research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 2| Part 3| May 2015| Pages 317-321
ISSN: 2052-2525

Second harmonic generation from the `centrosymmetric' crystals

aCentre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore, bDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, cDivision of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore, and dDepartment of Physics, National University of Singapore, 3 Science Drive 3, Singapore 117542, Singapore
*Correspondence e-mail: HDSun@ntu.edu.sg, phyjiwei@nus.edu.sg, chmjjv@nus.edu.sg

Edited by M. Eddaoudi, King Abdullah University, Saudi Arabia (Received 30 October 2014; accepted 2 February 2015; online 20 March 2015)

Second harmonic generation (SHG) is a well known non-linear optical phenomena which can be observed only in non-centrosymmetric crystals due to non-zero hyperpolarizability. In the current work we observed SHG from a Zn(II) complex which was originally thought to have crystallized in the centrosymmetric space group C2/c. This has been attributed to the unequal antiparallel packing of the metal complexes in the non-symmetric space group Cc or residual non-centrosymmetry in C2/c giving rise to polarizability leading to strong SHG. The enhancement of SHG by UV light has been attributed to the increase in non-centrosymmetry and hence polarity of packing due to strain induced in the crystals. The SHG signals measured from these crystals were as large as potassium dihydrogen phosphate crystals, KH2PO4 (KDP), and showed temperature dependence. The highest SHG efficiency was observed at 50 K. The SHG phenomenon was observed at broad wavelengths ranging from visible to below-red in these crystals.

1. Introduction

One of the most ubiquitous problems encountered in the crystal structure analysis of non-chiral molecules is the ambiguity between the centrosymmetric and non-centrosymmetric space groups such as P1 – [P\bar 1], P21P21/m, C2 – C2/m, CcC2/c, Pna21Pnma, among others (Marsh, 1986[Marsh, R. E. (1986). Acta Cryst. B42, 193-198.], 1994[Marsh, R. E. (1994). Acta Cryst. A50, 450-455.]; Dougherty & Kurtz, 1976[Dougherty, J. P. & Kurtz, S. K. (1976). J. Appl. Cryst. 9, 145-158.]). In other words, a crystal structure can contain centrosymmetric packing (with inversion symmetry) of molecules exclusively or an equal amount of enantiomers, i.e. cancellation of polarity in packing in non-centrosymmetric space groups. Due to these uncertainties between the space groups the description of structures in centrosymmetric packing has been advocated, in the absence of supportive evidence for non-centrosymmetric space groups (Baur & Tillmanns, 1986[Baur, W. H. & Tillmanns, E. (1986). Acta Cryst. B42, 95-111.]). Modern crystallographic software available nowadays can clearly help in resolving these space-group ambiguities, in addition to parameters like Flack, Parsons and Hooft (Schomaker & Marsh, 1979[Schomaker, V. & Marsh, R. E. (1979). Acta Cryst. B35, 1933-1934.]; Marsh & Herbstein, 1983[Marsh, R. E. & Herbstein, F. H. (1983). Acta Cryst. B39, 280-287.]; Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]; Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]; Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.]). On the other hand, the absence of inversion symmetry is one of the important requirements for properties such as pyroelectricity, piezoelectricity, ferroelectricity, triboluminescence and second harmonic generation (West, 1999[West, A. R. (1999). Basic Solid State Chemistry. New York: John Wiley and Sons.]; Smart, 2012[Smart, L. (2012). Solid State Chemistry: an Introduction. Boca Raton: CRC Press.]). Even a small `polarity' excess in the mixture of non-centrosymmetric crystals formed during synthesis can exhibit some of these interesting solid-state properties mentioned above (Molinos-Gómez et al., 2007[Molinos-Gómez, A., Maymó, M., Vidal, X., Velasco, D., Martorell, J. & López-Calahorra, F. (2007). Adv. Mater. 19, 3814-3818.]; Jaya Prakash et al., 2008[Jaya Prakash, M., Raghavaiah, P., Krishna, Y. S. R. & Radhakrishnan, T. P. (2008). Angew. Chem. Int. Ed. 47, 3969-3972.]; Shakir et al., 2009[Shakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Cryst. Growth, 311, 3871-3875.]; Clevers et al., 2013[Clevers, S., Simon, F., Sanselme, M., Dupray, V. & Coquerel, G. (2013). Cryst. Growth Des. 13, 3697-3704.]; Mishuk et al., 2014[Mishuk, E., Weissbuch, I., Lahav, M. & Lubomirsky, I. (2014). Cryst. Growth Des. 14, 3839-3848.]).

Second harmonic generation (SHG) is a nonlinear optical phenomenon related to nonlinear electrical susceptibility χ(2). For centrosymmetric crystals, based on the Kleinman approximation symmetry and centrosymmetry of crystals, χ(2) has no independent irreducible component of tensors, thus exhibiting no SHG effect (Lee & Kim, 2012[Lee, H. H. & Kim, H. J. (2012). Appl. Phys. Expr. 5, 051401.]). As a result, non-centrosymmetric packing is a prerequisite for the observation of SHG (Zyss & Oudar, 1982[Zyss, J. & Oudar, J. L. (1982). Phys. Rev. A, 26, 2028-2048.]). In recent years, the SHG effect from centrosymmetric crystals with vicinal faces has been reported (Verheijen et al., 1991[Verheijen, M. A., van Hasselt, C. W. & Rasing, T. (1991). Surf. Sci. 251-252, 467-471.]). Considering the SHG arising from bulk electric quadrupole and magnetic dipole effects and a surface dipole source, Lüpke presented a phenomenological theory (Lüpke et al., 1994[Lüpke, G., Bottomley, D. J. & van Driel, H. M. (1994). J. Opt. Soc. Am. B, 11, 33-44.]; Sipe et al., 1987[Sipe, J. E., Moss, D. J. & van Driel, H. M. (1987). Phys. Rev. B, 35, 1129-1141.]) to account for the observed SHG properties. In the last few years there was a resurgence of interest in SHG from cubic centrosymmetric crystals (Guo et al., 2002[Guo, W., Guo, F., Wei, C., Liu, Q., Zhou, G., Wang, D. & Shao, Z. (2002). Sci. China Chem. 45, 267-274.]; Cazzanelli et al., 2012[Cazzanelli, M., Bianco, F., Borga, E., Pucker, G., Ghulinyan, M., Degoli, E., Luppi, E., Véniard, V., Ossicini, S., Modotto, D., Wabnitz, S., Pierobon, R. & Pavesi, L. (2012). Nat. Mater. 11, 148-154.]). SHG measurements could be utilized to probe non-centrosymmetric surface structures which are clearly distinguishable from the bulk structure (Sipe et al., 1987[Sipe, J. E., Moss, D. J. & van Driel, H. M. (1987). Phys. Rev. B, 35, 1129-1141.]). Furthermore, SHG exhibited by such single crystals has been scrutinized before (Kurtz, 1968[Kurtz, S. K. (1968). J. Appl. Phys. 39, 3798-3813.]).

Recently, we investigated the photosalient properties of centrosymmetric crystals of three Zn(II) complexes under UV light (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.]). To our surprise, only one of these crystals exhibited SHG properties that were comparable with KDP, a well known crystal capable of generating SHG signals efficiently. Hence we have investigated the origin of SHG properties in this compound, and proposed that the presence of a slight polarity excess in the otherwise antiparallel packing in the space group C2/c and the enhancement of surface defects by UV irradiation should be responsible for its observed behavior. The details of our investigations are presented and discussed below.

2. Results and discussion

2.1. Crystal structure description

During the slow evaporation of a methanolic solution of Zn(NO3)2, sodium benzoate and 4-styrylpyridine (4spy) in a 1:2:1 molar ratio, the coordination metal complex [Zn2(benzo­ate)4(4spy)2] (1), was obtained (Fig. 1[link]). Single-crystal X-ray diffraction (XRD) revealed that the compound crystallizes in C2/c with Z = 4 (CCDC No. 979138). The asymmetric unit consists of half of the molecular formula where Zn(II) is present in square-pyramidal geometry and these Zn(II) atoms are bridged by four benzoate groups leading to the formation of a well known paddle wheel building unit. The axial sites of these units are coordinated by the N atoms of the 4spy ligand (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.]). This coordinated 4spy interacted with another 4spy in a head-to-tail fashion with ππ interactions between pyridine and the phenyl group, forming a supramolecular one-dimensional polymer. A crystallographic inversion centre is present in the middle of the paddle-wheel structure with half the formula units present in the asymmetric unit. Variable-temperature single-crystal X-ray data in conjunction with differential scanning calorimetry (DSC) studies indicate that there is no phase change observed in the temperature range 223–373 K.

[Figure 1]
Figure 1
Ball and stick diagram of 1. Color coding: Zn – green, C – yellow, O – red, N – blue.

Although the compound is crystallized in the centrosymmetric space group, to our surprise these crystals exhibit a second-order non-linear optical property as confirmed from strong SHG signals measured using 6 ns laser pulses of wavelengths ranging from 850 to 1200 nm. The details of our investigations are described below.

2.2. Laser input energy-dependent SHG spectra of 1 and KDP

Freshly synthesized single crystals of 1 dried at room temperature were exposed to 850–1200 nm and 6 ns laser pulses on a glass slide with a microscope (Figs. S2 and S3 ). The signal was coupled to a monochromator and the CCD, emission wavelength and intensity were measured using a CCD detector (Fig. S2 ). Using the same set-up, the SHG emissions of KDP were also measured as a reference. Input laser energy-dependent SHG spectra from KDP and 1 are shown in Figs. 2[link](a) and (b). Input laser energy-dependent SHG intensities of the crystals of KDP and 1 are shown in Fig. 2[link](c), which clearly shows that the SHG intensity in 1 is two times higher than KDP. Slopes of the laser energy dependence are 1.8 and 1.7 for the crystals of KDP and 1, respectively. The scattered light on a metal mirror and the glass slide were also measured showing a negligible dark signal at 532 nm (i.e. the corresponding SHG signal). These results support the fact that the emission is due to its non-linearity of 1. This has been confirmed from several crystals of 1 from several batches of crystallization. Although the absolute intensity of the SHG signals vary among crystals, the reproducibility of SHG behaviour in 1 has been demonstrated unequivocally. These crystals can also generate SHG in a range of near below-red wavelengths (Fig. S5 ). During the SHG experiment, when the freshly prepared crystals were irradiated under UV light, the intensity of the SHG increased and slowly faded away on continued exposure to UV light as shown in Fig. 2[link](d). The increase in intensity could be attributed to the strain created by UV irradiation (Cazzanelli et al., 2012[Cazzanelli, M., Bianco, F., Borga, E., Pucker, G., Ghulinyan, M., Degoli, E., Luppi, E., Véniard, V., Ossicini, S., Modotto, D., Wabnitz, S., Pierobon, R. & Pavesi, L. (2012). Nat. Mater. 11, 148-154.]), and the decrease in intensity could be due to the formation of a new photodimerized product (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.]).

[Figure 2]
Figure 2
Laser input energy-dependent SHG spectra of (a) single crystals of 1, (b) KDP single crystals, (c) laser input energy-dependent SHG intensity of KDP and 1, and (d) UV exposure time dependence of SHG of 1.

2.3. Temperature-dependent SHG

Temperature-dependent SHG measurements have been carried out in the temperature range 10–300 K. As shown in Fig. 3[link], a freshly prepared sample was placed in a small glass cup and loaded in a cryostat. The SHG signals were measured at different temperatures by slowly increasing to room temperature from 10 K and keeping the input laser energy at 1.5 mJ. These curves clearly demonstrate that the SHG intensity varies with temperature to a maximum at ∼ 50 K and then gradually decreases with an increase in temperature until 170 K, and finally increases again from 170 K to room temperature. This temperature-dependent measurement indicates that the maximum SHG intensity is observed at 50 K and the minimum at 170 K (Fig. 3[link]b). This observation is similar to previous reports for many non-centrosymmetric crystals (Lee & Kim, 2012[Lee, H. H. & Kim, H. J. (2012). Appl. Phys. Expr. 5, 051401.]).

[Figure 3]
Figure 3
(a) Temperature-dependent SHG spectra of 1. (b) Temperature-dependent SHG intensity of 1 excited at 1064 nm wavelength, 20 Hz repetition rate, 1.5 mJ energy pulse and 6 ns pulse width.

Although the SHG effect has been found to enhance due to the strain created by exposure to UV light, it was still not clear why a centrosymmetric crystal shows this nonlinear optical (NLO) property in the first place. A number of so-called `centrosymmetric crystals' have been found to exhibit the SHG effect before (Shakir et al., 2009[Shakir, M., Singh, B. K., Kumar, B. & Bhagavannarayana, G. (2009). Appl. Phys. Lett. 95, 252902-252903.]; Guo et al., 2002[Guo, W., Guo, F., Wei, C., Liu, Q., Zhou, G., Wang, D. & Shao, Z. (2002). Sci. China Chem. 45, 267-274.]). Desiraju et al. (1979[Desiraju, G. R., Curtin, D. Y. & Paul, I. C. (1979). Mol. Cryst. Liq. Cryst. 52, 259-266.]) found that the crystal structures of the space group P21/c were indeed a mixture of two non-centrosymmetric space groups, namely P21 and Pc. As early as 1935, Robertson scrutinized complexes with phthalocyanines and metals for non-centrosymmetric packing (Robertson, 1935[Robertson, J. M. (1935). J. Chem. Soc. Perkin Trans. pp. 615-621.]). In order to trace the origin of NLO behaviour, crystals of 1 synthesized in the dark were carefully tested for their SHG and were found to show SHG effects irrespective of UV light exposure. Hence, it was concluded that this may be an inherent property of the crystals. Secondly, it was thought that the non-centrosymmetry may be lost due to highly intense X-rays during the data collection. Hence the same crystals show that NLO behaviour was used for single-crystal data collection, and tested again for their SHG properties. It has been found that there is no change in the SHG intensity confirming that there is no change in symmetry of the crystals due to X-ray exposure. Then why do the centrosymmetric crystals show very high SHG intensity? Could this be due to the residual polarity in the packing of the almost antiparallel packing of the metal complexes in Cc or local non-centrosymmetry in the otherwise bulk centrosymmetric crystals responsible for this observed property? If this is true, the emission intensity is expected to vary, at least slightly, with crystals obtained in the same or different batches of crystallization. To confirm this hypothesis, a number of single crystals obtained from the same batch of synthesis were examined under laser excitation. The intensities of the SHG were indeed found to vary in these batches, and thus lend support for the presence of local non-centrosymmetry in the otherwise bulk centrosymmetric packing of molecules in C2/c present in the single crystals. Actually, when the crystal structure refinements were carried out in Cc, the absolute structure parameter (Flack parameter) was refined close to 0.5 for the data in the range 90–298 K for various single crystals. Further, we have collected data at different temperatures and crystals showing different SHG intensities (Fig. 2[link]d, Fig. S6 ). However, we were unable to find any direct correlation between the SHG intensities measured and the Flack or other parameters. Furthermore, [Zn2(benzoate)4(2F-4spy)2] (2, where 2F-4spy = 2-fluorophenyl-4-strylpyridine) and [Zn2(benzoate)4(3F-4spy)2] (3, where 3F-4spy = 3-fluorophenyl-4-strylpyridine) were also found to be isomorphous and isostructural with 1 and exhibit photosalient properties similar to 1. On the contrary, these two crystals do not show any SHG properties, suggesting that they belong to the centrosymmetric space group C2/c unlike 1. Finally, it is worth mentioning that the SHG signal of 1 disappeared after grinding the single crystals into powder. Besides these, it was also found that 1 grown from ethanol has different morphology and did not show any SHG signal which implies that they belong to the centrosymmetric crystals like 2 and 3 (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.]).

In summary, this communication reports so-called `centrosymmetric' crystals of a Zn(II) complex, which is indicated surprisingly to have crystallized with a residual non-centrosymmetry in space group C2/c based on the observation of SHG. A small excess of polarity packing in the otherwise centrosymmetric single crystals appears to result in a large second-order nonlinearity which can be further enhanced by increasing the strain caused by the UV light exposure. These led to a strong dependence of χ(2) on the inhomogeneity created by the induced strain. The induced strain varies with temperature, as indicated from the temperature-dependent SHG measurements. By increasing the temperature from 10 to 50 K, a sharp increase in the SHG signal is followed by a slow decrease to its minimum at ∼ 175 K. A further increase in the temperature to 300 K is accompanied by a slow increase in the SHG signal. The underlying mechanism has been discussed.

3. Experimental

3.1. Materials and general methods

Commercially available reagent-grade chemicals were used as received without any further purification unless mentioned. IR spectra were recorded on a FTS165 Bio-Rad FTIR spectrometer by using KBr pellets in the range 4000–400 cm−1. Elemental analysis (C, H and N) was carried out using an Elementar Vario Micro Cube instrument at the Elemental Analysis Lab, CMMAC, Department of Chemistry, National University of Singapore. Thermogravimetric analysis (TGA) was performed under N2 atmosphere with a heating rate of 5°C min−1 on a SDT 2960 Thermal analyzer. NMR spectra were recorded on a 300 MHz Bruker Avance 300 FT-NMR spectrometer by calibrating the residual solvent as the reference in DMSO-d6 solution. The powder X-ray diffraction (PXRD) patterns were recorded on a Siemens D5005 diffractometer with graphite monochromated Cu Kα radiation (λ = 1.54056 Å) at 298 K.

3.2. SHG measurements

SHG by the MOC crystals was measured with 6 ns laser pulses (850–1200 nm wavelength and 20 Hz repetition rate) emitted from a Q-switched Nd:YAG (yttrium-aluminium-garnet) laser (Spectra Physics, INDI) pumped OPO. The laser pulses were focused onto the sample on a glass plate with a spot size of 200 μm. The sample was kept in a cryostat whose temperature was varied for the measurement of temperature-dependent SHG signals. Optical density filters were used to change incident laser energy. The signal was collected using two collimation lenses and dispersed by a 750 mm monochromator (Hamamatsu R928) and the spectrum was recorded by a charged coupled device (CCD, Princeton Instruments). During the measurement, a dichroic filter was used to block the pump beam. A UV lamp (375 nm) was used for UV enhanced SHG generation studies.

3.3. Synthesis of [Zn2(benzoate)4(4spy)2] (1)

Colourless rod-like single crystals were obtained from slow evaporation of a methanol solution of Zn(NO3)2·6H20 (15.0 mg, 0.05 mmol), the sodium salt of benzoic acid (14.4 mg, 0.1 mmol) and 4spy (9.1 mg, 0.05 mmol) and dried at room temperature. Yield: 23.1 mg (60%). The elemental analysis (%): calculated for C27H21NO4Zn: C 66.33, H 4.33, N 2.87; found: C 65.94, H 3.91, N 2.83. 1H NMR (DMSO-d6, 300 MHz, 298 K): δ = 8.58 (d, 4H, pyridyl protons of 4spy), 7.2–7.7 (m, 18H, aromatic protons of 4spy), 7.96 (d, 8H, benzoate protons), 7.2–7.5 (m, 12H, benzoate protons). IR (KBr pellet, cm−1): 1637, 1574, 1505, 1401, 1226, 1172, 1069, 1032, 965, 873, 839, 816, 715, 690, 538, 458.

3.4. X-ray crystallography

Structural data for all these crystals were collected on a Bruker APEX II diffractometer attached with a CCD detector and graphite-monochromated Mo Kα (λ = 0.71073 Å) radiation through a sealed tube (2.4 kW). An empirical absorption correction was applied to the data using the SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). University of Göttingen, Germany.]) program and the crystallographic package SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; Müller et al., 2006[Müller, P., Herbst-Irmer, R., Spek, A., Schneider, T. & Sawaya, M. (2006). Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Oxford University Press.]) was used for all calculations. The crystal data were refined purposely in the space group Cc to show the presence of both non-centrosymmetric and centrosymmetric packing in the crystal. The crystal was originally refined in the space group C2/c before (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.], CCDC No. 979138). The crystallographic data for CCDC 1031432–1031436 can be found in the supporting information and from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif .

3.4.1. Crystal data for MOC crystals at 170 (2) K

1 at 170 (2) K: C54H42N2O8Zn2, Mr = 977.64, monoclinic, Cc; a = 24.746 (2), b = 12.212 (1), c = 15.653 (1) Å, β = 109.192 (1)°, V = 4467.2 (6) Å3, Z = 4, ρcalc = 1.454 g cm−3, μ = 1.134 mm−1, GOF = 1.046, final R1 = 0.0323, wR2 = 0.0845 [for 8188 data I > 2σ(I)].

Supporting information


Computing details top

For all compounds, data collection: Bruker APEX2; cell refinement: Bruker SAINT; data reduction: Bruker SAINT. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for e210, e257, e254, e251; SHELXS97 (Sheldrick, 1990) for e219. Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) for e210, e257, e254, e251; SHELXL97 (Sheldrick, 1997) for e219. For all compounds, molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

(e210) top
Crystal data top
C54H42N2O8Zn2F(000) = 2016
Mr = 977.64Dx = 1.440 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 24.843 (2) ÅCell parameters from 4654 reflections
b = 12.2450 (11) Åθ = 2.5–26.3°
c = 15.7202 (14) ŵ = 1.12 mm1
β = 109.4983 (16)°T = 295 K
V = 4507.9 (7) Å30.38 × 0.34 × 0.26 mm
Z = 4
Data collection top
Bruker APEX-II CCD
diffractometer
8139 independent reflections
Radiation source: fine-focus sealed tube6161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
h = 2532
Tmin = 0.675, Tmax = 0.759k = 1215
15882 measured reflectionsl = 1820
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
8139 reflectionsΔρmax = 0.36 e Å3
595 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (3)
Crystal data top
C54H42N2O8Zn2V = 4507.9 (7) Å3
Mr = 977.64Z = 4
Monoclinic, CcMo Kα radiation
a = 24.843 (2) ŵ = 1.12 mm1
b = 12.2450 (11) ÅT = 295 K
c = 15.7202 (14) Å0.38 × 0.34 × 0.26 mm
β = 109.4983 (16)°
Data collection top
Bruker APEX-II CCD
diffractometer
8139 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
6161 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.759Rint = 0.025
15882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.36 e Å3
S = 1.01Δρmin = 0.22 e Å3
8139 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
595 parametersAbsolute structure parameter: 0.10 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The single crystals of this compounds show 2nd order NLO (SHG) properties. Hence it is refined in Cc instead of C2/c for which please refer Angewandte Chemie, 2014, 53 (23) 5907, CCDC No. 979138. Further due to non-centrosymmetric space group, anisotropic refinements of C atoms are not great and severe correlation is expected.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.331660 (15)0.50331 (4)0.254618 (19)0.03525 (17)
Zn20.240791 (14)0.49640 (4)0.074723 (19)0.03560 (18)
O10.28724 (18)0.6475 (3)0.2484 (3)0.0553 (12)
O20.21692 (18)0.6435 (3)0.1141 (2)0.0489 (11)
O30.26817 (18)0.4215 (3)0.2807 (3)0.0537 (12)
O40.19916 (19)0.4190 (3)0.1473 (3)0.0574 (13)
O50.3553 (2)0.3566 (3)0.2156 (3)0.0551 (12)
O60.2865 (2)0.3545 (3)0.0834 (3)0.0591 (13)
O70.37495 (19)0.5820 (3)0.1819 (3)0.0543 (12)
O80.30493 (18)0.5791 (3)0.0483 (3)0.0480 (11)
N10.3900 (2)0.5261 (4)0.3783 (3)0.0342 (11)
C10.3777 (2)0.5761 (4)0.4440 (4)0.0425 (15)
H10.34060.60090.43280.051*
C20.4174 (3)0.5933 (5)0.5283 (4)0.0457 (16)
H20.40680.62820.57280.055*
C30.4729 (2)0.5585 (4)0.5466 (3)0.0384 (14)
C40.4856 (3)0.5113 (5)0.4805 (5)0.066 (2)
H40.52310.49320.48690.079*
C50.4405 (3)0.4886 (4)0.3993 (4)0.0546 (18)
H50.44840.44260.35800.065*
C60.5175 (2)0.5764 (4)0.6365 (3)0.0416 (15)
H60.55370.54950.64340.050*
C70.5116 (2)0.6254 (4)0.7066 (4)0.0479 (16)
H70.47470.64860.69970.058*
C80.5543 (2)0.6492 (4)0.7942 (3)0.0406 (15)
C90.5394 (3)0.7062 (5)0.8583 (4)0.0532 (17)
H90.50210.72970.84700.064*
C100.5825 (3)0.7281 (6)0.9421 (4)0.065 (2)
H100.57280.76660.98590.078*
C110.6356 (3)0.6957 (6)0.9600 (4)0.065 (2)
H110.66300.71431.01480.078*
C120.6507 (3)0.6368 (6)0.9007 (4)0.076 (2)
H120.68780.61070.91560.091*
C130.6103 (3)0.6137 (6)0.8148 (4)0.059 (2)
H130.62130.57500.77240.071*
N20.1819 (2)0.4756 (4)0.0501 (3)0.0389 (13)
C140.1270 (3)0.5058 (5)0.0672 (4)0.0524 (18)
H140.11610.53260.02010.063*
C150.0877 (3)0.4984 (4)0.1497 (4)0.0491 (16)
H150.05220.53140.16140.059*
C160.1002 (3)0.4393 (5)0.2206 (3)0.0390 (14)
C170.1555 (3)0.4046 (5)0.1995 (4)0.0437 (16)
H170.16660.36710.24240.052*
C180.1946 (3)0.4243 (5)0.1165 (4)0.0466 (16)
H180.23200.40110.10520.056*
C190.0559 (3)0.4214 (5)0.3048 (4)0.0520 (18)
H190.01930.44450.31030.062*
C200.0637 (3)0.3734 (5)0.3762 (3)0.0470 (16)
H200.10060.35130.37060.056*
C210.0184 (3)0.3529 (5)0.4630 (4)0.0450 (16)
C220.0375 (3)0.3843 (6)0.4835 (4)0.0581 (19)
H220.04840.42290.44090.070*
C230.0766 (3)0.3610 (6)0.5625 (4)0.0640 (19)
H230.11420.38240.57340.077*
C240.0624 (3)0.3042 (6)0.6311 (4)0.059 (2)
H240.08960.29050.68720.070*
C250.0061 (3)0.2700 (6)0.6105 (4)0.066 (2)
H250.00540.23090.65210.079*
C260.0311 (3)0.2950 (6)0.5290 (5)0.065 (2)
H260.06860.27130.51610.078*
C1000.2468 (2)0.6884 (4)0.1843 (4)0.0349 (12)
C1010.2330 (2)0.8095 (4)0.1944 (4)0.0424 (14)
C1020.1944 (3)0.8640 (5)0.1328 (4)0.0583 (17)
H1020.17320.82820.08010.070*
C1030.1837 (4)0.9727 (6)0.1425 (6)0.082 (2)
H1030.15261.00590.09980.098*
C1040.2170 (4)1.0318 (6)0.2119 (6)0.078 (2)
H1040.21181.10660.21590.094*
C1050.2574 (4)0.9788 (6)0.2741 (6)0.099 (3)
H1050.27971.01900.32360.119*
C1060.2703 (3)0.8660 (5)0.2728 (4)0.0618 (19)
H1060.29980.83190.31780.074*
C2000.2210 (2)0.3930 (4)0.2288 (4)0.0392 (13)
C2010.1860 (2)0.3191 (4)0.2667 (4)0.0386 (14)
C2020.2056 (3)0.2890 (5)0.3549 (4)0.0578 (18)
H2020.23950.31850.39330.069*
C2030.1745 (4)0.2120 (6)0.3897 (5)0.079 (2)
H2030.18840.18990.44980.094*
C2040.1240 (3)0.1719 (5)0.3327 (6)0.074 (2)
H2040.10300.12340.35460.089*
C2050.1040 (3)0.2019 (6)0.2441 (6)0.074 (2)
H2050.07020.17260.20520.088*
C2060.1353 (3)0.2776 (5)0.2126 (4)0.0498 (16)
H2060.12090.30030.15280.060*
C3000.3255 (3)0.3081 (5)0.1433 (4)0.0472 (15)
C3010.3368 (2)0.1935 (4)0.1321 (4)0.0375 (13)
C3020.3841 (3)0.1401 (5)0.1983 (4)0.0515 (16)
H3020.40950.17960.24510.062*
C3030.3909 (4)0.0284 (6)0.1907 (6)0.073 (2)
H3030.41980.00970.23370.088*
C3040.3529 (5)0.0245 (7)0.1165 (8)0.109 (4)
H3040.35690.09940.11120.130*
C3050.3098 (4)0.0277 (7)0.0506 (7)0.087 (3)
H3050.28540.00810.00030.104*
C3060.3061 (3)0.1365 (6)0.0653 (5)0.071 (2)
H3060.27760.17420.02130.085*
C4000.3536 (2)0.6083 (4)0.0998 (4)0.0397 (14)
C4010.3879 (2)0.6821 (4)0.0633 (4)0.0373 (13)
C4020.4403 (3)0.7241 (5)0.1185 (5)0.0558 (19)
H4020.45520.70450.17900.067*
C4030.4693 (3)0.7949 (6)0.0816 (6)0.070 (2)
H4030.50470.82200.11690.084*
C4040.4462 (4)0.8259 (6)0.0081 (5)0.084 (2)
H4040.46480.87670.03250.100*
C4050.3960 (4)0.7808 (6)0.0596 (5)0.074 (2)
H4050.38160.79890.12050.089*
C4060.3674 (3)0.7135 (6)0.0272 (4)0.0578 (19)
H4060.33280.68580.06490.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0349 (4)0.0372 (3)0.0264 (3)0.0032 (2)0.0006 (3)0.0018 (2)
Zn20.0365 (4)0.0389 (4)0.0258 (3)0.0021 (2)0.0028 (3)0.0009 (2)
O10.053 (2)0.037 (2)0.070 (3)0.0066 (18)0.012 (2)0.0020 (19)
O20.055 (2)0.045 (2)0.046 (2)0.0050 (18)0.0153 (18)0.0144 (17)
O30.046 (2)0.055 (3)0.057 (2)0.0154 (18)0.013 (2)0.0036 (18)
O40.061 (3)0.067 (3)0.042 (2)0.014 (2)0.014 (2)0.0060 (19)
O50.063 (3)0.045 (2)0.053 (2)0.003 (2)0.012 (2)0.0081 (19)
O60.057 (3)0.056 (3)0.051 (3)0.020 (2)0.001 (2)0.000 (2)
O70.061 (3)0.062 (3)0.039 (2)0.007 (2)0.016 (2)0.0132 (19)
O80.044 (2)0.061 (3)0.041 (2)0.0065 (19)0.0159 (19)0.0039 (18)
N10.041 (2)0.036 (2)0.024 (2)0.0046 (18)0.0091 (19)0.0021 (17)
C10.023 (2)0.056 (3)0.040 (3)0.005 (2)0.000 (2)0.009 (2)
C20.048 (3)0.059 (4)0.033 (3)0.004 (3)0.017 (2)0.010 (2)
C30.036 (3)0.037 (3)0.034 (3)0.004 (2)0.000 (2)0.007 (2)
C40.023 (3)0.111 (5)0.051 (4)0.016 (3)0.005 (3)0.020 (3)
C50.049 (3)0.055 (3)0.042 (3)0.003 (2)0.009 (3)0.018 (2)
C60.038 (3)0.053 (3)0.026 (2)0.008 (2)0.000 (2)0.007 (2)
C70.034 (3)0.049 (3)0.054 (3)0.001 (2)0.006 (3)0.007 (3)
C80.041 (3)0.041 (3)0.029 (3)0.002 (2)0.002 (2)0.002 (2)
C90.047 (3)0.078 (4)0.032 (3)0.003 (3)0.010 (2)0.017 (3)
C100.075 (5)0.089 (5)0.025 (3)0.018 (4)0.010 (3)0.021 (3)
C110.070 (5)0.069 (4)0.038 (3)0.025 (4)0.007 (3)0.010 (3)
C120.055 (4)0.091 (5)0.049 (3)0.006 (3)0.027 (3)0.018 (3)
C130.062 (4)0.069 (4)0.034 (3)0.008 (3)0.000 (3)0.012 (3)
N20.035 (3)0.041 (2)0.032 (3)0.007 (2)0.001 (2)0.0051 (19)
C140.033 (3)0.088 (4)0.035 (3)0.020 (2)0.009 (2)0.016 (2)
C150.051 (4)0.058 (3)0.035 (3)0.008 (2)0.009 (3)0.015 (2)
C160.046 (3)0.043 (3)0.026 (2)0.004 (3)0.010 (2)0.002 (2)
C170.038 (3)0.058 (4)0.028 (3)0.000 (3)0.002 (2)0.004 (2)
C180.045 (3)0.061 (4)0.034 (3)0.003 (3)0.013 (3)0.016 (2)
C190.036 (3)0.059 (4)0.053 (4)0.007 (3)0.004 (3)0.002 (3)
C200.050 (4)0.062 (3)0.019 (2)0.003 (3)0.001 (2)0.011 (2)
C210.058 (4)0.046 (3)0.029 (3)0.010 (3)0.010 (3)0.004 (2)
C220.043 (4)0.072 (4)0.049 (4)0.004 (3)0.003 (3)0.016 (3)
C230.046 (4)0.088 (5)0.052 (3)0.003 (3)0.010 (3)0.006 (3)
C240.065 (4)0.069 (4)0.029 (3)0.005 (4)0.002 (3)0.001 (3)
C250.068 (5)0.077 (4)0.047 (4)0.011 (4)0.012 (3)0.011 (3)
C260.055 (4)0.077 (5)0.053 (4)0.009 (4)0.003 (3)0.003 (3)
C1000.038 (3)0.025 (2)0.046 (3)0.006 (2)0.019 (2)0.0024 (19)
C1010.047 (3)0.039 (3)0.047 (3)0.002 (2)0.022 (2)0.003 (2)
C1020.075 (4)0.059 (4)0.043 (3)0.006 (3)0.023 (3)0.003 (2)
C1030.085 (5)0.064 (4)0.112 (6)0.042 (4)0.052 (5)0.025 (4)
C1040.090 (5)0.034 (3)0.123 (6)0.021 (3)0.054 (5)0.000 (3)
C1050.120 (7)0.061 (4)0.114 (6)0.011 (4)0.036 (5)0.055 (4)
C1060.061 (4)0.047 (3)0.061 (3)0.010 (3)0.000 (3)0.031 (3)
C2000.046 (3)0.037 (3)0.043 (3)0.004 (2)0.025 (2)0.009 (2)
C2010.040 (3)0.038 (3)0.038 (3)0.007 (2)0.014 (2)0.004 (2)
C2020.064 (4)0.058 (4)0.051 (3)0.013 (3)0.019 (3)0.011 (3)
C2030.103 (5)0.077 (4)0.066 (4)0.010 (4)0.042 (4)0.031 (3)
C2040.052 (3)0.065 (4)0.121 (5)0.006 (3)0.050 (3)0.023 (4)
C2050.059 (4)0.062 (4)0.110 (6)0.016 (3)0.041 (4)0.004 (4)
C2060.052 (3)0.054 (3)0.046 (3)0.005 (3)0.019 (3)0.003 (3)
C3000.042 (3)0.057 (4)0.045 (3)0.009 (3)0.019 (3)0.003 (3)
C3010.037 (3)0.034 (3)0.044 (3)0.003 (2)0.016 (2)0.001 (2)
C3020.047 (3)0.048 (3)0.063 (4)0.014 (2)0.023 (3)0.016 (3)
C3030.082 (5)0.055 (4)0.087 (5)0.017 (4)0.035 (4)0.025 (4)
C3040.124 (8)0.054 (4)0.172 (10)0.012 (5)0.081 (8)0.023 (5)
C3050.057 (4)0.066 (4)0.127 (7)0.001 (3)0.018 (4)0.021 (4)
C3060.056 (4)0.056 (4)0.098 (5)0.011 (3)0.021 (4)0.005 (3)
C4000.040 (3)0.037 (3)0.040 (3)0.001 (2)0.011 (2)0.013 (2)
C4010.041 (3)0.033 (3)0.041 (3)0.006 (2)0.018 (2)0.007 (2)
C4020.044 (4)0.056 (4)0.062 (4)0.012 (3)0.010 (3)0.009 (3)
C4030.048 (4)0.057 (4)0.100 (6)0.011 (3)0.019 (4)0.010 (4)
C4040.140 (7)0.049 (4)0.094 (5)0.001 (4)0.081 (5)0.006 (4)
C4050.095 (6)0.077 (5)0.057 (4)0.007 (4)0.035 (4)0.006 (3)
C4060.062 (4)0.074 (4)0.042 (3)0.004 (3)0.023 (3)0.016 (3)
Geometric parameters (Å, º) top
Zn1—N12.019 (4)C16—C191.428 (8)
Zn1—O32.023 (4)C17—C181.363 (7)
Zn1—O52.046 (4)C19—C201.337 (8)
Zn1—O72.053 (4)C20—C211.472 (7)
Zn1—O12.067 (4)C21—C221.373 (9)
Zn1—Zn22.9731 (4)C21—C261.378 (10)
Zn2—O42.015 (5)C22—C231.327 (8)
Zn2—N22.035 (4)C23—C241.421 (9)
Zn2—O82.045 (4)C24—C251.390 (10)
Zn2—O22.055 (4)C25—C261.341 (9)
Zn2—O62.055 (4)C100—C1011.542 (7)
O1—C1001.265 (6)C101—C1021.298 (8)
O2—C1001.234 (6)C101—C1061.447 (7)
O3—C2001.234 (7)C102—C1031.376 (10)
O4—C2001.254 (6)C103—C1041.340 (12)
O5—C3001.278 (7)C104—C1051.316 (12)
O6—C3001.239 (7)C105—C1061.419 (10)
O7—C4001.263 (7)C200—C2011.508 (8)
O8—C4001.261 (7)C201—C2021.360 (8)
N1—C51.272 (8)C201—C2061.361 (8)
N1—C11.320 (7)C202—C2031.438 (10)
C1—C21.379 (7)C203—C2041.366 (10)
C2—C31.378 (8)C204—C2051.363 (11)
C3—C41.317 (9)C205—C2061.401 (10)
C3—C61.492 (7)C300—C3011.454 (8)
C4—C51.416 (8)C301—C3061.280 (8)
C6—C71.304 (8)C301—C3021.440 (8)
C7—C81.461 (7)C302—C3031.389 (10)
C8—C91.374 (8)C303—C3041.391 (14)
C8—C131.390 (9)C304—C3051.374 (14)
C9—C101.419 (8)C305—C3061.360 (11)
C10—C111.316 (11)C400—C4011.482 (9)
C11—C121.327 (10)C401—C4061.397 (8)
C12—C131.415 (8)C401—C4021.399 (8)
N2—C181.342 (7)C402—C4031.374 (11)
N2—C141.350 (8)C403—C4041.386 (11)
C14—C151.341 (9)C404—C4051.357 (11)
C15—C161.447 (8)C405—C4061.299 (11)
C16—C171.369 (8)
N1—Zn1—O3103.34 (18)C15—C14—N2122.4 (6)
N1—Zn1—O5102.97 (17)C14—C15—C16120.2 (6)
O3—Zn1—O586.96 (19)C17—C16—C19125.2 (6)
N1—Zn1—O797.51 (18)C17—C16—C15115.2 (5)
O3—Zn1—O7159.13 (17)C19—C16—C15119.6 (6)
O5—Zn1—O789.38 (18)C18—C17—C16120.9 (6)
N1—Zn1—O197.35 (16)N2—C18—C17123.3 (6)
O3—Zn1—O189.57 (17)C20—C19—C16124.3 (6)
O5—Zn1—O1159.65 (16)C19—C20—C21125.0 (6)
O7—Zn1—O186.74 (18)C22—C21—C26115.8 (6)
N1—Zn1—Zn2173.15 (12)C22—C21—C20124.8 (6)
O3—Zn1—Zn277.46 (11)C26—C21—C20119.3 (6)
O5—Zn1—Zn283.84 (11)C23—C22—C21121.7 (7)
O7—Zn1—Zn281.73 (11)C22—C23—C24121.8 (7)
O1—Zn1—Zn275.83 (11)C25—C24—C23117.0 (6)
O4—Zn2—N298.50 (19)C26—C25—C24118.3 (7)
O4—Zn2—O8158.52 (16)C25—C26—C21125.3 (7)
N2—Zn2—O8102.95 (19)O2—C100—O1128.0 (4)
O4—Zn2—O289.28 (18)O2—C100—C101115.7 (4)
N2—Zn2—O2102.31 (17)O1—C100—C101116.3 (4)
O8—Zn2—O287.12 (18)C102—C101—C106119.6 (5)
O4—Zn2—O686.67 (19)C102—C101—C100123.4 (5)
N2—Zn2—O699.31 (17)C106—C101—C100116.6 (5)
O8—Zn2—O688.92 (19)C101—C102—C103122.4 (6)
O2—Zn2—O6158.36 (15)C104—C103—C102121.5 (7)
O4—Zn2—Zn181.07 (11)C105—C104—C103116.7 (7)
N2—Zn2—Zn1173.85 (14)C104—C105—C106126.1 (7)
O8—Zn2—Zn177.49 (11)C105—C106—C101113.2 (6)
O2—Zn2—Zn183.83 (10)O3—C200—O4126.5 (5)
O6—Zn2—Zn174.55 (11)O3—C200—C201117.1 (5)
C100—O1—Zn1130.2 (3)O4—C200—C201116.5 (5)
C100—O2—Zn2120.8 (3)C202—C201—C206118.5 (6)
C200—O3—Zn1129.7 (4)C202—C201—C200120.5 (5)
C200—O4—Zn2124.7 (4)C206—C201—C200120.9 (5)
C300—O5—Zn1122.4 (4)C201—C202—C203120.8 (6)
C300—O6—Zn2135.4 (4)C204—C203—C202118.5 (6)
C400—O7—Zn1124.7 (4)C205—C204—C203121.1 (6)
C400—O8—Zn2130.9 (4)C204—C205—C206118.9 (6)
C5—N1—C1115.4 (5)C201—C206—C205122.2 (6)
C5—N1—Zn1121.9 (4)O6—C300—O5122.4 (6)
C1—N1—Zn1122.6 (4)O6—C300—C301119.0 (5)
N1—C1—C2123.0 (5)O5—C300—C301118.5 (5)
C3—C2—C1119.9 (5)C306—C301—C302117.7 (6)
C4—C3—C2117.2 (5)C306—C301—C300122.6 (6)
C4—C3—C6121.0 (5)C302—C301—C300119.7 (5)
C2—C3—C6121.8 (5)C303—C302—C301118.6 (6)
C3—C4—C5118.1 (6)C302—C303—C304117.5 (8)
N1—C5—C4125.4 (6)C305—C304—C303123.8 (8)
C7—C6—C3127.6 (6)C306—C305—C304114.0 (8)
C6—C7—C8129.6 (6)C301—C306—C305128.2 (7)
C9—C8—C13118.9 (5)O8—C400—O7124.7 (6)
C9—C8—C7120.2 (6)O8—C400—C401118.4 (5)
C13—C8—C7120.9 (6)O7—C400—C401116.8 (5)
C8—C9—C10118.1 (6)C406—C401—C402118.6 (6)
C11—C10—C9122.3 (6)C406—C401—C400120.0 (5)
C10—C11—C12120.7 (6)C402—C401—C400121.4 (6)
C11—C12—C13120.2 (7)C403—C402—C401118.7 (6)
C8—C13—C12119.6 (6)C402—C403—C404120.4 (7)
C18—N2—C14117.2 (5)C405—C404—C403118.7 (7)
C18—N2—Zn2121.9 (4)C406—C405—C404122.7 (7)
C14—N2—Zn2120.7 (4)C405—C406—C401120.8 (7)
(e219) top
Crystal data top
C54H42N2O8Zn2F(000) = 2016
Mr = 977.64Dx = 1.454 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 24.746 (2) ÅCell parameters from 9598 reflections
b = 12.2117 (10) Åθ = 2.5–28.1°
c = 15.6525 (13) ŵ = 1.13 mm1
β = 109.192 (1)°T = 170 K
V = 4467.2 (6) Å3Block, colourless
Z = 40.38 × 0.34 × 0.26 mm
Data collection top
Bruker APEX-II CCD
diffractometer
10256 independent reflections
Radiation source: fine-focus sealed tube8188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
h = 3232
Tmin = 0.673, Tmax = 0.757k = 1515
29076 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
10256 reflectionsΔρmax = 0.34 e Å3
595 parametersΔρmin = 0.21 e Å3
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.34 (3)
Crystal data top
C54H42N2O8Zn2V = 4467.2 (6) Å3
Mr = 977.64Z = 4
Monoclinic, CcMo Kα radiation
a = 24.746 (2) ŵ = 1.13 mm1
b = 12.2117 (10) ÅT = 170 K
c = 15.6525 (13) Å0.38 × 0.34 × 0.26 mm
β = 109.192 (1)°
Data collection top
Bruker APEX-II CCD
diffractometer
10256 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
8188 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.757Rint = 0.031
29076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.34 e Å3
S = 1.05Δρmin = 0.21 e Å3
10256 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
595 parametersAbsolute structure parameter: 0.34 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The single crystals of this compounds show 2nd order NLO (SHG) properties. Hence it is refined in Cc instead of C2/c for which please refer Angewandte Chemie, 2014, 53 (23) 5907, CCDC No. 979138.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.331818 (10)0.50317 (3)0.254604 (14)0.02851 (12)
Zn20.240713 (10)0.49674 (3)0.074835 (13)0.02835 (13)
O10.28707 (13)0.6473 (2)0.2481 (2)0.0477 (9)
O20.21673 (13)0.6440 (2)0.11376 (19)0.0411 (8)
O30.26811 (12)0.4212 (3)0.2811 (2)0.0437 (8)
O40.19842 (13)0.4191 (3)0.1481 (2)0.0488 (9)
O50.35560 (14)0.3555 (3)0.2151 (2)0.0446 (8)
O60.28604 (13)0.3539 (3)0.0833 (2)0.0463 (9)
O70.37501 (14)0.5810 (3)0.1818 (2)0.0450 (9)
O80.30492 (13)0.5795 (3)0.0477 (2)0.0407 (8)
N10.39028 (14)0.5255 (3)0.3790 (2)0.0283 (8)
C10.37907 (17)0.5773 (3)0.4463 (3)0.0363 (10)
H10.34120.60330.43470.044*
C20.41739 (17)0.5961 (4)0.5301 (2)0.0358 (11)
H20.40670.63420.57490.043*
C30.47254 (17)0.5575 (3)0.5474 (2)0.0320 (10)
C40.48505 (19)0.5076 (4)0.4809 (4)0.0548 (15)
H40.52320.48500.48960.066*
C50.4416 (2)0.4879 (3)0.3971 (3)0.0429 (12)
H50.45060.44560.35260.052*
C60.51794 (18)0.5756 (3)0.6355 (3)0.0355 (11)
H60.55510.54800.64280.043*
C70.51028 (17)0.6275 (4)0.7047 (3)0.0374 (11)
H70.47270.65290.69730.045*
C80.55473 (17)0.6497 (3)0.7927 (2)0.0316 (10)
C90.53973 (19)0.7084 (4)0.8566 (3)0.0440 (12)
H90.50150.73320.84420.053*
C100.5826 (2)0.7319 (4)0.9425 (3)0.0513 (13)
H100.57280.77220.98710.062*
C110.6362 (2)0.6969 (4)0.9591 (3)0.0516 (14)
H110.66450.71491.01500.062*
C120.6511 (2)0.6350 (4)0.8965 (3)0.0494 (13)
H120.68890.60750.91000.059*
C130.6097 (2)0.6136 (4)0.8134 (3)0.0508 (14)
H130.62010.57260.76960.061*
N20.18166 (16)0.4761 (3)0.0499 (2)0.0313 (9)
C140.1275 (2)0.5111 (4)0.0694 (3)0.0445 (13)
H140.11730.54570.02250.053*
C150.0867 (2)0.5006 (3)0.1501 (3)0.0370 (11)
H150.05010.53270.16080.044*
C160.09900 (17)0.4403 (4)0.2204 (3)0.0323 (10)
C170.15484 (18)0.4049 (4)0.1982 (3)0.0362 (11)
H170.16580.36620.24260.043*
C180.19579 (18)0.4228 (4)0.1145 (3)0.0355 (11)
H180.23380.39750.10290.043*
C190.05553 (19)0.4225 (4)0.3066 (3)0.0411 (12)
H190.01830.44850.31260.049*
C200.06161 (19)0.3739 (4)0.3785 (3)0.0387 (11)
H200.09920.35010.37250.046*
C210.01822 (18)0.3521 (4)0.4654 (3)0.0383 (11)
C220.03896 (19)0.3860 (4)0.4856 (3)0.0442 (12)
H220.05060.42550.44230.053*
C230.0776 (2)0.3615 (5)0.5684 (4)0.0673 (18)
H230.11600.38570.58190.081*
C240.0632 (2)0.3033 (4)0.6327 (3)0.0487 (13)
H240.09060.28790.69010.058*
C250.0073 (2)0.2679 (4)0.6105 (3)0.0531 (14)
H250.00400.22580.65280.064*
C260.0307 (2)0.2921 (4)0.5314 (3)0.0508 (14)
H260.06880.26660.51900.061*
C1000.24700 (15)0.6897 (3)0.1853 (3)0.0300 (9)
C1010.23368 (17)0.8091 (3)0.1943 (3)0.0335 (10)
C1020.1925 (2)0.8638 (4)0.1335 (3)0.0469 (12)
H1020.16890.82590.08170.056*
C1030.1825 (2)0.9751 (5)0.1426 (4)0.0622 (16)
H1030.15101.01130.10010.075*
C1040.2195 (3)1.0309 (4)0.2152 (4)0.0732 (17)
H1040.21461.10740.22070.088*
C1050.2629 (3)0.9784 (5)0.2789 (5)0.079 (2)
H1050.28791.01840.32820.095*
C1060.2705 (2)0.8666 (4)0.2719 (3)0.0517 (14)
H1060.29950.82870.31750.062*
C2000.21904 (17)0.3918 (3)0.2308 (3)0.0363 (10)
C2010.18557 (16)0.3190 (3)0.2679 (3)0.0309 (9)
C2020.20466 (19)0.2890 (4)0.3551 (3)0.0451 (12)
H2020.23960.31970.39290.054*
C2030.1757 (2)0.2139 (4)0.3942 (3)0.0548 (13)
H2030.19010.19380.45620.066*
C2040.1236 (2)0.1706 (4)0.3341 (4)0.0602 (14)
H2040.10270.11850.35590.072*
C2050.1033 (2)0.2027 (4)0.2467 (4)0.0573 (15)
H2050.06800.17430.20800.069*
C2060.1337 (2)0.2766 (4)0.2134 (3)0.0452 (12)
H2060.11870.29880.15190.054*
C3000.32572 (17)0.3082 (4)0.1440 (3)0.0376 (11)
C3010.33696 (17)0.1911 (3)0.1300 (3)0.0322 (10)
C3020.38305 (19)0.1376 (4)0.1966 (3)0.0420 (11)
H3020.40860.17750.24530.050*
C3030.3894 (3)0.0272 (5)0.1883 (5)0.0640 (17)
H3030.41900.00990.23360.077*
C3040.3555 (3)0.0302 (5)0.1188 (5)0.080 (2)
H3040.36050.10690.11480.095*
C3050.3131 (3)0.0236 (5)0.0531 (5)0.076 (2)
H3050.28970.01520.00170.092*
C3060.3046 (2)0.1343 (5)0.0618 (4)0.0564 (14)
H3060.27440.17000.01670.068*
C4000.35261 (17)0.6072 (3)0.1010 (3)0.0302 (9)
C4010.38825 (17)0.6821 (4)0.0623 (3)0.0315 (9)
C4020.43969 (18)0.7233 (4)0.1175 (3)0.0414 (12)
H4020.45450.70260.17940.050*
C4030.4695 (2)0.7958 (4)0.0811 (4)0.0587 (16)
H4030.50510.82490.11820.070*
C4040.4475 (3)0.8258 (5)0.0096 (4)0.0662 (16)
H4040.46760.87480.03540.079*
C4050.3982 (3)0.7847 (5)0.0583 (4)0.0706 (18)
H4050.38340.80770.11960.085*
C4060.3667 (2)0.7138 (4)0.0303 (3)0.0465 (13)
H4060.33170.68570.07020.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0295 (3)0.0295 (3)0.0211 (2)0.00175 (17)0.00095 (19)0.00122 (16)
Zn20.0288 (3)0.0304 (3)0.0207 (2)0.00266 (17)0.00117 (19)0.00080 (17)
O10.0510 (17)0.0313 (16)0.0508 (18)0.0071 (14)0.0031 (15)0.0003 (14)
O20.0507 (16)0.0342 (16)0.0372 (15)0.0021 (13)0.0127 (13)0.0102 (13)
O30.0371 (15)0.051 (2)0.0428 (16)0.0106 (14)0.0127 (13)0.0002 (14)
O40.0502 (18)0.058 (2)0.0371 (15)0.0087 (16)0.0125 (14)0.0046 (15)
O50.0471 (17)0.0382 (18)0.0446 (17)0.0014 (14)0.0098 (14)0.0097 (14)
O60.0399 (16)0.0425 (19)0.0487 (19)0.0130 (15)0.0040 (14)0.0015 (15)
O70.0508 (18)0.051 (2)0.0327 (15)0.0088 (16)0.0139 (14)0.0126 (14)
O80.0364 (16)0.0468 (19)0.0382 (16)0.0096 (14)0.0115 (13)0.0012 (14)
N10.0264 (16)0.0302 (16)0.0230 (16)0.0017 (13)0.0012 (13)0.0028 (13)
C10.0277 (18)0.046 (2)0.036 (2)0.0015 (17)0.0118 (16)0.0028 (18)
C20.033 (2)0.049 (3)0.0214 (17)0.0002 (18)0.0027 (16)0.0094 (17)
C30.036 (2)0.027 (2)0.0258 (19)0.0018 (16)0.0002 (16)0.0049 (15)
C40.0209 (19)0.084 (3)0.048 (3)0.0121 (19)0.0047 (18)0.011 (2)
C50.042 (2)0.049 (3)0.024 (2)0.0008 (18)0.0083 (17)0.0125 (16)
C60.033 (2)0.042 (2)0.0219 (17)0.0017 (18)0.0039 (15)0.0065 (17)
C70.0282 (19)0.046 (2)0.029 (2)0.0061 (18)0.0025 (16)0.0065 (18)
C80.040 (2)0.034 (2)0.0182 (16)0.0036 (17)0.0050 (15)0.0016 (15)
C90.042 (2)0.056 (3)0.0259 (19)0.004 (2)0.0002 (17)0.0090 (19)
C100.063 (3)0.067 (3)0.0197 (19)0.020 (2)0.0075 (19)0.0140 (19)
C110.049 (3)0.062 (3)0.030 (2)0.021 (2)0.0054 (19)0.004 (2)
C120.037 (2)0.057 (3)0.040 (2)0.003 (2)0.006 (2)0.009 (2)
C130.055 (3)0.057 (3)0.029 (2)0.005 (2)0.0019 (19)0.013 (2)
N20.0360 (19)0.0294 (17)0.0255 (18)0.0074 (15)0.0060 (15)0.0077 (14)
C140.031 (2)0.061 (3)0.042 (3)0.0136 (18)0.0118 (18)0.017 (2)
C150.041 (2)0.044 (2)0.0237 (19)0.0074 (16)0.0080 (16)0.0139 (15)
C160.030 (2)0.041 (2)0.0252 (19)0.0035 (18)0.0072 (16)0.0005 (17)
C170.038 (2)0.044 (3)0.028 (2)0.0015 (19)0.0125 (17)0.0053 (18)
C180.029 (2)0.048 (3)0.0203 (17)0.0041 (18)0.0040 (15)0.0077 (17)
C190.031 (2)0.049 (3)0.041 (2)0.001 (2)0.0081 (18)0.003 (2)
C200.044 (2)0.042 (2)0.026 (2)0.005 (2)0.0057 (18)0.0020 (19)
C210.038 (2)0.036 (2)0.033 (2)0.0091 (19)0.0010 (18)0.0034 (18)
C220.034 (2)0.054 (3)0.038 (2)0.006 (2)0.0033 (18)0.009 (2)
C230.047 (3)0.092 (4)0.047 (3)0.008 (3)0.006 (2)0.014 (3)
C240.057 (3)0.054 (3)0.023 (2)0.002 (2)0.004 (2)0.0019 (19)
C250.055 (3)0.061 (3)0.037 (2)0.009 (2)0.006 (2)0.008 (2)
C260.043 (3)0.067 (3)0.041 (2)0.010 (2)0.013 (2)0.002 (2)
C1000.0366 (19)0.0185 (16)0.038 (2)0.0076 (14)0.0166 (17)0.0032 (15)
C1010.0372 (19)0.028 (2)0.038 (2)0.0026 (17)0.0161 (16)0.0047 (16)
C1020.061 (3)0.044 (3)0.038 (2)0.010 (2)0.021 (2)0.0039 (19)
C1030.061 (3)0.052 (3)0.082 (4)0.029 (2)0.035 (3)0.016 (3)
C1040.093 (4)0.033 (2)0.108 (4)0.006 (3)0.054 (3)0.027 (3)
C1050.069 (4)0.045 (3)0.113 (5)0.002 (3)0.017 (4)0.031 (3)
C1060.047 (2)0.040 (2)0.058 (3)0.004 (2)0.003 (2)0.027 (2)
C2000.037 (2)0.038 (2)0.0301 (19)0.0174 (16)0.0063 (16)0.0022 (16)
C2010.0336 (18)0.0205 (18)0.038 (2)0.0033 (16)0.0110 (16)0.0025 (16)
C2020.045 (2)0.045 (2)0.047 (2)0.0088 (19)0.0169 (19)0.0074 (19)
C2030.075 (3)0.054 (3)0.041 (2)0.010 (2)0.027 (2)0.0130 (19)
C2040.057 (3)0.038 (3)0.100 (4)0.003 (2)0.045 (3)0.009 (2)
C2050.046 (2)0.060 (3)0.074 (3)0.016 (2)0.029 (2)0.010 (3)
C2060.046 (2)0.048 (3)0.039 (2)0.000 (2)0.011 (2)0.001 (2)
C3000.032 (2)0.047 (2)0.037 (2)0.0110 (18)0.0146 (18)0.0021 (19)
C3010.032 (2)0.031 (2)0.037 (2)0.0046 (17)0.0155 (17)0.0021 (17)
C3020.041 (2)0.041 (3)0.046 (2)0.0050 (19)0.0171 (19)0.007 (2)
C3030.077 (4)0.043 (3)0.080 (4)0.015 (3)0.038 (3)0.027 (3)
C3040.075 (4)0.039 (3)0.137 (6)0.009 (3)0.052 (4)0.020 (3)
C3050.080 (4)0.056 (3)0.099 (5)0.023 (3)0.037 (4)0.040 (3)
C3060.044 (3)0.050 (3)0.070 (3)0.003 (2)0.011 (2)0.002 (3)
C4000.038 (2)0.0233 (18)0.037 (2)0.0111 (15)0.0228 (16)0.0046 (15)
C4010.036 (2)0.036 (2)0.0279 (19)0.0023 (18)0.0177 (16)0.0012 (17)
C4020.032 (2)0.043 (3)0.049 (3)0.0036 (19)0.014 (2)0.002 (2)
C4030.042 (3)0.041 (3)0.089 (4)0.007 (2)0.016 (3)0.002 (3)
C4040.090 (4)0.053 (3)0.077 (3)0.005 (3)0.057 (3)0.012 (3)
C4050.089 (4)0.075 (4)0.059 (3)0.021 (3)0.040 (3)0.022 (3)
C4060.054 (3)0.062 (3)0.0245 (19)0.004 (2)0.0143 (18)0.0122 (19)
Geometric parameters (Å, º) top
Zn1—O32.022 (3)C16—C191.439 (6)
Zn1—N12.026 (3)C17—C181.385 (5)
Zn1—O72.036 (3)C19—C201.323 (6)
Zn1—O52.055 (3)C20—C211.454 (6)
Zn1—O12.064 (3)C21—C261.381 (7)
Zn1—Zn22.9725 (3)C21—C221.407 (6)
Zn2—O42.025 (3)C22—C231.366 (6)
Zn2—N22.034 (3)C23—C241.370 (7)
Zn2—O82.042 (3)C24—C251.382 (7)
Zn2—O22.048 (3)C25—C261.319 (6)
Zn2—O62.054 (3)C100—C1011.512 (5)
O1—C1001.255 (4)C101—C1021.323 (6)
O2—C1001.255 (4)C101—C1061.440 (5)
O3—C2001.262 (5)C102—C1031.397 (7)
O4—C2001.270 (5)C103—C1041.382 (8)
O5—C3001.256 (5)C104—C1051.362 (9)
O6—C3001.251 (5)C105—C1061.388 (7)
O7—C4001.244 (5)C200—C2011.459 (6)
O8—C4001.247 (5)C201—C2021.340 (6)
N1—C51.292 (6)C201—C2061.388 (6)
N1—C11.334 (5)C202—C2031.421 (7)
C1—C21.362 (5)C203—C2041.425 (7)
C2—C31.384 (6)C204—C2051.351 (8)
C3—C41.327 (7)C205—C2061.382 (7)
C3—C61.482 (5)C300—C3011.487 (6)
C4—C51.417 (6)C301—C3061.303 (6)
C6—C71.322 (6)C301—C3021.426 (6)
C7—C81.477 (5)C302—C3031.369 (8)
C8—C131.365 (6)C303—C3041.334 (9)
C8—C91.376 (6)C304—C3051.370 (10)
C9—C101.442 (6)C305—C3061.381 (8)
C10—C111.335 (7)C400—C4011.527 (5)
C11—C121.380 (7)C401—C4021.377 (6)
C12—C131.391 (6)C401—C4061.424 (6)
N2—C181.342 (5)C402—C4031.390 (8)
N2—C141.343 (6)C403—C4041.393 (8)
C14—C151.338 (7)C404—C4051.307 (8)
C15—C161.437 (6)C405—C4061.332 (8)
C16—C171.379 (6)
O3—Zn1—N1103.19 (13)C15—C14—N2124.8 (4)
O3—Zn1—O7159.05 (12)C14—C15—C16119.3 (4)
N1—Zn1—O797.75 (13)C17—C16—C15114.4 (4)
O3—Zn1—O586.95 (14)C17—C16—C19124.6 (4)
N1—Zn1—O5102.85 (13)C15—C16—C19121.0 (4)
O7—Zn1—O589.21 (14)C16—C17—C18123.4 (4)
O3—Zn1—O189.47 (13)N2—C18—C17119.9 (4)
N1—Zn1—O197.76 (13)C20—C19—C16127.3 (4)
O7—Zn1—O186.90 (14)C19—C20—C21128.5 (4)
O5—Zn1—O1159.35 (12)C26—C21—C22116.3 (4)
O3—Zn1—Zn277.35 (8)C26—C21—C20121.3 (4)
N1—Zn1—Zn2173.16 (10)C22—C21—C20122.4 (4)
O7—Zn1—Zn281.76 (9)C23—C22—C21119.2 (5)
O5—Zn1—Zn283.97 (8)C22—C23—C24122.7 (5)
O1—Zn1—Zn275.40 (8)C23—C24—C25117.3 (4)
O4—Zn2—N298.28 (14)C26—C25—C24120.7 (5)
O4—Zn2—O8158.73 (12)C25—C26—C21123.8 (5)
N2—Zn2—O8102.97 (14)O2—C100—O1127.0 (3)
O4—Zn2—O289.33 (13)O2—C100—C101115.3 (3)
N2—Zn2—O2101.96 (13)O1—C100—C101117.7 (3)
O8—Zn2—O287.05 (13)C102—C101—C106119.0 (4)
O4—Zn2—O686.50 (14)C102—C101—C100124.0 (4)
N2—Zn2—O699.29 (13)C106—C101—C100116.9 (4)
O8—Zn2—O689.32 (13)C101—C102—C103122.6 (5)
O2—Zn2—O6158.71 (11)C104—C103—C102118.1 (5)
O4—Zn2—Zn181.28 (8)C105—C104—C103121.4 (5)
N2—Zn2—Zn1173.82 (11)C104—C105—C106120.0 (6)
O8—Zn2—Zn177.51 (8)C105—C106—C101118.8 (5)
O2—Zn2—Zn184.20 (8)O3—C200—O4122.9 (4)
O6—Zn2—Zn174.53 (8)O3—C200—C201118.7 (4)
C100—O1—Zn1131.5 (3)O4—C200—C201118.3 (4)
C100—O2—Zn2120.6 (2)C202—C201—C206117.9 (4)
C200—O3—Zn1131.9 (3)C202—C201—C200121.0 (4)
C200—O4—Zn2126.2 (3)C206—C201—C200121.0 (4)
C300—O5—Zn1121.8 (3)C201—C202—C203123.8 (4)
C300—O6—Zn2134.7 (3)C202—C203—C204115.5 (4)
C400—O7—Zn1123.3 (3)C205—C204—C203121.0 (5)
C400—O8—Zn2128.7 (3)C204—C205—C206120.3 (5)
C5—N1—C1116.1 (3)C205—C206—C201121.4 (4)
C5—N1—Zn1120.2 (3)O6—C300—O5123.7 (4)
C1—N1—Zn1123.7 (3)O6—C300—C301117.1 (4)
N1—C1—C2125.5 (4)O5—C300—C301119.2 (4)
C1—C2—C3117.4 (4)C306—C301—C302118.9 (4)
C4—C3—C2118.2 (4)C306—C301—C300122.6 (4)
C4—C3—C6119.8 (4)C302—C301—C300118.4 (4)
C2—C3—C6121.9 (4)C303—C302—C301118.1 (5)
C3—C4—C5120.2 (4)C304—C303—C302122.2 (6)
N1—C5—C4122.3 (4)C303—C304—C305118.7 (6)
C7—C6—C3124.5 (4)C304—C305—C306120.0 (6)
C6—C7—C8126.0 (4)C301—C306—C305121.9 (5)
C13—C8—C9118.8 (4)O7—C400—O8128.1 (4)
C13—C8—C7122.7 (4)O7—C400—C401115.8 (3)
C9—C8—C7118.4 (4)O8—C400—C401116.1 (4)
C8—C9—C10119.3 (4)C402—C401—C406119.9 (4)
C11—C10—C9119.8 (4)C402—C401—C400120.3 (4)
C10—C11—C12121.2 (4)C406—C401—C400119.7 (4)
C11—C12—C13118.7 (5)C401—C402—C403118.8 (5)
C8—C13—C12122.1 (5)C402—C403—C404120.2 (5)
C18—N2—C14118.1 (4)C405—C404—C403118.1 (5)
C18—N2—Zn2120.0 (3)C404—C405—C406126.3 (6)
C14—N2—Zn2121.8 (3)C405—C406—C401116.6 (5)
(e257) top
Crystal data top
C54H42N2O8Zn2F(000) = 2016
Mr = 977.64Dx = 1.442 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 24.817 (13) ÅCell parameters from 956 reflections
b = 12.241 (7) Åθ = 2.5–27.2°
c = 15.714 (8) ŵ = 1.13 mm1
β = 109.390 (11)°T = 295 K
V = 4503 (4) Å3Block, colourless
Z = 40.56 × 0.36 × 0.26 mm
Data collection top
Bruker APEX-II CCD
diffractometer
10299 independent reflections
Radiation source: fine-focus sealed tube8235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
h = 3232
Tmin = 0.571, Tmax = 0.759k = 1515
28951 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0831P)2 + 12.724P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
10299 reflectionsΔρmax = 0.67 e Å3
325 parametersΔρmin = 0.75 e Å3
66 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.41 (3)
Crystal data top
C54H42N2O8Zn2V = 4503 (4) Å3
Mr = 977.64Z = 4
Monoclinic, CcMo Kα radiation
a = 24.817 (13) ŵ = 1.13 mm1
b = 12.241 (7) ÅT = 295 K
c = 15.714 (8) Å0.56 × 0.36 × 0.26 mm
β = 109.390 (11)°
Data collection top
Bruker APEX-II CCD
diffractometer
10299 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
8235 reflections with I > 2σ(I)
Tmin = 0.571, Tmax = 0.759Rint = 0.026
28951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0831P)2 + 12.724P]
where P = (Fo2 + 2Fc2)/3
S = 1.05Δρmax = 0.67 e Å3
10299 reflectionsΔρmin = 0.75 e Å3
325 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
66 restraintsAbsolute structure parameter: 0.41 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The single crystals of this compounds show 2nd order NLO (SHG) properties. Hence it is refined in Cc instead of C2/c for which please refer Angewandte Chemie, 2014, 53(230 5907, CCDC No. 979138. Further due to non-centrosymmetric space group, anisotropic refinements of C atoms gave NPD's and hence isotropic thermal parameters were for all the C atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.33178 (2)0.50332 (5)0.25491 (3)0.0344 (2)
Zn20.24100 (2)0.49643 (5)0.07502 (3)0.0344 (2)
O10.2862 (3)0.6453 (5)0.2446 (4)0.0575 (15)
O20.2173 (3)0.6428 (4)0.1140 (4)0.0540 (14)
O30.2686 (2)0.4209 (5)0.2812 (4)0.0494 (13)
O40.1994 (3)0.4172 (5)0.1462 (3)0.0556 (15)
O50.3556 (3)0.3557 (4)0.2153 (4)0.0487 (13)
O60.2855 (2)0.3524 (4)0.0802 (4)0.0542 (14)
O70.3750 (3)0.5800 (5)0.1803 (4)0.0540 (13)
O80.3057 (3)0.5794 (5)0.0488 (3)0.0523 (14)
N10.3906 (3)0.5263 (5)0.3779 (4)0.0394 (14)
C10.3781 (3)0.5766 (6)0.4446 (5)0.0433 (17)*
H10.34140.60440.43270.052*
C20.4167 (3)0.5892 (5)0.5294 (4)0.0408 (15)*
H20.40490.61880.57490.049*
C30.4724 (3)0.5586 (6)0.5482 (5)0.0396 (16)*
C40.4838 (3)0.4966 (4)0.4836 (4)0.0398 (14)*
H40.51940.46400.49520.048*
C50.4418 (3)0.4832 (6)0.4012 (5)0.0479 (18)*
H50.45040.44020.35860.058*
C60.5166 (4)0.5766 (7)0.6362 (5)0.0481 (18)*
H60.55330.55170.64310.058*
C70.5089 (3)0.6257 (6)0.7077 (5)0.0463 (17)*
H70.47200.64630.70310.056*
C80.5547 (3)0.6488 (6)0.7924 (5)0.0444 (17)*
C90.5405 (4)0.7087 (6)0.8566 (5)0.056 (2)*
H90.50320.73330.84290.067*
C100.5791 (3)0.7332 (7)0.9393 (5)0.057 (2)*
H100.56800.77400.98060.068*
C110.6338 (4)0.6973 (7)0.9606 (6)0.065 (2)*
H110.66100.71641.01540.078*
C120.6488 (4)0.6319 (7)0.8998 (6)0.067 (2)*
H120.68490.60060.91620.081*
C130.6098 (3)0.6132 (7)0.8146 (5)0.0537 (19)*
H130.62130.57590.77200.064*
N20.1829 (2)0.4753 (5)0.0501 (4)0.0318 (12)
C140.1279 (3)0.5032 (5)0.0644 (5)0.0457 (17)*
H140.11850.53580.01780.055*
C150.0851 (3)0.4850 (5)0.1455 (5)0.0532 (18)*
H150.04740.50140.15230.064*
C160.0997 (3)0.4408 (6)0.2189 (4)0.0380 (15)*
C170.1553 (3)0.3995 (6)0.1985 (4)0.0441 (16)*
H170.16510.35650.23990.053*
C180.1951 (3)0.4240 (6)0.1158 (4)0.0417 (16)*
H180.23280.40330.10550.050*
C190.0548 (3)0.4223 (6)0.3058 (5)0.0426 (16)*
H190.01850.44780.31160.051*
C200.0610 (3)0.3735 (6)0.3758 (5)0.0442 (16)*
H200.09760.34810.36790.053*
C210.0189 (3)0.3525 (5)0.4649 (5)0.0409 (16)*
C220.0383 (4)0.3843 (7)0.4826 (6)0.059 (2)*
H220.04880.42280.43950.071*
C230.0789 (4)0.3576 (6)0.5646 (5)0.060 (2)*
H230.11690.37570.57510.072*
C240.0640 (3)0.3050 (6)0.6304 (5)0.0501 (18)*
H240.09130.29110.68640.060*
C250.0095 (4)0.2736 (7)0.6132 (6)0.065 (2)*
H250.00050.23590.65710.078*
C260.0326 (4)0.2968 (7)0.5300 (5)0.057 (2)*
H260.07000.27390.51940.068*
C1000.2466 (3)0.6891 (6)0.1849 (5)0.0442 (17)*
C1010.2343 (3)0.8081 (6)0.1955 (4)0.0403 (16)*
C1020.1908 (3)0.8597 (6)0.1324 (5)0.053 (2)*
H1020.16720.81680.08600.064*
C1030.1783 (4)0.9675 (7)0.1303 (6)0.068 (2)*
H1030.14810.99850.08450.082*
C1040.2134 (4)1.0283 (8)0.2011 (5)0.074 (2)*
H1040.20611.10250.20390.088*
C1050.2593 (4)0.9821 (7)0.2685 (6)0.073 (2)*
H1050.28231.02390.31630.087*
C1060.2698 (3)0.8707 (6)0.2619 (5)0.0564 (18)*
H1060.30170.83890.30380.068*
C2000.2188 (3)0.3912 (6)0.2286 (5)0.0418 (15)*
C2010.1859 (3)0.3192 (6)0.2662 (4)0.0397 (15)*
C2020.2049 (4)0.2857 (6)0.3565 (5)0.054 (2)*
H2020.23970.31110.39540.065*
C2030.1729 (4)0.2160 (7)0.3881 (6)0.069 (2)*
H2030.18490.19660.44880.083*
C2040.1202 (3)0.1727 (7)0.3261 (5)0.0650 (19)*
H2040.09900.12290.34670.078*
C2050.1010 (3)0.2048 (6)0.2363 (5)0.0613 (19)*
H2050.06710.17800.19570.074*
C2060.1335 (4)0.2761 (7)0.2110 (5)0.055 (2)*
H2060.12020.29940.15120.066*
C3000.3253 (3)0.3096 (5)0.1439 (5)0.0360 (14)*
C3010.3374 (3)0.1923 (6)0.1324 (4)0.0409 (16)*
C3020.3810 (3)0.1356 (6)0.1973 (5)0.055 (2)*
H3020.40530.17010.24830.066*
C3030.3864 (4)0.0219 (6)0.1810 (5)0.0626 (19)*
H3030.41530.01880.22170.075*
C3040.3496 (3)0.0277 (8)0.1062 (5)0.072 (2)*
H3040.35180.10300.10010.086*
C3050.3100 (4)0.0293 (8)0.0405 (7)0.081 (3)*
H3050.28690.00570.01140.097*
C3060.3046 (3)0.1394 (6)0.0520 (5)0.0575 (18)*
H3060.27890.17980.00610.069*
C4000.3519 (3)0.6064 (6)0.0997 (5)0.0367 (14)*
C4010.3877 (3)0.6826 (6)0.0627 (4)0.0375 (15)*
C4020.4391 (3)0.7229 (6)0.1171 (5)0.0489 (18)*
H4020.45520.70340.17740.059*
C4030.4663 (3)0.7981 (6)0.0732 (5)0.064 (2)*
H4030.50130.82830.10690.076*
C4040.4430 (3)0.8268 (7)0.0153 (5)0.0644 (19)*
H4040.46210.87480.04130.077*
C4050.3940 (4)0.7868 (8)0.0630 (7)0.074 (3)*
H4050.37680.81000.12220.089*
C4060.3668 (4)0.7100 (7)0.0269 (5)0.055 (2)*
H4060.33380.67640.06410.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0352 (5)0.0353 (4)0.0262 (4)0.0025 (3)0.0014 (4)0.0013 (3)
Zn20.0350 (5)0.0373 (5)0.0245 (4)0.0024 (3)0.0011 (3)0.0012 (3)
O10.059 (4)0.047 (3)0.053 (3)0.012 (3)0.002 (3)0.003 (3)
O20.061 (4)0.045 (3)0.049 (3)0.002 (3)0.009 (3)0.016 (2)
O30.041 (3)0.049 (3)0.055 (3)0.013 (2)0.010 (2)0.002 (2)
O40.058 (4)0.073 (4)0.032 (2)0.017 (3)0.009 (2)0.009 (2)
O50.055 (3)0.043 (3)0.051 (3)0.006 (2)0.020 (2)0.006 (2)
O60.053 (3)0.040 (3)0.064 (4)0.011 (2)0.012 (3)0.002 (2)
O70.056 (3)0.058 (3)0.051 (3)0.004 (3)0.020 (3)0.009 (3)
O80.050 (3)0.065 (4)0.044 (3)0.007 (3)0.019 (3)0.004 (2)
N10.039 (4)0.037 (3)0.036 (3)0.003 (3)0.005 (3)0.001 (3)
N20.031 (3)0.038 (3)0.019 (3)0.003 (3)0.000 (2)0.004 (2)
Geometric parameters (Å, º) top
Zn1—O32.019 (5)C16—C191.465 (10)
Zn1—N12.019 (7)C17—C181.379 (9)
Zn1—O52.061 (5)C19—C201.304 (10)
Zn1—O72.060 (6)C20—C211.464 (10)
Zn1—O12.051 (6)C21—C261.364 (9)
Zn1—Zn22.9739 (13)C21—C221.409 (10)
Zn2—O42.006 (6)C22—C231.386 (11)
Zn2—N22.032 (6)C23—C241.369 (9)
Zn2—O82.053 (6)C24—C251.346 (10)
Zn2—O62.068 (5)C25—C261.404 (11)
Zn2—O22.042 (5)C100—C1011.508 (10)
O1—C1001.233 (9)C101—C1021.356 (9)
O2—C1001.247 (9)C101—C1061.357 (8)
O3—C2001.290 (9)C102—C1031.354 (11)
O4—C2001.263 (9)C103—C1041.381 (11)
O5—C3001.258 (8)C104—C1051.393 (11)
O6—C3001.263 (8)C105—C1061.399 (11)
O7—C4001.248 (9)C200—C2011.453 (10)
O8—C4001.206 (9)C201—C2021.401 (9)
N1—C51.310 (9)C201—C2061.405 (9)
N1—C11.338 (8)C202—C2031.366 (11)
C1—C21.368 (9)C203—C2041.448 (10)
C2—C31.368 (8)C204—C2051.388 (9)
C3—C41.369 (8)C205—C2061.336 (10)
C3—C61.470 (11)C300—C3011.491 (10)
C4—C51.376 (9)C301—C3061.412 (8)
C6—C71.342 (11)C301—C3021.400 (9)
C7—C81.462 (11)C302—C3031.429 (11)
C8—C91.383 (9)C303—C3041.368 (10)
C8—C131.365 (10)C304—C3051.359 (11)
C9—C101.368 (10)C305—C3061.372 (11)
C10—C111.359 (10)C400—C4011.529 (10)
C11—C121.388 (10)C401—C4021.371 (9)
C12—C131.385 (11)C401—C4061.370 (9)
N2—C181.327 (8)C402—C4031.445 (10)
N2—C141.351 (8)C403—C4041.364 (10)
C14—C151.379 (10)C404—C4051.294 (11)
C15—C161.425 (8)C405—C4061.383 (11)
C16—C171.403 (8)
O3—Zn1—N1103.7 (2)C15—C14—N2122.5 (7)
O3—Zn1—O586.8 (2)C14—C15—C16119.0 (7)
N1—Zn1—O5102.8 (2)C17—C16—C19122.9 (6)
O3—Zn1—O7158.6 (2)C17—C16—C15116.5 (6)
N1—Zn1—O797.7 (3)C19—C16—C15119.6 (6)
O5—Zn1—O788.4 (2)C18—C17—C16118.7 (6)
O3—Zn1—O189.7 (3)N2—C18—C17124.0 (7)
N1—Zn1—O199.4 (2)C20—C19—C16126.2 (7)
O5—Zn1—O1157.7 (2)C19—C20—C21129.9 (7)
O7—Zn1—O186.9 (3)C26—C21—C22118.4 (8)
O3—Zn1—Zn277.62 (16)C26—C21—C20122.0 (7)
N1—Zn1—Zn2173.31 (18)C22—C21—C20119.5 (6)
O5—Zn1—Zn283.74 (16)C21—C22—C23119.5 (8)
O7—Zn1—Zn281.10 (17)C22—C23—C24121.3 (8)
O1—Zn1—Zn274.04 (16)C25—C24—C23119.2 (8)
O4—Zn2—N298.4 (2)C24—C25—C26121.2 (8)
O4—Zn2—O8158.8 (2)C21—C26—C25120.4 (8)
N2—Zn2—O8102.7 (2)O2—C100—O1124.3 (7)
O4—Zn2—O686.2 (3)O2—C100—C101117.3 (7)
N2—Zn2—O697.4 (2)O1—C100—C101118.4 (6)
O8—Zn2—O689.2 (3)C102—C101—C106117.1 (7)
O4—Zn2—O290.2 (3)C102—C101—C100120.7 (6)
N2—Zn2—O2102.6 (2)C106—C101—C100121.8 (6)
O8—Zn2—O287.1 (3)C101—C102—C103126.3 (8)
O6—Zn2—O2160.0 (2)C104—C103—C102115.3 (8)
O4—Zn2—Zn181.45 (16)C103—C104—C105122.2 (9)
N2—Zn2—Zn1173.49 (16)C106—C105—C104117.7 (8)
O8—Zn2—Zn177.32 (16)C105—C106—C101121.2 (7)
O6—Zn2—Zn176.14 (15)O3—C200—O4122.9 (7)
O2—Zn2—Zn183.86 (16)O3—C200—C201117.3 (7)
C100—O1—Zn1135.0 (5)O4—C200—C201119.7 (7)
C100—O2—Zn2121.7 (5)C202—C201—C206116.6 (7)
C200—O3—Zn1130.8 (5)C202—C201—C200122.9 (7)
C200—O4—Zn2127.0 (5)C206—C201—C200120.4 (6)
C300—O5—Zn1121.1 (5)C203—C202—C201120.7 (8)
C300—O6—Zn2130.7 (5)C202—C203—C204119.3 (8)
C400—O7—Zn1123.0 (5)C205—C204—C203120.6 (8)
C400—O8—Zn2129.6 (5)C206—C205—C204116.8 (7)
C5—N1—C1115.1 (7)C205—C206—C201126.0 (8)
C5—N1—Zn1122.5 (5)O6—C300—O5126.8 (6)
C1—N1—Zn1122.1 (5)O6—C300—C301116.0 (6)
N1—C1—C2123.0 (7)O5—C300—C301117.1 (6)
C3—C2—C1120.7 (6)C306—C301—C302120.1 (7)
C2—C3—C4115.7 (7)C306—C301—C300118.1 (6)
C2—C3—C6123.2 (6)C302—C301—C300121.8 (6)
C4—C3—C6120.6 (6)C303—C302—C301116.6 (7)
C3—C4—C5119.1 (6)C302—C303—C304120.7 (8)
N1—C5—C4125.1 (7)C305—C304—C303122.2 (9)
C7—C6—C3125.9 (7)C304—C305—C306118.8 (9)
C6—C7—C8124.4 (7)C301—C306—C305121.0 (7)
C9—C8—C13117.2 (8)O7—C400—O8128.1 (7)
C9—C8—C7117.2 (7)O7—C400—C401114.5 (6)
C13—C8—C7125.5 (7)O8—C400—C401117.4 (6)
C8—C9—C10122.8 (8)C402—C401—C406120.5 (7)
C9—C10—C11119.4 (8)C402—C401—C400121.4 (6)
C12—C11—C10119.3 (9)C406—C401—C400118.1 (6)
C11—C12—C13120.0 (9)C401—C402—C403114.7 (7)
C12—C13—C8120.9 (8)C404—C403—C402122.9 (7)
C18—N2—C14118.0 (6)C405—C404—C403119.5 (9)
C18—N2—Zn2122.7 (5)C404—C405—C406120.8 (9)
C14—N2—Zn2118.9 (4)C401—C406—C405121.2 (8)
(e254) top
Crystal data top
C54H42N2O8Zn2F(000) = 2016
Mr = 977.64Dx = 1.470 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 24.638 (2) ÅCell parameters from 7693 reflections
b = 12.1718 (10) Åθ = 2.2–28.3°
c = 15.5632 (13) ŵ = 1.15 mm1
β = 108.782 (1)°T = 170 K
V = 4418.7 (6) Å3Block, colourless
Z = 40.56 × 0.36 × 0.26 mm
Data collection top
Bruker APEX-II CCD
diffractometer
8918 independent reflections
Radiation source: fine-focus sealed tube7688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
h = 2532
Tmin = 0.566, Tmax = 0.755k = 1315
15527 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0605P)2 + 11.167P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
8918 reflectionsΔρmax = 0.66 e Å3
325 parametersΔρmin = 0.60 e Å3
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.38 (3)
Crystal data top
C54H42N2O8Zn2V = 4418.7 (6) Å3
Mr = 977.64Z = 4
Monoclinic, CcMo Kα radiation
a = 24.638 (2) ŵ = 1.15 mm1
b = 12.1718 (10) ÅT = 170 K
c = 15.5632 (13) Å0.56 × 0.36 × 0.26 mm
β = 108.782 (1)°
Data collection top
Bruker APEX-II CCD
diffractometer
8918 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
7688 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.755Rint = 0.021
15527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0605P)2 + 11.167P]
where P = (Fo2 + 2Fc2)/3
S = 1.06Δρmax = 0.66 e Å3
8918 reflectionsΔρmin = 0.60 e Å3
325 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
2 restraintsAbsolute structure parameter: 0.38 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The single crystals of this compounds show 2nd order NLO (SHG) properties. Hence it is refined in Cc instead of C2/c for which please refer Angewandte Chemie, 2014, 53(230 5907, CCDC No. 979138. Further due to non-centrosymmetric space group, anisotropic refinements of C atoms gave NPD's and hence isotropic thermal parameters were for all the C atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.332064 (18)0.50281 (4)0.25437 (2)0.01732 (16)
Zn20.240355 (18)0.49734 (5)0.07489 (2)0.01755 (16)
O10.2873 (2)0.6472 (3)0.2474 (3)0.0296 (11)
O20.2165 (2)0.6468 (4)0.1146 (3)0.0312 (11)
O30.2675 (2)0.4213 (4)0.2809 (3)0.0294 (11)
O40.1977 (2)0.4197 (4)0.1483 (3)0.0314 (11)
O50.3563 (2)0.3553 (4)0.2157 (3)0.0266 (10)
O60.2857 (2)0.3525 (4)0.0832 (3)0.0335 (12)
O70.3759 (2)0.5798 (4)0.1801 (3)0.0314 (11)
O80.3047 (2)0.5797 (4)0.0466 (3)0.0273 (10)
N10.3913 (2)0.5235 (5)0.3788 (3)0.0188 (10)
C10.3787 (3)0.5805 (5)0.4451 (4)0.0219 (12)*
H10.34150.61140.43250.026*
C20.4177 (3)0.5944 (5)0.5290 (4)0.0240 (13)*
H20.40660.63010.57510.029*
C30.4738 (3)0.5568 (5)0.5480 (4)0.0200 (11)*
C40.4852 (3)0.4951 (4)0.4823 (5)0.0246 (15)*
H40.52180.46210.49350.030*
C50.4427 (3)0.4813 (5)0.3989 (4)0.0259 (13)*
H50.45140.43860.35390.031*
C60.5184 (3)0.5736 (5)0.6366 (4)0.0250 (13)*
H60.55490.54140.64510.030*
C70.5117 (3)0.6304 (5)0.7059 (4)0.0276 (13)*
H70.47480.66110.69660.033*
C80.5549 (3)0.6511 (5)0.7952 (4)0.0231 (13)*
C90.5422 (3)0.7127 (5)0.8577 (4)0.0273 (14)*
H90.50440.74100.84450.033*
C100.5832 (3)0.7362 (5)0.9420 (5)0.0307 (14)*
H100.57350.77880.98610.037*
C110.6408 (2)0.6941 (4)0.9602 (4)0.0278 (12)*
H110.67060.71331.01430.033*
C120.6509 (3)0.6290 (5)0.9004 (4)0.0341 (15)*
H120.68630.59070.91660.041*
C130.6123 (3)0.6136 (6)0.8149 (4)0.0312 (14)*
H130.62390.57800.76940.037*
N20.1824 (2)0.4758 (4)0.0497 (3)0.0208 (11)
C140.1277 (3)0.5128 (5)0.0674 (4)0.0247 (14)*
H140.11820.55020.02060.030*
C150.0859 (4)0.4985 (4)0.1493 (5)0.0292 (17)*
H150.04830.52540.15880.035*
C160.0995 (3)0.4427 (5)0.2206 (4)0.0211 (12)*
C170.1542 (3)0.3995 (5)0.1996 (4)0.0214 (12)*
H170.16430.35540.24250.026*
C180.1943 (3)0.4213 (5)0.1150 (4)0.0243 (13)*
H180.23240.39550.10360.029*
C190.0545 (3)0.4245 (5)0.3069 (4)0.0231 (12)*
H190.01710.45030.31270.028*
C200.0621 (3)0.3741 (5)0.3784 (4)0.0223 (12)*
H200.09980.35120.37350.027*
C210.0166 (3)0.3516 (5)0.4636 (4)0.0220 (12)*
C220.0379 (3)0.3918 (5)0.4867 (4)0.0269 (13)*
H220.04760.44100.44660.032*
C230.0796 (3)0.3623 (5)0.5678 (4)0.0359 (16)*
H230.11870.38180.57970.043*
C240.0609 (2)0.2995 (4)0.6345 (4)0.0260 (12)*
H240.08710.28570.69330.031*
C250.0083 (3)0.2629 (6)0.6123 (5)0.0313 (14)*
H250.00250.21840.65420.038*
C260.0314 (3)0.2872 (6)0.5305 (5)0.0319 (15)*
H260.06960.26110.51750.038*
C1000.2474 (3)0.6922 (5)0.1865 (4)0.0201 (12)*
C1010.2346 (3)0.8112 (5)0.1969 (4)0.0220 (12)*
C1020.1915 (3)0.8653 (6)0.1359 (4)0.0292 (14)*
H1020.16560.82800.08570.035*
C1030.1860 (3)0.9819 (5)0.1488 (4)0.0310 (13)*
H1030.15711.02340.10560.037*
C1040.2236 (3)1.0331 (5)0.2258 (4)0.0381 (13)*
H1040.22091.11000.23420.046*
C1050.2633 (3)0.9739 (6)0.2875 (5)0.0456 (17)*
H1050.28721.00840.34120.055*
C1060.2698 (3)0.8673 (6)0.2746 (4)0.0338 (15)*
H1060.29880.82770.31890.041*
C2000.2199 (3)0.3932 (5)0.2308 (4)0.0187 (11)*
C2010.1841 (3)0.3177 (5)0.2693 (4)0.0208 (12)*
C2020.2044 (3)0.2880 (6)0.3594 (5)0.0316 (15)*
H2020.23940.31920.39680.038*
C2030.1765 (3)0.2162 (6)0.3967 (5)0.0355 (16)*
H2030.19100.19510.45870.043*
C2040.1199 (2)0.1713 (5)0.3325 (4)0.0332 (13)*
H2040.09810.12010.35390.040*
C2050.1015 (3)0.2046 (6)0.2468 (5)0.0351 (16)*
H2050.06610.17800.20710.042*
C2060.1327 (3)0.2758 (6)0.2151 (4)0.0284 (14)*
H2060.11850.29770.15330.034*
C3000.3263 (3)0.3091 (5)0.1450 (4)0.0233 (13)*
C3010.3377 (3)0.1900 (5)0.1304 (4)0.0238 (13)*
C3020.3831 (3)0.1339 (5)0.1953 (4)0.0280 (14)*
H3020.40730.17520.24460.034*
C3030.3940 (3)0.0280 (5)0.1919 (4)0.0383 (15)*
H3030.42630.00430.23550.046*
C3040.3574 (3)0.0349 (5)0.1234 (4)0.0371 (13)*
H3040.36370.11170.12110.045*
C3050.3102 (3)0.0152 (5)0.0563 (4)0.0384 (15)*
H3050.28490.02750.00910.046*
C3060.3017 (3)0.1303 (6)0.0615 (4)0.0336 (15)*
H3060.27090.16550.01690.040*
C4000.3545 (3)0.6074 (5)0.0987 (4)0.0240 (13)*
C4010.3879 (3)0.6806 (5)0.0597 (4)0.0207 (12)*
C4020.4410 (3)0.7227 (5)0.1149 (4)0.0262 (13)*
H4020.45690.70050.17640.031*
C4030.4701 (3)0.7991 (6)0.0762 (5)0.0367 (16)*
H4030.50540.83050.11220.044*
C4040.4455 (2)0.8285 (5)0.0182 (4)0.0332 (12)*
H4040.46490.87810.04520.040*
C4050.3994 (3)0.7893 (6)0.0633 (5)0.0401 (17)*
H4050.38420.81180.12490.048*
C4060.3670 (3)0.7137 (5)0.0315 (4)0.0273 (14)*
H4060.33180.68560.07090.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0181 (4)0.0181 (3)0.0129 (3)0.0012 (2)0.0012 (3)0.0005 (2)
Zn20.0166 (4)0.0204 (4)0.0131 (3)0.0013 (2)0.0011 (3)0.0008 (2)
O10.028 (3)0.019 (2)0.037 (2)0.0080 (17)0.003 (2)0.0038 (18)
O20.033 (3)0.024 (2)0.034 (2)0.0018 (19)0.008 (2)0.0089 (19)
O30.024 (3)0.035 (3)0.030 (2)0.0015 (18)0.009 (2)0.0025 (18)
O40.029 (3)0.043 (3)0.023 (2)0.009 (2)0.0093 (19)0.0099 (19)
O50.030 (3)0.026 (2)0.024 (2)0.0006 (18)0.0088 (18)0.0053 (17)
O60.034 (3)0.030 (3)0.034 (2)0.006 (2)0.007 (2)0.0025 (19)
O70.037 (3)0.034 (3)0.024 (2)0.003 (2)0.011 (2)0.0034 (19)
O80.026 (3)0.029 (2)0.028 (2)0.0104 (18)0.010 (2)0.0004 (17)
N10.019 (3)0.028 (2)0.006 (2)0.000 (2)0.0001 (19)0.001 (2)
N20.020 (3)0.013 (2)0.027 (3)0.004 (2)0.005 (2)0.002 (2)
Geometric parameters (Å, º) top
Zn1—O32.027 (5)C16—C191.458 (8)
Zn1—N12.031 (5)C17—C181.394 (8)
Zn1—O52.043 (4)C19—C201.335 (8)
Zn1—O72.045 (5)C20—C211.460 (8)
Zn1—O12.060 (4)C21—C221.363 (9)
Zn1—Zn22.9746 (4)C21—C261.442 (9)
Zn2—O42.020 (5)C22—C231.395 (9)
Zn2—N22.021 (5)C23—C241.476 (9)
Zn2—O82.040 (5)C24—C251.307 (9)
Zn2—O22.066 (5)C25—C261.365 (9)
Zn2—O62.069 (5)C100—C1011.502 (8)
O1—C1001.251 (7)C101—C1021.347 (9)
O2—C1001.261 (7)C101—C1061.416 (8)
O3—C2001.231 (8)C102—C1031.446 (9)
O4—C2001.264 (7)C103—C1041.404 (8)
O5—C3001.245 (7)C104—C1051.339 (9)
O6—C3001.259 (7)C105—C1061.330 (10)
O7—C4001.251 (7)C200—C2011.523 (9)
O8—C4001.280 (8)C201—C2061.374 (9)
N1—C51.306 (9)C201—C2021.376 (9)
N1—C11.360 (8)C202—C2031.354 (11)
C1—C21.360 (8)C203—C2041.531 (8)
C2—C31.395 (9)C204—C2051.327 (9)
C3—C41.369 (9)C205—C2061.350 (10)
C3—C61.475 (8)C300—C3011.508 (9)
C4—C51.392 (10)C301—C3061.361 (9)
C6—C71.336 (9)C301—C3021.418 (9)
C7—C81.475 (8)C302—C3031.321 (9)
C8—C91.342 (9)C303—C3041.384 (8)
C8—C131.421 (10)C304—C3051.425 (9)
C9—C101.405 (9)C305—C3061.423 (9)
C10—C111.449 (9)C400—C4011.471 (9)
C11—C121.304 (9)C401—C4061.404 (9)
C12—C131.377 (9)C401—C4021.410 (8)
N2—C181.321 (8)C402—C4031.420 (10)
N2—C141.363 (9)C403—C4041.442 (9)
C14—C151.368 (10)C404—C4051.223 (9)
C15—C161.429 (9)C405—C4061.408 (11)
C16—C171.382 (9)
O3—Zn1—N1103.7 (2)N2—C14—C15123.0 (6)
O3—Zn1—O587.3 (2)C14—C15—C16119.3 (7)
N1—Zn1—O5101.6 (2)C17—C16—C15116.8 (6)
O3—Zn1—O7158.63 (19)C17—C16—C19123.6 (6)
N1—Zn1—O797.6 (2)C15—C16—C19119.2 (6)
O5—Zn1—O788.8 (2)C16—C17—C18119.4 (6)
O3—Zn1—O189.2 (2)N2—C18—C17123.8 (6)
N1—Zn1—O198.8 (2)C20—C19—C16124.7 (6)
O5—Zn1—O1159.57 (18)C19—C20—C21124.8 (6)
O7—Zn1—O187.2 (2)C22—C21—C26117.5 (6)
O3—Zn1—Zn276.81 (13)C22—C21—C20125.1 (6)
N1—Zn1—Zn2173.57 (16)C26—C21—C20117.3 (6)
O5—Zn1—Zn284.82 (12)C21—C22—C23121.5 (6)
O7—Zn1—Zn281.92 (13)C22—C23—C24117.6 (6)
O1—Zn1—Zn274.79 (12)C25—C24—C23119.8 (6)
O4—Zn2—N298.4 (2)C24—C25—C26121.7 (7)
O4—Zn2—O8159.13 (19)C25—C26—C21121.2 (7)
N2—Zn2—O8102.4 (2)O1—C100—O2125.7 (5)
O4—Zn2—O289.6 (2)O1—C100—C101118.7 (5)
N2—Zn2—O2102.7 (2)O2—C100—C101115.5 (5)
O8—Zn2—O287.0 (2)C102—C101—C106119.5 (6)
O4—Zn2—O686.3 (2)C102—C101—C100122.7 (6)
N2—Zn2—O698.6 (2)C106—C101—C100117.8 (5)
O8—Zn2—O689.5 (2)C101—C102—C103118.1 (6)
O2—Zn2—O6158.6 (2)C104—C103—C102119.2 (6)
O4—Zn2—Zn181.69 (13)C105—C104—C103120.2 (6)
N2—Zn2—Zn1172.84 (16)C106—C105—C104120.8 (7)
O8—Zn2—Zn177.49 (12)C105—C106—C101122.0 (6)
O2—Zn2—Zn184.44 (13)O3—C200—O4125.8 (6)
O6—Zn2—Zn174.24 (13)O3—C200—C201118.2 (5)
C100—O1—Zn1133.6 (4)O4—C200—C201115.9 (5)
C100—O2—Zn2120.1 (4)C206—C201—C202119.2 (6)
C200—O3—Zn1131.1 (4)C206—C201—C200121.3 (6)
C200—O4—Zn2124.1 (4)C202—C201—C200119.5 (6)
C300—O5—Zn1120.7 (4)C203—C202—C201122.6 (7)
C300—O6—Zn2133.3 (4)C202—C203—C204115.6 (6)
C400—O7—Zn1124.7 (5)C205—C204—C203119.4 (6)
C400—O8—Zn2130.3 (4)C204—C205—C206120.8 (7)
C5—N1—C1117.4 (5)C205—C206—C201122.3 (6)
C5—N1—Zn1121.5 (4)O5—C300—O6125.9 (6)
C1—N1—Zn1121.1 (4)O5—C300—C301118.7 (5)
C2—C1—N1121.9 (6)O6—C300—C301115.4 (5)
C1—C2—C3120.6 (6)C306—C301—C302117.9 (6)
C4—C3—C2116.7 (6)C306—C301—C300121.8 (6)
C4—C3—C6120.3 (6)C302—C301—C300119.9 (5)
C2—C3—C6122.8 (6)C303—C302—C301124.4 (6)
C3—C4—C5119.3 (7)C302—C303—C304118.7 (6)
N1—C5—C4123.8 (6)C303—C304—C305120.2 (6)
C7—C6—C3125.3 (6)C306—C305—C304118.7 (6)
C6—C7—C8127.6 (7)C301—C306—C305120.0 (6)
C9—C8—C13118.1 (6)O7—C400—O8125.2 (6)
C9—C8—C7120.7 (6)O7—C400—C401118.2 (6)
C13—C8—C7120.9 (6)O8—C400—C401116.6 (6)
C8—C9—C10121.6 (6)C406—C401—C402118.6 (6)
C9—C10—C11118.5 (6)C406—C401—C400121.3 (6)
C12—C11—C10118.3 (6)C402—C401—C400120.1 (5)
C11—C12—C13122.8 (7)C401—C402—C403118.4 (6)
C12—C13—C8119.6 (7)C402—C403—C404119.3 (6)
C18—N2—C14117.4 (6)C405—C404—C403119.8 (7)
C18—N2—Zn2122.7 (5)C404—C405—C406125.4 (7)
C14—N2—Zn2119.8 (4)C401—C406—C405118.5 (6)
(e251) top
Crystal data top
C54H42N2O8Zn2F(000) = 2016
Mr = 977.64Dx = 1.484 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 24.525 (2) ÅCell parameters from 8646 reflections
b = 12.1433 (11) Åθ = 2.2–28.3°
c = 15.4964 (14) ŵ = 1.16 mm1
β = 108.492 (1)°T = 95 K
V = 4376.8 (7) Å3Block, colourless
Z = 40.56 × 0.36 × 0.26 mm
Data collection top
Bruker APEX-II CCD
diffractometer
8859 independent reflections
Radiation source: fine-focus sealed tube7911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
h = 2531
Tmin = 0.563, Tmax = 0.753k = 1315
15383 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0481P)2 + 9.1876P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
8859 reflectionsΔρmax = 0.72 e Å3
325 parametersΔρmin = 0.55 e Å3
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.37 (3)
Crystal data top
C54H42N2O8Zn2V = 4376.8 (7) Å3
Mr = 977.64Z = 4
Monoclinic, CcMo Kα radiation
a = 24.525 (2) ŵ = 1.16 mm1
b = 12.1433 (11) ÅT = 95 K
c = 15.4964 (14) Å0.56 × 0.36 × 0.26 mm
β = 108.492 (1)°
Data collection top
Bruker APEX-II CCD
diffractometer
8859 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
7911 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 0.753Rint = 0.025
15383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.72 e Å3
S = 1.03Δρmin = 0.55 e Å3
8859 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
325 parametersAbsolute structure parameter: 0.37 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The single crystals of this compounds show 2nd order NLO (SHG) properties. Hence it is refined in Cc instead of C2/c for which please refer Angewandte Chemie, 2014, 53(230 5907, CCDC No. 979138. Further due to non-centrosymmetric space group, anisotropic refinements of C atoms gave NPD's and hence isotropic thermal parameters were for all the C atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.332478 (15)0.50228 (4)0.254339 (19)0.01069 (13)
Zn20.240107 (15)0.49766 (4)0.075194 (19)0.01019 (13)
O10.28701 (18)0.6471 (3)0.2460 (3)0.0202 (9)
O20.21530 (17)0.6473 (3)0.1136 (2)0.0155 (8)
O30.26775 (18)0.4205 (3)0.2829 (3)0.0189 (8)
O40.19638 (19)0.4209 (3)0.1488 (2)0.0198 (9)
O50.35668 (19)0.3537 (3)0.2154 (3)0.0208 (9)
O60.28539 (18)0.3519 (3)0.0827 (3)0.0203 (9)
O70.37588 (18)0.5794 (3)0.1793 (3)0.0208 (9)
O80.30478 (18)0.5791 (3)0.0477 (2)0.0169 (8)
N10.3914 (2)0.5245 (4)0.3796 (3)0.0147 (9)
C10.3794 (3)0.5808 (4)0.4446 (3)0.0139 (10)*
H10.34210.61150.43200.017*
C20.4186 (2)0.5968 (4)0.5292 (3)0.0142 (10)*
H20.40750.63580.57410.017*
C30.4740 (2)0.5569 (4)0.5498 (3)0.0123 (9)*
C40.4858 (3)0.4941 (4)0.4829 (4)0.0144 (11)*
H40.52270.46200.49410.017*
C50.4434 (2)0.4783 (4)0.3997 (3)0.0176 (10)*
H50.45170.43300.35550.021*
C60.5187 (2)0.5725 (4)0.6376 (3)0.0153 (10)*
H60.55540.54030.64570.018*
C70.5113 (2)0.6295 (4)0.7076 (3)0.0144 (10)*
H70.47410.65860.69980.017*
C80.5559 (2)0.6504 (4)0.7948 (3)0.0138 (10)*
C90.5422 (3)0.7160 (5)0.8592 (4)0.0191 (11)*
H90.50460.74580.84580.023*
C100.5832 (3)0.7377 (5)0.9422 (4)0.0204 (11)*
H100.57280.78150.98530.025*
C110.6370 (2)0.6990 (4)0.9639 (3)0.0169 (11)*
H110.66430.71531.02140.020*
C120.6529 (3)0.6324 (5)0.8989 (4)0.0213 (11)*
H120.69090.60440.91310.026*
C130.6130 (3)0.6096 (5)0.8167 (4)0.0194 (11)*
H130.62350.56600.77370.023*
N20.1821 (2)0.4776 (4)0.0492 (3)0.0101 (9)
C140.1280 (2)0.5150 (4)0.0674 (3)0.0125 (10)*
H140.11850.55230.02030.015*
C150.0857 (3)0.5029 (4)0.1496 (4)0.0183 (13)*
H150.04850.53310.15920.022*
C160.0985 (2)0.4446 (4)0.2197 (3)0.0145 (10)*
C170.1539 (2)0.3988 (4)0.1995 (3)0.0149 (10)*
H170.16360.35470.24320.018*
C180.1941 (3)0.4188 (4)0.1155 (3)0.0142 (10)*
H180.23190.39010.10360.017*
C190.0538 (2)0.4253 (4)0.3072 (3)0.0153 (10)*
H190.01650.45380.31400.018*
C200.0606 (2)0.3716 (5)0.3776 (3)0.0166 (10)*
H200.09810.34430.37050.020*
C210.0165 (2)0.3498 (4)0.4656 (3)0.0146 (10)*
C220.0383 (2)0.3924 (4)0.4872 (3)0.0164 (11)*
H220.04860.43700.44440.020*
C230.0787 (3)0.3701 (5)0.5717 (4)0.0227 (12)*
H230.11580.40240.58630.027*
C240.0667 (3)0.3040 (4)0.6331 (3)0.0191 (11)*
H240.09550.28730.68900.023*
C250.0102 (2)0.2592 (4)0.6132 (4)0.0171 (10)*
H250.00050.21330.65580.020*
C260.0303 (3)0.2847 (5)0.5296 (4)0.0167 (11)*
H260.06830.25690.51600.020*
C1000.2464 (3)0.6919 (5)0.1857 (4)0.0172 (11)*
C1010.2342 (2)0.8114 (4)0.1985 (3)0.0150 (10)*
C1020.1902 (3)0.8677 (5)0.1360 (4)0.0180 (11)*
H1020.16420.83080.08560.022*
C1030.1852 (3)0.9829 (4)0.1494 (4)0.0240 (12)*
H1030.15381.02010.10740.029*
C1040.2174 (2)1.0375 (4)0.2098 (3)0.0233 (10)*
H1040.21141.11450.21310.028*
C1050.2639 (2)0.9857 (4)0.2750 (3)0.0243 (11)*
H1050.28941.02710.32290.029*
C1060.2718 (2)0.8718 (4)0.2679 (3)0.0223 (11)*
H1060.30320.83600.31110.027*
C2000.2188 (2)0.3940 (5)0.2312 (3)0.0148 (10)*
C2010.1847 (2)0.3186 (4)0.2719 (3)0.0126 (10)*
C2020.2046 (3)0.2859 (5)0.3620 (4)0.0198 (11)*
H2020.24000.31410.40110.024*
C2030.1732 (3)0.2120 (5)0.3956 (4)0.0221 (12)*
H2030.18690.18960.45750.027*
C2040.1207 (2)0.1704 (4)0.3368 (3)0.0221 (11)*
H2040.09910.11930.35930.027*
C2050.1018 (3)0.2016 (5)0.2524 (4)0.0206 (12)*
H2050.06670.17150.21400.025*
C2060.1309 (3)0.2769 (5)0.2161 (3)0.0160 (10)*
H2060.11510.30050.15470.019*
C3000.3258 (2)0.3072 (4)0.1439 (3)0.0106 (9)*
C3010.3372 (2)0.1882 (4)0.1302 (3)0.0134 (10)*
C3020.3828 (3)0.1331 (5)0.1927 (3)0.0165 (10)*
H3020.40810.17410.24130.020*
C3030.3926 (2)0.0235 (4)0.1874 (3)0.0192 (10)*
H3030.42290.01410.23120.023*
C3040.3501 (2)0.0352 (4)0.1039 (3)0.0238 (10)*
H3040.35310.11240.09660.029*
C3050.3086 (2)0.0235 (4)0.0410 (3)0.0266 (11)*
H3050.28410.01260.01150.032*
C3060.3019 (2)0.1334 (4)0.0528 (3)0.0184 (10)*
H3060.27300.17330.00820.022*
C4000.3541 (2)0.6073 (4)0.0978 (3)0.0122 (10)*
C4010.3895 (2)0.6809 (4)0.0596 (3)0.0132 (10)*
C4020.4406 (3)0.7237 (5)0.1130 (4)0.0177 (10)*
H4020.45480.70280.17530.021*
C4030.4723 (3)0.7968 (5)0.0793 (4)0.0233 (12)*
H4030.50810.82470.11670.028*
C4040.4478 (2)0.8296 (4)0.0179 (3)0.0194 (10)*
H4040.46750.88050.04390.023*
C4050.3968 (3)0.7857 (5)0.0688 (4)0.0229 (12)*
H4050.38080.80670.13080.027*
C4060.3677 (2)0.7112 (4)0.0323 (3)0.0151 (10)*
H4060.33270.68010.06970.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0102 (3)0.0118 (3)0.0086 (3)0.00037 (19)0.0009 (2)0.00050 (17)
Zn20.0101 (3)0.0114 (3)0.0077 (3)0.00108 (19)0.0009 (2)0.00004 (17)
O10.016 (2)0.021 (2)0.0200 (17)0.0034 (15)0.0004 (15)0.0005 (15)
O20.0145 (19)0.0146 (19)0.0153 (16)0.0022 (14)0.0018 (14)0.0054 (13)
O30.012 (2)0.020 (2)0.0245 (18)0.0045 (15)0.0050 (15)0.0024 (15)
O40.024 (2)0.026 (2)0.0087 (15)0.0055 (17)0.0045 (15)0.0062 (15)
O50.027 (2)0.018 (2)0.0198 (18)0.0034 (16)0.0104 (16)0.0042 (15)
O60.023 (2)0.0108 (19)0.0259 (19)0.0057 (15)0.0055 (16)0.0019 (15)
O70.016 (2)0.025 (2)0.0244 (18)0.0014 (16)0.0093 (16)0.0028 (16)
O80.019 (2)0.020 (2)0.0124 (15)0.0023 (15)0.0057 (14)0.0000 (14)
N10.012 (2)0.020 (2)0.012 (2)0.001 (2)0.0036 (17)0.0025 (18)
N20.014 (2)0.0060 (17)0.0096 (19)0.0010 (17)0.0025 (16)0.0037 (15)
Geometric parameters (Å, º) top
Zn1—O72.036 (4)C16—C191.468 (7)
Zn1—O32.037 (4)C17—C181.383 (7)
Zn1—N12.038 (5)C19—C201.327 (7)
Zn1—O52.049 (4)C20—C211.470 (7)
Zn1—O12.064 (4)C21—C221.378 (8)
Zn1—Zn22.9753 (4)C21—C261.392 (7)
Zn2—N22.015 (4)C22—C231.396 (8)
Zn2—O42.024 (4)C23—C241.347 (8)
Zn2—O82.026 (4)C24—C251.427 (8)
Zn2—O22.063 (4)C25—C261.395 (7)
Zn2—O62.073 (4)C100—C1011.508 (8)
O1—C1001.253 (7)C101—C1021.380 (7)
O2—C1001.258 (6)C101—C1061.384 (7)
O3—C2001.256 (7)C102—C1031.426 (8)
O4—C2001.264 (6)C103—C1041.213 (7)
O5—C3001.260 (6)C104—C1051.408 (7)
O6—C3001.258 (6)C105—C1061.406 (7)
O7—C4001.252 (6)C200—C2011.506 (8)
O8—C4001.260 (7)C201—C2021.383 (7)
N1—C11.324 (7)C201—C2061.422 (7)
N1—C51.338 (8)C202—C2031.386 (9)
C1—C21.371 (7)C203—C2041.414 (7)
C2—C31.382 (8)C204—C2051.298 (7)
C3—C41.388 (7)C205—C2061.384 (9)
C3—C61.464 (7)C300—C3011.499 (7)
C4—C51.388 (8)C301—C3021.396 (7)
C6—C71.347 (7)C301—C3061.405 (6)
C7—C81.466 (7)C302—C3031.359 (8)
C8—C91.398 (8)C303—C3041.553 (6)
C8—C131.420 (8)C304—C3051.366 (7)
C9—C101.384 (7)C305—C3061.365 (7)
C10—C111.340 (8)C400—C4011.493 (8)
C11—C121.438 (8)C401—C4021.366 (7)
C12—C131.367 (8)C401—C4061.402 (6)
N2—C141.344 (7)C402—C4031.387 (9)
N2—C181.358 (7)C403—C4041.487 (7)
C14—C151.372 (8)C404—C4051.359 (7)
C15—C161.413 (8)C405—C4061.379 (8)
C16—C171.409 (8)
O7—Zn1—O3158.91 (17)N2—C14—C15124.4 (5)
O7—Zn1—N198.16 (18)C14—C15—C16118.7 (6)
O3—Zn1—N1102.91 (18)C17—C16—C15117.5 (5)
O7—Zn1—O589.08 (17)C17—C16—C19121.9 (5)
O3—Zn1—O587.32 (18)C15—C16—C19120.4 (5)
N1—Zn1—O5102.32 (19)C18—C17—C16119.3 (5)
O7—Zn1—O186.69 (17)N2—C18—C17122.9 (5)
O3—Zn1—O189.21 (18)C20—C19—C16125.8 (5)
N1—Zn1—O198.78 (18)C19—C20—C21127.1 (5)
O5—Zn1—O1158.86 (17)C22—C21—C26118.6 (5)
O7—Zn1—Zn281.80 (12)C22—C21—C20122.1 (5)
O3—Zn1—Zn277.20 (11)C26—C21—C20119.3 (5)
N1—Zn1—Zn2172.59 (15)C21—C22—C23120.2 (5)
O5—Zn1—Zn285.09 (11)C24—C23—C22121.9 (6)
O1—Zn1—Zn273.81 (10)C23—C24—C25119.3 (5)
N2—Zn2—O498.27 (18)C26—C25—C24118.2 (5)
N2—Zn2—O8102.69 (17)C25—C26—C21121.7 (5)
O4—Zn2—O8159.03 (16)O1—C100—O2126.1 (5)
N2—Zn2—O2101.48 (16)O1—C100—C101117.6 (5)
O4—Zn2—O289.18 (17)O2—C100—C101116.2 (5)
O8—Zn2—O287.30 (16)C102—C101—C106117.6 (5)
N2—Zn2—O698.83 (17)C102—C101—C100121.8 (5)
O4—Zn2—O686.87 (18)C106—C101—C100120.1 (5)
O8—Zn2—O689.28 (18)C101—C102—C103117.9 (5)
O2—Zn2—O6159.66 (16)C104—C103—C102125.7 (5)
N2—Zn2—Zn1173.02 (13)C103—C104—C105119.3 (5)
O4—Zn2—Zn182.29 (11)C106—C105—C104119.0 (5)
O8—Zn2—Zn176.83 (10)C101—C106—C105120.5 (5)
O2—Zn2—Zn185.47 (10)O3—C200—O4126.8 (5)
O6—Zn2—Zn174.23 (11)O3—C200—C201115.7 (4)
C100—O1—Zn1134.6 (4)O4—C200—C201117.4 (5)
C100—O2—Zn2119.0 (4)C202—C201—C206118.3 (5)
C200—O3—Zn1129.8 (4)C202—C201—C200122.2 (5)
C200—O4—Zn2123.4 (4)C206—C201—C200119.5 (4)
C300—O5—Zn1120.3 (3)C201—C202—C203120.3 (5)
C300—O6—Zn2133.7 (3)C202—C203—C204119.4 (5)
C400—O7—Zn1124.6 (4)C205—C204—C203120.4 (6)
C400—O8—Zn2131.7 (3)C204—C205—C206122.5 (5)
C1—N1—C5117.7 (5)C205—C206—C201119.1 (5)
C1—N1—Zn1122.1 (4)O6—C300—O5125.4 (5)
C5—N1—Zn1120.1 (4)O6—C300—C301116.5 (4)
N1—C1—C2122.9 (5)O5—C300—C301118.0 (4)
C1—C2—C3120.7 (5)C302—C301—C306120.5 (5)
C4—C3—C2116.2 (5)C302—C301—C300120.5 (4)
C4—C3—C6119.5 (5)C306—C301—C300119.0 (4)
C2—C3—C6124.2 (5)C303—C302—C301123.0 (5)
C3—C4—C5119.9 (5)C302—C303—C304114.5 (4)
N1—C5—C4122.4 (5)C305—C304—C303120.5 (5)
C7—C6—C3124.2 (5)C304—C305—C306120.5 (5)
C6—C7—C8125.4 (5)C305—C306—C301120.7 (5)
C9—C8—C13117.9 (5)O7—C400—O8124.6 (5)
C9—C8—C7118.6 (5)O7—C400—C401116.5 (5)
C13—C8—C7123.4 (5)O8—C400—C401118.9 (4)
C10—C9—C8120.3 (6)C402—C401—C406119.7 (5)
C11—C10—C9122.3 (6)C402—C401—C400121.6 (4)
C10—C11—C12119.0 (5)C406—C401—C400118.6 (5)
C13—C12—C11119.6 (6)C401—C402—C403122.1 (5)
C12—C13—C8120.9 (5)C402—C403—C404117.3 (5)
C14—N2—C18117.1 (4)C405—C404—C403118.9 (5)
C14—N2—Zn2120.7 (3)C404—C405—C406121.3 (5)
C18—N2—Zn2122.0 (4)C405—C406—C401120.6 (5)

Experimental details

(e210)(e219)(e257)(e254)
Crystal data
Chemical formulaC54H42N2O8Zn2C54H42N2O8Zn2C54H42N2O8Zn2C54H42N2O8Zn2
Mr977.64977.64977.64977.64
Crystal system, space groupMonoclinic, CcMonoclinic, CcMonoclinic, CcMonoclinic, Cc
Temperature (K)295170295170
a, b, c (Å)24.843 (2), 12.2450 (11), 15.7202 (14)24.746 (2), 12.2117 (10), 15.6525 (13)24.817 (13), 12.241 (7), 15.714 (8)24.638 (2), 12.1718 (10), 15.5632 (13)
β (°) 109.4983 (16) 109.192 (1) 109.390 (11) 108.782 (1)
V3)4507.9 (7)4467.2 (6)4503 (4)4418.7 (6)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.121.131.131.15
Crystal size (mm)0.38 × 0.34 × 0.260.38 × 0.34 × 0.260.56 × 0.36 × 0.260.56 × 0.36 × 0.26
Data collection
DiffractometerBruker APEX-II CCD
diffractometer
Bruker APEX-II CCD
diffractometer
Bruker APEX-II CCD
diffractometer
Bruker APEX-II CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 2010)
Multi-scan
SADABS (Sheldrick, 2010)
Multi-scan
SADABS (Sheldrick, 2010)
Multi-scan
SADABS (Sheldrick, 2010)
Tmin, Tmax0.675, 0.7590.673, 0.7570.571, 0.7590.566, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
15882, 8139, 6161 29076, 10256, 8188 28951, 10299, 8235 15527, 8918, 7688
Rint0.0250.0310.0260.021
(sin θ/λ)max1)0.6500.6500.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.01 0.032, 0.091, 1.05 0.057, 0.166, 1.05 0.045, 0.122, 1.06
No. of reflections813910256102998918
No. of parameters595595325325
No. of restraints22662
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0831P)2 + 12.724P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0605P)2 + 11.167P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.36, 0.220.34, 0.210.67, 0.750.66, 0.60
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.10 (3)0.34 (3)0.41 (3)0.38 (3)


(e251)
Crystal data
Chemical formulaC54H42N2O8Zn2
Mr977.64
Crystal system, space groupMonoclinic, Cc
Temperature (K)95
a, b, c (Å)24.525 (2), 12.1433 (11), 15.4964 (14)
β (°) 108.492 (1)
V3)4376.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.56 × 0.36 × 0.26
Data collection
DiffractometerBruker APEX-II CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 2010)
Tmin, Tmax0.563, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
15383, 8859, 7911
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.03
No. of reflections8859
No. of parameters325
No. of restraints2
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0481P)2 + 9.1876P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.72, 0.55
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.37 (3)

Computer programs: Bruker APEX2, Bruker SAINT, SHELXS97 (Sheldrick, 2008), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 1997), Bruker SHELXTL.

 

Footnotes

These authors contributed equally to this work.

Acknowledgements

J. J. Vittal would like to thank the Ministry of Education, Singapore, for financial support (through NUS FRC Grant R-143-000-562-112). VN and SH would like to thank the Ministry of Education, Singapore, for financial support (Grant MOE2011-T3-1-005).

References

First citationBaur, W. H. & Tillmanns, E. (1986). Acta Cryst. B42, 95–111.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCazzanelli, M., Bianco, F., Borga, E., Pucker, G., Ghulinyan, M., Degoli, E., Luppi, E., Véniard, V., Ossicini, S., Modotto, D., Wabnitz, S., Pierobon, R. & Pavesi, L. (2012). Nat. Mater. 11, 148–154.  Web of Science CrossRef CAS Google Scholar
First citationClevers, S., Simon, F., Sanselme, M., Dupray, V. & Coquerel, G. (2013). Cryst. Growth Des. 13, 3697–3704.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R., Curtin, D. Y. & Paul, I. C. (1979). Mol. Cryst. Liq. Cryst. 52, 259–266.  CrossRef Google Scholar
First citationDougherty, J. P. & Kurtz, S. K. (1976). J. Appl. Cryst. 9, 145–158.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, W., Guo, F., Wei, C., Liu, Q., Zhou, G., Wang, D. & Shao, Z. (2002). Sci. China Chem. 45, 267–274.  Web of Science CSD CrossRef CAS Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaya Prakash, M., Raghavaiah, P., Krishna, Y. S. R. & Radhakrishnan, T. P. (2008). Angew. Chem. Int. Ed. 47, 3969–3972.  CAS Google Scholar
First citationKurtz, S. K. (1968). J. Appl. Phys. 39, 3798–3813.  CrossRef CAS Web of Science Google Scholar
First citationLee, H. H. & Kim, H. J. (2012). Appl. Phys. Expr. 5, 051401.  Web of Science CrossRef Google Scholar
First citationLüpke, G., Bottomley, D. J. & van Driel, H. M. (1994). J. Opt. Soc. Am. B, 11, 33–44.  Google Scholar
First citationMarsh, R. E. (1986). Acta Cryst. B42, 193–198.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarsh, R. E. (1994). Acta Cryst. A50, 450–455.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarsh, R. E. & Herbstein, F. H. (1983). Acta Cryst. B39, 280–287.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMedishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907–5911.  Web of Science CSD CrossRef CAS Google Scholar
First citationMishuk, E., Weissbuch, I., Lahav, M. & Lubomirsky, I. (2014). Cryst. Growth Des. 14, 3839–3848.  Web of Science CrossRef CAS Google Scholar
First citationMolinos-Gómez, A., Maymó, M., Vidal, X., Velasco, D., Martorell, J. & López-Calahorra, F. (2007). Adv. Mater. 19, 3814–3818.  Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A., Schneider, T. & Sawaya, M. (2006). Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Oxford University Press.  Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationRobertson, J. M. (1935). J. Chem. Soc. Perkin Trans. pp. 615–621.  Google Scholar
First citationSchomaker, V. & Marsh, R. E. (1979). Acta Cryst. B35, 1933–1934.  CrossRef IUCr Journals Web of Science Google Scholar
First citationShakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Cryst. Growth, 311, 3871–3875.  Web of Science CrossRef CAS Google Scholar
First citationShakir, M., Singh, B. K., Kumar, B. & Bhagavannarayana, G. (2009). Appl. Phys. Lett. 95, 252902–252903.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSipe, J. E., Moss, D. J. & van Driel, H. M. (1987). Phys. Rev. B, 35, 1129–1141.  CrossRef Web of Science Google Scholar
First citationSmart, L. (2012). Solid State Chemistry: an Introduction. Boca Raton: CRC Press.  Google Scholar
First citationVerheijen, M. A., van Hasselt, C. W. & Rasing, T. (1991). Surf. Sci. 251–252, 467–471.  CrossRef CAS Web of Science Google Scholar
First citationWest, A. R. (1999). Basic Solid State Chemistry. New York: John Wiley and Sons.  Google Scholar
First citationZyss, J. & Oudar, J. L. (1982). Phys. Rev. A, 26, 2028–2048.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 2| Part 3| May 2015| Pages 317-321
ISSN: 2052-2525