180.0362 (9)0.0394 (10)0.0310 (8)0.0023 (8)0.0068 (7)0.0017 (7)
C190.0317 (9)0.0437 (10)0.0304 (8)0.0033 (7)0.0081 (7)0.0005 (7)
C200.0380 (10)0.0407 (10)0.0330 (8)0.0056 (8)0.0060 (7)0.0005 (7)
C210.0386 (10)0.0425 (10)0.0404 (9)0.0011 (8)0.0108 (7)0.0040 (8)
C220.0456 (12)0.0585 (13)0.0626 (13)0.0028 (10)0.0270 (10)0.0031 (10)
N10.0442 (10)0.0633 (11)0.0505 (9)0.0094 (8)0.0150 (8)0.0061 (8)
N20.0404 (9)0.0584 (10)0.0557 (10)0.0049 (8)0.0188 (7)0.0081 (8)
C60.0489 (12)0.0814 (16)0.0466 (11)0.0234 (11)0.0097 (9)0.0000 (10)
C70.0451 (11)0.0720 (14)0.0377 (10)0.0126 (10)0.0065 (8)0.0015 (9)
C80.0333 (9)0.0468 (10)0.0381 (9)0.0015 (8)0.0069 (7)0.0005 (8)
C90.0400 (11)0.1028 (19)0.0400 (10)0.0142 (12)0.0061 (8)0.0013 (11)
C100.0496 (12)0.1012 (19)0.0404 (10)0.0120 (12)0.0123 (9)0.0029 (11)
C110.0339 (9)0.0461 (10)0.0382 (9)0.0017 (8)0.0095 (7)0.0053 (8)
C120.0405 (11)0.0911 (17)0.0428 (10)0.0115 (11)0.0068 (8)0.0044 (11)
C130.0554 (13)0.0917 (17)0.0455 (11)0.0141 (13)0.0162 (10)0.0027 (11)
C140.0356 (11)0.0795 (16)0.0575 (12)0.0063 (10)0.0089 (9)0.0023 (11)
C150.0393 (11)0.0790 (15)0.0457 (10)0.0080 (10)0.0052 (8)0.0038 (10)
N60.0471 (11)0.0914 (15)0.0565 (11)0.0132 (10)0.0175 (9)0.0013 (10)
C10.0423 (12)0.122 (2)0.0430 (11)0.0125 (13)0.0044 (9)0.0183 (13)
C20.0500 (14)0.134 (3)0.0497 (12)0.0122 (15)0.0147 (10)0.0228 (14)
C40.0423 (12)0.121 (2)0.0510 (12)0.0247 (13)0.0089 (10)0.0088 (13)
C50.0444 (12)0.1058 (19)0.0373 (10)0.0209 (12)0.0060 (8)0.0020 (11)
C230.0350 (10)0.0457 (10)0.0362 (9)0.0001 (8)0.0083 (7)0.0025 (7)
Geometric parameters (Å, º) top
O1—C181.364 (2)C6—C71.376 (3)
O2—C201.367 (2)C7—C81.379 (3)
O1—H1O1.00 (3)C8—C111.489 (2)
O2—H2O0.95 (3)C8—C91.385 (3)
N1—C61.330 (3)C9—C101.374 (3)
N1—C101.325 (3)C11—C151.379 (3)
N2—C131.325 (2)C11—C121.383 (3)
N2—C141.326 (3)C12—C131.376 (3)
N6—C41.311 (3)C14—C151.380 (3)
N6—C21.313 (3)C6—H60.9500
C16—C211.381 (3)C7—H70.9500
C16—C221.515 (3)C9—H90.9500
C16—C171.385 (2)C10—H100.9500
C17—C181.396 (2)C12—H120.9500
C18—C191.382 (2)C13—H130.9500
C19—C201.385 (2)C14—H140.9500
C20—C211.391 (2)C15—H150.9500
C17—H170.9500C1—C21.378 (3)
C19—H190.9500C1—C231.381 (3)
C21—H210.9500C4—C51.381 (3)
C22—H22D0.9800C5—C231.372 (3)
C22—H22E0.9800C23—C23i1.482 (2)
C22—H22B0.9800C1—H10.9500
C22—H22C0.9800C2—H20.9500
C22—H22A0.9800C4—H40.9500
C22—H22F0.9800C5—H50.9500
O1···C103.371 (2)H1O···H4iii2.4600
O1···N2ii2.755 (2)H1O···N2ii1.76 (3)
O1···C4iii3.389 (3)H1O···C14ii2.75 (3)
O2···N1iv2.745 (2)H1O···C13ii2.65 (3)
O1···H21v2.7700H2O···H192.3000
O1···H102.6800H2O···N1iv1.80 (3)
O1···H4iii2.7000H2O···C6iv2.76 (3)
O1···H22Dv2.8900H2O···C10iv2.70 (3)
O1···H92.8200H4···H1Oiii2.4600
O2···H15vi2.6800H4···O1iii2.7000
O2···H17vi2.7500H5···C16ii3.0800
O2···H22Avi2.8500H5···C1i2.6500
N1···O2vii2.745 (2)H5···H1i2.0700
N2···C19viii3.414 (2)H5···H22Cii2.5300
N2···O1viii2.755 (2)H5···C21ii2.9000
N6···C22v3.333 (3)H6···C19ix3.0600
N1···H2Ovii1.80 (3)H7···H122.2000
N1···H19vii2.9000H7···C18ix3.0100
N2···H19viii2.7600H7···C16ix3.0200
N2···H1Oviii1.76 (3)H7···C17ix2.9800
N6···H22Cv2.8100H7···C122.7000
N6···H14v2.8800H7···C21ix3.0600
N6···H22Ev2.8400H7···C19ix3.0800
C2···C9vii3.499 (3)H7···C20ix3.1000
C4···O1iii3.389 (3)H9···C172.8900
C9···C2iv3.499 (3)H9···O12.8200
C10···O13.371 (2)H9···C152.7100
C19···N2ii3.414 (2)H9···H152.2000
C22···N6vi3.333 (3)H9···C182.9200
C1···H5i2.6500H10···O12.6800
C5···H22Cii3.0900H12···H22Fix2.5800
C5···H1i2.6600H12···C16ix3.0100
C6···H2Ovii2.76 (3)H12···C17ix2.7300
C7···H122.6900H12···H72.2000
C9···H152.7200H12···C72.6900
C10···H22Bv3.0500H13···H22Fix2.5400
C10···H2Ovii2.70 (3)H14···N6vi2.8800
C12···H22Fix2.9400H15···C92.7200
C12···H72.7000H15···O2v2.6800
C13···H22Fix2.9300H15···H92.2000
C13···H1Oviii2.65 (3)H17···C21v2.9900
C14···H1Oviii2.75 (3)H17···H22A2.3400
C15···H92.7100H17···O2v2.7500
C16···H5viii3.0800H17···H21v2.2100
C16···H12x3.0100H19···H2O2.3000
C16···H7x3.0200H19···N1iv2.9000
C17···H92.8900H19···H1O2.3700
C17···H21v2.9900H19···N2ii2.7600
C17···H7x2.9800H21···O1vi2.7700
C17···H12x2.7300H21···H22D2.3300
C18···H7x3.0100H21···H17vi2.2100
C18···H92.9200H21···C17vi2.9900
C19···H6x3.0600H22A···O2v2.8500
C19···H7x3.0800H22A···H172.3400
C20···H1iv2.8700H22B···C10vi3.0500
C20···H7x3.1000H22C···H5viii2.5300
C21···H17vi2.9900H22C···N6vi2.8100
C21···H5viii2.9000H22C···C5viii3.0900
C21···H7x3.0600H22D···O1vi2.8900
C21···H1iv2.9200H22D···H212.3300
H1···H5i2.0700H22E···N6vi2.8400
H1···C21vii2.9200H22F···C12x2.9400
H1···C20vii2.8700H22F···H13x2.5400
H1···C5i2.6600H22F···C13x2.9300
H1O···H192.3700H22F···H12x2.5800
C18—O1—H1O113.8 (14)C6—C7—C8119.76 (17)
C20—O2—H2O111.0 (14)C7—C8—C11121.71 (15)
C6—N1—C10115.90 (17)C9—C8—C11121.75 (16)
C13—N2—C14116.22 (17)C7—C8—C9116.53 (17)
C2—N6—C4114.86 (19)C8—C9—C10119.51 (18)
C17—C16—C22120.07 (16)N1—C10—C9124.27 (18)
C21—C16—C22120.20 (16)C8—C11—C12121.34 (16)
C17—C16—C21119.72 (16)C12—C11—C15116.27 (17)
C16—C17—C18119.97 (16)C8—C11—C15122.37 (16)
O1—C18—C17117.20 (15)C11—C12—C13119.93 (17)
C17—C18—C19120.39 (16)N2—C13—C12123.82 (19)
O1—C18—C19122.41 (15)N2—C14—C15123.83 (18)
C18—C19—C20119.34 (15)C11—C15—C14119.81 (18)
O2—C20—C19121.99 (16)N1—C6—H6118.00
O2—C20—C21117.62 (16)C7—C6—H6118.00
C19—C20—C21120.39 (16)C8—C7—H7120.00
C16—C21—C20120.18 (17)C6—C7—H7120.00
C18—C17—H17120.00C8—C9—H9120.00
C16—C17—H17120.00C10—C9—H9120.00
C18—C19—H19120.00C9—C10—H10118.00
C20—C19—H19120.00N1—C10—H10118.00
C16—C21—H21120.00C11—C12—H12120.00
C20—C21—H21120.00C13—C12—H12120.00
C16—C22—H22C109.00C12—C13—H13118.00
C16—C22—H22E109.00N2—C13—H13118.00
C16—C22—H22F110.00N2—C14—H14118.00
C16—C22—H22D109.00C15—C14—H14118.00
C16—C22—H22A109.00C11—C15—H15120.00
C16—C22—H22B109.00C14—C15—H15120.00
H22A—C22—H22E56.00C2—C1—C23120.03 (18)
H22A—C22—H22F56.00N6—C2—C1124.9 (2)
H22B—C22—H22C109.00N6—C4—C5124.94 (19)
H22B—C22—H22D56.00C4—C5—C23120.07 (18)
H22B—C22—H22E141.00C1—C23—C5115.22 (16)
H22B—C22—H22F56.00C1—C23—C23i122.58 (15)
H22C—C22—H22D56.00C5—C23—C23i122.20 (16)
H22C—C22—H22E56.00C2—C1—H1120.00
H22C—C22—H22F141.00C23—C1—H1120.00
H22D—C22—H22E109.00N6—C2—H2118.00
H22D—C22—H22F109.00C1—C2—H2118.00
H22E—C22—H22F109.00N6—C4—H4118.00
H22A—C22—H22B109.00C5—C4—H4117.00
H22A—C22—H22C109.00C4—C5—H5120.00
H22A—C22—H22D141.00C23—C5—H5120.00
N1—C6—C7123.97 (18)
C6—N1—C10—C92.7 (3)C7—C8—C11—C15158.7 (2)
C10—N1—C6—C72.3 (3)C11—C8—C9—C10177.3 (2)
C13—N2—C14—C153.6 (3)C7—C8—C9—C101.6 (3)
C14—N2—C13—C122.9 (3)C9—C8—C11—C12155.8 (2)
C2—N6—C4—C50.2 (4)C9—C8—C11—C1522.5 (3)
C4—N6—C2—C10.4 (4)C8—C9—C10—N10.8 (4)
C17—C16—C21—C200.8 (3)C15—C11—C12—C132.4 (3)
C22—C16—C21—C20179.92 (16)C8—C11—C15—C14179.9 (2)
C22—C16—C17—C18179.39 (16)C8—C11—C12—C13179.3 (2)
C21—C16—C17—C180.2 (2)C12—C11—C15—C141.8 (3)
C16—C17—C18—O1179.78 (15)C11—C12—C13—N20.0 (4)
C16—C17—C18—C190.5 (2)N2—C14—C15—C111.3 (4)
C17—C18—C19—C200.6 (2)C2—C1—C23—C23i179.9 (2)
O1—C18—C19—C20179.91 (15)C23—C1—C2—N60.1 (4)
C18—C19—C20—O2179.51 (15)C2—C1—C23—C50.3 (3)
C18—C19—C20—C210.1 (2)N6—C4—C5—C230.2 (4)
C19—C20—C21—C160.6 (3)C4—C5—C23—C10.5 (3)
O2—C20—C21—C16178.84 (16)C4—C5—C23—C23i180.0 (2)
N1—C6—C7—C80.0 (3)C1—C23—C23i—C1i180.0 (2)
C6—C7—C8—C91.9 (3)C1—C23—C23i—C5i0.5 (3)
C6—C7—C8—C11176.97 (19)C5—C23—C23i—C1i0.5 (3)
C7—C8—C11—C1223.1 (3)C5—C23—C23i—C5i180.0 (2)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1/2, y+3/2, z1/2; (iii) x+1, y+1, z; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x1/2, y+3/2, z+1/2; (ix) x+1/2, y+3/2, z+1/2; (x) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2ii1.00 (3)1.76 (3)2.755 (2)175 (2)
O2—H2O···N1iv0.95 (3)1.80 (3)2.745 (2)172 (2)
Symmetry codes: (ii) x+1/2, y+3/2, z1/2; (iv) x+3/2, y+1/2, z+1/2.
(III_296K) top
Crystal data top
1.5(C10H8N2)·1(C7H8O2)F(000) = 756
Mr = 358.42Dx = 1.258 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2861 reflections
a = 9.1938 (4) Åθ = 2.7–30.2°
b = 12.3828 (6) ŵ = 0.08 mm1
c = 16.7311 (8) ÅT = 296 K
β = 96.358 (4)°Block, colourless
V = 1893.04 (15) Å30.5 × 0.3 × 0.2 mm
Z = 4
Data collection top
Xcalibur, Eos, Nova
diffractometer
4129 independent reflections
Radiation source: Mova (Mo) X-ray Source2341 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 16.0839 pixels mm-1θmax = 27.0°, θmin = 2.7°
ω scansh = 1111
Absorption correction: analytical
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
k = 1515
Tmin = 0.998, Tmax = 0.999l = 2121
13235 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.065 WHERE P = (FO2 + 2FC2)/3
wR(F2) = 0.220(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.23 e Å3
4129 reflectionsΔρmin = 0.18 e Å3
253 parametersExtinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
0 restraintsExtinction coefficient: 0.016 (3)
Crystal data top
1.5(C10H8N2)·1(C7H8O2)V = 1893.04 (15) Å3
Mr = 358.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1938 (4) ŵ = 0.08 mm1
b = 12.3828 (6) ÅT = 296 K
c = 16.7311 (8) Å0.5 × 0.3 × 0.2 mm
β = 96.358 (4)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
4129 independent reflections
Absorption correction: analytical
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
2341 reflections with I > 2σ(I)
Tmin = 0.998, Tmax = 0.999Rint = 0.048
13235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.220H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.23 e Å3
4129 reflectionsΔρmin = 0.18 e Å3
253 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.45109 (17)0.71149 (12)0.17397 (10)0.0762 (6)
O20.46065 (18)1.09890 (12)0.18877 (11)0.0819 (7)
C160.1993 (2)0.90333 (16)0.24775 (11)0.0575 (7)
C170.2632 (2)0.80765 (17)0.22714 (12)0.0583 (7)
C180.3935 (2)0.80885 (16)0.19251 (11)0.0549 (7)
C190.4610 (2)0.90561 (16)0.17883 (11)0.0558 (7)
C200.3977 (2)1.00087 (17)0.19962 (12)0.0583 (7)
C210.2664 (2)0.99994 (17)0.23374 (12)0.0624 (8)
C220.0569 (2)0.9022 (2)0.28537 (16)0.0830 (10)
N10.7869 (2)0.59454 (16)0.38639 (13)0.0812 (8)
N20.1787 (2)0.76328 (18)0.58013 (12)0.0797 (8)
C60.7824 (3)0.5849 (2)0.46469 (16)0.0915 (10)
C70.6665 (2)0.6144 (2)0.50384 (15)0.0840 (9)
C80.5437 (2)0.65788 (17)0.46201 (12)0.0611 (7)
C90.5463 (2)0.6652 (3)0.38001 (15)0.0939 (12)
C100.6679 (3)0.6333 (3)0.34594 (15)0.0999 (12)
C110.4167 (2)0.69450 (17)0.50194 (12)0.0603 (7)
C120.4301 (3)0.7191 (3)0.58289 (15)0.1007 (12)
C130.3103 (3)0.7521 (3)0.61822 (17)0.1095 (13)
C140.1674 (3)0.7448 (2)0.50231 (16)0.0884 (10)
C150.2803 (2)0.7099 (2)0.46229 (15)0.0864 (9)
N60.6706 (2)0.4110 (2)0.07100 (15)0.1013 (10)
C10.9193 (3)0.4631 (3)0.09482 (15)0.1085 (12)
C20.7900 (3)0.4284 (3)0.11893 (19)0.1237 (16)
C40.6820 (3)0.4279 (3)0.00456 (17)0.1050 (13)
C50.8065 (2)0.4625 (3)0.03468 (14)0.0915 (12)
C230.9313 (2)0.48152 (17)0.01493 (12)0.0610 (7)
H1O0.537 (3)0.720 (2)0.138 (2)0.137 (11)*
H2O0.556 (4)1.091 (3)0.160 (2)0.161 (14)*
H170.218600.742200.236600.0700*
H190.548500.906500.155800.0670*
H210.223801.064700.247100.0750*
H22A0.025500.829000.291100.1240*0.500
H22B0.016400.941100.251600.1240*0.500
H22C0.071300.935900.337300.1240*0.500
H22D0.028100.975000.295600.1240*0.500
H22E0.070000.862900.335100.1240*0.500
H22F0.017700.868100.249300.1240*0.500
H60.864000.555900.495100.1100*
H70.670600.605000.559200.1010*
H90.465400.691900.347800.1130*
H100.666100.639500.290400.1200*
H120.520600.713300.613500.1210*
H130.323100.767600.672900.1310*
H140.077100.756300.472700.1060*
H150.264100.696500.407300.1040*
H10.999700.474300.132800.1300*
H20.787000.416400.173600.1490*
H40.599600.415500.040900.1260*
H50.805700.473200.089700.1100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0762 (10)0.0645 (10)0.0943 (12)0.0035 (8)0.0382 (9)0.0015 (8)
O20.0777 (11)0.0669 (11)0.1070 (14)0.0113 (8)0.0369 (10)0.0042 (8)
C160.0508 (11)0.0733 (14)0.0510 (11)0.0026 (9)0.0171 (9)0.0029 (9)
C170.0555 (11)0.0649 (13)0.0570 (11)0.0032 (10)0.0178 (9)0.0043 (9)
C180.0547 (11)0.0630 (13)0.0485 (10)0.0008 (9)0.0121 (8)0.0010 (9)
C190.0493 (11)0.0706 (14)0.0501 (10)0.0005 (9)0.0174 (8)0.0009 (9)
C200.0563 (11)0.0638 (13)0.0563 (11)0.0080 (10)0.0130 (9)0.0003 (10)
C210.0590 (12)0.0663 (14)0.0647 (13)0.0020 (10)0.0198 (9)0.0056 (10)
C220.0639 (14)0.099 (2)0.0924 (18)0.0031 (12)0.0374 (13)0.0024 (13)
N10.0678 (12)0.0969 (15)0.0822 (14)0.0136 (10)0.0230 (11)0.0072 (11)
N20.0632 (12)0.0932 (15)0.0880 (15)0.0102 (10)0.0321 (11)0.0130 (12)
C60.0738 (16)0.127 (2)0.0757 (16)0.0328 (15)0.0176 (13)0.0059 (15)
C70.0660 (14)0.125 (2)0.0624 (14)0.0245 (14)0.0129 (11)0.0072 (13)
C80.0514 (11)0.0740 (13)0.0590 (12)0.0050 (10)0.0117 (9)0.0005 (10)
C90.0622 (14)0.156 (3)0.0652 (15)0.0205 (15)0.0143 (11)0.0068 (15)
C100.0763 (16)0.164 (3)0.0626 (15)0.0227 (18)0.0223 (13)0.0016 (15)
C110.0506 (11)0.0723 (14)0.0600 (12)0.0011 (10)0.0150 (9)0.0055 (10)
C120.0651 (14)0.173 (3)0.0653 (15)0.0259 (16)0.0128 (11)0.0010 (16)
C130.0783 (17)0.183 (3)0.0717 (16)0.0291 (19)0.0291 (14)0.0018 (19)
C140.0566 (13)0.122 (2)0.0885 (18)0.0120 (13)0.0171 (12)0.0078 (16)
C150.0571 (14)0.135 (2)0.0686 (14)0.0140 (14)0.0134 (11)0.0024 (14)
N60.0699 (14)0.144 (2)0.0952 (17)0.0139 (12)0.0321 (13)0.0069 (14)
C10.0631 (14)0.200 (3)0.0630 (15)0.0214 (18)0.0102 (12)0.0178 (18)
C20.0732 (18)0.225 (4)0.0760 (18)0.019 (2)0.0224 (15)0.030 (2)
C40.0661 (15)0.170 (3)0.0812 (18)0.0315 (16)0.0185 (13)0.0123 (18)
C50.0666 (14)0.149 (3)0.0603 (14)0.0237 (15)0.0139 (11)0.0054 (15)
C230.0532 (11)0.0752 (14)0.0567 (12)0.0001 (10)0.0153 (9)0.0005 (10)
Geometric parameters (Å, º) top
O1—C181.366 (2)C6—C71.361 (3)
O2—C201.366 (3)C7—C81.371 (3)
O1—H1O1.05 (3)C8—C111.479 (3)
O2—H2O1.05 (4)C8—C91.378 (3)
N1—C61.321 (3)C9—C101.368 (4)
N1—C101.312 (3)C11—C151.366 (3)
N2—C131.311 (3)C11—C121.380 (3)
N2—C141.315 (3)C12—C131.369 (4)
N6—C41.297 (4)C14—C151.366 (3)
N6—C21.304 (4)C6—H60.9300
C16—C211.378 (3)C7—H70.9300
C16—C221.514 (3)C9—H90.9300
C16—C171.383 (3)C10—H100.9300
C17—C181.387 (3)C12—H120.9300
C18—C191.380 (3)C13—H130.9300
C19—C201.377 (3)C14—H140.9300
C20—C211.391 (3)C15—H150.9300
C17—H170.9300C1—C21.366 (4)
C19—H190.9300C1—C231.372 (3)
C21—H210.9300C4—C51.370 (4)
C22—H22D0.9600C5—C231.360 (3)
C22—H22E0.9600C23—C23i1.481 (3)
C22—H22B0.9600C1—H10.9300
C22—H22C0.9600C2—H20.9300
C22—H22A0.9600C4—H40.9300
C22—H22F0.9600C5—H50.9300
O1···N2ii2.769 (2)H1O···H4iv2.5700
O2···N1iii2.760 (3)H1O···H192.3300
O1···H92.9100H1O···C14ii2.72 (3)
O1···H4iv2.7200H2O···N1iii1.71 (4)
O1···H102.7600H2O···C6iii2.69 (3)
O1···H21v2.8500H2O···H192.2900
O2···H15vi2.7500H2O···C10iii2.61 (4)
O2···H17vi2.8100H4···H1Oiv2.5700
O2···H22Avi2.8700H4···O1iv2.7200
N1···O2vii2.760 (3)H5···C1i2.6600
N2···O1viii2.769 (2)H5···C21ii2.9500
N2···C19viii3.441 (3)H5···H1i2.1000
N6···C22v3.358 (3)H7···C18ix3.0500
N1···H2Ovii1.71 (4)H7···H122.1900
N1···H19vii2.9100H7···C17ix3.0400
N2···H19viii2.7900H7···C122.6900
N2···H1Oviii1.72 (3)H9···C152.7100
N6···H22Ev2.9100H9···C172.9600
N6···H22Cv2.8500H9···O12.9100
C2···C9vii3.589 (5)H9···H152.2000
C9···C2iii3.589 (5)H9···C182.9800
C19···N2ii3.441 (3)H10···O12.7600
C22···N6vi3.358 (3)H12···C16ix3.0000
C1···H5i2.6600H12···C72.6900
C5···H1i2.6700H12···H72.1900
C6···H2Ovii2.69 (3)H12···H22Fix2.5500
C7···H122.6900H12···C17ix2.7800
C9···H152.7100H13···H22Fix2.4900
C10···H2Ovii2.61 (4)H15···O2v2.7500
C12···H72.6900H15···H92.2000
C12···H22Fix2.9800H15···C92.7100
C13···H1Oviii2.59 (3)H17···O2v2.8100
C13···H22Fix2.9600H17···C21v3.0400
C14···H1Oviii2.72 (3)H17···H21v2.2700
C15···H92.7100H17···H22A2.3400
C16···H12x3.0000H19···N2ii2.7900
C17···H21v3.0400H19···H1O2.3300
C17···H12x2.7800H19···H2O2.2900
C17···H7x3.0400H19···N1iii2.9100
C17···H92.9600H21···H17vi2.2700
C18···H7x3.0500H21···O1vi2.8500
C18···H92.9800H21···C17vi3.0400
C20···H1iii2.8800H21···H22D2.3400
C21···H17vi3.0400H22A···O2v2.8700
C21···H5viii2.9500H22A···H172.3400
C21···H1iii2.9400H22C···N6vi2.8500
H1···C20vii2.8800H22D···H212.3400
H1···C5i2.6700H22E···N6vi2.9100
H1···H5i2.1000H22F···H13x2.4900
H1···C21vii2.9400H22F···C12x2.9800
H1O···N2ii1.72 (3)H22F···C13x2.9600
H1O···C13ii2.59 (3)H22F···H12x2.5500
C18—O1—H1O112.1 (14)C6—C7—C8120.3 (2)
C20—O2—H2O111 (2)C7—C8—C11122.44 (19)
C6—N1—C10115.4 (2)C9—C8—C11122.09 (18)
C13—N2—C14115.5 (2)C7—C8—C9115.47 (19)
C2—N6—C4114.8 (2)C8—C9—C10120.1 (2)
C17—C16—C22120.43 (18)N1—C10—C9124.3 (2)
C21—C16—C22120.18 (18)C8—C11—C12121.44 (19)
C17—C16—C21119.39 (17)C12—C11—C15115.0 (2)
C16—C17—C18120.35 (19)C8—C11—C15123.49 (19)
O1—C18—C17117.37 (18)C11—C12—C13120.1 (2)
C17—C18—C19120.23 (18)N2—C13—C12124.4 (3)
O1—C18—C19122.40 (17)N2—C14—C15124.0 (2)
C18—C19—C20119.44 (17)C11—C15—C14120.9 (2)
O2—C20—C19122.06 (17)N1—C6—H6118.00
O2—C20—C21117.49 (18)C7—C6—H6118.00
C19—C20—C21120.45 (19)C8—C7—H7120.00
C16—C21—C20120.14 (19)C6—C7—H7120.00
C18—C17—H17120.00C8—C9—H9120.00
C16—C17—H17120.00C10—C9—H9120.00
C18—C19—H19120.00C9—C10—H10118.00
C20—C19—H19120.00N1—C10—H10118.00
C16—C21—H21120.00C11—C12—H12120.00
C20—C21—H21120.00C13—C12—H12120.00
C16—C22—H22C109.00C12—C13—H13118.00
C16—C22—H22E109.00N2—C13—H13118.00
C16—C22—H22F109.00N2—C14—H14118.00
C16—C22—H22D109.00C15—C14—H14118.00
C16—C22—H22A110.00C11—C15—H15120.00
C16—C22—H22B109.00C14—C15—H15120.00
H22A—C22—H22E56.00C2—C1—C23120.4 (2)
H22A—C22—H22F56.00N6—C2—C1124.8 (3)
H22B—C22—H22C109.00N6—C4—C5124.8 (3)
H22B—C22—H22D56.00C4—C5—C23120.8 (2)
H22B—C22—H22E141.00C1—C23—C5114.3 (2)
H22B—C22—H22F56.00C1—C23—C23i122.9 (2)
H22C—C22—H22D56.00C5—C23—C23i122.75 (19)
H22C—C22—H22E56.00C2—C1—H1120.00
H22C—C22—H22F141.00C23—C1—H1120.00
H22D—C22—H22E109.00N6—C2—H2118.00
H22D—C22—H22F109.00C1—C2—H2118.00
H22E—C22—H22F110.00N6—C4—H4118.00
H22A—C22—H22B109.00C5—C4—H4118.00
H22A—C22—H22C109.00C4—C5—H5120.00
H22A—C22—H22D141.00C23—C5—H5120.00
N1—C6—C7124.4 (2)
C6—N1—C10—C91.6 (5)C7—C8—C11—C15161.4 (2)
C10—N1—C6—C71.6 (4)C11—C8—C9—C10178.0 (3)
C13—N2—C14—C153.8 (4)C7—C8—C9—C102.0 (4)
C14—N2—C13—C122.8 (5)C9—C8—C11—C12159.2 (3)
C2—N6—C4—C50.7 (5)C9—C8—C11—C1518.6 (4)
C4—N6—C2—C10.9 (5)C8—C9—C10—N10.2 (5)
C17—C16—C21—C200.4 (3)C15—C11—C12—C132.4 (4)
C22—C16—C21—C20179.61 (19)C8—C11—C15—C14179.4 (2)
C22—C16—C17—C18179.86 (19)C8—C11—C12—C13179.6 (3)
C21—C16—C17—C180.1 (3)C12—C11—C15—C141.4 (4)
C16—C17—C18—O1179.69 (17)C11—C12—C13—N20.4 (6)
C16—C17—C18—C190.4 (3)N2—C14—C15—C111.8 (4)
C17—C18—C19—C200.2 (3)C2—C1—C23—C23i179.6 (3)
O1—C18—C19—C20179.41 (18)C23—C1—C2—N60.6 (6)
C18—C19—C20—O2178.88 (18)C2—C1—C23—C50.1 (5)
C18—C19—C20—C210.4 (3)N6—C4—C5—C230.4 (6)
C19—C20—C21—C160.7 (3)C4—C5—C23—C10.0 (5)
O2—C20—C21—C16178.62 (18)C4—C5—C23—C23i179.7 (3)
N1—C6—C7—C80.3 (4)C1—C23—C23i—C1i180.0 (3)
C6—C7—C8—C92.1 (4)C1—C23—C23i—C5i0.3 (4)
C6—C7—C8—C11178.0 (2)C5—C23—C23i—C1i0.3 (4)
C7—C8—C11—C1220.8 (4)C5—C23—C23i—C5i180.0 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1/2, y+3/2, z1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+1, z; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x1/2, y+3/2, z+1/2; (ix) x+1/2, y+3/2, z+1/2; (x) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2ii1.05 (3)1.72 (3)2.769 (2)179 (3)
O2—H2O···N1iii1.05 (4)1.71 (4)2.760 (3)173 (3)
Symmetry codes: (ii) x+1/2, y+3/2, z1/2; (iii) x+3/2, y+1/2, z+1/2.
(IV) top
Crystal data top
4.5(C10H8N2)·3(C7H8O2)F(000) = 2268
Mr = 1075.26Dx = 1.307 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10997 reflections
a = 9.2118 (2) Åθ = 2.4–27.4°
b = 36.2075 (7) ŵ = 0.09 mm1
c = 16.5458 (4) ÅT = 100 K
β = 97.923 (2)°Block, colourless
V = 5465.9 (2) Å30.5 × 0.3 × 0.2 mm
Z = 4
Data collection top
Xcalibur, Eos, Nova
diffractometer
11929 independent reflections
Radiation source: Mova (Mo) X-ray Source9034 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 16.0839 pixels mm-1θmax = 27.0°, θmin = 2.4°
ω scansh = 1111
Absorption correction: analytical
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
k = 4646
Tmin = 0.998, Tmax = 0.999l = 2121
49594 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.050Secondary atom site location: difference Fourier map
wR(F2) = 0.121Hydrogen site location: inferred from neighbouring sites
S = 1.01H atoms treated by a mixture of independent and constrained refinement
11990 reflections w = 1/[σ2(Fo2) + (0.0415P)2 + 1.4988P]
where P = (Fo2 + 2Fc2)/3
970 parameters(Δ/σ)max = 0.001
Crystal data top
4.5(C10H8N2)·3(C7H8O2)V = 5465.9 (2) Å3
Mr = 1075.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2118 (2) ŵ = 0.09 mm1
b = 36.2075 (7) ÅT = 100 K
c = 16.5458 (4) Å0.5 × 0.3 × 0.2 mm
β = 97.923 (2)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
11929 independent reflections
Absorption correction: analytical
CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
9034 reflections with I > 2σ(I)
Tmin = 0.998, Tmax = 0.999Rint = 0.047
49594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050970 parameters
wR(F2) = 0.1210 restraints
S = 1.01H atoms treated by a mixture of independent and constrained refinement
11990 reflections
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.23717 (15)0.29143 (4)0.84631 (10)0.0269 (5)
N20.61536 (15)0.24545 (4)1.03680 (10)0.0254 (5)
C10.60395 (18)0.25070 (5)0.95622 (12)0.0262 (6)
C20.72130 (18)0.25929 (5)0.91563 (11)0.0243 (6)
C30.7499 (2)0.24816 (6)1.07825 (12)0.0337 (7)
C40.87276 (18)0.25702 (5)1.04320 (11)0.0293 (7)
C50.85967 (17)0.26304 (4)0.95985 (11)0.0197 (5)
C60.98988 (17)0.27308 (5)0.92034 (11)0.0197 (5)
C71.00450 (18)0.26091 (5)0.84220 (11)0.0271 (6)
C81.10244 (18)0.29499 (5)0.96020 (11)0.0242 (6)
C91.1284 (2)0.27040 (6)0.80875 (12)0.0327 (7)
C101.22164 (18)0.30323 (5)0.92130 (12)0.0263 (6)
N30.80629 (15)0.08415 (4)0.40822 (9)0.0246 (5)
N40.18536 (15)0.13011 (4)0.60075 (9)0.0252 (5)
C180.29591 (19)0.10969 (5)0.63888 (11)0.0260 (6)
C190.41911 (17)0.10027 (5)0.60458 (11)0.0231 (6)
C200.43270 (17)0.11214 (5)0.52609 (11)0.0201 (6)
C210.31893 (18)0.13366 (5)0.48639 (11)0.0250 (6)
C220.19984 (19)0.14173 (5)0.52526 (12)0.0272 (6)
C230.56186 (17)0.10192 (5)0.48583 (11)0.0203 (6)
C240.69651 (18)0.09288 (5)0.53020 (11)0.0242 (6)
C250.81351 (18)0.08437 (5)0.48952 (11)0.0258 (6)
C260.55324 (18)0.10129 (5)0.40123 (11)0.0261 (6)
C270.67556 (19)0.09243 (5)0.36575 (11)0.0290 (6)
N50.16225 (15)0.02372 (4)0.57068 (10)0.0311 (6)
C280.18140 (19)0.02715 (6)0.49255 (12)0.0324 (7)
C290.31076 (19)0.01862 (5)0.46303 (11)0.0290 (6)
C300.42946 (17)0.00512 (4)0.51474 (10)0.0188 (5)
C310.41032 (18)0.00138 (5)0.59620 (11)0.0303 (7)
C320.2773 (2)0.01083 (6)0.61996 (12)0.0348 (7)
N60.78414 (15)0.31788 (4)0.38686 (10)0.0316 (5)
N70.12365 (15)0.35865 (4)0.54726 (10)0.0291 (5)
C400.2530 (2)0.35779 (5)0.59507 (11)0.0285 (6)
C410.38498 (18)0.35020 (5)0.56793 (11)0.0242 (6)
C420.38652 (17)0.34286 (4)0.48534 (11)0.0196 (6)
C430.25293 (18)0.34352 (5)0.43518 (11)0.0234 (6)
C440.12657 (18)0.35142 (5)0.46825 (12)0.0271 (6)
C450.52465 (17)0.33444 (5)0.45200 (11)0.0205 (6)
C460.64236 (18)0.31679 (5)0.49823 (11)0.0233 (6)
C470.76757 (18)0.30949 (5)0.46394 (12)0.0287 (6)
C480.67069 (19)0.33492 (5)0.34288 (12)0.0297 (6)
C490.54171 (18)0.34369 (5)0.37202 (11)0.0243 (6)
N81.31074 (14)0.07673 (4)0.08233 (9)0.0247 (5)
N90.68766 (15)0.04247 (4)0.11643 (9)0.0258 (5)
C570.79925 (18)0.04874 (5)0.00553 (11)0.0259 (6)
C580.93694 (17)0.05419 (4)0.03914 (11)0.0195 (5)
C590.94599 (17)0.05305 (5)0.12376 (11)0.0228 (6)
C600.82074 (19)0.04722 (5)0.15886 (11)0.0250 (6)
C611.06729 (17)0.06157 (4)0.00220 (11)0.0191 (5)
C621.18677 (18)0.08149 (5)0.03555 (11)0.0228 (6)
C631.30463 (18)0.08835 (5)0.00575 (11)0.0246 (6)
C641.07385 (17)0.04927 (5)0.08140 (11)0.0235 (6)
C651.19558 (18)0.05740 (5)0.11793 (11)0.0273 (6)
C660.67961 (18)0.04335 (5)0.03480 (12)0.0285 (6)
O10.52602 (12)0.09008 (3)0.82055 (7)0.0262 (4)
O20.55801 (12)0.04257 (3)0.80841 (8)0.0285 (4)
C110.92827 (18)0.03260 (5)0.70416 (11)0.0248 (6)
C120.61001 (17)0.00800 (5)0.79655 (11)0.0197 (5)
C130.53712 (16)0.02351 (5)0.81709 (10)0.0181 (5)
C140.59297 (17)0.05812 (5)0.80199 (10)0.0184 (5)
C150.72134 (17)0.06119 (4)0.76672 (10)0.0198 (5)
C160.79291 (17)0.02964 (5)0.74505 (10)0.0184 (5)
C170.73716 (17)0.00498 (5)0.76030 (10)0.0193 (5)
O31.43165 (11)0.37077 (3)0.16913 (8)0.0252 (4)
O41.38605 (12)0.23928 (3)0.12729 (8)0.0246 (4)
C330.99783 (18)0.30697 (5)0.23529 (11)0.0262 (6)
C341.20181 (17)0.27317 (4)0.17999 (10)0.0185 (5)
C351.14423 (17)0.30627 (5)0.20435 (10)0.0189 (5)
C361.22224 (18)0.33883 (5)0.19840 (11)0.0212 (6)
C371.35739 (17)0.33817 (5)0.16979 (11)0.0193 (5)
C381.41435 (17)0.30516 (4)0.14449 (10)0.0182 (5)
C391.33569 (17)0.27269 (4)0.14974 (10)0.0180 (5)
O50.01628 (12)0.20676 (3)0.27021 (8)0.0245 (4)
O60.03955 (12)0.07623 (3)0.32396 (7)0.0239 (4)
C500.41503 (18)0.14274 (5)0.20178 (11)0.0250 (6)
C510.08603 (17)0.10925 (4)0.29683 (10)0.0186 (5)
C520.21742 (17)0.10937 (4)0.26402 (10)0.0183 (5)
C530.27144 (17)0.14211 (5)0.23578 (10)0.0181 (5)
C540.19231 (17)0.17463 (5)0.23984 (11)0.0200 (5)
C550.05944 (17)0.17436 (5)0.27076 (11)0.0190 (5)
C560.00592 (16)0.14167 (5)0.30020 (10)0.0182 (5)
H10.494260.249220.923010.0386
H20.700720.263300.850190.0383
H30.759120.241531.142580.0397
H40.978370.257011.081180.0394
H70.923890.243330.807220.0380
H81.095390.305971.020420.0391
H91.140860.260580.748260.0378
H101.309170.319950.952810.0388
H180.284070.100000.699550.0377
H190.500800.082850.639150.0375
H210.320150.144190.425220.0373
H220.110690.158480.495540.0375
H240.712280.091780.596240.0374
H250.917280.076950.524820.0373
H260.452950.107470.361240.0371
H270.667290.091660.299840.0370
H280.090500.038760.452000.0374
H290.314860.022300.398430.0372
H310.496820.008260.642390.0377
H320.264080.009500.683940.0378
H400.252620.363750.659170.0384
H410.483900.350150.611690.0380
H430.246720.338120.370420.0380
H440.021150.352350.430150.0384
H460.634780.307760.559900.0376
H470.857660.295750.501040.0373
H480.683270.341910.280580.0375
H490.455280.357280.331780.0379
H570.780440.049940.071550.0373
H591.049410.056130.163100.0369
H600.827310.045850.224650.0370
H621.188410.091790.097120.0368
H631.396200.104700.022590.0369
H640.985420.033680.115450.0373
H651.202940.048490.179710.0373
H660.570550.040380.001420.0373
H1O0.451040.085100.856820.0350
H2O0.470730.040860.837270.0353
H11A1.011540.013030.727730.0442
H11B0.907920.028300.639170.0437
H11C0.978270.059510.710790.0439
H130.438890.020360.845640.0384
H150.768120.087940.756500.0379
H170.792830.029520.743200.0383
H3O1.522380.367620.143780.0337
H4O1.467670.242160.094450.0335
H33A0.966800.280520.257250.0431
H33B0.908720.312700.187640.0432
H33C0.992880.328200.280430.0432
H341.144080.247420.185350.0369
H361.178720.364660.217730.0372
H381.519500.304600.122220.0368
H5O0.104010.205000.298690.0346
H6O0.046150.079910.353390.0342
H50A0.450300.115260.188920.0432
H50B0.406290.157490.144790.0433
H50C0.499400.154310.246090.0431
H520.275560.083660.258890.0372
H540.233140.199820.215760.0375
H560.097880.142350.323950.0376
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0213 (8)0.0331 (9)0.0275 (10)0.0018 (7)0.0076 (8)0.0027 (8)
N20.0230 (8)0.0267 (9)0.0288 (10)0.0012 (6)0.0117 (8)0.0022 (7)
C10.0180 (9)0.0302 (11)0.0312 (12)0.0003 (8)0.0068 (9)0.0027 (9)
C20.0204 (9)0.0307 (10)0.0219 (11)0.0007 (8)0.0030 (9)0.0039 (9)
C30.0307 (11)0.0522 (14)0.0201 (11)0.0058 (10)0.0099 (10)0.0011 (10)
C40.0199 (10)0.0463 (13)0.0218 (11)0.0057 (9)0.0038 (9)0.0011 (10)
C50.0195 (9)0.0184 (9)0.0223 (10)0.0016 (7)0.0073 (9)0.0002 (8)
C60.0170 (9)0.0211 (9)0.0215 (10)0.0023 (7)0.0046 (8)0.0048 (8)
C70.0209 (10)0.0384 (11)0.0226 (11)0.0048 (8)0.0049 (9)0.0034 (9)
C80.0242 (10)0.0265 (10)0.0228 (11)0.0019 (8)0.0063 (9)0.0027 (9)
C90.0265 (10)0.0490 (13)0.0244 (12)0.0053 (9)0.0102 (10)0.0045 (10)
C100.0203 (10)0.0281 (10)0.0310 (12)0.0039 (8)0.0058 (9)0.0006 (9)
H10.02890.04990.03710.00190.00480.0004
H20.03670.04930.02950.00140.00730.0021
H30.03880.05140.02990.00260.00840.0033
H40.03020.05220.03560.00170.00390.0008
H70.03400.04350.03710.00730.00670.0059
H80.03930.04790.03200.00390.01140.0072
H90.03790.04580.03150.00270.01100.0061
H100.03350.04590.03760.00800.00700.0066
N30.0221 (8)0.0267 (8)0.0265 (9)0.0002 (6)0.0089 (8)0.0028 (7)
N40.0213 (8)0.0264 (8)0.0287 (10)0.0008 (6)0.0062 (8)0.0037 (7)
C180.0242 (10)0.0309 (11)0.0242 (11)0.0006 (8)0.0075 (9)0.0006 (9)
C190.0185 (9)0.0273 (10)0.0235 (11)0.0013 (7)0.0031 (9)0.0004 (8)
C200.0183 (9)0.0192 (9)0.0234 (11)0.0032 (7)0.0046 (8)0.0038 (8)
C210.0247 (10)0.0260 (10)0.0245 (11)0.0024 (8)0.0046 (9)0.0012 (9)
C220.0234 (10)0.0279 (10)0.0307 (12)0.0057 (8)0.0051 (9)0.0009 (9)
C230.0196 (9)0.0181 (9)0.0242 (11)0.0014 (7)0.0064 (9)0.0003 (8)
C240.0197 (9)0.0319 (10)0.0215 (11)0.0001 (8)0.0048 (8)0.0002 (9)
C250.0185 (9)0.0309 (11)0.0280 (12)0.0001 (8)0.0037 (9)0.0019 (9)
C260.0203 (9)0.0344 (11)0.0238 (11)0.0040 (8)0.0041 (9)0.0022 (9)
C270.0283 (10)0.0374 (11)0.0222 (11)0.0029 (9)0.0063 (9)0.0021 (9)
H180.03790.04500.03220.00360.01140.0062
H190.03320.04250.03740.00820.00660.0064
H210.03710.04440.03180.00410.01000.0064
H220.03170.04260.03880.00830.00690.0056
H240.03600.04810.02890.00290.00700.0014
H250.02830.04710.03610.00510.00350.0023
H260.02850.04730.03520.00450.00320.0018
H270.03530.04760.02890.00250.00750.0001
N50.0244 (9)0.0398 (10)0.0303 (10)0.0018 (7)0.0076 (8)0.0025 (8)
C280.0222 (10)0.0471 (13)0.0274 (12)0.0098 (9)0.0022 (9)0.0003 (10)
C290.0258 (10)0.0411 (12)0.0207 (11)0.0047 (9)0.0054 (9)0.0005 (9)
C300.0188 (9)0.0162 (9)0.0222 (10)0.0025 (7)0.0058 (8)0.0021 (8)
C310.0238 (10)0.0451 (13)0.0227 (11)0.0066 (9)0.0062 (9)0.0068 (10)
C320.0291 (11)0.0538 (14)0.0237 (11)0.0019 (10)0.0111 (10)0.0034 (10)
H280.03040.04560.03620.00650.00500.0045
H290.03590.04710.03020.00330.00960.0030
H310.03140.04680.03500.00570.00430.0047
H320.03680.04790.03040.00320.01050.0022
N60.0213 (8)0.0452 (10)0.0295 (10)0.0042 (7)0.0073 (8)0.0018 (9)
N70.0241 (8)0.0338 (9)0.0309 (10)0.0045 (7)0.0092 (8)0.0036 (8)
C400.0297 (11)0.0341 (11)0.0232 (11)0.0046 (9)0.0091 (10)0.0003 (9)
C410.0211 (9)0.0284 (10)0.0232 (11)0.0034 (8)0.0036 (9)0.0010 (9)
C420.0198 (9)0.0164 (9)0.0239 (11)0.0012 (7)0.0079 (9)0.0023 (8)
C430.0204 (9)0.0271 (10)0.0232 (11)0.0008 (7)0.0050 (9)0.0004 (8)
C440.0207 (10)0.0315 (11)0.0293 (12)0.0006 (8)0.0047 (9)0.0037 (9)
C450.0194 (9)0.0196 (9)0.0232 (11)0.0014 (7)0.0059 (8)0.0013 (8)
C460.0228 (9)0.0257 (10)0.0223 (10)0.0031 (8)0.0068 (9)0.0049 (8)
C470.0213 (10)0.0357 (11)0.0299 (12)0.0071 (8)0.0065 (9)0.0056 (10)
C480.0244 (10)0.0431 (12)0.0230 (11)0.0020 (9)0.0082 (9)0.0016 (9)
C490.0182 (9)0.0325 (11)0.0220 (11)0.0003 (8)0.0026 (9)0.0006 (9)
H400.03640.04780.03250.00130.01000.0037
H410.02940.04820.03630.00150.00390.0016
H430.03580.04770.03160.00200.00820.0024
H440.02820.04800.03900.00240.00410.0006
H460.03710.04550.03190.00330.01080.0054
H470.03120.04440.03650.00700.00540.0048
H480.03690.04570.03150.00360.01060.0050
H490.03180.04450.03750.00720.00540.0057
N80.0190 (8)0.0285 (8)0.0277 (9)0.0002 (6)0.0076 (7)0.0040 (7)
N90.0229 (8)0.0272 (9)0.0288 (10)0.0031 (6)0.0085 (8)0.0020 (8)
C570.0210 (9)0.0354 (11)0.0211 (11)0.0023 (8)0.0019 (9)0.0016 (9)
C580.0177 (9)0.0183 (9)0.0231 (10)0.0005 (7)0.0047 (8)0.0011 (8)
C590.0188 (9)0.0268 (10)0.0226 (11)0.0010 (7)0.0022 (8)0.0004 (8)
C600.0280 (10)0.0238 (10)0.0242 (11)0.0009 (8)0.0072 (9)0.0034 (8)
C610.0163 (9)0.0195 (9)0.0218 (10)0.0020 (7)0.0037 (8)0.0008 (8)
C620.0211 (9)0.0258 (10)0.0219 (11)0.0018 (8)0.0048 (9)0.0035 (8)
C630.0192 (9)0.0272 (10)0.0281 (11)0.0031 (7)0.0062 (9)0.0044 (9)
C640.0189 (9)0.0261 (10)0.0255 (11)0.0022 (7)0.0029 (9)0.0056 (9)
C650.0240 (10)0.0341 (11)0.0248 (11)0.0007 (8)0.0073 (9)0.0074 (9)
C660.0181 (9)0.0393 (12)0.0285 (12)0.0041 (8)0.0044 (9)0.0025 (10)
H570.03480.04830.02930.00270.00690.0003
H590.02720.04740.03580.00240.00320.0006
H600.03480.04770.02940.00130.00770.0009
H620.03640.04390.03160.00380.00950.0063
H630.03100.04150.03860.00860.00660.0059
H640.03090.04330.03810.00880.00640.0063
H650.03670.04470.03220.00540.01090.0068
H660.02640.04870.03660.00260.00380.0005
O10.0289 (7)0.0191 (6)0.0338 (8)0.0048 (5)0.0158 (6)0.0000 (6)
O20.0284 (7)0.0194 (6)0.0416 (9)0.0039 (5)0.0188 (7)0.0027 (6)
C110.0221 (9)0.0252 (10)0.0289 (11)0.0005 (8)0.0096 (9)0.0030 (9)
C120.0183 (9)0.0200 (9)0.0212 (10)0.0027 (7)0.0037 (8)0.0020 (8)
C130.0150 (8)0.0236 (9)0.0166 (10)0.0016 (7)0.0052 (8)0.0010 (8)
C140.0196 (9)0.0196 (9)0.0163 (10)0.0040 (7)0.0035 (8)0.0001 (8)
C150.0212 (9)0.0195 (9)0.0194 (10)0.0019 (7)0.0052 (8)0.0039 (8)
C160.0158 (8)0.0246 (9)0.0151 (10)0.0014 (7)0.0031 (8)0.0026 (8)
C170.0188 (9)0.0201 (9)0.0194 (10)0.0027 (7)0.0038 (8)0.0002 (8)
H1O0.03340.03720.03700.00020.01370.0019
H2O0.03180.03720.03930.00090.01370.0012
H11A0.03610.04730.05030.01140.01020.0130
H11B0.03940.06140.03110.00250.00700.0030
H11C0.04310.03580.05570.00710.01670.0046
H130.03290.04090.04450.00020.01680.0017
H150.03730.03290.04560.00300.01310.0021
H170.03670.03410.04630.00470.01400.0004
O30.0208 (6)0.0192 (6)0.0370 (8)0.0044 (5)0.0094 (6)0.0030 (6)
O40.0251 (7)0.0180 (6)0.0338 (8)0.0008 (5)0.0150 (6)0.0019 (6)
C330.0201 (9)0.0280 (10)0.0322 (12)0.0013 (8)0.0102 (9)0.0023 (9)
C340.0192 (9)0.0185 (9)0.0177 (10)0.0021 (7)0.0027 (8)0.0022 (8)
C350.0163 (9)0.0247 (9)0.0160 (10)0.0002 (7)0.0030 (8)0.0011 (8)
C360.0218 (9)0.0193 (9)0.0230 (11)0.0023 (7)0.0051 (8)0.0036 (8)
C370.0183 (9)0.0201 (9)0.0190 (10)0.0033 (7)0.0013 (8)0.0003 (8)
C380.0161 (9)0.0216 (9)0.0178 (10)0.0004 (7)0.0060 (8)0.0004 (8)
C390.0191 (9)0.0191 (9)0.0160 (10)0.0024 (7)0.0029 (8)0.0005 (8)
H3O0.03030.03470.03850.00010.01290.0025
H4O0.03130.03440.03710.00080.01310.0008
H33A0.04210.03390.05620.00040.01750.0077
H33B0.03250.06010.03640.00440.00230.0054
H33C0.04150.04420.04620.00300.01400.0147
H340.03510.03170.04570.00440.01230.0004
H360.03650.03170.04550.00310.01350.0041
H380.03000.03840.04480.00040.01520.0023
O50.0216 (6)0.0197 (6)0.0346 (8)0.0047 (5)0.0122 (6)0.0017 (6)
O60.0242 (6)0.0194 (6)0.0307 (8)0.0002 (5)0.0130 (6)0.0036 (6)
C500.0236 (10)0.0238 (10)0.0297 (11)0.0014 (8)0.0117 (9)0.0003 (9)
C510.0198 (9)0.0195 (9)0.0165 (10)0.0024 (7)0.0023 (8)0.0011 (8)
C520.0195 (9)0.0166 (9)0.0191 (10)0.0025 (7)0.0039 (8)0.0021 (8)
C530.0166 (9)0.0229 (9)0.0150 (10)0.0009 (7)0.0034 (8)0.0005 (8)
C540.0203 (9)0.0199 (9)0.0206 (10)0.0012 (7)0.0058 (8)0.0007 (8)
C550.0184 (9)0.0198 (9)0.0190 (10)0.0041 (7)0.0030 (8)0.0010 (8)
C560.0154 (9)0.0233 (9)0.0170 (10)0.0004 (7)0.0059 (8)0.0006 (8)
H5O0.02970.03680.03960.00160.01250.0022
H6O0.03000.03620.03880.00180.01320.0005
H50A0.04180.03290.05780.00320.01780.0029
H50B0.03970.05400.03750.00480.00990.0137
H50C0.03310.05690.03920.00650.00400.0091
H520.03480.03290.04600.00540.01280.0010
H540.03590.03350.04510.00110.01290.0056
H560.02950.04050.04580.00190.01530.0019
Geometric parameters (Å, º) top
N1—C91.341 (2)C40—C411.381 (3)
N1—C101.339 (3)C41—C421.394 (3)
O1—C141.366 (2)C42—C451.487 (2)
N2—C31.335 (2)C42—C431.386 (2)
O2—C121.364 (2)C43—C441.383 (2)
N2—C11.337 (3)C45—C491.395 (3)
O1—H1O0.9900C45—C461.393 (2)
O2—H2O0.9900C46—C471.379 (2)
N3—C251.338 (2)C48—C491.380 (2)
N3—C271.342 (2)C40—H401.0800
O3—C371.365 (2)C41—H411.0800
N4—C221.342 (2)C43—H431.0800
O4—C391.3653 (19)C44—H441.0800
N4—C181.343 (2)C46—H461.0800
O3—H3O0.9900C47—H471.0800
O4—H4O0.9900C48—H481.0800
O5—C551.364 (2)C49—H491.0800
N5—C281.334 (3)C57—C661.379 (2)
N5—C321.330 (2)C57—C581.391 (2)
O6—C511.3665 (18)C58—C591.392 (3)
O5—H5O0.9900C58—C611.486 (2)
O6—H6O0.9900C59—C601.378 (2)
N6—C481.339 (2)C61—C641.393 (3)
N6—C471.340 (3)C61—C621.390 (2)
N7—C401.337 (2)C62—C631.383 (2)
N7—C441.337 (3)C64—C651.377 (2)
N8—C631.344 (2)C57—H571.0800
N8—C651.338 (2)C59—H591.0800
N9—C601.337 (2)C60—H601.0800
N9—C661.343 (2)C62—H621.0800
C1—C21.384 (2)C63—H631.0800
C2—C51.386 (2)C64—H641.0800
C3—C41.379 (3)C65—H651.0800
C4—C51.385 (3)C66—H661.0800
C5—C61.488 (2)C11—C161.502 (2)
C6—C71.390 (3)C12—C131.390 (2)
C6—C81.397 (2)C12—C171.392 (2)
C7—C91.379 (3)C13—C141.390 (2)
C8—C101.380 (2)C14—C151.393 (2)
C1—H11.0800C15—C161.390 (2)
C2—H21.0800C16—C171.391 (3)
C3—H31.0800C11—H11C1.0800
C4—H41.0800C11—H11B1.0800
C7—H71.0800C11—H11A1.0800
C8—H81.0800C13—H131.0800
C9—H91.0800C15—H151.0800
C10—H101.0800C17—H171.0800
C18—C191.380 (2)C33—C351.507 (2)
C19—C201.390 (3)C34—C351.393 (2)
C20—C211.395 (2)C34—C391.394 (2)
C20—C231.488 (2)C35—C361.391 (2)
C21—C221.377 (2)C36—C371.392 (2)
C23—C261.391 (3)C37—C381.393 (2)
C23—C241.391 (2)C38—C391.390 (2)
C24—C251.382 (2)C33—H33C1.0800
C26—C271.378 (2)C33—H33A1.0800
C18—H181.0800C33—H33B1.0800
C19—H191.0800C34—H341.0800
C21—H211.0800C36—H361.0800
C22—H221.0800C38—H381.0800
C24—H241.0800C50—C531.507 (2)
C25—H251.0800C51—C561.392 (2)
C26—H261.0800C51—C521.393 (2)
C27—H271.0800C52—C531.391 (2)
C28—C291.384 (3)C53—C541.391 (2)
C29—C301.382 (2)C54—C551.390 (2)
C30—C30i1.496 (2)C55—C561.396 (2)
C30—C311.390 (2)C50—H50A1.0800
C31—C321.381 (3)C50—H50B1.0800
C28—H281.0800C50—H50C1.0800
C29—H291.0800C52—H521.0800
C31—H311.0800C54—H541.0800
C32—H321.0800C56—H561.0800
O6···C283.412 (2)H4···C82.8000
O6···N3ii2.7329 (18)H4···C35xi2.9700
O1···H36iii2.8700H4···H34xi2.1700
O1···H182.8100H4O···H382.3400
O3···H49iv2.7100H5O···H562.3100
O4···H54iv2.6000H6O···C27ii2.6400
O4···H9v2.8700H6O···H282.4300
O5···H33Aii2.6800H6O···H562.3500
O5···H34ii2.6300H6O···C25ii2.7500
O6···H17i2.6400H6O···N3ii1.7400
O6···H282.5100H7···C39iii2.6800
N1···O5vi2.7452 (19)H7···C34iii2.7900
N2···O4vii2.7614 (19)H7···H22.3800
N3···O6iv2.7329 (18)H7···C22.8200
N3···C56iv3.438 (2)H8···H42.3700
N4···O3viii2.7335 (18)H8···C34xi2.9400
N5···C11ii3.307 (2)H8···C42.7800
N6···C333.418 (2)H8···C35xi3.0100
N7···C50iii3.404 (2)H9···H3v2.1900
N8···O1ix2.7617 (18)H9···O4iii2.8700
N8···C13ix3.433 (2)H11A···H172.5800
N9···C13i3.440 (2)H11A···H32iv2.5300
N9···O2i2.7283 (18)H11B···C28i2.9900
N1···H5Ovi1.7600H11B···C29i2.9800
N1···H56vi2.8900H11B···N5iv2.7400
N2···H38vii2.7800H11B···H252.6000
N2···H4Ovii1.7700H11C···O3iii2.6400
N2···H47iii2.8000H11C···H152.4000
N3···H56iv2.7400H13···H2O2.2400
N3···H6Oiv1.7400H13···H1O2.3500
N4···H3Oviii1.7500H15···O3iii2.6800
N4···H38viii2.8600H15···H36iii1.9700
N5···H11Bii2.7400H15···H11C2.4000
N6···H33C2.8100H15···C36iii2.8300
N6···H44iv2.5300H17···H29i2.4300
N7···H63viii2.4700H17···H11A2.5800
N7···H50Biii2.8000H18···O12.8100
N8···H1Oix1.7700H19···C152.8300
N8···H66iv2.9100H19···H242.1900
N8···H13ix2.7100H19···C142.8500
N9···H13i2.6700H19···C242.7400
N9···H2Oi1.7400H21···C522.9800
C2···C55x3.571 (3)H21···C513.0800
C2···O5x3.262 (2)H21···C262.7200
C4···C34xi3.572 (2)H21···H262.1800
C7···C39iii3.560 (2)H24···C192.7400
C11···N5iv3.307 (2)H24···O3iii2.5900
C12···C313.579 (3)H24···C36iii3.0200
C18···C323.595 (3)H24···H192.1900
C19···C323.514 (3)H24···C153.0200
C19···C313.584 (3)H24···C37iii3.0400
C24···C37iii3.580 (3)H25···H11B2.6000
C24···O3iii3.215 (2)H25···H28iv2.5400
C26···C523.588 (2)H26···C522.5200
C27···C31i3.563 (3)H26···H212.1800
C28···O63.412 (2)H26···C502.9100
C31···C123.579 (3)H26···C212.7200
C31···C193.584 (3)H26···H522.3500
C31···C27i3.563 (3)H26···C532.7800
C32···C193.514 (3)H28···O62.5100
C32···C183.595 (3)H28···H6O2.4300
C33···N63.418 (2)H28···H25ii2.5400
C37···C49iv3.543 (3)H29···C31i2.6600
C39···C7v3.560 (2)H29···C17i2.6800
C41···C58iii3.536 (2)H29···H31i2.0100
C44···O1xii3.270 (2)H29···H17i2.4300
C45···C62iii3.583 (3)H29···C16i3.0800
C47···O4iii3.287 (2)H31···C122.6200
C49···C37ii3.543 (3)H31···H29i2.0100
C52···C263.588 (2)H31···C29i2.6800
C56···N3ii3.438 (2)H31···C172.7400
C57···C14xiii3.493 (2)H31···C133.0900
C59···O6iv3.411 (2)H32···H11Aii2.5300
C60···O6iv3.333 (2)H33A···O5iv2.6800
C1···H47iii3.0000H33A···H342.4600
C1···H4Ovii2.7700H33C···N62.8100
C2···H72.8200H33C···H362.5000
C3···H4Ovii2.6600H34···C54iv2.8000
C4···H82.7800H34···H33A2.4600
C7···H22.8200H34···H54iv1.9500
C8···H42.8000H34···O5iv2.6300
C9···H5Ovi2.6500H36···H33C2.5000
C9···H50Cx3.0900H38···H3O2.3100
C10···H5Ovi2.7700H38···H4O2.3400
C12···H312.6200H40···C56x3.0700
C13···H313.0900H41···H462.3100
C14···H192.8500H41···C462.8100
C15···H192.8300H41···C54x2.8000
C15···H36iii2.8200H41···C55x2.7700
C15···H243.0200H43···C35ii3.0100
C16···H29i3.0800H43···H492.2200
C17···H312.7400H43···C36ii2.8200
C17···H29i2.6800H43···C492.7200
C18···H3Oviii2.6600H44···N6ii2.5300
C18···H33Biii3.0700H44···H63viii2.5600
C19···H36iii3.1000H44···C47ii2.9200
C19···H242.7400H44···O1xii2.7700
C21···H262.7200H46···C54x3.0200
C22···H3Oviii2.7400H46···H412.3100
C24···H192.7400H46···C412.7900
C25···H6Oiv2.7500H47···N2v2.8000
C26···H212.7200H47···C1v3.0000
C27···H56iv2.9200H47···O4iii2.4300
C27···H6Oiv2.6400H47···H4Oiii2.2100
C28···H11Bi2.9900H47···H1v2.5200
C29···H11Bi2.9800H49···H432.2200
C29···H31i2.6800H49···C432.7400
C31···H29i2.6600H49···O3ii2.7100
C34···H7v2.7900H49···C36ii2.9400
C34···H54iv2.7300H49···C37ii2.7900
C35···H43iv3.0100H50A···H522.4000
C36···H43iv2.8200H50A···O2i2.6300
C36···H49iv2.9400H52···H262.3500
C37···H49iv2.7900H52···C17i2.8700
C39···H7v2.6800H52···H17i2.0600
C39···H54iv3.0500H52···H50A2.4000
C41···H462.7900H52···O2i2.5000
C43···H492.7400H54···O4ii2.6000
C44···H63viii2.8900H54···C39ii3.0500
C46···H412.8100H54···H34ii1.9500
C47···H44iv2.9200H54···C34ii2.7300
C49···H432.7200H56···H5O2.3100
C50···H262.9100H56···H6O2.3500
C51···H213.0800H56···N3ii2.7400
C52···H17i2.8900H56···C27ii2.9200
C52···H262.5200H57···C13xiii2.8600
C52···H212.9800H57···C14xiii2.5400
C53···H262.7800H57···C15xiii2.6900
C54···H34ii2.8000H57···C642.7300
C57···H642.7200H57···H642.1900
C59···H622.7200H59···O6iv2.7700
C60···H2Oi2.7000H59···C51iv2.9200
C62···H592.7600H59···C52iv2.8600
C63···H1Oix2.8000H59···C622.7600
C63···H66iv2.9900H59···H622.2100
C64···H572.7300H60···O6iv2.6200
C65···H13ix2.7500H60···H6Oiv2.5900
C65···H1Oix2.6400H62···C52iv2.8100
C66···H2Oi2.6900H62···C53iv2.9500
H1···H47iii2.5200H62···C592.7200
H1O···H132.3500H62···H592.2100
H2···C54x2.8900H64···C11xiii2.9600
H2···O5x2.4900H64···C15xiii3.0700
H2···C72.8200H64···C16xiii2.7100
H2···H72.3800H64···C572.7200
H2···C55x2.8400H64···H572.1900
H2O···H132.2400H65···C11xiii3.0100
H3···H9iii2.1900H65···H11Axiii2.5200
H3O···H382.3100H65···H11Cxiii2.5900
H4···C34xi2.5100H65···H13ix2.3800
H4···H82.3700H66···C13xiii3.0800
C9—N1—C10116.25 (15)N7—C44—H44115.00
C1—N2—C3116.23 (15)C47—C46—H46120.00
C14—O1—H1O111.00C45—C46—H46121.00
C12—O2—H2O110.00C46—C47—H47118.00
C25—N3—C27116.23 (15)N6—C47—H47118.00
C18—N4—C22116.33 (15)C49—C48—H48119.00
C37—O3—H3O111.00N6—C48—H48117.00
C39—O4—H4O112.00C45—C49—H49122.00
C28—N5—C32115.22 (15)C48—C49—H49119.00
C55—O5—H5O113.00C58—C57—C66119.61 (17)
C51—O6—H6O111.00C57—C58—C59117.01 (15)
C47—N6—C48116.04 (15)C59—C58—C61121.89 (15)
C40—N7—C44115.95 (15)C57—C58—C61121.09 (16)
C63—N8—C65116.44 (14)C58—C59—C60119.42 (15)
C60—N9—C66116.40 (15)N9—C60—C59123.98 (17)
N2—C1—C2123.82 (16)C62—C61—C64117.01 (15)
C1—C2—C5119.25 (17)C58—C61—C62121.77 (16)
N2—C3—C4123.98 (18)C58—C61—C64121.21 (15)
C3—C4—C5119.45 (16)C61—C62—C63119.88 (17)
C2—C5—C6122.03 (16)N8—C63—C62123.20 (16)
C2—C5—C4117.24 (15)C61—C64—C65119.21 (16)
C4—C5—C6120.74 (15)N8—C65—C64124.25 (17)
C7—C6—C8117.29 (15)N9—C66—C57123.59 (16)
C5—C6—C8121.48 (16)C58—C57—H57123.00
C5—C6—C7121.23 (15)C66—C57—H57118.00
C6—C7—C9119.08 (16)C60—C59—H59119.00
C6—C8—C10119.29 (17)C58—C59—H59122.00
N1—C9—C7124.22 (18)C59—C60—H60120.00
N1—C10—C8123.85 (16)N9—C60—H60116.00
N2—C1—H1116.00C61—C62—H62121.00
C2—C1—H1120.00C63—C62—H62120.00
C1—C2—H2118.00N8—C63—H63117.00
C5—C2—H2122.00C62—C63—H63120.00
C4—C3—H3120.00C65—C64—H64119.00
N2—C3—H3115.00C61—C64—H64122.00
C5—C4—H4122.00N8—C65—H65115.00
C3—C4—H4119.00C64—C65—H65121.00
C9—C7—H7118.00N9—C66—H66115.00
C6—C7—H7122.00C57—C66—H66121.00
C10—C8—H8120.00O2—C12—C17117.85 (15)
C6—C8—H8121.00C13—C12—C17120.30 (16)
N1—C9—H9117.00O2—C12—C13121.81 (14)
C7—C9—H9119.00C12—C13—C14119.53 (15)
N1—C10—H10117.00O1—C14—C15117.52 (15)
C8—C10—H10119.00C13—C14—C15120.24 (15)
N4—C18—C19123.79 (17)O1—C14—C13122.24 (14)
C18—C19—C20119.54 (16)C14—C15—C16120.16 (15)
C19—C20—C21117.00 (15)C11—C16—C15120.67 (15)
C19—C20—C23121.46 (15)C15—C16—C17119.58 (15)
C21—C20—C23121.54 (16)C11—C16—C17119.75 (15)
C20—C21—C22119.57 (17)C12—C17—C16120.18 (16)
N4—C22—C21123.77 (17)C16—C11—H11A113.00
C20—C23—C26121.08 (15)C16—C11—H11B113.00
C20—C23—C24122.16 (16)H11B—C11—H11C104.00
C24—C23—C26116.77 (15)H11A—C11—H11B106.00
C23—C24—C25119.62 (16)C16—C11—H11C113.00
N3—C25—C24123.86 (16)H11A—C11—H11C107.00
C23—C26—C27119.72 (16)C14—C13—H13122.00
N3—C27—C26123.80 (17)C12—C13—H13119.00
N4—C18—H18117.00C14—C15—H15121.00
C19—C18—H18120.00C16—C15—H15119.00
C20—C19—H19122.00C16—C17—H17119.00
C18—C19—H19119.00C12—C17—H17120.00
C22—C21—H21118.00C35—C34—C39120.40 (14)
C20—C21—H21122.00C33—C35—C36120.32 (16)
C21—C22—H22121.00C34—C35—C36119.19 (15)
N4—C22—H22116.00C33—C35—C34120.47 (15)
C23—C24—H24122.00C35—C36—C37120.30 (16)
C25—C24—H24119.00C36—C37—C38120.58 (16)
N3—C25—H25117.00O3—C37—C38121.99 (14)
C24—C25—H25119.00O3—C37—C36117.43 (15)
C23—C26—H26122.00C37—C38—C39119.07 (15)
C27—C26—H26118.00C34—C39—C38120.44 (14)
N3—C27—H27117.00O4—C39—C34117.35 (13)
C26—C27—H27119.00O4—C39—C38122.19 (14)
N5—C28—C29123.82 (17)C35—C33—H33B112.00
C28—C29—C30120.46 (17)C35—C33—H33A113.00
C29—C30—C30i122.32 (15)H33A—C33—H33C111.00
C30i—C30—C31121.60 (14)H33B—C33—H33C106.00
C29—C30—C31116.08 (15)C35—C33—H33C112.00
C30—C31—C32119.23 (16)H33A—C33—H33B102.00
N5—C32—C31125.18 (18)C35—C34—H34120.00
N5—C28—H28116.00C39—C34—H34119.00
C29—C28—H28120.00C35—C36—H36120.00
C30—C29—H29121.00C37—C36—H36120.00
C28—C29—H29118.00C37—C38—H38121.00
C32—C31—H31118.00C39—C38—H38120.00
C30—C31—H31122.00O6—C51—C56122.20 (14)
N5—C32—H32115.00O6—C51—C52117.33 (13)
C31—C32—H32119.00C52—C51—C56120.46 (14)
N7—C40—C41124.43 (17)C51—C52—C53120.25 (14)
C40—C41—C42119.03 (16)C50—C53—C52120.74 (15)
C41—C42—C45121.85 (15)C52—C53—C54119.40 (15)
C43—C42—C45121.06 (16)C50—C53—C54119.85 (15)
C41—C42—C43117.09 (15)C53—C54—C55120.37 (16)
C42—C43—C44119.53 (17)O5—C55—C54117.83 (15)
N7—C44—C43123.98 (16)O5—C55—C56121.79 (14)
C46—C45—C49116.75 (15)C54—C55—C56120.38 (16)
C42—C45—C46122.12 (16)C51—C56—C55119.12 (14)
C42—C45—C49121.13 (15)C53—C50—H50A111.00
C45—C46—C47119.59 (17)C53—C50—H50B112.00
N6—C47—C46124.02 (16)C53—C50—H50C110.00
N6—C48—C49124.16 (18)H50A—C50—H50B106.00
C45—C49—C48119.44 (16)H50A—C50—H50C107.00
N7—C40—H40117.00H50B—C50—H50C111.00
C41—C40—H40119.00C51—C52—H52120.00
C42—C41—H41122.00C53—C52—H52120.00
C40—C41—H41119.00C53—C54—H54119.00
C44—C43—H43120.00C55—C54—H54121.00
C42—C43—H43121.00C51—C56—H56122.00
C43—C44—H44121.00C55—C56—H56119.00
C10—N1—C9—C70.6 (3)C43—C42—C45—C4930.5 (2)
C9—N1—C10—C80.1 (3)C41—C42—C45—C49149.91 (17)
C3—N2—C1—C21.4 (3)C43—C42—C45—C46148.98 (18)
C1—N2—C3—C42.1 (3)C41—C42—C43—C440.3 (2)
C27—N3—C25—C240.7 (3)C45—C42—C43—C44179.94 (15)
C25—N3—C27—C260.8 (3)C42—C43—C44—N70.0 (3)
C22—N4—C18—C190.5 (3)C42—C45—C46—C47179.63 (16)
C18—N4—C22—C210.4 (3)C49—C45—C46—C470.2 (3)
C28—N5—C32—C310.4 (3)C46—C45—C49—C480.5 (3)
C32—N5—C28—C290.8 (3)C42—C45—C49—C48179.02 (16)
C47—N6—C48—C490.5 (3)C45—C46—C47—N61.0 (3)
C48—N6—C47—C461.2 (3)N6—C48—C49—C450.3 (3)
C40—N7—C44—C430.2 (3)C66—C57—C58—C591.4 (2)
C44—N7—C40—C410.2 (3)C66—C57—C58—C61177.54 (15)
C63—N8—C65—C640.5 (3)C58—C57—C66—N91.0 (3)
C65—N8—C63—C620.6 (3)C57—C58—C59—C600.9 (2)
C66—N9—C60—C590.5 (3)C61—C58—C59—C60178.01 (15)
C60—N9—C66—C570.1 (3)C57—C58—C61—C62152.85 (17)
N2—C1—C2—C50.4 (3)C57—C58—C61—C6426.1 (2)
C1—C2—C5—C6178.57 (16)C59—C58—C61—C6226.0 (2)
C1—C2—C5—C41.5 (2)C59—C58—C61—C64155.10 (16)
N2—C3—C4—C51.1 (3)C58—C59—C60—N90.0 (3)
C3—C4—C5—C20.8 (3)C58—C61—C62—C63178.73 (15)
C3—C4—C5—C6179.27 (17)C64—C61—C62—C630.2 (2)
C4—C5—C6—C7145.41 (17)C58—C61—C64—C65178.67 (15)
C2—C5—C6—C8145.62 (18)C62—C61—C64—C650.3 (2)
C2—C5—C6—C734.6 (2)C61—C62—C63—N80.2 (3)
C4—C5—C6—C834.4 (2)C61—C64—C65—N80.1 (3)
C8—C6—C7—C91.0 (3)O2—C12—C13—C14178.50 (15)
C5—C6—C7—C9178.86 (17)C17—C12—C13—C140.7 (3)
C5—C6—C8—C10179.35 (16)O2—C12—C17—C16178.48 (15)
C7—C6—C8—C100.5 (3)C13—C12—C17—C160.6 (3)
C6—C7—C9—N11.1 (3)C12—C13—C14—O1179.77 (15)
C6—C8—C10—N10.0 (3)C12—C13—C14—C150.2 (2)
N4—C18—C19—C200.1 (3)O1—C14—C15—C16178.78 (14)
C18—C19—C20—C23178.52 (17)C13—C14—C15—C161.2 (2)
C18—C19—C20—C210.7 (3)C14—C15—C16—C11177.72 (15)
C23—C20—C21—C22178.48 (17)C14—C15—C16—C171.3 (2)
C19—C20—C23—C26155.66 (18)C11—C16—C17—C12178.61 (16)
C21—C20—C23—C2623.5 (3)C15—C16—C17—C120.4 (2)
C19—C20—C21—C220.7 (3)C39—C34—C35—C33178.61 (15)
C21—C20—C23—C24155.96 (18)C39—C34—C35—C360.2 (2)
C19—C20—C23—C2424.9 (3)C35—C34—C39—O4179.73 (15)
C20—C21—C22—N40.2 (3)C35—C34—C39—C380.8 (2)
C26—C23—C24—C250.9 (3)C33—C35—C36—C37179.97 (16)
C24—C23—C26—C270.8 (3)C34—C35—C36—C371.1 (3)
C20—C23—C26—C27178.70 (17)C35—C36—C37—O3176.91 (16)
C20—C23—C24—C25178.63 (17)C35—C36—C37—C381.9 (3)
C23—C24—C25—N30.1 (3)O3—C37—C38—C39177.47 (15)
C23—C26—C27—N30.1 (3)C36—C37—C38—C391.3 (3)
N5—C28—C29—C301.1 (3)C37—C38—C39—O4178.91 (15)
C28—C29—C30—C30i178.86 (16)C37—C38—C39—C340.1 (3)
C28—C29—C30—C310.9 (3)O6—C51—C52—C53179.58 (14)
C31—C30—C30i—C29i0.3 (2)C56—C51—C52—C531.3 (2)
C29—C30—C30i—C29i180.00 (16)O6—C51—C56—C55179.48 (15)
C29—C30—C30i—C31i0.3 (2)C52—C51—C56—C550.4 (2)
C30i—C30—C31—C32179.24 (16)C51—C52—C53—C50178.71 (15)
C31—C30—C30i—C31i180.00 (16)C51—C52—C53—C540.7 (2)
C29—C30—C31—C320.5 (2)C50—C53—C54—C55179.73 (16)
C30—C31—C32—N50.3 (3)C52—C53—C54—C550.9 (3)
N7—C40—C41—C420.1 (3)C53—C54—C55—O5177.38 (16)
C40—C41—C42—C430.3 (2)C53—C54—C55—C561.8 (3)
C40—C41—C42—C45179.93 (17)O5—C55—C56—C51178.02 (15)
C41—C42—C45—C4630.6 (2)C54—C55—C56—C511.1 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1/2, y+1/2, z1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x1, y, z+1; (viii) x3/2, y+1/2, z+1/2; (ix) x+1, y, z1; (x) x+1/2, y+1/2, z+1/2; (xi) x, y, z+1; (xii) x1/2, y+1/2, z1/2; (xiii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···N3ii0.99001.74002.7329 (18)177.00
C2—H2···O5x1.08002.49003.262 (2)127.00
C24—H24···O3iii1.08002.59003.215 (2)116.00
C28—H28···O61.08002.51003.412 (2)141.00
C44—H44···N6ii1.08002.53003.474 (2)145.00
C47—H47···O4iii1.08002.43003.287 (2)135.00
C52—H52···O2i1.08002.50003.4999 (19)152.00
C54—H54···O4ii1.08002.60003.612 (2)156.00
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x1/2, y+1/2, z+1/2; (x) x+1/2, y+1/2, z+1/2.
(V) top
Crystal data top
4(C10H8N2)·4(C7H8O2)F(000) = 2368
Mr = 1121.31Dx = 1.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4047 reflections
a = 17.8201 (5) Åθ = 2.3–29.6°
b = 8.3288 (2) ŵ = 0.09 mm1
c = 39.3222 (9) ÅT = 100 K
β = 91.901 (2)°Block, colourless
V = 5833.0 (3) Å30.61 × 0.15 × 0.15 mm
Z = 4
Data collection top
Xcalibur, Eos, Nova
diffractometer
12681 independent reflections
Radiation source: Mova (Mo) X-ray Source7472 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.075
Detector resolution: 16.0839 pixels mm-1θmax = 27.1°, θmin = 2.4°
ω scansh = 2222
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 910
Tmin = 0.374, Tmax = 1.000l = 4950
39290 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073All H-atom parameters refined
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0321P)2 + 2.7881P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
12809 reflectionsΔρmax = 0.37 e Å3
1013 parametersΔρmin = 0.34 e Å3
Crystal data top
4(C10H8N2)·4(C7H8O2)V = 5833.0 (3) Å3
Mr = 1121.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.8201 (5) ŵ = 0.09 mm1
b = 8.3288 (2) ÅT = 100 K
c = 39.3222 (9) Å0.61 × 0.15 × 0.15 mm
β = 91.901 (2)°
Data collection top
Xcalibur, Eos, Nova
diffractometer
12681 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
7472 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 1.000Rint = 0.075
39290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.152All H-atom parameters refined
S = 1.08Δρmax = 0.37 e Å3
12809 reflectionsΔρmin = 0.34 e Å3
1013 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02208 (12)0.2466 (3)0.22883 (6)0.0287 (8)
N20.38758 (11)0.1758 (3)0.16174 (6)0.0288 (8)
C280.07146 (16)0.1368 (3)0.24029 (7)0.0319 (10)
C290.14370 (15)0.1228 (3)0.22898 (7)0.0267 (9)
C300.16858 (14)0.2269 (3)0.20399 (6)0.0205 (8)
C310.11848 (14)0.3445 (3)0.19275 (6)0.0235 (9)
C320.04683 (14)0.3493 (3)0.20549 (7)0.0269 (9)
C330.24454 (14)0.2107 (3)0.18969 (6)0.0194 (8)
C340.30184 (14)0.1250 (3)0.20659 (7)0.0268 (9)
C350.37103 (14)0.1124 (3)0.19189 (7)0.0310 (10)
C360.33219 (14)0.2559 (3)0.14547 (7)0.0285 (9)
C370.26111 (14)0.2768 (3)0.15823 (7)0.0264 (9)
N30.10850 (12)0.2943 (3)0.33339 (6)0.0317 (8)
N40.47078 (13)0.3747 (3)0.26297 (6)0.0386 (9)
C180.12138 (14)0.3985 (3)0.30838 (7)0.0308 (10)
C190.19067 (15)0.4193 (3)0.29421 (7)0.0285 (10)
C200.25188 (14)0.3286 (3)0.30572 (7)0.0236 (9)
C210.23886 (15)0.2204 (4)0.33160 (8)0.0399 (11)
C220.16769 (16)0.2069 (4)0.34443 (8)0.0442 (11)
C230.32737 (14)0.3472 (3)0.29101 (7)0.0246 (9)
C240.33873 (16)0.4291 (4)0.26130 (8)0.0436 (11)
C250.40991 (18)0.4408 (4)0.24837 (9)0.0482 (12)
C260.45968 (17)0.2986 (5)0.29162 (9)0.0631 (14)
C270.39068 (17)0.2828 (4)0.30639 (8)0.0556 (13)
N50.29603 (12)0.6213 (3)0.03604 (6)0.0321 (8)
N60.62959 (12)0.8610 (3)0.04542 (6)0.0284 (8)
C590.29929 (15)0.6306 (3)0.00190 (8)0.0339 (10)
C600.36236 (15)0.6768 (3)0.01507 (7)0.0292 (9)
C610.42775 (14)0.7144 (3)0.00347 (6)0.0218 (9)
C620.42483 (15)0.7047 (3)0.03874 (7)0.0306 (10)
C630.35903 (16)0.6596 (4)0.05374 (7)0.0360 (11)
C640.49749 (14)0.7641 (3)0.01360 (6)0.0205 (8)
C650.49514 (14)0.8343 (3)0.04585 (7)0.0265 (9)
C660.56144 (15)0.8803 (3)0.06042 (7)0.0292 (9)
C670.63129 (14)0.7924 (3)0.01451 (7)0.0293 (9)
C680.56822 (14)0.7420 (3)0.00204 (7)0.0270 (9)
N70.11800 (12)0.1056 (3)0.45567 (6)0.0294 (8)
N80.19737 (13)0.4442 (3)0.53624 (6)0.0341 (9)
C10.19085 (18)0.4472 (4)0.50260 (8)0.0479 (12)
C20.12965 (18)0.3887 (4)0.48595 (8)0.0470 (11)
C30.07009 (15)0.3221 (3)0.50387 (7)0.0257 (9)
C40.07659 (17)0.3177 (5)0.53883 (8)0.0618 (13)
C50.14011 (17)0.3778 (5)0.55365 (8)0.0608 (13)
C60.00437 (14)0.2517 (3)0.48704 (7)0.0239 (8)
C70.00158 (16)0.2344 (4)0.45226 (7)0.0517 (13)
C80.05938 (16)0.1625 (4)0.43799 (7)0.0473 (13)
C90.05742 (19)0.1966 (4)0.50538 (7)0.0542 (13)
C100.11567 (18)0.1241 (4)0.48916 (8)0.0559 (13)
O10.24498 (10)0.0206 (2)0.07759 (5)0.0323 (7)
O20.16477 (9)0.5727 (2)0.06969 (4)0.0286 (6)
C520.00690 (15)0.1766 (4)0.12539 (7)0.0373 (11)
C530.07697 (14)0.2204 (3)0.10704 (6)0.0263 (9)
C540.12920 (15)0.1020 (3)0.09971 (7)0.0268 (9)
C550.19445 (14)0.1407 (3)0.08313 (6)0.0246 (9)
C560.20719 (14)0.2979 (3)0.07257 (6)0.0224 (8)
C570.15506 (14)0.4167 (3)0.07975 (6)0.0230 (9)
C580.09050 (14)0.3793 (3)0.09736 (7)0.0255 (9)
O30.52856 (9)0.1242 (2)0.13783 (5)0.0337 (7)
O40.61829 (10)0.3810 (3)0.24125 (5)0.0455 (8)
C380.57007 (13)0.2551 (3)0.18980 (7)0.0266 (9)
C390.58501 (14)0.1856 (3)0.15851 (6)0.0232 (9)
C400.65811 (14)0.1772 (3)0.14747 (6)0.0252 (9)
C410.71688 (14)0.2426 (3)0.16704 (7)0.0253 (9)
C420.70248 (14)0.3116 (3)0.19837 (7)0.0288 (9)
C430.62926 (14)0.3163 (3)0.20973 (7)0.0290 (10)
C440.79550 (15)0.2422 (3)0.15338 (7)0.0365 (10)
O50.12707 (9)0.2439 (2)0.24705 (4)0.0279 (6)
O60.02968 (9)0.2475 (2)0.36290 (4)0.0319 (7)
C450.07556 (13)0.2474 (3)0.30457 (7)0.0227 (8)
C460.08828 (14)0.2429 (3)0.33934 (7)0.0238 (9)
C470.16097 (14)0.2310 (3)0.35108 (6)0.0254 (9)
C480.22183 (14)0.2279 (3)0.32799 (7)0.0253 (9)
C490.20979 (14)0.2312 (3)0.29312 (7)0.0263 (9)
C500.13674 (14)0.2406 (3)0.28168 (6)0.0220 (8)
C510.30076 (15)0.2230 (3)0.34093 (8)0.0391 (11)
O70.23681 (10)0.0375 (2)0.42344 (5)0.0325 (7)
O80.33017 (9)0.5032 (2)0.43093 (5)0.0286 (7)
C110.28125 (14)0.2349 (3)0.42780 (6)0.0232 (8)
C120.29112 (15)0.0755 (3)0.41805 (7)0.0256 (9)
C130.35656 (15)0.0276 (3)0.40263 (7)0.0264 (9)
C140.41226 (14)0.1392 (3)0.39611 (6)0.0251 (9)
C150.40231 (14)0.2999 (3)0.40514 (6)0.0240 (9)
C160.33720 (14)0.3458 (3)0.42137 (6)0.0227 (9)
C170.48367 (15)0.0865 (3)0.37940 (7)0.0332 (10)
H280.052720.053630.259400.0421
H290.180460.029380.239030.0416
H310.131080.430840.173140.0410
H320.006020.438060.196900.0415
H340.295860.071070.231410.0417
H350.415790.046760.204990.0422
H360.345340.305710.120930.0413
H370.218310.343630.144070.0408
H180.072890.469390.300520.0428
H190.197100.505220.273840.0423
H210.284560.147250.341780.0430
H220.156920.121740.364500.0433
H240.292780.485800.247140.0422
H250.418670.500520.224370.0428
H260.510490.249040.303280.0440
H270.388600.216780.330070.0433
H590.247130.600320.011500.0406
H600.361790.680570.042610.0415
H610.474330.732610.054340.0429
H630.355150.652320.081130.0416
H650.441230.857290.058440.0428
H660.558190.933520.085550.0448
H670.686260.773680.002590.0462
H680.576690.688180.026950.0441
H10.239830.495540.489140.0495
H20.128450.398890.458510.0472
H40.032300.264150.554580.0486
H50.144090.372730.581050.0507
H70.050160.258050.435740.0458
H80.061140.144880.410730.0444
H90.062640.211350.532720.0473
H100.167850.093070.502450.0460
H1O0.291950.060700.067720.0377
H2O0.212330.589790.057790.0373
H52A0.024610.084390.112070.0471
H52B0.033020.272890.127500.0470
H52C0.020240.132690.150630.0471
H540.119250.020740.107460.0408
H560.258560.331820.060490.0406
H580.050650.473260.102840.0406
H3O0.478060.147890.146450.0392
H4O0.564030.382120.246130.0410
H380.513600.262890.199030.0431
H400.666680.122270.122940.0448
H420.746280.361620.214920.0467
H44A0.808380.124500.143830.0534
H44B0.799790.328800.133200.0534
H44C0.836550.271610.173120.0541
H5O0.072740.242760.242310.0392
H6O0.017970.266380.351180.0404
H450.018950.258430.295640.0429
H470.169380.221820.378160.0457
H490.257190.237790.275210.0448
H51A0.312920.322430.357360.0532
H51B0.311080.114780.355030.0531
H51C0.341410.226900.320050.0529
H7O0.192700.013360.433790.0413
H8O0.282880.520930.443010.0423
H110.229440.272710.439030.0448
H130.362450.097910.396060.0441
H150.444190.389870.399810.0451
H17A0.472910.024730.355680.0502
H17B0.519080.188200.374550.0510
H17C0.515340.009010.396460.0511
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0303 (13)0.0308 (14)0.0256 (14)0.0010 (11)0.0081 (11)0.0029 (12)