research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 1| Part 2| March 2014| Pages 110-118
ISSN: 2052-2525

Anharmonicity and isomorphic phase transition: a multi-temperature X-ray single-crystal and powder diffraction study of 1-(2′-amino­phenyl)-2-methyl-4-nitro­imidazole

aCRM2, Jean Barriol Institute, CNRS UMR 7036, University of Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France, bFaculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań, Poland, and cDepartment of Chemistry, University of Warsaw, Pastuera 1, 02-093 Warszawa, Poland
*Correspondence e-mail: mkubicki@amu.edu.pl, claude.lecomte@crm2.uhp-nancy.fr

Edited by D. Gratias, LEM-CNRS/ONERA, France (Received 20 December 2013; accepted 7 February 2014; online 28 February 2014)

The harmonic model of atomic nuclear motions is usually enough for multipole modelling of high-resolution X-ray diffraction data; however, in some molecular crystals, such as 1-(2′-aminophenyl)-2-methyl-4-nitro-1H-imidazole [Paul, Kubicki, Jelsch et al. (2011[Paul, A., Kubicki, M., Kubas, A., Jelsch, C., Fink, K. & Lecomte, C. (2011). J. Phys. Chem. A, 115, 12941-12952.]). Acta Cryst. B67, 365–378], it may not be sufficient for a correct description of the charge-density distribution. Multipole refinement using harmonic atom vibrations does not lead to the best electron density model in this case and the so-called `shashlik-like' pattern of positive and negative residual electron density peaks is observed in the vicinity of some atoms. This slight disorder, which cannot be modelled by split atoms, was solved using third-order anharmonic nuclear motion (ANM) parameters. Multipole refinement of the experimental high-resolution X-ray diffraction data of 1-(2′-aminophenyl)-2-methyl-4-nitro-1H-imidazole at three different temperatures (10, 35 and 70 K) and a series of powder diffraction experiments (20 ≤ T ≤ 300 K) were performed to relate this anharmonicity observed for several light atoms (N atoms of amino and nitro groups, and O atoms of nitro groups) to an isomorphic phase transition reflected by a change in the b cell parameter around 65 K. The observed disorder may result from the coexistence of domains of two phases over a large temperature range, as shown by low-temperature powder diffraction.

1. Introduction

When using accurate ultra-high-resolution X-ray diffraction data, the most commonly used harmonic model of the atomic nuclear motions may not be sufficient for some molecular crystals, even for lighter atoms. Therefore, multipole refinement without modelling anharmonic nuclear motions (ANMs) does not lead to the best electron density (ED) model, as revealed by peaks and holes in residual maps; these peaks arranged in a `shashlik-like' pattern in the vicinity of the anharmonic atoms are an indicator of third-order ANMs (Herbst-Irmer et al., 2013[Herbst-Irmer, R., Henn, J., Holstein, J. J., Hübschle, C. B., Dittrich, B., Stern, D., Kratzert, D. & Stalke, D. (2013). J. Phys. Chem. A, 117, 633-641.]; Meindl et al., 2010[Meindl, K., Herbst-Irmer, R. & Henn, J. (2010). Acta Cryst. A66, 362-371.]) and can be modelled by introducing Gram–Charlier or cumulant expansions (Johnson & Levy, 1974[Johnson, C. K. & Levy, H. A. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 314-319. Birmingham: Kynoch Press.]).

Despite the fact that ANMs have been previously discussed in the literature (e.g. Kuhs, 1988[Kuhs, W. F. (1988). Aust. J. Phys. 41, 369-382.], 1992[Kuhs, W. F. (1992). Acta Cryst. A48, 80-98.]), their reliable separation from the static charge-density distribution parameters, disorder or librations was questioned (Mallinson et al., 1988[Mallinson, P. R., Koritsanszky, T., Elkaim, E., Li, N. & Coppens, P. (1988). Acta Cryst. A44, 336-343.]; Restori & Schwarzenbach, 1996[Restori, R. & Schwarzenbach, D. (1996). Acta Cryst. A52, 369-378.]). Although Iversen et al. (1999[Iversen, B. B., Larsen, F. K., Pinkerton, A. A., Martin, A., Darovsky, A. & Reynolds, P. A. (1999). Acta Cryst. B55, 363-374.]) distinguished anharmonic nuclear motions from static electron density features in a thorium complex structure using extremely high-resolution (1.7 Å−1) data from two very low-temperature experiments (at 9 and 27 K), Henn et al. (2010[Henn, J., Meindl, K., Oechsner, A., Schwab, G., Koritsanszky, T. & Stalke, D. (2010). Angew. Chem. Int. Ed. 49, 2422-2426.]) were able to separate both contributions for lighter atoms (namely P atoms) at lower resolution (1.15 Å−1) at 100 K. Birkedal et al. (2004[Birkedal, H., Madsen, D., Mathiesen, R. H., Knudsen, K., Weber, H.-P., Pattison, P. & Schwarzenbach, D. (2004). Acta Cryst. A60, 371-381.]) successfully refined the multipolar electron density of urea, while Scheins et al. (2010[Scheins, S., Zheng, S.-L., Benedict, J. B. & Coppens, P. (2010). Acta Cryst. B66, 366-372.]) showed that ANMs are necessary for the correct description of the charge density of a Zn atom. Finally, Zhurov et al. (2011[Zhurov, V. V., Zhurova, E. A., Stash, A. I. & Pinkerton, A. A. (2011). Acta Cryst. A67, 160-173.]) showed that neglecting ANMs in the case of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) results in unrealistic charge-density deformation and Laplacian maps in the region of the nitro group. For a similar compound, 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), which has a slightly more compact crystal structure, the refined ANM parameters were statistically significant, however, their effect on the resulting charge-density deformation and Laplacian maps was rather negligible.

The effects related to ANMs are visible only at high-resolution data and the values representing the corresponding refined Gram–Charlier coefficients are often hardly statistically significant. Correlatively, the agreement factors do not improve noticeably upon the introduction of these new parameters. Nevertheless, such a physical model considerably reduces residual peak heights (Paul, Kubicki, Jelsch et al., 2011[Paul, A., Kubicki, M., Kubas, A., Jelsch, C., Fink, K. & Lecomte, C. (2011). J. Phys. Chem. A, 115, 12941-12952.]; see Figs. 4 and 5 therein). To avoid possible correlations between ANMs and the remaining ED parameters, the former ones should be refined first against high-resolution data and then by a joint refinement of both anharmonic and electron density parameters in the subsequent refinement steps (Mallinson et al., 1988[Mallinson, P. R., Koritsanszky, T., Elkaim, E., Li, N. & Coppens, P. (1988). Acta Cryst. A44, 336-343.]).

Standard resolution crystal structures of numerous 4-nitroimidazole derivatives have been investigated in our laboratories, with special attention paid to the weak intermolecular interactions present in these molecular crystals (Kubicki et al., 2001[Kubicki, M., Borowiak, T., Suwiński, J. & Wagner, P. (2001). Acta Cryst. C57, 106-108.]; Kubicki, 2004a[Kubicki, M. (2004a). Acta Cryst. C60, o255-o257.],b[Kubicki, M. (2004b). J. Mol. Struct. 698, 67-73.]; Kubicki & Wagner, 2007[Kubicki, M. & Wagner, P. (2007). Acta Cryst. C63, o454-o457.], 2008[Kubicki, M. & Wagner, P. (2008). J. Mol. Struct. 876, 134-139.]; Wagner et al., 2007[Wagner, P., Świerczek, K. & Kubicki, M. (2007). Acta Cryst. C63, o445-o447.]; Wagner & Kubicki, 2007[Wagner, P. & Kubicki, M. (2007). Acta Cryst. E63, o3083.]). Further investigations of the high-resolution diffraction data using the Hansen–Coppens model (Hansen & Coppens, 1978[Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909-921.]) and quantum theory of atoms in molecules (QTAIM; Bader, 1994[Bader, R. F. W. (1994). Atoms in Molecules: A Quantum Theory. Oxford University Press.]) topological analysis were performed for 1-phenyl-4-nitroimidazole (Kubicki et al., 2002[Kubicki, M., Borowiak, T., Dutkiewicz, G., Souhassou, M., Jelsch, C. & Lecomte, C. (2002). J. Phys. Chem. B, 106, 3706-3714.]), 1-(2′-aminophenyl)-2-methyl-4-nitroimidazole (Paul, Kubicki, Jelsch et al., 2011[Paul, A., Kubicki, M., Kubas, A., Jelsch, C., Fink, K. & Lecomte, C. (2011). J. Phys. Chem. A, 115, 12941-12952.]), 2-methyl-4-nitro-1-phenyl-1H-imidazole-5-carbonitrile (Poulain-Paul et al., 2012[Poulain-Paul, A., Nassour, A., Jelsch, C., Guillot, B., Kubicki, M. & Lecomte, C. (2012). Acta Cryst. A68, 715-728.]; Paul, Kubicki, Kubas et al., 2011[Paul, A., Kubicki, M., Kubas, A., Jelsch, C., Fink, K. & Lecomte, C. (2011). J. Phys. Chem. A, 115, 12941-12952.]) and for the solid solution of 1-(4′-chlorophenyl)-2-methyl-4-nitro-1H-imidazole-5-carbonitrile (97.5%) with 5-bromo-1-(4′-chlorophenyl)-2-methyl-4-nitro-1H-imidazole (2.5%; Poulain et al., 2014[Poulain, A., Kubicki, M. & Lecomte, C. (2014). In preparation.]).

After high-resolution crystal structure determination and multipolar refinement of 1-(2′-aminophenyl)-2-methyl-4-nitroimidazole, 1[link], at 100 K (Paul, Kubicki, Jelsch et al., 2011[Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365-378.]), unexpected high residual-density peaks arranged in a `shashlik-like' pattern appeared at high-order residual maps ([\sin {\theta / \lambda }] ≥ 0.7 Å−1) in the planes bisecting the amino groups of two symmetry-independent molecules, and a distorted static deformation density was observed for one of the nitro groups involved in the weaker hydrogen bonds. Thus, third-order ANMs were used to model the two fragments of the molecules (a split-atom refinement did not succeed). Such a procedure resulted in virtually featureless residual electron density maps and symmetrical arrangement of the static electron density of the NO2 fragment.

[Scheme 1]

In the next step powder diffraction experiments at different temperatures (20 ≤ T ≤ 300 K) were performed. The data collected revealed an isomorphic phase transition (see for example Bendeif et al., 2009[Bendeif, E.-E., Lecomte, C. & Dahaoui, S. (2009). Acta Cryst. B65, 59-67.]) as reflected by an abrupt change of the b unit-cell parameter around 65 K. Forbidden reflections in P21/c did not appear, which suggests that the space group was conserved.

The aim of this paper is an attempt to relate this anharmonic refinement to the isomorphic phase transition by analysing several additional X-ray single-crystal diffraction experiments performed for 1, including a high-resolution full data collection at 10 K on an Agilent Technologies SuperNova diffractometer, accurate full data collections at 35 and 70 K using the homemade mini-goniometer system implemented on an Orange top-loading cryostat on the CRM2 Bruker AXS APEX II diffractometer (Fertey et al., 2007[Fertey, P., Argoud, R., Bordet, P., Reymann, J., Palin, C., Bouchard, C., Bruyère, R., Wenger, E. & Lecomte, C. (2007). J. Appl. Cryst. 40, 526-531.]), and temperature-dependent unit-cell parameter determination from powder diffraction patterns collected on a Panalytical X'Pert Pro diffractometer. As careful crystal structure and topological analyses of the electron density have already been performed for the title compound (Paul, Kubicki, Jelsch et al., 2011[Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365-378.]; Kubicki & Wagner, 2008[Kubicki, M. & Wagner, P. (2008). J. Mol. Struct. 876, 134-139.]), they are not repeated in this paper.

2. Materials and methods

2.1. Experimental details of X-ray single-crystal diffraction measurements

A yellowish transparent cube-shaped crystal (0.20 × 0.17 × 0.13 mm) was chosen for data collection at 10 K on an Agilent Technologies SuperNova four-circle diffractometer equipped with a CCD detector. The temperature was controlled with an Oxford Cryosystems cooling device. A total of 2970 frames were collected in 35 runs to obtain the high redundancy data and 32 additional reference frames were measured to verify the stability of the crystal. Diffraction data up to [\sin \theta /\lambda] = 1.10 Å−1 were collected using the ω-scan method with a rotation width of [{\rm{\Delta }}\omega] = 1°. Different exposure times were chosen depending on the 2θ settings of the detector: 5 s for [2\theta] = 1.25°, and 20 s for [2\theta] = −65.45 and 67.95°, with a 55 mm crystal-to-detector distance. Details of the data collection and crystallographic statistics are collected in Table 1[link].

Table 1
Experimental details for single-crystal measurements at 10, 35 and 70 K – all refinement parameters are given for the multipole model

Crystal data
Chemical formula C10H10N4O2
Mr 436.4
Temperature (K) 10 35 70
Wavelength (Å) 0.71073, graphite-monochromated
Crystal system, space group Monoclinic, P21/c
a, b, c (Å) 11.0104 (3), 10.0398 (2), 18.6040 (4) 10.9784 (14), 10.0056 (13), 18.488 (3) 11.0470 (12), 10.1293 (11), 18.652 (2)
β (°) 97.320 (2) 97.223 (4) 97.223 (3)
V (Å3) 2039.77 (8) 2014.7 (5) 2070.6 (4)
Z 8
Dx (g cm−3) 1.42 1.44 1.40
F000 912
Absorption coefficient (mm−1) 0.104 0.105 0.102
Crystal to detector distance (mm) 55 40 40
       
Data collection
Absorption correction Analytical Multi-scan Multi-scan
Tmin, Tmax 0.983, 0.989 0.915, 1.105 0.932, 1.028
Crystal size (mm) 0.20 × 0.17 × 0.13 0.12 × 0.14 × 0.15 0.12 × 0.14 × 0.15
[\sin \theta /\lambda] range (Å−1) 0.07–1.10 0.07–0.90 0.07–1.20
Limiting indices −24 → h → 25, −22 → k → 22, −41 → l → 41 −19 → h → 16, −15 → k → 17, −32 → l → 32 −23 → h → 25, −23 → k → 22, −44 → l → 44
Reflections collected, unique, unique with σ cut-off 305 420, 22 731, 15 217 [I > 2σ(I)] 41 665, 11 032, 9475 [I > 1.25σ(I)] 121 651, 26 563, 17 738 [I > 2σ(I)]
Rint 0.059 0.065 0.087
Data completeness (%) 100 96.7 88.5
No. of parameters 945 945 995
       
Refinement
Weighting scheme [{w^{ - 1}} = {\sigma ^2}\left({{{\left| {{F_{\rm{o}}}} \right|}^2}} \right)]
Goodness of fit on F2 0.90 0.92 0.95
Final R(F) indices R1 = 0.032, wR2 = 0.028 R1 = 0.029, wR2 = 0.028 R1 = 0.029, wR2 = 0.028
Δρmax, Δρmin (e Å−3) 0.32 (6), −0.34 (6) 0.25 (6), −0.30 (6) 0.29 (6), −0.27 (6)
†Different number of refined parameters due to additional ANMs required only at 70 K.
[{{ R}}_{1} = {{\sum \left|{{ F}}_{{\rm o}}-{{ F}}_{{\rm c}}\right|}/{\sum {{ F}}_{{\rm o}}}}\semi \quad {w}{{R}}_{2} = \sqrt{{{\sum {\left[{{\left({{F}}_{{\rm o}}-{{ F}}_{{\rm c}}\right)}/{{ \sigma }{{F}}_{{\rm o}}}}\right]}^{2}}/{\sum {\left[{{{{ F}}_{{\rm o}}}/{{\sigma }{{F}}_{{\rm o}}}}\right]}^{2}}}}].

Another yellowish crystal (0.12 × 0.14 × 0.15 mm) from the same crystallization batch was chosen for the 35 and 70 K measurements on a CRM2 Nonius Kappa CCD diffractometer equipped with a homemade universal low-temperature mini-goniometer, helium top-loading Orange cryostat (Fertey et al., 2007[Fertey, P., Argoud, R., Bordet, P., Reymann, J., Palin, C., Bouchard, C., Bruyère, R., Wenger, E. & Lecomte, C. (2007). J. Appl. Cryst. 40, 526-531.]). A total of 4074 (35 K) and 8240 (70 K) frames were collected in 8 (35 K) and 25 runs (70 K). Diffraction data up to [\sin \theta /\lambda] = 0.90 Å−1 (35 K) and [\sin \theta /\lambda] = 1.20 Å−1 (70 K) – the lower resolution for the 35 K measurement resulted from time and liquid helium restrictions – were collected using ω- and φ-scan methods with 0.25° rotation widths, the χ angle being fixed at 43.37° and the crystal-to-detector distance at 40 mm. Two [2\theta] positions (−30 and −90°) were used to collect all the reflections with exposure times of 3 and 60 s for the 35 K data, and 10 s and 60 s for the 70 K data. Details of the data collections and measurement statistics are given in Table 1[link]. Despite some geometrical constraints due to the cryostat orientation, the completeness of the data is very close to 100%, and the internal agreement factors are very good compared with typical charge-density quality X-ray data.

Unit-cell parameter determination, integration of the reflection intensities, data reduction and Lorentz–polarization corrections were performed using CrysAlis PRO (Agilent Technologies, 2013[Agilent Technologies (2013). CrysAlis PRO. Yarnton, Oxfordshire, England.]) for the 10 K data, and APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc, Madison, Wisconsin, USA.]) for the 35 and 70 K data. An analytical numerical absorption correction using a multi-faced crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) was applied to the 10 K data, while a multi-scan absorption correction (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) was applied to the 35 and 70 K data. Data sorting, scaling and merging of reflections were performed with SORTAV (Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.], 1989[Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.], 1987[Blessing, R. H. (1987). Cryst. Rev. 1, 3-58.]) for all three datasets.

As shown in Table 1[link], all the multipolar models (10, 35 and 70 K) converge to very good R factors. This shows the possibility of collecting accurate charge density data using the mini-goniometer and cryostat system (Fertey et al., 2007[Fertey, P., Argoud, R., Bordet, P., Reymann, J., Palin, C., Bouchard, C., Bruyère, R., Wenger, E. & Lecomte, C. (2007). J. Appl. Cryst. 40, 526-531.]), i.e. performing very low-temperature high-resolution accurate X-ray data collections with very small helium consumption. One of the problems not yet resolved for the mini-goniometer data is the precision of the cell parameters (Table 1[link]) possibly due to the difficulty in centering the crystal inside the cryostat, and to the anisotropy of the data collection needed to avoid possible collisions; as shown below, this has some consequences on the quality of the bond distances and angles.

2.2. Powder diffraction measurements (PXRD)

All PXRD measurements were performed using a Panalytical X'Pert Pro diffractometer equipped with a Cu tube, a Ge(111) incident-beam monochromator (λ = 1.5406 Å) and an X'Celerator detector. Temperature-controlled diffractograms were collected on cooling with an Oxford Cryosystems cryostat (Phenix) from 300 to 125 K (under vacuum, cooling rate 6 K min−1; 25 K increments; temperature stabilization: 5 min), then from 120 to 15 K (under vacuum, cooling rate 6 K min−1, 5 K increments, temperature stabilization: 5 min). Temperature-controlled diffractograms were collected on heating from 20 to 120 K with the same cryostat and then from 125 to 300 K under the same conditions.

Data collection was carried out in the scattering angle range θ = 5–50° with a 0.0167° step over 4 h. The program GSAS/EXGUI (Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]; Larson & Von Dreele, 1994[Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Los Alamos, New Mexico, USA.]) was used for the Le Bail extraction in space group P21/c. Owing to the complexity of the structure and since powder X-ray diffraction (PXRD) is less sensitive than single-crystal measurements, single-crystal atomic parameters were used as the structural model. Only the cell dimensions, parameters of the pseudo-Voigt profile shape function and the zero shift were refined.

2.3. Structure determination and refinement

Crystal structures of 1 for the three datasets (10, 35 and 70 K) were solved using SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]) and first refined with SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) applying the independent atom model (IAM), with isotropic and anisotropic treatment of H and non-H atoms, respectively. Geometry constraints (CAr—H = 1.083 Å; CMe—H = 1.059 Å; N—H = 1.009 Å), atomic thermal motion parameters (initial values of UisoH = y×UeqX; y = 1.2 for Ar and NH2 groups; y = 1.5 for Me group) were initially imposed on H atoms to preserve the physical meaningfulness of the models. Fig. 1[link] shows the two symmetry-independent molecules of 1 with labelling scheme (see Paul, Kubicki, Jelsch et al., 2011[Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365-378.], for more details).

[Figure 1]
Figure 1
Anisotropic ellipsoid representation of the two symmetry-independent molecules of 1 with atom-labelling scheme. Ellipsoids are drawn at the 50% probability level, H atoms are depicted as capped sticks (MERCURY; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The labels of the second molecule are ordered in the same way and marked with an A (e.g. C1A, N1A etc.). The strongest interactions are indicated by turquoise dashed lines.

Subsequently the multipolar refinement strategy previously presented was applied, with restraints on symmetry and chemical equivalency defined as optimal from Rfree-factor calculations (see Paul, Kubicki, Jelsch et al., 2011[Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365-378.], and references therein). The main points of the refinement strategy were the following: (a) scale factor refined continuously with all parameters; (b) anharmonicity parameters refined against the high-order data ([\sin \theta /\lambda] ≥ 0.7 Å−1; only deemed necessary for the 70 K data); (c) thermal motion and positional parameters for non-H atoms against high-order data alternatively with H-atom coordinates and distances constrained to standard neutron values (Allen & Bruno, 2010[Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380-386.]); (d) refinement of multipolar parameters followed by valence populations (constraints imposed on chemically equivalent atoms in a similar environment) and then both together; (e) κ parameters for non-H atoms (constraints imposed on chemically equivalent atoms in similar environment); (f) points (d) and (e) performed until convergence is achieved; (g) anharmonicity parameters (only for 70 K data) alternatively with thermal motion and positional parameters for all atoms against all data (H atoms still constrained); (h) valence and multipole populations alternatively with κ for non-H atoms and positional parameters plus thermal motion; (i) anharmonicity parameters (only for 70 K data); constraints on valence and multipole populations together with κ, [\kappa ^{\prime}] coefficients changed into restraints at the Rfree level; (j) [\kappa ^{\prime}] non-H atoms alternatively with valence and multipole populations; (k) κ of H atoms; (l) points (h) and (i) alternatively; (m) [\kappa ^{\prime}] for H atoms; (n) point (l) repeated; (n) SHADE estimation of the thermal motion of H atoms (Madsen, 2006[Madsen, A. Ø. (2006). J. Appl. Cryst. 39, 757-758.]; Madsen et al., 2013[Madsen, A. Ø., Civalleri, B., Ferrabone, M., Pascale, F. & Erba, A. (2013). Acta Cryst. A69, 309-321.]); (o) valence and multipole populations alternatively with κ H atoms, κ non-H atoms, coordinates and thermal motion; (p) point (j) repeated; (q) point (h) repeated; successive refinement of κ non-H, κ H-atoms, [\kappa ^{\prime}] non-H, [\kappa ^{\prime}] H atoms; (r) final simultaneous refinement of all parameters.

As mentioned above, only the 70 K data required the third-order anharmonic corrections (Kuhs, 1992[Kuhs, W. F. (1992). Acta Cryst. A48, 80-98.]; Sørensen et al., 2003[Sørensen, H. O., Stewart, R. F., McIntyre, G. J. & Larsen, S. (2003). Acta Cryst. A59, 540-550.]) for a correct modelling of three atoms of one NO2 group (N81, O81 and O82) and two amino N atoms (N6 and N6A) in order to reduce the typical `shashlik-like' pattern usually found at high-order residual density maps. Stronger interactions, in which the second nitro group (N81A, O81A and O82A) is involved, seem to restrict vibrations and therefore an harmonic model was sufficient.

3. Results and discussion

3.1. Powder diffraction data

Along with the temperature decrease from 300 to 100 K, a linear evolution of the unit-cell volume is observed reaching a minimum at ∼ 60–65 K (Fig. 2[link]), followed by a slight volume increase from 50 to 20 K. The b parameter decreases linearly from room temperature (RT) to 60 K with the temperature (T) ([\Delta b\left(T\right)/{b}_{\rm RT}] = −3 × 10−5T + 0.99) and then increases for T < 60 K ([\Delta b\left(T\right)/{b}_{\rm RT}] = 2 × 105T + 0.99), in agreement with previous findings (Paul, Kubicki, Jelsch et al., 2011[Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365-378.]). The c parameter remains almost constant, as already noted by Paul, Kubicki, Jelsch et al. (2011[Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365-378.]). Contrary to the observation of Bendeif et al. (2009[Bendeif, E.-E., Lecomte, C. & Dahaoui, S. (2009). Acta Cryst. B65, 59-67.]) no hysteresis phenomenon was found or if it exists the temperature difference is smaller than 5 K.

[Figure 2]
Figure 2
Unit-cell parameter variation with temperature decrease from 300 to 20 K normalized to 300 K.

When increasing T in the range 15–100 K, a splitting of the 100 and 200 reflections appears, which may suggest a second-order phase transition (Fig. 3[link]). The phenomenon is more pronounced at 100 K, while at 300 K the diffraction peaks are practically symmetrical. Such a splitting is not visible on the 020 reflection due to its very small intensity (Fig. S2 ). Two crystal phases seem to coexist along a large temperature range. This can explain the observed disorder at 100 K, which was solved using anharmonic atom treatment.

[Figure 3]
Figure 3
Splitting of the 100 and 200 diffraction peaks with temperature increase.

3.2. Charge-density distribution modelling

According to our previous findings (Paul, Kubicki, Jelsch et al., 2011[Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365-378.]) for the 100 K data, the largest residual peaks in the residual density Fourier maps ([\sin \theta /\lambda] ≤ 0.9 Å−1) lie in the planes bisecting the H61—N6—H62 moiety, at a distance of ca 0.5 Å from the N atoms (0.37 e Å−3 for N6A, and 0.28 e Å−3 for N6 atoms). They disappear at a resolution of [\sin \theta /\lambda] ≤ 0.7 Å−1 and therefore cannot be interpreted as missing H atoms, because they only appear when high-order reflections are included, while H atoms scatter at very low [\sin \theta /\lambda]. The refined third-order anharmonic parameters are statistically not significant, but reduce substantially the residual peak heights.

The first important result of this report is that the 10 and 35 K data do not need any anharmonic motion modelling (ANM) of both amino and nitro groups, whereas ANM refinement is still necessary at 70 K as peaks and holes in the `shashlik-like' pattern appear close to the N6 atom: +0.42 (6) and −0.32 (6) e Å−3 [compared with +0.56 (5) and −0.27 (5) e Å−3 for the 100 K data (Paul, Kubicki, Jelsch et al., 2011[Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365-378.])]. The lower resolution of the 35 K (0.9 Å−1) dataset compared with the 10 K (1.1 Å−1) and 70 K (1.2 Å−1) ones does not affect the detectability of the `shashlik-like' pattern, since such a distortion is already observed at 100 K at 0.9 Å−1 cut-off (Paul, Kubicki, Jelsch et al., 2011[Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365-378.]). Moreover, the [I/\sigma \left(I \right)] cut-off at 35 K was reduced to 1.25 compared with 2.0 for 10 and 70 K in order to improve the data-to-parameter ratio.

Fig. 4[link] gives residual density maps obtained after harmonic (left panel) and anharmonic (right panel) treatment of the 70 K data. Similar to the 100 K data, residual peaks at 70 K are more pronounced for one of the two amino groups (N6A) and mostly at higher resolution (1.2 Å−1). The residual peaks at 100 K are slightly higher than those observed for the 70 K data. Application of the ANMs of third-order significantly reduced the positive and negative residual electron density peaks and restored the expected valence-density arrangement around O atoms in the NO2 group.

[Figure 4]
Figure 4
Residual and static electron density maps at 70 K after multipole refinement in the planes bisecting NH2 and NO2 groups (cutoff 1.2 and 0.9 Å resolution) neglecting (left panel) or including (right panel) ANMs; contours set to 0.05 e Å−3, blue dashed lines – negative contours, red solid lines – positive contours; 1.2 and 0.9 values indicate the resolution (Å−1).

Comparison of the third-order ANM parameters for the 100 and 70 K data is given in Table 2[link] for Cijk above the 3σ criterion. There is a general trend that the significant parameters at 100 K drop considerably at 70 K (e.g. C111 for N6 and N6A atoms). However, surprisingly, some parameters seem to be significant only at 70 K (e.g. C222, C223 and C233 for N6A).

Table 2
Anharmonic nuclear motion parameters greater than 3σ for the 100 K and 70 K data

100 K
C111 N6 −0.001724 (81) N6A 0.000657 (47) N8 O81 0.000787 (60) O82 0.000494 (66)
C222 N6 0.000264 (49) N6A N8 −0.001359 (69) O81 0.000246 (63) O82 0.000379 (95)
C333 N6 N6A N8 −0.000232 (10) O81 −0.000044 (9) O82 −0.000034 (8)
C112 N6 0.002705 (157) N6A −0.000538 (93) N8 −0.000386 (91) O81 0.000655 (138) O82 −0.000725 (165)
C122 N6 −0.001220 (128) N6A 0.000432 (92) N8 0.000902 (119) O81 0.000411 (141) O82 0.000856 (192)
C113 N6 N6A 0.000268 (51) N8 −0.000303 (50) O81 0.000324 (71) O82
C133 N6 N6A N8 0.000295 (34) O81 O82
C223 N6 N6A N8 −0.002084 (85) O81 O82 −0.000378 (101)
C233 N6 N6A N8 −0.001178 (45) O81 O82 0.000386 (44)
C123 N6 N6A N8 0.000991 (102) O81 −0.000511 (114) O82
                     
70 K
C111 N6 −0.000475 (56) N6A 0.000135 (39) N8 0.000313 (41) O81 0.000466 (48) O82 0.000519 (52)
C222 N6 N6A 0.000422 (34) N8 O81 O82
C333 N6 N6A −0.000061 (4) N8 O81 O82
C112 N6 −0.000874 (81) N6A N8 0.000245 (58) O81 −0.000604 (76) O82 0.000770 (90)
C122 N6 −0.000247 (64) N6A N8 0.000321 (51) O81 0.000308 (70) O82 0.000713 (87)
C113 N6 N6A N8 0.000175 (33) O81 0.000348 (42) O82 0.000237 (42)
C133 N6 N6A 0.000095 (17) N8 0.000081 13) O81 0.000100 (18) O82 0.000064 (17)
C223 N6 N6A −0.000627 (36) N8 0.000113 (23) O81 0.000210 (33) O82
C233 N6 N6A 0.000361 (18) N8 O81 −0.000084 (16) O82 −0.000136 (17)
C123 N6 N6A −0.000435 (51) N8 0.000123 (38) O81 O82
†10σ level.

The quality of the four (10, 35, 70 and 100 K) data refinements is comparable, with insignificant differences between the corresponding agreement factors (Table 1[link]): R1 = 0.029–0.032, wR2 = 0.025–0.028 and S (goodness-of-fit) = 0.90 (10 K)–1.07 (100 K), and [\Delta {\rho }_{\rm max}] (from +0.25 e Å−3 to +0.32 e Å−3), [{\rm{\Delta }}{\rho _{{\rm{min}}}}] (from −0.22 e Å−3 to −0.34 e Å−3), which in fact depends on the data collection resolution (lowest for 35 K data).

In conclusion, diffraction experiments at 35 and 10 K did not require any special anharmonic treatment, as the harmonic approximation is sufficient for all the atoms concerned (Fig. 5[link]). It is in line with the isomorphic phase transition, which occurs around 60 K. ANH modelling of the 70 and 100 K data enables modelling of the residual density accounting for the disorder which may be due to the co­existence of both LT and HT crystal phases existing in this temperature range.

[Figure 5]
Figure 5
Residual electron density and static deformation maps after harmonic modelling of 35 and 10 K data drawn in the planes bisecting both amino groups and one nitro group prone to geometrical distortion; contours set at 0.05 e Å−3, blue solid lines – positive contours, red dashed lines – negative contours, [\sin \theta /\lambda] ≤ 0.9 Å−1.

3.3. Electron density model validation via topological analysis of the covalent bonds

In order to compare and validate the model correctness at different temperatures (10, 35, 70 and 100 K) the covalent bond critical points (CPs) of the aryl ring (that should be unchanged and prove consistency of these four data treatments), together with those of the anharmonic fragments, are collected in Table S1 . In general, the distance between the two involved atoms is ∼ 0.01 Å longer for the 70 K structure, but this lengthening is not significant enough to be reflected in the respective distances to the critical points and, as seen below, is a result of a less accurate estimation of the cell parameters derived from the mini-goniometer data. For the C—C bonds of the aryl ring the total electron density value differences for a given bond are ≤ 0.1 e Å−3, about 2σ, while the Laplacian values are systematically higher for the 70–100 K data, but within the usually accepted estimated error (up to 4.0 e Å−5).

For bonds involving the anharmonic atoms the total density at CP is on average larger for the datasets, which were corrected for anharmonic treatment (maximal change 0.2 e Å−3 for the N8—O81 bond), as well as the Laplacian values ≃ 4–6 e Å−5) for all the 70–100 K bonds, except N8—O81.

Contrary to Zhurov et al. (2011[Zhurov, V. V., Zhurova, E. A., Stash, A. I. & Pinkerton, A. A. (2011). Acta Cryst. A67, 160-173.]) the Laplacian maps (Fig. 6[link]) of the nitro group calculated within the harmonic approximation (not shown here) are indistinguishable from those correctly modelled, which suggests a lower anharmonicity/disorder in 1.

[Figure 6]
Figure 6
Laplacian of the total electron density maps at 100, 70, 35 and 10 K for the two NO2 groups; anharmonic treatment indicated by ANMs marked; logarithmic contours; blue dashed lines – positive contours, red solid lines − negative contours.

For the three critical points characterizing the strongest intermolecular interactions where the NO2 groups are involved, the topological data at different temperatures are collected in Table 3[link]. All electron density values decrease when the temperature increases, while the Laplacian values fluctuate rather than show a visible trend. Nevertheless, all these changes are insignificant at the 3σ level, as expected on the basis of constant intermolecular distances [for example, the O81A⋯H62A distance equals 2.028 (10) Å].

Table 3
Summary of the three strongest nitro group interactions at different temperatures

Cp T(K) Involved atoms D12 (Å) D1cp (Å) D2cp (Å) ρtot (e Å−3) [\nabla]2ρ (e Å−5) λ1 (e Å−5) λ2 (e Å−5) λ3 (e Å−5) ε G(rCP) (kJ mol−1 a.u.−3) V(rCP) (kJ mol−1 a.u.−3) H(rCP) (kJ mol−1 a.u.−3)
Cp1 10 O81A—H62A 2.0316 1.281 0.751 0.109 2.14 −0.45 −0.45 3.05 0.00 46.7 −35 11.7
  35 2.0163 1.291 0.726 0.087 2.45 −0.36 −0.36 3.17 0.01 49.8 −32.9 16.9
  70 2.0393 1.302 0.737 0.086 2.34 −0.37 −0.37 3.08 0.01 47.8 −31.8 16.0
  100 2.0261 1.314 0.715 0.060 2.47 −0.25 −0.24 2.96 0.04 47.8 −28.1 19.7
Cp2 10 O82—H62 2.2634 1.408 0.886 0.060 1.21 −0.24 −0.22 1.66 0.09 24.8 −16.8 8.0
  35 2.2496 1.406 0.897 0.055 1.28 −0.25 −0.20 1.73 0.18 25.7 −16.6 9.1
  70 2.2930 1.418 0.912 0.053 1.14 −0.22 −0.20 1.56 0.08 23.1 −15 8.1
  100 2.3014 1.436 0.924 0.046 1.07 −0.21 −0.17 1.44 0.18 21.2 −13.4 7.8
Cp3 10 O81—H4A 2.3450 1.363 1.002 0.076 1.13 −0.26 −0.25 1.64 0.04 24.8 −18.8 6.0
  35 2.3489 1.375 1.005 0.069 1.09 −0.25 −0.24 1.58 0.03 23.5 −17.2 6.3
  70 2.3812 1.395 1.010 0.065 1.07 −0.25 −0.24 1.55 0.03 22.6 −16.2 6.4
  100 2.3671 1.396 1.001 0.058 1.05 −0.25 −0.21 1.50 0.15 21.7 −15.0 6.7

In a recent review, Kamiński et al. (2014[Kamiński, R., Domagała, S., Jarzembska, K. N., Hoser, A. A., Sanjuan-Szklarz, W. F., Gutmann, M. J., Makal, A., Malińska, M., Bąk, J. M. & Woźniak, K. (2014). Acta Cryst. A70, 72-91.]) investigated structural parameters and charge-density properties in a series of 100 K high-resolution datasets of α-oxalic acid dehydrate, which reveals that electron density and Laplacian values at corresponding CPs for this unique crystal structure vary over a small range, even at the same temperature. The standard deviations for the total electron density and Laplacian for covalent bonds and intermolecular bonds vary between 0.03–0.06 e Å−3, 1–7 e Å−5 and 0.001–0.03 e Å−3, 1–6 e Å−5, respectively, which confirms our above conclusion that changes in 1 are statistically insignificant.

3.4. Accuracy of the bond lengths obtained from the mini-goniometer data

As already shown recently (Jarzembska et al., 2013[Jarzembska, K. N., Kamiński, R., Wenger, E., Lecomte, C. & Dominiak, P. M. (2013). J. Phys. Chem. C, 117, 7764-7775.]), it is difficult to obtain an accurate orientation matrix with the mini-goniometer setup, leading to slightly different cell parameters compared with those obtained from powder diffraction data, which consequently affects the precision of the bond distances. Recalculation of the aryl ring C—C bond lengths for the 35–100 K data, using the unit-cell parameters obtained from the powder diffraction experiment (second row of Table 4[link]), brings a much better agreement (Table S1 versus Table 5[link]). The maximal difference in the d12 value between 35 and 100 K is 0.008 Å and a clear trend is found: d12 (35 K) > d12 (70 K) > d12 (100 K). This behaviour has been known for a few decades (see for example Busing & Levy, 1964[Busing, W. R. & Levy, H. A. (1964). Acta Cryst. 17, 142-146.]; Scheringer, 1980[Scheringer, C. (1980). Acta Cryst. A36, 814-818.]; Destro & Merati, 1995[Destro, R. & Merati, F. (1995). Acta Cryst. B51, 559-570.]), and results from the higher degree of precision in determining molecular geometry at lower temperatures.

Table 4
Unit-cell parameters of 1 at different temperatures

    10 K 35 K 70 K 100 K
Single-crystal measurement a (Å) 11.0104 (3) 10.9784 (14) 11.0470 (12) 11.030 (2)
b (Å) 10.0398 (2) 10.0056 (13) 10.1293 (11) 10.092 (2)
c (Å) 18.6040 (4) 18.488 (3) 18.652 (2) 18.637 (3)
β (°) 97.320 (2) 97.223 (4) 97.223 (3) 97.24 (2)
Powder diffraction a (Å) 11.0595 11.0491 11.0532
b (Å) 10.1355 10.1156 10.1303
c (Å) 18.6883 18.6742 18.6769
β (°) 97.191 97.223 97.175

Table 5
Comparison of the C—C bond distances of the aryl ring for 35, 70 and 100 K data, using the cell parameters transferred from the powder experiment

T (K) Atom 1 Atom 2 D12 (Å) T (K) Atom 1 Atom 2 D12 (Å)
35 C1 C2 1.405 35 C1A C2A 1.401
70 1.400 70 1.398
100 1.398 100 1.396
35 C1 C6 1.413 35 C1A C6A 1.412
70 1.410 70 1.409
100 1.409 100 1.407
35 C2 C3 1.401 35 C2A C3A 1.396
70 1.396 70 1.393
100 1.395 100 1.392
35 C3 C4 1.404 35 C3A C4A 1.406
70 1.401 70 1.403
100 1.400 100 1.401
35 C4 C5 1.400 35 C4A C5A 1.396
70 1.394 70 1.392
100 1.392 100 1.390
35 C5 C6 1.418 35 C5A C6A 1.415
70 1.417 70 1.414
100 1.415 100 1.412

4. Conclusions

The aim of this study was to show the link between anharmonicity and isomorphic phase transition of a molecular crystal. We have shown that ANM corrections improve the charge-density model above the phase transition temperature, whereas a simple harmonic model is sufficient below the transition temperature. Softening of the anharmonicity is therefore connected with the transition mechanism. As shown from powder diffraction data the nature of the phase transition seems to be second order with a coexistence of both phases over a large temperature range (40–50 K). As the atomic structures of both phases are extremely similar, a split-atom model cannot take into account the disorder observed on the residual maps which was accounted for using a third-order anharmonic treatment. Such an interpretation however needs more experiments on other molecular crystals to be considered as a general rule.

Supporting information


Computing details top

For all compounds, program(s) used to refine structure: MoPro (J. Appl. Cryst. 2005, 38, 38-54).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(I_10K) top
Crystal data top
C10H10N4O2V = 2039.77 (8) Å3
Mr = 218.22Z = 8
Monoclinic, P21/cF(000) = 912
Hall symbol: -P 2ybcDx = 1.422 Mg m3
a = 11.0104 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0398 (2) ÅT = 10 K
c = 18.6040 (4) ÅCube, yellowish
β = 97.320 (2)°0.20 × 0.17 × 0.13 mm
Data collection top
Radiation source: fine-focus sealed tubeh = 2424
15217 independent reflectionsk = 022
15187 reflections with > 2.0σ(I)l = 040
θmax = 51.4°, θmin = 2.9°
Refinement top
Refinement on F6868 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.032Secondary atom site location: difference Fourier map
wR(F2) = 0.028Hydrogen site location: inferred from neighbouring sites
S = 0.90H-atom parameters constrained
15217 reflectionsWeighting scheme based on measured s.u.'s
873 parameters(Δ/σ)max = 0.002
Crystal data top
C10H10N4O2β = 97.320 (2)°
Mr = 218.22V = 2039.77 (8) Å3
Monoclinic, P21/cZ = 8
a = 11.0104 (3) ÅMo Kα radiation
b = 10.0398 (2) ÅT = 10 K
c = 18.6040 (4) Å0.20 × 0.17 × 0.13 mm
Data collection top
15217 independent reflections15187 reflections with > 2.0σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.032873 parameters
wR(F2) = 0.0286868 restraints
S = 0.90H-atom parameters constrained
15217 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79723 (3)0.02243 (3)0.44894 (2)0.00767 (2)
C1A0.33134 (3)0.44377 (3)0.34826 (2)0.00733 (2)
C20.84947 (3)0.14445 (3)0.43439 (2)0.00961 (2)
C2A0.26043 (3)0.52960 (3)0.38456 (2)0.00874 (2)
C30.89396 (3)0.22939 (4)0.49066 (2)0.01036 (2)
C3A0.13512 (3)0.53890 (3)0.36330 (2)0.00945 (2)
C40.88435 (3)0.19040 (3)0.56181 (2)0.00947 (2)
C4A0.08228 (3)0.45942 (3)0.30602 (2)0.00911 (2)
C50.83387 (3)0.06829 (3)0.57666 (2)0.00920 (2)
C5A0.15261 (3)0.37180 (3)0.27105 (2)0.00853 (2)
C60.78921 (3)0.01964 (3)0.52033 (2)0.00787 (2)
C6A0.28021 (3)0.36271 (3)0.29072 (2)0.00753 (2)
C70.62566 (3)0.07072 (3)0.36198 (2)0.00759 (2)
C7A0.51017 (3)0.36493 (3)0.43368 (2)0.00760 (2)
C80.72558 (3)0.18716 (3)0.29456 (2)0.00761 (2)
C8A0.65700 (3)0.45127 (3)0.38611 (2)0.00751 (2)
C90.81303 (3)0.13474 (3)0.34583 (2)0.00806 (2)
C9A0.55351 (3)0.48999 (3)0.34175 (2)0.00802 (2)
C710.52841 (3)0.00240 (4)0.39341 (2)0.01077 (2)
C71A0.43591 (3)0.29458 (3)0.48297 (2)0.01041 (2)
N10.74785 (3)0.06023 (3)0.38919 (1)0.00723 (1)
N1A0.45975 (3)0.43357 (3)0.37306 (1)0.00715 (1)
N20.60968 (3)0.14837 (3)0.30438 (2)0.00772 (2)
N2A0.63079 (3)0.37393 (3)0.44249 (2)0.00784 (2)
N60.73425 (4)0.13759 (4)0.53500 (2)0.01082 (2)
N6A0.35118 (3)0.28106 (4)0.25358 (2)0.01072 (2)
N80.74791 (3)0.26965 (3)0.23532 (2)0.00817 (2)
N810.78075 (3)0.48624 (3)0.37910 (2)0.00788 (2)
O820.85480 (4)0.30101 (4)0.23041 (2)0.01147 (2)
O81A0.86300 (4)0.43939 (4)0.42215 (2)0.01120 (2)
O810.65991 (5)0.30427 (4)0.19180 (2)0.01210 (2)
O82A0.79807 (4)0.56324 (4)0.32922 (2)0.01114 (2)
H5A0.108580.307540.228770.02443
H4A0.015510.463460.289220.02470
H620.726980.211930.498200.02143
H90.911890.142820.354770.02289
H2A0.305130.586360.429910.02300
H61A0.308320.205520.224920.02241
H20.852430.169760.378060.02311
H9A0.536620.549980.293120.02290
H50.826860.038400.631910.02508
H3A0.080130.605900.391400.02396
H30.933760.324730.479660.02419
H40.915590.257090.606080.02543
H610.742040.165420.587500.02265
H730.533290.104810.380430.02963
H720.536200.010310.450320.02929
H62A0.437190.257990.275470.02142
H710.441550.034120.370990.02926
H72A0.373350.227220.454370.02929
H71A0.497010.242430.521670.02946
H73A0.383180.364020.508630.02956
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0088 (1)0.0078 (1)0.00634 (9)0.00107 (8)0.00075 (8)0.00055 (8)
C1A0.0066 (1)0.0078 (1)0.00749 (9)0.00020 (8)0.00057 (7)0.00084 (8)
C20.0121 (1)0.0090 (1)0.00779 (10)0.00256 (9)0.00141 (8)0.000043 (8)
C2A0.0080 (1)0.0092 (1)0.00893 (10)0.00076 (8)0.00071 (8)0.00186 (8)
C30.0127 (1)0.0084 (1)0.0098 (1)0.00262 (10)0.00097 (9)0.00081 (8)
C3A0.0076 (1)0.0104 (1)0.01038 (10)0.00132 (9)0.00149 (9)0.00179 (9)
C40.0107 (1)0.0087 (1)0.00867 (10)0.00108 (9)0.00009 (8)0.00173 (9)
C4A0.0066 (1)0.0109 (1)0.00978 (10)0.00056 (8)0.00091 (8)0.00052 (9)
C50.0113 (1)0.0093 (1)0.00687 (10)0.00126 (9)0.00038 (8)0.00096 (8)
C5A0.0067 (1)0.0103 (1)0.00844 (9)0.00009 (9)0.00036 (8)0.00111 (8)
C60.0093 (1)0.0078 (1)0.00642 (9)0.00102 (8)0.00078 (8)0.00034 (7)
C6A0.0068 (1)0.0082 (1)0.00754 (9)0.00033 (8)0.00083 (8)0.00106 (8)
C70.0074 (1)0.0086 (1)0.00685 (9)0.00037 (8)0.00102 (8)0.00107 (8)
C7A0.0072 (1)0.0080 (1)0.00761 (9)0.00040 (8)0.00084 (8)0.00118 (8)
C80.0075 (1)0.0085 (1)0.00679 (9)0.00012 (8)0.00108 (8)0.00140 (8)
C8A0.0064 (1)0.0084 (1)0.00761 (9)0.00027 (8)0.00055 (8)0.00084 (8)
C90.0069 (1)0.0095 (1)0.00770 (9)0.00032 (9)0.00063 (8)0.00113 (8)
C9A0.0072 (1)0.0091 (1)0.00768 (9)0.000052 (8)0.00074 (8)0.00159 (8)
C710.0092 (1)0.0130 (1)0.0103 (1)0.00183 (10)0.00209 (9)0.00191 (9)
C71A0.0101 (1)0.0109 (1)0.0105 (1)0.00094 (9)0.00225 (9)0.00252 (9)
N10.00702 (10)0.00820 (10)0.00639 (8)0.00025 (7)0.00051 (7)0.00129 (7)
N1A0.00595 (10)0.00814 (10)0.00718 (8)0.00014 (7)0.00019 (7)0.00087 (7)
N20.0075 (1)0.0087 (1)0.00693 (9)0.00036 (8)0.00051 (8)0.00116 (8)
N2A0.0070 (1)0.0083 (1)0.00806 (9)0.000028 (8)0.00035 (8)0.00099 (8)
N60.0155 (1)0.0090 (1)0.00801 (10)0.00347 (10)0.00177 (8)0.00032 (8)
N6A0.0085 (1)0.0119 (1)0.0116 (1)0.00127 (9)0.00095 (9)0.00438 (9)
N80.0091 (1)0.0083 (1)0.00719 (9)0.00015 (8)0.00135 (8)0.00120 (8)
N810.0066 (1)0.0083 (1)0.00877 (9)0.000042 (8)0.00090 (8)0.00052 (8)
O820.0105 (1)0.0128 (1)0.0114 (1)0.0030 (1)0.0025 (1)0.0018 (1)
O81A0.0073 (1)0.0136 (1)0.0122 (1)0.0003 (1)0.00076 (10)0.0029 (1)
O810.0114 (2)0.0147 (1)0.0100 (1)0.0017 (1)0.0008 (1)0.0048 (1)
O82A0.0087 (1)0.0124 (1)0.0127 (1)0.00032 (10)0.00267 (10)0.0043 (1)
H5A0.02070.02640.02470.00130.00260.0106
H4A0.01270.03030.02990.00170.00210.0065
H620.02910.01790.01720.00160.00220.0050
H90.01260.02990.02590.00080.00110.0047
H2A0.02070.02640.02060.00060.00230.0085
H61A0.02090.02010.02500.00170.00210.0062
H20.03070.02470.01390.00420.00300.0028
H9A0.02210.02690.01910.00060.00060.0104
H50.03640.02570.01330.00690.00390.0011
H3A0.01930.02660.02620.00510.00370.0085
H30.03170.01720.02340.00830.00270.0018
H40.03610.02180.01770.00810.00060.0058
H610.03170.02300.01310.00250.00210.0016
H730.03420.01550.04150.00100.01370.0038
H720.03400.03900.01520.00910.00470.0023
H62A0.01470.02390.02440.00270.00250.0007
H710.01660.03450.03580.00360.00000.0114
H72A0.03110.03250.02410.01420.00260.0052
H71A0.02370.03710.02670.00570.00000.0144
H73A0.03450.02360.03410.00670.01770.0018
Geometric parameters (Å, º) top
C1—N11.4373 (4)C7A—N1A1.3767 (4)
C1—C61.4071 (4)C7A—N2A1.3203 (5)
C1—C21.3944 (4)C7A—C71A1.4832 (5)
C1A—N1A1.4339 (4)C8—N81.4248 (4)
C1A—C6A1.4042 (4)C8—N21.3686 (5)
C1A—C2A1.3938 (4)C8—C91.3711 (4)
C2—C31.3902 (4)C8A—N811.4290 (5)
C2—H21.083C8A—N2A1.3652 (5)
C2A—C3A1.3892 (5)C8A—C9A1.3751 (4)
C2A—H2A1.083C9—N11.3685 (4)
C3—C41.3971 (5)C9—H91.083
C3—H31.083C9A—N1A1.3708 (5)
C3A—C4A1.3975 (4)C9A—H9A1.083
C3A—H3A1.083C71—H721.059
C4—C51.3883 (5)C71—H711.059
C4—H41.083C71—H731.059
C4A—C5A1.3875 (5)C71A—H73A1.059
C4A—H4A1.083C71A—H71A1.059
C5—C61.4100 (4)C71A—H72A1.059
C5—H51.083N6—H611.009
C5A—C6A1.4090 (4)N6—H621.009
C5A—H5A1.083N6A—H62A1.009
C6—N61.3730 (5)N6A—H61A1.009
C6A—N6A1.3774 (5)N8—O811.2309 (5)
C7—N11.3797 (4)N8—O821.2329 (5)
C7—N21.3187 (4)N81—O81A1.2239 (5)
C7—C711.4788 (5)N81—O82A1.2411 (5)
C1—N1—C7125.65 (4)C6A—C5A—H5A119.3
C1—N1—C9126.61 (4)C7—N1—C9107.59 (3)
C1—C6—N6121.92 (3)C7—N2—C8104.27 (3)
C1—C6—C5117.11 (3)C7—C71—H72111.4
C1—C2—C3120.49 (4)C7—C71—H71109.6
C1—C2—H2117.3C7—C71—H73109.4
C1A—N1A—C7A125.27 (3)C7A—N1A—C9A107.94 (3)
C1A—N1A—C9A126.78 (3)C7A—N2A—C8A104.55 (3)
C1A—C6A—N6A121.96 (4)C7A—C71A—H73A110.0
C1A—C6A—C5A116.75 (4)C7A—C71A—H71A107.6
C1A—C2A—C3A120.06 (4)C7A—C71A—H72A111.6
C1A—C2A—H2A118.4C8—N8—O81118.30 (4)
C2—C1—N1118.81 (3)C8—N8—O82117.79 (3)
C2—C1—C6121.59 (3)C8—C9—N1104.20 (3)
C2—C3—C4118.66 (3)C8—C9—H9132.9
C2—C3—H3120.8C8A—N81—O81A118.72 (4)
C2A—C1A—N1A118.58 (3)C8A—N81—O82A117.41 (4)
C2A—C1A—C6A122.20 (4)C8A—C9A—N1A103.85 (3)
C2A—C3A—C4A118.73 (4)C8A—C9A—H9A134.4
C2A—C3A—H3A120.0C9—C8—N8125.89 (4)
C3—C2—H2122.2C9—C8—N2112.46 (4)
C3—C4—C5121.10 (3)C9A—C8A—N81127.06 (3)
C3—C4—H4119.5C9A—C8A—N2A112.45 (3)
C3A—C2A—H2A121.5C71—C7—N1122.57 (3)
C3A—C4A—C5A121.10 (4)C71—C7—N2125.90 (4)
C3A—C4A—H4A120.0C71A—C7A—N1A123.25 (3)
C4—C5—C6121.03 (3)C71A—C7A—N2A125.51 (3)
C4—C5—H5120.8N1—C7—N2111.48 (3)
C4—C3—H3120.5N1—C9—H9122.9
C4A—C5A—C6A121.13 (3)N1A—C7A—N2A111.21 (3)
C4A—C5A—H5A119.6N1A—C9A—H9A121.8
C4A—C3A—H3A121.2N2—C8—N8121.63 (3)
C5—C6—N6120.87 (3)N2A—C8A—N81120.48 (3)
C5—C4—H4119.4O82—N8—O81123.91 (5)
C5A—C6A—N6A121.26 (3)O81A—N81—O82A123.87 (5)
C5A—C4A—H4A118.8H62—N6—H61116.2
C6—N6—H61116.5H61A—N6A—H62A113.1
C6—N6—H62120.1H73—C71—H72110.2
C6—C1—N1119.58 (3)H73—C71—H71108.4
C6—C5—H5118.1H72—C71—H71107.8
C6A—N6A—H62A119.8H72A—C71A—H73A106.7
C6A—N6A—H61A117.1H72A—C71A—H71A110.0
C6A—C1A—N1A119.15 (3)H71A—C71A—H73A110.9
C1—N1—C7—N2176.25 (3)C6A—C1A—C2A—H2A177.5
C1—N1—C7—C711.35 (3)C6A—C5A—C4A—H4A179.9
C1—N1—C9—C8175.96 (3)C7—N1—C9—C80.31 (3)
C1—N1—C9—H93.6C7—N1—C9—H9179.2
C1—C6—N6—H61172.5C7—N2—C8—N8177.85 (3)
C1—C6—N6—H6223.2C7—N2—C8—C90.33 (3)
C1—C6—C5—C40.52 (3)C7A—N1A—C9A—C8A0.05 (3)
C1—C6—C5—H5178.8C7A—N1A—C9A—H9A179.6
C1—C2—C3—C40.49 (3)C7A—N2A—C8A—N81178.09 (3)
C1—C2—C3—H3179.4C7A—N2A—C8A—C9A0.42 (3)
C1A—N1A—C7A—N2A179.93 (3)C8—N2—C7—N10.53 (3)
C1A—N1A—C7A—C71A1.76 (3)C8—N2—C7—C71176.97 (3)
C1A—N1A—C9A—C8A179.65 (3)C8A—N2A—C7A—N1A0.44 (3)
C1A—N1A—C9A—H9A0C8A—N2A—C7A—C71A177.68 (3)
C1A—C6A—N6A—H62A17.4C9—N1—C7—N20.55 (3)
C1A—C6A—N6A—H61A160.6C9—N1—C7—C71177.05 (3)
C1A—C6A—C5A—C4A1.58 (3)C9—C8—N8—O81176.80 (4)
C1A—C6A—C5A—H5A177.0C9—C8—N8—O822.51 (3)
C1A—C2A—C3A—C4A0.99 (3)C9A—N1A—C7A—N2A0.32 (3)
C1A—C2A—C3A—H3A179.8C9A—N1A—C7A—C71A177.85 (3)
C2—C1—N1—C799.87 (3)C9A—C8A—N81—O81A177.62 (4)
C2—C1—N1—C975.02 (3)C9A—C8A—N81—O82A2.49 (4)
C2—C1—C6—N6177.79 (3)N1—C7—C71—H7249.9
C2—C1—C6—C51.37 (3)N1—C7—C71—H71169.2
C2—C3—C4—C51.33 (3)N1—C7—C71—H7372.1
C2—C3—C4—H4177.8N1—C1—C6—N60.62 (3)
C2A—C1A—N1A—C7A76.17 (2)N1—C1—C2—H21.7
C2A—C1A—N1A—C9A103.37 (3)N1—C9—C8—N8178.08 (3)
C2A—C1A—C6A—N6A177.98 (3)N1—C9—C8—N20.00 (3)
C2A—C1A—C6A—C5A0.08 (3)N1A—C7A—C71A—H73A64.8
C2A—C3A—C4A—C5A0.50 (3)N1A—C7A—C71A—H71A174.3
C2A—C3A—C4A—H4A178.7N1A—C7A—C71A—H72A53.5
C3—C2—C1—N1177.53 (3)N1A—C1A—C6A—N6A5.15 (3)
C3—C2—C1—C60.88 (3)N1A—C1A—C2A—H2A0.6
C3—C4—C5—C60.82 (3)N1A—C9A—C8A—N81178.17 (3)
C3—C4—C5—H5179.8N1A—C9A—C8A—N2A0.23 (3)
C3A—C2A—C1A—N1A178.09 (3)N2—C7—C71—H72132.8
C3A—C2A—C1A—C6A1.21 (3)N2—C7—C71—H7113.6
C3A—C4A—C5A—C6A1.83 (3)N2—C7—C71—H73105.1
C3A—C4A—C5A—H5A176.7N2—C8—N8—O811.12 (3)
C4—C5—C6—N6176.98 (3)N2—C8—N8—O82179.57 (4)
C4—C3—C2—H2178.7N2—C8—C9—H9179.5
C4A—C5A—C6A—N6A176.49 (3)N2A—C7A—C71A—H73A113.1
C4A—C3A—C2A—H2A177.7N2A—C7A—C71A—H71A7.8
C5—C6—N6—H6111.2N2A—C7A—C71A—H72A128.6
C5—C6—N6—H62160.5N2A—C8A—N81—O81A4.10 (4)
C5—C6—C1—N1177.04 (2)N2A—C8A—N81—O82A175.79 (4)
C5—C4—C3—H3179.8N2A—C8A—C9A—H9A179.8
C5A—C6A—N6A—H62A164.7N6—C6—C5—H52.4
C5A—C6A—N6A—H61A21.4N6A—C6A—C5A—H5A5.0
C5A—C6A—C1A—N1A176.79 (2)N8—C8—C9—H91.4
C5A—C4A—C3A—H3A178.7N81—C8A—C9A—H9A1.4
C6—C1—N1—C778.58 (2)H5A—C5A—C4A—H4A1.6
C6—C1—N1—C9106.53 (3)H4A—C4A—C3A—H3A0.5
C6—C1—C2—H2179.9H2A—C2A—C3A—H3A1.6
C6—C5—C4—H4178.3H2—C2—C3—H30.2
C6A—C1A—N1A—C7A100.81 (3)H5—C5—C4—H41.1
C6A—C1A—N1A—C9A79.65 (3)H3—C3—C4—H41.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4A···O82i1.082.353.1438 (5)129
C4A—H4A···O82Ai1.082.483.3777 (5)139
C3—H3···O81Aii1.082.673.5620 (5)139
N6—H62···N11.012.572.8438 (4)95
N6—H62···N2A1.012.143.0643 (5)152
N6A—H62A···N1A1.012.522.8350 (4)98
N6A—H62A···N21.012.203.1754 (5)162
N6—H61···O811.012.263.1826 (5)151
N6A—H61A···O82Aiii1.012.033.0349 (5)173
C71—H73···O81iii1.062.543.1213 (5)114
C9A—H9A···N2iv1.082.473.4500 (4)150
C2A—H2A···N2A1.082.423.4268 (4)154
C9—H9···C41.082.603.5927 (5)151
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
(I_35K) top
Crystal data top
C10H10N4O2V = 2014.7 (3) Å3
Mr = 218.22Z = 8
Monoclinic, P21/cF(000) = 912
Hall symbol: -P 2ybcDx = 1.439 Mg m3
a = 10.978 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.006 (1) ÅT = 35 K
c = 18.488 (2) Å × × mm
β = 97.223 (4)°
Data collection top
Radiation source: fine-focus sealed tubeh = 1918
11032 independent reflectionsk = 017
9475 reflections with > 1.250σ(I)l = 032
θmax = 38.6°, θmin = 4.2°
Refinement top
Refinement on F536 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.026Secondary atom site location: difference Fourier map
wR(F2) = 0.028Hydrogen site location: inferred from neighbouring sites
S = 0.92H-atom parameters constrained
9475 reflectionsWeighting scheme based on measured s.u.'s
873 parameters(Δ/σ)max = 0.001
Crystal data top
C10H10N4O2β = 97.223 (4)°
Mr = 218.22V = 2014.7 (3) Å3
Monoclinic, P21/cZ = 8
a = 10.978 (1) ÅMo Kα radiation
b = 10.006 (1) ÅT = 35 K
c = 18.488 (2) Å × × mm
Data collection top
11032 independent reflections9475 reflections with > 1.250σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.026873 parameters
wR(F2) = 0.028536 restraints
S = 0.92H-atom parameters constrained
9475 reflections
Special details top

Refinement. Refinement of F1 against reflections. The threshold expression of F2 > σ(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20262 (4)0.52218 (5)0.05110 (3)0.00698 (2)
C1A0.66891 (4)0.05650 (5)0.15177 (2)0.00668 (2)
C20.15057 (4)0.64411 (5)0.06574 (3)0.00952 (3)
C2A0.73981 (4)0.02922 (5)0.11548 (3)0.00841 (3)
C30.10575 (4)0.72907 (5)0.00950 (3)0.01037 (3)
C3A0.86506 (4)0.03845 (5)0.13679 (3)0.00927 (3)
C40.11541 (4)0.69026 (5)0.06167 (3)0.00922 (3)
C4A0.91802 (4)0.04091 (5)0.19403 (2)0.00859 (3)
C50.16578 (4)0.56810 (5)0.07652 (3)0.00897 (3)
C5A0.84757 (4)0.12849 (5)0.22893 (3)0.00805 (3)
C60.21051 (4)0.48033 (5)0.02026 (2)0.00737 (3)
C7A0.48999 (4)0.13516 (5)0.06630 (2)0.00702 (3)
C70.37424 (4)0.42902 (5)0.13804 (3)0.00701 (2)
C8A0.34330 (4)0.04882 (5)0.11379 (3)0.00691 (2)
C80.27478 (4)0.31282 (5)0.20556 (2)0.00690 (2)
C9A0.44677 (4)0.01025 (5)0.15821 (3)0.00727 (2)
C90.18710 (4)0.36536 (5)0.15433 (3)0.00749 (2)
C6A0.72006 (4)0.13754 (5)0.20921 (2)0.00697 (2)
C71A0.56423 (4)0.20536 (5)0.01696 (3)0.01024 (3)
C710.47160 (4)0.50223 (5)0.10646 (3)0.01049 (3)
N1A0.54038 (4)0.06660 (4)0.12692 (2)0.00652 (2)
N10.25220 (4)0.43966 (4)0.11085 (2)0.00643 (2)
N2A0.36952 (5)0.12608 (5)0.05746 (3)0.00715 (3)
N20.39056 (4)0.35162 (5)0.19561 (3)0.00704 (3)
N6A0.64909 (4)0.21926 (6)0.24638 (3)0.01056 (3)
N60.26552 (5)0.36236 (6)0.03491 (2)0.01059 (3)
N8A0.21960 (4)0.01390 (4)0.12086 (2)0.00750 (2)
N80.25262 (4)0.23059 (5)0.26480 (3)0.00809 (3)
O82A0.13729 (5)0.06066 (6)0.07767 (3)0.01134 (3)
O820.34079 (6)0.19625 (6)0.30838 (3)0.01308 (3)
O81A0.20223 (5)0.06283 (5)0.17070 (3)0.01120 (3)
O810.14595 (6)0.19908 (5)0.26990 (3)0.01195 (3)
H2A0.696400.086680.069690.02039*
H20.147350.669840.122370.03120*
H3A0.920570.105570.108640.01902*
H30.064580.823840.020990.03259*
H4A1.015860.035060.211300.01204*
H40.083920.756860.106300.03633*
H5A0.890410.194170.271260.02055*
H50.174670.537520.131800.03562*
H9A0.464600.050400.206910.02188*
H90.087930.359480.144100.01197*
H61A0.563350.240460.222790.01438*
H610.270040.287850.002110.02798*
H62A0.694650.295000.273810.02060*
H620.257430.334740.087780.03080*
H72A0.626500.274460.044790.02978*
H710.466480.605560.118130.03422*
H71A0.616110.135390.009380.03364*
H720.460460.492310.048980.03282*
H73A0.502420.256720.022040.02211*
H730.558910.466360.129070.01589*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0089 (2)0.0068 (2)0.0050 (2)0.0013 (1)0.0002 (1)0.0004 (1)
C1A0.0057 (2)0.0076 (2)0.0065 (2)0.0002 (1)0.0001 (1)0.0007 (1)
C20.0127 (2)0.0084 (2)0.0073 (2)0.0033 (2)0.0005 (1)0.0002 (1)
C2A0.0078 (2)0.0088 (2)0.0084 (2)0.0004 (1)0.0002 (1)0.0019 (1)
C30.0124 (2)0.0084 (2)0.0099 (2)0.0030 (2)0.00012 (13)0.0010 (1)
C3A0.0074 (2)0.0100 (2)0.0104 (2)0.0011 (1)0.0010 (1)0.0015 (1)
C40.0102 (2)0.0084 (2)0.0084 (2)0.0008 (1)0.0011 (1)0.0023 (1)
C4A0.0063 (1)0.0103 (2)0.0091 (2)0.0010 (1)0.0006 (1)0.00003 (15)
C50.0116 (2)0.0091 (2)0.0058 (2)0.0010 (2)0.0007 (1)0.0015 (1)
C5A0.0061 (2)0.0100 (2)0.0077 (2)0.0004 (1)0.0004 (1)0.0006 (1)
C60.0093 (2)0.0073 (2)0.0052 (2)0.0012 (1)0.0002 (1)0.0003 (1)
C7A0.0068 (2)0.0072 (2)0.0068 (2)0.0004 (1)0.00002 (12)0.0014 (1)
C70.0067 (2)0.0086 (2)0.0056 (2)0.0003 (1)0.0004 (1)0.0012 (1)
C8A0.0056 (2)0.0078 (2)0.0071 (2)0.0003 (1)0.0002 (1)0.0009 (1)
C80.0075 (2)0.0075 (2)0.0056 (2)0.00006 (13)0.0004 (1)0.0016 (1)
C9A0.0060 (1)0.0089 (2)0.0066 (2)0.00006 (13)0.0003 (1)0.0018 (1)
C90.0067 (2)0.0087 (2)0.0069 (2)0.00005 (13)0.00006 (12)0.0012 (1)
C6A0.0057 (1)0.0083 (2)0.0067 (2)0.0003 (1)0.0001 (1)0.0011 (1)
C71A0.0099 (1)0.0106 (2)0.0103 (2)0.0013 (1)0.0015 (1)0.0027 (1)
C710.0090 (1)0.0131 (2)0.0095 (2)0.0021 (1)0.0017 (1)0.0017 (1)
N1A0.0050 (2)0.0076 (2)0.0066 (2)0.0002 (1)0.0006 (1)0.0011 (1)
N10.0063 (1)0.0077 (2)0.0050 (2)0.0003 (1)0.0006 (1)0.0014 (1)
N2A0.0066 (2)0.0077 (2)0.0067 (2)0.0003 (1)0.0008 (1)0.0014 (1)
N20.0066 (2)0.0086 (2)0.0057 (2)0.0002 (1)0.00002 (12)0.0013 (1)
N6A0.0079 (1)0.0125 (2)0.0110 (2)0.0013 (1)0.00001 (13)0.0049 (2)
N60.0161 (2)0.0090 (2)0.0066 (2)0.0040 (2)0.0010 (1)0.00008 (13)
N8A0.0056 (1)0.0080 (2)0.0087 (2)0.0002 (1)0.00001 (12)0.0006 (2)
N80.0097 (2)0.0081 (2)0.0066 (2)0.00003 (13)0.0014 (1)0.0017 (1)
O82A0.0070 (2)0.0136 (2)0.0126 (2)0.0006 (2)0.0021 (2)0.0031 (2)
O820.0133 (2)0.0167 (2)0.0090 (2)0.0032 (2)0.00016 (17)0.0060 (2)
O81A0.0083 (2)0.0126 (2)0.0130 (2)0.0007 (1)0.0022 (1)0.0048 (2)
O810.0121 (2)0.0127 (2)0.0113 (2)0.0039 (2)0.0025 (2)0.0021 (2)
Geometric parameters (Å, º) top
C1—N11.4307 (7)C7—N21.3103 (7)
C1—C61.3972 (7)C7—C711.4754 (8)
C1—C21.3881 (8)C8A—N8A1.4240 (8)
C1A—N1A1.4315 (8)C8A—N2A1.3566 (8)
C1A—C6A1.3966 (7)C8A—C9A1.3708 (7)
C1A—C2A1.3867 (7)C8—N81.4150 (8)
C2—C31.3847 (7)C8—N21.3634 (7)
C2—H21.083C8—C91.3678 (7)
C2A—C3A1.3851 (8)C9A—N1A1.3632 (7)
C2A—H2A1.083C9A—H9A1.083
C3—C41.3885 (8)C9—N11.3617 (7)
C3—H31.083C9—H91.083
C3A—C4A1.3906 (8)C6A—N6A1.3719 (8)
C3A—H3A1.083C71A—H71A1.059
C4—C51.3832 (8)C71A—H73A1.059
C4—H41.083C71A—H72A1.059
C4A—C5A1.3812 (7)C71—H711.059
C4A—H4A1.083C71—H721.059
C5—C61.4021 (7)C71—H731.059
C5—H51.083N6A—H62A1.009
C5A—C6A1.4045 (7)N6A—H61A1.009
C5A—H5A1.083N6—H611.009
C6—N61.3683 (8)N6—H621.009
C7A—N1A1.3699 (7)N8A—O82A1.2214 (7)
C7A—N2A1.3152 (8)N8A—O81A1.2324 (8)
C7A—C71A1.4755 (8)N8—O811.2278 (8)
C7—N11.3747 (7)N8—O821.2281 (8)
C1—N1—C7125.85 (5)C7A—C71A—H73A107.2
C1—N1—C9126.44 (5)C7A—C71A—H72A112.5
C1—C6—N6121.79 (5)C7—N1—C9107.55 (5)
C1—C6—C5117.08 (6)C7—N2—C8104.08 (4)
C1—C2—C3120.62 (5)C7—C71—H71110.2
C1—C2—H2117.5C7—C71—H72110.6
C1A—N1A—C7A125.33 (5)C7—C71—H73109.9
C1A—N1A—C9A126.86 (6)C8A—N8A—O82A118.79 (6)
C1A—C6A—N6A121.84 (4)C8A—N8A—O81A117.42 (5)
C1A—C6A—C5A116.89 (4)C8A—C9A—N1A103.98 (4)
C1A—C2A—C3A120.08 (4)C8A—C9A—H9A134.9
C1A—C2A—H2A119.2C8—N8—O81117.86 (6)
C2—C1—N1118.86 (5)C8—N8—O82118.19 (5)
C2—C1—C6121.56 (6)C8—C9—N1104.05 (5)
C2—C3—C4118.53 (6)C8—C9—H9134.8
C2—C3—H3120.5C9A—C8A—N8A127.14 (6)
C2A—C1A—N1A118.62 (5)C9A—C8A—N2A112.36 (5)
C2A—C1A—C6A122.04 (4)C9—C8—N8125.79 (5)
C2A—C3A—C4A118.92 (5)C9—C8—N2112.58 (4)
C2A—C3A—H3A120.2C6A—N6A—H62A115.0
C3—C2—H2121.9C6A—N6A—H61A117.8
C3—C4—C5121.01 (6)C6A—C1A—N1A119.26 (5)
C3—C4—H4119.7C6A—C5A—H5A118.5
C3A—C2A—H2A120.7C71A—C7A—N1A123.13 (5)
C3A—C4A—C5A120.84 (4)C71A—C7A—N2A125.52 (6)
C3A—C4A—H4A119.8C71—C7—N1122.56 (6)
C4—C5—C6121.18 (6)C71—C7—N2125.66 (5)
C4—C5—H5121.5N1A—C7A—N2A111.31 (5)
C4—C3—H3121.0N1A—C9A—H9A121.2
C4A—C5A—C6A121.20 (6)N1—C7—N2111.73 (4)
C4A—C5A—H5A120.3N1—C9—H9121.1
C4A—C3A—H3A120.9N2A—C8A—N8A120.48 (5)
C5—C6—N6121.04 (6)N2—C8—N8121.60 (5)
C5—C4—H4119.3O82A—N8A—O81A123.79 (6)
C5A—C6A—N6A121.24 (6)O82—N8—O81123.94 (7)
C5A—C4A—H4A119.3H61A—N6A—H62A115.8
C6—N6—H61119.2H61—N6—H62116.5
C6—N6—H62116.2H72A—C71A—H71A107.7
C6—C1—N1119.56 (4)H72A—C71A—H73A109.5
C6—C5—H5117.3H71—C71—H72107.1
C7A—N1A—C9A107.81 (4)H71—C71—H73108.6
C7A—N2A—C8A104.54 (5)H71A—C71A—H73A110.1
C7A—C71A—H71A109.9H72—C71—H73110.4
C1—N1—C7—N2176.24 (4)C7A—N1A—C9A—H9A179.2
C1—N1—C7—C711.32 (4)C7A—N2A—C8A—N8A178.19 (4)
C1—N1—C9—C8176.02 (4)C7A—N2A—C8A—C9A0.46 (5)
C1—N1—C9—H93.5C7—N1—C9—C80.40 (4)
C1—C6—N6—H6124.9C7—N1—C9—H9179.1
C1—C6—N6—H62172.5C7—N2—C8—N8177.83 (4)
C1—C6—C5—C40.42 (4)C7—N2—C8—C90.23 (4)
C1—C6—C5—H5177.9C8A—N2A—C7A—N1A0.45 (4)
C1—C2—C3—C40.76 (5)C8A—N2A—C7A—C71A177.58 (4)
C1—C2—C3—H3179.6C8—N2—C7—N10.50 (4)
C1A—N1A—C7A—N2A179.93 (4)C8—N2—C7—C71176.97 (4)
C1A—N1A—C7A—C71A1.85 (4)C9A—N1A—C7A—N2A0.29 (4)
C1A—N1A—C9A—C8A179.63 (4)C9A—N1A—C7A—C71A177.79 (4)
C1A—N1A—C9A—H9A0.4C9A—N1A—C1A—C6A79.82 (4)
C1A—C6A—N6A—H62A159.7C9A—C8A—N8A—O82A177.62 (5)
C1A—C6A—N6A—H61A17.5C9A—C8A—N8A—O81A2.56 (5)
C1A—C6A—C5A—C4A1.51 (4)C9—N1—C7—N20.59 (4)
C1A—C6A—C5A—H5A176.6C9—N1—C7—C71176.97 (4)
C1A—C2A—C3A—C4A1.04 (4)C9—C8—N8—O812.67 (5)
C1A—C2A—C3A—H3A179.8C9—C8—N8—O82176.56 (5)
C2—C1—N1—C799.76 (4)C6A—C1A—C2A—H2A177.2
C2—C1—N1—C975.08 (4)C6A—C5A—C4A—H4A178.8
C2—C1—C6—N6177.71 (4)N1A—C7A—C71A—H71A65.5
C2—C1—C6—C51.26 (5)N1A—C7A—C71A—H73A174.9
C2—C3—C4—C51.61 (5)N1A—C7A—C71A—H72A54.4
C2—C3—C4—H4177.8N1A—C1A—C6A—N6A5.18 (4)
C2A—C1A—N1A—C7A76.30 (4)N1A—C1A—C2A—H2A0.4
C2A—C1A—N1A—C9A103.27 (4)N1A—C9A—C8A—N8A178.25 (4)
C2A—C1A—C6A—N6A178.03 (4)N1A—C9A—C8A—N2A0.29 (4)
C2A—C1A—C6A—C5A0.03 (5)N1—C7—C71—H7170.8
C2A—C3A—C4A—C5A0.50 (5)N1—C7—C71—H7247.4
C2A—C3A—C4A—H4A179.9N1—C7—C71—H73169.6
C3—C2—C1—N1177.57 (4)N1—C1—C6—N60.54 (4)
C3—C2—C1—C60.69 (5)N1—C1—C2—H21.9
C3—C4—C5—C61.02 (5)N1—C9—C8—N8178.08 (4)
C3—C4—C5—H5179.3N1—C9—C8—N20.11 (4)
C3A—C2A—C1A—N1A178.13 (5)N2A—C7A—C71A—H71A112.3
C3A—C2A—C1A—C6A1.32 (5)N2A—C7A—C71A—H73A7.3
C3A—C4A—C5A—C6A1.81 (5)N2A—C7A—C71A—H72A127.8
C3A—C4A—C5A—H5A176.3N2A—C8A—N8A—O82A3.94 (5)
C4—C5—C6—N6176.89 (4)N2A—C8A—N8A—O81A175.88 (5)
C4—C3—C2—H2178.7N2A—C8A—C9A—H9A179.3
C4A—C5A—C6A—N6A176.49 (4)N2—C7—C71—H71106.5
C4A—C3A—C2A—H2A177.5N2—C7—C71—H72135.4
C5—C6—N6—H61158.8N2—C7—C71—H7313.2
C5—C6—N6—H6211.2N2—C8—N8—O81179.54 (6)
C5—C6—C1—N1176.98 (4)N2—C8—N8—O821.23 (5)
C5—C4—C3—H3178.7N2—C8—C9—H9179.3
C5A—C6A—N6A—H62A22.4N6A—C6A—C5A—H5A5.4
C5A—C6A—N6A—H61A164.6N6—C6—C5—H51.4
C5A—C6A—C1A—N1A176.83 (4)N8A—C8A—C9A—H9A0.8
C5A—C4A—C3A—H3A178.7N8—C8—C9—H91.3
C6—C1—N1—C778.54 (4)H2A—C2A—C3A—H3A1.7
C6—C1—N1—C9106.63 (4)H2—C2—C3—H31.0
C6—C1—C2—H2179.8H3A—C3A—C4A—H4A0.7
C6—C5—C4—H4178.4H3—C3—C4—H41.9
C7A—N1A—C1A—C6A100.61 (4)H4A—C4A—C5A—H5A3.1
C7A—N1A—C9A—C8A0.02 (4)H4—C4—C5—H50.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H62···O82i1.0092.2503.1659 (9)150.3
N6A—H61A···C9A1.0092.8263.3247 (9)111.1
N6A—H61A···N1A1.0092.4742.8235 (8)99.6
N6A—H61A···N21.0092.2023.1656 (9)159.2
N6—H61···C71.0092.9833.3367 (9)101.7
N6—H61···N11.0092.5472.8250 (7)95.3
N6—H61···N2A1.0092.1403.0527 (9)149.5
C71A—H71A···C2A1.0593.0163.4145 (9)103.0
C71—H72···C61.0592.8813.473 (1)115.7
C3—H3···O82Aii1.0832.6723.5506 (9)137.9
C9A—H9A···N2iii1.0832.4533.435 (1)150.2
C4A—H4A···O81Aiv1.0832.4693.3671 (8)139.6
C4A—H4A···O81iv1.0832.3493.1386 (10)128.4
C2A—H2A···N2Av1.0832.4043.4114 (9)154.2
N6A—H62A···O81Avi1.0092.0163.0231 (9)175.4
C71—H71···O82vi1.0592.5343.1103 (10)113.4
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z; (vi) x+1, y+1/2, z+1/2.
(I_70K) top
Crystal data top
C10H10N4O2V = 2070.5 (4) Å3
Mr = 218.22Z = 8
Monoclinic, P21/cF(000) = 912
Hall symbol: -P 2ybcDx = 1.400 Mg m3
a = 11.047 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.129 (1) ÅT = 70 K
c = 18.652 (2) ÅCube, yellowish
β = 97.223 (3)° × × mm
Data collection top
Radiation source: fine-focus sealed tubeh = 2421
26563 independent reflectionsk = 024
17713 reflections with > 2.0σ(I)l = 044
θmax = 58.6°, θmin = 4.1°
Refinement top
Refinement on F542 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.029Secondary atom site location: difference Fourier map
wR(F2) = 0.028Hydrogen site location: inferred from neighbouring sites
S = 0.95H-atom parameters constrained
17738 reflectionsWeighting scheme based on measured s.u.'s
873 parameters(Δ/σ)max = 0.002
Crystal data top
C10H10N4O2β = 97.223 (3)°
Mr = 218.22V = 2070.5 (4) Å3
Monoclinic, P21/cZ = 8
a = 11.047 (1) ÅMo Kα radiation
b = 10.129 (1) ÅT = 70 K
c = 18.652 (2) Å × × mm
Data collection top
26563 independent reflections17713 reflections with > 2.0σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.029873 parameters
wR(F2) = 0.028542 restraints
S = 0.95H-atom parameters constrained
17738 reflections
Special details top

Refinement. Refinement of F1 against reflections. The threshold expression of F2 > σ(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20202 (3)0.52135 (3)0.05170 (1)0.00984 (1)
C1A0.66989 (3)0.05745 (2)0.15155 (1)0.00908 (1)
C20.14993 (4)0.64293 (3)0.06643 (1)0.01388 (2)
C2A0.74111 (3)0.02827 (3)0.11562 (1)0.01160 (2)
C30.10510 (4)0.72790 (3)0.01038 (2)0.01537 (2)
C3A0.86625 (3)0.03705 (3)0.13691 (2)0.01310 (2)
C40.11429 (4)0.68934 (3)0.06078 (1)0.01337 (2)
C4A0.91889 (3)0.04283 (3)0.19387 (1)0.01195 (2)
C50.16459 (3)0.56763 (3)0.07579 (1)0.01275 (2)
C5A0.84834 (3)0.13032 (3)0.22852 (1)0.01099 (1)
C60.20962 (3)0.47966 (3)0.01965 (1)0.01050 (1)
C7A0.49113 (3)0.13534 (2)0.06599 (1)0.00968 (1)
C70.37423 (3)0.42881 (3)0.13810 (1)0.00954 (1)
C8A0.34456 (3)0.04933 (2)0.11357 (1)0.00929 (1)
C80.27555 (3)0.31307 (2)0.20614 (1)0.00939 (1)
C9A0.44801 (3)0.01100 (3)0.15799 (1)0.00988 (1)
C90.18756 (3)0.36502 (3)0.15510 (1)0.01023 (1)
C6A0.72075 (3)0.13888 (3)0.20878 (1)0.00961 (1)
C71A0.56528 (4)0.20545 (3)0.01663 (2)0.01425 (2)
C710.47094 (4)0.50164 (3)0.10617 (1)0.01484 (2)
N1A0.54157 (3)0.06721 (2)0.12667 (1)0.00906 (1)
N10.25189 (3)0.43900 (2)0.11127 (1)0.00923 (1)
N2A0.37057 (3)0.12618 (3)0.05724 (1)0.01009 (1)
N20.39083 (3)0.35175 (2)0.19576 (1)0.00979 (1)
N6A0.64989 (3)0.22100 (3)0.24547 (2)0.01536 (2)
N60.26437 (4)0.36216 (3)0.03454 (1)0.01594 (2)
N8A0.22087 (3)0.01456 (2)0.12069 (1)0.01088 (1)
N80.25463 (3)0.23112 (2)0.26584 (1)0.01210 (2)
O82A0.13884 (4)0.06073 (4)0.07749 (2)0.01669 (2)
O820.34298 (6)0.19778 (4)0.30926 (2)0.02013 (3)
O81A0.20357 (4)0.06157 (3)0.17061 (2)0.01663 (2)
O810.14829 (5)0.19903 (4)0.27138 (2)0.01794 (2)
H2A0.696980.085160.070560.02611
H20.146660.668100.122590.02646
H3A0.923270.101980.109450.02809
H30.067960.822920.022850.02890
H4A1.016150.037350.210950.02937
H40.082530.756560.104260.03101
H5A0.889040.195900.270680.02872
H50.173600.537460.130570.02986
H9A0.464220.048330.206550.02610
H90.089080.356240.147260.02594
H61A0.563650.241400.223680.02383
H610.271050.288480.002150.02378
H62A0.695120.294190.274150.02591
H620.255290.336430.087200.02617
H72A0.625920.275120.044000.03185
H710.466630.603870.117480.03277
H71A0.619030.136270.007900.03253
H720.459890.489840.049310.03187
H73A0.503380.254850.022350.03216
H730.557290.465160.128640.03184
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0118 (1)0.00990 (7)0.00753 (6)0.00171 (7)0.000018 (6)0.00064 (5)
C1A0.0078 (1)0.00971 (8)0.00945 (6)0.00039 (6)0.000004 (6)0.00069 (5)
C20.0183 (2)0.01200 (9)0.01110 (7)0.00478 (8)0.00089 (8)0.000044 (6)
C2A0.0105 (1)0.01180 (8)0.01235 (7)0.00122 (7)0.00070 (7)0.00258 (6)
C30.0187 (2)0.01160 (9)0.01524 (9)0.00454 (9)0.000033 (9)0.00162 (7)
C3A0.0102 (1)0.01409 (9)0.01513 (8)0.00237 (8)0.00219 (8)0.00199 (7)
C40.0143 (1)0.01181 (9)0.01300 (8)0.00072 (8)0.00200 (8)0.00395 (6)
C4A0.0081 (1)0.01474 (9)0.01297 (7)0.00132 (7)0.00115 (7)0.00058 (6)
C50.0160 (1)0.01285 (9)0.00869 (6)0.00114 (8)0.00113 (7)0.00245 (6)
C5A0.0079 (1)0.01438 (9)0.01041 (6)0.00010 (7)0.00008 (6)0.00067 (6)
C60.0136 (1)0.01029 (8)0.00724 (6)0.00150 (7)0.00028 (6)0.00076 (5)
C7A0.0094 (1)0.00955 (7)0.00976 (6)0.00074 (6)0.00008 (6)0.00131 (5)
C70.0095 (1)0.01139 (8)0.00768 (6)0.00041 (7)0.00073 (6)0.00121 (5)
C8A0.0081 (1)0.00957 (8)0.00986 (6)0.000018 (6)0.00007 (6)0.00070 (5)
C80.0104 (1)0.01001 (8)0.00767 (6)0.000019 (6)0.00094 (6)0.00124 (5)
C9A0.0086 (1)0.01108 (8)0.00964 (6)0.00027 (6)0.00007 (6)0.00187 (5)
C90.0092 (1)0.01201 (8)0.00930 (6)0.00029 (7)0.00048 (7)0.00131 (6)
C6A0.0077 (1)0.01133 (8)0.00956 (6)0.00025 (6)0.00029 (6)0.00133 (5)
C71A0.0140 (1)0.01424 (9)0.01458 (8)0.00182 (8)0.00224 (8)0.00396 (7)
C710.0127 (1)0.0189 (1)0.01308 (8)0.00342 (9)0.00234 (8)0.00307 (7)
N1A0.0077 (1)0.00987 (7)0.00921 (6)0.00014 (6)0.00041 (6)0.00098 (5)
N10.0096 (1)0.01056 (7)0.00724 (5)0.00049 (6)0.000047 (5)0.00148 (5)
N2A0.0096 (1)0.01005 (8)0.01004 (6)0.000019 (6)0.00090 (7)0.00142 (5)
N20.0096 (1)0.01175 (8)0.00773 (5)0.00060 (6)0.000006 (6)0.00116 (5)
N6A0.0105 (1)0.0186 (1)0.01667 (8)0.00192 (8)0.00015 (8)0.00797 (8)
N60.0255 (2)0.01311 (9)0.00905 (6)0.00628 (9)0.00144 (7)0.00017 (5)
N8A0.0082 (1)0.01091 (7)0.01339 (7)0.00053 (6)0.00064 (6)0.00079 (6)
N80.0161 (1)0.01111 (7)0.00938 (6)0.000050 (7)0.00281 (7)0.00226 (5)
O82A0.0096 (2)0.0199 (1)0.0196 (1)0.00066 (9)0.00217 (10)0.00449 (10)
O820.0216 (2)0.0251 (2)0.01374 (9)0.0058 (1)0.0022 (1)0.00975 (10)
O81A0.0111 (2)0.0185 (1)0.02085 (10)0.00172 (9)0.00442 (10)0.00759 (9)
O810.0197 (2)0.0183 (1)0.01654 (9)0.00661 (10)0.0050 (1)0.00258 (8)
H2A0.02350.02980.02360.00010.00280.0089
H20.03450.02760.01690.00490.00160.0031
H3A0.02190.03140.03110.00590.00370.0090
H30.03750.01970.02870.00910.00090.0017
H4A0.01530.03520.03600.00230.00340.0071
H40.04300.02660.02230.01020.00070.0080
H5A0.02420.03030.02960.00070.00460.0116
H50.04230.03160.01560.00910.00330.0001
H9A0.02550.02960.02270.00060.00110.0120
H90.01510.03330.02910.00060.00160.0050
H61A0.01750.02680.02570.00280.00320.0006
H610.03180.02040.01870.00150.00130.0048
H62A0.02420.02420.02750.00120.00400.0068
H620.03600.02760.01430.00340.00070.0016
H72A0.03380.03480.02680.01470.00340.0044
H710.03780.01740.04510.00190.01280.0038
H71A0.03690.02780.03630.00770.01790.0012
H720.03680.04150.01740.00950.00400.0007
H73A0.02640.04130.02780.00570.00050.0144
H730.01920.03640.03890.00320.00050.0115
Geometric parameters (Å, º) top
C1—N11.4422 (4)C7—N21.3229 (4)
C1—C61.4087 (4)C7—C711.4833 (5)
C1—C21.4011 (5)C8A—N8A1.4333 (5)
C1A—N1A1.4385 (5)C8A—N2A1.3669 (4)
C1A—C6A1.4089 (5)C8A—C9A1.3803 (5)
C1A—C2A1.3980 (5)C8—N81.4307 (4)
C2—C31.3959 (5)C8—N21.3692 (5)
C2—H21.083C8—C91.3767 (5)
C2A—C3A1.3924 (6)C9A—N1A1.3732 (5)
C2A—H2A1.083C9A—H9A1.083
C3—C41.3994 (5)C9—N11.3715 (4)
C3—H31.083C9—H91.083
C3A—C4A1.4022 (5)C6A—N6A1.3812 (5)
C3A—H3A1.083C71A—H71A1.059
C4—C51.3951 (5)C71A—H73A1.059
C4—H41.083C71A—H72A1.059
C4A—C5A1.3917 (5)C71—H731.059
C4A—H4A1.083C71—H721.059
C5—C61.4167 (4)C71—H711.059
C5—H51.083N6A—H62A1.009
C5A—C6A1.4140 (5)N6A—H61A1.009
C5A—H5A1.083N6—H621.009
C6—N61.3790 (5)N6—H611.009
C7A—N1A1.3817 (4)N8A—O82A1.2270 (6)
C7A—N2A1.3245 (5)N8A—O81A1.2421 (4)
C7A—C71A1.4875 (5)N8—O821.2344 (6)
C7—N11.3847 (5)N8—O811.2357 (6)
C1—N1—C7125.62 (3)C7A—C71A—H73A107.0
C1—N1—C9126.79 (3)C7A—C71A—H72A112.6
C1—C6—N6121.92 (3)C7—N1—C9107.41 (3)
C1—C6—C5116.91 (3)C7—N2—C8104.33 (3)
C1—C2—C3120.72 (3)C7—C71—H73109.0
C1—C2—H2117.5C7—C71—H72110.3
C1A—N1A—C7A125.32 (3)C7—C71—H71110.7
C1A—N1A—C9A126.75 (4)C8A—N8A—O82A118.64 (4)
C1A—C6A—N6A122.09 (3)C8A—N8A—O81A117.41 (4)
C1A—C6A—C5A116.80 (3)C8A—C9A—N1A103.81 (2)
C1A—C2A—C3A120.09 (3)C8A—C9A—H9A134.1
C1A—C2A—H2A118.5C8—N8—O82118.53 (3)
C2—C1—N1118.94 (3)C8—N8—O81117.78 (4)
C2—C1—C6121.57 (3)C8—C9—N1104.32 (3)
C2—C3—C4118.49 (4)C8—C9—H9132.2
C2—C3—H3119.7C9A—C8A—N8A127.03 (4)
C2A—C1A—N1A118.64 (4)C9A—C8A—N2A112.55 (3)
C2A—C1A—C6A122.14 (3)C9—C8—N8126.22 (3)
C2A—C3A—C4A118.78 (3)C9—C8—N2112.41 (2)
C2A—C3A—H3A121.3C6A—N6A—H62A115.6
C3—C2—H2121.8C6A—N6A—H61A119.3
C3—C4—C5121.01 (3)C6A—C1A—N1A119.14 (3)
C3—C4—H4118.7C6A—C5A—H5A117.4
C3A—C2A—H2A121.4C71A—C7A—N1A123.28 (3)
C3A—C4A—C5A121.08 (3)C71A—C7A—N2A125.49 (4)
C3A—C4A—H4A119.7C71—C7—N1122.50 (4)
C4—C5—C6121.28 (3)C71—C7—N2125.92 (3)
C4—C5—H5121.7N1A—C7A—N2A111.21 (3)
C4—C3—H3121.8N1A—C9A—H9A122.1
C4A—C5A—C6A121.08 (4)N1—C7—N2111.53 (3)
C4A—C5A—H5A121.5N1—C9—H9123.5
C4A—C3A—H3A119.9N2A—C8A—N8A120.41 (4)
C5—C6—N6121.07 (3)N2—C8—N8121.35 (3)
C5—C4—H4120.3O82A—N8A—O81A123.94 (4)
C5A—C6A—N6A121.09 (4)O82—N8—O81123.69 (5)
C5A—C4A—H4A119.3H61A—N6A—H62A116.3
C6—N6—H62115.3H61—N6—H62117.3
C6—N6—H61119.9H72A—C71A—H71A107.1
C6—C1—N1119.47 (2)H72A—C71A—H73A109.3
C6—C5—H5117.0H71—C71—H73108.9
C7A—N1A—C9A107.94 (2)H71—C71—H72107.9
C7A—N2A—C8A104.50 (3)H71A—C71A—H73A111.4
C7A—C71A—H71A109.5H72—C71—H73110.0
C1—N1—C7—N2176.04 (3)C7A—N1A—C9A—H9A179.7
C1—N1—C7—C711.58 (3)C7A—N2A—C8A—N8A178.21 (2)
C1—N1—C9—C8175.74 (2)C7A—N2A—C8A—C9A0.48 (2)
C1—N1—C9—H93.7C7—N1—C9—C80.40 (2)
C1—C6—N6—H62172.5C7—N1—C9—H9179.0
C1—C6—N6—H6123.6C7—N2—C8—N8177.80 (3)
C1—C6—C5—C40.48 (2)C7—N2—C8—C90.32 (3)
C1—C6—C5—H5177.6C8A—N2A—C7A—N1A0.50 (3)
C1—C2—C3—C40.52 (3)C8A—N2A—C7A—C71A177.67 (3)
C1—C2—C3—H3177.9C8—N2—C7—N10.58 (2)
C1A—N1A—C7A—N2A179.96 (2)C8—N2—C7—C71176.94 (2)
C1A—N1A—C7A—C71A1.83 (2)C9A—N1A—C7A—N2A0.36 (2)
C1A—N1A—C9A—C8A179.73 (2)C9A—N1A—C7A—C71A177.86 (2)
C1A—N1A—C9A—H9A0.0C9A—N1A—C1A—C6A80.02 (2)
C1A—C6A—N6A—H62A161.9C9A—C8A—N8A—O82A177.77 (4)
C1A—C6A—N6A—H61A15.7C9A—C8A—N8A—O81A2.47 (3)
C1A—C6A—C5A—C4A1.58 (3)C9—N1—C7—N20.64 (3)
C1A—C6A—C5A—H5A177.1C9—N1—C7—C71176.98 (3)
C1A—C2A—C3A—C4A1.00 (3)C9—C8—N8—O82176.27 (3)
C1A—C2A—C3A—H3A179.3C9—C8—N8—O812.86 (3)
C2—C1—N1—C799.63 (3)C6A—C1A—C2A—H2A177.4
C2—C1—N1—C974.89 (2)C6A—C5A—C4A—H4A178.9
C2—C1—C6—N6177.81 (3)N1A—C7A—C71A—H71A63.6
C2—C1—C6—C51.35 (2)N1A—C7A—C71A—H73A175.5
C2—C3—C4—C51.38 (3)N1A—C7A—C71A—H72A55.4
C2—C3—C4—H4177.8N1A—C1A—C6A—N6A4.90 (3)
C2A—C1A—N1A—C7A76.58 (2)N1A—C1A—C2A—H2A0.6
C2A—C1A—N1A—C9A103.04 (3)N1A—C9A—C8A—N8A178.32 (2)
C2A—C1A—C6A—N6A178.28 (3)N1A—C9A—C8A—N2A0.26 (3)
C2A—C1A—C6A—C5A0.10 (3)N1—C7—C71—H73169.3
C2A—C3A—C4A—C5A0.47 (3)N1—C7—C71—H7248.4
C2A—C3A—C4A—H4A179.8N1—C7—C71—H7171.0
C3—C2—C1—N1177.40 (3)N1—C1—C6—N60.46 (2)
C3—C2—C1—C60.87 (3)N1—C1—C2—H22.2
C3—C4—C5—C60.89 (3)N1—C9—C8—N8178.07 (3)
C3—C4—C5—H5178.9N1—C9—C8—N20.06 (3)
C3A—C2A—C1A—N1A178.03 (3)N2A—C7A—C71A—H71A114.3
C3A—C2A—C1A—C6A1.20 (3)N2A—C7A—C71A—H73A6.5
C3A—C4A—C5A—C6A1.80 (3)N2A—C7A—C71A—H72A126.6
C3A—C4A—C5A—H5A176.8N2A—C8A—N8A—O82A3.74 (4)
C4—C5—C6—N6176.97 (3)N2A—C8A—N8A—O81A176.01 (3)
C4—C3—C2—H2179.0N2A—C8A—C9A—H9A180.0
C4A—C5A—C6A—N6A176.82 (2)N2—C7—C71—H7313.4
C4A—C3A—C2A—H2A177.6N2—C7—C71—H72134.3
C5—C6—N6—H6211.2N2—C7—C71—H71106.3
C5—C6—N6—H61160.1N2—C8—N8—O821.57 (3)
C5—C6—C1—N1176.92 (2)N2—C8—N8—O81179.30 (4)
C5—C4—C3—H3178.7N2—C8—C9—H9179.3
C5A—C6A—N6A—H62A19.8N6A—C6A—C5A—H5A4.5
C5A—C6A—N6A—H61A166.0N6—C6—C5—H51.2
C5A—C6A—C1A—N1A176.72 (2)N8A—C8A—C9A—H9A1.4
C5A—C4A—C3A—H3A177.9N8—C8—C9—H91.3
C6—C1—N1—C778.67 (2)H2A—C2A—C3A—H3A0.7
C6—C1—N1—C9106.80 (2)H2—C2—C3—H31.6
C6—C1—C2—H2179.6H3A—C3A—C4A—H4A1.5
C6—C5—C4—H4178.3H3—C3—C4—H40.5
C7A—N1A—C1A—C6A100.35 (2)H4A—C4A—C5A—H5A2.5
C7A—N1A—C9A—C8A0.05 (2)H4—C4—C5—H50.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H62···O82i1.0092.2933.2011 (6)149.1
N6A—H61A···C9A1.0092.8613.3535 (7)110.7
N6A—H61A···N1A1.0092.5172.8464 (6)98.5
N6A—H61A···N21.0092.2173.1838 (7)160.0
N6—H61···C71.0093.0043.3637 (6)102.1
N6—H61···N11.0092.5732.8488 (4)95.3
N6—H61···N2A1.0092.1643.0847 (6)150.9
C71A—H71A···C2A1.0593.0203.4475 (7)104.9
C71—H72···C61.0592.9013.4910 (9)115.6
C3—H3···O82Aii1.0832.6933.5993 (6)140.9
C9A—H9A···N2iii1.0832.4853.4629 (7)149.6
C4A—H4A···O81Aiv1.0832.5003.3971 (7)139.5
C4A—H4A···O81iv1.0832.3813.1771 (8)129.1
C2A—H2A···N2Av1.0832.4423.4497 (7)154.2
N6A—H62A···O81Avi1.0092.0393.0469 (7)176.3
C71—H71···O82vi1.0592.5443.1377 (7)114.7
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z; (vi) x+1, y+1/2, z+1/2.

Experimental details

(I_10K)(I_35K)(I_70K)
Crystal data
Chemical formulaC10H10N4O2C10H10N4O2C10H10N4O2
Mr218.22218.22218.22
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)103570
a, b, c (Å)11.0104 (3), 10.0398 (2), 18.6040 (4)10.978 (1), 10.006 (1), 18.488 (2)11.047 (1), 10.129 (1), 18.652 (2)
β (°) 97.320 (2) 97.223 (4) 97.223 (3)
V3)2039.77 (8)2014.7 (3)2070.5 (4)
Z888
Radiation typeMo KαMo KαMo Kα
µ (mm1)???
Crystal size (mm)0.20 × 0.17 × 0.13 × × × ×
Data collection
Diffractometer???
Absorption correction
No. of measured, independent and
observed reflections
?, 15217, 15187 [ > 2.0σ(I)]?, 11032, 9475 [ > 1.250σ(I)]?, 26563, 17713 [ > 2.0σ(I)]
Rint???
(sin θ/λ)max1)1.1000.8781.201
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.028, 0.90 0.026, 0.028, 0.92 0.029, 0.028, 0.95
No. of reflections15217947517738
No. of parameters873873873
No. of restraints6868536542
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)?, ??, ??, ?

Computer programs: MoPro (J. Appl. Cryst. 2005, 38, 38-54).

Hydrogen-bond geometry (Å, º) for (I_10K) top
D—H···AD—HH···AD···AD—H···A
C4A—H4A···O82i1.0832.3453.1438 (5)129.2
C4A—H4A···O82Ai1.0832.4823.3777 (5)139.3
C3—H3···O81Aii1.0832.6743.5620 (5)139.0
N6—H62···N11.0092.5702.8438 (4)95.1
N6—H62···N2A1.0092.1363.0643 (5)152.1
N6A—H62A···N1A1.0092.5202.8350 (4)97.6
N6A—H62A···N21.0092.2023.1754 (5)161.7
N6—H61···O811.0092.2633.1826 (5)150.8
N6A—H61A···O82Aiii1.0092.0313.0349 (5)172.7
C71—H73···O81iii1.0592.5373.1213 (5)114.0
C9A—H9A···N2iv1.0832.4733.4500 (4)149.5
C2A—H2A···N2A1.0832.4223.4268 (4)153.8
C9—H9···C41.0832.6043.5927 (5)151.4
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (I_35K) top
D—H···AD—HH···AD···AD—H···A
N6—H62···O82i1.0092.2503.1659 (9)150.3
N6A—H61A···C9A1.0092.8263.3247 (9)111.1
N6A—H61A···N1A1.0092.4742.8235 (8)99.6
N6A—H61A···N21.0092.2023.1656 (9)159.2
N6—H61···C71.0092.9833.3367 (9)101.7
N6—H61···N11.0092.5472.8250 (7)95.3
N6—H61···N2A1.0092.1403.0527 (9)149.5
C71A—H71A···C2A1.0593.0163.4145 (9)103.0
C71—H72···C61.0592.8813.473 (1)115.7
C3—H3···O82Aii1.0832.6723.5506 (9)137.9
C9A—H9A···N2iii1.0832.4533.435 (1)150.2
C4A—H4A···O81Aiv1.0832.4693.3671 (8)139.6
C4A—H4A···O81iv1.0832.3493.1386 (10)128.4
C2A—H2A···N2Av1.0832.4043.4114 (9)154.2
N6A—H62A···O81Avi1.0092.0163.0231 (9)175.4
C71—H71···O82vi1.0592.5343.1103 (10)113.4
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z; (vi) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (I_70K) top
D—H···AD—HH···AD···AD—H···A
N6—H62···O82i1.0092.2933.2011 (6)149.1
N6A—H61A···C9A1.0092.8613.3535 (7)110.7
N6A—H61A···N1A1.0092.5172.8464 (6)98.5
N6A—H61A···N21.0092.2173.1838 (7)160.0
N6—H61···C71.0093.0043.3637 (6)102.1
N6—H61···N11.0092.5732.8488 (4)95.3
N6—H61···N2A1.0092.1643.0847 (6)150.9
C71A—H71A···C2A1.0593.0203.4475 (7)104.9
C71—H72···C61.0592.9013.4910 (9)115.6
C3—H3···O82Aii1.0832.6933.5993 (6)140.9
C9A—H9A···N2iii1.0832.4853.4629 (7)149.6
C4A—H4A···O81Aiv1.0832.5003.3971 (7)139.5
C4A—H4A···O81iv1.0832.3813.1771 (8)129.1
C2A—H2A···N2Av1.0832.4423.4497 (7)154.2
N6A—H62A···O81Avi1.0092.0393.0469 (7)176.3
C71—H71···O82vi1.0592.5443.1377 (7)114.7
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z; (vi) x+1, y+1/2, z+1/2.
 

Footnotes

Current address: European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, BP 220, 38043 Grenoble CEDEX 9, France.

§Current address: Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000, USA.

Acknowledgements

This work was partially financed by grants from the Polish Ministry of Science and Education (grant Nos. N204 005136 and N204 028138) and the French Embassy in Warsaw within the framework of a cotutelle bursary for AP. We also thank the Universite de Lorraine and CNRS for support. KNJ and RK thank the Foundation for Polish Science for financial support within the `START' and `International PhD Projects' programs, respectively.

References

First citationAgilent Technologies (2013). CrysAlis PRO. Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBader, R. F. W. (1994). Atoms in Molecules: A Quantum Theory. Oxford University Press.  Google Scholar
First citationBendeif, E.-E., Lecomte, C. & Dahaoui, S. (2009). Acta Cryst. B65, 59–67.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBirkedal, H., Madsen, D., Mathiesen, R. H., Knudsen, K., Weber, H.-P., Pattison, P. & Schwarzenbach, D. (2004). Acta Cryst. A60, 371–381.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1987). Cryst. Rev. 1, 3–58.  CrossRef Google Scholar
First citationBlessing, R. H. (1989). J. Appl. Cryst. 22, 396–397.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2012). APEX2. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBusing, W. R. & Levy, H. A. (1964). Acta Cryst. 17, 142–146.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDestro, R. & Merati, F. (1995). Acta Cryst. B51, 559–570.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFertey, P., Argoud, R., Bordet, P., Reymann, J., Palin, C., Bouchard, C., Bruyère, R., Wenger, E. & Lecomte, C. (2007). J. Appl. Cryst. 40, 526–531.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909–921.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHenn, J., Meindl, K., Oechsner, A., Schwab, G., Koritsanszky, T. & Stalke, D. (2010). Angew. Chem. Int. Ed. 49, 2422–2426.  Web of Science CrossRef CAS Google Scholar
First citationHerbst-Irmer, R., Henn, J., Holstein, J. J., Hübschle, C. B., Dittrich, B., Stern, D., Kratzert, D. & Stalke, D. (2013). J. Phys. Chem. A, 117, 633–641.  Web of Science CAS PubMed Google Scholar
First citationIversen, B. B., Larsen, F. K., Pinkerton, A. A., Martin, A., Darovsky, A. & Reynolds, P. A. (1999). Acta Cryst. B55, 363–374.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJarzembska, K. N., Kamiński, R., Wenger, E., Lecomte, C. & Dominiak, P. M. (2013). J. Phys. Chem. C, 117, 7764–7775.  Web of Science CrossRef CAS Google Scholar
First citationJohnson, C. K. & Levy, H. A. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 314–319. Birmingham: Kynoch Press.  Google Scholar
First citationKamiński, R., Domagała, S., Jarzembska, K. N., Hoser, A. A., Sanjuan-Szklarz, W. F., Gutmann, M. J., Makal, A., Malińska, M., Bąk, J. M. & Woźniak, K. (2014). Acta Cryst. A70, 72–91.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKubicki, M. (2004a). Acta Cryst. C60, o255–o257.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKubicki, M. (2004b). J. Mol. Struct. 698, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationKubicki, M., Borowiak, T., Dutkiewicz, G., Souhassou, M., Jelsch, C. & Lecomte, C. (2002). J. Phys. Chem. B, 106, 3706–3714.  Web of Science CSD CrossRef CAS Google Scholar
First citationKubicki, M., Borowiak, T., Suwiński, J. & Wagner, P. (2001). Acta Cryst. C57, 106–108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKubicki, M. & Wagner, P. (2007). Acta Cryst. C63, o454–o457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKubicki, M. & Wagner, P. (2008). J. Mol. Struct. 876, 134–139.  Web of Science CrossRef CAS Google Scholar
First citationKuhs, W. F. (1988). Aust. J. Phys. 41, 369–382.  CrossRef CAS Google Scholar
First citationKuhs, W. F. (1992). Acta Cryst. A48, 80–98.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (1994). GSAS. Los Alamos, New Mexico, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadsen, A. Ø. (2006). J. Appl. Cryst. 39, 757–758.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadsen, A. Ø., Civalleri, B., Ferrabone, M., Pascale, F. & Erba, A. (2013). Acta Cryst. A69, 309–321.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMallinson, P. R., Koritsanszky, T., Elkaim, E., Li, N. & Coppens, P. (1988). Acta Cryst. A44, 336–343.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeindl, K., Herbst-Irmer, R. & Henn, J. (2010). Acta Cryst. A66, 362–371.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365–378.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaul, A., Kubicki, M., Kubas, A., Jelsch, C., Fink, K. & Lecomte, C. (2011). J. Phys. Chem. A, 115, 12941–12952.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPoulain, A., Kubicki, M. & Lecomte, C. (2014). In preparation.  Google Scholar
First citationPoulain-Paul, A., Nassour, A., Jelsch, C., Guillot, B., Kubicki, M. & Lecomte, C. (2012). Acta Cryst. A68, 715–728.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRestori, R. & Schwarzenbach, D. (1996). Acta Cryst. A52, 369–378.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationScheins, S., Zheng, S.-L., Benedict, J. B. & Coppens, P. (2010). Acta Cryst. B66, 366–372.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScheringer, C. (1980). Acta Cryst. A36, 814–818.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSørensen, H. O., Stewart, R. F., McIntyre, G. J. & Larsen, S. (2003). Acta Cryst. A59, 540–550.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagner, P. & Kubicki, M. (2007). Acta Cryst. E63, o3083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWagner, P., Świerczek, K. & Kubicki, M. (2007). Acta Cryst. C63, o445–o447.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhurov, V. V., Zhurova, E. A., Stash, A. I. & Pinkerton, A. A. (2011). Acta Cryst. A67, 160–173.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 1| Part 2| March 2014| Pages 110-118
ISSN: 2052-2525