research papers
Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics
aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560 012, India
*Correspondence e-mail: ssctng@sscu.iisc.ernet.in
and are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.
Keywords: crystal structure; carboxylic acids; carboximides; co-crystals; eutectics.
1. Introduction
There is a renewed interest in understanding the chemical factors that govern the phenomenon of co-crystallization (Cherukuvada & Row, 2014; Prasad et al., 2014; Wood et al., 2014; Mukherjee et al., 2014; Aitipamula, Chow & Tan, 2014; Bučar et al., 2013; Seaton & Parkin, 2011; Braga et al., 2010; Friščić & Jones, 2009; Lu et al., 2008; Aakeröy et al., 2008; Chadwick et al., 2007; Friščić et al., 2006; Shan et al., 2002), owing largely to its potential importance in the pharmaceutical industry (Cherukuvada & Nangia, 2014; Aakeröy et al., 2014; Brittain, 2012; Babu & Nangia, 2011; Chen et al., 2011; Schultheiss & Newman, 2009; Shan & Zaworotko, 2008; Blagden et al., 2007; Trask & Jones, 2005). Co-crystallization is a supramolecular reaction to form multi-component organic adducts such as co-crystals, solid solutions, eutectics etc. (Cherukuvada & Nangia, 2014; Cherukuvada & Row, 2014; Prasad et al., 2014). Whether a or a eutectic is formed depends on the dominance of hetero- and homomolecular interactions, respectively, for a given combination of materials. Several aspects play a role in the formation of co-crystals and eutectics, such as the nature and influence of the molecular components in invoking intermolecular interactions and supramolecular synthons, disposition and complementarity, interaction strength, and efficient packing. However, there is no general recipe to obtain selectively or reliably either co-crystals or eutectics on demand. Investigations into this effect are important to save time, money and effort in targeted or eutectic screens.
The literature describes numerous failed co-crystallization experiments (for example, Alhalaweh et al., 2012; Arenas-García et al., 2012; Seaton & Parkin, 2011; Caira et al., 2012; Mohammad et al., 2011; Karki et al., 2010), which did not investigate the potential formation of eutectics. Given their potential importance in the pharmaceutical and materials fields (Cherukuvada & Nangia, 2014; Griffini et al., 2014; Huang et al., 2013; Yan et al., 2011; Morimoto & Irie, 2010; Karaipekli & Sarı, 2010; Schultheiss & Newman, 2009; Moore & Wildfong, 2009), there is a need for more studies of the attributes that govern co-crystal/eutectic formation. Exploring systems with subtle differences in hydrogen-bonding functional groups can serve as a lead, since these groups can steer supramolecular growth as either a or a eutectic for a given combination (Cherukuvada & Nangia, 2014; Cherukuvada & Row, 2014; Prasad et al., 2014). In this context, we have selected cyclic carboximides for an in-depth co-crystallization study with The latter class of compounds has a wide variety of applications, particularly in the pharmaceutical field, as drugs, salts and co-formers, excipients etc. (Cherukuvada & Nangia, 2014; Aitipamula, Wong et al., 2014; Ballatore et al., 2013; Losev et al., 2013; Ebenezer & Muthiah, 2012, Reddy et al., 2011; Seaton, 2011; Moffat et al., 2011; Rowe et al., 2006; Caira et al., 1995; Gould, 1986). Likewise, amide (primary and secondary) and imide functionalities are found in several drugs and are amenable to both salt and formation (Buist et al., 2013; Sanphui et al., 2013; Nanubolu et al., 2012; Cherukuvada & Nangia, 2012; Moffat et al., 2011; Cherukuvada et al., 2011). Therefore, the study of the interactions and compatibility of amide/imide–carboxylic acid combinations has direct practical significance.
Co-crystallization of ; Moragues-Bartolome et al., 2012; Kaur & Row, 2012; Babu et al., 2012; Cherukuvada & Nangia, 2012; Reddy et al., 2007; McMahon et al., 2005; Leiserowitz & Nader, 1977), whereas only limited studies of carboxylic acid/imide combinations are found in the literature. The prospect for formation involving carboximide and carboxylic acid groups has been considered (Moragues-Bartolome et al., 2012), and it was suggested that these groups are not expected to interact within co-crystals. Moragues-Bartolome et al. (2012) reported the co-crystallization of saturated cyclic (succinimide and glutarimide) with a variety of aliphatic and aromatic monocarboxylic acids and obtained only one namely succinimide–2,4-dihydroxybenzoic acid (SM–24DHBA), as shown in Fig. 1. Based on the of the extra imide carbonyl group and the low stabilizing features of imide–acid and acid-supported imide–imide hydrogen-bonding motifs (named Thetero and Thomo units, respectively; Fig. 2) compared with they deduced that the formation of cyclic imide–carboxylic acid co-crystals is unlikely. The study considered carboxylic acid–imide combinations, of which the majority had hydrogen-bond acceptor groups (fluoro, nitro etc.) on the acid partner. Since the hydrogen-bond demands of the extra imide carbonyl acceptor cannot be complemented by acceptor groups on the partner molecules, formation is curtailed due to high-energy interactions (repulsions) associated with acceptor–acceptor (carbonyl versus fluoro/nitro) combinations. It is understandable that a hydrogen-bond donor like hydroxyl can satisfy the imide carbonyl and therefore lead to the SM–24DHBA (Figs. 1 and 2c).
with has been studied extensively (Cherukuvada & Row, 2014In the context of eutectics as alternative supramolecular assemblies to co-crystals (Cherukuvada & Nangia, 2014; Cherukuvada & Row, 2014; Prasad et al., 2014), and with the hypothesis that auxiliary interactions play a crucial role, we undertook the task of establishing the nature of different imide–carboxylic acid combinations. We selected for study three cyclic (succinimide, glutarimide and maleimide, which is unsaturated) and seven hydroxybenzoic acids, in addition to the parent benzoic acid (Fig. 3). The rationale for the selection of hydroxybenzoic acids is that the presence of hydroxyl group(s) on the benzoic acid molecule would instigate auxiliary interactions with the extra imide carbonyl, thereby facilitating supramolecular growth units beyond Thetero or Thomo units (Fig. 2). We devised a scheme of dimeric and tetrameric hydrogen-bonded units that could form in carboxylic acid/imide combinations (Fig. 4). We perceive that the supramolecular propagation of these units should lead to the formation of co-crystals, with eutectics being formed otherwise (Fig. 4). We were successful in obtaining several co-crystals and eutectics of cyclic imide–hydroxybenzoic acids. We also obtained a new polymorph for the reported succinimide–2,4-dihydroxybenzoic acid (SM–24DHBA) and a new dimorphic pair of 2:1 succinimide–3,4,5-trihydroxybenzoic acid co-crystals. This work demonstrates that the presence or absence of hydroxyl group(s) dictates the formation or non-formation of imide–carboxylic acid co-crystals in the systems studied here.
2. Results and discussion
We performed co-crystallization by solution crystallization, following both neat (Trask & Jones, 2005) and liquid-assisted grinding (Friščić et al., 2006; Shan et al., 2002) of all combinations (see §S1 in the supporting information for experimental details). Ground products were subjected to powder X-ray diffraction (PXRD) and melting-point determination to ascertain co-crystal/eutectic formation, on the basis that the former exhibit distinct PXRD patterns and melting behaviour while the latter display only a depression of the melting point compared with the parent materials (Cherukuvada & Nangia, 2014; Cherukuvada & Row, 2014; Prasad et al., 2014). X-ray single-crystal structures were determined for co-crystals (except for a few where suitable single crystals were not obtained) and phase diagrams were constructed for eutectics. The results of the co-crystallization experiments are listed in Table 1. Benzoic acid and the mono-hydroxybenzoic acids, except the 4-hydroxy isomer, gave eutectics with all three cyclic (Table 1). Along with 4-hydroxybenzoic acid (4HBA), all the di- and tri-hydroxybenzoic acids resulted in co-crystals with all three A new polymorph of the reported succinimide–24DHBA and a dimorphic pair of 2:1 succinimide–345THBA co-crystals were also obtained (Table 1). Crystallographic parameters of the co-crystals are given in §S2 of the supporting information . Comparison of the experimental PXRD patterns with the respective parent materials is provided in §§S3 and S4 of the supporting information in order to differentiate the co-crystal- and eutectic-forming combinations.
|
2.1. Rationale for the formation of co-crystals or eutectics
The primary supramolecular recognition units in an imide–carboxylic acid combination are imide–imide, acid–acid and acid (COOH)–imide (CONH or COCH) centrosymmetric ring dimer motifs (Figs. 4a and 4b). If these units, either homo- or heterodimers, can extend through auxiliary interactions (such as O—H/C—Hcarboxylic acid⋯O=Cimide) to form Thomo or Thetero tetramers and then propagate, the formation of a is facile, as per Fig. 4. On the other hand, a eutectic mixture results if the units remain finite and discrete in the supramolecular lattice (Cherukuvada & Nangia, 2014; Cherukuvada & Row, 2014; Prasad et al., 2014). We observed several intriguing results from the co-crystallization experiments: (i) all cyclic formed co-crystals with para-hydroxy substituted and di- or tri-hydroxy benzoic acids; (ii) non-formation of co-crystals in the case of benzoic acid and ortho- or meta-hydroxybenzoic acids, which instead formed eutectics; (iii) in co-crystals; (iv) variable stoichiometry co-crystals; and (v) diverse architectures. These features can be rationalized as follows.
First, the geometric positioning of a para-hydroxyl group aptly fits and promotes the supramolecular geometry of the Thomo unit (Figs. 2 and 4) to give co-crystals. By contrast, ortho- or meta-hydroxyl substitution provides no energetic stabilization to either Thetero or Thomo supramolecular growth units and hence results in eutectic phases with all three cyclic In the ortho-position, the hydroxyl group always participates in intramolecular hydrogen bonding with the carboxylic acid (O—Hhydroxyl⋯O=Cacid), such that it is unavailable for auxiliary interactions with the imide carbonyl group, and therefore propagation of Thetero or Thomo units does not take place. Although it would seem that the meta-hydroxyl substituent could promote the Thomo unit, geometric reasons appear to resist supramolecular growth into a On the other hand, a meta-hydroxyl group fits the geometry and can stabilize the Thetero unit. However, the stabilizing interactions from a lone meta-hydroxyl group seem to be insufficient and an additional substitution at the other meta-position is required for the Thetero unit to propagate into a (Fig. 4f). Thus, 35DHBA can distinctly form a Thetero unit in its co-crystals and indeed it is found in the 1:1 GM–35DHBA (as described later). It should be noted that a para-hydroxyl group does not suit the Thetero unit and so cannot result in co-crystals for the same geometric reasons. In view of the above, it is obvious that unsubstituted benzoic acid forms only eutectics with the three cyclic The hydrogen-bond demands of the additional strong imide carbonyl may not be satisfied by weak C—H donors (of benzoic acid) nor even by a strong hydroxyl group donor in a certain geometry (ortho- or meta-position of substituted benzoic acid), such that these combinations cannot make growth units and therefore form eutectics.
Secondly, the et al., 2012) (Fig. 1) supports our explanation of co-crystal/eutectic formation for different imide–carboxylic acid combinations in this study. Based on the above, it is reasonable to expect that all three can form co-crystals with the para-hydroxy substituted benzoic acids considered (Table 1). On the other hand, several co-crystals were obtained with supramolecular patterns different from those illustrated in Figs. 2 and 4, and they crystallized in different polymorphs and multiple stoichiometries. The crystal structures of the obtained cyclic imide–hydroxybenzoic acid co-crystals are discussed next, followed by phase diagrams for the eutectic-forming combinations.
of the reported SM–24DHBA (Moragues-Bartolome2.2. Succinimide–hydroxybenzoic acid co-crystals
2.2.1. 1:1 SM–4HBA
In this Thomo-IV units (composed of succinimide C—H⋯O homodimers and imide–hydroxyphenyl heterodimers) propagate into tapes through carboxylic acid dimers (Fig. 5). Such tapes extend into two-dimensional sheets through O—Hhydroxy⋯O=Cimide and multiple C—H⋯O hydrogen bonds. The hydroxyl group clearly plays a major role in invoking auxiliary interactions and sustaining both the one- and two-dimensional motifs.
2.2.2. 1:1 SM–24DHBA, polymorph II
Crystallization of a 1:1 SM–24DHBA ground mixture in an effort to reproduce the reported 1:1 et al., 2012) resulted in a new polymorph of the (polymorph II). This dimorphic pair represents a case of conformational and synthon (Aitipamula, Chow & Tan, 2014; Aitipamula, Wong et al., 2014). The polymorphs differ in the conformation of the para-hydroxyl group, which is trans to the carbonyl of the acid group in polymorph I, and cis in polymorph II (Figs. 1 and 6). Whereas polymorph I shows the acid-flanked imide homodimer (Thomo-I unit, Fig. 1), polymorph II displays no imide or acid homodimer (Fig. 6). Instead, imide–hydroxyphenyl SM–24DHBA heterodimers permit the extra imide carbonyl and free acid groups to form hydrogen bonds with each other, propagating into a zigzag tape. Such tapes extend into a sheet structure through hydroxy–carbonylimide and C—H⋯O interactions. The absence of strong imide N—H⋯O or acid homodimers or imide–acid heterodimers in the seems to be compensated by maximal intermolecular hydrogen bonding.
(polymorph I; Moragues-Bartolome2.2.3. 1:2 SM–34DHBA
Crystallization of a 1:1 SM–34DHBA ground mixture from acetonitrile resulted in a Thomo-II units with their peripheral carbonyls hydrogen-bonded to hydroxyl groups of 34DHBA molecules (Fig. 7). These units propagate through acid homodimers between symmetry-independent 34DHBA molecules which have differences in their hydroxyl conformations (cis–cis in one case and trans–trans in the other with respect to the carbonyl of the acid group).
with 1:2 stoichiometry. In the of 1:2 SM–34DHBA, N—H⋯O dimers between inversion-related SM molecules make2.2.4. 1:3:3 SM–35DHBA–H2O
Co-crystallization of SM and 35DHBA was expected to provide a 1:1 Thetero units, as per the geometric features outlined in Fig. 4. Interestingly, however, a hydrated with stoichiometry 1:3:3 SM–35DHBA–H2O was obtained upon crystallization from methanol. In the planar hexameric motifs of 35DHBA molecules make voids that are filled by succinimide N—H⋯O dimers and water molecules (Fig. 8). The is stabilized by forming a network of O—H⋯O interactions involving the hydroxyl groups and water molecules. On the basis of constructing an extended in-plane hydrogen-bond network, the hydroxyl groups of one of the three symmetry-independent 35DHBA molecules appear to be disordered.
having exclusively2.2.5. 2:1 SM–345THBA polymorphs
Crystallization of a 1:1 SM–345THBA ground mixture from methanol resulted in two polymorphs of a 2:1 P212121) and polymorph II (space group ). In polymorph I, the hydroxyl groups of 345THBA have a cis–cis–trans geometry, while they have an all-trans geometry in polymorph II (Fig. 9). In polymorph I, N—H⋯O dimers between SM molecules permit the peripheral imide carbonyls to accept hydrogen bonds from acid and hydroxyl OH groups and propagate a tape (Fig. 9a). In polymorph II, N—H⋯O dimers between inversion-related SM molecules make Thomo-II units with the peripheral carbonyls, supported by hydrogen bonds from the hydroxyl groups of 345THBA molecules (Fig. 9b). Additionally, the outlying imide carbonyl of each SM molecule accepts a hydrogen bond from the imide NH of another SM molecule in an orthogonal manner. This dimorphic pair of co-crystals also exhibits conformational and synthon (Aitipamula, Chow & Tan, 2014; Aitipamula, Wong et al., 2014).
designated polymorph I (space group2.3. Maleimide–hydroxybenzoic acid co-crystals
2.3.1. 1:1 MM–4HBA
Crystallization of a 1:1 MM–4HBA ground mixture from methanol resulted in a 1:1 hydroxyl⋯O=Cimide and multiple C—H⋯O interactions (Fig. 10). Further, akin to SM–4HBA, the MM–4HBA features maximal intermolecular hydrogen bonding to compensate for the lack of strong imide N—H⋯O homodimers.
The structure exhibits similarity to the 1:1 SM–4HBA in that the tapes formed by C—H⋯O-connected maleimide molecules and 4HBA carboxylic acid dimers, joined by imide–hydroxyphenyl interactions, extend into a sheet structure through O— H2.3.2. 1:1 MM–24DHBA
Crystallization of a 1:1 MM–24DHBA ground mixture from methanol resulted in a 1:1 ).
Interestingly, the structure has no resemblance to either of the two 1:1 SM–24DHBA polymorphs. Instead, it exhibits similarity with the MM–4HBA and SM–4HBA co-crystals, more so with the former in that both of them lack the centrosymmetric imide C—H⋯O homodimers which are characteristic of the SM–4HBA Overall, the forms a sheet structure akin to MM–4HBA, sustained by imide–hydroxyphenyl and C—H⋯O interactions (Fig. 112.3.3. 1:3:3 MM–35DHBA–H2O
Similar to SM–35DHBA, a 2O was obtained when a 1:1 MM–35DHBA ground mixture was crystallized from methanol. The structure is closely comparable with (but not entirely identical to) SM–35DHBA–H2O, in which hexameric motifs of 35DHBA molecules make voids for succinimide N—H⋯O dimers and water molecules (Fig. 12). In this case, all of the hydroxyl groups and water molecules appear to be disordered within the planar hydrogen-bond networks. Compared with SM–35DHBA, the layers of 35DHBA molecules are aligned slightly differently, as a result of accommodating the MM molecule rather than the SM molecule within the voids.
trihydrate with stoichiometry 1:3:3 MM–35DHBA–H2.3.4. MM–34DHBA and MM–345THBA combinations
Although no crystal structures could be determined because of a lack of diffraction-quality single crystals, distinct PXRD patterns compared with their parent compounds establish these as co-crystal-forming combinations (see supporting information ).
2.4. Glutarimide–hydroxybenzoic acid co-crystals
2.4.1. 1:2 GM–4HBA
Crystallization of a 1:1 GM–4HBA ground mixture from methanol resulted in a Thomo-II units formed by N—H⋯O dimers between GM molecules, and acid homodimers formed between 4HBA molecules connected through carbonyl–hydroxyl interactions (Fig. 13). The 4HBA molecules form two pairs of homodimers in which the component 4HBA molecules have different hydroxyl conformations (cis in one molecule and trans in the other, within a given pair).
with 1:2 stoichiometry. The structure displays non-planar2.4.2. 1:1 GM–35DHBA co-crystal
Crystallization of a 1:1 GM–4HBA ground mixture from methanol resulted in a 1:1 Thetero units consisting of imide–acid ring heterodimers which are propagated by hydrogen bonds between the peripheral carbonyls of GM and the meta-hydroxyl groups of 35DHBA (Fig. 14).
The includes2.4.3. GM–24DHBA/34DHBA/345THBA
Moragues-Bartolome et al. (2012) reported the formation of a new solid for the GM–24DHBA combination but could not produce single crystals suitable for Similarly, we could not obtain crystal structures of these combinations, but their distinct PXRD patterns compared with their parent compounds (see supporting information ) establish them to be co-crystal-forming combinations.
2.5. Binary phase diagrams of eutectic-forming combinations
Moragues-Bartolome et al. (2012) concluded that the benzoic acid–succinimide/glutarimide combination did not form co-crystals. We corroborate this result, but in addition can demonstrate the formation of eutectic mixtures by constructing phase diagrams. The thermal behaviour of different molar compositions (1:1, 1:2, 2:1, 1:3, 3:1, 1:4, 4:1) for each of the combinations was analysed on a melting-point apparatus and the solidus–liquidus events were plotted. Based on the single invariant low melting point observed in all compositions, and the characteristic `V'-type phase diagram, formation in any stoichiometric ratio is ruled out. The eutectic composition for each of the combinations was determined from the meeting of the solidus and liquidus points. All three cyclic formed eutectics with benzoic acid and 2- and 3-hydroxybenzoic acids, and the phase diagrams are given in Figs. 15–17. The structural basis for the eutectic mixtures is the possibility of finite Thomo or Thetero units, as discussed before.
3. Conclusions
We have carried out an extensive study of the supramolecular compatibility of various cyclic imide–aromatic carboxylic acid combinations in terms of the formation of co-crystals and eutectic mixtures. Several co-crystals and eutectics were obtained, in accordance with our supramolecular design schematics. It appears convincing that, in general, all the cyclic imide–hydroxybenzoic acid co-crystals manifest as per Figs. 2 and 4. However, the architecture schematized is an ideal situation and suits only 1:1 stoichiometries, if any. The strength and conformational flexibility associated with the hydroxyl group and the crystallization milieu factors (solvent, temperature, etc.) facilitate formation in different architectures (polymorphic arrangements), with different conformers (multiple stoichiometry), and sometimes including water of crystallization (Thakuria et al., 2012). Earlier studies from our group have shown that the relative differences in the propensity to form supramolecular synthons and in the induction strength complementarity of hydrogen-bonding functional groups guide the formation of co-crystals and eutectics in a mutually exclusive manner for a given combination (Cherukuvada & Row, 2014; Prasad et al., 2014). In this work, we have provided a rationale for their formation in the systems studied on the basis of an additional (in this case hydroxyl) and its geometric disposition and resultant supramolecular effect in different combinations. The observation of a sharp melting point lower than those of the individual components, and the coexistence of individual components (as per PXRD patterns), in the medicinally relevant systems studied here strengthens the prospects of eutectics for pharmaceutical applications. This work improves our understanding of the requisites for selective or eutectic formation for a combination with extensive hydrogen-bonding prospects.
Supporting information
10.1107/S2052252515002651/bi5039sup1.cif
contains datablocks global, SM-4HBA, SM-24DHBA, SM-34DHBA, SM-345THBAI, SM-345THBAII, SM-35DHBA, MM-4HBA, MM-24DHBA, MM-35DHBA, GM-4HBA, GM-35DHBA. DOI:Structure factors: contains datablock SM-4HBA. DOI: 10.1107/S2052252515002651/bi5039SM-4HBAsup2.hkl
Structure factors: contains datablock SM-24DHBA. DOI: 10.1107/S2052252515002651/bi5039SM-24DHBAsup3.hkl
Structure factors: contains datablock SM-34DHBA. DOI: 10.1107/S2052252515002651/bi5039SM-34DHBAsup4.hkl
Structure factors: contains datablock SM-345THBAI. DOI: 10.1107/S2052252515002651/bi5039SM-345THBAIsup5.hkl
Structure factors: contains datablock SM-345THBAII. DOI: 10.1107/S2052252515002651/bi5039SM-345THBAIIsup6.hkl
Structure factors: contains datablock SM-35DHBA. DOI: 10.1107/S2052252515002651/bi5039SM-35DHBAsup7.hkl
Structure factors: contains datablock MM-4HBA. DOI: 10.1107/S2052252515002651/bi5039MM-4HBAsup8.hkl
Structure factors: contains datablock MM-24DHBA. DOI: 10.1107/S2052252515002651/bi5039MM-24DHBAsup9.hkl
Structure factors: contains datablock mm-35DHBA. DOI: 10.1107/S2052252515002651/bi5039MM-35DHBAsup10.hkl
Structure factors: contains datablock GM-4HBA. DOI: 10.1107/S2052252515002651/bi5039GM-4HBAsup11.hkl
Structure factors: contains datablock GM-35DHBA. DOI: 10.1107/S2052252515002651/bi5039GM-35DHBAsup12.hkl
Supporting figures and tables. DOI: 10.1107/S2052252515002651/bi5039sup13.pdf
Data collection: CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for SM-4HBA, SM-24DHBA, SM-34DHBA, MM-4HBA, GM-4HBA, GM-35DHBA; CrysAlis PRO CCD (Oxford Diffraction, 2009) for SM-345THBAI; CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) for SM-345THBAII; CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) for SM-35DHBA, MM-35DHBA; CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) for MM-24DHBA. Cell
CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for SM-4HBA, SM-24DHBA, SM-34DHBA, MM-4HBA, GM-4HBA, GM-35DHBA; CrysAlis PRO CCD (Oxford Diffraction, 2009) for SM-345THBAI; CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) for SM-345THBAII; CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) for SM-35DHBA, MM-35DHBA; CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) for MM-24DHBA. Data reduction: CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for SM-4HBA, SM-24DHBA, SM-34DHBA, MM-4HBA, GM-4HBA, GM-35DHBA; CrysAlis PRO RED (Oxford Diffraction, 2009) for SM-345THBAI; CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) for SM-345THBAII; CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) for SM-35DHBA, MM-35DHBA; CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) for MM-24DHBA. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for SM-345THBAI. Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) for SM-345THBAI; SHELXL2013 (Sheldrick, 2013) for SM-35DHBA, MM-35DHBA. Molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993) for SM-345THBAI. Software used to prepare material for publication: PLATON (Spek, 2003) for SM-4HBA, SM-24DHBA, SM-34DHBA, SM-345THBAII, MM-4HBA, MM-24DHBA, GM-4HBA, GM-35DHBA; WinGX (Farrugia, 1999) for SM-345THBAI.C7H6O3·C4H5NO2 | Z = 2 |
Mr = 237.21 | F(000) = 248 |
Triclinic, P1 | Dx = 1.459 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5133 (3) Å | Cell parameters from 8365 reflections |
b = 8.1853 (5) Å | θ = 3.4–29.9° |
c = 11.4965 (6) Å | µ = 0.12 mm−1 |
α = 103.458 (5)° | T = 100 K |
β = 93.925 (4)° | Block, colourless |
γ = 113.018 (5)° | 0.43 × 0.24 × 0.23 mm |
V = 539.85 (6) Å3 |
Xcalibur, Eos, Nova diffractometer | Rint = 0.035 |
Mirror monochromator | θmax = 30.2°, θmin = 2.8° |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | h = −8→9 |
Tmin = 0.843, Tmax = 1.000 | k = −11→11 |
13046 measured reflections | l = −16→15 |
1903 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0461P)2 + 0.1643P] where P = (Fo2 + 2Fc2)/3 |
1903 reflections | (Δ/σ)max < 0.001 |
166 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C7H6O3·C4H5NO2 | γ = 113.018 (5)° |
Mr = 237.21 | V = 539.85 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.5133 (3) Å | Mo Kα radiation |
b = 8.1853 (5) Å | µ = 0.12 mm−1 |
c = 11.4965 (6) Å | T = 100 K |
α = 103.458 (5)° | 0.43 × 0.24 × 0.23 mm |
β = 93.925 (4)° |
Xcalibur, Eos, Nova diffractometer | 13046 measured reflections |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 1903 independent reflections |
Tmin = 0.843, Tmax = 1.000 | Rint = 0.035 |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.20 e Å−3 |
1903 reflections | Δρmin = −0.26 e Å−3 |
166 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.08575 (19) | 0.07710 (15) | 0.85791 (10) | 0.0154 (3) | |
C2 | 0.15232 (19) | 0.13804 (15) | 0.74955 (10) | 0.0154 (3) | |
C7 | −0.00327 (19) | 0.16678 (15) | 0.67570 (10) | 0.0161 (3) | |
H7 | −0.1447 | 0.1484 | 0.6963 | 0.019* | |
C6 | 0.05023 (19) | 0.22189 (16) | 0.57288 (10) | 0.0164 (3) | |
H6 | −0.0541 | 0.2414 | 0.5249 | 0.020* | |
C5 | 0.26237 (19) | 0.24835 (15) | 0.54103 (10) | 0.0151 (3) | |
C4 | 0.4203 (2) | 0.22114 (16) | 0.61406 (11) | 0.0176 (3) | |
H4 | 0.5616 | 0.2396 | 0.5933 | 0.021* | |
C3 | 0.3650 (2) | 0.16646 (16) | 0.71759 (10) | 0.0175 (3) | |
H3 | 0.4699 | 0.1485 | 0.7662 | 0.021* | |
C8 | 0.0155 (2) | 0.38221 (16) | 0.15958 (11) | 0.0171 (3) | |
C9 | −0.2032 (2) | 0.37489 (17) | 0.09818 (11) | 0.0189 (3) | |
H9A | −0.2653 | 0.2753 | 0.0230 | 0.023* | |
H9B | −0.1773 | 0.4908 | 0.0803 | 0.023* | |
C10 | −0.3636 (2) | 0.34070 (17) | 0.18976 (11) | 0.0199 (3) | |
H10A | −0.4144 | 0.4388 | 0.2106 | 0.024* | |
H10B | −0.4951 | 0.2235 | 0.1569 | 0.024* | |
C11 | −0.22631 (19) | 0.33794 (15) | 0.29932 (11) | 0.0161 (3) | |
N1 | −0.01497 (17) | 0.36098 (14) | 0.27538 (9) | 0.0166 (2) | |
O2 | 0.24039 (14) | 0.05279 (12) | 0.92336 (7) | 0.0194 (2) | |
O1 | −0.10420 (14) | 0.04944 (11) | 0.88444 (7) | 0.0192 (2) | |
O3 | 0.30534 (14) | 0.29955 (12) | 0.43755 (7) | 0.0181 (2) | |
O4 | 0.18793 (14) | 0.40198 (13) | 0.11986 (8) | 0.0249 (2) | |
O5 | −0.28862 (14) | 0.31711 (12) | 0.39538 (8) | 0.0220 (2) | |
H2O | 0.181 (3) | 0.017 (3) | 0.9919 (19) | 0.059 (6)* | |
H3O | 0.438 (3) | 0.304 (2) | 0.4229 (16) | 0.045 (5)* | |
H1N | 0.085 (3) | 0.354 (2) | 0.3261 (15) | 0.030 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0167 (6) | 0.0134 (5) | 0.0155 (6) | 0.0062 (5) | 0.0029 (4) | 0.0028 (4) |
C2 | 0.0169 (6) | 0.0135 (5) | 0.0154 (6) | 0.0060 (4) | 0.0035 (4) | 0.0037 (4) |
C7 | 0.0136 (6) | 0.0175 (6) | 0.0185 (6) | 0.0073 (5) | 0.0058 (4) | 0.0057 (5) |
C6 | 0.0150 (6) | 0.0198 (6) | 0.0167 (6) | 0.0090 (5) | 0.0022 (4) | 0.0063 (5) |
C5 | 0.0174 (6) | 0.0148 (5) | 0.0132 (5) | 0.0063 (5) | 0.0042 (4) | 0.0044 (4) |
C4 | 0.0143 (6) | 0.0231 (6) | 0.0187 (6) | 0.0092 (5) | 0.0063 (4) | 0.0085 (5) |
C3 | 0.0166 (6) | 0.0212 (6) | 0.0175 (6) | 0.0098 (5) | 0.0027 (4) | 0.0075 (5) |
C8 | 0.0188 (6) | 0.0180 (6) | 0.0173 (6) | 0.0096 (5) | 0.0048 (5) | 0.0063 (4) |
C9 | 0.0200 (6) | 0.0248 (6) | 0.0178 (6) | 0.0137 (5) | 0.0037 (5) | 0.0087 (5) |
C10 | 0.0165 (6) | 0.0257 (6) | 0.0202 (6) | 0.0108 (5) | 0.0026 (5) | 0.0082 (5) |
C11 | 0.0159 (6) | 0.0151 (5) | 0.0196 (6) | 0.0077 (5) | 0.0048 (5) | 0.0062 (4) |
N1 | 0.0147 (5) | 0.0230 (5) | 0.0167 (5) | 0.0106 (4) | 0.0037 (4) | 0.0087 (4) |
O2 | 0.0197 (4) | 0.0268 (5) | 0.0166 (4) | 0.0121 (4) | 0.0052 (3) | 0.0106 (4) |
O1 | 0.0167 (4) | 0.0259 (5) | 0.0177 (4) | 0.0092 (4) | 0.0063 (3) | 0.0098 (3) |
O3 | 0.0155 (4) | 0.0282 (5) | 0.0162 (4) | 0.0111 (4) | 0.0068 (3) | 0.0120 (3) |
O4 | 0.0204 (5) | 0.0390 (5) | 0.0241 (5) | 0.0170 (4) | 0.0111 (4) | 0.0151 (4) |
O5 | 0.0202 (4) | 0.0334 (5) | 0.0218 (5) | 0.0156 (4) | 0.0100 (3) | 0.0156 (4) |
C1—O1 | 1.2409 (14) | C4—C3 | 1.3882 (17) |
C1—O2 | 1.3202 (14) | C8—O4 | 1.2075 (15) |
C1—C2 | 1.4774 (16) | C8—N1 | 1.3996 (15) |
C2—C7 | 1.4017 (17) | C8—C9 | 1.5189 (16) |
C2—C3 | 1.4017 (17) | C9—C10 | 1.5290 (16) |
C7—C6 | 1.3799 (16) | C10—C11 | 1.5038 (16) |
C6—C5 | 1.4008 (16) | C11—O5 | 1.2281 (15) |
C5—O3 | 1.3620 (14) | C11—N1 | 1.3708 (15) |
C5—C4 | 1.4000 (17) | ||
O1—C1—O2 | 122.58 (11) | C3—C4—C5 | 119.71 (11) |
O1—C1—C2 | 121.77 (10) | C4—C3—C2 | 120.57 (11) |
O2—C1—C2 | 115.64 (10) | O4—C8—N1 | 124.10 (11) |
C7—C2—C3 | 118.95 (11) | O4—C8—C9 | 128.45 (11) |
C7—C2—C1 | 118.84 (10) | N1—C8—C9 | 107.45 (10) |
C3—C2—C1 | 122.21 (10) | C8—C9—C10 | 105.04 (9) |
C6—C7—C2 | 120.97 (11) | C11—C10—C9 | 105.13 (9) |
C7—C6—C5 | 119.69 (10) | O5—C11—N1 | 124.12 (11) |
O3—C5—C4 | 122.50 (10) | O5—C11—C10 | 126.99 (11) |
O3—C5—C6 | 117.40 (10) | N1—C11—C10 | 108.89 (10) |
C4—C5—C6 | 120.10 (11) | C11—N1—C8 | 113.45 (10) |
O1—C1—C2—C7 | 0.59 (16) | C7—C2—C3—C4 | −0.37 (17) |
O2—C1—C2—C7 | −179.97 (10) | C1—C2—C3—C4 | 179.05 (10) |
O1—C1—C2—C3 | −178.83 (10) | O4—C8—C9—C10 | 178.00 (12) |
O2—C1—C2—C3 | 0.61 (16) | N1—C8—C9—C10 | −1.86 (12) |
C3—C2—C7—C6 | 0.10 (17) | C8—C9—C10—C11 | 2.17 (12) |
C1—C2—C7—C6 | −179.34 (10) | C9—C10—C11—O5 | 178.82 (11) |
C2—C7—C6—C5 | 0.47 (17) | C9—C10—C11—N1 | −1.79 (13) |
C7—C6—C5—O3 | 178.86 (10) | O5—C11—N1—C8 | −179.94 (10) |
C7—C6—C5—C4 | −0.77 (17) | C10—C11—N1—C8 | 0.65 (13) |
O3—C5—C4—C3 | −179.11 (10) | O4—C8—N1—C11 | −179.07 (11) |
C6—C5—C4—C3 | 0.50 (17) | C9—C8—N1—C11 | 0.81 (13) |
C5—C4—C3—C2 | 0.08 (17) |
C7H6O4·C4H5NO2 | Z = 2 |
Mr = 253.21 | F(000) = 264 |
Triclinic, P1 | Dx = 1.579 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7358 (8) Å | Cell parameters from 2754 reflections |
b = 6.9119 (8) Å | θ = 3.4–29.8° |
c = 12.3937 (9) Å | µ = 0.13 mm−1 |
α = 74.468 (9)° | T = 100 K |
β = 85.298 (8)° | Block, colourless |
γ = 73.28 (1)° | 0.35 × 0.29 × 0.10 mm |
V = 532.43 (10) Å3 |
Xcalibur, Eos, Nova diffractometer | 1690 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 25.0°, θmin = 3.2° |
Tmin = 0.755, Tmax = 1.000 | h = −8→8 |
4016 measured reflections | k = −8→6 |
1861 independent reflections | l = −14→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.054 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.0365P)2 + 1.0119P] where P = (Fo2 + 2Fc2)/3 |
S = 1.26 | (Δ/σ)max < 0.001 |
1861 reflections | Δρmax = 0.55 e Å−3 |
179 parameters | Δρmin = −0.37 e Å−3 |
C7H6O4·C4H5NO2 | γ = 73.28 (1)° |
Mr = 253.21 | V = 532.43 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7358 (8) Å | Mo Kα radiation |
b = 6.9119 (8) Å | µ = 0.13 mm−1 |
c = 12.3937 (9) Å | T = 100 K |
α = 74.468 (9)° | 0.35 × 0.29 × 0.10 mm |
β = 85.298 (8)° |
Xcalibur, Eos, Nova diffractometer | 1861 independent reflections |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 1690 reflections with I > 2σ(I) |
Tmin = 0.755, Tmax = 1.000 | Rint = 0.026 |
4016 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.26 | Δρmax = 0.55 e Å−3 |
1861 reflections | Δρmin = −0.37 e Å−3 |
179 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4868 (4) | 0.3357 (4) | 0.9082 (2) | 0.0164 (6) | |
C2 | 0.4839 (4) | 0.4529 (4) | 0.7903 (2) | 0.0158 (6) | |
C7 | 0.6636 (4) | 0.5087 (4) | 0.7433 (2) | 0.0156 (6) | |
C6 | 0.6622 (4) | 0.6255 (4) | 0.6330 (2) | 0.0164 (6) | |
H6 | 0.7806 | 0.6627 | 0.6018 | 0.020* | |
C5 | 0.4856 (4) | 0.6862 (4) | 0.5699 (2) | 0.0154 (6) | |
C4 | 0.3066 (4) | 0.6303 (4) | 0.6141 (2) | 0.0164 (6) | |
H4 | 0.1888 | 0.6708 | 0.5703 | 0.020* | |
C3 | 0.3067 (4) | 0.5146 (4) | 0.7231 (2) | 0.0151 (6) | |
H7 | 0.1880 | 0.4766 | 0.7529 | 0.018* | |
C8 | 0.1714 (4) | 0.0580 (4) | 0.1998 (2) | 0.0157 (6) | |
C9 | −0.0237 (4) | 0.1237 (4) | 0.1334 (2) | 0.0180 (6) | |
H9A | 0.0015 | 0.0761 | 0.0654 | 0.022* | |
H9B | −0.0794 | 0.2745 | 0.1137 | 0.022* | |
C10 | −0.1733 (4) | 0.0187 (4) | 0.2119 (2) | 0.0190 (6) | |
H10A | −0.3033 | 0.1205 | 0.2199 | 0.023* | |
H10B | −0.2012 | −0.0889 | 0.1837 | 0.023* | |
C11 | −0.0603 (4) | −0.0744 (4) | 0.3217 (2) | 0.0175 (6) | |
N1 | 0.1352 (4) | −0.0449 (4) | 0.3068 (2) | 0.0166 (5) | |
O1 | 0.6438 (3) | 0.2770 (3) | 0.96707 (16) | 0.0209 (5) | |
O2 | 0.3116 (3) | 0.2956 (3) | 0.94891 (16) | 0.0213 (5) | |
O4 | 0.8403 (3) | 0.4514 (3) | 0.80187 (16) | 0.0204 (5) | |
O3 | 0.4780 (3) | 0.8045 (3) | 0.46181 (16) | 0.0191 (5) | |
O5 | 0.3385 (3) | 0.0884 (3) | 0.16640 (16) | 0.0194 (5) | |
O6 | −0.1252 (3) | −0.1641 (3) | 0.41058 (17) | 0.0242 (5) | |
H1N | 0.224 (6) | −0.086 (5) | 0.355 (3) | 0.020 (9)* | |
H2O | 0.318 (7) | 0.227 (6) | 1.0147 (14) | 0.058 (14)* | |
H4O | 0.811 (8) | 0.394 (7) | 0.8659 (17) | 0.070 (16)* | |
H3O | 0.618 (6) | 0.815 (6) | 0.442 (3) | 0.035 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0180 (14) | 0.0158 (13) | 0.0144 (13) | −0.0051 (11) | −0.0023 (11) | −0.0009 (10) |
C2 | 0.0205 (14) | 0.0132 (12) | 0.0132 (13) | −0.0060 (11) | 0.0018 (11) | −0.0018 (10) |
C7 | 0.0161 (13) | 0.0157 (13) | 0.0145 (13) | −0.0062 (10) | −0.0015 (10) | −0.0006 (10) |
C6 | 0.0175 (13) | 0.0164 (13) | 0.0149 (13) | −0.0090 (11) | 0.0046 (11) | −0.0002 (10) |
C5 | 0.0239 (14) | 0.0113 (12) | 0.0101 (12) | −0.0054 (11) | −0.0003 (11) | −0.0008 (10) |
C4 | 0.0182 (14) | 0.0174 (13) | 0.0128 (13) | −0.0053 (11) | −0.0012 (11) | −0.0015 (10) |
C3 | 0.0190 (14) | 0.0148 (12) | 0.0119 (13) | −0.0081 (10) | 0.0019 (10) | −0.0013 (10) |
C8 | 0.0199 (14) | 0.0136 (12) | 0.0134 (13) | −0.0060 (11) | 0.0028 (11) | −0.0022 (10) |
C9 | 0.0187 (14) | 0.0195 (14) | 0.0148 (13) | −0.0048 (11) | −0.0024 (11) | −0.0023 (11) |
C10 | 0.0192 (14) | 0.0172 (13) | 0.0200 (14) | −0.0063 (11) | −0.0018 (11) | −0.0021 (11) |
C11 | 0.0202 (14) | 0.0148 (13) | 0.0158 (14) | −0.0050 (11) | −0.0023 (11) | −0.0005 (10) |
N1 | 0.0167 (12) | 0.0186 (12) | 0.0118 (12) | −0.0063 (9) | −0.0011 (10) | 0.0025 (9) |
O1 | 0.0188 (10) | 0.0248 (11) | 0.0155 (10) | −0.0072 (8) | −0.0031 (8) | 0.0031 (8) |
O2 | 0.0217 (11) | 0.0271 (11) | 0.0124 (10) | −0.0103 (9) | −0.0002 (8) | 0.0034 (8) |
O4 | 0.0156 (10) | 0.0276 (11) | 0.0140 (10) | −0.0080 (8) | −0.0030 (8) | 0.0042 (8) |
O3 | 0.0220 (11) | 0.0210 (10) | 0.0125 (9) | −0.0097 (8) | −0.0005 (8) | 0.0029 (8) |
O5 | 0.0196 (10) | 0.0234 (10) | 0.0148 (10) | −0.0103 (8) | −0.0011 (8) | 0.0009 (8) |
O6 | 0.0254 (11) | 0.0270 (11) | 0.0165 (10) | −0.0126 (9) | 0.0027 (8) | 0.0054 (8) |
C1—O1 | 1.239 (3) | C5—C4 | 1.397 (4) |
C1—O2 | 1.319 (3) | C4—C3 | 1.373 (4) |
C1—C2 | 1.468 (4) | C8—O5 | 1.223 (3) |
C2—C3 | 1.407 (4) | C8—N1 | 1.366 (3) |
C2—C7 | 1.409 (4) | C8—C9 | 1.498 (4) |
C7—O4 | 1.348 (3) | C9—C10 | 1.539 (4) |
C7—C6 | 1.388 (4) | C10—C11 | 1.505 (4) |
C6—C5 | 1.376 (4) | C11—O6 | 1.224 (3) |
C5—O3 | 1.366 (3) | C11—N1 | 1.380 (4) |
O1—C1—O2 | 121.3 (2) | C6—C5—C4 | 121.3 (2) |
O1—C1—C2 | 122.5 (3) | C3—C4—C5 | 119.2 (3) |
O2—C1—C2 | 116.1 (2) | C4—C3—C2 | 120.9 (2) |
C3—C2—C7 | 118.9 (2) | O5—C8—N1 | 124.0 (3) |
C3—C2—C1 | 122.3 (2) | O5—C8—C9 | 127.0 (2) |
C7—C2—C1 | 118.8 (2) | N1—C8—C9 | 109.0 (2) |
O4—C7—C6 | 118.0 (2) | C8—C9—C10 | 104.5 (2) |
O4—C7—C2 | 122.2 (2) | C11—C10—C9 | 104.2 (2) |
C6—C7—C2 | 119.9 (2) | O6—C11—N1 | 124.2 (3) |
C5—C6—C7 | 119.9 (2) | O6—C11—C10 | 127.2 (3) |
O3—C5—C6 | 121.4 (2) | N1—C11—C10 | 108.6 (2) |
O3—C5—C4 | 117.4 (2) | C8—N1—C11 | 113.1 (2) |
O1—C1—C2—C3 | 178.4 (3) | C6—C5—C4—C3 | 0.8 (4) |
O2—C1—C2—C3 | −1.7 (4) | C5—C4—C3—C2 | 0.2 (4) |
O1—C1—C2—C7 | −2.8 (4) | C7—C2—C3—C4 | −1.0 (4) |
O2—C1—C2—C7 | 177.2 (2) | C1—C2—C3—C4 | 177.8 (2) |
C3—C2—C7—O4 | −178.6 (2) | O5—C8—C9—C10 | 172.3 (3) |
C1—C2—C7—O4 | 2.5 (4) | N1—C8—C9—C10 | −7.6 (3) |
C3—C2—C7—C6 | 1.0 (4) | C8—C9—C10—C11 | 7.3 (3) |
C1—C2—C7—C6 | −177.9 (2) | C9—C10—C11—O6 | 175.9 (3) |
O4—C7—C6—C5 | 179.6 (2) | C9—C10—C11—N1 | −4.8 (3) |
C2—C7—C6—C5 | 0.0 (4) | O5—C8—N1—C11 | −175.0 (3) |
C7—C6—C5—O3 | 178.8 (2) | C9—C8—N1—C11 | 4.9 (3) |
C7—C6—C5—C4 | −0.9 (4) | O6—C11—N1—C8 | 179.5 (3) |
O3—C5—C4—C3 | −178.8 (2) | C10—C11—N1—C8 | 0.1 (3) |
2(C7H6O4)·C4H5NO2 | F(000) = 848 |
Mr = 407.33 | Dx = 1.577 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4761 reflections |
a = 6.7323 (2) Å | θ = 3.1–29.9° |
b = 12.1142 (5) Å | µ = 0.13 mm−1 |
c = 21.2077 (8) Å | T = 100 K |
β = 97.146 (3)° | Block, colourless |
V = 1716.19 (11) Å3 | 0.33 × 0.15 × 0.11 mm |
Z = 4 |
Xcalibur, Eos, Nova diffractometer | 2818 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.040 |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.0°, θmin = 2.6° |
Tmin = 0.880, Tmax = 1.000 | h = −8→8 |
10777 measured reflections | k = −14→13 |
3365 independent reflections | l = −25→26 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.035P)2 + 0.5769P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3365 reflections | Δρmax = 0.27 e Å−3 |
290 parameters | Δρmin = −0.22 e Å−3 |
2(C7H6O4)·C4H5NO2 | V = 1716.19 (11) Å3 |
Mr = 407.33 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.7323 (2) Å | µ = 0.13 mm−1 |
b = 12.1142 (5) Å | T = 100 K |
c = 21.2077 (8) Å | 0.33 × 0.15 × 0.11 mm |
β = 97.146 (3)° |
Xcalibur, Eos, Nova diffractometer | 3365 independent reflections |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 2818 reflections with I > 2σ(I) |
Tmin = 0.880, Tmax = 1.000 | Rint = 0.040 |
10777 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.27 e Å−3 |
3365 reflections | Δρmin = −0.22 e Å−3 |
290 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4685 (2) | 0.76778 (14) | 0.13733 (8) | 0.0159 (4) | |
C2 | 0.6615 (2) | 0.70887 (14) | 0.14576 (8) | 0.0158 (4) | |
C3 | 0.7557 (3) | 0.68234 (15) | 0.20625 (8) | 0.0169 (4) | |
H3 | 0.6986 | 0.7044 | 0.2420 | 0.020* | |
C4 | 0.9328 (3) | 0.62371 (15) | 0.21354 (9) | 0.0186 (4) | |
H4 | 0.9936 | 0.6058 | 0.2540 | 0.022* | |
C5 | 1.0206 (2) | 0.59129 (15) | 0.16052 (8) | 0.0163 (4) | |
C6 | 0.9297 (3) | 0.62091 (15) | 0.10000 (8) | 0.0165 (4) | |
C7 | 0.7513 (3) | 0.67771 (15) | 0.09250 (8) | 0.0174 (4) | |
H7 | 0.6904 | 0.6954 | 0.0520 | 0.021* | |
C8 | −0.0216 (3) | 0.93239 (15) | 0.12621 (8) | 0.0161 (4) | |
C9 | −0.2137 (2) | 0.99223 (14) | 0.12435 (8) | 0.0154 (4) | |
C10 | −0.3007 (2) | 1.04901 (14) | 0.07059 (8) | 0.0152 (4) | |
H10 | −0.2382 | 1.0499 | 0.0339 | 0.018* | |
C11 | −0.4801 (3) | 1.10383 (15) | 0.07225 (8) | 0.0157 (4) | |
C12 | −0.5755 (2) | 1.10051 (15) | 0.12748 (8) | 0.0161 (4) | |
C13 | −0.4885 (3) | 1.04325 (15) | 0.18033 (8) | 0.0178 (4) | |
H13 | −0.5520 | 1.0407 | 0.2168 | 0.021* | |
C14 | −0.3080 (2) | 0.98998 (15) | 0.17906 (8) | 0.0166 (4) | |
H14 | −0.2493 | 0.9525 | 0.2149 | 0.020* | |
C15 | 0.1838 (3) | 0.81744 (16) | 0.34921 (8) | 0.0199 (4) | |
H15A | 0.0793 | 0.8493 | 0.3191 | 0.024* | |
H15B | 0.1947 | 0.7393 | 0.3402 | 0.024* | |
C16 | 0.1407 (3) | 0.83545 (15) | 0.41635 (9) | 0.0192 (4) | |
C17 | 0.4443 (3) | 0.92048 (15) | 0.41182 (9) | 0.0181 (4) | |
C18 | 0.3845 (3) | 0.87644 (16) | 0.34617 (8) | 0.0204 (4) | |
H18A | 0.4843 | 0.8252 | 0.3344 | 0.024* | |
H18B | 0.3692 | 0.9361 | 0.3154 | 0.024* | |
N1 | 0.2959 (2) | 0.89362 (13) | 0.44855 (7) | 0.0187 (4) | |
O1 | 0.38957 (17) | 0.80267 (11) | 0.08513 (6) | 0.0195 (3) | |
O2 | 0.38602 (18) | 0.77968 (11) | 0.18979 (6) | 0.0195 (3) | |
O3 | 1.19142 (18) | 0.53090 (11) | 0.16778 (6) | 0.0215 (3) | |
O4 | 1.02518 (19) | 0.58628 (12) | 0.05054 (6) | 0.0247 (3) | |
O5 | 0.06585 (18) | 0.89639 (11) | 0.17626 (6) | 0.0202 (3) | |
O6 | 0.04641 (19) | 0.91969 (11) | 0.07084 (6) | 0.0216 (3) | |
O7 | −0.57499 (19) | 1.16596 (11) | 0.02385 (6) | 0.0216 (3) | |
O8 | −0.75181 (18) | 1.15372 (11) | 0.13133 (6) | 0.0213 (3) | |
O9 | −0.00706 (18) | 0.80537 (11) | 0.43979 (6) | 0.0254 (3) | |
O10 | 0.59488 (18) | 0.97186 (11) | 0.43126 (6) | 0.0237 (3) | |
H1N | 0.300 (3) | 0.9184 (16) | 0.4864 (9) | 0.019 (5)* | |
H2O | 0.266 (4) | 0.822 (2) | 0.1810 (13) | 0.066 (8)* | |
H3O | 1.225 (3) | 0.519 (2) | 0.1302 (11) | 0.046 (7)* | |
H4O | 0.983 (4) | 0.627 (2) | 0.0116 (12) | 0.059 (8)* | |
H6O | 0.167 (4) | 0.881 (2) | 0.0760 (11) | 0.051 (7)* | |
H7O | −0.512 (3) | 1.1660 (17) | −0.0093 (10) | 0.033 (6)* | |
H8O | −0.792 (3) | 1.1900 (19) | 0.0954 (11) | 0.037 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0155 (9) | 0.0132 (9) | 0.0197 (9) | −0.0021 (7) | 0.0045 (7) | −0.0011 (8) |
C2 | 0.0157 (9) | 0.0132 (9) | 0.0191 (9) | −0.0004 (7) | 0.0045 (7) | 0.0005 (8) |
C3 | 0.0189 (9) | 0.0162 (9) | 0.0167 (9) | 0.0002 (7) | 0.0063 (7) | −0.0012 (8) |
C4 | 0.0203 (9) | 0.0188 (10) | 0.0164 (9) | 0.0014 (8) | 0.0014 (7) | 0.0012 (8) |
C5 | 0.0140 (8) | 0.0138 (9) | 0.0211 (9) | 0.0022 (7) | 0.0021 (7) | 0.0009 (8) |
C6 | 0.0166 (9) | 0.0164 (9) | 0.0176 (9) | 0.0019 (7) | 0.0059 (7) | −0.0002 (8) |
C7 | 0.0170 (9) | 0.0189 (10) | 0.0157 (9) | 0.0015 (7) | −0.0001 (7) | 0.0024 (8) |
C8 | 0.0159 (9) | 0.0161 (9) | 0.0166 (9) | −0.0017 (7) | 0.0030 (7) | −0.0008 (8) |
C9 | 0.0145 (8) | 0.0142 (9) | 0.0173 (9) | −0.0007 (7) | 0.0012 (7) | −0.0030 (8) |
C10 | 0.0150 (8) | 0.0177 (9) | 0.0139 (9) | −0.0011 (7) | 0.0049 (7) | −0.0014 (8) |
C11 | 0.0172 (9) | 0.0146 (9) | 0.0148 (9) | −0.0002 (7) | −0.0005 (7) | −0.0001 (8) |
C12 | 0.0138 (8) | 0.0157 (9) | 0.0192 (9) | 0.0011 (7) | 0.0033 (7) | −0.0028 (8) |
C13 | 0.0178 (9) | 0.0209 (10) | 0.0155 (9) | 0.0000 (7) | 0.0053 (7) | −0.0006 (8) |
C14 | 0.0191 (9) | 0.0156 (9) | 0.0147 (9) | −0.0001 (7) | 0.0010 (7) | 0.0008 (8) |
C15 | 0.0203 (9) | 0.0196 (10) | 0.0192 (9) | −0.0011 (8) | −0.0002 (7) | −0.0016 (8) |
C16 | 0.0189 (9) | 0.0171 (10) | 0.0216 (10) | −0.0010 (8) | 0.0025 (8) | 0.0002 (8) |
C17 | 0.0177 (9) | 0.0168 (9) | 0.0207 (9) | 0.0009 (8) | 0.0058 (7) | 0.0016 (8) |
C18 | 0.0223 (9) | 0.0224 (10) | 0.0171 (9) | −0.0002 (8) | 0.0051 (8) | 0.0010 (8) |
N1 | 0.0178 (8) | 0.0235 (9) | 0.0155 (8) | −0.0053 (7) | 0.0050 (6) | −0.0028 (7) |
O1 | 0.0168 (6) | 0.0251 (7) | 0.0166 (7) | 0.0059 (5) | 0.0029 (5) | 0.0018 (6) |
O2 | 0.0174 (6) | 0.0231 (7) | 0.0191 (7) | 0.0057 (6) | 0.0069 (5) | 0.0026 (6) |
O3 | 0.0184 (6) | 0.0287 (8) | 0.0178 (7) | 0.0097 (6) | 0.0033 (5) | −0.0005 (6) |
O4 | 0.0243 (7) | 0.0327 (8) | 0.0182 (7) | 0.0127 (6) | 0.0072 (6) | 0.0018 (7) |
O5 | 0.0172 (6) | 0.0249 (7) | 0.0187 (7) | 0.0055 (5) | 0.0030 (5) | 0.0015 (6) |
O6 | 0.0179 (6) | 0.0290 (8) | 0.0190 (7) | 0.0079 (6) | 0.0064 (5) | 0.0002 (6) |
O7 | 0.0220 (7) | 0.0271 (8) | 0.0164 (7) | 0.0079 (6) | 0.0056 (6) | 0.0048 (6) |
O8 | 0.0171 (6) | 0.0283 (8) | 0.0191 (7) | 0.0094 (6) | 0.0048 (5) | 0.0050 (6) |
O9 | 0.0210 (7) | 0.0304 (8) | 0.0260 (7) | −0.0092 (6) | 0.0077 (6) | −0.0064 (6) |
O10 | 0.0178 (7) | 0.0299 (8) | 0.0243 (7) | −0.0077 (6) | 0.0058 (5) | −0.0037 (6) |
C1—O1 | 1.241 (2) | C9—C10 | 1.396 (2) |
C1—O2 | 1.312 (2) | C10—C11 | 1.383 (2) |
C1—C2 | 1.474 (2) | C11—O7 | 1.366 (2) |
C2—C3 | 1.396 (3) | C11—C12 | 1.405 (2) |
C2—C7 | 1.398 (2) | C12—O8 | 1.362 (2) |
C3—C4 | 1.380 (2) | C12—C13 | 1.385 (3) |
C4—C5 | 1.391 (2) | C13—C14 | 1.379 (2) |
C5—O3 | 1.355 (2) | C15—C16 | 1.504 (2) |
C5—C6 | 1.398 (2) | C15—C18 | 1.537 (2) |
C6—O4 | 1.3627 (19) | C16—O9 | 1.222 (2) |
C6—C7 | 1.376 (2) | C16—N1 | 1.370 (2) |
C8—O5 | 1.228 (2) | C17—O10 | 1.217 (2) |
C8—O6 | 1.322 (2) | C17—N1 | 1.380 (2) |
C8—C9 | 1.479 (2) | C17—C18 | 1.499 (3) |
C9—C14 | 1.391 (2) | ||
O1—C1—O2 | 122.69 (15) | C10—C9—C8 | 122.66 (15) |
O1—C1—C2 | 123.10 (15) | C11—C10—C9 | 119.64 (15) |
O2—C1—C2 | 114.21 (16) | O7—C11—C10 | 125.02 (15) |
C3—C2—C7 | 119.20 (16) | O7—C11—C12 | 115.03 (15) |
C3—C2—C1 | 121.05 (15) | C10—C11—C12 | 119.93 (16) |
C7—C2—C1 | 119.75 (16) | O8—C12—C13 | 118.19 (15) |
C4—C3—C2 | 120.59 (15) | O8—C12—C11 | 121.91 (16) |
C3—C4—C5 | 120.20 (17) | C13—C12—C11 | 119.89 (15) |
O3—C5—C4 | 120.04 (16) | C14—C13—C12 | 120.23 (16) |
O3—C5—C6 | 120.73 (15) | C13—C14—C9 | 120.14 (17) |
C4—C5—C6 | 119.23 (16) | C16—C15—C18 | 104.27 (15) |
O4—C6—C7 | 123.60 (16) | O9—C16—N1 | 124.03 (16) |
O4—C6—C5 | 115.66 (15) | O9—C16—C15 | 127.20 (17) |
C7—C6—C5 | 120.69 (15) | N1—C16—C15 | 108.76 (14) |
C6—C7—C2 | 120.04 (17) | O10—C17—N1 | 124.08 (17) |
O5—C8—O6 | 123.00 (16) | O10—C17—C18 | 127.80 (15) |
O5—C8—C9 | 121.40 (15) | N1—C17—C18 | 108.12 (15) |
O6—C8—C9 | 115.60 (16) | C17—C18—C15 | 105.20 (14) |
C14—C9—C10 | 120.16 (16) | C16—N1—C17 | 113.62 (15) |
C14—C9—C8 | 117.18 (16) | ||
O1—C1—C2—C3 | 172.54 (17) | C8—C9—C10—C11 | −179.60 (16) |
O2—C1—C2—C3 | −7.9 (2) | C9—C10—C11—O7 | 176.99 (16) |
O1—C1—C2—C7 | −8.2 (3) | C9—C10—C11—C12 | −1.1 (3) |
O2—C1—C2—C7 | 171.37 (16) | O7—C11—C12—O8 | 1.4 (2) |
C7—C2—C3—C4 | −1.6 (3) | C10—C11—C12—O8 | 179.68 (16) |
C1—C2—C3—C4 | 177.65 (16) | O7—C11—C12—C13 | −177.65 (16) |
C2—C3—C4—C5 | 0.7 (3) | C10—C11—C12—C13 | 0.6 (3) |
C3—C4—C5—O3 | −178.06 (16) | O8—C12—C13—C14 | −178.71 (16) |
C3—C4—C5—C6 | 1.4 (3) | C11—C12—C13—C14 | 0.4 (3) |
O3—C5—C6—O4 | −0.7 (2) | C12—C13—C14—C9 | −0.9 (3) |
C4—C5—C6—O4 | 179.84 (16) | C10—C9—C14—C13 | 0.4 (3) |
O3—C5—C6—C7 | 176.90 (16) | C8—C9—C14—C13 | −179.40 (16) |
C4—C5—C6—C7 | −2.6 (3) | C18—C15—C16—O9 | 177.86 (18) |
O4—C6—C7—C2 | 179.03 (17) | C18—C15—C16—N1 | −1.5 (2) |
C5—C6—C7—C2 | 1.6 (3) | O10—C17—C18—C15 | 179.07 (18) |
C3—C2—C7—C6 | 0.4 (3) | N1—C17—C18—C15 | −1.4 (2) |
C1—C2—C7—C6 | −178.81 (16) | C16—C15—C18—C17 | 1.71 (19) |
O5—C8—C9—C14 | −10.6 (3) | O9—C16—N1—C17 | −178.68 (18) |
O6—C8—C9—C14 | 168.66 (16) | C15—C16—N1—C17 | 0.7 (2) |
O5—C8—C9—C10 | 169.60 (17) | O10—C17—N1—C16 | −179.97 (17) |
O6—C8—C9—C10 | −11.1 (2) | C18—C17—N1—C16 | 0.4 (2) |
C14—C9—C10—C11 | 0.6 (3) |
C7H6O5·2(C4H5NO2) | Z = 4 |
Mr = 368.30 | F(000) = 768 |
Orthorhombic, P212121 | Dx = 1.571 Mg m−3 |
Hall symbol: P 2ac 2ab | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0213 (3) Å | µ = 0.13 mm−1 |
b = 8.8214 (4) Å | T = 130 K |
c = 25.1416 (12) Å | Needle, colourless |
V = 1557.21 (12) Å3 | 0.24 × 0.22 × 0.22 mm |
Oxford Xcalibur,Eos(Nova) CCD detector diffractometer | 2707 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2504 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ω scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction,2009) | h = −8→8 |
Tmin = 0.969, Tmax = 0.974 | k = −10→10 |
8817 measured reflections | l = −29→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0411P)2 + 0.3109P] where P = (Fo2 + 2Fc2)/3 |
2996 reflections | (Δ/σ)max < 0.001 |
259 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C7H6O5·2(C4H5NO2) | V = 1557.21 (12) Å3 |
Mr = 368.30 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.0213 (3) Å | µ = 0.13 mm−1 |
b = 8.8214 (4) Å | T = 130 K |
c = 25.1416 (12) Å | 0.24 × 0.22 × 0.22 mm |
Oxford Xcalibur,Eos(Nova) CCD detector diffractometer | 2707 independent reflections |
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction,2009) | 2504 reflections with I > 2σ(I) |
Tmin = 0.969, Tmax = 0.974 | Rint = 0.049 |
8817 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.15 e Å−3 |
2996 reflections | Δρmin = −0.18 e Å−3 |
259 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6257 (4) | 0.6065 (3) | 0.16074 (12) | 0.0223 (6) | |
C2 | 0.5509 (4) | 0.7513 (3) | 0.13873 (12) | 0.0209 (6) | |
C3 | 0.5294 (4) | 0.7680 (3) | 0.08363 (12) | 0.0216 (6) | |
H3 | 0.5661 | 0.6886 | 0.0603 | 0.026* | |
C4 | 0.4543 (4) | 0.9015 (3) | 0.06350 (11) | 0.0212 (6) | |
C5 | 0.4023 (4) | 1.0186 (3) | 0.09735 (12) | 0.0210 (6) | |
C6 | 0.4229 (4) | 1.0007 (3) | 0.15270 (12) | 0.0220 (6) | |
C7 | 0.4981 (4) | 0.8683 (3) | 0.17280 (12) | 0.0224 (6) | |
H7 | 0.5141 | 0.8568 | 0.2101 | 0.027* | |
C8 | 0.0785 (4) | 0.7070 (3) | 0.19000 (12) | 0.0217 (6) | |
C9 | 0.1375 (5) | 0.5951 (3) | 0.23168 (12) | 0.0268 (7) | |
H9A | 0.0328 | 0.5773 | 0.2573 | 0.032* | |
H9B | 0.2506 | 0.6320 | 0.2513 | 0.032* | |
C10 | 0.1842 (5) | 0.4503 (3) | 0.20119 (12) | 0.0270 (7) | |
H10A | 0.3164 | 0.4173 | 0.2085 | 0.032* | |
H10B | 0.0960 | 0.3676 | 0.2112 | 0.032* | |
C11 | 0.1604 (4) | 0.4914 (3) | 0.14361 (12) | 0.0222 (6) | |
C12 | −0.0584 (4) | 0.9525 (3) | 0.05917 (12) | 0.0221 (6) | |
C13 | −0.1106 (5) | 1.0672 (3) | 0.01756 (13) | 0.0279 (7) | |
H13A | −0.2131 | 1.0281 | −0.0057 | 0.033* | |
H13B | 0.0012 | 1.0932 | −0.0046 | 0.033* | |
C14 | −0.1790 (5) | 1.2053 (3) | 0.04908 (12) | 0.0278 (7) | |
H14A | −0.1024 | 1.2960 | 0.0401 | 0.033* | |
H14B | −0.3146 | 1.2269 | 0.0415 | 0.033* | |
C15 | −0.1520 (4) | 1.1621 (3) | 0.10662 (12) | 0.0227 (6) | |
N1 | 0.0951 (4) | 0.6384 (3) | 0.14103 (10) | 0.0221 (6) | |
N2 | −0.0814 (4) | 1.0162 (3) | 0.10858 (10) | 0.0222 (6) | |
O1 | 0.6475 (3) | 0.5817 (2) | 0.20822 (9) | 0.0304 (5) | |
O2 | 0.6653 (3) | 0.5055 (2) | 0.12357 (9) | 0.0294 (5) | |
O3 | 0.4285 (3) | 0.9259 (2) | 0.01020 (8) | 0.0277 (5) | |
O4 | 0.3309 (3) | 1.1469 (2) | 0.07485 (8) | 0.0258 (5) | |
O5 | 0.3622 (3) | 1.1207 (2) | 0.18242 (9) | 0.0283 (5) | |
O6 | 0.1904 (3) | 0.4127 (2) | 0.10476 (9) | 0.0299 (5) | |
O7 | 0.0230 (3) | 0.8369 (2) | 0.19628 (9) | 0.0276 (5) | |
O8 | −0.0026 (3) | 0.8226 (2) | 0.05214 (8) | 0.0256 (5) | |
O9 | −0.1864 (3) | 1.2368 (2) | 0.14620 (9) | 0.0283 (5) | |
H1N | 0.069 (6) | 0.687 (4) | 0.1118 (17) | 0.057 (13)* | |
H2N | −0.051 (7) | 0.965 (5) | 0.1414 (19) | 0.078 (15)* | |
H2O | 0.711 (6) | 0.419 (5) | 0.1397 (19) | 0.071 (14)* | |
H3O | 0.453 (6) | 0.834 (4) | −0.0057 (14) | 0.041 (11)* | |
H4O | 0.300 (6) | 1.225 (5) | 0.0992 (18) | 0.064 (14)* | |
H5O | 0.368 (6) | 1.096 (5) | 0.2184 (17) | 0.057 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0218 (15) | 0.0199 (14) | 0.0252 (16) | −0.0016 (12) | 0.0008 (12) | −0.0005 (13) |
C2 | 0.0191 (13) | 0.0192 (14) | 0.0244 (16) | −0.0011 (12) | −0.0004 (12) | −0.0012 (13) |
C3 | 0.0233 (14) | 0.0205 (14) | 0.0210 (15) | 0.0005 (12) | 0.0005 (12) | −0.0044 (12) |
C4 | 0.0225 (14) | 0.0241 (14) | 0.0170 (14) | −0.0027 (13) | −0.0021 (12) | 0.0009 (13) |
C5 | 0.0221 (14) | 0.0184 (13) | 0.0226 (16) | 0.0013 (12) | 0.0002 (12) | 0.0022 (13) |
C6 | 0.0233 (14) | 0.0202 (14) | 0.0225 (15) | 0.0006 (12) | 0.0013 (12) | −0.0030 (13) |
C7 | 0.0239 (15) | 0.0243 (15) | 0.0188 (15) | −0.0002 (13) | 0.0003 (12) | 0.0021 (12) |
C8 | 0.0226 (14) | 0.0222 (15) | 0.0203 (15) | −0.0003 (12) | 0.0028 (13) | −0.0006 (12) |
C9 | 0.0375 (18) | 0.0249 (15) | 0.0182 (15) | 0.0042 (14) | −0.0012 (13) | 0.0018 (13) |
C10 | 0.0383 (17) | 0.0251 (15) | 0.0177 (15) | 0.0051 (14) | 0.0001 (14) | 0.0021 (13) |
C11 | 0.0228 (14) | 0.0227 (14) | 0.0212 (16) | −0.0005 (13) | 0.0015 (13) | 0.0004 (13) |
C12 | 0.0215 (14) | 0.0240 (15) | 0.0208 (15) | −0.0034 (12) | −0.0003 (12) | 0.0021 (13) |
C13 | 0.0368 (19) | 0.0263 (15) | 0.0205 (16) | −0.0014 (14) | −0.0022 (13) | 0.0043 (14) |
C14 | 0.0377 (18) | 0.0235 (15) | 0.0222 (17) | 0.0008 (14) | −0.0020 (14) | 0.0035 (13) |
C15 | 0.0226 (14) | 0.0233 (14) | 0.0224 (16) | 0.0000 (13) | −0.0003 (13) | 0.0014 (13) |
N1 | 0.0280 (14) | 0.0219 (13) | 0.0162 (13) | 0.0026 (11) | 0.0007 (11) | 0.0003 (12) |
N2 | 0.0274 (13) | 0.0202 (12) | 0.0190 (13) | 0.0022 (11) | −0.0012 (11) | −0.0010 (11) |
O1 | 0.0416 (13) | 0.0300 (11) | 0.0195 (11) | 0.0041 (11) | −0.0022 (10) | 0.0016 (10) |
O2 | 0.0405 (13) | 0.0239 (11) | 0.0237 (12) | 0.0090 (11) | −0.0026 (10) | −0.0022 (10) |
O3 | 0.0419 (13) | 0.0247 (11) | 0.0167 (11) | 0.0039 (10) | −0.0021 (10) | −0.0002 (9) |
O4 | 0.0352 (12) | 0.0231 (11) | 0.0191 (12) | 0.0077 (10) | 0.0005 (10) | 0.0010 (9) |
O5 | 0.0401 (13) | 0.0254 (11) | 0.0195 (12) | 0.0078 (10) | 0.0018 (10) | −0.0029 (10) |
O6 | 0.0410 (13) | 0.0268 (11) | 0.0219 (11) | 0.0057 (10) | 0.0037 (10) | −0.0040 (10) |
O7 | 0.0377 (12) | 0.0224 (10) | 0.0227 (12) | 0.0059 (10) | 0.0018 (10) | −0.0005 (10) |
O8 | 0.0347 (12) | 0.0214 (10) | 0.0208 (12) | 0.0019 (10) | −0.0010 (10) | −0.0014 (9) |
O9 | 0.0384 (13) | 0.0217 (10) | 0.0248 (12) | 0.0042 (10) | 0.0022 (10) | −0.0003 (10) |
C1—O1 | 1.223 (4) | C10—H10A | 0.9900 |
C1—O2 | 1.321 (4) | C10—H10B | 0.9900 |
C1—C2 | 1.487 (4) | C11—O6 | 1.217 (4) |
C2—C7 | 1.391 (4) | C11—N1 | 1.377 (4) |
C2—C3 | 1.401 (4) | C12—O8 | 1.224 (3) |
C3—C4 | 1.386 (4) | C12—N2 | 1.373 (4) |
C3—H3 | 0.9500 | C12—C13 | 1.501 (4) |
C4—O3 | 1.369 (3) | C13—C14 | 1.531 (4) |
C4—C5 | 1.387 (4) | C13—H13A | 0.9900 |
C5—O4 | 1.361 (3) | C13—H13B | 0.9900 |
C5—C6 | 1.408 (4) | C14—C15 | 1.508 (4) |
C6—O5 | 1.364 (3) | C14—H14A | 0.9900 |
C6—C7 | 1.378 (4) | C14—H14B | 0.9900 |
C7—H7 | 0.9500 | C15—O9 | 1.217 (4) |
C8—O7 | 1.220 (3) | C15—N2 | 1.380 (4) |
C8—N1 | 1.377 (4) | N1—H1N | 0.87 (4) |
C8—C9 | 1.498 (4) | N2—H2N | 0.97 (5) |
C9—C10 | 1.526 (4) | O2—H2O | 0.92 (5) |
C9—H9A | 0.9900 | O3—H3O | 0.92 (4) |
C9—H9B | 0.9900 | O4—H4O | 0.95 (4) |
C10—C11 | 1.502 (4) | O5—H5O | 0.93 (4) |
O1—C1—O2 | 122.9 (3) | C9—C10—H10B | 110.8 |
O1—C1—C2 | 124.1 (3) | H10A—C10—H10B | 108.8 |
O2—C1—C2 | 113.0 (3) | O6—C11—N1 | 123.9 (3) |
C7—C2—C3 | 120.1 (3) | O6—C11—C10 | 128.1 (3) |
C7—C2—C1 | 120.1 (3) | N1—C11—C10 | 108.1 (2) |
C3—C2—C1 | 119.7 (3) | O8—C12—N2 | 123.5 (3) |
C4—C3—C2 | 119.4 (3) | O8—C12—C13 | 127.5 (3) |
C4—C3—H3 | 120.3 | N2—C12—C13 | 109.0 (3) |
C2—C3—H3 | 120.3 | C12—C13—C14 | 104.6 (3) |
O3—C4—C3 | 122.8 (3) | C12—C13—H13A | 110.8 |
O3—C4—C5 | 116.7 (3) | C14—C13—H13A | 110.8 |
C3—C4—C5 | 120.6 (3) | C12—C13—H13B | 110.8 |
O4—C5—C4 | 117.5 (3) | C14—C13—H13B | 110.8 |
O4—C5—C6 | 122.8 (3) | H13A—C13—H13B | 108.9 |
C4—C5—C6 | 119.7 (3) | C15—C14—C13 | 104.8 (2) |
O5—C6—C7 | 125.2 (3) | C15—C14—H14A | 110.8 |
O5—C6—C5 | 115.0 (3) | C13—C14—H14A | 110.8 |
C7—C6—C5 | 119.8 (3) | C15—C14—H14B | 110.8 |
C6—C7—C2 | 120.3 (3) | C13—C14—H14B | 110.8 |
C6—C7—H7 | 119.8 | H14A—C14—H14B | 108.9 |
C2—C7—H7 | 119.8 | O9—C15—N2 | 123.1 (3) |
O7—C8—N1 | 123.7 (3) | O9—C15—C14 | 128.5 (3) |
O7—C8—C9 | 128.1 (3) | N2—C15—C14 | 108.4 (3) |
N1—C8—C9 | 108.2 (2) | C8—N1—C11 | 113.6 (3) |
C8—C9—C10 | 105.1 (2) | C8—N1—H1N | 121 (3) |
C8—C9—H9A | 110.7 | C11—N1—H1N | 125 (3) |
C10—C9—H9A | 110.7 | C12—N2—C15 | 113.1 (3) |
C8—C9—H9B | 110.7 | C12—N2—H2N | 124 (3) |
C10—C9—H9B | 110.7 | C15—N2—H2N | 123 (3) |
H9A—C9—H9B | 108.8 | C1—O2—H2O | 109 (3) |
C11—C10—C9 | 105.0 (2) | C4—O3—H3O | 105 (2) |
C11—C10—H10A | 110.8 | C5—O4—H4O | 115 (3) |
C9—C10—H10A | 110.8 | C6—O5—H5O | 110 (3) |
C11—C10—H10B | 110.8 | ||
O1—C1—C2—C7 | −0.9 (4) | C1—C2—C7—C6 | −177.8 (3) |
O2—C1—C2—C7 | 178.5 (3) | O7—C8—C9—C10 | 177.6 (3) |
O1—C1—C2—C3 | −179.4 (3) | N1—C8—C9—C10 | −1.9 (3) |
O2—C1—C2—C3 | 0.1 (4) | C8—C9—C10—C11 | 3.4 (3) |
C7—C2—C3—C4 | −0.4 (4) | C9—C10—C11—O6 | 176.7 (3) |
C1—C2—C3—C4 | 178.1 (3) | C9—C10—C11—N1 | −3.7 (3) |
C2—C3—C4—O3 | −179.8 (3) | O8—C12—C13—C14 | 177.3 (3) |
C2—C3—C4—C5 | 0.7 (4) | N2—C12—C13—C14 | −3.2 (3) |
O3—C4—C5—O4 | −0.1 (4) | C12—C13—C14—C15 | 2.6 (3) |
C3—C4—C5—O4 | 179.5 (3) | C13—C14—C15—O9 | 179.7 (3) |
O3—C4—C5—C6 | 179.3 (3) | C13—C14—C15—N2 | −1.3 (3) |
C3—C4—C5—C6 | −1.1 (4) | O7—C8—N1—C11 | −180.0 (3) |
O4—C5—C6—O5 | 1.3 (4) | C9—C8—N1—C11 | −0.5 (3) |
C4—C5—C6—O5 | −178.1 (3) | O6—C11—N1—C8 | −177.7 (3) |
O4—C5—C6—C7 | −179.3 (3) | C10—C11—N1—C8 | 2.7 (3) |
C4—C5—C6—C7 | 1.3 (4) | O8—C12—N2—C15 | −177.9 (3) |
O5—C6—C7—C2 | 178.3 (3) | C13—C12—N2—C15 | 2.6 (3) |
C5—C6—C7—C2 | −1.1 (4) | O9—C15—N2—C12 | 178.3 (3) |
C3—C2—C7—C6 | 0.6 (4) | C14—C15—N2—C12 | −0.8 (3) |
C7H6O5·2(C4H5NO2) | Z = 2 |
Mr = 368.30 | F(000) = 384 |
Triclinic, P1 | Dx = 1.546 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.9225 (4) Å | Cell parameters from 3114 reflections |
b = 11.7839 (10) Å | θ = 2.4–26.3° |
c = 13.8540 (16) Å | µ = 0.13 mm−1 |
α = 97.248 (8)° | T = 110 K |
β = 96.773 (8)° | Needle, colourless |
γ = 90.663 (6)° | 0.22 × 0.20 × 0.18 mm |
V = 791.35 (13) Å3 |
Xcalibur, Eos, Nova diffractometer | 2784 independent reflections |
Radiation source: Mova (Mo) X-ray Source | Rint = 0.070 |
Mirror monochromator | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | h = −6→6 |
Tmin = 0.578, Tmax = 1.000 | k = −14→14 |
11875 measured reflections | l = −17→17 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.237 | w = 1/[σ2(Fo2) + (0.020P)2 + 7.7428P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
3095 reflections | Δρmax = 0.45 e Å−3 |
287 parameters | Δρmin = −0.43 e Å−3 |
C7H6O5·2(C4H5NO2) | γ = 90.663 (6)° |
Mr = 368.30 | V = 791.35 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.9225 (4) Å | Mo Kα radiation |
b = 11.7839 (10) Å | µ = 0.13 mm−1 |
c = 13.8540 (16) Å | T = 110 K |
α = 97.248 (8)° | 0.22 × 0.20 × 0.18 mm |
β = 96.773 (8)° |
Xcalibur, Eos, Nova diffractometer | 11875 measured reflections |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 2784 independent reflections |
Tmin = 0.578, Tmax = 1.000 | Rint = 0.070 |
R[F2 > 2σ(F2)] = 0.100 | 0 restraints |
wR(F2) = 0.237 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.45 e Å−3 |
3095 reflections | Δρmin = −0.43 e Å−3 |
287 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7316 (11) | 0.9583 (5) | 0.0802 (4) | 0.0179 (12) | |
C2 | 0.5366 (11) | 0.9285 (5) | 0.1466 (4) | 0.0174 (12) | |
C3 | 0.4732 (12) | 0.8153 (5) | 0.1564 (4) | 0.0187 (13) | |
C4 | 0.2850 (12) | 0.7925 (5) | 0.2193 (4) | 0.0189 (13) | |
C5 | 0.1650 (12) | 0.8832 (5) | 0.2731 (4) | 0.0205 (13) | |
C6 | 0.2288 (12) | 0.9949 (5) | 0.2630 (4) | 0.0189 (13) | |
C7 | 0.4142 (12) | 1.0193 (5) | 0.1993 (4) | 0.0170 (12) | |
C8 | 0.0109 (13) | 0.4023 (6) | 0.2508 (5) | 0.0281 (15) | |
C9 | −0.0264 (14) | 0.3118 (6) | 0.1641 (5) | 0.0331 (16) | |
H9A | −0.0757 | 0.2372 | 0.1842 | 0.040* | |
H9B | 0.1440 | 0.3034 | 0.1327 | 0.040* | |
C10 | −0.2585 (16) | 0.3516 (7) | 0.0935 (6) | 0.0345 (17) | |
C11 | −0.3673 (14) | 0.4558 (6) | 0.1533 (5) | 0.0291 (15) | |
C12 | −0.4141 (12) | 0.7142 (5) | 0.4424 (4) | 0.0198 (13) | |
C13 | −0.5938 (14) | 0.6479 (5) | 0.4966 (5) | 0.0245 (14) | |
C14 | −0.7113 (14) | 0.7380 (5) | 0.5680 (5) | 0.0229 (14) | |
C15 | −0.6339 (12) | 0.8503 (5) | 0.5354 (4) | 0.0195 (13) | |
N1 | −0.2042 (12) | 0.4772 (5) | 0.2395 (4) | 0.0299 (13) | |
N2 | −0.4518 (10) | 0.8286 (4) | 0.4676 (4) | 0.0211 (11) | |
H2N | −0.3681 | 0.8827 | 0.4429 | 0.025* | |
O1 | 0.7865 (8) | 1.0580 (3) | 0.0710 (3) | 0.0190 (9) | |
O2 | 0.8417 (9) | 0.8700 (3) | 0.0314 (3) | 0.0217 (10) | |
O3 | 0.2041 (9) | 0.6856 (4) | 0.2356 (3) | 0.0244 (10) | |
O4 | −0.0146 (8) | 0.8636 (4) | 0.3375 (3) | 0.0210 (10) | |
O5 | 0.1138 (9) | 1.0842 (4) | 0.3155 (3) | 0.0235 (10) | |
O6 | 0.1870 (10) | 0.4114 (4) | 0.3207 (4) | 0.0374 (12) | |
O7 | −0.5656 (9) | 0.5104 (4) | 0.1284 (3) | 0.0290 (11) | |
O8 | −0.7131 (8) | 0.9439 (3) | 0.5643 (3) | 0.0222 (10) | |
O9 | −0.2568 (9) | 0.6749 (4) | 0.3852 (3) | 0.0257 (10) | |
H1N | −0.22 (2) | 0.539 (9) | 0.280 (8) | 0.08 (4)* | |
H2O | 0.961 (16) | 0.901 (6) | −0.003 (6) | 0.04 (2)* | |
H3 | 0.528 (13) | 0.748 (5) | 0.113 (5) | 0.019 (16)* | |
H3O | 0.296 (19) | 0.645 (8) | 0.209 (7) | 0.06 (3)* | |
H4O | −0.048 (17) | 0.794 (8) | 0.343 (6) | 0.05 (3)* | |
H5O | −0.034 (17) | 1.055 (7) | 0.340 (6) | 0.04 (2)* | |
H7 | 0.461 (13) | 1.096 (6) | 0.195 (5) | 0.019 (16)* | |
H10A | −0.195 (14) | 0.376 (6) | 0.037 (5) | 0.030 (19)* | |
H10B | −0.403 (17) | 0.294 (7) | 0.083 (6) | 0.05 (2)* | |
H13A | −0.732 (15) | 0.610 (6) | 0.448 (5) | 0.031 (19)* | |
H13B | −0.492 (15) | 0.597 (6) | 0.523 (5) | 0.03 (2)* | |
H14A | −0.623 (14) | 0.745 (6) | 0.635 (5) | 0.028 (19)* | |
H14B | −0.918 (13) | 0.728 (5) | 0.564 (4) | 0.018 (16)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.012 (3) | 0.019 (3) | 0.021 (3) | 0.001 (2) | 0.002 (2) | −0.002 (2) |
C2 | 0.010 (3) | 0.022 (3) | 0.019 (3) | 0.006 (2) | 0.002 (2) | 0.000 (2) |
C3 | 0.018 (3) | 0.019 (3) | 0.019 (3) | 0.003 (2) | 0.005 (2) | −0.001 (2) |
C4 | 0.016 (3) | 0.019 (3) | 0.022 (3) | 0.004 (2) | 0.004 (2) | 0.002 (2) |
C5 | 0.018 (3) | 0.026 (3) | 0.018 (3) | 0.004 (2) | 0.007 (2) | −0.001 (2) |
C6 | 0.014 (3) | 0.020 (3) | 0.021 (3) | 0.003 (2) | 0.002 (2) | −0.004 (2) |
C7 | 0.014 (3) | 0.013 (3) | 0.023 (3) | 0.000 (2) | 0.003 (2) | 0.000 (2) |
C8 | 0.025 (4) | 0.026 (3) | 0.035 (4) | 0.001 (3) | 0.009 (3) | 0.007 (3) |
C9 | 0.026 (4) | 0.031 (4) | 0.042 (4) | 0.003 (3) | 0.008 (3) | −0.004 (3) |
C10 | 0.033 (4) | 0.032 (4) | 0.037 (4) | 0.010 (3) | 0.007 (3) | −0.002 (3) |
C11 | 0.030 (4) | 0.024 (3) | 0.035 (4) | −0.003 (3) | 0.013 (3) | 0.006 (3) |
C12 | 0.017 (3) | 0.019 (3) | 0.023 (3) | 0.001 (2) | 0.004 (2) | −0.003 (2) |
C13 | 0.025 (4) | 0.015 (3) | 0.033 (4) | 0.001 (3) | 0.011 (3) | −0.002 (3) |
C14 | 0.026 (4) | 0.018 (3) | 0.026 (4) | 0.000 (3) | 0.009 (3) | 0.001 (3) |
C15 | 0.018 (3) | 0.019 (3) | 0.022 (3) | 0.002 (2) | 0.004 (2) | 0.000 (2) |
N1 | 0.035 (3) | 0.019 (3) | 0.036 (3) | 0.001 (2) | 0.014 (3) | −0.003 (2) |
N2 | 0.025 (3) | 0.014 (3) | 0.026 (3) | 0.003 (2) | 0.011 (2) | −0.001 (2) |
O1 | 0.013 (2) | 0.020 (2) | 0.024 (2) | 0.0015 (16) | 0.0076 (17) | −0.0009 (17) |
O2 | 0.021 (2) | 0.017 (2) | 0.028 (2) | 0.0044 (17) | 0.0108 (19) | −0.0001 (18) |
O3 | 0.025 (2) | 0.016 (2) | 0.034 (3) | 0.0067 (18) | 0.016 (2) | −0.0001 (19) |
O4 | 0.017 (2) | 0.022 (2) | 0.026 (2) | 0.0068 (18) | 0.0109 (18) | 0.0004 (18) |
O5 | 0.022 (2) | 0.020 (2) | 0.028 (3) | 0.0064 (18) | 0.0109 (19) | −0.0040 (18) |
O6 | 0.035 (3) | 0.037 (3) | 0.039 (3) | −0.002 (2) | 0.001 (2) | 0.002 (2) |
O7 | 0.029 (3) | 0.021 (2) | 0.038 (3) | 0.006 (2) | 0.009 (2) | 0.003 (2) |
O8 | 0.023 (2) | 0.013 (2) | 0.032 (3) | 0.0056 (17) | 0.0133 (19) | −0.0003 (17) |
O9 | 0.025 (2) | 0.021 (2) | 0.031 (3) | 0.0092 (18) | 0.012 (2) | −0.0048 (18) |
C1—O1 | 1.228 (7) | C10—H10A | 0.95 (7) |
C1—O2 | 1.324 (7) | C10—H10B | 0.97 (8) |
C1—C2 | 1.475 (8) | C11—O7 | 1.215 (8) |
C2—C3 | 1.393 (8) | C11—N1 | 1.352 (9) |
C2—C7 | 1.400 (8) | C12—O9 | 1.226 (7) |
C3—C4 | 1.391 (8) | C12—N2 | 1.370 (7) |
C3—H3 | 0.99 (6) | C12—C13 | 1.497 (9) |
C4—O3 | 1.371 (7) | C13—C14 | 1.525 (8) |
C4—C5 | 1.402 (8) | C13—H13A | 0.96 (7) |
C5—O4 | 1.366 (7) | C13—H13B | 0.87 (7) |
C5—C6 | 1.377 (9) | C14—C15 | 1.510 (8) |
C6—O5 | 1.369 (7) | C14—H14A | 0.97 (7) |
C6—C7 | 1.394 (8) | C14—H14B | 1.02 (6) |
C7—H7 | 0.94 (7) | C15—O8 | 1.210 (7) |
C8—O6 | 1.214 (8) | C15—N2 | 1.377 (8) |
C8—N1 | 1.394 (9) | N1—H1N | 0.87 (11) |
C8—C9 | 1.495 (9) | N2—H2N | 0.8800 |
C9—C10 | 1.532 (10) | O2—H2O | 0.90 (8) |
C9—H9A | 0.9900 | O3—H3O | 0.75 (9) |
C9—H9B | 0.9900 | O4—H4O | 0.85 (9) |
C10—C11 | 1.531 (9) | O5—H5O | 0.92 (8) |
O1—C1—O2 | 122.8 (5) | C9—C10—H10B | 108 (5) |
O1—C1—C2 | 122.0 (5) | H10A—C10—H10B | 118 (6) |
O2—C1—C2 | 115.2 (5) | O7—C11—N1 | 125.4 (6) |
C3—C2—C7 | 121.0 (5) | O7—C11—C10 | 126.4 (7) |
C3—C2—C1 | 121.9 (5) | N1—C11—C10 | 108.1 (6) |
C7—C2—C1 | 117.1 (5) | O9—C12—N2 | 124.5 (6) |
C4—C3—C2 | 119.3 (5) | O9—C12—C13 | 126.9 (5) |
C4—C3—H3 | 115 (4) | N2—C12—C13 | 108.7 (5) |
C2—C3—H3 | 124 (4) | C12—C13—C14 | 104.8 (5) |
O3—C4—C3 | 125.3 (5) | C12—C13—H13A | 107 (4) |
O3—C4—C5 | 114.9 (5) | C14—C13—H13A | 113 (4) |
C3—C4—C5 | 119.8 (6) | C12—C13—H13B | 107 (5) |
O4—C5—C6 | 118.3 (5) | C14—C13—H13B | 116 (5) |
O4—C5—C4 | 121.1 (5) | H13A—C13—H13B | 109 (6) |
C6—C5—C4 | 120.5 (5) | C15—C14—C13 | 104.1 (5) |
O5—C6—C5 | 121.0 (5) | C15—C14—H14A | 103 (4) |
O5—C6—C7 | 118.5 (5) | C13—C14—H14A | 115 (4) |
C5—C6—C7 | 120.4 (5) | C15—C14—H14B | 111 (3) |
C6—C7—C2 | 118.9 (5) | C13—C14—H14B | 111 (3) |
C6—C7—H7 | 120 (4) | H14A—C14—H14B | 112 (5) |
C2—C7—H7 | 121 (4) | O8—C15—N2 | 125.3 (6) |
O6—C8—N1 | 124.2 (6) | O8—C15—C14 | 126.5 (5) |
O6—C8—C9 | 128.7 (6) | N2—C15—C14 | 108.2 (5) |
N1—C8—C9 | 107.1 (6) | C11—N1—C8 | 114.6 (6) |
C8—C9—C10 | 105.9 (6) | C11—N1—H1N | 121 (7) |
C8—C9—H9A | 110.6 | C8—N1—H1N | 124 (7) |
C10—C9—H9A | 110.6 | C12—N2—C15 | 113.1 (5) |
C8—C9—H9B | 110.6 | C12—N2—H2N | 123.5 |
C10—C9—H9B | 110.6 | C15—N2—H2N | 123.5 |
H9A—C9—H9B | 108.7 | C1—O2—H2O | 105 (5) |
C11—C10—C9 | 103.6 (6) | C4—O3—H3O | 105 (7) |
C11—C10—H10A | 108 (4) | C5—O4—H4O | 116 (6) |
C9—C10—H10A | 112 (4) | C6—O5—H5O | 107 (5) |
C11—C10—H10B | 106 (5) | ||
O1—C1—C2—C3 | 179.5 (6) | C1—C2—C7—C6 | −179.9 (5) |
O2—C1—C2—C3 | −0.3 (8) | O6—C8—C9—C10 | −173.0 (7) |
O1—C1—C2—C7 | 0.1 (8) | N1—C8—C9—C10 | 8.6 (8) |
O2—C1—C2—C7 | −179.7 (5) | C8—C9—C10—C11 | −8.2 (8) |
C7—C2—C3—C4 | 0.2 (9) | C9—C10—C11—O7 | −174.7 (7) |
C1—C2—C3—C4 | −179.2 (5) | C9—C10—C11—N1 | 5.2 (8) |
C2—C3—C4—O3 | 179.9 (6) | O9—C12—C13—C14 | 171.7 (6) |
C2—C3—C4—C5 | −1.0 (9) | N2—C12—C13—C14 | −7.9 (7) |
O3—C4—C5—O4 | 1.1 (8) | C12—C13—C14—C15 | 10.8 (7) |
C3—C4—C5—O4 | −178.1 (6) | C13—C14—C15—O8 | 170.7 (6) |
O3—C4—C5—C6 | −179.8 (5) | C13—C14—C15—N2 | −10.4 (7) |
C3—C4—C5—C6 | 1.0 (9) | O7—C11—N1—C8 | −179.9 (6) |
O4—C5—C6—O5 | −0.6 (9) | C10—C11—N1—C8 | 0.1 (8) |
C4—C5—C6—O5 | −179.7 (5) | O6—C8—N1—C11 | 175.8 (6) |
O4—C5—C6—C7 | 179.0 (5) | C9—C8—N1—C11 | −5.6 (8) |
C4—C5—C6—C7 | −0.1 (9) | O9—C12—N2—C15 | −178.2 (6) |
O5—C6—C7—C2 | 178.9 (5) | C13—C12—N2—C15 | 1.4 (7) |
C5—C6—C7—C2 | −0.7 (9) | O8—C15—N2—C12 | −175.2 (6) |
C3—C2—C7—C6 | 0.7 (9) | C14—C15—N2—C12 | 5.9 (7) |
3(C7H6O4)·C4H5NO2·3(H2O) | Z = 2 |
Mr = 615.49 | F(000) = 644 |
Triclinic, P1 | Dx = 1.535 Mg m−3 |
a = 9.3161 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.2092 (3) Å | Cell parameters from 9808 reflections |
c = 13.7362 (7) Å | θ = 2.7–26.0° |
α = 102.926 (3)° | µ = 0.13 mm−1 |
β = 104.398 (4)° | T = 100 K |
γ = 96.571 (3)° | Block, colorless |
V = 1332.01 (11) Å3 | 0.20 × 0.18 × 0.15 mm |
Xcalibur, Eos, Nova diffractometer | 4753 reflections with I > 2σ(I) |
Radiation source: Mova (Mo) X-ray Source | Rint = 0.030 |
Mirror monochromator | θmax = 26.0°, θmin = 2.7° |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | h = −10→11 |
Tmin = 0.898, Tmax = 1.000 | k = −8→13 |
9808 measured reflections | l = −16→14 |
5225 independent reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.074 | H-atom parameters constrained |
wR(F2) = 0.174 | w = 1/[σ2(Fo2) + (0.0367P)2 + 3.3023P] where P = (Fo2 + 2Fc2)/3 |
S = 1.21 | (Δ/σ)max < 0.001 |
5225 reflections | Δρmax = 0.39 e Å−3 |
388 parameters | Δρmin = −0.45 e Å−3 |
3(C7H6O4)·C4H5NO2·3(H2O) | γ = 96.571 (3)° |
Mr = 615.49 | V = 1332.01 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.3161 (5) Å | Mo Kα radiation |
b = 11.2092 (3) Å | µ = 0.13 mm−1 |
c = 13.7362 (7) Å | T = 100 K |
α = 102.926 (3)° | 0.20 × 0.18 × 0.15 mm |
β = 104.398 (4)° |
Xcalibur, Eos, Nova diffractometer | 5225 independent reflections |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 4753 reflections with I > 2σ(I) |
Tmin = 0.898, Tmax = 1.000 | Rint = 0.030 |
9808 measured reflections |
R[F2 > 2σ(F2)] = 0.074 | 1 restraint |
wR(F2) = 0.174 | H-atom parameters constrained |
S = 1.21 | Δρmax = 0.39 e Å−3 |
5225 reflections | Δρmin = −0.45 e Å−3 |
388 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. There are two planar H-bond networks. The network containing O1/O2/O3/O4, O9/O10/O11/O12 and O2W is ordered. The network containing O5/O6/O7/O8 and O1W is apparently the same, but disordered over two inversion-related orientations in space group P-1. A l l H atoms in this plane (apart from H2W1, which points out of the plane) are refined with occupancy 0.5. The alternative H-bond sequences are: (1) ··· O7—H7A —> O1W-H1W2 —> O8—H8B —> O8 (2) ··· O7 <—- H1W3-O1W <—- H8A—O8 <— H8B—O8 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.0730 (3) | 0.5967 (3) | 0.4358 (2) | 0.0124 (6) | |
C2 | 0.0226 (3) | 0.4978 (2) | 0.3361 (2) | 0.0121 (6) | |
C3 | −0.1309 (3) | 0.4527 (3) | 0.2915 (2) | 0.0119 (6) | |
H3 | −0.2019 | 0.4818 | 0.3259 | 0.014* | |
C4 | −0.1786 (3) | 0.3646 (3) | 0.1961 (2) | 0.0122 (6) | |
C5 | −0.0749 (3) | 0.3202 (3) | 0.1464 (2) | 0.0130 (6) | |
H5 | −0.1083 | 0.2595 | 0.0812 | 0.016* | |
C6 | 0.0775 (3) | 0.3652 (3) | 0.1927 (2) | 0.0116 (6) | |
C7 | 0.1280 (3) | 0.4551 (3) | 0.2883 (2) | 0.0119 (6) | |
H7 | 0.2326 | 0.4863 | 0.3198 | 0.014* | |
C8 | 0.9347 (3) | 0.8679 (3) | 0.3753 (2) | 0.0169 (6) | |
C9 | 0.8862 (3) | 0.7717 (3) | 0.2743 (2) | 0.0168 (6) | |
C10 | 0.7336 (3) | 0.7256 (3) | 0.2297 (2) | 0.0161 (6) | |
H10 | 0.6622 | 0.7523 | 0.2645 | 0.019* | |
C11 | 0.6874 (3) | 0.6396 (3) | 0.1330 (2) | 0.0168 (6) | |
C12 | 0.7912 (3) | 0.5985 (3) | 0.0820 (2) | 0.0174 (6) | |
H12 | 0.7585 | 0.5396 | 0.0158 | 0.021* | |
C13 | 0.9436 (3) | 0.6452 (3) | 0.1293 (2) | 0.0149 (6) | |
C14 | 0.9929 (3) | 0.7316 (3) | 0.2254 (2) | 0.0151 (6) | |
H14 | 1.0973 | 0.7630 | 0.2573 | 0.018* | |
C15 | 0.2003 (3) | 0.8580 (3) | 0.6852 (2) | 0.0138 (6) | |
C16 | 0.2481 (3) | 0.9530 (3) | 0.7869 (2) | 0.0131 (6) | |
C17 | 0.3999 (3) | 1.0043 (3) | 0.8306 (2) | 0.0126 (6) | |
H17 | 0.4724 | 0.9791 | 0.7961 | 0.015* | |
C18 | 0.4436 (3) | 1.0931 (2) | 0.9259 (2) | 0.0116 (6) | |
C19 | 0.3384 (3) | 1.1306 (3) | 0.9768 (2) | 0.0138 (6) | |
H19 | 0.3697 | 1.1903 | 1.0425 | 0.017* | |
C20 | 0.1865 (3) | 1.0797 (3) | 0.9304 (2) | 0.0115 (6) | |
C21 | 0.1405 (3) | 0.9898 (3) | 0.8357 (2) | 0.0122 (6) | |
H21 | 0.0370 | 0.9541 | 0.8047 | 0.015* | |
C22 | 0.5419 (3) | 0.7198 (3) | 0.4556 (2) | 0.0166 (6) | |
C23 | 0.6328 (4) | 0.6825 (3) | 0.5465 (2) | 0.0215 (7) | |
H23A | 0.7217 | 0.6507 | 0.5309 | 0.026* | |
H23B | 0.5714 | 0.6172 | 0.5645 | 0.026* | |
C24 | 0.6812 (4) | 0.8017 (3) | 0.6352 (2) | 0.0227 (7) | |
H24A | 0.6465 | 0.7899 | 0.6955 | 0.027* | |
H24B | 0.7922 | 0.8271 | 0.6581 | 0.027* | |
C25 | 0.6077 (3) | 0.8971 (3) | 0.5903 (2) | 0.0170 (6) | |
N1 | 0.5296 (3) | 0.8419 (2) | 0.4875 (2) | 0.0171 (5) | |
H1N | 0.4771 | 0.8813 | 0.4466 | 0.021* | |
O1 | −0.0248 (2) | 0.64003 (19) | 0.47538 (15) | 0.0160 (4) | |
O2 | 0.2149 (2) | 0.6330 (2) | 0.47655 (16) | 0.0212 (5) | |
H2O | 0.2308 | 0.6888 | 0.5322 | 0.032* | |
O1W | 0.3370 (3) | 0.6994 (3) | 0.17910 (19) | 0.0380 (7) | |
H1W1 | 0.3817 | 0.6854 | 0.2363 | 0.057* | |
H1W2 | 0.2448 | 0.6693 | 0.1477 | 0.057* | 0.5 |
H1W3 | 0.3992 | 0.6673 | 0.1501 | 0.057* | 0.5 |
O3 | −0.3288 (2) | 0.3226 (2) | 0.15043 (16) | 0.0189 (5) | |
H3O | −0.3418 | 0.2700 | 0.0934 | 0.028* | |
O2W | 0.4732 (3) | 0.4073 (2) | 0.25096 (18) | 0.0266 (5) | |
H2W1 | 0.4775 | 0.4814 | 0.2854 | 0.040* | |
H2W2 | 0.5359 | 0.3811 | 0.2194 | 0.040* | |
O4 | 0.1787 (2) | 0.3223 (2) | 0.14297 (16) | 0.0193 (5) | |
H4O | 0.2665 | 0.3571 | 0.1792 | 0.029* | |
O3W | 0.2182 (3) | 0.9504 (2) | 0.13650 (18) | 0.0266 (5) | |
H3W1 | 0.1259 | 0.9288 | 0.1017 | 0.040* | |
H3W2 | 0.2641 | 0.9625 | 0.2006 | 0.040* | |
O5 | 0.8412 (3) | 0.9056 (2) | 0.42000 (18) | 0.0238 (5) | |
O6 | 1.0782 (3) | 0.9090 (2) | 0.41235 (19) | 0.0262 (5) | |
H6O | 1.0956 | 0.9626 | 0.4694 | 0.039* | |
O7 | 0.5372 (2) | 0.5958 (2) | 0.08567 (19) | 0.0256 (5) | |
H7A | 0.4648 | 0.6242 | 0.1190 | 0.031* | 0.5 |
H7B | 0.5051 | 0.5369 | 0.0195 | 0.031* | 0.5 |
O8 | 1.0460 (2) | 0.6055 (2) | 0.07869 (17) | 0.0184 (5) | |
H8A | 1.1505 | 0.6373 | 0.1096 | 0.022* | 0.5 |
H8B | 1.0125 | 0.5462 | 0.0128 | 0.022* | 0.5 |
O9 | 0.2989 (2) | 0.8157 (2) | 0.64583 (16) | 0.0209 (5) | |
O10 | 0.0584 (2) | 0.8234 (2) | 0.64233 (16) | 0.0192 (5) | |
H10O | 0.0433 | 0.7698 | 0.5855 | 0.029* | |
O11 | 0.5926 (2) | 1.14531 (19) | 0.97078 (16) | 0.0158 (4) | |
H11O | 0.6437 | 1.1148 | 0.9323 | 0.024* | |
O12 | 0.0806 (2) | 1.11887 (19) | 0.97762 (16) | 0.0155 (4) | |
H12O | 0.1234 | 1.1729 | 1.0339 | 0.023* | |
O13 | 0.4861 (2) | 0.6548 (2) | 0.36649 (16) | 0.0199 (5) | |
O14 | 0.6153 (3) | 1.0055 (2) | 0.63426 (17) | 0.0212 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0137 (14) | 0.0116 (13) | 0.0103 (13) | 0.0014 (11) | 0.0028 (11) | 0.0008 (11) |
C2 | 0.0177 (15) | 0.0092 (13) | 0.0089 (13) | 0.0021 (11) | 0.0039 (11) | 0.0016 (10) |
C3 | 0.0115 (14) | 0.0119 (13) | 0.0124 (13) | 0.0031 (11) | 0.0053 (11) | 0.0006 (11) |
C4 | 0.0088 (13) | 0.0122 (13) | 0.0138 (14) | 0.0004 (10) | 0.0014 (11) | 0.0023 (11) |
C5 | 0.0165 (15) | 0.0101 (13) | 0.0100 (13) | 0.0014 (11) | 0.0031 (11) | −0.0011 (10) |
C6 | 0.0109 (14) | 0.0124 (13) | 0.0125 (13) | 0.0029 (10) | 0.0062 (11) | 0.0019 (11) |
C7 | 0.0089 (13) | 0.0133 (13) | 0.0120 (13) | 0.0009 (10) | 0.0018 (11) | 0.0021 (11) |
C8 | 0.0174 (15) | 0.0166 (14) | 0.0199 (15) | 0.0045 (12) | 0.0099 (12) | 0.0057 (12) |
C9 | 0.0184 (16) | 0.0152 (14) | 0.0221 (16) | 0.0057 (12) | 0.0103 (13) | 0.0094 (12) |
C10 | 0.0144 (15) | 0.0151 (14) | 0.0230 (16) | 0.0037 (11) | 0.0111 (12) | 0.0064 (12) |
C11 | 0.0132 (15) | 0.0178 (15) | 0.0227 (16) | 0.0049 (12) | 0.0073 (12) | 0.0086 (12) |
C12 | 0.0183 (16) | 0.0178 (15) | 0.0185 (15) | 0.0054 (12) | 0.0064 (12) | 0.0068 (12) |
C13 | 0.0149 (15) | 0.0172 (14) | 0.0185 (15) | 0.0073 (11) | 0.0099 (12) | 0.0083 (12) |
C14 | 0.0118 (14) | 0.0159 (14) | 0.0201 (15) | 0.0038 (11) | 0.0060 (12) | 0.0071 (12) |
C15 | 0.0152 (15) | 0.0133 (14) | 0.0110 (13) | 0.0004 (11) | 0.0028 (11) | 0.0015 (11) |
C16 | 0.0153 (15) | 0.0106 (13) | 0.0118 (14) | 0.0017 (11) | 0.0031 (11) | 0.0009 (11) |
C17 | 0.0126 (14) | 0.0144 (14) | 0.0108 (13) | 0.0030 (11) | 0.0055 (11) | 0.0003 (11) |
C18 | 0.0093 (13) | 0.0095 (13) | 0.0132 (14) | −0.0002 (10) | 0.0006 (11) | 0.0011 (11) |
C19 | 0.0177 (15) | 0.0118 (13) | 0.0095 (13) | 0.0011 (11) | 0.0026 (11) | 0.0002 (11) |
C20 | 0.0111 (14) | 0.0103 (13) | 0.0146 (14) | 0.0026 (10) | 0.0050 (11) | 0.0043 (11) |
C21 | 0.0100 (14) | 0.0117 (13) | 0.0125 (13) | 0.0006 (10) | 0.0024 (11) | 0.0001 (11) |
C22 | 0.0142 (15) | 0.0167 (14) | 0.0214 (16) | 0.0017 (11) | 0.0107 (12) | 0.0037 (12) |
C23 | 0.0221 (17) | 0.0196 (16) | 0.0218 (16) | 0.0070 (13) | 0.0042 (13) | 0.0038 (13) |
C24 | 0.0226 (17) | 0.0233 (16) | 0.0172 (16) | 0.0032 (13) | −0.0022 (13) | 0.0045 (13) |
C25 | 0.0141 (15) | 0.0197 (16) | 0.0177 (15) | 0.0003 (12) | 0.0075 (12) | 0.0037 (12) |
N1 | 0.0190 (13) | 0.0163 (12) | 0.0169 (13) | 0.0045 (10) | 0.0052 (10) | 0.0054 (10) |
O1 | 0.0158 (11) | 0.0167 (10) | 0.0123 (10) | 0.0033 (8) | 0.0040 (8) | −0.0028 (8) |
O2 | 0.0146 (11) | 0.0229 (12) | 0.0130 (10) | −0.0058 (9) | −0.0006 (8) | −0.0117 (9) |
O1W | 0.0325 (15) | 0.0540 (18) | 0.0212 (13) | −0.0087 (13) | 0.0005 (11) | 0.0131 (12) |
O3 | 0.0104 (10) | 0.0218 (11) | 0.0158 (11) | −0.0013 (8) | 0.0022 (8) | −0.0088 (9) |
O2W | 0.0330 (14) | 0.0185 (11) | 0.0265 (13) | 0.0030 (10) | 0.0144 (11) | −0.0039 (9) |
O4 | 0.0112 (11) | 0.0228 (11) | 0.0190 (11) | 0.0018 (9) | 0.0060 (9) | −0.0055 (9) |
O3W | 0.0301 (14) | 0.0286 (13) | 0.0164 (11) | −0.0005 (10) | 0.0044 (10) | 0.0020 (10) |
O5 | 0.0203 (12) | 0.0248 (12) | 0.0254 (12) | 0.0040 (9) | 0.0118 (10) | −0.0011 (10) |
O6 | 0.0189 (12) | 0.0270 (12) | 0.0274 (13) | −0.0008 (10) | 0.0089 (10) | −0.0039 (10) |
O7 | 0.0114 (11) | 0.0308 (13) | 0.0344 (14) | 0.0044 (9) | 0.0088 (10) | 0.0053 (11) |
O8 | 0.0123 (11) | 0.0210 (11) | 0.0210 (11) | 0.0030 (9) | 0.0080 (9) | 0.0000 (9) |
O9 | 0.0204 (12) | 0.0203 (11) | 0.0162 (11) | 0.0017 (9) | 0.0063 (9) | −0.0070 (9) |
O10 | 0.0164 (11) | 0.0201 (11) | 0.0122 (10) | −0.0019 (9) | −0.0016 (8) | −0.0050 (8) |
O11 | 0.0082 (10) | 0.0200 (11) | 0.0146 (10) | 0.0004 (8) | 0.0033 (8) | −0.0040 (8) |
O12 | 0.0116 (10) | 0.0171 (10) | 0.0156 (10) | 0.0011 (8) | 0.0060 (8) | −0.0017 (8) |
O13 | 0.0198 (12) | 0.0195 (11) | 0.0172 (11) | 0.0016 (9) | 0.0054 (9) | −0.0004 (9) |
O14 | 0.0255 (12) | 0.0158 (11) | 0.0204 (11) | 0.0017 (9) | 0.0062 (9) | 0.0022 (9) |
C1—O1 | 1.262 (3) | C18—C19 | 1.389 (4) |
C1—O2 | 1.278 (4) | C19—C20 | 1.392 (4) |
C1—C2 | 1.486 (4) | C19—H19 | 0.9500 |
C2—C7 | 1.383 (4) | C20—O12 | 1.370 (3) |
C2—C3 | 1.391 (4) | C20—C21 | 1.389 (4) |
C3—C4 | 1.386 (4) | C21—H21 | 0.9500 |
C3—H3 | 0.9500 | C22—O13 | 1.224 (4) |
C4—O3 | 1.361 (3) | C22—N1 | 1.368 (4) |
C4—C5 | 1.390 (4) | C22—C23 | 1.496 (4) |
C5—C6 | 1.385 (4) | C23—C24 | 1.528 (4) |
C5—H5 | 0.9500 | C23—H23A | 0.9900 |
C6—O4 | 1.365 (3) | C23—H23B | 0.9900 |
C6—C7 | 1.398 (4) | C24—C25 | 1.498 (4) |
C7—H7 | 0.9500 | C24—H24A | 0.9900 |
C8—O5 | 1.244 (4) | C24—H24B | 0.9900 |
C8—O6 | 1.294 (4) | C25—O14 | 1.216 (4) |
C8—C9 | 1.483 (4) | C25—N1 | 1.379 (4) |
C9—C10 | 1.385 (4) | N1—H1N | 0.8800 |
C9—C14 | 1.393 (4) | O2—H2O | 0.8400 |
C10—C11 | 1.388 (4) | O1W—H1W1 | 0.8500 |
C10—H10 | 0.9500 | O1W—H1W2 | 0.8500 |
C11—O7 | 1.367 (4) | O1W—H1W3 | 0.8500 |
C11—C12 | 1.390 (4) | O3—H3O | 0.8400 |
C12—C13 | 1.390 (4) | O2W—H2W1 | 0.8500 |
C12—H12 | 0.9500 | O2W—H2W2 | 0.8501 |
C13—O8 | 1.371 (3) | O4—H4O | 0.8400 |
C13—C14 | 1.384 (4) | O3W—H3W1 | 0.8500 |
C14—H14 | 0.9500 | O3W—H3W2 | 0.8500 |
C15—O9 | 1.263 (4) | O6—H6O | 0.8400 |
C15—O10 | 1.280 (4) | O7—H7A | 0.9500 |
C15—C16 | 1.483 (4) | O7—H7B | 0.9500 |
C16—C21 | 1.389 (4) | O8—H8A | 0.9500 |
C16—C17 | 1.389 (4) | O8—H8B | 0.9500 |
C17—C18 | 1.389 (4) | O10—H10O | 0.8400 |
C17—H17 | 0.9500 | O11—H11O | 0.8400 |
C18—O11 | 1.370 (3) | O12—H12O | 0.8400 |
O1—C1—O2 | 123.7 (3) | O11—C18—C19 | 119.1 (2) |
O1—C1—C2 | 119.0 (3) | O11—C18—C17 | 119.8 (3) |
O2—C1—C2 | 117.3 (2) | C19—C18—C17 | 121.1 (3) |
C7—C2—C3 | 121.5 (3) | C18—C19—C20 | 119.3 (3) |
C7—C2—C1 | 119.6 (3) | C18—C19—H19 | 120.3 |
C3—C2—C1 | 118.9 (3) | C20—C19—H19 | 120.3 |
C4—C3—C2 | 118.9 (3) | O12—C20—C21 | 119.3 (3) |
C4—C3—H3 | 120.5 | O12—C20—C19 | 120.1 (2) |
C2—C3—H3 | 120.5 | C21—C20—C19 | 120.6 (3) |
O3—C4—C3 | 119.3 (3) | C20—C21—C16 | 119.0 (3) |
O3—C4—C5 | 120.0 (2) | C20—C21—H21 | 120.5 |
C3—C4—C5 | 120.7 (3) | C16—C21—H21 | 120.5 |
C6—C5—C4 | 119.5 (3) | O13—C22—N1 | 123.9 (3) |
C6—C5—H5 | 120.3 | O13—C22—C23 | 127.3 (3) |
C4—C5—H5 | 120.3 | N1—C22—C23 | 108.8 (3) |
O4—C6—C5 | 119.3 (2) | C22—C23—C24 | 104.7 (2) |
O4—C6—C7 | 119.9 (3) | C22—C23—H23A | 110.8 |
C5—C6—C7 | 120.8 (3) | C24—C23—H23A | 110.8 |
C2—C7—C6 | 118.5 (3) | C22—C23—H23B | 110.8 |
C2—C7—H7 | 120.7 | C24—C23—H23B | 110.8 |
C6—C7—H7 | 120.7 | H23A—C23—H23B | 108.9 |
O5—C8—O6 | 123.2 (3) | C25—C24—C23 | 104.9 (3) |
O5—C8—C9 | 121.0 (3) | C25—C24—H24A | 110.8 |
O6—C8—C9 | 115.8 (3) | C23—C24—H24A | 110.8 |
C10—C9—C14 | 121.5 (3) | C25—C24—H24B | 110.8 |
C10—C9—C8 | 118.5 (3) | C23—C24—H24B | 110.8 |
C14—C9—C8 | 120.0 (3) | H24A—C24—H24B | 108.9 |
C9—C10—C11 | 118.6 (3) | O14—C25—N1 | 124.5 (3) |
C9—C10—H10 | 120.7 | O14—C25—C24 | 127.3 (3) |
C11—C10—H10 | 120.7 | N1—C25—C24 | 108.3 (3) |
O7—C11—C10 | 119.8 (3) | C22—N1—C25 | 113.3 (3) |
O7—C11—C12 | 119.1 (3) | C22—N1—H1N | 123.4 |
C10—C11—C12 | 121.1 (3) | C25—N1—H1N | 123.4 |
C13—C12—C11 | 118.9 (3) | C1—O2—H2O | 109.5 |
C13—C12—H12 | 120.5 | H1W1—O1W—H1W2 | 122.3 |
C11—C12—H12 | 120.5 | H1W1—O1W—H1W3 | 90.8 |
O8—C13—C14 | 119.9 (3) | H1W2—O1W—H1W3 | 115.0 |
O8—C13—C12 | 118.9 (3) | C4—O3—H3O | 109.5 |
C14—C13—C12 | 121.2 (3) | H2W1—O2W—H2W2 | 126.7 |
C13—C14—C9 | 118.6 (3) | C6—O4—H4O | 109.5 |
C13—C14—H14 | 120.7 | H3W1—O3W—H3W2 | 133.3 |
C9—C14—H14 | 120.7 | C8—O6—H6O | 109.5 |
O9—C15—O10 | 123.7 (3) | C11—O7—H7A | 120.0 |
O9—C15—C16 | 119.5 (3) | C11—O7—H7B | 120.0 |
O10—C15—C16 | 116.9 (3) | H7A—O7—H7B | 120.0 |
C21—C16—C17 | 121.4 (3) | C13—O8—H8A | 120.0 |
C21—C16—C15 | 119.6 (3) | C13—O8—H8B | 120.0 |
C17—C16—C15 | 119.0 (3) | H8A—O8—H8B | 120.0 |
C16—C17—C18 | 118.6 (3) | C15—O10—H10O | 109.5 |
C16—C17—H17 | 120.7 | C18—O11—H11O | 109.5 |
C18—C17—H17 | 120.7 | C20—O12—H12O | 109.5 |
O1—C1—C2—C7 | 175.8 (3) | C12—C13—C14—C9 | −0.1 (4) |
O2—C1—C2—C7 | −4.2 (4) | C10—C9—C14—C13 | 1.0 (4) |
O1—C1—C2—C3 | −2.4 (4) | C8—C9—C14—C13 | −177.6 (3) |
O2—C1—C2—C3 | 177.6 (3) | O9—C15—C16—C21 | −173.1 (3) |
C7—C2—C3—C4 | −1.2 (4) | O10—C15—C16—C21 | 6.8 (4) |
C1—C2—C3—C4 | 177.0 (2) | O9—C15—C16—C17 | 7.7 (4) |
C2—C3—C4—O3 | −178.2 (2) | O10—C15—C16—C17 | −172.5 (3) |
C2—C3—C4—C5 | 1.1 (4) | C21—C16—C17—C18 | 0.8 (4) |
O3—C4—C5—C6 | 178.9 (3) | C15—C16—C17—C18 | −180.0 (2) |
C3—C4—C5—C6 | −0.4 (4) | C16—C17—C18—O11 | −179.9 (2) |
C4—C5—C6—O4 | −179.3 (2) | C16—C17—C18—C19 | −0.1 (4) |
C4—C5—C6—C7 | −0.4 (4) | O11—C18—C19—C20 | 178.7 (2) |
C3—C2—C7—C6 | 0.4 (4) | C17—C18—C19—C20 | −1.1 (4) |
C1—C2—C7—C6 | −177.8 (2) | C18—C19—C20—O12 | −177.6 (2) |
O4—C6—C7—C2 | 179.2 (2) | C18—C19—C20—C21 | 1.8 (4) |
C5—C6—C7—C2 | 0.4 (4) | O12—C20—C21—C16 | 178.3 (2) |
O5—C8—C9—C10 | 0.9 (4) | C19—C20—C21—C16 | −1.1 (4) |
O6—C8—C9—C10 | −178.9 (3) | C17—C16—C21—C20 | −0.2 (4) |
O5—C8—C9—C14 | 179.5 (3) | C15—C16—C21—C20 | −179.4 (3) |
O6—C8—C9—C14 | −0.2 (4) | O13—C22—C23—C24 | 176.5 (3) |
C14—C9—C10—C11 | −1.4 (4) | N1—C22—C23—C24 | −3.4 (3) |
C8—C9—C10—C11 | 177.2 (3) | C22—C23—C24—C25 | 2.9 (3) |
C9—C10—C11—O7 | −177.8 (3) | C23—C24—C25—O14 | 179.6 (3) |
C9—C10—C11—C12 | 1.0 (4) | C23—C24—C25—N1 | −1.5 (3) |
O7—C11—C12—C13 | 178.7 (3) | O13—C22—N1—C25 | −177.3 (3) |
C10—C11—C12—C13 | −0.1 (4) | C23—C22—N1—C25 | 2.7 (3) |
C11—C12—C13—O8 | −179.5 (3) | O14—C25—N1—C22 | 178.2 (3) |
C11—C12—C13—C14 | −0.3 (4) | C24—C25—N1—C22 | −0.7 (4) |
O8—C13—C14—C9 | 179.0 (3) |
C7H6O3·C4H3NO2 | F(000) = 488 |
Mr = 235.19 | Dx = 1.428 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1917 reflections |
a = 10.8426 (8) Å | θ = 3.7–29.2° |
b = 6.5202 (4) Å | µ = 0.12 mm−1 |
c = 16.1326 (13) Å | T = 100 K |
β = 106.391 (8)° | Block, colourless |
V = 1094.16 (14) Å3 | 0.25 × 0.22 × 0.20 mm |
Z = 4 |
Four-circle diffractometer | 2375 independent reflections |
Radiation source: Mova (Mo) X-ray Source | Rint = 0.026 |
Mirror monochromator | θmax = 30.1°, θmin = 2.6° |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | h = −13→14 |
Tmin = 0.474, Tmax = 1.000 | k = −8→8 |
5081 measured reflections | l = −22→21 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0479P)2 + 0.089P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2375 reflections | Δρmax = 0.15 e Å−3 |
166 parameters | Δρmin = −0.17 e Å−3 |
C7H6O3·C4H3NO2 | V = 1094.16 (14) Å3 |
Mr = 235.19 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.8426 (8) Å | µ = 0.12 mm−1 |
b = 6.5202 (4) Å | T = 100 K |
c = 16.1326 (13) Å | 0.25 × 0.22 × 0.20 mm |
β = 106.391 (8)° |
Four-circle diffractometer | 5081 measured reflections |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 2375 independent reflections |
Tmin = 0.474, Tmax = 1.000 | Rint = 0.026 |
R[F2 > 2σ(F2)] = 0.048 | 1 restraint |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.15 e Å−3 |
2375 reflections | Δρmin = −0.17 e Å−3 |
166 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.31889 (18) | 0.4495 (3) | 0.03777 (10) | 0.0494 (4) | |
C2 | −0.17956 (17) | 0.4137 (2) | 0.06675 (10) | 0.0454 (4) | |
C3 | −0.13011 (17) | 0.2167 (3) | 0.06916 (10) | 0.0490 (4) | |
H3 | −0.1871 | 0.1036 | 0.0530 | 0.059* | |
C4 | 0.00044 (17) | 0.1836 (2) | 0.09470 (11) | 0.0483 (4) | |
H4 | 0.0335 | 0.0484 | 0.0956 | 0.058* | |
C5 | 0.08335 (16) | 0.3480 (2) | 0.11905 (10) | 0.0460 (4) | |
C6 | 0.03574 (19) | 0.5444 (2) | 0.11860 (12) | 0.0535 (5) | |
H6 | 0.0928 | 0.6568 | 0.1367 | 0.064* | |
C7 | −0.09476 (18) | 0.5762 (3) | 0.09171 (11) | 0.0520 (5) | |
H7 | −0.1274 | 0.7117 | 0.0902 | 0.062* | |
C8 | −0.10180 (18) | 0.3047 (3) | 0.29425 (12) | 0.0592 (5) | |
H8 | −0.1919 | 0.3277 | 0.2797 | 0.071* | |
C9 | −0.0123 (2) | 0.4464 (3) | 0.31673 (12) | 0.0595 (5) | |
H9 | −0.0271 | 0.5890 | 0.3214 | 0.071* | |
C10 | 0.11522 (18) | 0.3474 (2) | 0.33368 (11) | 0.0512 (5) | |
C11 | −0.03821 (17) | 0.1033 (3) | 0.29552 (11) | 0.0513 (4) | |
O1 | −0.36003 (13) | 0.63172 (19) | 0.02864 (9) | 0.0671 (4) | |
O2 | −0.39267 (13) | 0.2937 (2) | 0.02309 (9) | 0.0656 (4) | |
O3 | 0.21367 (11) | 0.3237 (2) | 0.14545 (9) | 0.0611 (4) | |
O4 | −0.08623 (14) | −0.06413 (19) | 0.27932 (10) | 0.0725 (4) | |
O5 | 0.22094 (13) | 0.42560 (18) | 0.35488 (9) | 0.0695 (4) | |
N1 | 0.09208 (15) | 0.1432 (2) | 0.31986 (10) | 0.0518 (4) | |
H1N | 0.149 (2) | 0.055 (3) | 0.3259 (11) | 0.060 (6)* | |
H2O | −0.4818 (11) | 0.325 (4) | 0.0054 (19) | 0.152 (12)* | |
H3O | 0.228 (3) | 0.190 (5) | 0.1421 (17) | 0.124 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0419 (10) | 0.0525 (10) | 0.0522 (9) | 0.0074 (8) | 0.0105 (8) | 0.0006 (8) |
C2 | 0.0398 (9) | 0.0476 (9) | 0.0485 (8) | 0.0050 (7) | 0.0118 (7) | 0.0021 (7) |
C3 | 0.0401 (9) | 0.0451 (9) | 0.0580 (9) | 0.0002 (7) | 0.0077 (8) | −0.0014 (7) |
C4 | 0.0432 (9) | 0.0379 (8) | 0.0613 (10) | 0.0057 (7) | 0.0105 (8) | 0.0006 (7) |
C5 | 0.0349 (8) | 0.0440 (9) | 0.0578 (9) | 0.0022 (7) | 0.0107 (8) | 0.0051 (7) |
C6 | 0.0452 (10) | 0.0384 (9) | 0.0746 (11) | −0.0019 (7) | 0.0132 (9) | 0.0010 (8) |
C7 | 0.0467 (10) | 0.0403 (9) | 0.0685 (11) | 0.0077 (8) | 0.0156 (9) | 0.0053 (8) |
C8 | 0.0406 (10) | 0.0546 (10) | 0.0794 (12) | 0.0069 (8) | 0.0122 (9) | 0.0142 (9) |
C9 | 0.0558 (12) | 0.0423 (9) | 0.0776 (12) | 0.0050 (9) | 0.0145 (10) | 0.0076 (9) |
C10 | 0.0452 (10) | 0.0410 (9) | 0.0620 (10) | −0.0025 (8) | 0.0065 (8) | 0.0053 (7) |
C11 | 0.0426 (10) | 0.0446 (9) | 0.0629 (10) | −0.0028 (8) | 0.0089 (8) | 0.0082 (8) |
O1 | 0.0478 (7) | 0.0605 (8) | 0.0894 (9) | 0.0152 (7) | 0.0135 (7) | 0.0003 (7) |
O2 | 0.0383 (7) | 0.0655 (9) | 0.0877 (9) | 0.0013 (6) | 0.0095 (7) | −0.0045 (7) |
O3 | 0.0346 (7) | 0.0451 (7) | 0.0983 (10) | 0.0014 (5) | 0.0102 (7) | −0.0009 (6) |
O4 | 0.0541 (8) | 0.0485 (7) | 0.1072 (11) | −0.0121 (6) | 0.0104 (8) | 0.0047 (7) |
O5 | 0.0480 (8) | 0.0487 (7) | 0.1006 (10) | −0.0114 (6) | 0.0027 (7) | 0.0000 (7) |
N1 | 0.0375 (8) | 0.0368 (7) | 0.0745 (10) | 0.0023 (6) | 0.0049 (7) | 0.0025 (7) |
C1—O1 | 1.263 (2) | C6—C7 | 1.374 (3) |
C1—O2 | 1.273 (2) | C8—C9 | 1.314 (3) |
C1—C2 | 1.469 (2) | C8—C11 | 1.481 (2) |
C2—C7 | 1.386 (2) | C9—C10 | 1.480 (3) |
C2—C3 | 1.388 (2) | C10—O5 | 1.212 (2) |
C3—C4 | 1.375 (2) | C10—N1 | 1.361 (2) |
C4—C5 | 1.383 (2) | C11—O4 | 1.206 (2) |
C5—O3 | 1.365 (2) | C11—N1 | 1.380 (2) |
C5—C6 | 1.380 (2) | ||
O1—C1—O2 | 123.11 (16) | C7—C6—C5 | 119.46 (16) |
O1—C1—C2 | 118.97 (16) | C6—C7—C2 | 121.10 (15) |
O2—C1—C2 | 117.92 (15) | C9—C8—C11 | 108.35 (17) |
C7—C2—C3 | 118.67 (17) | C8—C9—C10 | 108.85 (16) |
C7—C2—C1 | 120.63 (15) | O5—C10—N1 | 124.99 (17) |
C3—C2—C1 | 120.70 (16) | O5—C10—C9 | 128.94 (17) |
C4—C3—C2 | 120.71 (16) | N1—C10—C9 | 106.07 (15) |
C3—C4—C5 | 119.66 (15) | O4—C11—N1 | 125.26 (17) |
O3—C5—C6 | 117.51 (15) | O4—C11—C8 | 128.97 (17) |
O3—C5—C4 | 122.10 (14) | N1—C11—C8 | 105.77 (14) |
C6—C5—C4 | 120.38 (16) | C10—N1—C11 | 110.96 (15) |
O1—C1—C2—C7 | 6.2 (3) | C3—C2—C7—C6 | −0.2 (3) |
O2—C1—C2—C7 | −173.77 (16) | C1—C2—C7—C6 | −179.75 (17) |
O1—C1—C2—C3 | −173.41 (16) | C11—C8—C9—C10 | 0.3 (2) |
O2—C1—C2—C3 | 6.7 (3) | C8—C9—C10—O5 | 179.1 (2) |
C7—C2—C3—C4 | −0.8 (3) | C8—C9—C10—N1 | −0.3 (2) |
C1—C2—C3—C4 | 178.73 (16) | C9—C8—C11—O4 | 179.7 (2) |
C2—C3—C4—C5 | 0.6 (3) | C9—C8—C11—N1 | −0.2 (2) |
C3—C4—C5—O3 | 179.59 (16) | O5—C10—N1—C11 | −179.30 (19) |
C3—C4—C5—C6 | 0.6 (3) | C9—C10—N1—C11 | 0.1 (2) |
O3—C5—C6—C7 | 179.37 (17) | O4—C11—N1—C10 | −179.87 (19) |
C4—C5—C6—C7 | −1.6 (3) | C8—C11—N1—C10 | 0.0 (2) |
C5—C6—C7—C2 | 1.4 (3) |
C7H6O4·C4H3NO2 | F(000) = 1040 |
Mr = 251.19 | Dx = 1.540 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I 2ya | Cell parameters from 9037 reflections |
a = 12.5506 (4) Å | θ = 3.1–27.5° |
b = 6.6807 (2) Å | µ = 0.13 mm−1 |
c = 26.1586 (8) Å | T = 100 K |
β = 98.815 (3)° | Plate, colourless |
V = 2167.40 (12) Å3 | 0.21 × 0.15 × 0.15 mm |
Z = 8 |
Four-circle diffractometer | 2137 independent reflections |
Radiation source: Mova (Mo) X-ray Source | Rint = 0.041 |
Mirror monochromator | θmax = 26.0°, θmin = 3.2° |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | h = −15→15 |
Tmin = 0.847, Tmax = 1.000 | k = −8→8 |
21462 measured reflections | l = −32→32 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0654P)2 + 3.4709P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
2137 reflections | Δρmax = 0.67 e Å−3 |
179 parameters | Δρmin = −0.25 e Å−3 |
C7H6O4·C4H3NO2 | V = 2167.40 (12) Å3 |
Mr = 251.19 | Z = 8 |
Monoclinic, I2/a | Mo Kα radiation |
a = 12.5506 (4) Å | µ = 0.13 mm−1 |
b = 6.6807 (2) Å | T = 100 K |
c = 26.1586 (8) Å | 0.21 × 0.15 × 0.15 mm |
β = 98.815 (3)° |
Four-circle diffractometer | 21462 measured reflections |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 2137 independent reflections |
Tmin = 0.847, Tmax = 1.000 | Rint = 0.041 |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | Δρmax = 0.67 e Å−3 |
2137 reflections | Δρmin = −0.25 e Å−3 |
179 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.95656 (13) | 0.2237 (2) | 0.18563 (6) | 0.0241 (4) | |
O2 | 0.89695 (11) | 0.3329 (2) | 0.03973 (5) | 0.0197 (3) | |
O3 | 0.78218 (11) | 0.4179 (2) | −0.20469 (5) | 0.0196 (3) | |
O4 | 0.78618 (11) | 0.0854 (2) | −0.19456 (6) | 0.0196 (3) | |
C5 | 0.82404 (15) | 0.2857 (3) | −0.11981 (7) | 0.0158 (4) | |
C6 | 0.83819 (15) | 0.1151 (3) | −0.08799 (8) | 0.0171 (4) | |
H6 | 0.8305 | −0.0141 | −0.1033 | 0.021* | |
O7 | 0.82433 (13) | 0.6486 (2) | −0.12427 (6) | 0.0246 (4) | |
O8 | 0.89140 (11) | −0.2721 (2) | 0.06564 (5) | 0.0207 (4) | |
C9 | 0.85977 (15) | 0.4939 (3) | −0.04298 (7) | 0.0175 (4) | |
H9 | 0.8670 | 0.6224 | −0.0272 | 0.021* | |
C10 | 0.86304 (15) | 0.1322 (3) | −0.03499 (8) | 0.0185 (4) | |
H10 | 0.8730 | 0.0161 | −0.0138 | 0.022* | |
C11 | 0.87332 (14) | 0.3233 (3) | −0.01296 (7) | 0.0166 (4) | |
C12 | 0.83552 (15) | 0.4762 (3) | −0.09639 (7) | 0.0163 (4) | |
N13 | 0.92014 (14) | 0.0121 (3) | 0.11522 (6) | 0.0184 (4) | |
C14 | 0.79570 (15) | 0.2679 (3) | −0.17607 (8) | 0.0154 (4) | |
C15 | 0.95313 (16) | −0.1412 (3) | 0.19493 (8) | 0.0215 (5) | |
H15 | 0.9692 | −0.1601 | 0.2313 | 0.026* | |
C16 | 0.94515 (15) | 0.0567 (3) | 0.16752 (7) | 0.0187 (4) | |
C17 | 0.93405 (16) | −0.2843 (3) | 0.16004 (8) | 0.0200 (4) | |
H17 | 0.9341 | −0.4238 | 0.1671 | 0.024* | |
C18 | 0.91247 (15) | −0.1912 (3) | 0.10766 (8) | 0.0178 (4) | |
H13 | 0.913 (2) | 0.106 (5) | 0.0907 (13) | 0.046 (8)* | |
H4 | 0.766 (3) | 0.080 (5) | −0.2251 (14) | 0.052 (9)* | |
H2 | 0.895 (3) | 0.463 (6) | 0.0495 (14) | 0.065 (11)* | |
H7 | 0.804 (3) | 0.604 (6) | −0.1591 (16) | 0.073 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0310 (8) | 0.0224 (8) | 0.0176 (8) | 0.0000 (6) | −0.0004 (6) | −0.0042 (6) |
O2 | 0.0265 (8) | 0.0197 (8) | 0.0118 (7) | −0.0006 (6) | −0.0003 (5) | −0.0003 (6) |
O3 | 0.0266 (7) | 0.0169 (7) | 0.0142 (7) | −0.0012 (6) | −0.0003 (5) | 0.0001 (6) |
O4 | 0.0268 (8) | 0.0173 (7) | 0.0135 (7) | −0.0006 (6) | −0.0008 (6) | −0.0028 (6) |
C5 | 0.0153 (9) | 0.0200 (10) | 0.0117 (9) | 0.0000 (7) | 0.0008 (7) | −0.0015 (8) |
C6 | 0.0162 (9) | 0.0171 (10) | 0.0177 (9) | −0.0008 (8) | 0.0017 (7) | −0.0019 (8) |
O7 | 0.0395 (9) | 0.0160 (8) | 0.0174 (8) | −0.0005 (6) | 0.0019 (6) | 0.0006 (6) |
O8 | 0.0241 (7) | 0.0230 (8) | 0.0141 (7) | −0.0014 (6) | 0.0005 (6) | −0.0037 (6) |
C9 | 0.0194 (9) | 0.0163 (10) | 0.0167 (10) | −0.0015 (8) | 0.0025 (7) | −0.0057 (8) |
C10 | 0.0186 (9) | 0.0187 (10) | 0.0180 (10) | 0.0002 (8) | 0.0024 (7) | 0.0040 (8) |
C11 | 0.0133 (9) | 0.0217 (10) | 0.0145 (9) | −0.0006 (8) | 0.0014 (7) | −0.0004 (8) |
C12 | 0.0155 (9) | 0.0178 (10) | 0.0156 (9) | −0.0006 (7) | 0.0020 (7) | −0.0006 (8) |
N13 | 0.0241 (9) | 0.0177 (9) | 0.0125 (8) | 0.0010 (7) | −0.0003 (6) | 0.0013 (7) |
C14 | 0.0133 (9) | 0.0182 (10) | 0.0145 (10) | −0.0008 (7) | 0.0019 (7) | −0.0020 (8) |
C15 | 0.0238 (10) | 0.0250 (11) | 0.0150 (10) | 0.0025 (8) | 0.0011 (8) | 0.0044 (8) |
C16 | 0.0178 (9) | 0.0228 (11) | 0.0150 (9) | 0.0013 (8) | 0.0014 (7) | −0.0005 (8) |
C17 | 0.0202 (10) | 0.0203 (10) | 0.0189 (10) | 0.0004 (8) | 0.0014 (8) | 0.0026 (8) |
C18 | 0.0153 (9) | 0.0216 (10) | 0.0167 (10) | 0.0000 (8) | 0.0027 (7) | −0.0013 (8) |
O1—C16 | 1.212 (3) | O8—C18 | 1.217 (2) |
O2—C11 | 1.366 (2) | C9—C11 | 1.380 (3) |
O3—C14 | 1.247 (2) | C9—C12 | 1.389 (3) |
O4—C14 | 1.311 (2) | C10—C11 | 1.399 (3) |
C5—C6 | 1.406 (3) | N13—C18 | 1.374 (3) |
C5—C12 | 1.411 (3) | N13—C16 | 1.388 (3) |
C5—C14 | 1.465 (3) | C15—C17 | 1.318 (3) |
C6—C10 | 1.378 (3) | C15—C16 | 1.500 (3) |
O7—C12 | 1.359 (2) | C17—C18 | 1.491 (3) |
C6—C5—C12 | 118.61 (17) | C18—N13—C16 | 110.74 (17) |
C6—C5—C14 | 121.22 (18) | O3—C14—O4 | 122.00 (18) |
C12—C5—C14 | 120.15 (17) | O3—C14—C5 | 121.86 (17) |
C10—C6—C5 | 121.14 (18) | O4—C14—C5 | 116.13 (17) |
C11—C9—C12 | 119.42 (18) | C17—C15—C16 | 108.45 (18) |
C6—C10—C11 | 118.82 (18) | O1—C16—N13 | 125.31 (19) |
O2—C11—C9 | 121.62 (18) | O1—C16—C15 | 128.99 (18) |
O2—C11—C10 | 116.76 (17) | N13—C16—C15 | 105.70 (17) |
C9—C11—C10 | 121.61 (17) | C15—C17—C18 | 108.79 (19) |
O7—C12—C9 | 117.17 (17) | O8—C18—N13 | 124.74 (19) |
O7—C12—C5 | 122.45 (17) | O8—C18—C17 | 128.9 (2) |
C9—C12—C5 | 120.39 (18) | N13—C18—C17 | 106.32 (17) |
C12—C5—C6—C10 | −0.2 (3) | C6—C5—C14—O3 | 179.49 (17) |
C14—C5—C6—C10 | −178.87 (17) | C12—C5—C14—O3 | 0.8 (3) |
C5—C6—C10—C11 | 0.5 (3) | C6—C5—C14—O4 | −1.0 (3) |
C12—C9—C11—O2 | −179.82 (16) | C12—C5—C14—O4 | −179.69 (16) |
C12—C9—C11—C10 | −0.1 (3) | C18—N13—C16—O1 | −179.73 (19) |
C6—C10—C11—O2 | 179.37 (16) | C18—N13—C16—C15 | −0.3 (2) |
C6—C10—C11—C9 | −0.3 (3) | C17—C15—C16—O1 | 179.6 (2) |
C11—C9—C12—O7 | −179.18 (16) | C17—C15—C16—N13 | 0.1 (2) |
C11—C9—C12—C5 | 0.5 (3) | C16—C15—C17—C18 | 0.0 (2) |
C6—C5—C12—O7 | 179.30 (17) | C16—N13—C18—O8 | 179.97 (18) |
C14—C5—C12—O7 | −2.0 (3) | C16—N13—C18—C17 | 0.3 (2) |
C6—C5—C12—C9 | −0.3 (3) | C15—C17—C18—O8 | −179.9 (2) |
C14—C5—C12—C9 | 178.41 (17) | C15—C17—C18—N13 | −0.2 (2) |
3(C7H6O4)·C4H3NO2·3(H2O) | V = 1331.4 (3) Å3 |
Mr = 613.47 | Z = 2 |
Triclinic, P1 | F(000) = 628 |
a = 9.3796 (10) Å | Dx = 1.515 Mg m−3 |
b = 10.3981 (12) Å | ? radiation, λ = 0.71073 Å |
c = 15.6415 (16) Å | µ = 0.13 mm−1 |
α = 80.620 (9)° | T = 100 K |
β = 72.913 (9)° | Block, colorless |
γ = 66.089 (10)° | 0.25 × 0.22 × 0.20 mm |
Xcalibur, Eos, Nova diffractometer | 2571 reflections with I > 2σ(I) |
Radiation source: Mova (Mo) X-ray Source | Rint = 0.124 |
Mirror monochromator | θmax = 25.5°, θmin = 2.5° |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | h = −11→11 |
Tmin = 0.630, Tmax = 1.000 | k = −11→12 |
16508 measured reflections | l = −18→18 |
4927 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.175 | w = 1/[σ2(Fo2) + (0.081P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.91 | (Δ/σ)max < 0.001 |
4927 reflections | Δρmax = 0.48 e Å−3 |
388 parameters | Δρmin = −0.31 e Å−3 |
3(C7H6O4)·C4H3NO2·3(H2O) | γ = 66.089 (10)° |
Mr = 613.47 | V = 1331.4 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.3796 (10) Å | ? radiation, λ = 0.71073 Å |
b = 10.3981 (12) Å | µ = 0.13 mm−1 |
c = 15.6415 (16) Å | T = 100 K |
α = 80.620 (9)° | 0.25 × 0.22 × 0.20 mm |
β = 72.913 (9)° |
Xcalibur, Eos, Nova diffractometer | 4927 independent reflections |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 2571 reflections with I > 2σ(I) |
Tmin = 0.630, Tmax = 1.000 | Rint = 0.124 |
16508 measured reflections |
R[F2 > 2σ(F2)] = 0.068 | 0 restraints |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 0.91 | Δρmax = 0.48 e Å−3 |
4927 reflections | Δρmin = −0.31 e Å−3 |
388 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1W | 0.9935 (5) | 1.1875 (4) | 0.13626 (18) | 0.0926 (14) | |
H1W1 | 1.0228 | 1.0988 | 0.1353 | 0.139* | |
H1W2 | 0.9299 | 1.1880 | 0.1070 | 0.139* | 0.5 |
H1W3 | 1.0896 | 1.1768 | 0.1078 | 0.139* | 0.5 |
O2W | 1.3293 (4) | 0.8100 (4) | 0.22523 (18) | 0.0843 (12) | |
H2W1 | 1.2911 | 0.8209 | 0.2812 | 0.127* | |
H2W2 | 1.4232 | 0.8060 | 0.1964 | 0.127* | 0.5 |
H2W3 | 1.2586 | 0.8278 | 0.1966 | 0.127* | 0.5 |
O3W | 0.6698 (3) | 0.4761 (3) | 0.18455 (15) | 0.0450 (7) | |
H3W1 | 0.6476 | 0.4744 | 0.2414 | 0.068* | |
H3W2 | 0.7596 | 0.4805 | 0.1546 | 0.068* | 0.5 |
H3W3 | 0.6011 | 0.4926 | 0.1548 | 0.068* | 0.5 |
C1 | 0.4126 (4) | 1.1640 (3) | 0.3284 (2) | 0.0254 (8) | |
C2 | 0.4601 (4) | 1.1640 (3) | 0.2288 (2) | 0.0248 (8) | |
C3 | 0.6044 (4) | 1.1766 (3) | 0.1828 (2) | 0.0252 (8) | |
H3 | 0.6732 | 1.1838 | 0.2143 | 0.030* | |
C4 | 0.6478 (4) | 1.1787 (3) | 0.0900 (2) | 0.0270 (8) | |
C5 | 0.5463 (4) | 1.1688 (4) | 0.0438 (2) | 0.0325 (9) | |
H5 | 0.5766 | 1.1692 | −0.0197 | 0.039* | |
C6 | 0.4010 (4) | 1.1585 (4) | 0.0913 (2) | 0.0309 (9) | |
C7 | 0.3569 (4) | 1.1539 (3) | 0.1847 (2) | 0.0270 (8) | |
H7 | 0.2587 | 1.1440 | 0.2172 | 0.032* | |
C8 | 0.7190 (4) | 0.8389 (3) | 0.4167 (2) | 0.0255 (8) | |
C9 | 0.7694 (4) | 0.8370 (3) | 0.3173 (2) | 0.0231 (8) | |
C10 | 0.9111 (4) | 0.8550 (3) | 0.2722 (2) | 0.0257 (8) | |
H10 | 0.9755 | 0.8689 | 0.3039 | 0.031* | |
C11 | 0.9575 (4) | 0.8524 (3) | 0.1792 (2) | 0.0222 (8) | |
C12 | 0.8633 (4) | 0.8346 (3) | 0.1326 (2) | 0.0249 (8) | |
H12 | 0.8957 | 0.8343 | 0.0690 | 0.030* | |
C13 | 0.7208 (4) | 0.8169 (3) | 0.1790 (2) | 0.0218 (7) | |
C14 | 0.6728 (4) | 0.8177 (3) | 0.2726 (2) | 0.0266 (8) | |
H14 | 0.5758 | 0.8053 | 0.3049 | 0.032* | |
C15 | 1.0657 (4) | 0.4973 (3) | 0.3729 (2) | 0.0242 (8) | |
C16 | 1.1172 (4) | 0.4994 (3) | 0.2728 (2) | 0.0229 (8) | |
C17 | 1.2626 (4) | 0.5117 (3) | 0.2276 (2) | 0.0227 (8) | |
H17 | 1.3317 | 0.5169 | 0.2596 | 0.027* | |
C18 | 1.3053 (4) | 0.5163 (3) | 0.1346 (2) | 0.0219 (7) | |
C19 | 1.2043 (4) | 0.5087 (3) | 0.0883 (2) | 0.0239 (8) | |
H19 | 1.2339 | 0.5127 | 0.0247 | 0.029* | |
C20 | 1.0603 (4) | 0.4955 (3) | 0.1345 (2) | 0.0229 (8) | |
C21 | 1.0154 (4) | 0.4904 (3) | 0.2279 (2) | 0.0235 (8) | |
H21 | 0.9167 | 0.4809 | 0.2599 | 0.028* | |
C22 | 0.6843 (4) | 1.3640 (4) | 0.4081 (2) | 0.0277 (8) | |
C23 | 0.8247 (4) | 1.2460 (4) | 0.3639 (2) | 0.0318 (9) | |
H23 | 0.8659 | 1.2377 | 0.3010 | 0.038* | |
C24 | 0.8853 (4) | 1.1524 (4) | 0.4255 (2) | 0.0313 (9) | |
H24 | 0.9764 | 1.0665 | 0.4147 | 0.038* | |
C25 | 0.7838 (4) | 1.2075 (4) | 0.5151 (2) | 0.0278 (8) | |
O1 | 0.5047 (3) | 1.1735 (2) | 0.36978 (15) | 0.0318 (6) | |
O2 | 0.2768 (3) | 1.1523 (2) | 0.36718 (15) | 0.0366 (6) | |
H2O | 0.2605 | 1.1524 | 0.4229 | 0.055* | |
O3 | 0.7915 (3) | 1.1878 (2) | 0.04298 (15) | 0.0391 (7) | |
H3A | 0.8623 | 1.1929 | 0.0739 | 0.059* | 0.5 |
H3B | 0.8207 | 1.1892 | −0.0206 | 0.059* | 0.5 |
O4 | 0.2998 (3) | 1.1511 (3) | 0.04617 (16) | 0.0475 (7) | |
H4A | 0.3294 | 1.1530 | −0.0174 | 0.071* | 0.5 |
H4B | 0.2000 | 1.1440 | 0.0784 | 0.071* | 0.5 |
O5 | 0.8095 (3) | 0.8498 (2) | 0.45832 (15) | 0.0343 (6) | |
O6 | 0.5829 (3) | 0.8282 (2) | 0.45564 (15) | 0.0351 (6) | |
H6O | 0.5655 | 0.8307 | 0.5113 | 0.053* | |
O7 | 1.0997 (3) | 0.8682 (2) | 0.13292 (15) | 0.0327 (6) | |
H7A | 1.1320 | 0.8667 | 0.0694 | 0.049* | 0.5 |
H7B | 1.1652 | 0.8806 | 0.1645 | 0.049* | 0.5 |
O8 | 0.6273 (3) | 0.7986 (2) | 0.13341 (15) | 0.0332 (6) | |
H8A | 0.6595 | 0.7979 | 0.0699 | 0.050* | 0.5 |
H8B | 0.5299 | 0.7865 | 0.1652 | 0.050* | 0.5 |
O9 | 1.1705 (3) | 0.5027 (2) | 0.41084 (14) | 0.0325 (6) | |
H9O | 1.1343 | 0.5006 | 0.4667 | 0.049* | |
O10 | 0.9341 (3) | 0.4922 (2) | 0.41518 (14) | 0.0301 (6) | |
O11 | 1.4474 (3) | 0.5297 (2) | 0.08855 (14) | 0.0303 (6) | |
H11A | 1.4765 | 0.5338 | 0.0249 | 0.045* | 0.5 |
H11B | 1.5172 | 0.5349 | 0.1202 | 0.045* | 0.5 |
O12 | 0.9588 (3) | 0.4906 (2) | 0.08873 (14) | 0.0307 (6) | |
H12A | 0.9872 | 0.4963 | 0.0251 | 0.046* | 0.5 |
H12B | 0.8598 | 0.4815 | 0.1206 | 0.046* | 0.5 |
O13 | 0.5955 (3) | 1.4703 (2) | 0.37494 (15) | 0.0338 (6) | |
O14 | 0.7984 (3) | 1.1530 (2) | 0.58906 (16) | 0.0369 (6) | |
N1 | 0.6660 (3) | 1.3355 (3) | 0.49952 (17) | 0.0285 (7) | |
H1N | 0.5909 | 1.3905 | 0.5413 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1W | 0.158 (3) | 0.138 (3) | 0.0313 (18) | −0.132 (3) | 0.028 (2) | −0.0302 (19) |
O2W | 0.134 (3) | 0.139 (3) | 0.0228 (16) | −0.112 (3) | 0.0100 (18) | −0.0148 (18) |
O3W | 0.0689 (19) | 0.0647 (19) | 0.0166 (13) | −0.0448 (16) | −0.0094 (13) | 0.0070 (13) |
C1 | 0.0258 (19) | 0.030 (2) | 0.0196 (19) | −0.0139 (16) | −0.0008 (16) | 0.0005 (15) |
C2 | 0.031 (2) | 0.0224 (19) | 0.0153 (18) | −0.0095 (16) | 0.0001 (15) | 0.0007 (15) |
C3 | 0.030 (2) | 0.028 (2) | 0.0177 (19) | −0.0100 (16) | −0.0060 (16) | −0.0016 (15) |
C4 | 0.0233 (19) | 0.031 (2) | 0.022 (2) | −0.0112 (16) | 0.0016 (16) | 0.0002 (16) |
C5 | 0.027 (2) | 0.049 (2) | 0.0123 (18) | −0.0089 (18) | 0.0000 (16) | −0.0013 (17) |
C6 | 0.029 (2) | 0.044 (2) | 0.0169 (19) | −0.0122 (18) | −0.0052 (16) | −0.0008 (17) |
C7 | 0.0233 (18) | 0.036 (2) | 0.020 (2) | −0.0103 (16) | −0.0033 (15) | −0.0016 (16) |
C8 | 0.0236 (19) | 0.031 (2) | 0.0188 (18) | −0.0132 (16) | 0.0008 (15) | 0.0024 (15) |
C9 | 0.0269 (19) | 0.0248 (19) | 0.0154 (18) | −0.0108 (16) | 0.0004 (15) | −0.0028 (15) |
C10 | 0.030 (2) | 0.027 (2) | 0.0200 (19) | −0.0110 (16) | −0.0047 (16) | −0.0023 (15) |
C11 | 0.0220 (18) | 0.0219 (19) | 0.0216 (19) | −0.0111 (15) | 0.0001 (15) | −0.0008 (15) |
C12 | 0.0311 (19) | 0.0236 (19) | 0.0165 (18) | −0.0100 (16) | −0.0017 (15) | −0.0004 (15) |
C13 | 0.0245 (18) | 0.0223 (19) | 0.0182 (18) | −0.0081 (15) | −0.0069 (15) | 0.0002 (15) |
C14 | 0.0276 (19) | 0.031 (2) | 0.0188 (19) | −0.0151 (16) | 0.0024 (15) | 0.0008 (16) |
C15 | 0.0279 (19) | 0.029 (2) | 0.0156 (18) | −0.0126 (16) | −0.0021 (16) | −0.0020 (15) |
C16 | 0.0285 (19) | 0.0233 (19) | 0.0150 (18) | −0.0099 (16) | −0.0037 (16) | 0.0010 (15) |
C17 | 0.0268 (19) | 0.0251 (19) | 0.0175 (19) | −0.0118 (16) | −0.0060 (15) | 0.0011 (15) |
C18 | 0.0241 (18) | 0.0243 (19) | 0.0158 (18) | −0.0118 (15) | 0.0008 (15) | −0.0008 (15) |
C19 | 0.031 (2) | 0.0253 (19) | 0.0146 (17) | −0.0119 (16) | −0.0013 (15) | −0.0024 (15) |
C20 | 0.0239 (18) | 0.028 (2) | 0.0186 (19) | −0.0127 (15) | −0.0043 (15) | −0.0015 (15) |
C21 | 0.0264 (18) | 0.0248 (19) | 0.0163 (18) | −0.0107 (15) | 0.0004 (15) | −0.0016 (15) |
C22 | 0.0305 (19) | 0.032 (2) | 0.0203 (19) | −0.0147 (17) | −0.0035 (16) | 0.0002 (17) |
C23 | 0.041 (2) | 0.035 (2) | 0.0171 (19) | −0.0162 (19) | −0.0022 (17) | −0.0011 (17) |
C24 | 0.033 (2) | 0.031 (2) | 0.028 (2) | −0.0110 (17) | −0.0041 (17) | −0.0044 (17) |
C25 | 0.032 (2) | 0.032 (2) | 0.020 (2) | −0.0158 (17) | −0.0038 (16) | 0.0005 (17) |
O1 | 0.0366 (14) | 0.0451 (16) | 0.0203 (13) | −0.0220 (12) | −0.0074 (11) | −0.0012 (11) |
O2 | 0.0409 (15) | 0.0553 (17) | 0.0155 (13) | −0.0240 (13) | −0.0039 (12) | 0.0026 (12) |
O3 | 0.0330 (15) | 0.0584 (17) | 0.0183 (13) | −0.0204 (13) | 0.0054 (11) | 0.0044 (12) |
O4 | 0.0367 (15) | 0.083 (2) | 0.0230 (14) | −0.0169 (15) | −0.0097 (12) | −0.0150 (14) |
O5 | 0.0381 (15) | 0.0568 (17) | 0.0188 (13) | −0.0292 (13) | −0.0072 (12) | −0.0007 (12) |
O6 | 0.0372 (15) | 0.0561 (17) | 0.0144 (13) | −0.0244 (13) | 0.0002 (11) | −0.0022 (12) |
O7 | 0.0319 (14) | 0.0446 (16) | 0.0225 (13) | −0.0233 (12) | 0.0058 (11) | −0.0040 (12) |
O8 | 0.0342 (14) | 0.0521 (16) | 0.0195 (13) | −0.0199 (12) | −0.0100 (11) | −0.0036 (12) |
O9 | 0.0344 (14) | 0.0550 (17) | 0.0118 (12) | −0.0228 (12) | −0.0027 (11) | −0.0025 (11) |
O10 | 0.0335 (14) | 0.0445 (16) | 0.0155 (13) | −0.0217 (12) | −0.0009 (11) | −0.0010 (11) |
O11 | 0.0287 (13) | 0.0500 (16) | 0.0163 (12) | −0.0231 (12) | −0.0008 (11) | −0.0001 (11) |
O12 | 0.0323 (13) | 0.0506 (16) | 0.0137 (12) | −0.0214 (12) | −0.0051 (10) | 0.0002 (11) |
O13 | 0.0386 (15) | 0.0349 (15) | 0.0211 (13) | −0.0097 (12) | −0.0053 (12) | 0.0018 (12) |
O14 | 0.0417 (15) | 0.0416 (16) | 0.0212 (14) | −0.0117 (12) | −0.0067 (11) | 0.0023 (12) |
N1 | 0.0309 (16) | 0.0316 (18) | 0.0146 (16) | −0.0078 (14) | 0.0007 (13) | −0.0015 (13) |
O1W—H1W1 | 0.8499 | C15—O9 | 1.312 (4) |
O1W—H1W2 | 0.8499 | C15—C16 | 1.495 (4) |
O1W—H1W3 | 0.8499 | C16—C21 | 1.379 (4) |
O2W—H2W1 | 0.8500 | C16—C17 | 1.386 (4) |
O2W—H2W2 | 0.8501 | C17—C18 | 1.389 (4) |
O2W—H2W3 | 0.8501 | C17—H17 | 0.9500 |
O3W—H3W1 | 0.8499 | C18—O11 | 1.367 (4) |
O3W—H3W2 | 0.8500 | C18—C19 | 1.382 (4) |
O3W—H3W3 | 0.8501 | C19—C20 | 1.382 (4) |
C1—O1 | 1.262 (4) | C19—H19 | 0.9500 |
C1—O2 | 1.286 (4) | C20—O12 | 1.369 (3) |
C1—C2 | 1.489 (5) | C20—C21 | 1.395 (4) |
C2—C3 | 1.382 (4) | C21—H21 | 0.9500 |
C2—C7 | 1.387 (4) | C22—O13 | 1.227 (4) |
C3—C4 | 1.387 (5) | C22—N1 | 1.386 (4) |
C3—H3 | 0.9500 | C22—C23 | 1.466 (5) |
C4—O3 | 1.367 (4) | C23—C24 | 1.330 (4) |
C4—C5 | 1.394 (4) | C23—H23 | 0.9500 |
C5—C6 | 1.385 (5) | C24—C25 | 1.494 (5) |
C5—H5 | 0.9500 | C24—H24 | 0.9500 |
C6—O4 | 1.370 (4) | C25—O14 | 1.223 (4) |
C6—C7 | 1.394 (5) | C25—N1 | 1.383 (4) |
C7—H7 | 0.9500 | O2—H2O | 0.8400 |
C8—O5 | 1.258 (4) | O3—H3A | 0.9500 |
C8—O6 | 1.285 (4) | O3—H3B | 0.9500 |
C8—C9 | 1.488 (4) | O4—H4A | 0.9500 |
C9—C10 | 1.381 (4) | O4—H4B | 0.9500 |
C9—C14 | 1.383 (4) | O6—H6O | 0.8400 |
C10—C11 | 1.391 (5) | O7—H7A | 0.9500 |
C10—H10 | 0.9500 | O7—H7B | 0.9500 |
C11—O7 | 1.379 (4) | O8—H8A | 0.9500 |
C11—C12 | 1.380 (4) | O8—H8B | 0.9500 |
C12—C13 | 1.390 (4) | O9—H9O | 0.8400 |
C12—H12 | 0.9500 | O11—H11A | 0.9500 |
C13—O8 | 1.365 (3) | O11—H11B | 0.9500 |
C13—C14 | 1.401 (4) | O12—H12A | 0.9500 |
C14—H14 | 0.9500 | O12—H12B | 0.9500 |
C15—O10 | 1.235 (4) | N1—H1N | 0.8800 |
H1W1—O1W—H1W2 | 82.4 | C21—C16—C17 | 121.7 (3) |
H1W1—O1W—H1W3 | 87.2 | C21—C16—C15 | 118.0 (3) |
H1W2—O1W—H1W3 | 118.1 | C17—C16—C15 | 120.2 (3) |
H2W1—O2W—H2W2 | 124.4 | C16—C17—C18 | 118.8 (3) |
H2W1—O2W—H2W3 | 114.2 | C16—C17—H17 | 120.6 |
H2W2—O2W—H2W3 | 119.1 | C18—C17—H17 | 120.6 |
H3W1—O3W—H3W2 | 118.6 | O11—C18—C19 | 119.7 (3) |
H3W1—O3W—H3W3 | 124.2 | O11—C18—C17 | 119.8 (3) |
H3W2—O3W—H3W3 | 115.7 | C19—C18—C17 | 120.4 (3) |
O1—C1—O2 | 123.8 (3) | C20—C19—C18 | 120.0 (3) |
O1—C1—C2 | 120.1 (3) | C20—C19—H19 | 120.0 |
O2—C1—C2 | 116.1 (3) | C18—C19—H19 | 120.0 |
C3—C2—C7 | 121.8 (3) | O12—C20—C19 | 120.1 (3) |
C3—C2—C1 | 119.1 (3) | O12—C20—C21 | 119.4 (3) |
C7—C2—C1 | 119.1 (3) | C19—C20—C21 | 120.5 (3) |
C2—C3—C4 | 119.2 (3) | C16—C21—C20 | 118.6 (3) |
C2—C3—H3 | 120.4 | C16—C21—H21 | 120.7 |
C4—C3—H3 | 120.4 | C20—C21—H21 | 120.7 |
O3—C4—C3 | 120.3 (3) | O13—C22—N1 | 123.7 (3) |
O3—C4—C5 | 119.4 (3) | O13—C22—C23 | 129.4 (3) |
C3—C4—C5 | 120.3 (3) | N1—C22—C23 | 106.9 (3) |
C6—C5—C4 | 119.5 (3) | C24—C23—C22 | 109.4 (3) |
C6—C5—H5 | 120.2 | C24—C23—H23 | 125.3 |
C4—C5—H5 | 120.2 | C22—C23—H23 | 125.3 |
O4—C6—C5 | 119.7 (3) | C23—C24—C25 | 107.3 (3) |
O4—C6—C7 | 119.4 (3) | C23—C24—H24 | 126.3 |
C5—C6—C7 | 120.9 (3) | C25—C24—H24 | 126.3 |
C2—C7—C6 | 118.3 (3) | O14—C25—N1 | 125.0 (3) |
C2—C7—H7 | 120.8 | O14—C25—C24 | 128.1 (3) |
C6—C7—H7 | 120.8 | N1—C25—C24 | 106.8 (3) |
O5—C8—O6 | 123.4 (3) | C1—O2—H2O | 109.5 |
O5—C8—C9 | 119.7 (3) | C4—O3—H3A | 120.0 |
O6—C8—C9 | 116.9 (3) | C4—O3—H3B | 120.0 |
C10—C9—C14 | 121.9 (3) | H3A—O3—H3B | 120.0 |
C10—C9—C8 | 119.0 (3) | C6—O4—H4A | 120.0 |
C14—C9—C8 | 119.1 (3) | C6—O4—H4B | 120.0 |
C9—C10—C11 | 118.5 (3) | H4A—O4—H4B | 120.0 |
C9—C10—H10 | 120.7 | C8—O6—H6O | 109.5 |
C11—C10—H10 | 120.7 | C11—O7—H7A | 120.0 |
O7—C11—C12 | 119.4 (3) | C11—O7—H7B | 120.0 |
O7—C11—C10 | 119.5 (3) | H7A—O7—H7B | 120.0 |
C12—C11—C10 | 121.1 (3) | C13—O8—H8A | 120.0 |
C11—C12—C13 | 119.7 (3) | C13—O8—H8B | 120.0 |
C11—C12—H12 | 120.2 | H8A—O8—H8B | 120.0 |
C13—C12—H12 | 120.2 | C15—O9—H9O | 109.5 |
O8—C13—C12 | 120.1 (3) | C18—O11—H11A | 120.0 |
O8—C13—C14 | 119.8 (3) | C18—O11—H11B | 120.0 |
C12—C13—C14 | 120.2 (3) | H11A—O11—H11B | 120.0 |
C9—C14—C13 | 118.6 (3) | C20—O12—H12A | 120.0 |
C9—C14—H14 | 120.7 | C20—O12—H12B | 120.0 |
C13—C14—H14 | 120.7 | H12A—O12—H12B | 120.0 |
O10—C15—O9 | 123.5 (3) | C25—N1—C22 | 109.6 (3) |
O10—C15—C16 | 122.0 (3) | C25—N1—H1N | 125.2 |
O9—C15—C16 | 114.5 (3) | C22—N1—H1N | 125.2 |
O1—C1—C2—C3 | −0.9 (5) | C8—C9—C14—C13 | 179.6 (3) |
O2—C1—C2—C3 | 179.8 (3) | O8—C13—C14—C9 | −179.8 (3) |
O1—C1—C2—C7 | −179.8 (3) | C12—C13—C14—C9 | 0.3 (5) |
O2—C1—C2—C7 | 1.0 (5) | O10—C15—C16—C21 | −2.3 (5) |
C7—C2—C3—C4 | −0.3 (5) | O9—C15—C16—C21 | 178.4 (3) |
C1—C2—C3—C4 | −179.1 (3) | O10—C15—C16—C17 | 177.0 (3) |
C2—C3—C4—O3 | −178.5 (3) | O9—C15—C16—C17 | −2.3 (4) |
C2—C3—C4—C5 | 0.3 (5) | C21—C16—C17—C18 | 0.6 (5) |
O3—C4—C5—C6 | 179.6 (3) | C15—C16—C17—C18 | −178.7 (3) |
C3—C4—C5—C6 | 0.7 (5) | C16—C17—C18—O11 | 179.4 (3) |
C4—C5—C6—O4 | 179.0 (3) | C16—C17—C18—C19 | 0.0 (5) |
C4—C5—C6—C7 | −1.8 (5) | O11—C18—C19—C20 | −179.8 (3) |
C3—C2—C7—C6 | −0.8 (5) | C17—C18—C19—C20 | −0.5 (5) |
C1—C2—C7—C6 | 178.0 (3) | C18—C19—C20—O12 | 178.8 (3) |
O4—C6—C7—C2 | −178.9 (3) | C18—C19—C20—C21 | 0.3 (5) |
C5—C6—C7—C2 | 1.9 (5) | C17—C16—C21—C20 | −0.7 (5) |
O5—C8—C9—C10 | −3.5 (5) | C15—C16—C21—C20 | 178.6 (3) |
O6—C8—C9—C10 | 176.9 (3) | O12—C20—C21—C16 | −178.2 (3) |
O5—C8—C9—C14 | 176.7 (3) | C19—C20—C21—C16 | 0.3 (5) |
O6—C8—C9—C14 | −2.8 (5) | O13—C22—C23—C24 | −179.8 (3) |
C14—C9—C10—C11 | −0.5 (5) | N1—C22—C23—C24 | 0.5 (4) |
C8—C9—C10—C11 | 179.7 (3) | C22—C23—C24—C25 | 0.0 (4) |
C9—C10—C11—O7 | −179.1 (3) | C23—C24—C25—O14 | 179.6 (3) |
C9—C10—C11—C12 | 1.0 (5) | C23—C24—C25—N1 | −0.4 (4) |
O7—C11—C12—C13 | 179.2 (3) | O14—C25—N1—C22 | −179.3 (3) |
C10—C11—C12—C13 | −0.9 (5) | C24—C25—N1—C22 | 0.7 (3) |
C11—C12—C13—O8 | −179.7 (3) | O13—C22—N1—C25 | 179.5 (3) |
C11—C12—C13—C14 | 0.2 (5) | C23—C22—N1—C25 | −0.7 (3) |
C10—C9—C14—C13 | −0.1 (5) |
2(C7H6O3)·C5H7NO2 | F(000) = 1632 |
Mr = 389.35 | Dx = 1.425 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 4448 reflections |
a = 40.692 (3) Å | θ = 3.2–27.3° |
b = 5.4524 (3) Å | µ = 0.11 mm−1 |
c = 16.3546 (9) Å | T = 100 K |
V = 3628.6 (4) Å3 | Block, colourless |
Z = 8 | 0.25 × 0.20 × 0.18 mm |
Four-circle diffractometer | 4868 reflections with I > 2σ(I) |
Radiation source: Mova (Mo) X-ray Source | Rint = 0.059 |
Mirror monochromator | θmax = 26.0°, θmin = 2.5° |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | h = −40→50 |
Tmin = 0.664, Tmax = 1.000 | k = −6→6 |
15134 measured reflections | l = −15→20 |
5638 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0464P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.108 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.22 e Å−3 |
5638 reflections | Δρmin = −0.22 e Å−3 |
594 parameters | Absolute structure: Refined as an inversion twin. |
1 restraint |
2(C7H6O3)·C5H7NO2 | V = 3628.6 (4) Å3 |
Mr = 389.35 | Z = 8 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 40.692 (3) Å | µ = 0.11 mm−1 |
b = 5.4524 (3) Å | T = 100 K |
c = 16.3546 (9) Å | 0.25 × 0.20 × 0.18 mm |
Four-circle diffractometer | 5638 independent reflections |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 4868 reflections with I > 2σ(I) |
Tmin = 0.664, Tmax = 1.000 | Rint = 0.059 |
15134 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 1 restraint |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.22 e Å−3 |
5638 reflections | Δρmin = −0.22 e Å−3 |
594 parameters | Absolute structure: Refined as an inversion twin. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.06639 (10) | 0.7908 (7) | 0.3476 (2) | 0.0187 (9) | |
C2 | 0.03065 (9) | 0.7757 (6) | 0.3617 (2) | 0.0179 (8) | |
C3 | 0.01174 (10) | 0.5871 (7) | 0.3279 (3) | 0.0212 (9) | |
H3 | 0.0219 | 0.4652 | 0.2950 | 0.025* | |
C4 | −0.02167 (9) | 0.5777 (6) | 0.3421 (3) | 0.0209 (9) | |
H4 | −0.0345 | 0.4492 | 0.3192 | 0.025* | |
C5 | −0.03650 (9) | 0.7565 (7) | 0.3899 (2) | 0.0205 (9) | |
C6 | −0.01791 (10) | 0.9458 (7) | 0.4232 (3) | 0.0247 (10) | |
H6 | −0.0282 | 1.0685 | 0.4556 | 0.030* | |
C7 | 0.01549 (10) | 0.9552 (7) | 0.4092 (3) | 0.0231 (9) | |
H7 | 0.0282 | 1.0844 | 0.4321 | 0.028* | |
C8 | 0.16007 (10) | 0.7687 (7) | 0.3398 (3) | 0.0193 (9) | |
C9 | 0.19567 (9) | 0.7337 (6) | 0.3510 (2) | 0.0173 (8) | |
C10 | 0.21504 (10) | 0.9019 (7) | 0.3930 (3) | 0.0210 (9) | |
H10 | 0.2052 | 1.0421 | 0.4172 | 0.025* | |
C11 | 0.24872 (10) | 0.8666 (7) | 0.3998 (3) | 0.0237 (9) | |
H11 | 0.2618 | 0.9815 | 0.4289 | 0.028* | |
C12 | 0.26313 (9) | 0.6624 (7) | 0.3640 (3) | 0.0200 (9) | |
C13 | 0.24394 (9) | 0.4900 (7) | 0.3239 (3) | 0.0208 (9) | |
H13 | 0.2539 | 0.3485 | 0.3007 | 0.025* | |
C14 | 0.21040 (9) | 0.5242 (7) | 0.3176 (2) | 0.0190 (9) | |
H14 | 0.1973 | 0.4052 | 0.2906 | 0.023* | |
C15 | 0.18360 (9) | 0.2525 (7) | 0.1437 (2) | 0.0185 (9) | |
C16 | 0.21888 (9) | 0.2170 (6) | 0.1269 (2) | 0.0161 (8) | |
C17 | 0.23615 (10) | 0.3835 (7) | 0.0782 (3) | 0.0208 (9) | |
H17 | 0.2252 | 0.5215 | 0.0556 | 0.025* | |
C18 | 0.26908 (9) | 0.3478 (7) | 0.0629 (3) | 0.0207 (9) | |
H18 | 0.2807 | 0.4595 | 0.0289 | 0.025* | |
C19 | 0.28553 (10) | 0.1471 (7) | 0.0973 (3) | 0.0205 (9) | |
C20 | 0.26838 (9) | −0.0176 (7) | 0.1471 (3) | 0.0202 (9) | |
H20 | 0.2794 | −0.1528 | 0.1714 | 0.024* | |
C21 | 0.23526 (9) | 0.0185 (7) | 0.1606 (3) | 0.0193 (9) | |
H21 | 0.2235 | −0.0948 | 0.1936 | 0.023* | |
C22 | 0.08960 (9) | 0.2800 (7) | 0.1468 (3) | 0.0202 (9) | |
C23 | 0.05331 (9) | 0.2721 (6) | 0.1396 (3) | 0.0180 (8) | |
C24 | 0.03504 (9) | 0.0837 (7) | 0.1729 (3) | 0.0194 (9) | |
H24 | 0.0461 | −0.0504 | 0.1978 | 0.023* | |
C25 | 0.00123 (9) | 0.0852 (7) | 0.1709 (3) | 0.0204 (9) | |
H25 | −0.0109 | −0.0450 | 0.1948 | 0.025* | |
C26 | −0.01499 (9) | 0.2800 (7) | 0.1333 (3) | 0.0196 (9) | |
C27 | 0.00314 (10) | 0.4691 (7) | 0.0973 (3) | 0.0224 (9) | |
H27 | −0.0079 | 0.5995 | 0.0703 | 0.027* | |
C28 | 0.03680 (10) | 0.4672 (7) | 0.1009 (3) | 0.0213 (9) | |
H28 | 0.0490 | 0.5978 | 0.0773 | 0.026* | |
C29 | 0.12022 (9) | 0.7557 (7) | 0.8663 (3) | 0.0192 (9) | |
C30 | 0.11696 (10) | 0.7990 (7) | 0.9555 (3) | 0.0209 (9) | |
C31 | 0.14802 (11) | 0.9108 (8) | 0.9909 (3) | 0.0231 (9) | |
C32 | 0.15734 (11) | 1.1383 (8) | 0.9436 (3) | 0.0246 (9) | |
C33 | 0.15864 (10) | 1.1010 (7) | 0.8534 (3) | 0.0222 (9) | |
C34 | 0.09532 (9) | 0.2359 (7) | 0.6377 (3) | 0.0215 (9) | |
C35 | 0.09385 (12) | 0.1929 (8) | 0.5473 (3) | 0.0270 (10) | |
C36 | 0.10020 (12) | 0.4264 (8) | 0.4982 (3) | 0.0271 (10) | |
C37 | 0.13211 (11) | 0.5451 (7) | 0.5265 (3) | 0.0239 (9) | |
C38 | 0.13258 (9) | 0.5826 (7) | 0.6174 (3) | 0.0205 (9) | |
N1 | 0.11469 (8) | 0.4256 (6) | 0.6648 (2) | 0.0199 (8) | |
N2 | 0.13975 (8) | 0.9111 (6) | 0.8214 (2) | 0.0195 (8) | |
O1 | 0.08361 (7) | 0.9522 (5) | 0.37922 (18) | 0.0231 (6) | |
O2 | 0.07864 (7) | 0.6182 (5) | 0.29949 (18) | 0.0214 (6) | |
O3 | −0.06926 (7) | 0.7533 (5) | 0.4067 (2) | 0.0292 (7) | |
O4 | 0.14300 (7) | 0.6199 (5) | 0.3019 (2) | 0.0259 (7) | |
O5 | 0.14794 (7) | 0.9695 (5) | 0.37326 (19) | 0.0220 (6) | |
O6 | 0.29638 (7) | 0.6388 (5) | 0.3708 (2) | 0.0285 (7) | |
O7 | 0.10601 (7) | 0.4455 (5) | 0.1152 (2) | 0.0262 (7) | |
O8 | 0.10256 (7) | 0.0995 (5) | 0.1883 (2) | 0.0263 (7) | |
O9 | −0.04817 (7) | 0.2972 (5) | 0.1300 (2) | 0.0281 (7) | |
O10 | 0.16759 (6) | 0.1059 (5) | 0.18552 (18) | 0.0223 (6) | |
O11 | 0.17053 (7) | 0.4496 (5) | 0.11090 (19) | 0.0240 (7) | |
O12 | 0.31774 (7) | 0.1210 (5) | 0.0800 (2) | 0.0266 (7) | |
O13 | 0.14840 (7) | 0.7485 (5) | 0.65090 (19) | 0.0264 (7) | |
O14 | 0.08108 (7) | 0.1076 (5) | 0.68791 (18) | 0.0257 (7) | |
O15 | 0.10583 (7) | 0.5882 (5) | 0.82977 (18) | 0.0271 (7) | |
O16 | 0.17485 (7) | 1.2258 (5) | 0.80592 (19) | 0.0286 (7) | |
H1N | 0.1135 (10) | 0.456 (7) | 0.717 (3) | 0.023 (12)* | |
H2N | 0.1428 (13) | 0.884 (10) | 0.765 (4) | 0.059 (17)* | |
H2O | 0.1035 (14) | 0.639 (9) | 0.301 (4) | 0.061 (17)* | |
H3O | −0.0810 (13) | 0.635 (9) | 0.376 (4) | 0.053 (16)* | |
H5O | 0.1256 (12) | 0.966 (7) | 0.375 (3) | 0.034 (13)* | |
H6O | 0.3030 (11) | 0.493 (8) | 0.345 (3) | 0.031 (13)* | |
H8O | 0.1235 (13) | 0.109 (8) | 0.186 (4) | 0.050 (16)* | |
H9O | −0.0564 (12) | 0.179 (9) | 0.156 (3) | 0.041 (15)* | |
H11O | 0.1471 (15) | 0.460 (10) | 0.117 (4) | 0.070 (19)* | |
H12O | 0.3243 (13) | 0.008 (10) | 0.105 (4) | 0.051 (18)* | |
H30A | 0.0967 (11) | 0.922 (7) | 0.964 (3) | 0.033 (12)* | |
H30B | 0.1107 (11) | 0.652 (8) | 0.982 (3) | 0.038 (13)* | |
H31A | 0.1458 (9) | 0.949 (6) | 1.049 (3) | 0.011 (9)* | |
H31B | 0.1676 (12) | 0.785 (8) | 0.986 (3) | 0.044 (14)* | |
H32A | 0.1417 (12) | 1.261 (8) | 0.954 (3) | 0.042 (14)* | |
H32B | 0.1780 (11) | 1.218 (7) | 0.960 (3) | 0.030 (12)* | |
H35A | 0.1115 (12) | 0.074 (8) | 0.534 (3) | 0.044 (14)* | |
H35B | 0.0698 (15) | 0.117 (9) | 0.533 (4) | 0.067 (18)* | |
H36A | 0.1018 (10) | 0.393 (7) | 0.437 (3) | 0.020 (11)* | |
H36B | 0.0800 (11) | 0.539 (7) | 0.508 (3) | 0.029 (12)* | |
H37A | 0.1514 (13) | 0.426 (8) | 0.511 (3) | 0.049 (15)* | |
H37B | 0.1358 (12) | 0.714 (9) | 0.498 (3) | 0.047 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.019 (2) | 0.021 (2) | 0.017 (2) | 0.0007 (15) | −0.0001 (17) | 0.0007 (17) |
C2 | 0.016 (2) | 0.020 (2) | 0.018 (2) | 0.0011 (14) | −0.0018 (17) | 0.0022 (17) |
C3 | 0.024 (2) | 0.018 (2) | 0.022 (2) | 0.0007 (15) | −0.0011 (19) | −0.0044 (17) |
C4 | 0.023 (2) | 0.017 (2) | 0.023 (2) | −0.0031 (14) | −0.0036 (18) | −0.0021 (17) |
C5 | 0.018 (2) | 0.026 (2) | 0.018 (2) | −0.0018 (15) | −0.0011 (18) | −0.0031 (17) |
C6 | 0.024 (2) | 0.024 (2) | 0.026 (2) | 0.0014 (16) | −0.0001 (19) | −0.0094 (18) |
C7 | 0.025 (2) | 0.020 (2) | 0.024 (2) | −0.0013 (15) | −0.0023 (19) | −0.0034 (18) |
C8 | 0.020 (2) | 0.021 (2) | 0.016 (2) | −0.0013 (15) | 0.0011 (18) | 0.0026 (17) |
C9 | 0.019 (2) | 0.017 (2) | 0.015 (2) | −0.0002 (14) | 0.0014 (16) | 0.0053 (16) |
C10 | 0.024 (2) | 0.016 (2) | 0.023 (2) | 0.0014 (14) | 0.0007 (19) | −0.0029 (17) |
C11 | 0.022 (2) | 0.021 (2) | 0.028 (2) | −0.0060 (16) | −0.0040 (19) | −0.0016 (19) |
C12 | 0.019 (2) | 0.019 (2) | 0.022 (2) | 0.0008 (14) | −0.0020 (19) | 0.0006 (17) |
C13 | 0.023 (2) | 0.0149 (19) | 0.025 (2) | 0.0019 (14) | 0.0009 (19) | −0.0011 (17) |
C14 | 0.022 (2) | 0.021 (2) | 0.014 (2) | −0.0038 (15) | −0.0006 (17) | −0.0048 (16) |
C15 | 0.021 (2) | 0.022 (2) | 0.012 (2) | 0.0009 (15) | −0.0025 (18) | −0.0025 (16) |
C16 | 0.018 (2) | 0.0161 (19) | 0.0141 (19) | 0.0025 (14) | −0.0036 (16) | −0.0018 (16) |
C17 | 0.026 (2) | 0.016 (2) | 0.020 (2) | 0.0020 (14) | −0.0023 (18) | 0.0017 (17) |
C18 | 0.020 (2) | 0.017 (2) | 0.025 (2) | −0.0017 (14) | 0.0011 (18) | 0.0024 (17) |
C19 | 0.021 (2) | 0.021 (2) | 0.019 (2) | −0.0004 (15) | −0.0006 (18) | −0.0018 (17) |
C20 | 0.023 (2) | 0.017 (2) | 0.021 (2) | 0.0025 (15) | −0.0018 (18) | 0.0036 (17) |
C21 | 0.020 (2) | 0.022 (2) | 0.016 (2) | −0.0027 (15) | 0.0024 (17) | −0.0004 (17) |
C22 | 0.022 (2) | 0.023 (2) | 0.016 (2) | 0.0024 (15) | 0.0027 (18) | −0.0001 (17) |
C23 | 0.020 (2) | 0.019 (2) | 0.014 (2) | 0.0028 (14) | 0.0002 (17) | −0.0030 (16) |
C24 | 0.022 (2) | 0.018 (2) | 0.019 (2) | 0.0028 (14) | −0.0027 (18) | −0.0010 (17) |
C25 | 0.021 (2) | 0.021 (2) | 0.019 (2) | −0.0028 (15) | 0.0003 (18) | 0.0003 (17) |
C26 | 0.016 (2) | 0.025 (2) | 0.019 (2) | −0.0021 (14) | −0.0005 (18) | −0.0037 (17) |
C27 | 0.025 (2) | 0.017 (2) | 0.025 (2) | 0.0041 (15) | −0.0030 (19) | 0.0035 (18) |
C28 | 0.024 (2) | 0.019 (2) | 0.021 (2) | −0.0027 (15) | 0.0008 (19) | 0.0037 (17) |
C29 | 0.0136 (19) | 0.024 (2) | 0.020 (2) | −0.0009 (14) | −0.0009 (17) | 0.0042 (18) |
C30 | 0.022 (2) | 0.020 (2) | 0.021 (2) | 0.0000 (15) | 0.0045 (18) | 0.0039 (18) |
C31 | 0.027 (2) | 0.027 (2) | 0.015 (2) | 0.0025 (16) | −0.0023 (19) | −0.0047 (18) |
C32 | 0.025 (2) | 0.023 (2) | 0.025 (2) | −0.0031 (17) | 0.000 (2) | −0.0043 (19) |
C33 | 0.017 (2) | 0.017 (2) | 0.033 (2) | −0.0011 (15) | 0.0014 (19) | 0.0011 (18) |
C34 | 0.019 (2) | 0.020 (2) | 0.026 (2) | 0.0039 (15) | −0.0025 (19) | −0.0011 (18) |
C35 | 0.037 (3) | 0.022 (2) | 0.022 (2) | 0.0000 (19) | −0.003 (2) | −0.0013 (19) |
C36 | 0.038 (3) | 0.026 (2) | 0.017 (2) | 0.0016 (18) | −0.004 (2) | −0.0027 (18) |
C37 | 0.034 (3) | 0.021 (2) | 0.017 (2) | 0.0050 (17) | 0.0030 (19) | 0.0020 (18) |
C38 | 0.016 (2) | 0.022 (2) | 0.024 (2) | 0.0037 (15) | 0.0009 (18) | 0.0033 (18) |
N1 | 0.0195 (19) | 0.0241 (19) | 0.0160 (19) | −0.0053 (12) | −0.0005 (15) | −0.0004 (15) |
N2 | 0.0192 (19) | 0.0248 (19) | 0.0144 (19) | −0.0043 (13) | −0.0014 (15) | −0.0014 (15) |
O1 | 0.0218 (16) | 0.0263 (15) | 0.0211 (16) | −0.0032 (11) | −0.0004 (13) | −0.0037 (13) |
O2 | 0.0195 (16) | 0.0232 (15) | 0.0214 (16) | 0.0007 (10) | 0.0008 (13) | −0.0064 (12) |
O3 | 0.0183 (15) | 0.0314 (16) | 0.0381 (19) | −0.0031 (12) | 0.0025 (14) | −0.0147 (14) |
O4 | 0.0181 (15) | 0.0297 (16) | 0.0298 (17) | 0.0009 (11) | −0.0025 (13) | −0.0058 (14) |
O5 | 0.0190 (16) | 0.0251 (15) | 0.0218 (16) | 0.0034 (11) | 0.0016 (13) | −0.0015 (13) |
O6 | 0.0187 (16) | 0.0240 (16) | 0.043 (2) | 0.0023 (11) | −0.0038 (15) | −0.0062 (15) |
O7 | 0.0209 (16) | 0.0273 (16) | 0.0305 (18) | −0.0027 (11) | −0.0011 (14) | 0.0087 (14) |
O8 | 0.0175 (16) | 0.0304 (17) | 0.0311 (18) | 0.0037 (12) | 0.0031 (14) | 0.0082 (14) |
O9 | 0.0169 (15) | 0.0271 (16) | 0.040 (2) | −0.0027 (11) | −0.0040 (14) | 0.0055 (15) |
O10 | 0.0187 (15) | 0.0272 (16) | 0.0210 (16) | −0.0005 (11) | 0.0005 (13) | 0.0028 (13) |
O11 | 0.0201 (17) | 0.0255 (16) | 0.0265 (17) | 0.0054 (11) | 0.0003 (14) | 0.0055 (13) |
O12 | 0.0163 (16) | 0.0283 (17) | 0.0351 (19) | 0.0028 (11) | 0.0023 (14) | 0.0100 (15) |
O13 | 0.0264 (16) | 0.0280 (16) | 0.0248 (17) | −0.0090 (12) | −0.0006 (14) | 0.0013 (13) |
O14 | 0.0269 (16) | 0.0261 (16) | 0.0242 (17) | −0.0087 (11) | −0.0001 (14) | 0.0024 (13) |
O15 | 0.0269 (16) | 0.0299 (17) | 0.0246 (17) | −0.0110 (12) | −0.0015 (14) | −0.0015 (13) |
O16 | 0.0289 (17) | 0.0290 (16) | 0.0279 (17) | −0.0105 (12) | 0.0024 (14) | 0.0015 (13) |
C1—O1 | 1.238 (5) | C24—C25 | 1.376 (5) |
C1—O2 | 1.325 (4) | C24—H24 | 0.9500 |
C1—C2 | 1.474 (5) | C25—C26 | 1.394 (5) |
C2—C7 | 1.394 (6) | C25—H25 | 0.9500 |
C2—C3 | 1.398 (5) | C26—O9 | 1.354 (4) |
C3—C4 | 1.380 (5) | C26—C27 | 1.398 (5) |
C3—H3 | 0.9500 | C27—C28 | 1.371 (6) |
C4—C5 | 1.388 (5) | C27—H27 | 0.9500 |
C4—H4 | 0.9500 | C28—H28 | 0.9500 |
C5—O3 | 1.361 (5) | C29—O15 | 1.239 (4) |
C5—C6 | 1.391 (5) | C29—N2 | 1.375 (5) |
C6—C7 | 1.379 (5) | C29—C30 | 1.483 (6) |
C6—H6 | 0.9500 | C30—C31 | 1.519 (6) |
C7—H7 | 0.9500 | C30—H30A | 1.07 (4) |
C8—O4 | 1.235 (5) | C30—H30B | 0.94 (5) |
C8—O5 | 1.320 (5) | C31—C32 | 1.510 (6) |
C8—C9 | 1.473 (5) | C31—H31A | 0.98 (4) |
C9—C10 | 1.391 (5) | C31—H31B | 1.05 (5) |
C9—C14 | 1.401 (5) | C32—C33 | 1.490 (6) |
C10—C11 | 1.389 (6) | C32—H32A | 0.94 (5) |
C10—H10 | 0.9500 | C32—H32B | 0.98 (4) |
C11—C12 | 1.388 (5) | C33—O16 | 1.225 (5) |
C11—H11 | 0.9500 | C33—N2 | 1.392 (5) |
C12—O6 | 1.364 (5) | C34—O14 | 1.224 (5) |
C12—C13 | 1.387 (5) | C34—N1 | 1.374 (5) |
C13—C14 | 1.382 (5) | C34—C35 | 1.498 (6) |
C13—H13 | 0.9500 | C35—C36 | 1.528 (6) |
C14—H14 | 0.9500 | C35—H35A | 1.00 (5) |
C15—O10 | 1.237 (5) | C35—H35B | 1.09 (6) |
C15—O11 | 1.314 (5) | C36—C37 | 1.523 (6) |
C15—C16 | 1.475 (5) | C36—H36A | 1.02 (5) |
C16—C21 | 1.385 (5) | C36—H36B | 1.04 (4) |
C16—C17 | 1.398 (6) | C37—C38 | 1.500 (6) |
C17—C18 | 1.377 (5) | C37—H37A | 1.05 (5) |
C17—H17 | 0.9500 | C37—H37B | 1.04 (5) |
C18—C19 | 1.401 (5) | C38—O13 | 1.238 (5) |
C18—H18 | 0.9500 | C38—N1 | 1.365 (5) |
C19—O12 | 1.348 (5) | N1—H1N | 0.87 (5) |
C19—C20 | 1.400 (5) | N2—H2N | 0.94 (6) |
C20—C21 | 1.380 (5) | O2—H2O | 1.02 (6) |
C20—H20 | 0.9500 | O3—H3O | 0.94 (5) |
C21—H21 | 0.9500 | O5—H5O | 0.91 (5) |
C22—O7 | 1.236 (5) | O6—H6O | 0.94 (4) |
C22—O8 | 1.306 (5) | O8—H8O | 0.86 (5) |
C22—C23 | 1.482 (5) | O9—H9O | 0.84 (5) |
C23—C24 | 1.380 (5) | O11—H11O | 0.96 (6) |
C23—C28 | 1.408 (5) | O12—H12O | 0.78 (5) |
O1—C1—O2 | 122.7 (4) | C24—C25—H25 | 120.4 |
O1—C1—C2 | 122.2 (3) | C26—C25—H25 | 120.4 |
O2—C1—C2 | 115.1 (3) | O9—C26—C25 | 122.8 (3) |
C7—C2—C3 | 119.6 (4) | O9—C26—C27 | 117.3 (3) |
C7—C2—C1 | 119.0 (3) | C25—C26—C27 | 119.9 (3) |
C3—C2—C1 | 121.5 (3) | C28—C27—C26 | 120.2 (3) |
C4—C3—C2 | 120.2 (4) | C28—C27—H27 | 119.9 |
C4—C3—H3 | 119.9 | C26—C27—H27 | 119.9 |
C2—C3—H3 | 119.9 | C27—C28—C23 | 120.1 (3) |
C3—C4—C5 | 119.8 (3) | C27—C28—H28 | 119.9 |
C3—C4—H4 | 120.1 | C23—C28—H28 | 119.9 |
C5—C4—H4 | 120.1 | O15—C29—N2 | 118.0 (4) |
O3—C5—C4 | 122.0 (3) | O15—C29—C30 | 123.3 (4) |
O3—C5—C6 | 117.6 (3) | N2—C29—C30 | 118.7 (4) |
C4—C5—C6 | 120.4 (4) | C29—C30—C31 | 111.4 (4) |
C7—C6—C5 | 119.9 (4) | C29—C30—H30A | 107 (3) |
C7—C6—H6 | 120.0 | C31—C30—H30A | 110 (2) |
C5—C6—H6 | 120.0 | C29—C30—H30B | 110 (3) |
C6—C7—C2 | 120.2 (3) | C31—C30—H30B | 113 (3) |
C6—C7—H7 | 119.9 | H30A—C30—H30B | 105 (4) |
C2—C7—H7 | 119.9 | C32—C31—C30 | 110.1 (4) |
O4—C8—O5 | 122.9 (4) | C32—C31—H31A | 110 (2) |
O4—C8—C9 | 122.0 (4) | C30—C31—H31A | 112 (2) |
O5—C8—C9 | 115.1 (3) | C32—C31—H31B | 108 (3) |
C10—C9—C14 | 119.2 (4) | C30—C31—H31B | 110 (3) |
C10—C9—C8 | 122.2 (3) | H31A—C31—H31B | 106 (4) |
C14—C9—C8 | 118.6 (3) | C33—C32—C31 | 113.8 (4) |
C11—C10—C9 | 120.5 (3) | C33—C32—H32A | 108 (3) |
C11—C10—H10 | 119.8 | C31—C32—H32A | 109 (3) |
C9—C10—H10 | 119.8 | C33—C32—H32B | 107 (3) |
C12—C11—C10 | 119.6 (3) | C31—C32—H32B | 116 (3) |
C12—C11—H11 | 120.2 | H32A—C32—H32B | 102 (4) |
C10—C11—H11 | 120.2 | O16—C33—N2 | 118.1 (4) |
O6—C12—C13 | 122.2 (3) | O16—C33—C32 | 124.8 (4) |
O6—C12—C11 | 117.4 (3) | N2—C33—C32 | 117.0 (4) |
C13—C12—C11 | 120.4 (4) | O14—C34—N1 | 119.1 (4) |
C14—C13—C12 | 120.0 (4) | O14—C34—C35 | 123.6 (4) |
C14—C13—H13 | 120.0 | N1—C34—C35 | 117.3 (4) |
C12—C13—H13 | 120.0 | C34—C35—C36 | 112.5 (4) |
C13—C14—C9 | 120.3 (3) | C34—C35—H35A | 107 (3) |
C13—C14—H14 | 119.9 | C36—C35—H35A | 108 (3) |
C9—C14—H14 | 119.9 | C34—C35—H35B | 108 (3) |
O10—C15—O11 | 122.8 (4) | C36—C35—H35B | 111 (3) |
O10—C15—C16 | 122.1 (3) | H35A—C35—H35B | 111 (4) |
O11—C15—C16 | 115.2 (3) | C37—C36—C35 | 109.7 (4) |
C21—C16—C17 | 119.5 (4) | C37—C36—H36A | 109 (2) |
C21—C16—C15 | 119.8 (3) | C35—C36—H36A | 112 (2) |
C17—C16—C15 | 120.7 (3) | C37—C36—H36B | 112 (2) |
C18—C17—C16 | 120.1 (4) | C35—C36—H36B | 106 (2) |
C18—C17—H17 | 120.0 | H36A—C36—H36B | 108 (3) |
C16—C17—H17 | 120.0 | C38—C37—C36 | 111.8 (4) |
C17—C18—C19 | 120.2 (4) | C38—C37—H37A | 108 (3) |
C17—C18—H18 | 119.9 | C36—C37—H37A | 108 (3) |
C19—C18—H18 | 119.9 | C38—C37—H37B | 109 (3) |
O12—C19—C20 | 122.6 (3) | C36—C37—H37B | 111 (3) |
O12—C19—C18 | 117.6 (3) | H37A—C37—H37B | 109 (4) |
C20—C19—C18 | 119.8 (4) | O13—C38—N1 | 119.0 (4) |
C21—C20—C19 | 119.2 (4) | O13—C38—C37 | 123.0 (4) |
C21—C20—H20 | 120.4 | N1—C38—C37 | 118.0 (4) |
C19—C20—H20 | 120.4 | C38—N1—C34 | 126.6 (4) |
C20—C21—C16 | 121.2 (4) | C38—N1—H1N | 118 (3) |
C20—C21—H21 | 119.4 | C34—N1—H1N | 115 (3) |
C16—C21—H21 | 119.4 | C29—N2—C33 | 125.2 (4) |
O7—C22—O8 | 123.3 (4) | C29—N2—H2N | 120 (3) |
O7—C22—C23 | 121.7 (3) | C33—N2—H2N | 114 (3) |
O8—C22—C23 | 114.9 (3) | C1—O2—H2O | 107 (3) |
C24—C23—C28 | 118.8 (3) | C5—O3—H3O | 113 (3) |
C24—C23—C22 | 121.8 (3) | C8—O5—H5O | 111 (3) |
C28—C23—C22 | 119.3 (3) | C12—O6—H6O | 109 (3) |
C25—C24—C23 | 121.6 (4) | C22—O8—H8O | 110 (3) |
C25—C24—H24 | 119.2 | C26—O9—H9O | 109 (3) |
C23—C24—H24 | 119.2 | C15—O11—H11O | 114 (3) |
C24—C25—C26 | 119.3 (3) | C19—O12—H12O | 108 (4) |
O1—C1—C2—C7 | 2.9 (6) | C18—C19—C20—C21 | 1.0 (6) |
O2—C1—C2—C7 | −177.7 (4) | C19—C20—C21—C16 | −1.2 (6) |
O1—C1—C2—C3 | −177.7 (4) | C17—C16—C21—C20 | 0.2 (6) |
O2—C1—C2—C3 | 1.7 (6) | C15—C16—C21—C20 | −179.0 (4) |
C7—C2—C3—C4 | −0.6 (6) | O7—C22—C23—C24 | 178.1 (4) |
C1—C2—C3—C4 | −180.0 (4) | O8—C22—C23—C24 | −1.6 (6) |
C2—C3—C4—C5 | 0.2 (6) | O7—C22—C23—C28 | −4.7 (6) |
C3—C4—C5—O3 | −179.0 (4) | O8—C22—C23—C28 | 175.7 (4) |
C3—C4—C5—C6 | 0.4 (6) | C28—C23—C24—C25 | −1.6 (6) |
O3—C5—C6—C7 | 178.9 (4) | C22—C23—C24—C25 | 175.6 (4) |
C4—C5—C6—C7 | −0.5 (6) | C23—C24—C25—C26 | 1.0 (6) |
C5—C6—C7—C2 | 0.1 (6) | C24—C25—C26—O9 | −178.8 (4) |
C3—C2—C7—C6 | 0.4 (6) | C24—C25—C26—C27 | 0.8 (6) |
C1—C2—C7—C6 | 179.9 (4) | O9—C26—C27—C28 | 177.7 (4) |
O4—C8—C9—C10 | 179.4 (4) | C25—C26—C27—C28 | −1.8 (6) |
O5—C8—C9—C10 | −0.7 (6) | C26—C27—C28—C23 | 1.2 (6) |
O4—C8—C9—C14 | −0.2 (6) | C24—C23—C28—C27 | 0.5 (6) |
O5—C8—C9—C14 | 179.7 (4) | C22—C23—C28—C27 | −176.8 (4) |
C14—C9—C10—C11 | 1.8 (6) | O15—C29—C30—C31 | 150.0 (4) |
C8—C9—C10—C11 | −177.8 (4) | N2—C29—C30—C31 | −31.1 (5) |
C9—C10—C11—C12 | 0.4 (6) | C29—C30—C31—C32 | 53.5 (5) |
C10—C11—C12—O6 | 178.5 (4) | C30—C31—C32—C33 | −50.9 (5) |
C10—C11—C12—C13 | −2.1 (6) | C31—C32—C33—O16 | −155.8 (4) |
O6—C12—C13—C14 | −179.0 (4) | C31—C32—C33—N2 | 24.7 (5) |
C11—C12—C13—C14 | 1.6 (6) | O14—C34—C35—C36 | 155.0 (4) |
C12—C13—C14—C9 | 0.6 (6) | N1—C34—C35—C36 | −27.2 (6) |
C10—C9—C14—C13 | −2.3 (6) | C34—C35—C36—C37 | 52.5 (5) |
C8—C9—C14—C13 | 177.3 (4) | C35—C36—C37—C38 | −52.6 (5) |
O10—C15—C16—C21 | −2.0 (6) | C36—C37—C38—O13 | −151.8 (4) |
O11—C15—C16—C21 | 178.1 (4) | C36—C37—C38—N1 | 28.2 (5) |
O10—C15—C16—C17 | 178.8 (4) | O13—C38—N1—C34 | 178.6 (4) |
O11—C15—C16—C17 | −1.0 (6) | C37—C38—N1—C34 | −1.5 (6) |
C21—C16—C17—C18 | 1.0 (6) | O14—C34—N1—C38 | 178.8 (4) |
C15—C16—C17—C18 | −179.8 (4) | C35—C34—N1—C38 | 0.9 (6) |
C16—C17—C18—C19 | −1.2 (6) | O15—C29—N2—C33 | −177.1 (4) |
C17—C18—C19—O12 | 179.9 (4) | C30—C29—N2—C33 | 4.0 (6) |
C17—C18—C19—C20 | 0.2 (6) | O16—C33—N2—C29 | −179.8 (4) |
O12—C19—C20—C21 | −178.7 (4) | C32—C33—N2—C29 | −0.3 (6) |
C7H6O4·C5H7NO2 | Z = 2 |
Mr = 267.23 | F(000) = 280 |
Triclinic, P1 | Dx = 1.494 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6761 (3) Å | Cell parameters from 8252 reflections |
b = 9.1128 (4) Å | θ = 3.3–30.1° |
c = 10.9447 (4) Å | µ = 0.12 mm−1 |
α = 93.397 (3)° | T = 100 K |
β = 107.694 (3)° | Block, colourless |
γ = 108.173 (4)° | 0.24 × 0.22 × 0.20 mm |
V = 593.92 (5) Å3 |
Four-circle diffractometer | 2329 independent reflections |
Radiation source: Mova (Mo) X-ray Source | Rint = 0.031 |
Mirror monochromator | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | h = −8→8 |
Tmin = 0.841, Tmax = 1.000 | k = −11→11 |
11839 measured reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0468P)2 + 0.1835P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2329 reflections | Δρmax = 0.26 e Å−3 |
212 parameters | Δρmin = −0.21 e Å−3 |
C7H6O4·C5H7NO2 | γ = 108.173 (4)° |
Mr = 267.23 | V = 593.92 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.6761 (3) Å | Mo Kα radiation |
b = 9.1128 (4) Å | µ = 0.12 mm−1 |
c = 10.9447 (4) Å | T = 100 K |
α = 93.397 (3)° | 0.24 × 0.22 × 0.20 mm |
β = 107.694 (3)° |
Four-circle diffractometer | 11839 measured reflections |
Absorption correction: multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 2329 independent reflections |
Tmin = 0.841, Tmax = 1.000 | Rint = 0.031 |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.26 e Å−3 |
2329 reflections | Δρmin = −0.21 e Å−3 |
212 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.45954 (18) | 1.19843 (13) | 0.70572 (10) | 0.0142 (2) | |
C2 | 0.24590 (18) | 1.07724 (13) | 0.70006 (10) | 0.0135 (2) | |
C3 | 0.15543 (19) | 0.93734 (13) | 0.61184 (10) | 0.0138 (2) | |
H3 | 0.2313 | 0.9158 | 0.5561 | 0.017* | |
C4 | −0.04910 (18) | 0.82974 (13) | 0.60721 (10) | 0.0140 (2) | |
C5 | −0.15994 (18) | 0.86142 (13) | 0.68862 (11) | 0.0150 (2) | |
H5 | −0.3000 | 0.7877 | 0.6838 | 0.018* | |
C6 | −0.06628 (19) | 1.00086 (13) | 0.77722 (11) | 0.0144 (2) | |
C7 | 0.13857 (19) | 1.10988 (13) | 0.78395 (11) | 0.0145 (2) | |
H7 | 0.2040 | 1.2049 | 0.8447 | 0.017* | |
C8 | −0.05943 (19) | 0.50595 (13) | 0.27529 (11) | 0.0143 (2) | |
C9 | −0.29426 (19) | 0.40960 (14) | 0.26388 (12) | 0.0162 (3) | |
C10 | −0.43280 (19) | 0.32214 (14) | 0.12572 (11) | 0.0170 (3) | |
C11 | −0.30912 (19) | 0.22792 (13) | 0.07950 (11) | 0.0153 (2) | |
C12 | −0.07691 (18) | 0.32979 (13) | 0.09069 (11) | 0.0139 (2) | |
N1 | 0.02769 (16) | 0.46033 (11) | 0.18822 (9) | 0.0148 (2) | |
O1 | 0.54761 (13) | 1.32048 (9) | 0.78454 (8) | 0.0175 (2) | |
O2 | 0.54367 (14) | 1.16248 (10) | 0.61820 (8) | 0.0182 (2) | |
O3 | −0.15073 (14) | 0.69014 (9) | 0.52418 (8) | 0.0179 (2) | |
O4 | −0.18242 (14) | 1.02460 (10) | 0.85444 (8) | 0.0194 (2) | |
O5 | 0.05505 (13) | 0.62391 (9) | 0.35880 (8) | 0.0175 (2) | |
O6 | 0.02443 (14) | 0.30476 (10) | 0.02066 (8) | 0.0184 (2) | |
H1N | 0.170 (3) | 0.5229 (19) | 0.1952 (15) | 0.028 (4)* | |
H2O | 0.670 (3) | 1.235 (2) | 0.6290 (16) | 0.030 (4)* | |
H3O | −0.078 (3) | 0.6801 (19) | 0.4761 (17) | 0.033 (4)* | |
H4O | −0.113 (3) | 1.114 (2) | 0.9064 (17) | 0.036 (4)* | |
H9A | −0.281 (2) | 0.3348 (16) | 0.3251 (13) | 0.017 (3)* | |
H9B | −0.357 (2) | 0.4804 (18) | 0.2971 (14) | 0.026 (4)* | |
H10A | −0.578 (2) | 0.2551 (17) | 0.1233 (13) | 0.020 (3)* | |
H10B | −0.453 (2) | 0.3969 (18) | 0.0689 (14) | 0.024 (4)* | |
H11A | −0.292 (2) | 0.1484 (16) | 0.1349 (13) | 0.017 (3)* | |
H11B | −0.388 (2) | 0.1740 (16) | −0.0110 (14) | 0.019 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0153 (6) | 0.0152 (6) | 0.0127 (5) | 0.0068 (4) | 0.0040 (4) | 0.0030 (4) |
C2 | 0.0143 (5) | 0.0138 (6) | 0.0125 (5) | 0.0060 (4) | 0.0032 (4) | 0.0037 (4) |
C3 | 0.0154 (5) | 0.0157 (6) | 0.0118 (5) | 0.0070 (4) | 0.0052 (4) | 0.0026 (4) |
C4 | 0.0158 (5) | 0.0127 (5) | 0.0120 (5) | 0.0049 (4) | 0.0027 (4) | 0.0010 (4) |
C5 | 0.0130 (5) | 0.0149 (6) | 0.0151 (5) | 0.0026 (4) | 0.0045 (4) | 0.0020 (4) |
C6 | 0.0155 (5) | 0.0169 (6) | 0.0125 (5) | 0.0074 (5) | 0.0054 (4) | 0.0030 (4) |
C7 | 0.0159 (5) | 0.0124 (5) | 0.0130 (5) | 0.0042 (4) | 0.0027 (4) | 0.0000 (4) |
C8 | 0.0174 (6) | 0.0124 (5) | 0.0148 (5) | 0.0067 (4) | 0.0060 (4) | 0.0035 (4) |
C9 | 0.0152 (6) | 0.0153 (6) | 0.0197 (6) | 0.0053 (5) | 0.0087 (5) | 0.0012 (5) |
C10 | 0.0135 (5) | 0.0184 (6) | 0.0186 (6) | 0.0049 (5) | 0.0055 (5) | 0.0028 (5) |
C11 | 0.0149 (5) | 0.0147 (6) | 0.0132 (5) | 0.0028 (4) | 0.0033 (4) | 0.0003 (4) |
C12 | 0.0156 (6) | 0.0138 (5) | 0.0127 (5) | 0.0066 (4) | 0.0038 (4) | 0.0025 (4) |
N1 | 0.0132 (5) | 0.0132 (5) | 0.0169 (5) | 0.0021 (4) | 0.0064 (4) | 0.0000 (4) |
O1 | 0.0169 (4) | 0.0150 (4) | 0.0178 (4) | 0.0016 (3) | 0.0069 (3) | −0.0015 (3) |
O2 | 0.0162 (4) | 0.0172 (4) | 0.0195 (4) | 0.0012 (4) | 0.0095 (3) | −0.0016 (3) |
O3 | 0.0188 (4) | 0.0145 (4) | 0.0180 (4) | 0.0011 (3) | 0.0092 (3) | −0.0042 (3) |
O4 | 0.0176 (4) | 0.0188 (4) | 0.0201 (4) | 0.0017 (3) | 0.0104 (4) | −0.0047 (3) |
O5 | 0.0183 (4) | 0.0140 (4) | 0.0190 (4) | 0.0026 (3) | 0.0087 (3) | −0.0024 (3) |
O6 | 0.0181 (4) | 0.0192 (4) | 0.0175 (4) | 0.0054 (3) | 0.0078 (3) | −0.0019 (3) |
C1—O1 | 1.2235 (13) | C6—C7 | 1.3947 (16) |
C1—O2 | 1.3210 (13) | C8—O5 | 1.2335 (14) |
C1—C2 | 1.4877 (15) | C8—N1 | 1.3638 (15) |
C2—C3 | 1.3934 (16) | C8—C9 | 1.5013 (15) |
C2—C7 | 1.3948 (16) | C9—C10 | 1.5246 (16) |
C3—C4 | 1.3948 (16) | C10—C11 | 1.5230 (16) |
C4—O3 | 1.3618 (13) | C11—C12 | 1.5012 (15) |
C4—C5 | 1.3886 (16) | C12—O6 | 1.2198 (14) |
C5—C6 | 1.3913 (16) | C12—N1 | 1.3858 (14) |
C6—O4 | 1.3578 (14) | ||
O1—C1—O2 | 123.47 (10) | C5—C6—C7 | 120.11 (10) |
O1—C1—C2 | 122.48 (10) | C6—C7—C2 | 118.98 (10) |
O2—C1—C2 | 114.05 (9) | O5—C8—N1 | 119.41 (10) |
C3—C2—C7 | 121.56 (10) | O5—C8—C9 | 122.74 (10) |
C3—C2—C1 | 120.63 (10) | N1—C8—C9 | 117.85 (10) |
C7—C2—C1 | 117.80 (10) | C8—C9—C10 | 111.95 (9) |
C2—C3—C4 | 118.46 (10) | C11—C10—C9 | 109.62 (10) |
O3—C4—C5 | 116.55 (10) | C12—C11—C10 | 111.52 (9) |
O3—C4—C3 | 122.71 (10) | O6—C12—N1 | 118.51 (10) |
C5—C4—C3 | 120.73 (10) | O6—C12—C11 | 124.51 (10) |
C4—C5—C6 | 120.14 (10) | N1—C12—C11 | 116.98 (9) |
O4—C6—C5 | 117.31 (10) | C8—N1—C12 | 126.49 (10) |
O4—C6—C7 | 122.58 (10) | ||
O1—C1—C2—C3 | −177.67 (11) | C5—C6—C7—C2 | 0.53 (17) |
O2—C1—C2—C3 | 2.59 (15) | C3—C2—C7—C6 | −1.27 (17) |
O1—C1—C2—C7 | 3.47 (17) | C1—C2—C7—C6 | 177.58 (10) |
O2—C1—C2—C7 | −176.27 (10) | O5—C8—C9—C10 | 153.92 (11) |
C7—C2—C3—C4 | 0.99 (17) | N1—C8—C9—C10 | −25.49 (15) |
C1—C2—C3—C4 | −177.83 (10) | C8—C9—C10—C11 | 53.06 (13) |
C2—C3—C4—O3 | 179.90 (10) | C9—C10—C11—C12 | −54.94 (13) |
C2—C3—C4—C5 | 0.03 (17) | C10—C11—C12—O6 | −151.08 (11) |
O3—C4—C5—C6 | 179.38 (10) | C10—C11—C12—N1 | 29.28 (14) |
C3—C4—C5—C6 | −0.75 (18) | O5—C8—N1—C12 | 178.68 (10) |
C4—C5—C6—O4 | −179.73 (10) | C9—C8—N1—C12 | −1.89 (17) |
C4—C5—C6—C7 | 0.46 (17) | O6—C12—N1—C8 | −179.77 (10) |
O4—C6—C7—C2 | −179.27 (10) | C11—C12—N1—C8 | −0.11 (17) |
Experimental details
(SM-4HBA) | (SM-24DHBA) | (SM-34DHBA) | (SM-345THBAI) | |
Crystal data | ||||
Chemical formula | C7H6O3·C4H5NO2 | C7H6O4·C4H5NO2 | 2(C7H6O4)·C4H5NO2 | C7H6O5·2(C4H5NO2) |
Mr | 237.21 | 253.21 | 407.33 | 368.30 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 | Monoclinic, P21/c | Orthorhombic, P212121 |
Temperature (K) | 100 | 100 | 100 | 130 |
a, b, c (Å) | 6.5133 (3), 8.1853 (5), 11.4965 (6) | 6.7358 (8), 6.9119 (8), 12.3937 (9) | 6.7323 (2), 12.1142 (5), 21.2077 (8) | 7.0213 (3), 8.8214 (4), 25.1416 (12) |
α, β, γ (°) | 103.458 (5), 93.925 (4), 113.018 (5) | 74.468 (9), 85.298 (8), 73.28 (1) | 90, 97.146 (3), 90 | 90, 90, 90 |
V (Å3) | 539.85 (6) | 532.43 (10) | 1716.19 (11) | 1557.21 (12) |
Z | 2 | 2 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.12 | 0.13 | 0.13 | 0.13 |
Crystal size (mm) | 0.43 × 0.24 × 0.23 | 0.35 × 0.29 × 0.10 | 0.33 × 0.15 × 0.11 | 0.24 × 0.22 × 0.22 |
Data collection | ||||
Diffractometer | Xcalibur, Eos, Nova diffractometer | Xcalibur, Eos, Nova diffractometer | Xcalibur, Eos, Nova diffractometer | Oxford Xcalibur,Eos(Nova) CCD detector diffractometer |
Absorption correction | Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | Multi-scan CrysAlis RED (Oxford Diffraction,2009) |
Tmin, Tmax | 0.843, 1.000 | 0.755, 1.000 | 0.880, 1.000 | 0.969, 0.974 |
No. of measured, independent and observed reflections | 13046, 1903, 1793 (?) | 4016, 1861, 1690 [I > 2σ(I)] | 10777, 3365, 2818 [I > 2σ(I)] | 8817, 2707, 2504 [I > 2σ(I)] |
Rint | 0.035 | 0.026 | 0.040 | 0.049 |
(sin θ/λ)max (Å−1) | 0.707 | 0.595 | 0.617 | 0.595 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.084, 1.06 | 0.054, 0.147, 1.26 | 0.044, 0.096, 1.08 | 0.039, 0.096, 1.04 |
No. of reflections | 1903 | 1861 | 3365 | 2996 |
No. of parameters | 166 | 179 | 290 | 259 |
No. of restraints | 0 | 0 | 0 | 0 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.26 | 0.55, −0.37 | 0.27, −0.22 | 0.15, −0.18 |
Absolute structure | ? | ? | ? | ? |
(SM-345THBAII) | (SM-35DHBA) | (MM4HBA) | (MM24DHBA) | |
Crystal data | ||||
Chemical formula | C7H6O5·2(C4H5NO2) | 3(C7H6O4)·C4H5NO2·3(H2O) | C7H6O3·C4H3NO2 | C7H6O4·C4H3NO2 |
Mr | 368.30 | 615.49 | 235.19 | 251.19 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 | Monoclinic, P21/n | Monoclinic, I2/a |
Temperature (K) | 110 | 100 | 100 | 100 |
a, b, c (Å) | 4.9225 (4), 11.7839 (10), 13.8540 (16) | 9.3161 (5), 11.2092 (3), 13.7362 (7) | 10.8426 (8), 6.5202 (4), 16.1326 (13) | 12.5506 (4), 6.6807 (2), 26.1586 (8) |
α, β, γ (°) | 97.248 (8), 96.773 (8), 90.663 (6) | 102.926 (3), 104.398 (4), 96.571 (3) | 90, 106.391 (8), 90 | 90, 98.815 (3), 90 |
V (Å3) | 791.35 (13) | 1332.01 (11) | 1094.16 (14) | 2167.40 (12) |
Z | 2 | 2 | 4 | 8 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.13 | 0.13 | 0.12 | 0.13 |
Crystal size (mm) | 0.22 × 0.20 × 0.18 | 0.20 × 0.18 × 0.15 | 0.25 × 0.22 × 0.20 | 0.21 × 0.15 × 0.15 |
Data collection | ||||
Diffractometer | Xcalibur, Eos, Nova diffractometer | Xcalibur, Eos, Nova diffractometer | Four-circle diffractometer | Four-circle diffractometer |
Absorption correction | Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Tmin, Tmax | 0.578, 1.000 | 0.898, 1.000 | 0.474, 1.000 | 0.847, 1.000 |
No. of measured, independent and observed reflections | 11875, 2784, 2267 (?) | 9808, 5225, 4753 [I > 2σ(I)] | 5081, 2375, 1679 (?) | 21462, 2137, 2002 (?) |
Rint | 0.070 | 0.030 | 0.026 | 0.041 |
(sin θ/λ)max (Å−1) | 0.617 | 0.617 | 0.706 | 0.617 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.100, 0.237, 1.10 | 0.074, 0.174, 1.21 | 0.048, 0.119, 1.03 | 0.053, 0.136, 1.16 |
No. of reflections | 3095 | 5225 | 2375 | 2137 |
No. of parameters | 287 | 388 | 166 | 179 |
No. of restraints | 0 | 1 | 1 | 0 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.45, −0.43 | 0.39, −0.45 | 0.15, −0.17 | 0.67, −0.25 |
Absolute structure | ? | ? | ? | ? |
(MM35DHBA) | (GM-4HBA) | (GM-35DHBA) | |
Crystal data | |||
Chemical formula | 3(C7H6O4)·C4H3NO2·3(H2O) | 2(C7H6O3)·C5H7NO2 | C7H6O4·C5H7NO2 |
Mr | 613.47 | 389.35 | 267.23 |
Crystal system, space group | Triclinic, P1 | Orthorhombic, Pca21 | Triclinic, P1 |
Temperature (K) | 100 | 100 | 100 |
a, b, c (Å) | 9.3796 (10), 10.3981 (12), 15.6415 (16) | 40.692 (3), 5.4524 (3), 16.3546 (9) | 6.6761 (3), 9.1128 (4), 10.9447 (4) |
α, β, γ (°) | 80.620 (9), 72.913 (9), 66.089 (10) | 90, 90, 90 | 93.397 (3), 107.694 (3), 108.173 (4) |
V (Å3) | 1331.4 (3) | 3628.6 (4) | 593.92 (5) |
Z | 2 | 8 | 2 |
Radiation type | ?, λ = 0.71073 Å | Mo Kα | Mo Kα |
µ (mm−1) | 0.13 | 0.11 | 0.12 |
Crystal size (mm) | 0.25 × 0.22 × 0.20 | 0.25 × 0.20 × 0.18 | 0.24 × 0.22 × 0.20 |
Data collection | |||
Diffractometer | Xcalibur, Eos, Nova diffractometer | Four-circle diffractometer | Four-circle diffractometer |
Absorption correction | Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Tmin, Tmax | 0.630, 1.000 | 0.664, 1.000 | 0.841, 1.000 |
No. of measured, independent and observed reflections | 16508, 4927, 2571 [I > 2σ(I)] | 15134, 5638, 4868 [I > 2σ(I)] | 11839, 2329, 2156 (?) |
Rint | 0.124 | 0.059 | 0.031 |
(sin θ/λ)max (Å−1) | 0.606 | 0.617 | 0.617 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.175, 0.91 | 0.048, 0.108, 1.03 | 0.031, 0.088, 1.06 |
No. of reflections | 4927 | 5638 | 2329 |
No. of parameters | 388 | 594 | 212 |
No. of restraints | 0 | 1 | 0 |
H-atom treatment | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.48, −0.31 | 0.22, −0.22 | 0.26, −0.21 |
Absolute structure | ? | Refined as an inversion twin. | ? |
Computer programs: CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05), CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31), CrysAlis PRO, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49), CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2013), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003), WinGX (Farrugia, 1999).
Acknowledgements
RPK and RG thank the Institute for a Senior Research Fellowship and a Promotional Fellowship, respectively. SC thanks the UGC for a Dr D. S. Kothari Postdoctoral Fellowship and TNG thanks the DST for a J. C. Bose Fellowship. We thank the Institute for providing infrastructure and instrumentation facilities.
References
Aakeröy, C. B., Desper, J., Fasulo, M. E., Hussain, I., Levin, B. & Schultheiss, N. (2008). CrystEngComm, 10, 1816–1821. Google Scholar
Aakeröy, C. B., Forbes, S. & Desper, J. (2014). CrystEngComm, 16, 5870–5877. Google Scholar
Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2014). CrystEngComm, 16, 3451–3465. Web of Science CrossRef CAS Google Scholar
Aitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2014). Cryst. Growth Des. 14, 2542–2556. Web of Science CSD CrossRef CAS Google Scholar
Alhalaweh, A., George, S., Basavoju, S., Childs, S. L., Rizvi, S. A. A. & Velaga, S. P. (2012). CrystEngComm, 14, 5078–5088. Web of Science CSD CrossRef CAS Google Scholar
Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2012). Cryst. Growth Des. 12, 811–824. Google Scholar
Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 2662–2679. Web of Science CrossRef CAS Google Scholar
Babu, N. J., Sanphui, P. & Nangia, A. (2012). Chem. Asian J. 7, 2274–2285. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ballatore, C., Huryn, D. M. & Smith, A. B. III (2013). ChemMedChem, 8, 385–395. Web of Science CrossRef CAS PubMed Google Scholar
Blagden, N., de Matas, M., Gavan, P. T. & York, P. (2007). Adv. Drug Deliv. Rev. 59, 617–630. Web of Science CrossRef PubMed CAS Google Scholar
Braga, D., Grepioni, F., Maini, L., Prosperi, S., Gobetto, R. & Chierotti, M. R. (2010). Chem. Commun. 46, 7715–7717. Web of Science CSD CrossRef CAS Google Scholar
Brittain, H. G. (2012). Cryst. Growth Des. 12, 5823–5832. Web of Science CrossRef CAS Google Scholar
Bučar, D.-K., Day, G. M., Halasz, I., Zhang, G. G. Z., Sander, J. R. G., Reid, D. G., MacGillivray, L. R., Duer, M. J. & Jones, W. (2013). Chem. Sci. 4, 4417–4425. Google Scholar
Buist, A. R., Kennedy, A. R., Shankland, K., Shankland, N. & Spillman, M. J. (2013). Cryst. Growth Des. 13, 5121–5127. Web of Science CSD CrossRef CAS Google Scholar
Caira, M. R., Bourne, S. A., Samsodien, H., Engel, E., Liebenberg, W., Stieger, N. & Aucamp, M. (2012). CrystEngComm, 14, 2541–2551. Web of Science CSD CrossRef CAS Google Scholar
Caira, M. R., Nassimbeni, L. R. & Wildervanck, F. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 2213–2216. CrossRef Web of Science Google Scholar
Chadwick, K., Davey, R. & Cross, W. (2007). CrystEngComm, 9, 732–734. Web of Science CrossRef CAS Google Scholar
Chen, J., Sarma, B., Evans, J. M. B. & Myerson, A. S. (2011). Cryst. Growth Des. 11, 887–895. Web of Science CrossRef CAS Google Scholar
Cherukuvada, S., Babu, N. J. & Nangia, A. (2011). J. Pharm. Sci. 100, 3233–3244. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cherukuvada, S. & Row, T. N. G. (2014). Cryst. Growth Des. 14, 4187–4198. Web of Science CSD CrossRef CAS Google Scholar
Cherukuvada, S. & Nangia, A. (2012). CrystEngComm, 14, 2579–2588. Web of Science CSD CrossRef CAS Google Scholar
Cherukuvada, S. & Nangia, A. (2014). Chem. Commun. 50, 906–923. Web of Science CrossRef CAS Google Scholar
Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785. Web of Science CSD CrossRef CAS Google Scholar
Friščić, T. & Jones, W. (2009). Cryst. Growth Des. 9, 1621–1637. Google Scholar
Friščić, T., Trask, A. V., Jones, W. & Motherwell, W. D. S. (2006). Angew. Chem. Int. Ed. 45, 7546–7550. Google Scholar
Gould, P. L. (1986). Int. J. Pharm. 33, 201–217. CrossRef CAS Web of Science Google Scholar
Griffini, G., Brambilla, L., Levi, M., Castiglioni, C., Del Zoppo, M. & Turri, S. (2014). RSC Adv. 4, 9893–9897. Web of Science CrossRef CAS Google Scholar
Huang, X., Qin, D., Zhang, X., Luo, Y., Huang, S., Li, D. & Meng, Q. (2013). RSC Adv. 3, 6922–6929. Web of Science CrossRef CAS Google Scholar
Karaipekli, A. & Sarı, A. (2010). J. Ind. Engineering Chem. 16, 767–773. Web of Science CrossRef CAS Google Scholar
Karki, S., Friščić, T., Fábián, L. & Jones, W. (2010). CrystEngComm, 12, 4038–4041. Web of Science CSD CrossRef CAS Google Scholar
Kaur, R. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 2744–2747. Web of Science CSD CrossRef CAS Google Scholar
Leiserowitz, L. & Nader, F. (1977). Acta Cryst. B33, 2719–2733. CrossRef CAS IUCr Journals Web of Science Google Scholar
Losev, E. A., Mikhailenko, M. A., Achkasov, A. F. & Boldyreva, E. V. (2013). New J. Chem. 13, 1973–1981. Web of Science CrossRef Google Scholar
Lu, E., Rodríguez-Hornedo, N. & Suryanarayanan, R. (2008). CrystEngComm, 10, 665–668. Web of Science CrossRef CAS Google Scholar
McMahon, J. A., Bis, J. A., Vishweshwar, P., Shattock, T. R., McLaughlin, O. L. & Zaworotko, M. J. (2005). Z. Kristallogr. 220, 340–350. Web of Science CSD CrossRef CAS Google Scholar
Moffat, A. C., Osselton, M. D. & Widdop, B. (2011). Editors. Clarke's Analysis of Drugs and Poisons, 4th ed. London: Pharmaceutical Press. Google Scholar
Mohammad, M. A., Alhalaweh, A. & Velaga, S. P. (2011). Int. J. Pharm. 407, 63–71. Web of Science CrossRef CAS PubMed Google Scholar
Moore, M. D. & Wildfong, P. L. D. (2009). J. Pharm. Innov. 4, 36–49. Web of Science CrossRef Google Scholar
Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552–2559. CAS Google Scholar
Morimoto, M. & Irie, M. (2010). J. Am. Chem. Soc. 132, 14172–14178. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mukherjee, A., Dixit, K., Sarma, S. P. & Desiraju, G. R. (2014). IUCrJ, 1, 228–239. CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Nanubolu, J. B., Sridhar, B. & Ravikumar, K. (2012). CrystEngComm, 14, 2571–2578. Web of Science CSD CrossRef CAS Google Scholar
Prasad, K. D., Cherukuvada, S., Devaraj Stephen, L. & Guru Row, T. N. (2014). CrystEngComm, 16, 9930–9938. Web of Science CSD CrossRef CAS Google Scholar
Reddy, L. S., Bhatt, P. M., Banerjee, R., Nangia, A. & Kruger, G. J. (2007). Chem. Asian J. 2, 505–513. Web of Science CSD CrossRef PubMed CAS Google Scholar
Reddy, J. S., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, K. A., Kumar, K. A., Goud, N. R. & Nangia, A. (2011). J. Pharm. Sci. 100, 3160–3176. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rowe, R. C., Sheskey, P. J. & Owen, S. C. (2006). Editors. Handbook of Pharmaceutical Excipients, 5th ed. London: Pharmaceutical Press and Washington, DC: American Pharmaceutical Association. Google Scholar
Sanphui, P., Babu, N. J. & Nangia, A. (2013). Cryst. Growth Des. 13, 2208–2219. Web of Science CSD CrossRef CAS Google Scholar
Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967. Web of Science CrossRef PubMed CAS Google Scholar
Seaton, C. C. (2011). CrystEngComm, 13, 6583–6592. Web of Science CrossRef CAS Google Scholar
Seaton, C. C. & Parkin, A. (2011). Cryst. Growth Des. 11, 1502–1511. Web of Science CSD CrossRef CAS Google Scholar
Shan, N., Toda, F. & Jones, W. (2002). Chem. Commun. pp. 2372–2373. Web of Science CrossRef Google Scholar
Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440–446. Web of Science CrossRef PubMed CAS Google Scholar
Thakuria, R., Cherukuvada, S. & Nangia, A. (2012). Cryst. Growth Des. 12, 3944–3953. Web of Science CSD CrossRef CAS Google Scholar
Trask, A. V. & Jones, W. (2005). Top. Curr. Chem. 254, 41–70. CAS Google Scholar
Wood, P. A., Feeder, N., Furlow, M., Galek, P. T. A., Groom, C. R. & Pidcock, E. (2014). CrystEngComm, 16, 5839–5848. Web of Science CrossRef CAS Google Scholar
Yan, D., Delori, A., Lloyd, G. O., Friščić, T., Day, G. M., Jones, W., Lu, J., Wei, M., Evans, D. G. & Duan, X. (2011). Angew. Chem. Int. Ed. 50, 12483–12486. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.