research papers
Modularity and three-dimensional isostructurality of novel synthons in sulfonamide–lactam cocrystals
aSchool of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Central University PO, Hyderabad, 500 046, India
*Correspondence e-mail: ashwini.nangia@gmail.com
The design of novel supramolecular synthons for functional groups relevant to drugs is an essential prerequisite for applying crystal engineering in the development of novel pharmaceutical cocrystals. It has been convincingly shown over the past decade that molecular level control and modulation can influence the physicochemical properties of drug cocrystals. Whereas considerable advances have been reported on the design of cocrystals for 2NH2⋯CONH hydrogen bonding) is analyzed to define a strategy for amide-type GRAS (generally recognized as safe) coformers with Three types of supramolecular synthons are identified for the N—H donor of sulfonamide hydrogen bonding to the C=O acceptor of amide. Synthon 1: catemer synthon C21(4) chain motif, synthon 2: dimer–cyclic ring synthon R22(8)R42(8) motifs, and synthon 3: dimer–catemer synthon of R22(8)C11(4)D notation. These heterosynthons of the cocrystals observed in this study are compared with the N—H⋯O dimer R22(8) ring and C(4) chain motifs of the individual sulfonamide structures. The X-ray crystal structures of sulfonamide–lactam cocrystals exhibit interesting isostructurality trends with the same synthon being present. One-dimensional, two-dimensional and three-dimensional isostructurality in crystal structures is associated with isosynthons and due to their recurrence, novel heterosynthons for sulfonamide cocrystals are added to the crystal engineer's toolkit. With the predominance of sulfa drugs in medicine, these new synthons provide rational strategies for the design of binary and potentially ternary cocrystals of sulfonamides.
and carboxamide functional groups, the sulfonamide group, which is a cornerstone of sulfa drugs, is relatively unexplored for reproducible heterosynthon-directed crystal engineering. The occurrence of synthons and isostructurality in sulfonamide–lactam cocrystals (SO1. Introduction
The concept of supramolecular synthons introduced by Desiraju in 1995 (Desiraju, 1995; Thalladi et al., 1996; Reddy et al., 1996; Dunitz & Gavezzotti, 2012; Nangia & Desiraju, 1998) led to the identification of known and new hydrogen bond patterns in crystal engineering. Zaworotko and coworkers (Walsh et al., 2003) sub-classified synthons as homosynthons (those between like functional groups) and heterosynthons (hydrogen bonds between unlike groups). The past decade has witnessed immense interest in utilizing various supramolecular synthons to direct structural organization in the For example, acid–acid and amide–amide homosynthons are well known, while acid–pyridine and acid–amide are popular heterosynthons. The latter form of association between unlike functional groups has immediate potential in the engineering of multi-component systems, notably cocrystals (Vishweshwar et al., 2003a,b; Biradha & Zaworotko, 1998; Bis & Zaworotko, 2005; Bis et al., 2006; Vangala et al., 2005; Ermer & Eling, 1994; Reddy et al., 2006, 2007; Babu et al., 2007; Goud et al., 2011; Kaur & Guru Row, 2012)
Selected homo- and heterosynthons extracted from the literature for single and multi-component systems of . The directionality and strength of hydrogen bonding plays a major role in controlling the supramolecular assembly through complementary functional groups, which leads to the application of crystal engineering in material science and pharmaceutical solids (Childs et al., 2004; Trask, Motherwell & Jones, 2004, 2005, 2006; Trask, Haynes et al., 2006). The pairing of best-donor to best-acceptor hydrogen bonding (Etter's rules) guides cocrystal design in a majority of cases (Etter, 1982, 1990, 1991). However, as multiple functional groups come into interplay, the competition can be more complex and difficult to predict (Sarma et al., 2009; Aakeröy et al., 2013). For this reason, we examined heterosynthons of with the amide group in non-competing binary systems with the idea of developing a library of sulfonamide–carboxamide synthons. Whereas sulfonamide and carboxamide homosynthons have been studied, this is a report on their heterosynthons. Sulfonamides preferably form dimer and catemer synthons, whereas more often assemble via the dimer synthon (Sanphui et al., 2010). A robust heterosynthon for sulfonamide group cocrystals is that with pyridine N-oxides (Goud et al., 2011), but since the latter coformers are not pharmaceutically acceptable, there is a need to develop a design strategy for with GRAS (US-FDA, 2014). Selected data on were extracted from the Cambridge Structural Database (CSD, Version 5.36, November 2014 release). With this background, benzene were cocrystallized with cyclic to analyze isostructural relationships and classify the observed synthons.
are listed in Fig. 1Primary syn amides) listed in Fig. 2. A reason to choose cyclic over primary was that the latter have syn and anti N—H donors, and together with primary sulfonamide, which also has syn and anti N—H donors, the diversity of hydrogen bond motifs may become too complex for systematic analysis. In a recent study of with Moragues-Bartolome et al. (2012) found that 2-pyrrolidone showed a heterotetramer (CONH⋯COOH), whereas δ-valerolactam has a homotetramer synthon (CONH⋯CONH), although there were some mixed results as well (Moragues-Bartolome et al., 2012). We report in this paper isostructural pairs of cocrystals (sulfonamide–lactam) having isosynthons (similar supramolecular synthons). The lattice parameters and crystal packing of the X-ray crystal structures suggest that there are three sets of isostructural compounds and that each set has its own isosynthons. Primary consist of two acceptor O atoms and two donor H atoms (SO2NH2), and the complementary lactam (HN—C=O) also has one donor and one acceptor.
attached to a substituted phenyl ring were selected in this exploratory cocrystal study to identify the basic heterosynthons with in a non-competitive environment. We were successful in obtaining cocrystals of a few benzene with (2. Experimental
2.1. Preparation of cocrystals
All the benzene etc.) used in this study (see Fig. 2) were purchased from Sigma–Aldrich, Hyderabad, India, and used as such without further purification. Equivalent amounts of the sulfonamide and coformer were taken in a mortar and ground with a pestle for 20–30 min using solvent-assisted grinding by adding a few drops of EtOAc. After confirming that the ground mixture is a new solid phase by powder X-ray diffraction (PXRD), the mixture was dissolved in EtOAc or EtOAc–THF. The solution was then allowed to cocrystallize at room temperature by slow evaporation. Suitable crystals for single-crystal X-ray data were obtained after 5–6 d. A summary of the grinding experiments, characterizations of cocrystals by PXRD and IR, and confirmation by single-crystal X-ray diffraction (SC-XRD) are listed in Table 1.
and coformers (caprolactam, valerolactam
|
2.2. BSA–VLM cocrystal (1:1)
BSA (100 mg, 0.636 mmol) and VLM (63 mg, 0.636 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc (liquid-assisted grinding or LAG; Shan et al., 2002; Trask & Jones, 2005; Friščić et al., 2006). The ground material was kept for crystallization in 5 ml of an EtOAc–THF mixture as well as in individual solvents at room temperature. Good diffraction-quality crystals were harvested under ambient conditions after 3–4 d; m.p. 79–81°C.
2.3. BSA–CPR cocrystal (1:1)
BSA (100 mg, 0.636 mmol) and CPR (72 mg, 0.636 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF solvent mixture as well as in individual solvents in a 25 ml conical flask at room temperature. Good quality crystals were harvested under ambient conditions after 3–4 days; m.p. 80–83°C.
2.4. BSA–AZL (1-aza-2-cyclooctanone) cocrystal (1:1)
BSA (100 mg, 0.636 mmol) and AZL (80.87 mg, 0.636 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture as well as individual solvents in a 25 ml conical flask at room temperature. Good quality crystals were harvested under ambient conditions after 3–4 days; m.p. 76–81°C.
2.5. 2ClBSA–VLM, 4ClBSA–VLM cocrystal (1:1)
ClBSA isomer (100 mg, 0.521 mmol) and VLM (51.6 mg, 0.521 mmol) were ground well in a mortar and pestle for 20–30 min by adding 5 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture as well as individual solvents at room temperature. Single crystals were harvested under ambient conditions after 3–4 d; m.p. 80–82°C; 90–91°C
2.6. 2ClBSA–CPR, 4ClBSA–CPR cocrystal (1:1)
ClBSA isomer (100 mg, 0.521 mmol) and CPR (59 mg, 0.521 mmol) were ground well in a mortar and pestle for 20–30 min by adding 5 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture, as well as separate solvents at room temperature. Single crystals were harvested under ambient conditions after 3–4 d; m.p. 80–82°C; 82–83°C.
2.7. 4BrBSA–VLM cocrystal (1:1)
4BrBSA (100 mg, 0.423 mmol) and VLM (51.6 mg, 0.423 mmol) were ground well in a mortar and pestle for 20–30 min with solvent assistance by adding 4–7 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture, as well as individual solvents at room temperature. Single crystals were harvested under ambient conditions after 3–4 d; m.p. 92–94°C.
2.8. 4BrBSA–CPR cocrystal (1:1)
4BrBSA (100 mg, 0.423 mmol) and CPR (58.95 mg, 0.423 mmol) were ground well in a mortar aand pestle for 20–30 min through solvent-assisted grinding by adding 5 drops of EtOAc. The ground material was kept for crystallization in 5 mL of EtOAc–THF mixture as well as separate solvents. Single crystals were harvested at ambient conditions after 3–4 days; m.p. 90–92°C.
2.9. OTSA–VLM, PTSA–VLM cocrystal (1:1)
OTSA/PTSA (100 mg, 0.584 mmol) and VLM (57.89 mg, 0.584 mmol) were ground well in a mortar and pestle for 20–30 min through solvent-assisted grinding by adding 5 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture as well as separate solvents. Single crystals were harvested under ambient conditions after 3–4 days; m.p. 70–72°C; 74–75°C.
2.10. SNA–VLM, 2ABSA–VLM cocrystal (1:1)
SNA/2ABSA (100 mg, 0.580 mmol) and VLM (65.63 mg, 0.580 mmol) were ground well in a mortar and pestle for 20–30 min through solvent-assisted grinding by adding 5 drops of EtOAc. The ground material was kept for crystallization in 5 mL of an EtOAc–THF mixture as well as separate solvents. Single crystals were harvested at ambient conditions after 3–4 d; m.p. 95–97°C, 87–91°C.
2.11. Single-crystal X-ray diffraction
A single crystal obtained from the crystallization experiment was mounted on the goniometer of an Oxford Diffraction Gemini X-ray diffractometer equipped with an Mo Kα radiation source (λ = 0.71073 Å). Data reduction was performed using CrysAlisPro 171.33.55 software. The was solved and refined using Olex2-1.0 with anisotropic displacement parameters for non-H atoms. H atoms were experimentally located through the difference-Fourier electron density maps in all crystal structures. Data was reduced by SAINT-Plus (Bruker, 1998) and further continued with SHELXTL (Sheldrick, 2008). A check of the final (CIF) with PLATON (Spek, 2009) did not show any missed symmetry. X-Seed was used to prepare the figures and packing diagrams. Crystallographic parameters of all the cocrystals are summarized in Table 2. Hydrogen bond distances (see Table S1 of the supporting information ) are neutron-normalized (O—H 0.983, N—H 0.82, C—H 1.083 Å). files are also deposited with the CCDC (Nos. 1039188–1039200).
|
Some single-crystal diffraction data were collected at 298 K on a Bruker SMART APEX-1 CCD area-detector system equipped with a graphite monochromator, Mo Kα fine-focus sealed tube (λ = 0.71073 Å) operated at 1500 W power (40 kV, 30 mA). The frames were integrated with SAINT (Bruker, 1998) software using a narrow-frame integration algorithm. Data was corrected for absorption effects using the multi-scan method (SADABS; Bruker, 1998). The structure was solved and refined using SHELXTL (Sheldrick, 2008).
2.12. X-ray powder diffraction
Bulk samples were analyzed by X-ray powder diffraction on a Bruker AXS D8 diffractometer (Bruker-AXS, Karlsruhe, Germany). Experimental conditions: Cu Kα radiation (λ = 1.54056 Å); 40 kV; 30 mA; scanning interval 5–50° 2θ at a scan rate of 1° min−1; time per step 0.5 s. The experimental PXRD patterns of the BSA, 4Cl BSA and 4Br BSA cocrystals were compared to confirm the isostructurality (Fig. S4 of the supporting information ).
2.13. Vibrational spectroscopy
A Thermo-Nicolet 6700 FT–IR spectrometer (Waltham, MA, USA) was used to record the IR spectra. IR spectra were recorded on samples dispersed in KBr pellets. For details of IR spectra see Fig. S8 and Table S4 .
3. Results and discussion
3.1. analysis and isostructurality
A few benzene ) were selected to make cocrystals with PYR, VLM, CPR and AZL cyclic in a 1:1 stoichiometric ratio, which were ground mechanochemically through solvent-assisted grinding to obtain cocrystals. The resulting binary systems were analyzed with greater emphasis on VLM and CPR cocrystals since they are pharmaceutically acceptable coformers. Three types of synthons were observed: synthon 1 or the catemer motif of graph-set C21(4) (Etter et al., 1990; Bernstein et al., 1995), synthon 2 which is a dimer–cyclic synthon motif of R22(8)R42(8), and synthon 3 as a dimer–catemer motif R22(8)C11(4)D (Fig. 3). The of BSA with AZL contains synthon 2. The crystal structures of other primary with AZL, PYR etc. will be discussed separately. Cocrystals of celecoxib (SO2NH2 drug) with odd/even homolog cyclic (Bolla et al., 2014) indicated that the odd ring size coformer (PYR, CPR) follows the heterosynthon, whereas even ring (VLM, AZL) result in dimer–dimer/dimer–catemer synthons. With the aim of establishing a trend for this study however did not give the previously observed synthons but resulted in different motifs. A robust and predictable for sulfonamide cocrystals is pyridine N-oxide coformers (as well as P- and As-oxide) (e.g. Goud et al., 2011; Croker et al., 2012; Ferguson et al., 1989; Denise et al., 2014), but these are not of practical use as pharmaceuticals since they are not GRAS molecules (generally regarded as safe). The cocrystals obtained in this study and synthon classification are summarized in Fig. 3, along with crystallographic parameters in Table 2 (additional data in Table 3).
(listed in Fig. 2
|
3.2. Synthon 1, catemer chain
Among the 13 cocrystal structures studied (Table 1), seven structures contain the sulfonamide–syn-carboxamide catemer synthon of C21(4) notation. The catemer chains are assembled by sulfonamide N—H donors hydrogen bonding to the carboxamide acceptor. The structures are isostructural upon altering the auxiliary functional groups of benzene sulfonamide, such as Cl/Br/NH2/CH3. BSA–VLM and BSA–CPR have the same unit-cell parameters, whereas p-substituted BSA molecules (such as 4ClBSA, 4BrBSA and SNA) showed a 0.5 Å increase in the crystallographic b- and c-axis. BSA–VLM, BSA–CPR, SNA–CPR, 4ClBSA–CPR and 4BrBSA–CPR are three-dimensional isostructural. There are two more sets of isostructural cocrystals, 4ClBSA–VLM and 4BrBSA–VLM, with the same synthon.
3.2.1. BSA–VLM, BSA–CPR, SNA–CPR, 4 ClBSA–CPR and 4BrBSA–CPR (1:1)
The crystal structures of all these multi-component systems were refined in the orthorhombic P212121. The sulfonamide NH2 donates an N—H⋯O hydrogen bond to both sides of the carbonyl group of the lactam acceptor in the synthon 1 catemer (Fig. 4a). The hydrogen-bonded C(4) chain runs along the a-axis and in a corrugated sheet-like structure parallel to the (011) plane (Fig. 4, Fig. S1 ) and exhibits three-dimensional isostructurality in crystal packing.
3.2.2. ClBSA–VLM, 4BrBSA–VLM (1:1)
These two cocrystals have the catemer synthon and furthermore there is diversity in the two-dimensional packing patterns compared with the above set of five cocrystals. Both these structures are of the synthon 1 category even though they have different two-dimensional packing. The initial growth unit is the catemer hydrogen bond chain in these crystal structures. b-axis (space group C2/c), which results in successive chain motifs (Fig. S1 ). The two-dimensional sheet arrangements of these isostructural cases are displayed in Fig. 4.
and form catemer synthon chains parallel to the3.3. Synthon 2, dimer–cyclic ring
3.3.1. BSA–AZL cocrystal (1:1)
The P21/n. Glide-related sulfonamide molecules are flanked between dimers of lactam through N—H⋯O (N1—H1B⋯O3: 2.12 Å, ∠158°; N1—H1A⋯O3: 2.03 Å, ∠158°) hydrogen bonds (sulfonamide NH donors) to give R22(8)R42(8) ring motif synthon 2 (Figs. 5a and b), similar to that in N-oxide cocrystals (Goud et al., 2011). The structural units extend along the a-axis in a one-dimensional pattern. The meta H atoms of BSA form C—H⋯O interactions with S=O along the a-axis (Fig. 5c) resulting in corrugated layers of sulfonamide chains separated by coformer molecules (Fig. S2 ).
was refined in the monoclinic3.3.2. ABSA–CPR cocrystal (1:1)
This cocrystal is isostructural with BSA–AZL. The main synthon in 2ABSA–CPR is R22(8)R42(8) ring motifs along the a-axis (Fig. 5d) together with corrugated wave-like layers (Figs. 5d and e). The isostructurality is illustrated in Fig. S2 .
3.4. Synthon 3, dimer–catemer
3.4.1. ClBSA–VLM cocrystal (1:1)
Equimolar quantities of the components were ground and crystallized from EtOAc to give single crystals which were solved in the monoclinic P21/c. Catemer chains connect glide-related 2ClBSA molecules that assemble via homodimers of VLM through N—H⋯O (N1—H1A⋯O3 = 2.03 Å, ∠169°) hydrogen bonds in synthon 3, or dimer–catemer synthon R22(8)C11(4)D (Figs. 6a and b). In this synthon the coformer dimers are sandwiched between sulfonamide catemer chains. Halogen bonding (Cl⋯O, Cl⋯N) provides auxiliary support to the structure (Metrangolo et al., 2005, 2008; Saha & Nangia, 2007; Desiraju, 1989; Mukherjee et al., 2014). The catemer chains of 2ClBSA extend along the c-axis and homodimers of VLM connect adjacent chains of via C—H⋯O interactions to make two-dimensional stacks in the ab-plane (Fig. 6c).
3.4.2. ClBSA–CPR cocrystal (1:1)
Cocrystal 2ClBSA–CPR is isostructural with 2ClBSA–VLM. Sulfonamide catemer chains are interlinked via discrete synthons to homodimers of CPR through N1—H1A⋯O3 hydrogen bonds (1.97 Å, ∠176°) to give synthon 3, dimer–catemer (Figs. 6a and d). The homodimers of CPR are sandwiched between chains of sulfonamide chains. These patterns grow via C—H⋯O interactions to make interestingly parachute-like cone rings (Fig. 6e).
3.4.3. OTSA–VLM cocrystal (1:1)
The OTSA molecule formed a cocrystal (monoclinic P21/c space group) with VLM homodimers (N2—H2A⋯O3 = 2.26 Å, ∠175°) via a discrete (D graph set) N—H⋯O (N1—H1B⋯O3 = 2.03 Å, ∠179°) synthon along the c-axis. Such dimers are sandwiched between screw-related sulfonamide chains, similar to two previous cocrystal structures (Fig. 6f). Supportive C—H⋯O interactions make parallel stacks (Fig. 6g and Fig. S3a ).
3.4.4. PTSA–VLM cocrystal (1:1)
The h), but with different unit-cell parameters (Table 3). Sulfonamide molecules form catemer chain motifs above and below the VLM homodimers (N2—H2A⋯O3; H⋯O 2.15 Å, ∠176°; Fig. 6i). The sandwich-type structure is sustained by inversion-related sulfonamide chains in AABB-type stacking (Fig. S3b ).
was solved in a triclinic with . The basic supramolecular synthon of the catemer type is also present in this cocrystal (Fig. 63.5. Isostructural and isomorphous systems
Two crystals are said to be isostructural if they have the same structure, but not necessarily the same unit-cell dimensions nor the same chemical composition, with a comparable variability in the atomic coordinates to that of the cell dimensions and chemical composition (IUCr, 2014). Isostructurality depicts the arrangement of different molecules in a similar way in the but not necessarily their unit-cell parameters (Fábián, Argay & Kálmán, 1999; Fábián & Kálmán, 1999, 2004; Kitaigorodsky, 1961). Certain substituents in the molecule can be replaced with others without altering the crystal packing as well as cell values and the (Brink & Kroese, 1952; Perutz, 1956; Kroon et al., 1965; Sauer et al., 1997; Dikundwar et al., 2012). Such a exchange leads to isostructural and isomorphous crystal structures (Berzelius, 1844; Melhado, 1980; Mitscherlich, 1822; Morrow, 1969). The recent literature on molecular cocrystals (Cinčić et al., 2008a,b; Dubey & Desiraju, 2014) and pharmaceutical multi-component systems, e.g. lamotrigine and olanzapine cocrystals and salts, provide examples of isostructurality (Ebenezer et al., 2011; Galcera et al., 2012, 2013; Galcera & Molins, 2009; Clarke et al., 2012; Thakuria & Nangia, 2013; Chitra et al., 2012). The importance of isostructurality is that similar cocrystals can be designed depending on the geometry and shape and molecular composition of the starting materials. Isostructurality is also a useful guide in the prediction of multi-component systems (Schmidt, 1971; Desiraju, 1989; Braga et al., 1998; Desiraju et al., 2011). Different guest molecules may be incorporated into the host lattice without substantially changing the i.e. isostructurality. The formation of isostructural cocrystals with the same synthon (isosynthon) and this study of with VLM, CPR shows how synthon similarity can lead to isostructural cocrystals (Fig. 3). There are four sets of isostructural cocrystals along with three types of synthons found in this set of cocrystals. Interestingly, a unique set of isostructural cocrystals shows isosynthons. Out of the 13 cocrystal structures in this study, four contain the dimer–catemer synthon, two result in the dimer–cyclic motif and seven gave the catemer synthon. Synthon 1 cocrystals exhibit two isostructural sets: set one of BSA–VLM, BSA–CPR, 4ClBSA–CPR, 4BrBSA–CPR, SNA–CPR and set two cocrystals 4ClBSA–CPR and 4BrBSA–CPR. These are three-dimensional isostructural systems and show isostructurality due to the Cl/Br/NH2 exchange (functional group) and VLM/CPR (homolog; Table 4). Further, the same trend continues for synthons 2 and 3 cocrystal sets also, i.e. isostructurality for Cl/Br and VLM/CPR. Furthermore, despite changes in molecular structures, the PXRD line patterns of synthon 1 cocrystals match quite well (Fig. S4 ) confirming their isomorphous nature.
|
Isostructurality was calculated on the basis of unit-cell parameters. Monoclinic and orthorhombic crystal structures show the unit-cell similarity index goes to zero (isostructurality) (see Table 2)
where a, b, c and a′, b′, c′ are orthogonalized lattice parameters of the related structures.
3.6. Classification of sulfonamide synthons
A survey of the Cambridge Structural Database (CSD, Version 5.36, 1 November 2014 update; Allen, 2002) furnished 220 hits of primary (after eliminating hydrates, solvates, salts and duplicates) and 2160 hits of secondary (Table 5). These reported structures were analyzed to classify the known supramolecular synthons for and named as the anti catemer, syn catemer, finite catemer; continuous dimers, alternative dimers (Fig. 7b), dimers making rings, finite dimers; tetramers, three point synthons, and finally a miscellaneous cluster of mixed motifs (Fig. 7, CSD refcodes are provided in Table S2 ). The presence of multiple donors/acceptors on the SO2NH2 group together with conformational flexibility (syn/anti) leads to many possible hydrogen bond synthons. In contrast, the syn are more predictable and show mainly dimer and to a lesser extent catemer synthons. The synthons in Fig. 7(c) suggest that the known heterosynthon between sulfonamide and N-oxide may be replaced by amide with the same graph set R42(8) to provide a crystal engineering strategy for sulfonamide–carboxamide cocrystals.
|
A CSD search for the binary systems (cocrystals) furnished 33 hits for primary Fig. S5 ). The almost equal numbers of primary and secondary sulfonamide cocrystals means that there are no steric issues with cocrystal assembly. Among the primary sulfonamide cocrystals, there are a few N—H⋯O hydrogen-bonded structures with e.g. celecoxib-valerolactam trimorphs and nicotinamide cocrystals (see Fig. 7). Among the primary sulfonamide drugs, celecoxib, furosemide, acetazolamide and hydrochlorothiazide are notable for making cocrystals with amide coformers (Bolla et al., 2014; Harriss et al., 2014; Ueto et al., 2012; Arenas-García et al., 2010; Sanphui & Rajput, 2014; Remenar et al., 2007), e.g. nicotinamide, isonicotinamide and picolinamide with different sulfonamide–amide synthons (see Fig. S9 ).
and 39 hits for secondary along with the starting materials of this study (There are 2046 sulfonamides in the CSD but only 72 binary systems (cocrystals) in the CSD. The fewer number of sulfonamide cocrystals compared to say those for
and could be due to the penalty for disrupting the strong sulfonamide homosynthon in the parent crystal structures with an even stronger hydrogen bond in the cocrystal. The activated oxygen acceptor of N-oxides, and to a lesser extent carboxamide functional groups, has been successfully used for sulfonamide cocrystals. The present study presents a crystal engineering approach to sulfonamide–carboxamide cocrystals analogous to the sulfonamide–pyridine-N-oxide heterosynthon.3.7. Hirshfeld surface analysis
The Hirshfeld surface (using Crystal Explorer, Version 3.1, Hirshfeld, 1977; Hirshfeld & Mirsky, 1979; Kitaigorodsky, 1973; Vainshtein et al., 1982; Spackman & Jayatilaka, 2009, McKinnon et al., 1998) translates the electron density into molecular fragments and also volume around a molecule in a manner similar to the van der Waals surface, or an outer surface of the electron density in a The Hirshfeld surface is related to the molecule and the proximity of its nearest neighbors and this allows easy identification of characteristic strong and weak interactions throughout the structure. It explains the nature of intermolecular interactions within a using a two-dimensional fingerprint plot consisting of spikes and wings. The 4BrBSA–VLM cocrystal two-dimensional finger plots with all types of interactions are shown in Fig. 8 as a representative of this class. The other binary systems are shown in Fig. S6 . The strong spikes at 1.0–1.2 Å correspond to H⋯O interactions and the weak spikes between 1.2 and 1.4 Å for H⋯N hydrogen bonds. The other H⋯X, H⋯H, H⋯C interactions occur between 1.5 and 2.4 Å in the wings region. The strong H⋯O interaction is the major contributor in cocrystal structures (Fig. S7 and Table S3 ).
4. Conclusions
A crystal engineering strategy is described for cocrystals of an otherwise less studied but pharmaceutically very important class of sulfonamide e.g. the novel sulfonamide–amide synthon analogous to the reported sulfonamide–N-oxide. The cocrystals of primary with GRAS coformers will provide an entry to the modification of sulfa drugs via pharmaceutical cocrystals.
The binary systems of benzene sulfonamide–lactam exhibit three types of heterosynthons. The N—H donor of the sulfonamide forms a hydrogen bond with the C=O acceptor in different arrangements to result in synthon 1 of the catemer chain, synthon 2 as a dimer–cyclic motif and synthon 3 as a dimer–catemer. The classification of cocrystal structures in these synthon categories now offers a design element for sulfa drug cocrystals with GRAS coformers. Interestingly, isostructural pairs of cocrystals with isosynthons are observed in this study, which not only facilitates classification but also correlates with known cocrystal structures in the CSD,Supporting information
10.1107/S2052252515004960/zx5004sup1.cif
contains datablocks global, 2ABSACPR, BSAAZL, 4ClBSACPR, SNACPR, 4BrBSACPR, OTSAVLM, 2ClBSACPR, BSACPR, 4ClBSAVLM, 4BrBSAVLM, PTSAVLM, 2ClBSAVLM, BSAVLM. DOI:Structure factors: contains datablock 2ABSACPR. DOI: 10.1107/S2052252515004960/zx50042ABSACPRsup2.hkl
Structure factors: contains datablock BSAAZL. DOI: 10.1107/S2052252515004960/zx5004BSAAZLsup3.hkl
Structure factors: contains datablock BSAVLM. DOI: 10.1107/S2052252515004960/zx5004BSAVLMsup14.hkl
Structure factors: contains datablock SNACPR. DOI: 10.1107/S2052252515004960/zx5004SNACPRsup5.hkl
Structure factors: contains datablock 4BrBSACPR. DOI: 10.1107/S2052252515004960/zx50044BrBSACPRsup6.hkl
Structure factors: contains datablock OTSAVLM. DOI: 10.1107/S2052252515004960/zx5004OTSAVLMsup7.hkl
Structure factors: contains datablock 2ClBSACPR. DOI: 10.1107/S2052252515004960/zx50042ClBSACPRsup8.hkl
Structure factors: contains datablock BSACPR. DOI: 10.1107/S2052252515004960/zx5004BSACPRsup9.hkl
Structure factors: contains datablock 4ClBSAVLM. DOI: 10.1107/S2052252515004960/zx50044ClBSAVLMsup10.hkl
Structure factors: contains datablock 4BrBSAVLM. DOI: 10.1107/S2052252515004960/zx50044BrBSAVLMsup11.hkl
Structure factors: contains datablock PTSAVLM. DOI: 10.1107/S2052252515004960/zx5004PTSAVLMsup12.hkl
Structure factors: contains datablock 2ClBSAVLM. DOI: 10.1107/S2052252515004960/zx50042ClBSAVLMsup13.hkl
Structure factors: contains datablock BSAVLM. DOI: 10.1107/S2052252515004960/zx5004BSAVLMsup14.hkl
Supporting tables and figures. DOI: 10.1107/S2052252515004960/zx5004sup15.pdf
For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).
C6H8N2O2S·C6H11NO | Dx = 1.299 Mg m−3 |
Mr = 285.36 | Melting point: 341 K |
Monoclinic, P121/n1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2731 (4) Å | Cell parameters from 2272 reflections |
b = 15.9052 (10) Å | θ = 3.1–28.7° |
c = 12.7766 (6) Å | µ = 0.23 mm−1 |
β = 99.291 (5)° | T = 298 K |
V = 1458.60 (15) Å3 | PLATE, colorles |
Z = 4 | 0.22 × 0.21 × 0.20 mm |
F(000) = 608 |
Xcalibur, Eos, Gemini diffractometer | 2488 independent reflections |
Radiation source: fine-focus sealed tube | 1993 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 24.7°, θmin = 3.0° |
Absorption correction: multi-scan SADABS | h = −8→8 |
Tmin = 0.874, Tmax = 1.000 | k = −16→18 |
5525 measured reflections | l = −15→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0513P)2 + 0.2431P] where P = (Fo2 + 2Fc2)/3 |
2488 reflections | (Δ/σ)max = 0.001 |
179 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C6H8N2O2S·C6H11NO | V = 1458.60 (15) Å3 |
Mr = 285.36 | Z = 4 |
Monoclinic, P121/n1 | Mo Kα radiation |
a = 7.2731 (4) Å | µ = 0.23 mm−1 |
b = 15.9052 (10) Å | T = 298 K |
c = 12.7766 (6) Å | 0.22 × 0.21 × 0.20 mm |
β = 99.291 (5)° |
Xcalibur, Eos, Gemini diffractometer | 2488 independent reflections |
Absorption correction: multi-scan SADABS | 1993 reflections with I > 2σ(I) |
Tmin = 0.874, Tmax = 1.000 | Rint = 0.020 |
5525 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.15 e Å−3 |
2488 reflections | Δρmin = −0.32 e Å−3 |
179 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.03105 (7) | 0.83445 (3) | 0.15700 (4) | 0.04286 (18) | |
O3 | −0.19797 (19) | 0.47718 (9) | 0.56486 (11) | 0.0533 (4) | |
O2 | 0.1587 (2) | 0.84605 (10) | 0.25335 (11) | 0.0589 (4) | |
N3 | 0.0943 (2) | 0.43705 (11) | 0.62356 (13) | 0.0507 (4) | |
H3A | 0.1222 | 0.4525 | 0.5636 | 0.061* | |
O1 | −0.1464 (2) | 0.79747 (10) | 0.16181 (12) | 0.0603 (4) | |
C6 | 0.0484 (3) | 0.74236 (12) | −0.02378 (16) | 0.0451 (5) | |
N1 | −0.0085 (3) | 0.92530 (12) | 0.10533 (15) | 0.0484 (5) | |
H1A | −0.094 (3) | 0.9264 (14) | 0.0607 (19) | 0.058* | |
H1B | 0.094 (3) | 0.9551 (14) | 0.0993 (17) | 0.058* | |
C1 | 0.1442 (3) | 0.77321 (12) | 0.07254 (15) | 0.0397 (5) | |
C7 | −0.0815 (3) | 0.44355 (12) | 0.63577 (16) | 0.0444 (5) | |
N2 | −0.1366 (3) | 0.75970 (12) | −0.05867 (15) | 0.0623 (5) | |
H2A | −0.1843 | 0.7206 | −0.1015 | 0.075* | |
H2B | −0.1948 | 0.7615 | −0.0050 | 0.075* | |
C4 | 0.3371 (4) | 0.68114 (16) | −0.0565 (2) | 0.0709 (7) | |
H4 | 0.4020 | 0.6502 | −0.1004 | 0.085* | |
C2 | 0.3335 (3) | 0.75770 (14) | 0.10226 (18) | 0.0548 (6) | |
H2 | 0.3958 | 0.7791 | 0.1660 | 0.066* | |
C12 | 0.2458 (3) | 0.40596 (15) | 0.70280 (18) | 0.0571 (6) | |
H12A | 0.3589 | 0.4036 | 0.6717 | 0.069* | |
H12B | 0.2168 | 0.3492 | 0.7226 | 0.069* | |
C5 | 0.1519 (4) | 0.69616 (14) | −0.08703 (19) | 0.0616 (6) | |
H5 | 0.0927 | 0.6751 | −0.1517 | 0.074* | |
C8 | −0.1377 (3) | 0.41193 (16) | 0.73576 (17) | 0.0586 (6) | |
H8A | −0.0966 | 0.3541 | 0.7468 | 0.070* | |
H8B | −0.2726 | 0.4124 | 0.7280 | 0.070* | |
C11 | 0.2803 (3) | 0.45962 (16) | 0.80099 (19) | 0.0643 (6) | |
H11A | 0.2742 | 0.5183 | 0.7800 | 0.077* | |
H11B | 0.4053 | 0.4488 | 0.8379 | 0.077* | |
C9 | −0.0588 (3) | 0.46304 (17) | 0.83262 (19) | 0.0688 (7) | |
H9A | −0.1332 | 0.4525 | 0.8878 | 0.083* | |
H9B | −0.0708 | 0.5222 | 0.8145 | 0.083* | |
C10 | 0.1438 (3) | 0.44484 (17) | 0.87691 (18) | 0.0690 (7) | |
H10A | 0.1802 | 0.4797 | 0.9391 | 0.083* | |
H10B | 0.1539 | 0.3866 | 0.8998 | 0.083* | |
C3 | 0.4291 (3) | 0.71126 (16) | 0.0386 (2) | 0.0696 (7) | |
H3 | 0.5552 | 0.7002 | 0.0595 | 0.083* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0492 (3) | 0.0467 (3) | 0.0322 (3) | −0.0020 (2) | 0.0050 (2) | 0.0030 (2) |
O3 | 0.0480 (8) | 0.0652 (9) | 0.0446 (8) | 0.0006 (7) | 0.0011 (7) | 0.0064 (7) |
O2 | 0.0724 (10) | 0.0662 (10) | 0.0335 (8) | 0.0041 (8) | −0.0049 (7) | −0.0019 (7) |
N3 | 0.0524 (10) | 0.0610 (11) | 0.0399 (10) | 0.0056 (9) | 0.0112 (8) | 0.0068 (8) |
O1 | 0.0579 (9) | 0.0670 (10) | 0.0602 (10) | −0.0130 (8) | 0.0223 (7) | 0.0016 (8) |
C6 | 0.0564 (12) | 0.0396 (10) | 0.0376 (11) | −0.0034 (9) | 0.0029 (9) | 0.0039 (9) |
N1 | 0.0477 (10) | 0.0479 (10) | 0.0468 (11) | 0.0001 (9) | −0.0005 (8) | 0.0035 (9) |
C1 | 0.0449 (10) | 0.0387 (10) | 0.0351 (11) | −0.0035 (9) | 0.0050 (8) | 0.0057 (8) |
C7 | 0.0483 (11) | 0.0428 (11) | 0.0419 (11) | −0.0044 (10) | 0.0061 (9) | −0.0004 (10) |
N2 | 0.0644 (12) | 0.0665 (12) | 0.0494 (11) | −0.0059 (10) | −0.0104 (9) | −0.0080 (10) |
C4 | 0.0858 (19) | 0.0631 (15) | 0.0726 (18) | 0.0115 (14) | 0.0393 (15) | 0.0013 (14) |
C2 | 0.0480 (12) | 0.0614 (14) | 0.0538 (14) | −0.0017 (11) | 0.0048 (10) | 0.0040 (11) |
C12 | 0.0512 (12) | 0.0625 (14) | 0.0590 (14) | 0.0117 (11) | 0.0131 (10) | 0.0121 (12) |
C5 | 0.0923 (19) | 0.0513 (13) | 0.0419 (13) | −0.0024 (13) | 0.0130 (12) | −0.0046 (11) |
C8 | 0.0512 (12) | 0.0729 (15) | 0.0530 (14) | −0.0060 (11) | 0.0124 (10) | 0.0141 (12) |
C11 | 0.0612 (14) | 0.0700 (15) | 0.0572 (15) | −0.0081 (12) | −0.0037 (11) | 0.0110 (13) |
C9 | 0.0814 (17) | 0.0810 (17) | 0.0478 (14) | 0.0121 (14) | 0.0221 (12) | 0.0040 (13) |
C10 | 0.0879 (18) | 0.0730 (16) | 0.0430 (13) | −0.0026 (14) | 0.0013 (12) | 0.0024 (12) |
C3 | 0.0549 (14) | 0.0759 (17) | 0.0813 (19) | 0.0084 (13) | 0.0213 (13) | 0.0082 (15) |
S1—O1 | 1.4283 (15) | C4—H4 | 0.9300 |
S1—O2 | 1.4290 (14) | C2—C3 | 1.369 (3) |
S1—N1 | 1.5954 (18) | C2—H2 | 0.9300 |
S1—C1 | 1.754 (2) | C12—C11 | 1.505 (3) |
O3—C7 | 1.256 (2) | C12—H12A | 0.9700 |
N3—C7 | 1.317 (2) | C12—H12B | 0.9700 |
N3—C12 | 1.457 (3) | C5—H5 | 0.9300 |
N3—H3A | 0.8600 | C8—C9 | 1.514 (3) |
C6—N2 | 1.375 (2) | C8—H8A | 0.9700 |
C6—C5 | 1.399 (3) | C8—H8B | 0.9700 |
C6—C1 | 1.401 (3) | C11—C10 | 1.514 (3) |
N1—H1A | 0.77 (2) | C11—H11A | 0.9700 |
N1—H1B | 0.90 (2) | C11—H11B | 0.9700 |
C1—C2 | 1.390 (3) | C9—C10 | 1.519 (3) |
C7—C8 | 1.490 (3) | C9—H9A | 0.9700 |
N2—H2A | 0.8631 | C9—H9B | 0.9700 |
N2—H2B | 0.8626 | C10—H10A | 0.9700 |
C4—C5 | 1.361 (3) | C10—H10B | 0.9700 |
C4—C3 | 1.375 (4) | C3—H3 | 0.9300 |
O1—S1—O2 | 118.80 (10) | N3—C12—H12B | 109.0 |
O1—S1—N1 | 106.67 (10) | C11—C12—H12B | 109.0 |
O2—S1—N1 | 106.76 (10) | H12A—C12—H12B | 107.8 |
O1—S1—C1 | 108.34 (9) | C4—C5—C6 | 121.8 (2) |
O2—S1—C1 | 107.32 (9) | C4—C5—H5 | 119.1 |
N1—S1—C1 | 108.63 (9) | C6—C5—H5 | 119.1 |
C7—N3—C12 | 125.74 (18) | C7—C8—C9 | 113.53 (19) |
C7—N3—H3A | 117.1 | C7—C8—H8A | 108.9 |
C12—N3—H3A | 117.1 | C9—C8—H8A | 108.9 |
N2—C6—C5 | 120.5 (2) | C7—C8—H8B | 108.9 |
N2—C6—C1 | 122.43 (19) | C9—C8—H8B | 108.9 |
C5—C6—C1 | 116.96 (19) | H8A—C8—H8B | 107.7 |
S1—N1—H1A | 113.3 (17) | C12—C11—C10 | 114.09 (19) |
S1—N1—H1B | 114.7 (14) | C12—C11—H11A | 108.7 |
H1A—N1—H1B | 120 (2) | C10—C11—H11A | 108.7 |
C2—C1—C6 | 120.54 (19) | C12—C11—H11B | 108.7 |
C2—C1—S1 | 118.23 (15) | C10—C11—H11B | 108.7 |
C6—C1—S1 | 121.22 (15) | H11A—C11—H11B | 107.6 |
O3—C7—N3 | 120.19 (19) | C8—C9—C10 | 114.8 (2) |
O3—C7—C8 | 121.05 (18) | C8—C9—H9A | 108.6 |
N3—C7—C8 | 118.75 (18) | C10—C9—H9A | 108.6 |
C6—N2—H2A | 109.4 | C8—C9—H9B | 108.6 |
C6—N2—H2B | 109.2 | C10—C9—H9B | 108.6 |
H2A—N2—H2B | 109.2 | H9A—C9—H9B | 107.5 |
C5—C4—C3 | 120.7 (2) | C11—C10—C9 | 115.38 (19) |
C5—C4—H4 | 119.7 | C11—C10—H10A | 108.4 |
C3—C4—H4 | 119.7 | C9—C10—H10A | 108.4 |
C3—C2—C1 | 120.6 (2) | C11—C10—H10B | 108.4 |
C3—C2—H2 | 119.7 | C9—C10—H10B | 108.4 |
C1—C2—H2 | 119.7 | H10A—C10—H10B | 107.5 |
N3—C12—C11 | 113.09 (18) | C2—C3—C4 | 119.4 (2) |
N3—C12—H12A | 109.0 | C2—C3—H3 | 120.3 |
C11—C12—H12A | 109.0 | C4—C3—H3 | 120.3 |
C6H7NO2S·C7H13NO | F(000) = 608 |
Mr = 284.37 | Dx = 1.279 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3020 (9) Å | Cell parameters from 3397 reflections |
b = 17.189 (2) Å | θ = 2.9–23.3° |
c = 12.2835 (16) Å | µ = 0.23 mm−1 |
β = 106.760 (2)° | T = 298 K |
V = 1476.2 (3) Å3 | PLATE, colorles |
Z = 4 | 0.22 × 0.20 × 0.20 mm |
CCD area detector diffractometer | 2154 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.037 |
Graphite monochromator | θmax = 24.7°, θmin = 2.1° |
phi and ω scans | h = −8→8 |
13710 measured reflections | k = −20→20 |
2520 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.142 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0573P)2 + 0.8349P] where P = (Fo2 + 2Fc2)/3 |
2520 reflections | (Δ/σ)max < 0.001 |
184 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C6H7NO2S·C7H13NO | V = 1476.2 (3) Å3 |
Mr = 284.37 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.3020 (9) Å | µ = 0.23 mm−1 |
b = 17.189 (2) Å | T = 298 K |
c = 12.2835 (16) Å | 0.22 × 0.20 × 0.20 mm |
β = 106.760 (2)° |
CCD area detector diffractometer | 2154 reflections with I > 2σ(I) |
13710 measured reflections | Rint = 0.037 |
2520 independent reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.142 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.26 e Å−3 |
2520 reflections | Δρmin = −0.27 e Å−3 |
184 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.38938 (11) | 0.14789 (5) | 0.32694 (6) | 0.0614 (3) | |
O3 | 0.6840 (3) | 0.53498 (12) | 0.94445 (16) | 0.0631 (5) | |
N2 | 0.3761 (3) | 0.56077 (15) | 0.8646 (2) | 0.0566 (6) | |
C7 | 0.5577 (4) | 0.57061 (15) | 0.8708 (2) | 0.0519 (7) | |
N1 | 0.4595 (4) | 0.06644 (16) | 0.3858 (2) | 0.0624 (7) | |
C1 | 0.2838 (4) | 0.20092 (15) | 0.4165 (2) | 0.0509 (7) | |
C6 | 0.3969 (5) | 0.24554 (18) | 0.5024 (2) | 0.0649 (8) | |
H6 | 0.5285 | 0.2473 | 0.5140 | 0.078* | |
O1 | 0.5566 (4) | 0.18886 (15) | 0.3219 (2) | 0.0918 (8) | |
C2 | 0.0897 (4) | 0.19751 (18) | 0.4000 (3) | 0.0649 (8) | |
H2 | 0.0131 | 0.1669 | 0.3422 | 0.078* | |
O2 | 0.2438 (4) | 0.13196 (16) | 0.22504 (17) | 0.0936 (8) | |
C13 | 0.2123 (4) | 0.5940 (2) | 0.7798 (3) | 0.0677 (8) | |
H13A | 0.2483 | 0.6442 | 0.7562 | 0.081* | |
H13B | 0.1099 | 0.6026 | 0.8142 | 0.081* | |
C12 | 0.1394 (4) | 0.5429 (2) | 0.6764 (3) | 0.0764 (10) | |
H12A | 0.0416 | 0.5712 | 0.6200 | 0.092* | |
H12B | 0.0791 | 0.4974 | 0.6979 | 0.092* | |
C8 | 0.6142 (4) | 0.62429 (18) | 0.7904 (3) | 0.0678 (8) | |
H8A | 0.7423 | 0.6434 | 0.8265 | 0.081* | |
H8B | 0.5286 | 0.6687 | 0.7760 | 0.081* | |
C10 | 0.4123 (5) | 0.5781 (2) | 0.5924 (3) | 0.0832 (10) | |
H10A | 0.3448 | 0.6273 | 0.5867 | 0.100* | |
H10B | 0.4280 | 0.5668 | 0.5182 | 0.100* | |
C9 | 0.6104 (5) | 0.5875 (2) | 0.6774 (3) | 0.0773 (10) | |
H9A | 0.6696 | 0.5366 | 0.6922 | 0.093* | |
H9B | 0.6881 | 0.6190 | 0.6424 | 0.093* | |
C11 | 0.2909 (6) | 0.5156 (2) | 0.6214 (3) | 0.0867 (11) | |
H11A | 0.3745 | 0.4791 | 0.6726 | 0.104* | |
H11B | 0.2272 | 0.4876 | 0.5523 | 0.104* | |
C3 | 0.0098 (5) | 0.2398 (2) | 0.4696 (3) | 0.0812 (10) | |
H3 | −0.1215 | 0.2380 | 0.4589 | 0.097* | |
C4 | 0.1229 (7) | 0.2846 (2) | 0.5545 (3) | 0.0874 (11) | |
H4 | 0.0684 | 0.3133 | 0.6013 | 0.105* | |
C5 | 0.3157 (7) | 0.2872 (2) | 0.5707 (3) | 0.0856 (11) | |
H5 | 0.3921 | 0.3177 | 0.6288 | 0.103* | |
H1A | 0.556 (4) | 0.0704 (17) | 0.437 (3) | 0.055 (9)* | |
H1B | 0.367 (4) | 0.0358 (18) | 0.394 (2) | 0.063 (9)* | |
H2A | 0.350 (4) | 0.5300 (17) | 0.910 (3) | 0.056 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0675 (5) | 0.0681 (5) | 0.0491 (4) | 0.0087 (4) | 0.0176 (3) | 0.0095 (3) |
O3 | 0.0502 (11) | 0.0787 (14) | 0.0541 (11) | 0.0043 (10) | 0.0050 (9) | 0.0086 (10) |
N2 | 0.0512 (14) | 0.0715 (16) | 0.0477 (13) | 0.0044 (12) | 0.0155 (11) | 0.0093 (12) |
C7 | 0.0542 (16) | 0.0519 (15) | 0.0465 (15) | −0.0030 (13) | 0.0093 (13) | −0.0062 (12) |
N1 | 0.0509 (15) | 0.0663 (17) | 0.0639 (17) | 0.0013 (13) | 0.0072 (14) | 0.0031 (13) |
C1 | 0.0572 (16) | 0.0496 (15) | 0.0417 (14) | 0.0015 (12) | 0.0077 (12) | 0.0096 (12) |
C6 | 0.0689 (19) | 0.0658 (19) | 0.0542 (17) | −0.0071 (15) | 0.0086 (15) | 0.0034 (15) |
O1 | 0.0985 (18) | 0.0885 (17) | 0.1086 (19) | −0.0026 (14) | 0.0617 (15) | 0.0215 (14) |
C2 | 0.0614 (19) | 0.071 (2) | 0.0570 (17) | −0.0012 (15) | 0.0087 (14) | 0.0009 (15) |
O2 | 0.1033 (18) | 0.118 (2) | 0.0458 (12) | 0.0350 (15) | −0.0006 (12) | −0.0055 (12) |
C13 | 0.0514 (17) | 0.086 (2) | 0.0670 (19) | 0.0184 (15) | 0.0195 (14) | 0.0105 (17) |
C12 | 0.0546 (18) | 0.103 (3) | 0.0623 (19) | −0.0069 (17) | 0.0027 (15) | 0.0138 (18) |
C8 | 0.0568 (18) | 0.0632 (19) | 0.080 (2) | −0.0092 (14) | 0.0139 (16) | 0.0119 (16) |
C10 | 0.102 (3) | 0.093 (3) | 0.0595 (19) | 0.012 (2) | 0.0313 (19) | 0.0084 (18) |
C9 | 0.070 (2) | 0.095 (2) | 0.076 (2) | 0.0144 (18) | 0.0355 (18) | 0.0293 (19) |
C11 | 0.103 (3) | 0.089 (3) | 0.062 (2) | −0.014 (2) | 0.014 (2) | −0.0165 (18) |
C3 | 0.074 (2) | 0.091 (3) | 0.087 (3) | 0.0150 (19) | 0.037 (2) | 0.014 (2) |
C4 | 0.134 (4) | 0.073 (2) | 0.069 (2) | 0.017 (2) | 0.051 (2) | 0.0041 (19) |
C5 | 0.122 (3) | 0.074 (2) | 0.0550 (19) | −0.013 (2) | 0.015 (2) | −0.0068 (17) |
S1—O2 | 1.416 (2) | C12—C11 | 1.526 (5) |
S1—O1 | 1.426 (2) | C12—H12A | 0.9700 |
S1—N1 | 1.591 (3) | C12—H12B | 0.9700 |
S1—C1 | 1.768 (3) | C8—C9 | 1.517 (5) |
O3—C7 | 1.250 (3) | C8—H8A | 0.9700 |
N2—C7 | 1.317 (3) | C8—H8B | 0.9700 |
N2—C13 | 1.457 (3) | C10—C11 | 1.500 (5) |
N2—H2A | 0.83 (3) | C10—C9 | 1.529 (5) |
C7—C8 | 1.495 (4) | C10—H10A | 0.9700 |
N1—H1A | 0.80 (3) | C10—H10B | 0.9700 |
N1—H1B | 0.88 (3) | C9—H9A | 0.9700 |
C1—C6 | 1.372 (4) | C9—H9B | 0.9700 |
C1—C2 | 1.374 (4) | C11—H11A | 0.9700 |
C6—C5 | 1.363 (5) | C11—H11B | 0.9700 |
C6—H6 | 0.9300 | C3—C4 | 1.365 (5) |
C2—C3 | 1.375 (4) | C3—H3 | 0.9300 |
C2—H2 | 0.9300 | C4—C5 | 1.364 (5) |
C13—C12 | 1.511 (5) | C4—H4 | 0.9300 |
C13—H13A | 0.9700 | C5—H5 | 0.9300 |
C13—H13B | 0.9700 | ||
O2—S1—O1 | 119.42 (17) | H12A—C12—H12B | 107.5 |
O2—S1—N1 | 107.04 (17) | C7—C8—C9 | 114.3 (3) |
O1—S1—N1 | 106.66 (16) | C7—C8—H8A | 108.7 |
O2—S1—C1 | 107.39 (14) | C9—C8—H8A | 108.7 |
O1—S1—C1 | 107.74 (14) | C7—C8—H8B | 108.7 |
N1—S1—C1 | 108.17 (13) | C9—C8—H8B | 108.7 |
C7—N2—C13 | 126.6 (3) | H8A—C8—H8B | 107.6 |
C7—N2—H2A | 118 (2) | C11—C10—C9 | 114.9 (3) |
C13—N2—H2A | 116 (2) | C11—C10—H10A | 108.5 |
O3—C7—N2 | 120.0 (3) | C9—C10—H10A | 108.5 |
O3—C7—C8 | 119.6 (2) | C11—C10—H10B | 108.5 |
N2—C7—C8 | 120.4 (3) | C9—C10—H10B | 108.5 |
S1—N1—H1A | 112 (2) | H10A—C10—H10B | 107.5 |
S1—N1—H1B | 114.8 (19) | C8—C9—C10 | 115.6 (3) |
H1A—N1—H1B | 119 (3) | C8—C9—H9A | 108.4 |
C6—C1—C2 | 120.3 (3) | C10—C9—H9A | 108.4 |
C6—C1—S1 | 119.5 (2) | C8—C9—H9B | 108.4 |
C2—C1—S1 | 120.2 (2) | C10—C9—H9B | 108.4 |
C5—C6—C1 | 119.7 (3) | H9A—C9—H9B | 107.4 |
C5—C6—H6 | 120.2 | C10—C11—C12 | 116.0 (3) |
C1—C6—H6 | 120.2 | C10—C11—H11A | 108.3 |
C1—C2—C3 | 119.3 (3) | C12—C11—H11A | 108.3 |
C1—C2—H2 | 120.3 | C10—C11—H11B | 108.3 |
C3—C2—H2 | 120.3 | C12—C11—H11B | 108.3 |
N2—C13—C12 | 113.0 (3) | H11A—C11—H11B | 107.4 |
N2—C13—H13A | 109.0 | C4—C3—C2 | 120.1 (3) |
C12—C13—H13A | 109.0 | C4—C3—H3 | 119.9 |
N2—C13—H13B | 109.0 | C2—C3—H3 | 119.9 |
C12—C13—H13B | 109.0 | C5—C4—C3 | 120.1 (3) |
H13A—C13—H13B | 107.8 | C5—C4—H4 | 119.9 |
C13—C12—C11 | 115.2 (3) | C3—C4—H4 | 119.9 |
C13—C12—H12A | 108.5 | C6—C5—C4 | 120.4 (3) |
C11—C12—H12A | 108.5 | C6—C5—H5 | 119.8 |
C13—C12—H12B | 108.5 | C4—C5—H5 | 119.8 |
C11—C12—H12B | 108.5 |
C6H6ClNO2S·C6H11NO | Dx = 1.385 Mg m−3 |
Mr = 304.79 | Melting point: 355 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1564 (13) Å | Cell parameters from 543 reflections |
b = 13.369 (2) Å | θ = 2.8–26.3° |
c = 15.276 (3) Å | µ = 0.41 mm−1 |
V = 1461.5 (5) Å3 | T = 297 K |
Z = 4 | PLATE, colorles |
F(000) = 640 | 0.23 × 0.20 × 0.20 mm |
Xcalibur, Eos, Gemini diffractometer | 2851 independent reflections |
Radiation source: fine-focus sealed tube | 1152 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
ω scans | θmax = 26.4°, θmin = 3.1° |
Absorption correction: multi-scan SADABS | h = −8→7 |
Tmin = 0.333, Tmax = 1.000 | k = −12→16 |
4403 measured reflections | l = −12→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0114P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
2851 reflections | Δρmax = 0.25 e Å−3 |
178 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.11 (15) |
C6H6ClNO2S·C6H11NO | V = 1461.5 (5) Å3 |
Mr = 304.79 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.1564 (13) Å | µ = 0.41 mm−1 |
b = 13.369 (2) Å | T = 297 K |
c = 15.276 (3) Å | 0.23 × 0.20 × 0.20 mm |
Xcalibur, Eos, Gemini diffractometer | 2851 independent reflections |
Absorption correction: multi-scan SADABS | 1152 reflections with I > 2σ(I) |
Tmin = 0.333, Tmax = 1.000 | Rint = 0.082 |
4403 measured reflections |
R[F2 > 2σ(F2)] = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.114 | Δρmax = 0.25 e Å−3 |
S = 0.97 | Δρmin = −0.25 e Å−3 |
2851 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
178 parameters | Absolute structure parameter: 0.11 (15) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S3 | 0.0196 (3) | 0.35614 (15) | 0.88356 (14) | 0.0535 (6) | |
Cl1 | 0.5566 (3) | 0.07660 (16) | 0.67777 (13) | 0.0877 (8) | |
O2 | 0.0844 (6) | 0.4564 (3) | 0.8748 (3) | 0.0713 (16) | |
O3 | −0.0805 (7) | 1.1190 (3) | 0.9736 (3) | 0.0632 (17) | |
C7 | 0.0056 (12) | 1.0508 (6) | 0.9436 (5) | 0.054 (2) | |
C6 | 0.0971 (10) | 0.1977 (5) | 0.7767 (4) | 0.0458 (19) | |
H6 | −0.0304 | 0.1844 | 0.7780 | 0.055* | |
C3 | 0.4741 (11) | 0.2386 (5) | 0.7731 (5) | 0.055 (2) | |
H3 | 0.6014 | 0.2523 | 0.7714 | 0.066* | |
C4 | 0.4035 (11) | 0.1560 (5) | 0.7312 (4) | 0.048 (2) | |
O1 | −0.1687 (6) | 0.3320 (4) | 0.8608 (3) | 0.0827 (19) | |
C2 | 0.3530 (10) | 0.3013 (5) | 0.8181 (4) | 0.052 (2) | |
H2 | 0.3983 | 0.3579 | 0.8464 | 0.063* | |
C5 | 0.2143 (11) | 0.1350 (5) | 0.7310 (4) | 0.055 (2) | |
H5 | 0.1675 | 0.0801 | 0.7009 | 0.066* | |
C1 | 0.1653 (9) | 0.2791 (5) | 0.8203 (4) | 0.0382 (18) | |
N1 | 0.0459 (9) | 0.3254 (4) | 0.9837 (4) | 0.0539 (19) | |
H1A | 0.005 (11) | 0.273 (4) | 1.002 (5) | 0.065* | |
H1B | 0.167 (8) | 0.349 (5) | 1.003 (4) | 0.065* | |
N2 | 0.1869 (9) | 1.0380 (4) | 0.9556 (4) | 0.065 (2) | |
H2A | 0.2385 | 1.0812 | 0.9896 | 0.078* | |
C8 | −0.0874 (10) | 0.9702 (6) | 0.8853 (5) | 0.072 (2) | |
H8A | −0.2174 | 0.9883 | 0.8768 | 0.086* | |
H8B | −0.0275 | 0.9711 | 0.8284 | 0.086* | |
C10 | 0.1078 (11) | 0.8120 (6) | 0.9053 (6) | 0.078 (3) | |
H10A | 0.0981 | 0.7442 | 0.9275 | 0.093* | |
H10B | 0.1291 | 0.8076 | 0.8427 | 0.093* | |
C12 | 0.3120 (11) | 0.9637 (7) | 0.9210 (6) | 0.092 (3) | |
H12A | 0.4381 | 0.9809 | 0.9387 | 0.110* | |
H12B | 0.3075 | 0.9672 | 0.8576 | 0.110* | |
C9 | −0.0795 (11) | 0.8652 (6) | 0.9207 (5) | 0.083 (3) | |
H9A | −0.1781 | 0.8262 | 0.8936 | 0.099* | |
H9B | −0.1039 | 0.8672 | 0.9831 | 0.099* | |
C11 | 0.2757 (12) | 0.8613 (7) | 0.9469 (6) | 0.094 (3) | |
H11A | 0.2595 | 0.8598 | 1.0100 | 0.112* | |
H11B | 0.3854 | 0.8216 | 0.9333 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S3 | 0.0373 (13) | 0.0552 (14) | 0.0680 (14) | 0.0072 (12) | 0.0053 (11) | 0.0000 (13) |
Cl1 | 0.095 (2) | 0.0763 (14) | 0.0922 (16) | 0.0242 (15) | 0.0284 (15) | −0.0156 (15) |
O2 | 0.067 (4) | 0.044 (3) | 0.103 (4) | 0.018 (3) | 0.016 (3) | 0.021 (3) |
O3 | 0.060 (4) | 0.050 (4) | 0.080 (4) | 0.002 (3) | 0.014 (3) | −0.019 (3) |
C7 | 0.036 (6) | 0.056 (6) | 0.071 (6) | −0.028 (5) | −0.006 (5) | 0.007 (5) |
C6 | 0.035 (5) | 0.053 (5) | 0.050 (5) | −0.013 (4) | −0.001 (4) | 0.009 (4) |
C3 | 0.040 (5) | 0.059 (5) | 0.066 (5) | −0.006 (5) | 0.006 (5) | −0.012 (5) |
C4 | 0.056 (6) | 0.043 (5) | 0.045 (5) | 0.014 (5) | 0.007 (4) | 0.005 (4) |
O1 | 0.026 (3) | 0.108 (5) | 0.114 (5) | 0.014 (3) | −0.007 (3) | −0.023 (4) |
C2 | 0.050 (6) | 0.057 (5) | 0.049 (5) | 0.001 (5) | 0.001 (4) | −0.014 (5) |
C5 | 0.068 (6) | 0.042 (5) | 0.054 (5) | −0.010 (5) | −0.005 (5) | −0.016 (5) |
C1 | 0.032 (5) | 0.038 (5) | 0.044 (4) | −0.005 (4) | 0.000 (4) | −0.004 (4) |
N1 | 0.049 (5) | 0.045 (4) | 0.068 (5) | −0.011 (4) | 0.018 (4) | 0.007 (4) |
N2 | 0.055 (5) | 0.039 (4) | 0.100 (5) | 0.009 (4) | −0.019 (4) | −0.024 (4) |
C8 | 0.046 (5) | 0.072 (6) | 0.097 (7) | −0.011 (5) | 0.002 (5) | −0.002 (6) |
C10 | 0.079 (7) | 0.050 (5) | 0.104 (7) | −0.003 (6) | 0.007 (6) | 0.004 (5) |
C12 | 0.044 (6) | 0.079 (7) | 0.152 (10) | 0.003 (6) | −0.015 (6) | −0.012 (8) |
C9 | 0.065 (7) | 0.072 (7) | 0.112 (8) | −0.027 (6) | −0.007 (5) | −0.011 (6) |
C11 | 0.075 (8) | 0.068 (7) | 0.138 (8) | 0.018 (7) | −0.037 (6) | 0.003 (7) |
S3—O2 | 1.424 (5) | N1—H1A | 0.82 (6) |
S3—O1 | 1.429 (5) | N1—H1B | 0.97 (6) |
S3—N1 | 1.595 (6) | N2—C12 | 1.438 (8) |
S3—C1 | 1.756 (7) | N2—H2A | 0.8600 |
Cl1—C4 | 1.730 (7) | C8—C9 | 1.505 (8) |
O3—C7 | 1.192 (8) | C8—H8A | 0.9700 |
C7—N2 | 1.321 (8) | C8—H8B | 0.9700 |
C7—C8 | 1.549 (9) | C10—C11 | 1.512 (10) |
C6—C1 | 1.366 (8) | C10—C9 | 1.535 (9) |
C6—C5 | 1.375 (8) | C10—H10A | 0.9700 |
C6—H6 | 0.9300 | C10—H10B | 0.9700 |
C3—C4 | 1.373 (8) | C12—C11 | 1.449 (9) |
C3—C2 | 1.388 (8) | C12—H12A | 0.9700 |
C3—H3 | 0.9300 | C12—H12B | 0.9700 |
C4—C5 | 1.383 (9) | C9—H9A | 0.9700 |
C2—C1 | 1.376 (8) | C9—H9B | 0.9700 |
C2—H2 | 0.9300 | C11—H11A | 0.9700 |
C5—H5 | 0.9300 | C11—H11B | 0.9700 |
O2—S3—O1 | 119.8 (3) | C12—N2—H2A | 114.7 |
O2—S3—N1 | 107.1 (3) | C9—C8—C7 | 115.2 (7) |
O1—S3—N1 | 106.6 (3) | C9—C8—H8A | 108.5 |
O2—S3—C1 | 107.9 (3) | C7—C8—H8A | 108.5 |
O1—S3—C1 | 107.1 (3) | C9—C8—H8B | 108.5 |
N1—S3—C1 | 107.8 (3) | C7—C8—H8B | 108.5 |
O3—C7—N2 | 123.6 (8) | H8A—C8—H8B | 107.5 |
O3—C7—C8 | 122.1 (7) | C11—C10—C9 | 115.3 (6) |
N2—C7—C8 | 114.3 (8) | C11—C10—H10A | 108.4 |
C1—C6—C5 | 121.0 (7) | C9—C10—H10A | 108.4 |
C1—C6—H6 | 119.5 | C11—C10—H10B | 108.4 |
C5—C6—H6 | 119.5 | C9—C10—H10B | 108.4 |
C4—C3—C2 | 119.2 (7) | H10A—C10—H10B | 107.5 |
C4—C3—H3 | 120.4 | N2—C12—C11 | 116.1 (8) |
C2—C3—H3 | 120.4 | N2—C12—H12A | 108.2 |
C3—C4—C5 | 121.6 (7) | C11—C12—H12A | 108.2 |
C3—C4—Cl1 | 118.7 (7) | N2—C12—H12B | 108.2 |
C5—C4—Cl1 | 119.7 (7) | C11—C12—H12B | 108.2 |
C1—C2—C3 | 119.4 (7) | H12A—C12—H12B | 107.4 |
C1—C2—H2 | 120.3 | C8—C9—C10 | 114.2 (7) |
C3—C2—H2 | 120.3 | C8—C9—H9A | 108.7 |
C6—C5—C4 | 118.2 (7) | C10—C9—H9A | 108.7 |
C6—C5—H5 | 120.9 | C8—C9—H9B | 108.7 |
C4—C5—H5 | 120.9 | C10—C9—H9B | 108.7 |
C6—C1—C2 | 120.6 (7) | H9A—C9—H9B | 107.6 |
C6—C1—S3 | 121.6 (6) | C12—C11—C10 | 116.1 (8) |
C2—C1—S3 | 117.8 (6) | C12—C11—H11A | 108.3 |
S3—N1—H1A | 121 (5) | C10—C11—H11A | 108.3 |
S3—N1—H1B | 108 (4) | C12—C11—H11B | 108.3 |
H1A—N1—H1B | 120 (7) | C10—C11—H11B | 108.3 |
C7—N2—C12 | 130.5 (7) | H11A—C11—H11B | 107.4 |
C7—N2—H2A | 114.7 |
C6H8N2O2S·C6H11NO | Dx = 1.326 Mg m−3 |
Mr = 285.36 | Melting point: 368 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0957 (6) Å | Cell parameters from 831 reflections |
b = 13.1280 (13) Å | θ = 2.7–24.7° |
c = 15.3425 (18) Å | µ = 0.24 mm−1 |
V = 1429.2 (2) Å3 | T = 298 K |
Z = 4 | PLATE, colorles |
F(000) = 608 | 0.22 × 0.20 × 0.20 mm |
Xcalibur, Eos, Gemini diffractometer | 2354 independent reflections |
Radiation source: fine-focus sealed tube | 1318 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 24.7°, θmin = 2.7° |
Absorption correction: multi-scan SADABS | h = −7→8 |
Tmin = 0.667, Tmax = 1.000 | k = −8→15 |
3692 measured reflections | l = −18→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0117P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.90 | (Δ/σ)max < 0.001 |
2354 reflections | Δρmax = 0.18 e Å−3 |
179 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (14) |
C6H8N2O2S·C6H11NO | V = 1429.2 (2) Å3 |
Mr = 285.36 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.0957 (6) Å | µ = 0.24 mm−1 |
b = 13.1280 (13) Å | T = 298 K |
c = 15.3425 (18) Å | 0.22 × 0.20 × 0.20 mm |
Xcalibur, Eos, Gemini diffractometer | 2354 independent reflections |
Absorption correction: multi-scan SADABS | 1318 reflections with I > 2σ(I) |
Tmin = 0.667, Tmax = 1.000 | Rint = 0.042 |
3692 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.080 | Δρmax = 0.18 e Å−3 |
S = 0.90 | Δρmin = −0.21 e Å−3 |
2354 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
179 parameters | Absolute structure parameter: 0.03 (14) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C11 | 0.1350 (6) | 0.8611 (4) | 0.0600 (3) | 0.0805 (15) | |
H11A | 0.1392 | 0.8645 | −0.0031 | 0.097* | |
H11B | 0.0275 | 0.8195 | 0.0761 | 0.097* | |
S1 | 0.90765 (16) | 0.13847 (9) | 0.87588 (9) | 0.0599 (3) | |
O1 | 1.1072 (3) | 0.1426 (2) | 0.8626 (2) | 0.0811 (10) | |
O3 | 0.4913 (4) | 1.1203 (2) | 0.0183 (2) | 0.0694 (9) | |
N3 | 0.2251 (5) | 1.0426 (3) | 0.0533 (2) | 0.0660 (11) | |
H3A | 0.1666 | 1.0888 | 0.0242 | 0.079* | |
O2 | 0.8131 (4) | 0.0430 (2) | 0.8621 (2) | 0.0735 (9) | |
C4 | 0.6531 (7) | 0.3859 (3) | 0.7083 (3) | 0.0562 (13) | |
C3 | 0.8468 (6) | 0.3754 (4) | 0.7166 (3) | 0.0591 (13) | |
H3 | 0.9266 | 0.4201 | 0.6875 | 0.071* | |
C5 | 0.5389 (6) | 0.3167 (3) | 0.7511 (3) | 0.0640 (14) | |
H5 | 0.4088 | 0.3224 | 0.7459 | 0.077* | |
C6 | 0.6134 (6) | 0.2399 (3) | 0.8012 (3) | 0.0583 (13) | |
H6 | 0.5342 | 0.1944 | 0.8297 | 0.070* | |
N1 | 0.8708 (5) | 0.1686 (3) | 0.9750 (3) | 0.0589 (12) | |
H1A | 0.899 (6) | 0.224 (3) | 0.997 (3) | 0.071* | |
H1B | 0.759 (5) | 0.148 (3) | 0.999 (2) | 0.071* | |
N2 | 0.5796 (6) | 0.4620 (3) | 0.6575 (2) | 0.0828 (13) | |
H2A | 0.6504 | 0.5161 | 0.6592 | 0.099* | |
H2B | 0.4693 | 0.4781 | 0.6780 | 0.099* | |
C1 | 0.8058 (6) | 0.2308 (3) | 0.8090 (3) | 0.0462 (11) | |
C7 | 0.4103 (7) | 1.0499 (4) | 0.0552 (3) | 0.0565 (12) | |
C2 | 0.9211 (6) | 0.3000 (3) | 0.7672 (3) | 0.0542 (12) | |
H2 | 1.0511 | 0.2951 | 0.7736 | 0.065* | |
C9 | 0.4958 (7) | 0.8638 (4) | 0.0672 (3) | 0.0813 (15) | |
H9A | 0.6011 | 0.8224 | 0.0865 | 0.098* | |
H9B | 0.5021 | 0.8679 | 0.0041 | 0.098* | |
C8 | 0.5188 (6) | 0.9689 (4) | 0.1037 (3) | 0.0744 (15) | |
H8A | 0.6516 | 0.9866 | 0.1029 | 0.089* | |
H8B | 0.4780 | 0.9686 | 0.1641 | 0.089* | |
C12 | 0.1071 (6) | 0.9650 (3) | 0.0948 (3) | 0.0763 (15) | |
H12A | −0.0242 | 0.9837 | 0.0875 | 0.092* | |
H12B | 0.1336 | 0.9644 | 0.1568 | 0.092* | |
C10 | 0.3129 (7) | 0.8098 (3) | 0.0924 (3) | 0.0804 (15) | |
H10A | 0.3166 | 0.7409 | 0.0696 | 0.096* | |
H10B | 0.3070 | 0.8051 | 0.1554 | 0.096* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.081 (3) | 0.064 (3) | 0.096 (4) | −0.013 (3) | −0.008 (3) | −0.006 (4) |
S1 | 0.0530 (6) | 0.0473 (6) | 0.0794 (9) | 0.0085 (7) | −0.0003 (7) | 0.0010 (9) |
O1 | 0.0404 (15) | 0.084 (2) | 0.119 (3) | 0.0153 (18) | 0.0020 (17) | 0.014 (3) |
O3 | 0.0709 (19) | 0.0444 (18) | 0.093 (2) | −0.0027 (18) | 0.0158 (18) | 0.007 (2) |
N3 | 0.058 (2) | 0.046 (2) | 0.094 (3) | 0.006 (2) | −0.011 (2) | 0.016 (3) |
O2 | 0.079 (2) | 0.0400 (16) | 0.102 (2) | 0.0026 (17) | −0.006 (2) | −0.005 (2) |
C4 | 0.069 (3) | 0.051 (3) | 0.048 (3) | −0.001 (3) | −0.011 (2) | −0.006 (3) |
C3 | 0.056 (3) | 0.063 (3) | 0.058 (3) | −0.007 (3) | 0.008 (2) | 0.003 (3) |
C5 | 0.046 (3) | 0.062 (3) | 0.085 (4) | −0.003 (3) | −0.016 (3) | 0.003 (3) |
C6 | 0.043 (3) | 0.052 (3) | 0.080 (4) | −0.008 (2) | −0.007 (2) | 0.005 (3) |
N1 | 0.065 (2) | 0.047 (2) | 0.064 (3) | −0.001 (2) | 0.001 (2) | 0.004 (2) |
N2 | 0.093 (3) | 0.069 (3) | 0.086 (3) | 0.011 (3) | −0.006 (3) | 0.007 (3) |
C1 | 0.047 (2) | 0.045 (3) | 0.046 (3) | 0.006 (2) | −0.004 (2) | −0.002 (3) |
C7 | 0.052 (3) | 0.051 (3) | 0.067 (3) | 0.012 (3) | −0.005 (3) | −0.002 (3) |
C2 | 0.044 (2) | 0.060 (3) | 0.059 (3) | 0.008 (3) | −0.001 (2) | 0.000 (3) |
C9 | 0.086 (3) | 0.061 (3) | 0.097 (4) | 0.032 (4) | −0.003 (3) | 0.002 (4) |
C8 | 0.049 (3) | 0.075 (3) | 0.100 (4) | 0.011 (3) | −0.003 (3) | 0.007 (4) |
C12 | 0.057 (3) | 0.064 (3) | 0.107 (4) | −0.003 (3) | −0.006 (3) | 0.002 (4) |
C10 | 0.101 (4) | 0.046 (3) | 0.094 (4) | 0.004 (3) | 0.007 (4) | 0.005 (3) |
C11—C12 | 1.478 (6) | C6—C1 | 1.376 (5) |
C11—C10 | 1.514 (5) | C6—H6 | 0.9300 |
C11—H11A | 0.9700 | N1—H1A | 0.83 (4) |
C11—H11B | 0.9700 | N1—H1B | 0.91 (3) |
S1—O1 | 1.431 (2) | N2—H2A | 0.8706 |
S1—O2 | 1.437 (3) | N2—H2B | 0.8693 |
S1—N1 | 1.593 (4) | C1—C2 | 1.380 (5) |
S1—C1 | 1.745 (4) | C7—C8 | 1.510 (5) |
O3—C7 | 1.227 (5) | C2—H2 | 0.9300 |
N3—C7 | 1.318 (5) | C9—C8 | 1.499 (6) |
N3—C12 | 1.465 (5) | C9—C10 | 1.528 (5) |
N3—H3A | 0.8600 | C9—H9A | 0.9700 |
C4—N2 | 1.370 (5) | C9—H9B | 0.9700 |
C4—C5 | 1.383 (5) | C8—H8A | 0.9700 |
C4—C3 | 1.387 (5) | C8—H8B | 0.9700 |
C3—C2 | 1.364 (5) | C12—H12A | 0.9700 |
C3—H3 | 0.9300 | C12—H12B | 0.9700 |
C5—C6 | 1.373 (5) | C10—H10A | 0.9700 |
C5—H5 | 0.9300 | C10—H10B | 0.9700 |
C12—C11—C10 | 113.8 (4) | C6—C1—C2 | 119.4 (4) |
C12—C11—H11A | 108.8 | C6—C1—S1 | 121.5 (3) |
C10—C11—H11A | 108.8 | C2—C1—S1 | 119.0 (3) |
C12—C11—H11B | 108.8 | O3—C7—N3 | 120.8 (4) |
C10—C11—H11B | 108.8 | O3—C7—C8 | 121.3 (4) |
H11A—C11—H11B | 107.7 | N3—C7—C8 | 117.9 (4) |
O1—S1—O2 | 118.3 (2) | C3—C2—C1 | 120.8 (4) |
O1—S1—N1 | 106.8 (2) | C3—C2—H2 | 119.6 |
O2—S1—N1 | 106.3 (2) | C1—C2—H2 | 119.6 |
O1—S1—C1 | 107.5 (2) | C8—C9—C10 | 115.1 (4) |
O2—S1—C1 | 109.03 (19) | C8—C9—H9A | 108.5 |
N1—S1—C1 | 108.7 (2) | C10—C9—H9A | 108.5 |
C7—N3—C12 | 127.7 (4) | C8—C9—H9B | 108.5 |
C7—N3—H3A | 116.2 | C10—C9—H9B | 108.5 |
C12—N3—H3A | 116.2 | H9A—C9—H9B | 107.5 |
N2—C4—C5 | 121.7 (4) | C9—C8—C7 | 114.1 (4) |
N2—C4—C3 | 120.1 (5) | C9—C8—H8A | 108.7 |
C5—C4—C3 | 118.1 (4) | C7—C8—H8A | 108.7 |
C2—C3—C4 | 120.5 (4) | C9—C8—H8B | 108.7 |
C2—C3—H3 | 119.8 | C7—C8—H8B | 108.7 |
C4—C3—H3 | 119.8 | H8A—C8—H8B | 107.6 |
C6—C5—C4 | 121.5 (4) | N3—C12—C11 | 114.1 (4) |
C6—C5—H5 | 119.2 | N3—C12—H12A | 108.7 |
C4—C5—H5 | 119.2 | C11—C12—H12A | 108.7 |
C5—C6—C1 | 119.6 (4) | N3—C12—H12B | 108.7 |
C5—C6—H6 | 120.2 | C11—C12—H12B | 108.7 |
C1—C6—H6 | 120.2 | H12A—C12—H12B | 107.6 |
S1—N1—H1A | 124 (4) | C11—C10—C9 | 114.8 (4) |
S1—N1—H1B | 117 (2) | C11—C10—H10A | 108.6 |
H1A—N1—H1B | 108 (4) | C9—C10—H10A | 108.6 |
C4—N2—H2A | 111.0 | C11—C10—H10B | 108.6 |
C4—N2—H2B | 108.3 | C9—C10—H10B | 108.6 |
H2A—N2—H2B | 108.0 | H10A—C10—H10B | 107.6 |
C6H6BrNO2S·C6H11NO | Dx = 1.554 Mg m−3 |
Mr = 349.25 | Melting point: 363 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.156 (3) Å | Cell parameters from 3565 reflections |
b = 13.538 (5) Å | θ = 2.6–20.1° |
c = 15.406 (6) Å | µ = 2.90 mm−1 |
V = 1492.3 (9) Å3 | T = 298 K |
Z = 4 | PLATE, colorles |
F(000) = 712 | 0.22 × 0.20 × 0.20 mm |
CCD area detector diffractometer | 2405 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.057 |
Graphite monochromator | θmax = 26.4°, θmin = 2.0° |
phi and ω scans | h = −8→8 |
15786 measured reflections | k = −16→16 |
3029 independent reflections | l = −19→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0368P)2 + 0.1698P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3029 reflections | Δρmax = 0.46 e Å−3 |
184 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.018 (11) |
C6H6BrNO2S·C6H11NO | V = 1492.3 (9) Å3 |
Mr = 349.25 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.156 (3) Å | µ = 2.90 mm−1 |
b = 13.538 (5) Å | T = 298 K |
c = 15.406 (6) Å | 0.22 × 0.20 × 0.20 mm |
CCD area detector diffractometer | 2405 reflections with I > 2σ(I) |
15786 measured reflections | Rint = 0.057 |
3029 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.093 | Δρmax = 0.46 e Å−3 |
S = 1.02 | Δρmin = −0.23 e Å−3 |
3029 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
184 parameters | Absolute structure parameter: 0.018 (11) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 1.06812 (7) | 0.57142 (4) | 0.17536 (3) | 0.0783 (2) | |
S1 | 0.51258 (13) | 0.85223 (8) | 0.38623 (7) | 0.0535 (3) | |
O2 | 0.3242 (4) | 0.8284 (3) | 0.3656 (2) | 0.0826 (11) | |
C2 | 0.5904 (5) | 0.6967 (3) | 0.2777 (2) | 0.0499 (9) | |
H2 | 0.4628 | 0.6838 | 0.2782 | 0.060* | |
O1 | 0.5740 (4) | 0.9520 (2) | 0.3772 (2) | 0.0722 (8) | |
O3 | 1.0804 (4) | 0.3851 (2) | 0.97299 (19) | 0.0658 (8) | |
C7 | 0.9938 (6) | 0.4547 (3) | 0.9408 (3) | 0.0538 (10) | |
C4 | 0.8969 (5) | 0.6561 (3) | 0.2329 (2) | 0.0494 (9) | |
C6 | 0.8509 (5) | 0.7955 (3) | 0.3230 (3) | 0.0534 (9) | |
H6 | 0.8987 | 0.8488 | 0.3540 | 0.064* | |
N1 | 0.5439 (6) | 0.8229 (3) | 0.4860 (2) | 0.0564 (9) | |
C12 | 0.6865 (7) | 0.5376 (4) | 0.9179 (4) | 0.0802 (15) | |
H12A | 0.5591 | 0.5213 | 0.9340 | 0.096* | |
H12B | 0.6944 | 0.5350 | 0.8551 | 0.096* | |
C10 | 0.8940 (8) | 0.6866 (3) | 0.9025 (4) | 0.0803 (15) | |
H10A | 0.8698 | 0.6895 | 0.8406 | 0.096* | |
H10B | 0.9062 | 0.7540 | 0.9231 | 0.096* | |
C1 | 0.6596 (5) | 0.7767 (3) | 0.3234 (3) | 0.0456 (8) | |
C5 | 0.9678 (6) | 0.7358 (3) | 0.2773 (3) | 0.0566 (10) | |
H5 | 1.0953 | 0.7488 | 0.2760 | 0.068* | |
C3 | 0.7081 (6) | 0.6364 (3) | 0.2317 (2) | 0.0536 (10) | |
H3 | 0.6613 | 0.5831 | 0.2003 | 0.064* | |
C8 | 1.0852 (6) | 0.5294 (3) | 0.8836 (3) | 0.0651 (11) | |
H8A | 1.0259 | 0.5271 | 0.8270 | 0.078* | |
H8B | 1.2151 | 0.5109 | 0.8759 | 0.078* | |
C9 | 1.0780 (8) | 0.6342 (3) | 0.9166 (3) | 0.0745 (13) | |
H9A | 1.1758 | 0.6718 | 0.8882 | 0.089* | |
H9B | 1.1050 | 0.6338 | 0.9783 | 0.089* | |
N2 | 0.8108 (5) | 0.4630 (3) | 0.9539 (3) | 0.0706 (12) | |
C11 | 0.7264 (8) | 0.6401 (4) | 0.9465 (4) | 0.0852 (16) | |
H11A | 0.7472 | 0.6400 | 1.0087 | 0.102* | |
H11B | 0.6173 | 0.6806 | 0.9351 | 0.102* | |
H1B | 0.525 (6) | 0.773 (3) | 0.495 (3) | 0.045 (14)* | |
H1A | 0.662 (6) | 0.841 (3) | 0.507 (3) | 0.060 (13)* | |
H2A | 0.764 (6) | 0.413 (3) | 0.979 (3) | 0.064 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0896 (4) | 0.0694 (3) | 0.0759 (3) | 0.0173 (3) | 0.0210 (3) | −0.0139 (3) |
S1 | 0.0395 (5) | 0.0528 (5) | 0.0681 (6) | 0.0072 (4) | 0.0024 (5) | −0.0021 (5) |
O2 | 0.0397 (16) | 0.100 (3) | 0.108 (3) | 0.0112 (16) | −0.0044 (16) | −0.021 (2) |
C2 | 0.042 (2) | 0.056 (2) | 0.052 (2) | −0.0043 (19) | −0.0039 (18) | 0.0051 (17) |
O1 | 0.0761 (19) | 0.0488 (17) | 0.092 (2) | 0.0170 (15) | 0.0176 (17) | 0.0098 (14) |
O3 | 0.0651 (17) | 0.0500 (16) | 0.082 (2) | 0.0012 (15) | −0.0087 (17) | 0.0108 (14) |
C7 | 0.055 (2) | 0.044 (2) | 0.063 (2) | −0.0067 (18) | 0.000 (2) | −0.0002 (18) |
C4 | 0.054 (3) | 0.048 (2) | 0.046 (2) | 0.0043 (19) | 0.0045 (18) | −0.0008 (16) |
C6 | 0.049 (2) | 0.052 (2) | 0.059 (2) | −0.0033 (17) | −0.003 (2) | −0.013 (2) |
N1 | 0.056 (3) | 0.046 (2) | 0.067 (2) | −0.0012 (19) | 0.0105 (19) | −0.0053 (18) |
C12 | 0.051 (3) | 0.070 (3) | 0.119 (4) | 0.004 (2) | 0.005 (3) | 0.014 (3) |
C10 | 0.098 (4) | 0.050 (2) | 0.094 (4) | −0.005 (3) | 0.010 (3) | 0.013 (2) |
C1 | 0.0398 (19) | 0.049 (2) | 0.048 (2) | 0.0001 (15) | −0.0010 (18) | 0.0058 (19) |
C5 | 0.040 (2) | 0.069 (3) | 0.062 (2) | 0.0010 (19) | 0.0007 (18) | −0.009 (2) |
C3 | 0.067 (3) | 0.047 (2) | 0.047 (2) | −0.012 (2) | −0.0047 (19) | −0.0039 (18) |
C8 | 0.052 (2) | 0.074 (3) | 0.069 (3) | −0.005 (2) | 0.006 (2) | 0.004 (2) |
C9 | 0.079 (3) | 0.065 (3) | 0.080 (3) | −0.023 (3) | −0.007 (3) | 0.012 (2) |
N2 | 0.056 (2) | 0.056 (2) | 0.099 (3) | −0.0046 (19) | 0.014 (2) | 0.022 (2) |
C11 | 0.088 (4) | 0.071 (3) | 0.097 (4) | 0.026 (3) | 0.017 (3) | −0.002 (3) |
Br—C4 | 1.898 (4) | C4—C5 | 1.374 (5) |
S1—O2 | 1.422 (3) | C4—C3 | 1.377 (6) |
S1—O1 | 1.427 (3) | C6—C5 | 1.360 (5) |
S1—N1 | 1.602 (4) | C6—C1 | 1.392 (5) |
S1—C1 | 1.757 (4) | C12—N2 | 1.456 (6) |
C2—C3 | 1.371 (6) | C12—C11 | 1.483 (7) |
C2—C1 | 1.383 (5) | C10—C9 | 1.511 (7) |
O3—C7 | 1.232 (5) | C10—C11 | 1.515 (7) |
C7—N2 | 1.329 (6) | C8—C9 | 1.508 (6) |
C7—C8 | 1.492 (6) | ||
O2—S1—O1 | 119.0 (2) | C5—C6—C1 | 119.9 (4) |
O2—S1—N1 | 106.9 (2) | N2—C12—C11 | 114.7 (5) |
O1—S1—N1 | 106.5 (2) | C9—C10—C11 | 115.5 (4) |
O2—S1—C1 | 108.2 (2) | C2—C1—C6 | 119.5 (4) |
O1—S1—C1 | 108.21 (18) | C2—C1—S1 | 121.4 (3) |
N1—S1—C1 | 107.49 (19) | C6—C1—S1 | 119.0 (3) |
C3—C2—C1 | 120.7 (4) | C6—C5—C4 | 119.8 (4) |
O3—C7—N2 | 120.0 (4) | C2—C3—C4 | 118.7 (4) |
O3—C7—C8 | 122.3 (4) | C7—C8—C9 | 115.0 (4) |
N2—C7—C8 | 117.7 (4) | C8—C9—C10 | 115.0 (4) |
C5—C4—C3 | 121.4 (4) | C7—N2—C12 | 127.1 (4) |
C5—C4—Br | 117.9 (3) | C12—C11—C10 | 114.1 (5) |
C3—C4—Br | 120.7 (3) |
C7H9NO2S·C5H9NO | Dx = 1.329 Mg m−3 |
Mr = 270.34 | Melting point: 343 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 5.3367 (6) Å | Cell parameters from 735 reflections |
b = 15.9206 (17) Å | θ = 2.6–26.3° |
c = 16.070 (3) Å | µ = 0.24 mm−1 |
β = 98.308 (12)° | T = 298 K |
V = 1351.0 (3) Å3 | PLATE, colorles |
Z = 4 | 0.22 × 0.20 × 0.20 mm |
F(000) = 576 |
Xcalibur, Eos, Gemini diffractometer | 2759 independent reflections |
Radiation source: fine-focus sealed tube | 1420 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
ω scans | θmax = 26.4°, θmin = 2.6° |
Absorption correction: multi-scan SADABS | h = −6→6 |
Tmin = 0.755, Tmax = 1.000 | k = −19→11 |
5072 measured reflections | l = −14→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0264P)2] where P = (Fo2 + 2Fc2)/3 |
2759 reflections | (Δ/σ)max < 0.001 |
170 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C7H9NO2S·C5H9NO | V = 1351.0 (3) Å3 |
Mr = 270.34 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.3367 (6) Å | µ = 0.24 mm−1 |
b = 15.9206 (17) Å | T = 298 K |
c = 16.070 (3) Å | 0.22 × 0.20 × 0.20 mm |
β = 98.308 (12)° |
Xcalibur, Eos, Gemini diffractometer | 2759 independent reflections |
Absorption correction: multi-scan SADABS | 1420 reflections with I > 2σ(I) |
Tmin = 0.755, Tmax = 1.000 | Rint = 0.067 |
5072 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.21 e Å−3 |
2759 reflections | Δρmin = −0.24 e Å−3 |
170 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.21166 (16) | 0.62191 (5) | 0.22403 (6) | 0.0519 (3) | |
O1 | 0.4643 (4) | 0.63090 (14) | 0.26693 (16) | 0.0674 (7) | |
N1 | 0.0300 (5) | 0.63558 (19) | 0.29386 (19) | 0.0519 (8) | |
H1B | −0.142 (6) | 0.6375 (19) | 0.270 (2) | 0.062* | |
H1A | 0.071 (6) | 0.608 (2) | 0.340 (2) | 0.062* | |
O2 | 0.1267 (5) | 0.67551 (15) | 0.15492 (16) | 0.0756 (8) | |
C6 | 0.3592 (7) | 0.4596 (2) | 0.2264 (2) | 0.0591 (10) | |
H6 | 0.4935 | 0.4790 | 0.2650 | 0.071* | |
C1 | 0.1792 (6) | 0.5159 (2) | 0.1901 (2) | 0.0450 (8) | |
C2 | −0.0255 (6) | 0.4890 (2) | 0.1329 (2) | 0.0561 (9) | |
C5 | 0.3448 (8) | 0.3759 (3) | 0.2070 (3) | 0.0780 (12) | |
H5 | 0.4691 | 0.3389 | 0.2311 | 0.094* | |
C4 | 0.1447 (10) | 0.3478 (3) | 0.1515 (3) | 0.0837 (13) | |
H4 | 0.1301 | 0.2910 | 0.1384 | 0.100* | |
C3 | −0.0337 (8) | 0.4028 (3) | 0.1153 (3) | 0.0807 (13) | |
H3 | −0.1670 | 0.3822 | 0.0770 | 0.097* | |
C7 | −0.2302 (7) | 0.5456 (3) | 0.0899 (2) | 0.0835 (13) | |
H7A | −0.2841 | 0.5834 | 0.1304 | 0.125* | |
H7B | −0.3714 | 0.5122 | 0.0652 | 0.125* | |
H7C | −0.1657 | 0.5772 | 0.0468 | 0.125* | |
O3 | 0.2324 (4) | 0.52137 (14) | 0.42358 (14) | 0.0557 (7) | |
N2 | 0.3028 (5) | 0.39875 (16) | 0.49027 (17) | 0.0488 (7) | |
H2A | 0.4360 | 0.4209 | 0.5183 | 0.059* | |
C8 | 0.1675 (6) | 0.4473 (2) | 0.4342 (2) | 0.0432 (8) | |
C9 | −0.0668 (6) | 0.4125 (2) | 0.3845 (2) | 0.0495 (9) | |
H9A | −0.0685 | 0.4275 | 0.3259 | 0.059* | |
H9B | −0.2122 | 0.4389 | 0.4034 | 0.059* | |
C11 | −0.0199 (6) | 0.2893 (2) | 0.4793 (2) | 0.0649 (11) | |
H11A | −0.0413 | 0.2290 | 0.4825 | 0.078* | |
H11B | −0.1287 | 0.3156 | 0.5151 | 0.078* | |
C12 | 0.2510 (6) | 0.3118 (2) | 0.5098 (2) | 0.0582 (10) | |
H12A | 0.2862 | 0.3033 | 0.5702 | 0.070* | |
H12B | 0.3617 | 0.2751 | 0.4836 | 0.070* | |
C10 | −0.0955 (7) | 0.3178 (2) | 0.3903 (2) | 0.0667 (11) | |
H10A | −0.2701 | 0.3022 | 0.3714 | 0.080* | |
H10B | 0.0101 | 0.2904 | 0.3541 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0399 (5) | 0.0461 (5) | 0.0694 (7) | −0.0035 (4) | 0.0071 (5) | 0.0066 (5) |
O1 | 0.0331 (13) | 0.0648 (16) | 0.103 (2) | −0.0082 (12) | 0.0054 (13) | −0.0125 (15) |
N1 | 0.0356 (16) | 0.059 (2) | 0.060 (2) | 0.0025 (15) | 0.0014 (16) | −0.0034 (15) |
O2 | 0.0841 (19) | 0.0597 (16) | 0.083 (2) | 0.0004 (14) | 0.0125 (15) | 0.0323 (15) |
C6 | 0.055 (2) | 0.051 (2) | 0.067 (3) | 0.0044 (19) | −0.002 (2) | 0.005 (2) |
C1 | 0.042 (2) | 0.049 (2) | 0.044 (2) | −0.0017 (17) | 0.0068 (17) | 0.0022 (17) |
C2 | 0.056 (2) | 0.067 (3) | 0.045 (2) | 0.001 (2) | 0.0045 (19) | −0.006 (2) |
C5 | 0.089 (3) | 0.059 (3) | 0.084 (3) | 0.020 (2) | 0.007 (3) | 0.008 (2) |
C4 | 0.103 (4) | 0.064 (3) | 0.084 (4) | 0.001 (3) | 0.015 (3) | −0.018 (3) |
C3 | 0.082 (3) | 0.085 (3) | 0.070 (3) | −0.013 (3) | −0.006 (2) | −0.026 (3) |
C7 | 0.064 (3) | 0.115 (4) | 0.062 (3) | 0.011 (3) | −0.024 (2) | −0.003 (3) |
O3 | 0.0553 (15) | 0.0478 (15) | 0.0601 (17) | −0.0090 (12) | −0.0047 (12) | 0.0014 (12) |
N2 | 0.0392 (16) | 0.0479 (18) | 0.055 (2) | −0.0017 (14) | −0.0066 (14) | −0.0025 (15) |
C8 | 0.0371 (19) | 0.051 (2) | 0.041 (2) | 0.0009 (18) | 0.0046 (17) | −0.0084 (19) |
C9 | 0.043 (2) | 0.059 (2) | 0.044 (2) | −0.0045 (17) | −0.0035 (17) | −0.0055 (18) |
C11 | 0.062 (3) | 0.050 (2) | 0.080 (3) | −0.0144 (19) | 0.003 (2) | 0.002 (2) |
C12 | 0.063 (3) | 0.049 (2) | 0.061 (3) | 0.0006 (19) | 0.0023 (19) | 0.0023 (19) |
C10 | 0.056 (2) | 0.068 (3) | 0.071 (3) | −0.011 (2) | −0.006 (2) | −0.009 (2) |
S1—O2 | 1.422 (2) | C7—H7B | 0.9600 |
S1—O1 | 1.430 (2) | C7—H7C | 0.9600 |
S1—N1 | 1.600 (3) | O3—C8 | 1.248 (4) |
S1—C1 | 1.775 (3) | N2—C8 | 1.320 (4) |
N1—H1B | 0.95 (3) | N2—C12 | 1.456 (4) |
N1—H1A | 0.86 (3) | N2—H2A | 0.8600 |
C6—C5 | 1.368 (5) | C8—C9 | 1.489 (4) |
C6—C1 | 1.380 (4) | C9—C10 | 1.519 (5) |
C6—H6 | 0.9300 | C9—H9A | 0.9700 |
C1—C2 | 1.389 (4) | C9—H9B | 0.9700 |
C2—C3 | 1.401 (5) | C11—C10 | 1.498 (5) |
C2—C7 | 1.504 (5) | C11—C12 | 1.501 (4) |
C5—C4 | 1.364 (5) | C11—H11A | 0.9700 |
C5—H5 | 0.9300 | C11—H11B | 0.9700 |
C4—C3 | 1.361 (5) | C12—H12A | 0.9700 |
C4—H4 | 0.9300 | C12—H12B | 0.9700 |
C3—H3 | 0.9300 | C10—H10A | 0.9700 |
C7—H7A | 0.9600 | C10—H10B | 0.9700 |
O2—S1—O1 | 119.24 (15) | H7B—C7—H7C | 109.5 |
O2—S1—N1 | 108.01 (16) | C8—N2—C12 | 127.0 (3) |
O1—S1—N1 | 105.83 (16) | C8—N2—H2A | 116.5 |
O2—S1—C1 | 108.95 (16) | C12—N2—H2A | 116.5 |
O1—S1—C1 | 106.66 (15) | O3—C8—N2 | 120.7 (3) |
N1—S1—C1 | 107.62 (15) | O3—C8—C9 | 120.4 (3) |
S1—N1—H1B | 111.7 (19) | N2—C8—C9 | 118.9 (3) |
S1—N1—H1A | 115 (2) | C8—C9—C10 | 114.8 (3) |
H1B—N1—H1A | 118 (3) | C8—C9—H9A | 108.6 |
C5—C6—C1 | 121.5 (4) | C10—C9—H9A | 108.6 |
C5—C6—H6 | 119.2 | C8—C9—H9B | 108.6 |
C1—C6—H6 | 119.2 | C10—C9—H9B | 108.6 |
C6—C1—C2 | 120.9 (3) | H9A—C9—H9B | 107.5 |
C6—C1—S1 | 117.1 (3) | C10—C11—C12 | 110.7 (3) |
C2—C1—S1 | 121.9 (3) | C10—C11—H11A | 109.5 |
C1—C2—C3 | 115.7 (3) | C12—C11—H11A | 109.5 |
C1—C2—C7 | 124.7 (3) | C10—C11—H11B | 109.5 |
C3—C2—C7 | 119.6 (4) | C12—C11—H11B | 109.5 |
C4—C5—C6 | 118.8 (4) | H11A—C11—H11B | 108.1 |
C4—C5—H5 | 120.6 | N2—C12—C11 | 111.1 (3) |
C6—C5—H5 | 120.6 | N2—C12—H12A | 109.4 |
C3—C4—C5 | 120.1 (4) | C11—C12—H12A | 109.4 |
C3—C4—H4 | 119.9 | N2—C12—H12B | 109.4 |
C5—C4—H4 | 119.9 | C11—C12—H12B | 109.4 |
C4—C3—C2 | 123.0 (4) | H12A—C12—H12B | 108.0 |
C4—C3—H3 | 118.5 | C11—C10—C9 | 110.1 (3) |
C2—C3—H3 | 118.5 | C11—C10—H10A | 109.6 |
C2—C7—H7A | 109.5 | C9—C10—H10A | 109.6 |
C2—C7—H7B | 109.5 | C11—C10—H10B | 109.6 |
H7A—C7—H7B | 109.5 | C9—C10—H10B | 109.6 |
C2—C7—H7C | 109.5 | H10A—C10—H10B | 108.2 |
H7A—C7—H7C | 109.5 |
C6H6ClNO2S·C6H11NO | Dx = 1.443 Mg m−3 |
Mr = 304.79 | Melting point: 355 K |
Monoclinic, P121/c1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8782 (6) Å | Cell parameters from 2558 reflections |
b = 14.1720 (6) Å | θ = 3.7–28.9° |
c = 10.8753 (6) Å | µ = 0.43 mm−1 |
β = 112.850 (7)° | T = 298 K |
V = 1402.98 (12) Å3 | BLOCK, colorles |
Z = 4 | 0.22 × 0.22 × 0.20 mm |
F(000) = 640 |
Xcalibur, Eos, Gemini diffractometer | 2870 independent reflections |
Radiation source: fine-focus sealed tube | 2483 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 26.4°, θmin = 2.9° |
Absorption correction: multi-scan SADABS | h = −12→11 |
Tmin = 0.876, Tmax = 1.000 | k = −17→16 |
5810 measured reflections | l = −13→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0514P)2 + 0.3887P] where P = (Fo2 + 2Fc2)/3 |
2870 reflections | (Δ/σ)max < 0.001 |
178 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
C6H6ClNO2S·C6H11NO | V = 1402.98 (12) Å3 |
Mr = 304.79 | Z = 4 |
Monoclinic, P121/c1 | Mo Kα radiation |
a = 9.8782 (6) Å | µ = 0.43 mm−1 |
b = 14.1720 (6) Å | T = 298 K |
c = 10.8753 (6) Å | 0.22 × 0.22 × 0.20 mm |
β = 112.850 (7)° |
Xcalibur, Eos, Gemini diffractometer | 2870 independent reflections |
Absorption correction: multi-scan SADABS | 2483 reflections with I > 2σ(I) |
Tmin = 0.876, Tmax = 1.000 | Rint = 0.021 |
5810 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.25 e Å−3 |
2870 reflections | Δρmin = −0.48 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.88136 (5) | 0.24056 (3) | 0.00962 (4) | 0.03143 (14) | |
Cl1 | 1.11885 (6) | 0.31602 (4) | −0.10232 (6) | 0.05419 (18) | |
O3 | 0.53802 (18) | 0.37511 (10) | 0.98172 (13) | 0.0492 (4) | |
O2 | 0.80116 (16) | 0.25905 (10) | −0.12931 (13) | 0.0427 (3) | |
N1 | 0.7628 (2) | 0.23340 (13) | 0.07521 (18) | 0.0398 (4) | |
H1A | 0.689 (3) | 0.2760 (17) | 0.045 (2) | 0.048* | |
H1B | 0.797 (3) | 0.2214 (17) | 0.155 (2) | 0.048* | |
N2 | 0.39497 (19) | 0.47318 (11) | 0.82491 (15) | 0.0422 (4) | |
H2A | 0.4202 | 0.5170 | 0.8843 | 0.051* | |
C1 | 0.99475 (18) | 0.34009 (12) | 0.08009 (16) | 0.0301 (4) | |
C7 | 0.4489 (2) | 0.38834 (13) | 0.86453 (18) | 0.0370 (4) | |
O1 | 0.97322 (16) | 0.15904 (9) | 0.04756 (16) | 0.0488 (4) | |
C6 | 0.9817 (2) | 0.38791 (13) | 0.18640 (17) | 0.0388 (4) | |
H6 | 0.9127 | 0.3683 | 0.2197 | 0.047* | |
C2 | 1.0992 (2) | 0.37035 (13) | 0.03259 (18) | 0.0361 (4) | |
C12 | 0.2965 (2) | 0.50019 (16) | 0.6900 (2) | 0.0490 (5) | |
H12A | 0.2686 | 0.5657 | 0.6907 | 0.059* | |
H12B | 0.2079 | 0.4624 | 0.6637 | 0.059* | |
C5 | 1.0706 (3) | 0.46446 (15) | 0.2428 (2) | 0.0507 (5) | |
H5 | 1.0612 | 0.4964 | 0.3138 | 0.061* | |
C9 | 0.4531 (2) | 0.31855 (15) | 0.6516 (2) | 0.0447 (5) | |
H9A | 0.5545 | 0.3396 | 0.6875 | 0.054* | |
H9B | 0.4504 | 0.2569 | 0.6119 | 0.054* | |
C10 | 0.3633 (3) | 0.38646 (16) | 0.5430 (2) | 0.0531 (6) | |
H10A | 0.2626 | 0.3643 | 0.5054 | 0.064* | |
H10B | 0.4005 | 0.3852 | 0.4726 | 0.064* | |
C8 | 0.4020 (2) | 0.30847 (14) | 0.76585 (19) | 0.0441 (5) | |
H8A | 0.2956 | 0.3044 | 0.7293 | 0.053* | |
H8B | 0.4403 | 0.2499 | 0.8125 | 0.053* | |
C3 | 1.1882 (2) | 0.44687 (15) | 0.0899 (2) | 0.0498 (5) | |
H3 | 1.2582 | 0.4668 | 0.0580 | 0.060* | |
C11 | 0.3639 (3) | 0.48789 (16) | 0.5881 (2) | 0.0521 (5) | |
H11A | 0.4644 | 0.5105 | 0.6258 | 0.063* | |
H11B | 0.3103 | 0.5266 | 0.5109 | 0.063* | |
C4 | 1.1723 (3) | 0.49336 (15) | 0.1947 (2) | 0.0542 (6) | |
H4 | 1.2316 | 0.5451 | 0.2331 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0345 (2) | 0.0300 (2) | 0.0307 (2) | −0.00041 (17) | 0.01362 (18) | −0.00086 (16) |
Cl1 | 0.0570 (3) | 0.0622 (4) | 0.0593 (3) | 0.0006 (3) | 0.0400 (3) | −0.0022 (3) |
O3 | 0.0688 (10) | 0.0419 (8) | 0.0327 (7) | 0.0099 (7) | 0.0151 (7) | −0.0008 (6) |
O2 | 0.0435 (7) | 0.0539 (8) | 0.0287 (7) | −0.0061 (6) | 0.0117 (6) | −0.0045 (6) |
N1 | 0.0392 (9) | 0.0446 (9) | 0.0378 (9) | −0.0019 (7) | 0.0175 (7) | 0.0043 (7) |
N2 | 0.0559 (10) | 0.0352 (8) | 0.0331 (8) | 0.0062 (7) | 0.0143 (7) | −0.0044 (7) |
C1 | 0.0310 (8) | 0.0289 (8) | 0.0281 (8) | 0.0030 (7) | 0.0088 (7) | 0.0039 (7) |
C7 | 0.0460 (10) | 0.0360 (10) | 0.0344 (9) | −0.0002 (8) | 0.0215 (8) | −0.0013 (8) |
O1 | 0.0524 (8) | 0.0315 (7) | 0.0640 (9) | 0.0074 (6) | 0.0242 (7) | 0.0019 (6) |
C6 | 0.0451 (10) | 0.0395 (10) | 0.0304 (9) | 0.0010 (8) | 0.0129 (8) | −0.0006 (8) |
C2 | 0.0335 (9) | 0.0368 (9) | 0.0375 (9) | 0.0034 (7) | 0.0133 (8) | 0.0051 (8) |
C12 | 0.0503 (12) | 0.0453 (12) | 0.0444 (11) | 0.0120 (9) | 0.0107 (9) | −0.0003 (9) |
C5 | 0.0599 (13) | 0.0414 (11) | 0.0405 (11) | 0.0000 (10) | 0.0083 (10) | −0.0094 (9) |
C9 | 0.0466 (11) | 0.0471 (11) | 0.0435 (11) | 0.0016 (9) | 0.0208 (9) | −0.0121 (9) |
C10 | 0.0668 (14) | 0.0595 (14) | 0.0351 (10) | −0.0040 (11) | 0.0219 (10) | −0.0057 (10) |
C8 | 0.0582 (12) | 0.0341 (10) | 0.0415 (11) | −0.0034 (9) | 0.0211 (9) | −0.0052 (8) |
C3 | 0.0379 (11) | 0.0472 (12) | 0.0591 (13) | −0.0066 (9) | 0.0132 (10) | 0.0095 (10) |
C11 | 0.0651 (14) | 0.0502 (12) | 0.0368 (11) | −0.0015 (11) | 0.0151 (10) | 0.0048 (9) |
C4 | 0.0515 (13) | 0.0397 (11) | 0.0553 (13) | −0.0097 (10) | 0.0031 (10) | −0.0033 (10) |
S1—O1 | 1.4274 (14) | C12—H12A | 0.9700 |
S1—O2 | 1.4315 (14) | C12—H12B | 0.9700 |
S1—N1 | 1.5934 (17) | C5—C4 | 1.363 (3) |
S1—C1 | 1.7791 (18) | C5—H5 | 0.9300 |
Cl1—C2 | 1.7334 (19) | C9—C10 | 1.514 (3) |
O3—C7 | 1.250 (2) | C9—C8 | 1.519 (3) |
N1—H1A | 0.91 (2) | C9—H9A | 0.9700 |
N1—H1B | 0.81 (2) | C9—H9B | 0.9700 |
N2—C7 | 1.318 (2) | C10—C11 | 1.518 (3) |
N2—C12 | 1.462 (2) | C10—H10A | 0.9700 |
N2—H2A | 0.8600 | C10—H10B | 0.9700 |
C1—C2 | 1.389 (2) | C8—H8A | 0.9700 |
C1—C6 | 1.389 (2) | C8—H8B | 0.9700 |
C7—C8 | 1.504 (3) | C3—C4 | 1.376 (3) |
C6—C5 | 1.381 (3) | C3—H3 | 0.9300 |
C6—H6 | 0.9300 | C11—H11A | 0.9700 |
C2—C3 | 1.383 (3) | C11—H11B | 0.9700 |
C12—C11 | 1.508 (3) | C4—H4 | 0.9300 |
O1—S1—O2 | 118.84 (9) | C6—C5—H5 | 119.9 |
O1—S1—N1 | 108.32 (9) | C10—C9—C8 | 114.67 (18) |
O2—S1—N1 | 106.41 (9) | C10—C9—H9A | 108.6 |
O1—S1—C1 | 107.09 (8) | C8—C9—H9A | 108.6 |
O2—S1—C1 | 107.90 (8) | C10—C9—H9B | 108.6 |
N1—S1—C1 | 107.86 (9) | C8—C9—H9B | 108.6 |
S1—N1—H1A | 114.9 (15) | H9A—C9—H9B | 107.6 |
S1—N1—H1B | 114.5 (17) | C9—C10—C11 | 114.99 (17) |
H1A—N1—H1B | 118 (2) | C9—C10—H10A | 108.5 |
C7—N2—C12 | 126.44 (16) | C11—C10—H10A | 108.5 |
C7—N2—H2A | 116.8 | C9—C10—H10B | 108.5 |
C12—N2—H2A | 116.8 | C11—C10—H10B | 108.5 |
C2—C1—C6 | 118.80 (17) | H10A—C10—H10B | 107.5 |
C2—C1—S1 | 121.26 (14) | C7—C8—C9 | 113.88 (17) |
C6—C1—S1 | 119.93 (14) | C7—C8—H8A | 108.8 |
O3—C7—N2 | 120.35 (17) | C9—C8—H8A | 108.8 |
O3—C7—C8 | 120.97 (17) | C7—C8—H8B | 108.8 |
N2—C7—C8 | 118.68 (17) | C9—C8—H8B | 108.8 |
C5—C6—C1 | 120.27 (19) | H8A—C8—H8B | 107.7 |
C5—C6—H6 | 119.9 | C4—C3—C2 | 119.5 (2) |
C1—C6—H6 | 119.9 | C4—C3—H3 | 120.3 |
C3—C2—C1 | 120.54 (18) | C2—C3—H3 | 120.3 |
C3—C2—Cl1 | 118.01 (15) | C12—C11—C10 | 113.55 (19) |
C1—C2—Cl1 | 121.42 (14) | C12—C11—H11A | 108.9 |
N2—C12—C11 | 113.33 (18) | C10—C11—H11A | 108.9 |
N2—C12—H12A | 108.9 | C12—C11—H11B | 108.9 |
C11—C12—H12A | 108.9 | C10—C11—H11B | 108.9 |
N2—C12—H12B | 108.9 | H11A—C11—H11B | 107.7 |
C11—C12—H12B | 108.9 | C5—C4—C3 | 120.8 (2) |
H12A—C12—H12B | 107.7 | C5—C4—H4 | 119.6 |
C4—C5—C6 | 120.1 (2) | C3—C4—H4 | 119.6 |
C4—C5—H5 | 119.9 |
C6H7NO2S·C6H11NO | Dx = 1.329 Mg m−3 |
Mr = 270.34 | Melting point: 353 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0700 (9) Å | Cell parameters from 1165 reflections |
b = 12.7624 (13) Å | θ = 4.0–26.7° |
c = 14.977 (2) Å | µ = 0.24 mm−1 |
V = 1351.4 (3) Å3 | T = 298 K |
Z = 4 | PLATE, colorles |
F(000) = 576 | 0.22 × 0.20 × 0.20 mm |
Xcalibur, Eos, Gemini diffractometer | 2197 independent reflections |
Radiation source: fine-focus sealed tube | 1595 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan SADABS | h = −8→7 |
Tmin = 0.788, Tmax = 1.000 | k = −7→15 |
3348 measured reflections | l = −17→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.181 | w = 1/[σ2(Fo2) + (0.0352P)2 + 2.5208P] where P = (Fo2 + 2Fc2)/3 |
S = 1.23 | (Δ/σ)max < 0.001 |
2197 reflections | Δρmax = 0.37 e Å−3 |
169 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.0 (2) |
C6H7NO2S·C6H11NO | V = 1351.4 (3) Å3 |
Mr = 270.34 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.0700 (9) Å | µ = 0.24 mm−1 |
b = 12.7624 (13) Å | T = 298 K |
c = 14.977 (2) Å | 0.22 × 0.20 × 0.20 mm |
Xcalibur, Eos, Gemini diffractometer | 2197 independent reflections |
Absorption correction: multi-scan SADABS | 1595 reflections with I > 2σ(I) |
Tmin = 0.788, Tmax = 1.000 | Rint = 0.039 |
3348 measured reflections |
R[F2 > 2σ(F2)] = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.181 | Δρmax = 0.37 e Å−3 |
S = 1.23 | Δρmin = −0.24 e Å−3 |
2197 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
169 parameters | Absolute structure parameter: 0.0 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.9052 (3) | 0.65992 (13) | 0.85943 (13) | 0.0524 (5) | |
O3 | −0.0036 (7) | 0.3842 (3) | 0.5082 (4) | 0.0641 (15) | |
O1 | 1.0954 (7) | 0.6811 (4) | 0.8374 (4) | 0.0775 (17) | |
N1 | 0.8857 (10) | 0.6723 (4) | 0.9646 (5) | 0.0551 (16) | |
N2 | 0.2566 (10) | 0.4789 (5) | 0.5098 (5) | 0.078 (2) | |
H2A | 0.3203 | 0.4215 | 0.5094 | 0.094* | |
O2 | 0.8294 (8) | 0.5611 (3) | 0.8371 (4) | 0.0693 (16) | |
C1 | 0.7647 (10) | 0.7583 (5) | 0.8109 (4) | 0.0435 (17) | |
C6 | 0.8499 (10) | 0.8423 (6) | 0.7703 (4) | 0.0527 (17) | |
H6 | 0.9810 | 0.8473 | 0.7675 | 0.063* | |
C5 | 0.7369 (13) | 0.9193 (6) | 0.7339 (5) | 0.066 (2) | |
H5 | 0.7921 | 0.9769 | 0.7062 | 0.079* | |
C4 | 0.5473 (12) | 0.9116 (7) | 0.7381 (6) | 0.071 (3) | |
H4 | 0.4724 | 0.9639 | 0.7132 | 0.085* | |
C7 | 0.0729 (12) | 0.4691 (5) | 0.5108 (6) | 0.064 (2) | |
C3 | 0.4644 (11) | 0.8276 (7) | 0.7785 (5) | 0.068 (2) | |
H3 | 0.3333 | 0.8233 | 0.7819 | 0.082* | |
C2 | 0.5738 (11) | 0.7495 (6) | 0.8142 (5) | 0.060 (2) | |
H2 | 0.5177 | 0.6912 | 0.8404 | 0.072* | |
C11 | 0.3443 (14) | 0.6399 (7) | 0.5866 (7) | 0.094 (3) | |
H11A | 0.4467 | 0.6905 | 0.5869 | 0.113* | |
H11B | 0.3599 | 0.5961 | 0.6390 | 0.113* | |
C12 | 0.3665 (13) | 0.5750 (7) | 0.5093 (9) | 0.109 (4) | |
H12A | 0.4992 | 0.5569 | 0.5035 | 0.131* | |
H12B | 0.3315 | 0.6154 | 0.4570 | 0.131* | |
C10 | 0.1627 (13) | 0.6987 (6) | 0.5965 (6) | 0.076 (3) | |
H10A | 0.1544 | 0.7498 | 0.5487 | 0.092* | |
H10B | 0.1661 | 0.7369 | 0.6524 | 0.092* | |
C8 | −0.0411 (12) | 0.5691 (6) | 0.5152 (8) | 0.090 (3) | |
H8A | −0.0103 | 0.6114 | 0.4634 | 0.108* | |
H8B | −0.1742 | 0.5511 | 0.5112 | 0.108* | |
C9 | −0.0129 (13) | 0.6327 (7) | 0.5950 (7) | 0.085 (3) | |
H9A | −0.0103 | 0.5864 | 0.6463 | 0.102* | |
H9B | −0.1214 | 0.6786 | 0.6018 | 0.102* | |
H1A | 0.785 (13) | 0.646 (7) | 0.988 (7) | 0.102* | |
H1B | 0.906 (14) | 0.730 (7) | 0.975 (7) | 0.102* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0468 (10) | 0.0466 (8) | 0.0640 (12) | 0.0048 (9) | 0.0053 (10) | −0.0008 (10) |
O3 | 0.064 (3) | 0.044 (3) | 0.085 (4) | −0.001 (3) | −0.014 (3) | −0.006 (3) |
O1 | 0.046 (3) | 0.082 (4) | 0.105 (5) | 0.010 (3) | 0.016 (3) | 0.013 (3) |
N1 | 0.058 (4) | 0.038 (3) | 0.070 (4) | 0.000 (3) | −0.011 (3) | 0.005 (3) |
N2 | 0.055 (4) | 0.044 (4) | 0.135 (7) | 0.004 (3) | 0.008 (5) | −0.016 (4) |
O2 | 0.084 (4) | 0.046 (3) | 0.078 (4) | 0.003 (3) | 0.008 (3) | −0.014 (3) |
C1 | 0.043 (5) | 0.056 (4) | 0.032 (4) | −0.001 (3) | −0.008 (3) | −0.002 (3) |
C6 | 0.045 (4) | 0.066 (4) | 0.046 (4) | −0.004 (4) | 0.007 (3) | 0.007 (4) |
C5 | 0.076 (6) | 0.066 (5) | 0.055 (6) | −0.008 (5) | −0.002 (5) | 0.016 (4) |
C4 | 0.071 (8) | 0.072 (6) | 0.068 (6) | 0.008 (5) | −0.031 (5) | 0.012 (5) |
C7 | 0.063 (6) | 0.044 (4) | 0.085 (6) | 0.006 (4) | −0.011 (5) | −0.018 (4) |
C3 | 0.044 (5) | 0.091 (6) | 0.070 (6) | 0.001 (5) | −0.016 (4) | 0.005 (5) |
C2 | 0.048 (5) | 0.063 (4) | 0.068 (5) | −0.009 (4) | −0.010 (4) | 0.011 (4) |
C11 | 0.079 (6) | 0.068 (5) | 0.136 (9) | −0.019 (5) | −0.002 (6) | −0.010 (6) |
C12 | 0.067 (7) | 0.069 (6) | 0.191 (12) | −0.010 (5) | 0.019 (8) | −0.036 (7) |
C10 | 0.092 (7) | 0.061 (4) | 0.077 (6) | −0.004 (5) | 0.005 (6) | −0.023 (4) |
C8 | 0.063 (6) | 0.065 (5) | 0.141 (10) | 0.015 (4) | −0.015 (6) | −0.025 (6) |
C9 | 0.075 (6) | 0.075 (6) | 0.105 (8) | 0.009 (5) | 0.012 (5) | −0.037 (5) |
S1—O2 | 1.410 (5) | C7—C8 | 1.511 (10) |
S1—O1 | 1.410 (5) | C3—C2 | 1.370 (10) |
S1—N1 | 1.589 (7) | C3—H3 | 0.9300 |
S1—C1 | 1.758 (7) | C2—H2 | 0.9300 |
O3—C7 | 1.212 (8) | C11—C12 | 1.433 (13) |
N1—H1A | 0.86 (9) | C11—C10 | 1.494 (12) |
N1—H1B | 0.76 (8) | C11—H11A | 0.9700 |
N2—C7 | 1.305 (9) | C11—H11B | 0.9700 |
N2—C12 | 1.451 (10) | C12—H12A | 0.9700 |
N2—H2A | 0.8600 | C12—H12B | 0.9700 |
C1—C2 | 1.356 (10) | C10—C9 | 1.500 (11) |
C1—C6 | 1.372 (9) | C10—H10A | 0.9700 |
C6—C5 | 1.379 (10) | C10—H10B | 0.9700 |
C6—H6 | 0.9300 | C8—C9 | 1.458 (12) |
C5—C4 | 1.345 (11) | C8—H8A | 0.9700 |
C5—H5 | 0.9300 | C8—H8B | 0.9700 |
C4—C3 | 1.364 (11) | C9—H9A | 0.9700 |
C4—H4 | 0.9300 | C9—H9B | 0.9700 |
O2—S1—O1 | 118.6 (3) | C3—C2—H2 | 120.4 |
O2—S1—N1 | 106.9 (3) | C12—C11—C10 | 117.6 (9) |
O1—S1—N1 | 107.2 (4) | C12—C11—H11A | 107.9 |
O2—S1—C1 | 109.0 (3) | C10—C11—H11A | 107.9 |
O1—S1—C1 | 107.7 (3) | C12—C11—H11B | 107.9 |
N1—S1—C1 | 106.9 (3) | C10—C11—H11B | 107.9 |
S1—N1—H1A | 116 (7) | H11A—C11—H11B | 107.2 |
S1—N1—H1B | 106 (8) | C11—C12—N2 | 115.2 (9) |
H1A—N1—H1B | 116 (10) | C11—C12—H12A | 108.5 |
C7—N2—C12 | 127.9 (7) | N2—C12—H12A | 108.5 |
C7—N2—H2A | 116.0 | C11—C12—H12B | 108.5 |
C12—N2—H2A | 116.0 | N2—C12—H12B | 108.5 |
C2—C1—C6 | 121.2 (7) | H12A—C12—H12B | 107.5 |
C2—C1—S1 | 119.2 (6) | C11—C10—C9 | 115.4 (6) |
C6—C1—S1 | 119.6 (6) | C11—C10—H10A | 108.4 |
C1—C6—C5 | 118.5 (7) | C9—C10—H10A | 108.4 |
C1—C6—H6 | 120.7 | C11—C10—H10B | 108.4 |
C5—C6—H6 | 120.7 | C9—C10—H10B | 108.4 |
C4—C5—C6 | 120.5 (8) | H10A—C10—H10B | 107.5 |
C4—C5—H5 | 119.8 | C9—C8—C7 | 115.7 (8) |
C6—C5—H5 | 119.8 | C9—C8—H8A | 108.4 |
C5—C4—C3 | 120.4 (8) | C7—C8—H8A | 108.4 |
C5—C4—H4 | 119.8 | C9—C8—H8B | 108.4 |
C3—C4—H4 | 119.8 | C7—C8—H8B | 108.4 |
O3—C7—N2 | 122.0 (7) | H8A—C8—H8B | 107.4 |
O3—C7—C8 | 121.2 (8) | C8—C9—C10 | 116.0 (8) |
N2—C7—C8 | 116.7 (7) | C8—C9—H9A | 108.3 |
C4—C3—C2 | 120.2 (7) | C10—C9—H9A | 108.3 |
C4—C3—H3 | 119.9 | C8—C9—H9B | 108.3 |
C2—C3—H3 | 119.9 | C10—C9—H9B | 108.3 |
C1—C2—C3 | 119.2 (7) | H9A—C9—H9B | 107.4 |
C1—C2—H2 | 120.4 |
C6H6ClNO2S·C5H9NO | Dx = 1.449 Mg m−3 |
Mr = 290.76 | Melting point: 363 K |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 25.701 (4) Å | Cell parameters from 1025 reflections |
b = 6.8096 (4) Å | θ = 2.7–26.3° |
c = 19.177 (3) Å | µ = 0.45 mm−1 |
β = 127.40 (2)° | T = 297 K |
V = 2666.3 (6) Å3 | PLATE |
Z = 8 | 0.22 × 0.20 × 0.20 mm |
F(000) = 1216 |
Xcalibur, Eos, Gemini diffractometer | 2732 independent reflections |
Radiation source: fine-focus sealed tube | 1677 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan SADABS | h = −32→30 |
Tmin = 0.844, Tmax = 1.000 | k = −8→8 |
5127 measured reflections | l = −23→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0486P)2] where P = (Fo2 + 2Fc2)/3 |
2732 reflections | (Δ/σ)max < 0.001 |
169 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
C6H6ClNO2S·C5H9NO | V = 2666.3 (6) Å3 |
Mr = 290.76 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 25.701 (4) Å | µ = 0.45 mm−1 |
b = 6.8096 (4) Å | T = 297 K |
c = 19.177 (3) Å | 0.22 × 0.20 × 0.20 mm |
β = 127.40 (2)° |
Xcalibur, Eos, Gemini diffractometer | 2732 independent reflections |
Absorption correction: multi-scan SADABS | 1677 reflections with I > 2σ(I) |
Tmin = 0.844, Tmax = 1.000 | Rint = 0.043 |
5127 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.27 e Å−3 |
2732 reflections | Δρmin = −0.38 e Å−3 |
169 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.16418 (4) | 0.16415 (12) | 0.08089 (6) | 0.0460 (3) | |
Cl1 | −0.00099 (5) | 0.68185 (17) | 0.14868 (7) | 0.0780 (4) | |
O3 | 0.20659 (12) | 0.9636 (3) | 0.79188 (15) | 0.0587 (7) | |
O1 | 0.13721 (13) | −0.0290 (3) | 0.06081 (17) | 0.0665 (7) | |
N2 | 0.19285 (13) | 0.6912 (4) | 0.84382 (18) | 0.0490 (7) | |
H2A | 0.2174 | 0.6308 | 0.8343 | 0.059* | |
C1 | 0.11457 (15) | 0.3131 (4) | 0.09443 (19) | 0.0388 (7) | |
N1 | 0.23469 (14) | 0.1540 (4) | 0.17504 (19) | 0.0473 (8) | |
H1A | 0.2575 (17) | 0.251 (5) | 0.186 (2) | 0.057* | |
H1B | 0.2308 (16) | 0.120 (5) | 0.213 (2) | 0.057* | |
C7 | 0.18276 (15) | 0.8793 (5) | 0.8239 (2) | 0.0414 (8) | |
C2 | 0.12843 (16) | 0.5096 (4) | 0.1121 (2) | 0.0454 (8) | |
H2 | 0.1615 | 0.5658 | 0.1124 | 0.054* | |
C5 | 0.02822 (17) | 0.3436 (5) | 0.1073 (2) | 0.0558 (9) | |
H5 | −0.0061 | 0.2893 | 0.1046 | 0.067* | |
C4 | 0.04376 (16) | 0.5395 (5) | 0.1269 (2) | 0.0481 (8) | |
O2 | 0.17318 (12) | 0.2594 (3) | 0.02267 (15) | 0.0593 (7) | |
C6 | 0.06435 (16) | 0.2295 (5) | 0.0916 (2) | 0.0508 (9) | |
H6 | 0.0550 | 0.0966 | 0.0791 | 0.061* | |
C8 | 0.14281 (18) | 0.9907 (5) | 0.8431 (2) | 0.0559 (9) | |
H8A | 0.1134 | 1.0774 | 0.7940 | 0.067* | |
H8B | 0.1719 | 1.0722 | 0.8944 | 0.067* | |
C3 | 0.09319 (16) | 0.6229 (5) | 0.1294 (2) | 0.0497 (8) | |
H3 | 0.1030 | 0.7554 | 0.1428 | 0.060* | |
C10 | 0.14434 (18) | 0.7008 (5) | 0.9207 (2) | 0.0555 (9) | |
H10A | 0.1192 | 0.6229 | 0.9331 | 0.067* | |
H10B | 0.1819 | 0.7547 | 0.9756 | 0.067* | |
C11 | 0.16699 (18) | 0.5738 (5) | 0.8803 (2) | 0.0578 (10) | |
H11A | 0.2008 | 0.4852 | 0.9244 | 0.069* | |
H11B | 0.1306 | 0.4950 | 0.8341 | 0.069* | |
C9 | 0.10283 (18) | 0.8639 (5) | 0.8592 (2) | 0.0596 (10) | |
H9A | 0.0865 | 0.9429 | 0.8843 | 0.071* | |
H9B | 0.0656 | 0.8099 | 0.8041 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0600 (6) | 0.0403 (5) | 0.0533 (5) | 0.0038 (4) | 0.0425 (5) | −0.0008 (4) |
Cl1 | 0.0590 (6) | 0.1005 (8) | 0.0823 (7) | 0.0162 (6) | 0.0469 (6) | −0.0150 (6) |
O3 | 0.0755 (17) | 0.0565 (14) | 0.0664 (16) | −0.0120 (13) | 0.0548 (15) | −0.0072 (12) |
O1 | 0.0878 (19) | 0.0430 (14) | 0.0893 (19) | −0.0110 (13) | 0.0646 (17) | −0.0178 (13) |
N2 | 0.0567 (18) | 0.0414 (16) | 0.0651 (19) | 0.0096 (13) | 0.0455 (17) | 0.0011 (13) |
C1 | 0.0409 (19) | 0.0375 (18) | 0.0385 (18) | 0.0013 (14) | 0.0243 (16) | 0.0011 (13) |
N1 | 0.055 (2) | 0.0468 (17) | 0.0545 (19) | 0.0087 (14) | 0.0408 (17) | 0.0086 (15) |
C7 | 0.0422 (19) | 0.044 (2) | 0.0386 (18) | −0.0015 (15) | 0.0251 (16) | −0.0044 (15) |
C2 | 0.047 (2) | 0.0433 (19) | 0.056 (2) | 0.0021 (16) | 0.0359 (18) | 0.0034 (16) |
C5 | 0.043 (2) | 0.068 (2) | 0.065 (2) | −0.0016 (19) | 0.0373 (19) | 0.0023 (19) |
C4 | 0.042 (2) | 0.059 (2) | 0.0411 (19) | 0.0105 (18) | 0.0246 (17) | −0.0003 (16) |
O2 | 0.0809 (18) | 0.0635 (15) | 0.0573 (15) | 0.0092 (13) | 0.0543 (15) | 0.0087 (12) |
C6 | 0.052 (2) | 0.0448 (19) | 0.059 (2) | −0.0034 (17) | 0.0359 (19) | −0.0002 (16) |
C8 | 0.073 (2) | 0.046 (2) | 0.064 (2) | 0.0189 (18) | 0.050 (2) | 0.0114 (17) |
C3 | 0.049 (2) | 0.0406 (18) | 0.060 (2) | 0.0012 (16) | 0.0335 (19) | −0.0016 (16) |
C10 | 0.062 (2) | 0.061 (2) | 0.061 (2) | 0.0044 (19) | 0.046 (2) | 0.0058 (18) |
C11 | 0.070 (3) | 0.045 (2) | 0.066 (2) | 0.0030 (18) | 0.045 (2) | 0.0063 (17) |
C9 | 0.058 (2) | 0.072 (2) | 0.065 (2) | 0.010 (2) | 0.046 (2) | 0.001 (2) |
S1—O2 | 1.426 (2) | C5—C4 | 1.378 (5) |
S1—O1 | 1.427 (2) | C5—H5 | 0.9300 |
S1—N1 | 1.604 (3) | C4—C3 | 1.365 (4) |
S1—C1 | 1.768 (3) | C6—H6 | 0.9300 |
Cl1—C4 | 1.738 (3) | C8—C9 | 1.511 (5) |
O3—C7 | 1.241 (4) | C8—H8A | 0.9700 |
N2—C7 | 1.316 (4) | C8—H8B | 0.9700 |
N2—C11 | 1.461 (4) | C3—H3 | 0.9300 |
N2—H2A | 0.8600 | C10—C9 | 1.495 (5) |
C1—C2 | 1.373 (4) | C10—C11 | 1.495 (5) |
C1—C6 | 1.381 (4) | C10—H10A | 0.9700 |
N1—H1A | 0.82 (3) | C10—H10B | 0.9700 |
N1—H1B | 0.83 (3) | C11—H11A | 0.9700 |
C7—C8 | 1.491 (4) | C11—H11B | 0.9700 |
C2—C3 | 1.375 (4) | C9—H9A | 0.9700 |
C2—H2 | 0.9300 | C9—H9B | 0.9700 |
C5—C6 | 1.377 (5) | ||
O2—S1—O1 | 119.42 (15) | C1—C6—H6 | 120.1 |
O2—S1—N1 | 106.94 (15) | C7—C8—C9 | 114.5 (3) |
O1—S1—N1 | 107.19 (16) | C7—C8—H8A | 108.6 |
O2—S1—C1 | 109.17 (14) | C9—C8—H8A | 108.6 |
O1—S1—C1 | 107.05 (15) | C7—C8—H8B | 108.6 |
N1—S1—C1 | 106.37 (14) | C9—C8—H8B | 108.6 |
C7—N2—C11 | 127.2 (3) | H8A—C8—H8B | 107.6 |
C7—N2—H2A | 116.4 | C4—C3—C2 | 119.5 (3) |
C11—N2—H2A | 116.4 | C4—C3—H3 | 120.2 |
C2—C1—C6 | 120.5 (3) | C2—C3—H3 | 120.2 |
C2—C1—S1 | 119.6 (2) | C9—C10—C11 | 109.7 (3) |
C6—C1—S1 | 119.9 (2) | C9—C10—H10A | 109.7 |
S1—N1—H1A | 113 (2) | C11—C10—H10A | 109.7 |
S1—N1—H1B | 110 (2) | C9—C10—H10B | 109.7 |
H1A—N1—H1B | 117 (4) | C11—C10—H10B | 109.7 |
O3—C7—N2 | 121.6 (3) | H10A—C10—H10B | 108.2 |
O3—C7—C8 | 120.5 (3) | N2—C11—C10 | 111.4 (3) |
N2—C7—C8 | 117.9 (3) | N2—C11—H11A | 109.3 |
C1—C2—C3 | 119.8 (3) | C10—C11—H11A | 109.3 |
C1—C2—H2 | 120.1 | N2—C11—H11B | 109.3 |
C3—C2—H2 | 120.1 | C10—C11—H11B | 109.3 |
C6—C5—C4 | 118.9 (3) | H11A—C11—H11B | 108.0 |
C6—C5—H5 | 120.5 | C10—C9—C8 | 109.8 (3) |
C4—C5—H5 | 120.5 | C10—C9—H9A | 109.7 |
C3—C4—C5 | 121.4 (3) | C8—C9—H9A | 109.7 |
C3—C4—Cl1 | 119.8 (3) | C10—C9—H9B | 109.7 |
C5—C4—Cl1 | 118.8 (3) | C8—C9—H9B | 109.7 |
C5—C6—C1 | 119.8 (3) | H9A—C9—H9B | 108.2 |
C5—C6—H6 | 120.1 |
C6H6BrNO2S·C5H9NO | Dx = 1.629 Mg m−3 |
Mr = 335.22 | Melting point: 367 K |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 25.914 (3) Å | Cell parameters from 4015 reflections |
b = 6.8687 (9) Å | θ = 2.7–25.4° |
c = 19.202 (2) Å | µ = 3.16 mm−1 |
β = 126.873 (2)° | T = 298 K |
V = 2734.1 (6) Å3 | PLATE, colorles |
Z = 8 | 0.22 × 0.20 × 0.20 mm |
F(000) = 1360 |
CCD area detector diffractometer | 2216 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
Graphite monochromator | θmax = 26.4°, θmin = 2.0° |
phi and ω scans | h = −32→32 |
14029 measured reflections | k = −8→8 |
2790 independent reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.8825P] where P = (Fo2 + 2Fc2)/3 |
2790 reflections | (Δ/σ)max < 0.001 |
175 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C6H6BrNO2S·C5H9NO | V = 2734.1 (6) Å3 |
Mr = 335.22 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 25.914 (3) Å | µ = 3.16 mm−1 |
b = 6.8687 (9) Å | T = 298 K |
c = 19.202 (2) Å | 0.22 × 0.20 × 0.20 mm |
β = 126.873 (2)° |
CCD area detector diffractometer | 2216 reflections with I > 2σ(I) |
14029 measured reflections | Rint = 0.030 |
2790 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.56 e Å−3 |
2790 reflections | Δρmin = −0.39 e Å−3 |
175 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.003156 (14) | 0.69679 (5) | 0.14703 (2) | 0.07718 (16) | |
S1 | 0.16814 (3) | 0.16446 (9) | 0.08449 (4) | 0.04800 (18) | |
O1 | 0.14262 (10) | −0.0289 (3) | 0.06658 (13) | 0.0690 (5) | |
N2 | 0.19222 (12) | 0.3131 (3) | 0.34335 (16) | 0.0533 (6) | |
O3 | 0.20743 (10) | 0.0431 (3) | 0.29329 (12) | 0.0617 (5) | |
C7 | 0.18364 (12) | 0.1262 (4) | 0.32543 (15) | 0.0440 (5) | |
N1 | 0.23788 (12) | 0.1604 (4) | 0.17853 (15) | 0.0510 (5) | |
C1 | 0.11787 (12) | 0.3130 (3) | 0.09613 (15) | 0.0431 (5) | |
C4 | 0.04600 (11) | 0.5392 (4) | 0.12539 (15) | 0.0492 (6) | |
O2 | 0.17723 (10) | 0.2564 (3) | 0.02588 (12) | 0.0622 (5) | |
C5 | 0.03196 (13) | 0.3442 (4) | 0.10870 (19) | 0.0588 (7) | |
H5 | −0.0017 | 0.2903 | 0.1069 | 0.071* | |
C6 | 0.06871 (13) | 0.2296 (4) | 0.09456 (19) | 0.0551 (6) | |
H6 | 0.0604 | 0.0970 | 0.0840 | 0.066* | |
C10 | 0.14516 (15) | 0.3028 (4) | 0.42200 (19) | 0.0596 (7) | |
H10A | 0.1825 | 0.2517 | 0.4766 | 0.072* | |
H10B | 0.1200 | 0.3793 | 0.4343 | 0.072* | |
C2 | 0.13035 (12) | 0.5088 (3) | 0.11092 (16) | 0.0491 (6) | |
H2 | 0.1629 | 0.5643 | 0.1105 | 0.059* | |
C3 | 0.09429 (13) | 0.6235 (4) | 0.12650 (17) | 0.0532 (6) | |
H3 | 0.1028 | 0.7559 | 0.1375 | 0.064* | |
C8 | 0.14546 (14) | 0.0129 (4) | 0.34662 (19) | 0.0586 (7) | |
H8A | 0.1749 | −0.0650 | 0.3981 | 0.070* | |
H8B | 0.1170 | −0.0756 | 0.2990 | 0.070* | |
C11 | 0.16695 (14) | 0.4302 (4) | 0.38022 (18) | 0.0607 (7) | |
H11A | 0.1309 | 0.5075 | 0.3346 | 0.073* | |
H11B | 0.2002 | 0.5186 | 0.4234 | 0.073* | |
C9 | 0.10520 (15) | 0.1386 (5) | 0.3626 (2) | 0.0667 (8) | |
H9A | 0.0682 | 0.1897 | 0.3077 | 0.080* | |
H9B | 0.0896 | 0.0605 | 0.3885 | 0.080* | |
H1A | 0.2336 (13) | 0.127 (4) | 0.2156 (18) | 0.059 (8)* | |
H1B | 0.2591 (15) | 0.271 (4) | 0.190 (2) | 0.066 (9)* | |
H2A | 0.2102 (13) | 0.365 (4) | 0.3314 (18) | 0.053 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0590 (2) | 0.1037 (3) | 0.0761 (2) | 0.01633 (16) | 0.04444 (19) | −0.01461 (16) |
S1 | 0.0623 (4) | 0.0435 (3) | 0.0554 (4) | 0.0047 (3) | 0.0445 (3) | −0.0004 (3) |
O1 | 0.0909 (14) | 0.0480 (10) | 0.0923 (14) | −0.0075 (10) | 0.0678 (13) | −0.0169 (10) |
N2 | 0.0642 (14) | 0.0494 (14) | 0.0668 (15) | −0.0107 (10) | 0.0502 (13) | −0.0004 (10) |
O3 | 0.0793 (13) | 0.0598 (11) | 0.0699 (12) | 0.0112 (9) | 0.0576 (11) | 0.0079 (9) |
C7 | 0.0466 (13) | 0.0466 (14) | 0.0430 (12) | 0.0008 (11) | 0.0290 (11) | 0.0034 (10) |
N1 | 0.0607 (14) | 0.0504 (13) | 0.0586 (14) | 0.0128 (11) | 0.0447 (12) | 0.0088 (10) |
C1 | 0.0467 (13) | 0.0456 (14) | 0.0446 (12) | 0.0062 (10) | 0.0315 (11) | 0.0044 (10) |
C4 | 0.0433 (13) | 0.0624 (16) | 0.0445 (13) | 0.0126 (11) | 0.0277 (11) | 0.0028 (11) |
O2 | 0.0821 (13) | 0.0688 (11) | 0.0610 (11) | 0.0116 (10) | 0.0565 (11) | 0.0079 (9) |
C5 | 0.0530 (15) | 0.0697 (18) | 0.0695 (18) | 0.0036 (13) | 0.0452 (15) | 0.0058 (14) |
C6 | 0.0597 (16) | 0.0467 (13) | 0.0700 (17) | −0.0023 (12) | 0.0449 (15) | −0.0006 (12) |
C10 | 0.0682 (18) | 0.0629 (17) | 0.0658 (17) | 0.0011 (13) | 0.0498 (16) | −0.0024 (13) |
C2 | 0.0520 (14) | 0.0454 (13) | 0.0612 (15) | −0.0007 (11) | 0.0400 (13) | 0.0010 (11) |
C3 | 0.0564 (15) | 0.0450 (13) | 0.0634 (16) | 0.0061 (11) | 0.0387 (14) | −0.0016 (12) |
C8 | 0.0753 (18) | 0.0506 (15) | 0.0666 (16) | −0.0187 (13) | 0.0515 (15) | −0.0091 (12) |
C11 | 0.0800 (19) | 0.0451 (15) | 0.0711 (18) | −0.0009 (13) | 0.0528 (17) | −0.0027 (12) |
C9 | 0.0657 (18) | 0.0780 (19) | 0.0761 (19) | −0.0168 (15) | 0.0530 (16) | −0.0058 (15) |
Br1—C4 | 1.898 (2) | C1—C2 | 1.373 (3) |
S1—O2 | 1.4280 (18) | C1—C6 | 1.380 (3) |
S1—O1 | 1.431 (2) | C4—C3 | 1.367 (4) |
S1—N1 | 1.616 (2) | C4—C5 | 1.374 (4) |
S1—C1 | 1.771 (2) | C5—C6 | 1.382 (4) |
N2—C7 | 1.313 (3) | C10—C9 | 1.493 (4) |
N2—C11 | 1.461 (3) | C10—C11 | 1.507 (4) |
O3—C7 | 1.242 (3) | C2—C3 | 1.385 (3) |
C7—C8 | 1.494 (3) | C8—C9 | 1.520 (4) |
O2—S1—O1 | 119.48 (12) | C6—C1—S1 | 119.82 (18) |
O2—S1—N1 | 106.60 (13) | C3—C4—C5 | 121.9 (2) |
O1—S1—N1 | 107.35 (13) | C3—C4—Br1 | 118.89 (19) |
O2—S1—C1 | 109.04 (11) | C5—C4—Br1 | 119.23 (19) |
O1—S1—C1 | 107.23 (11) | C4—C5—C6 | 118.9 (2) |
N1—S1—C1 | 106.45 (11) | C1—C6—C5 | 119.7 (2) |
C7—N2—C11 | 127.6 (2) | C9—C10—C11 | 110.0 (2) |
O3—C7—N2 | 121.5 (2) | C1—C2—C3 | 119.8 (2) |
O3—C7—C8 | 120.2 (2) | C4—C3—C2 | 119.0 (2) |
N2—C7—C8 | 118.3 (2) | C7—C8—C9 | 113.9 (2) |
C2—C1—C6 | 120.7 (2) | N2—C11—C10 | 111.0 (2) |
C2—C1—S1 | 119.39 (18) | C10—C9—C8 | 109.8 (2) |
C7H9NO2S·C5H9NO | F(000) = 288 |
Mr = 270.34 | Dx = 1.298 Mg m−3 |
Triclinic, P1 | Melting point: 347 K |
a = 5.210 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.449 (4) Å | Cell parameters from 1964 reflections |
c = 16.104 (8) Å | θ = 2.5–23.8° |
α = 82.894 (8)° | µ = 0.24 mm−1 |
β = 82.798 (8)° | T = 298 K |
γ = 81.772 (8)° | PLATE, colorles |
V = 692.0 (6) Å3 | 0.22 × 0.20 × 0.20 mm |
Z = 2 |
CCD area detector diffractometer | 1969 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 26.4°, θmin = 1.3° |
phi and ω scans | h = −6→6 |
7341 measured reflections | k = −10→10 |
2819 independent reflections | l = −20→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0881P)2 + 0.0472P] where P = (Fo2 + 2Fc2)/3 |
2819 reflections | (Δ/σ)max = 0.001 |
176 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C7H9NO2S·C5H9NO | γ = 81.772 (8)° |
Mr = 270.34 | V = 692.0 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.210 (3) Å | Mo Kα radiation |
b = 8.449 (4) Å | µ = 0.24 mm−1 |
c = 16.104 (8) Å | T = 298 K |
α = 82.894 (8)° | 0.22 × 0.20 × 0.20 mm |
β = 82.798 (8)° |
CCD area detector diffractometer | 1969 reflections with I > 2σ(I) |
7341 measured reflections | Rint = 0.023 |
2819 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.153 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.43 e Å−3 |
2819 reflections | Δρmin = −0.15 e Å−3 |
176 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.10112 (11) | 0.19293 (7) | 0.72741 (4) | 0.0619 (3) | |
O3 | 0.8702 (3) | 0.41356 (19) | 0.91796 (10) | 0.0688 (5) | |
N2 | 0.7568 (4) | 0.6588 (2) | 0.95856 (14) | 0.0597 (5) | |
C8 | 0.7356 (4) | 0.5482 (3) | 0.91038 (14) | 0.0537 (5) | |
N1 | 0.8887 (4) | 0.1678 (3) | 0.80706 (15) | 0.0599 (5) | |
C1 | 1.0056 (4) | 0.3814 (3) | 0.67244 (14) | 0.0535 (5) | |
O2 | 1.0896 (4) | 0.0718 (2) | 0.67443 (13) | 0.0934 (7) | |
O1 | 1.3393 (3) | 0.2030 (2) | 0.76034 (15) | 0.0947 (7) | |
C12 | 0.6188 (5) | 0.8210 (3) | 0.95606 (18) | 0.0737 (7) | |
H12A | 0.7382 | 0.8964 | 0.9311 | 0.088* | |
H12B | 0.5601 | 0.8456 | 1.0132 | 0.088* | |
C4 | 0.8259 (5) | 0.6833 (3) | 0.59678 (16) | 0.0682 (7) | |
C11 | 0.3906 (6) | 0.8430 (4) | 0.9073 (2) | 0.0909 (9) | |
H11A | 0.2450 | 0.8012 | 0.9425 | 0.109* | |
H11B | 0.3405 | 0.9571 | 0.8924 | 0.109* | |
C6 | 1.1026 (5) | 0.5156 (3) | 0.68710 (19) | 0.0790 (8) | |
H6 | 1.2325 | 0.5064 | 0.7227 | 0.095* | |
C2 | 0.8195 (6) | 0.3973 (3) | 0.61818 (17) | 0.0821 (8) | |
H2 | 0.7526 | 0.3073 | 0.6062 | 0.099* | |
C10 | 0.4426 (7) | 0.7627 (4) | 0.8306 (2) | 0.1003 (11) | |
H10A | 0.5719 | 0.8144 | 0.7922 | 0.120* | |
H10B | 0.2837 | 0.7751 | 0.8036 | 0.120* | |
C9 | 0.5402 (5) | 0.5845 (3) | 0.84744 (16) | 0.0707 (7) | |
H9A | 0.3924 | 0.5270 | 0.8677 | 0.085* | |
H9B | 0.6190 | 0.5450 | 0.7949 | 0.085* | |
C5 | 1.0095 (6) | 0.6651 (3) | 0.64949 (19) | 0.0792 (8) | |
H5 | 1.0762 | 0.7554 | 0.6611 | 0.095* | |
C7 | 0.7207 (7) | 0.8483 (4) | 0.5574 (2) | 0.1055 (11) | |
H7A | 0.8460 | 0.9213 | 0.5573 | 0.158* | |
H7B | 0.5606 | 0.8866 | 0.5893 | 0.158* | |
H7C | 0.6889 | 0.8415 | 0.5006 | 0.158* | |
C3 | 0.7320 (7) | 0.5486 (4) | 0.5813 (2) | 0.0975 (10) | |
H3 | 0.6047 | 0.5589 | 0.5447 | 0.117* | |
H1A | 0.756 (5) | 0.158 (3) | 0.7922 (15) | 0.054 (7)* | |
H1B | 0.885 (5) | 0.240 (3) | 0.8399 (16) | 0.071 (9)* | |
H2A | 0.850 (5) | 0.637 (3) | 0.9921 (16) | 0.058 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0507 (4) | 0.0481 (4) | 0.0836 (5) | 0.0045 (2) | −0.0138 (3) | 0.0001 (3) |
O3 | 0.0761 (11) | 0.0595 (10) | 0.0727 (11) | 0.0114 (8) | −0.0338 (9) | −0.0121 (8) |
N2 | 0.0561 (12) | 0.0552 (12) | 0.0694 (13) | 0.0057 (9) | −0.0288 (11) | −0.0061 (10) |
C8 | 0.0486 (12) | 0.0555 (13) | 0.0563 (13) | −0.0016 (10) | −0.0154 (10) | 0.0003 (11) |
N1 | 0.0556 (13) | 0.0507 (12) | 0.0747 (15) | −0.0055 (9) | −0.0215 (11) | 0.0014 (10) |
C1 | 0.0452 (11) | 0.0502 (12) | 0.0630 (14) | 0.0000 (9) | −0.0085 (10) | −0.0021 (10) |
O2 | 0.1218 (17) | 0.0521 (10) | 0.1003 (14) | 0.0137 (10) | −0.0043 (12) | −0.0214 (10) |
O1 | 0.0483 (10) | 0.0814 (13) | 0.1487 (18) | −0.0023 (8) | −0.0358 (11) | 0.0282 (12) |
C12 | 0.0704 (16) | 0.0559 (14) | 0.0935 (19) | 0.0117 (12) | −0.0284 (14) | −0.0057 (13) |
C4 | 0.0780 (17) | 0.0606 (15) | 0.0592 (14) | 0.0017 (12) | −0.0071 (13) | 0.0070 (11) |
C11 | 0.087 (2) | 0.0695 (18) | 0.114 (2) | 0.0168 (14) | −0.0433 (18) | −0.0013 (17) |
C6 | 0.0770 (18) | 0.0620 (16) | 0.105 (2) | −0.0155 (13) | −0.0459 (16) | 0.0058 (14) |
C2 | 0.111 (2) | 0.0632 (17) | 0.0815 (18) | −0.0175 (15) | −0.0445 (17) | −0.0033 (14) |
C10 | 0.116 (3) | 0.093 (2) | 0.089 (2) | 0.0324 (18) | −0.0550 (19) | −0.0051 (17) |
C9 | 0.0697 (16) | 0.0709 (16) | 0.0732 (16) | 0.0026 (12) | −0.0332 (13) | −0.0021 (13) |
C5 | 0.091 (2) | 0.0518 (15) | 0.098 (2) | −0.0144 (13) | −0.0275 (17) | 0.0037 (14) |
C7 | 0.127 (3) | 0.077 (2) | 0.100 (2) | 0.0079 (18) | −0.025 (2) | 0.0254 (17) |
C3 | 0.123 (3) | 0.082 (2) | 0.094 (2) | −0.0061 (18) | −0.067 (2) | 0.0120 (17) |
S1—O2 | 1.423 (2) | C4—C7 | 1.516 (3) |
S1—O1 | 1.426 (2) | C11—C10 | 1.459 (4) |
S1—N1 | 1.600 (2) | C11—H11A | 0.9700 |
S1—C1 | 1.762 (2) | C11—H11B | 0.9700 |
O3—C8 | 1.249 (3) | C6—C5 | 1.381 (4) |
N2—C8 | 1.311 (3) | C6—H6 | 0.9300 |
N2—C12 | 1.452 (3) | C2—C3 | 1.381 (4) |
N2—H2A | 0.76 (3) | C2—H2 | 0.9300 |
C8—C9 | 1.500 (3) | C10—C9 | 1.521 (4) |
N1—H1A | 0.78 (3) | C10—H10A | 0.9700 |
N1—H1B | 0.85 (3) | C10—H10B | 0.9700 |
C1—C6 | 1.362 (3) | C9—H9A | 0.9700 |
C1—C2 | 1.366 (3) | C9—H9B | 0.9700 |
C12—C11 | 1.483 (4) | C5—H5 | 0.9300 |
C12—H12A | 0.9700 | C7—H7A | 0.9600 |
C12—H12B | 0.9700 | C7—H7B | 0.9600 |
C4—C5 | 1.337 (4) | C7—H7C | 0.9600 |
C4—C3 | 1.362 (4) | C3—H3 | 0.9300 |
O2—S1—O1 | 119.81 (13) | H11A—C11—H11B | 107.8 |
O2—S1—N1 | 107.32 (14) | C1—C6—C5 | 120.5 (2) |
O1—S1—N1 | 106.20 (14) | C1—C6—H6 | 119.7 |
O2—S1—C1 | 108.18 (12) | C5—C6—H6 | 119.7 |
O1—S1—C1 | 107.38 (11) | C1—C2—C3 | 119.2 (3) |
N1—S1—C1 | 107.36 (10) | C1—C2—H2 | 120.4 |
C8—N2—C12 | 127.3 (2) | C3—C2—H2 | 120.4 |
C8—N2—H2A | 117.7 (19) | C11—C10—C9 | 112.7 (2) |
C12—N2—H2A | 115.0 (19) | C11—C10—H10A | 109.1 |
O3—C8—N2 | 120.9 (2) | C9—C10—H10A | 109.1 |
O3—C8—C9 | 120.4 (2) | C11—C10—H10B | 109.1 |
N2—C8—C9 | 118.7 (2) | C9—C10—H10B | 109.1 |
S1—N1—H1A | 110.0 (17) | H10A—C10—H10B | 107.8 |
S1—N1—H1B | 110.7 (17) | C8—C9—C10 | 113.6 (2) |
H1A—N1—H1B | 116 (3) | C8—C9—H9A | 108.8 |
C6—C1—C2 | 118.7 (2) | C10—C9—H9A | 108.8 |
C6—C1—S1 | 120.85 (19) | C8—C9—H9B | 108.8 |
C2—C1—S1 | 120.30 (19) | C10—C9—H9B | 108.8 |
N2—C12—C11 | 112.7 (2) | H9A—C9—H9B | 107.7 |
N2—C12—H12A | 109.1 | C4—C5—C6 | 121.6 (3) |
C11—C12—H12A | 109.1 | C4—C5—H5 | 119.2 |
N2—C12—H12B | 109.1 | C6—C5—H5 | 119.2 |
C11—C12—H12B | 109.1 | C4—C7—H7A | 109.5 |
H12A—C12—H12B | 107.8 | C4—C7—H7B | 109.5 |
C5—C4—C3 | 117.7 (2) | H7A—C7—H7B | 109.5 |
C5—C4—C7 | 121.2 (3) | C4—C7—H7C | 109.5 |
C3—C4—C7 | 121.1 (3) | H7A—C7—H7C | 109.5 |
C10—C11—C12 | 112.8 (3) | H7B—C7—H7C | 109.5 |
C10—C11—H11A | 109.0 | C4—C3—C2 | 122.3 (3) |
C12—C11—H11A | 109.0 | C4—C3—H3 | 118.9 |
C10—C11—H11B | 109.0 | C2—C3—H3 | 118.9 |
C12—C11—H11B | 109.0 |
C6H6ClNO2S·C5H9NO | Dx = 1.439 Mg m−3 |
Mr = 290.76 | Melting point: 353 K |
Monoclinic, P121/c1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.521 (2) Å | Cell parameters from 1920 reflections |
b = 13.7661 (12) Å | θ = 3.7–28.8° |
c = 10.3407 (16) Å | µ = 0.44 mm−1 |
β = 116.31 (2)° | T = 298 K |
V = 1342.5 (3) Å3 | BLOCK, colorles |
Z = 4 | 0.22 × 0.22 × 0.20 mm |
F(000) = 608 |
Xcalibur, Eos, Gemini diffractometer | 2731 independent reflections |
Radiation source: fine-focus sealed tube | 2039 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω scans | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan SADABS | h = −12→13 |
Tmin = 0.707, Tmax = 1.000 | k = −15→17 |
5058 measured reflections | l = −11→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0596P)2] where P = (Fo2 + 2Fc2)/3 |
2731 reflections | (Δ/σ)max < 0.001 |
169 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
C6H6ClNO2S·C5H9NO | V = 1342.5 (3) Å3 |
Mr = 290.76 | Z = 4 |
Monoclinic, P121/c1 | Mo Kα radiation |
a = 10.521 (2) Å | µ = 0.44 mm−1 |
b = 13.7661 (12) Å | T = 298 K |
c = 10.3407 (16) Å | 0.22 × 0.22 × 0.20 mm |
β = 116.31 (2)° |
Xcalibur, Eos, Gemini diffractometer | 2731 independent reflections |
Absorption correction: multi-scan SADABS | 2039 reflections with I > 2σ(I) |
Tmin = 0.707, Tmax = 1.000 | Rint = 0.038 |
5058 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.38 e Å−3 |
2731 reflections | Δρmin = −0.36 e Å−3 |
169 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.19111 (6) | 0.19966 (4) | 0.48704 (5) | 0.03615 (18) | |
Cl1 | 0.05379 (7) | 0.11264 (4) | 0.16036 (6) | 0.0540 (2) | |
O1 | 0.26755 (18) | 0.20526 (11) | 0.64070 (15) | 0.0487 (4) | |
O2 | 0.05885 (17) | 0.24899 (11) | 0.41564 (16) | 0.0495 (4) | |
C1 | 0.1601 (2) | 0.07383 (14) | 0.4485 (2) | 0.0328 (5) | |
N1 | 0.2947 (2) | 0.24040 (14) | 0.4250 (2) | 0.0437 (5) | |
H1B | 0.257 (3) | 0.2485 (18) | 0.335 (3) | 0.052* | |
H1A | 0.372 (3) | 0.2141 (19) | 0.462 (3) | 0.052* | |
O3 | 0.54379 (19) | 0.12661 (13) | 0.55417 (18) | 0.0610 (5) | |
C2 | 0.1944 (2) | 0.01049 (17) | 0.5627 (2) | 0.0437 (6) | |
H2 | 0.2366 | 0.0337 | 0.6569 | 0.052* | |
N2 | 0.5607 (2) | 0.00213 (15) | 0.6987 (2) | 0.0525 (5) | |
H2A | 0.5325 | −0.0349 | 0.6242 | 0.063* | |
C5 | 0.0690 (3) | −0.06037 (17) | 0.2835 (3) | 0.0506 (6) | |
H5 | 0.0269 | −0.0842 | 0.1896 | 0.061* | |
C6 | 0.0966 (2) | 0.03718 (16) | 0.3083 (2) | 0.0387 (5) | |
C3 | 0.1659 (3) | −0.08749 (19) | 0.5367 (3) | 0.0584 (7) | |
H3 | 0.1888 | −0.1300 | 0.6137 | 0.070* | |
C4 | 0.1040 (3) | −0.12237 (18) | 0.3982 (3) | 0.0590 (7) | |
H4 | 0.0857 | −0.1885 | 0.3819 | 0.071* | |
C8 | 0.5756 (3) | 0.09436 (19) | 0.6778 (3) | 0.0504 (6) | |
C10 | 0.6294 (4) | 0.1197 (2) | 0.9393 (3) | 0.0769 (9) | |
H10A | 0.6889 | 0.1581 | 1.0231 | 0.092* | |
H10B | 0.5329 | 0.1226 | 0.9282 | 0.092* | |
C12 | 0.5869 (3) | −0.0445 (2) | 0.8350 (3) | 0.0620 (7) | |
H12A | 0.6321 | −0.1069 | 0.8412 | 0.074* | |
H12B | 0.4972 | −0.0561 | 0.8377 | 0.074* | |
C11 | 0.6794 (3) | 0.0165 (3) | 0.9618 (3) | 0.0742 (9) | |
H11A | 0.7765 | 0.0137 | 0.9747 | 0.089* | |
H11B | 0.6774 | −0.0089 | 1.0484 | 0.089* | |
C9 | 0.6348 (3) | 0.1615 (2) | 0.8064 (3) | 0.0674 (8) | |
H9A | 0.5818 | 0.2219 | 0.7810 | 0.081* | |
H9B | 0.7325 | 0.1765 | 0.8291 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0502 (4) | 0.0291 (3) | 0.0311 (3) | 0.0002 (3) | 0.0198 (3) | −0.0019 (2) |
Cl1 | 0.0700 (5) | 0.0501 (4) | 0.0350 (3) | −0.0103 (3) | 0.0170 (3) | −0.0051 (2) |
O1 | 0.0696 (12) | 0.0471 (9) | 0.0308 (8) | −0.0030 (9) | 0.0235 (8) | −0.0062 (7) |
O2 | 0.0581 (11) | 0.0373 (9) | 0.0523 (10) | 0.0128 (8) | 0.0236 (9) | 0.0027 (7) |
C1 | 0.0346 (11) | 0.0276 (10) | 0.0395 (11) | 0.0007 (9) | 0.0194 (9) | 0.0012 (9) |
N1 | 0.0544 (13) | 0.0405 (11) | 0.0349 (10) | −0.0103 (10) | 0.0185 (10) | 0.0001 (8) |
O3 | 0.0692 (13) | 0.0589 (11) | 0.0577 (11) | 0.0052 (10) | 0.0307 (9) | 0.0064 (9) |
C2 | 0.0449 (13) | 0.0395 (12) | 0.0484 (13) | 0.0034 (11) | 0.0223 (11) | 0.0068 (10) |
N2 | 0.0594 (14) | 0.0497 (12) | 0.0456 (11) | 0.0039 (11) | 0.0207 (10) | −0.0017 (9) |
C5 | 0.0541 (16) | 0.0360 (12) | 0.0662 (15) | −0.0100 (12) | 0.0308 (13) | −0.0136 (12) |
C6 | 0.0379 (12) | 0.0357 (11) | 0.0459 (13) | −0.0037 (10) | 0.0216 (10) | −0.0026 (9) |
C3 | 0.0583 (17) | 0.0398 (13) | 0.0824 (19) | 0.0068 (13) | 0.0360 (14) | 0.0222 (13) |
C4 | 0.0581 (17) | 0.0299 (12) | 0.093 (2) | −0.0039 (12) | 0.0375 (15) | −0.0035 (13) |
C8 | 0.0419 (14) | 0.0527 (15) | 0.0562 (16) | 0.0052 (12) | 0.0214 (12) | −0.0011 (12) |
C10 | 0.087 (2) | 0.082 (2) | 0.0587 (18) | 0.002 (2) | 0.0297 (16) | −0.0146 (16) |
C12 | 0.0659 (18) | 0.0641 (17) | 0.0532 (15) | 0.0105 (15) | 0.0239 (14) | 0.0097 (13) |
C11 | 0.073 (2) | 0.090 (2) | 0.0475 (15) | 0.0098 (18) | 0.0159 (14) | 0.0012 (15) |
C9 | 0.0657 (19) | 0.0590 (17) | 0.075 (2) | −0.0006 (16) | 0.0296 (16) | −0.0106 (15) |
S1—O2 | 1.4254 (16) | C5—H5 | 0.9300 |
S1—O1 | 1.4299 (16) | C3—C4 | 1.370 (4) |
S1—N1 | 1.592 (2) | C3—H3 | 0.9300 |
S1—C1 | 1.775 (2) | C4—H4 | 0.9300 |
Cl1—C6 | 1.735 (2) | C8—C9 | 1.508 (3) |
C1—C2 | 1.380 (3) | C10—C11 | 1.497 (4) |
C1—C6 | 1.395 (3) | C10—C9 | 1.514 (4) |
N1—H1B | 0.84 (3) | C10—H10A | 0.9700 |
N1—H1A | 0.81 (3) | C10—H10B | 0.9700 |
O3—C8 | 1.251 (3) | C12—C11 | 1.497 (4) |
C2—C3 | 1.382 (3) | C12—H12A | 0.9700 |
C2—H2 | 0.9300 | C12—H12B | 0.9700 |
N2—C8 | 1.309 (3) | C11—H11A | 0.9700 |
N2—C12 | 1.460 (3) | C11—H11B | 0.9700 |
N2—H2A | 0.8600 | C9—H9A | 0.9700 |
C5—C4 | 1.373 (4) | C9—H9B | 0.9700 |
C5—C6 | 1.374 (3) | ||
O2—S1—O1 | 119.27 (10) | C5—C4—H4 | 119.8 |
O2—S1—N1 | 108.00 (11) | O3—C8—N2 | 121.0 (2) |
O1—S1—N1 | 106.29 (11) | O3—C8—C9 | 120.2 (2) |
O2—S1—C1 | 107.98 (10) | N2—C8—C9 | 118.8 (2) |
O1—S1—C1 | 105.00 (10) | C11—C10—C9 | 110.5 (3) |
N1—S1—C1 | 110.12 (10) | C11—C10—H10A | 109.6 |
C2—C1—C6 | 118.9 (2) | C9—C10—H10A | 109.6 |
C2—C1—S1 | 118.18 (16) | C11—C10—H10B | 109.6 |
C6—C1—S1 | 122.81 (15) | C9—C10—H10B | 109.6 |
S1—N1—H1B | 115.1 (17) | H10A—C10—H10B | 108.1 |
S1—N1—H1A | 112.1 (19) | N2—C12—C11 | 111.7 (2) |
H1B—N1—H1A | 117 (3) | N2—C12—H12A | 109.3 |
C1—C2—C3 | 119.9 (2) | C11—C12—H12A | 109.3 |
C1—C2—H2 | 120.1 | N2—C12—H12B | 109.3 |
C3—C2—H2 | 120.1 | C11—C12—H12B | 109.3 |
C8—N2—C12 | 126.9 (2) | H12A—C12—H12B | 107.9 |
C8—N2—H2A | 116.5 | C12—C11—C10 | 110.4 (2) |
C12—N2—H2A | 116.5 | C12—C11—H11A | 109.6 |
C4—C5—C6 | 119.5 (2) | C10—C11—H11A | 109.6 |
C4—C5—H5 | 120.2 | C12—C11—H11B | 109.6 |
C6—C5—H5 | 120.2 | C10—C11—H11B | 109.6 |
C5—C6—C1 | 120.8 (2) | H11A—C11—H11B | 108.1 |
C5—C6—Cl1 | 118.02 (18) | C8—C9—C10 | 113.6 (2) |
C1—C6—Cl1 | 121.17 (17) | C8—C9—H9A | 108.8 |
C4—C3—C2 | 120.4 (2) | C10—C9—H9A | 108.8 |
C4—C3—H3 | 119.8 | C8—C9—H9B | 108.8 |
C2—C3—H3 | 119.8 | C10—C9—H9B | 108.8 |
C3—C4—C5 | 120.4 (2) | H9A—C9—H9B | 107.7 |
C3—C4—H4 | 119.8 |
C6H7NO2S·C5H9NO | Dx = 1.335 Mg m−3 |
Mr = 256.32 | Melting point: 352 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1043 (5) Å | Cell parameters from 1374 reflections |
b = 12.7937 (10) Å | θ = 3.6–27.8° |
c = 14.0302 (16) Å | µ = 0.25 mm−1 |
V = 1275.2 (2) Å3 | T = 298 K |
Z = 4 | PLATE, colorles |
F(000) = 544 | 0.22 × 0.20 × 0.20 mm |
Xcalibur, Eos, Gemini diffractometer | 2493 independent reflections |
Radiation source: fine-focus sealed tube | 2175 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 26.4°, θmin = 2.9° |
Absorption correction: multi-scan SADABS | h = −4→8 |
Tmin = 0.679, Tmax = 1.000 | k = −15→15 |
3791 measured reflections | l = −17→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2685P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2493 reflections | Δρmax = 0.25 e Å−3 |
160 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (12) |
C6H7NO2S·C5H9NO | V = 1275.2 (2) Å3 |
Mr = 256.32 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.1043 (5) Å | µ = 0.25 mm−1 |
b = 12.7937 (10) Å | T = 298 K |
c = 14.0302 (16) Å | 0.22 × 0.20 × 0.20 mm |
Xcalibur, Eos, Gemini diffractometer | 2493 independent reflections |
Absorption correction: multi-scan SADABS | 2175 reflections with I > 2σ(I) |
Tmin = 0.679, Tmax = 1.000 | Rint = 0.025 |
3791 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.120 | Δρmax = 0.25 e Å−3 |
S = 1.06 | Δρmin = −0.24 e Å−3 |
2493 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
160 parameters | Absolute structure parameter: −0.01 (12) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.09979 (9) | 0.66876 (5) | 0.35518 (6) | 0.0479 (2) | |
O2 | −0.0932 (3) | 0.69509 (18) | 0.34129 (19) | 0.0701 (7) | |
C1 | 0.2366 (4) | 0.7664 (2) | 0.29907 (19) | 0.0400 (6) | |
N1 | 0.1392 (4) | 0.6744 (2) | 0.4676 (2) | 0.0536 (6) | |
H1A | 0.243 (5) | 0.647 (3) | 0.484 (3) | 0.064* | |
H1B | 0.114 (5) | 0.732 (3) | 0.489 (3) | 0.064* | |
O1 | 0.1650 (4) | 0.56864 (17) | 0.32366 (19) | 0.0672 (7) | |
C6 | 0.4304 (4) | 0.7576 (2) | 0.3012 (2) | 0.0493 (7) | |
H6 | 0.4877 | 0.6997 | 0.3287 | 0.059* | |
C4 | 0.4533 (5) | 0.9224 (3) | 0.2214 (2) | 0.0611 (9) | |
H4 | 0.5273 | 0.9753 | 0.1957 | 0.073* | |
C2 | 0.1514 (4) | 0.8530 (2) | 0.2593 (2) | 0.0488 (7) | |
H2 | 0.0209 | 0.8591 | 0.2596 | 0.059* | |
C3 | 0.2607 (5) | 0.9305 (3) | 0.2191 (2) | 0.0571 (8) | |
H3 | 0.2040 | 0.9880 | 0.1905 | 0.069* | |
C5 | 0.5370 (4) | 0.8361 (3) | 0.2618 (3) | 0.0648 (9) | |
H5 | 0.6675 | 0.8308 | 0.2625 | 0.078* | |
O3 | 0.0223 (3) | −0.11055 (17) | 0.49917 (18) | 0.0627 (6) | |
N2 | 0.2865 (4) | −0.0211 (2) | 0.4788 (2) | 0.0569 (7) | |
H2A | 0.3463 | −0.0769 | 0.4947 | 0.068* | |
C7 | 0.1024 (5) | −0.0281 (2) | 0.47661 (19) | 0.0468 (6) | |
C8 | −0.0072 (6) | 0.0650 (3) | 0.4470 (3) | 0.0718 (10) | |
H8A | −0.0990 | 0.0805 | 0.4962 | 0.086* | |
H8B | −0.0759 | 0.0480 | 0.3893 | 0.086* | |
C11 | 0.4012 (6) | 0.0702 (3) | 0.4577 (3) | 0.0807 (11) | |
H11A | 0.4743 | 0.0889 | 0.5135 | 0.097* | |
H11B | 0.4883 | 0.0536 | 0.4066 | 0.097* | |
C10 | 0.2857 (13) | 0.1574 (5) | 0.4298 (8) | 0.220 (6) | |
H10A | 0.3255 | 0.2153 | 0.4697 | 0.264* | |
H10B | 0.3246 | 0.1749 | 0.3655 | 0.264* | |
C9 | 0.1069 (11) | 0.1609 (4) | 0.4291 (6) | 0.152 (3) | |
H9A | 0.0694 | 0.1879 | 0.3673 | 0.182* | |
H9B | 0.0692 | 0.2124 | 0.4761 | 0.182* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0358 (3) | 0.0397 (3) | 0.0682 (5) | −0.0044 (3) | 0.0010 (3) | −0.0019 (3) |
O2 | 0.0330 (10) | 0.0707 (14) | 0.1068 (19) | −0.0073 (10) | −0.0080 (12) | 0.0053 (13) |
C1 | 0.0353 (13) | 0.0443 (15) | 0.0403 (14) | −0.0009 (12) | 0.0009 (11) | −0.0022 (12) |
N1 | 0.0528 (15) | 0.0441 (13) | 0.0639 (16) | −0.0006 (13) | 0.0097 (13) | 0.0057 (13) |
O1 | 0.0668 (14) | 0.0453 (11) | 0.0894 (17) | −0.0056 (11) | 0.0060 (13) | −0.0154 (11) |
C6 | 0.0383 (15) | 0.0501 (15) | 0.0595 (18) | 0.0040 (13) | 0.0017 (13) | 0.0067 (14) |
C4 | 0.064 (2) | 0.062 (2) | 0.057 (2) | −0.0070 (17) | 0.0116 (16) | 0.0095 (16) |
C2 | 0.0399 (15) | 0.0538 (17) | 0.0526 (16) | 0.0088 (12) | −0.0051 (13) | 0.0031 (14) |
C3 | 0.069 (2) | 0.0525 (18) | 0.0498 (18) | 0.0071 (17) | 0.0030 (17) | 0.0114 (15) |
C5 | 0.0399 (16) | 0.079 (2) | 0.075 (2) | −0.0058 (17) | 0.0091 (15) | 0.011 (2) |
O3 | 0.0593 (14) | 0.0482 (12) | 0.0807 (16) | −0.0039 (11) | 0.0135 (12) | 0.0037 (11) |
N2 | 0.0517 (16) | 0.0493 (15) | 0.0697 (18) | 0.0006 (12) | −0.0102 (13) | 0.0039 (13) |
C7 | 0.0556 (17) | 0.0424 (14) | 0.0424 (14) | 0.0061 (15) | 0.0016 (14) | −0.0017 (12) |
C8 | 0.075 (2) | 0.060 (2) | 0.081 (3) | 0.0233 (19) | −0.006 (2) | 0.0070 (18) |
C11 | 0.078 (3) | 0.077 (2) | 0.087 (3) | −0.031 (2) | −0.004 (2) | 0.004 (2) |
C10 | 0.148 (7) | 0.095 (4) | 0.417 (15) | −0.060 (5) | −0.117 (9) | 0.137 (7) |
C9 | 0.154 (6) | 0.056 (3) | 0.245 (8) | 0.035 (4) | 0.057 (6) | 0.060 (4) |
S1—O2 | 1.425 (2) | O3—C7 | 1.239 (3) |
S1—O1 | 1.432 (2) | N2—C7 | 1.312 (4) |
S1—N1 | 1.604 (3) | N2—C11 | 1.454 (4) |
S1—C1 | 1.768 (3) | N2—H2A | 0.8600 |
C1—C2 | 1.380 (4) | C7—C8 | 1.483 (4) |
C1—C6 | 1.382 (4) | C8—C9 | 1.492 (7) |
N1—H1A | 0.85 (4) | C8—H8A | 0.9700 |
N1—H1B | 0.82 (4) | C8—H8B | 0.9700 |
C6—C5 | 1.373 (5) | C11—C10 | 1.439 (8) |
C6—H6 | 0.9300 | C11—H11A | 0.9700 |
C4—C3 | 1.373 (5) | C11—H11B | 0.9700 |
C4—C5 | 1.376 (5) | C10—C9 | 1.271 (9) |
C4—H4 | 0.9300 | C10—H10A | 0.9700 |
C2—C3 | 1.380 (5) | C10—H10B | 0.9700 |
C2—H2 | 0.9300 | C9—H9A | 0.9700 |
C3—H3 | 0.9300 | C9—H9B | 0.9700 |
C5—H5 | 0.9300 | ||
O2—S1—O1 | 118.70 (15) | C11—N2—H2A | 116.2 |
O2—S1—N1 | 106.96 (16) | O3—C7—N2 | 120.7 (3) |
O1—S1—N1 | 106.72 (16) | O3—C7—C8 | 120.9 (3) |
O2—S1—C1 | 107.52 (14) | N2—C7—C8 | 118.4 (3) |
O1—S1—C1 | 108.47 (14) | C7—C8—C9 | 115.0 (4) |
N1—S1—C1 | 108.07 (13) | C7—C8—H8A | 108.5 |
C2—C1—C6 | 120.7 (3) | C9—C8—H8A | 108.5 |
C2—C1—S1 | 120.4 (2) | C7—C8—H8B | 108.5 |
C6—C1—S1 | 118.7 (2) | C9—C8—H8B | 108.5 |
S1—N1—H1A | 113 (3) | H8A—C8—H8B | 107.5 |
S1—N1—H1B | 111 (3) | C10—C11—N2 | 111.0 (4) |
H1A—N1—H1B | 118 (4) | C10—C11—H11A | 109.4 |
C5—C6—C1 | 118.8 (3) | N2—C11—H11A | 109.4 |
C5—C6—H6 | 120.6 | C10—C11—H11B | 109.4 |
C1—C6—H6 | 120.6 | N2—C11—H11B | 109.4 |
C3—C4—C5 | 120.1 (3) | H11A—C11—H11B | 108.0 |
C3—C4—H4 | 120.0 | C9—C10—C11 | 126.8 (5) |
C5—C4—H4 | 120.0 | C9—C10—H10A | 105.6 |
C3—C2—C1 | 119.6 (3) | C11—C10—H10A | 105.6 |
C3—C2—H2 | 120.2 | C9—C10—H10B | 105.6 |
C1—C2—H2 | 120.2 | C11—C10—H10B | 105.6 |
C4—C3—C2 | 119.8 (3) | H10A—C10—H10B | 106.1 |
C4—C3—H3 | 120.1 | C10—C9—C8 | 120.9 (5) |
C2—C3—H3 | 120.1 | C10—C9—H9A | 107.1 |
C6—C5—C4 | 120.9 (3) | C8—C9—H9A | 107.1 |
C6—C5—H5 | 119.5 | C10—C9—H9B | 107.1 |
C4—C5—H5 | 119.5 | C8—C9—H9B | 107.1 |
C7—N2—C11 | 127.5 (3) | H9A—C9—H9B | 106.8 |
C7—N2—H2A | 116.2 |
Experimental details
(2ABSACPR) | (BSAAZL) | (4ClBSACPR) | (SNACPR) | |
Crystal data | ||||
Chemical formula | C6H8N2O2S·C6H11NO | C6H7NO2S·C7H13NO | C6H6ClNO2S·C6H11NO | C6H8N2O2S·C6H11NO |
Mr | 285.36 | 284.37 | 304.79 | 285.36 |
Crystal system, space group | Monoclinic, P121/n1 | Monoclinic, P21/n | Orthorhombic, P212121 | Orthorhombic, P212121 |
Temperature (K) | 298 | 298 | 297 | 298 |
a, b, c (Å) | 7.2731 (4), 15.9052 (10), 12.7766 (6) | 7.3020 (9), 17.189 (2), 12.2835 (16) | 7.1564 (13), 13.369 (2), 15.276 (3) | 7.0957 (6), 13.1280 (13), 15.3425 (18) |
α, β, γ (°) | 90, 99.291 (5), 90 | 90, 106.760 (2), 90 | 90, 90, 90 | 90, 90, 90 |
V (Å3) | 1458.60 (15) | 1476.2 (3) | 1461.5 (5) | 1429.2 (2) |
Z | 4 | 4 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.23 | 0.23 | 0.41 | 0.24 |
Crystal size (mm) | 0.22 × 0.21 × 0.20 | 0.22 × 0.20 × 0.20 | 0.23 × 0.20 × 0.20 | 0.22 × 0.20 × 0.20 |
Data collection | ||||
Diffractometer | Xcalibur, Eos, Gemini diffractometer | CCD area detector diffractometer | Xcalibur, Eos, Gemini diffractometer | Xcalibur, Eos, Gemini diffractometer |
Absorption correction | Multi-scan SADABS | – | Multi-scan SADABS | Multi-scan SADABS |
Tmin, Tmax | 0.874, 1.000 | – | 0.333, 1.000 | 0.667, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5525, 2488, 1993 | 13710, 2520, 2154 | 4403, 2851, 1152 | 3692, 2354, 1318 |
Rint | 0.020 | 0.037 | 0.082 | 0.042 |
(sin θ/λ)max (Å−1) | 0.588 | 0.588 | 0.625 | 0.588 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.100, 1.02 | 0.060, 0.142, 1.09 | 0.090, 0.114, 0.97 | 0.053, 0.080, 0.90 |
No. of reflections | 2488 | 2520 | 2851 | 2354 |
No. of parameters | 179 | 184 | 178 | 179 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.15, −0.32 | 0.26, −0.27 | 0.25, −0.25 | 0.18, −0.21 |
Absolute structure | ? | ? | Flack H D (1983), Acta Cryst. A39, 876-881 | Flack H D (1983), Acta Cryst. A39, 876-881 |
Absolute structure parameter | ? | ? | 0.11 (15) | 0.03 (14) |
(4BrBSACPR) | (OTSAVLM) | (2ClBSACPR) | (BSACPR) | |
Crystal data | ||||
Chemical formula | C6H6BrNO2S·C6H11NO | C7H9NO2S·C5H9NO | C6H6ClNO2S·C6H11NO | C6H7NO2S·C6H11NO |
Mr | 349.25 | 270.34 | 304.79 | 270.34 |
Crystal system, space group | Orthorhombic, P212121 | Monoclinic, P21/n | Monoclinic, P121/c1 | Orthorhombic, P212121 |
Temperature (K) | 298 | 298 | 298 | 298 |
a, b, c (Å) | 7.156 (3), 13.538 (5), 15.406 (6) | 5.3367 (6), 15.9206 (17), 16.070 (3) | 9.8782 (6), 14.1720 (6), 10.8753 (6) | 7.0700 (9), 12.7624 (13), 14.977 (2) |
α, β, γ (°) | 90, 90, 90 | 90, 98.308 (12), 90 | 90, 112.850 (7), 90 | 90, 90, 90 |
V (Å3) | 1492.3 (9) | 1351.0 (3) | 1402.98 (12) | 1351.4 (3) |
Z | 4 | 4 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 2.90 | 0.24 | 0.43 | 0.24 |
Crystal size (mm) | 0.22 × 0.20 × 0.20 | 0.22 × 0.20 × 0.20 | 0.22 × 0.22 × 0.20 | 0.22 × 0.20 × 0.20 |
Data collection | ||||
Diffractometer | CCD area detector diffractometer | Xcalibur, Eos, Gemini diffractometer | Xcalibur, Eos, Gemini diffractometer | Xcalibur, Eos, Gemini diffractometer |
Absorption correction | – | Multi-scan SADABS | Multi-scan SADABS | Multi-scan SADABS |
Tmin, Tmax | – | 0.755, 1.000 | 0.876, 1.000 | 0.788, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15786, 3029, 2405 | 5072, 2759, 1420 | 5810, 2870, 2483 | 3348, 2197, 1595 |
Rint | 0.057 | 0.067 | 0.021 | 0.039 |
(sin θ/λ)max (Å−1) | 0.625 | 0.625 | 0.625 | 0.594 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.093, 1.02 | 0.065, 0.118, 1.02 | 0.039, 0.103, 1.09 | 0.078, 0.181, 1.23 |
No. of reflections | 3029 | 2759 | 2870 | 2197 |
No. of parameters | 184 | 170 | 178 | 169 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.46, −0.23 | 0.21, −0.24 | 0.25, −0.48 | 0.37, −0.24 |
Absolute structure | Flack H D (1983), Acta Cryst. A39, 876-881 | ? | ? | Flack H D (1983), Acta Cryst. A39, 876-881 |
Absolute structure parameter | 0.018 (11) | ? | ? | 0.0 (2) |
(4ClBSAVLM) | (4BrBSAVLM) | (PTSAVLM) | (2ClBSAVLM) | |
Crystal data | ||||
Chemical formula | C6H6ClNO2S·C5H9NO | C6H6BrNO2S·C5H9NO | C7H9NO2S·C5H9NO | C6H6ClNO2S·C5H9NO |
Mr | 290.76 | 335.22 | 270.34 | 290.76 |
Crystal system, space group | Monoclinic, C2/c | Monoclinic, C2/c | Triclinic, P1 | Monoclinic, P121/c1 |
Temperature (K) | 297 | 298 | 298 | 298 |
a, b, c (Å) | 25.701 (4), 6.8096 (4), 19.177 (3) | 25.914 (3), 6.8687 (9), 19.202 (2) | 5.210 (3), 8.449 (4), 16.104 (8) | 10.521 (2), 13.7661 (12), 10.3407 (16) |
α, β, γ (°) | 90, 127.40 (2), 90 | 90, 126.873 (2), 90 | 82.894 (8), 82.798 (8), 81.772 (8) | 90, 116.31 (2), 90 |
V (Å3) | 2666.3 (6) | 2734.1 (6) | 692.0 (6) | 1342.5 (3) |
Z | 8 | 8 | 2 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.45 | 3.16 | 0.24 | 0.44 |
Crystal size (mm) | 0.22 × 0.20 × 0.20 | 0.22 × 0.20 × 0.20 | 0.22 × 0.20 × 0.20 | 0.22 × 0.22 × 0.20 |
Data collection | ||||
Diffractometer | Xcalibur, Eos, Gemini diffractometer | CCD area detector diffractometer | CCD area detector diffractometer | Xcalibur, Eos, Gemini diffractometer |
Absorption correction | Multi-scan SADABS | – | – | Multi-scan SADABS |
Tmin, Tmax | 0.844, 1.000 | – | – | 0.707, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5127, 2732, 1677 | 14029, 2790, 2216 | 7341, 2819, 1969 | 5058, 2731, 2039 |
Rint | 0.043 | 0.030 | 0.023 | 0.038 |
(sin θ/λ)max (Å−1) | 0.625 | 0.625 | 0.625 | 0.625 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.134, 1.07 | 0.035, 0.094, 1.03 | 0.050, 0.153, 1.04 | 0.044, 0.114, 0.98 |
No. of reflections | 2732 | 2790 | 2819 | 2731 |
No. of parameters | 169 | 175 | 176 | 169 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.38 | 0.56, −0.39 | 0.43, −0.15 | 0.38, −0.36 |
Absolute structure | ? | ? | ? | ? |
Absolute structure parameter | ? | ? | ? | ? |
(BSAVLM) | |
Crystal data | |
Chemical formula | C6H7NO2S·C5H9NO |
Mr | 256.32 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 7.1043 (5), 12.7937 (10), 14.0302 (16) |
α, β, γ (°) | 90, 90, 90 |
V (Å3) | 1275.2 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.22 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Xcalibur, Eos, Gemini diffractometer |
Absorption correction | Multi-scan SADABS |
Tmin, Tmax | 0.679, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3791, 2493, 2175 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.120, 1.06 |
No. of reflections | 2493 |
No. of parameters | 160 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.24 |
Absolute structure | Flack H D (1983), Acta Cryst. A39, 876-881 |
Absolute structure parameter | −0.01 (12) |
Computer programs: SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).
Acknowledgements
GB and SM thank the UGC for a fellowship. We thank the DST-SERB scheme on APIs (SR/S1/OC 37/2011), JC Bose Fellowship (SR/S2/JCB-06/2009) and CSIR project on Pharmaceutical Cocrystals (01-2410/10/EMR-II) for funding. UGC and DST (UPE and PURSE funding) are thanked for providing instrumentation and infrastructure facilities.
References
Aakeröy, C. B., Epa, K., Forbes, S., Schultheiss, N. & Desper, J. (2013). Chem. Eur. J. 19, 14998–15003. Web of Science PubMed Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732–3742. Google Scholar
Babu, N. J., Reddy, L. S. & Nangia, A. (2007). Mol. Pharm. 4, 417–434. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Berzelius, J. (1844). Jahresber., 23, 44. Google Scholar
Biradha, K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc. 120, 6431–6432. Web of Science CSD CrossRef CAS Google Scholar
Bis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648–2650. Web of Science CSD CrossRef CAS Google Scholar
Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179. Web of Science CSD CrossRef CAS Google Scholar
Bolla, G., Mittapalli, S. & Nangia, A. (2014). CrystEngComm, 16, 24–27. Web of Science CSD CrossRef CAS Google Scholar
Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406. Web of Science CrossRef PubMed CAS Google Scholar
Brink, C. & Kroese, H. A. S. (1952). Acta Cryst. 5, 433–436. CrossRef IUCr Journals Web of Science Google Scholar
Bruker AXS (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Childs, S. L., Chyall, L. J., Dunlap, J. T., Smolenskaya, V. N., Stahly, B. C. & Stahly, G. P. (2004). J. Am. Chem. Soc. 126, 13335–13342. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chitra, R., Choudhury, R. R., Thiruvenkatam, V., Hosur, M. V. & Guru Row, T. N. (2012). J. Mol. Struct. 1010, 46–51. Web of Science CSD CrossRef CAS Google Scholar
Cinčić, D., Friščić, T. & Jones, W. (2008a). Chem. Eur. J. 14, 747–753. Web of Science PubMed Google Scholar
Cinčić, D., Friščić, T. & Jones, W. (2008b). New J. Chem. 32, 1776–1781. Google Scholar
Clarke, H. D., Hickey, M. B., Moulton, B., Perman, J. A., Peterson, M. L., Wojtas, Ł., Almarsson, Ö. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 4194–4201. Web of Science CSD CrossRef CAS Google Scholar
Croker, D. M., Foreman, M. E., Hogan, B. N., Maguire, N. M., Elcoate, C. J., Hodnett, B. K., Maguire, A. R., Rasmuson, C. & Lawrence, S. E. (2012). Cryst. Growth Des. 12, 869–875. Web of Science CSD CrossRef CAS Google Scholar
Denise, M., Croker, D. M. & Rasmuson, Å. C. (2014). Org. Process Res. Dev. 18, 941–946. Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Elsevier: Amsterdam. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R., Vittal, J. & Ramanan, A. (2011). Crystal Engineering: A Textbook. Singapore: World Scientific. Google Scholar
Dikundwar, A. G., Pete, U. D., Zade, C. M., Bendre, R. S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4530–4534. Web of Science CSD CrossRef CAS Google Scholar
Dubey, R. & Desiraju, G. R. (2014). Chem. Commun. 50, 1181–1184. Web of Science CSD CrossRef CAS Google Scholar
Dunitz, J. D. & Gavezzotti, A. (2012). Cryst. Growth Des. 12, 5873–5877. Web of Science CrossRef CAS Google Scholar
Ebenezer, S., Muthiah, P. T. & Butcher, R. J. (2011). Cryst. Growth Des. 11, 3579–3592. Web of Science CSD CrossRef CAS Google Scholar
Ermer, O. & Eling, A. (1994). J. Chem. Soc. Perkin Trans. 2, p. 925. CSD CrossRef Web of Science Google Scholar
Etter, M. C. (1982). J. Am. Chem. Soc. 104, 1095–1096. CrossRef CAS Web of Science Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C. (1991). J. Phys. Chem. 95, 4601–4610. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fábián, L., Argay, G. & Kálmán, A. (1999). Acta Cryst. B55, 788–792. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fábián, L. & Kálmán, A. (1999). Acta Cryst. B55, 1099–1108. Web of Science CrossRef IUCr Journals Google Scholar
Fábián, L. & Kálmán, A. (2004). Acta Cryst. B60, 547–558. Web of Science CrossRef IUCr Journals Google Scholar
Ferguson, G., Lough, A. J. & Glidewell, C. (1989). J. Chem. Soc. Perkin Trans. 2, p. 2065. CSD CrossRef Web of Science Google Scholar
Friščić, T., Trask, A. V., Jones, W. & Motherwell, W. D. S. (2006). Angew. Chem. Int. Ed. 45, 7546–7550. Google Scholar
Galcera, J., Friščić, T., Hejczyk, K. E., Fábián, L., Clarke, S. M., Day, G. M., Molins, E. & Jones, W. (2012). CrystEngComm, 14, 7898–7906. Web of Science CSD CrossRef CAS Google Scholar
Galcera, J., Friščić, T., Molins, E. & Jones, W. (2013). CrystEngComm, 15, 1332–1338. Web of Science CSD CrossRef CAS Google Scholar
Galcera, J. & Molins, E. (2009). Cryst. Growth Des. 9, 327–334. Web of Science CSD CrossRef CAS Google Scholar
Goud, N. R., Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 1930–1939. Web of Science CSD CrossRef CAS Google Scholar
Harriss, B. I., Vella-Zarb, L., Wilson, C. & Evans, I. R. (2014). Cryst. Growth Des. 14, 783–791. Web of Science CSD CrossRef CAS Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hirshfeld, F. L. & Mirsky, K. (1979). Acta Cryst. A35, 366–370. CrossRef CAS IUCr Journals Web of Science Google Scholar
IUCr (2014). https://reference.iucr.org/dictionary/Isostructural_crystals , Accessed 18/11/2014. Google Scholar
Kaur, R. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 2744–2747. Web of Science CSD CrossRef CAS Google Scholar
Kitaigorodsky, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau. Google Scholar
Kitaigorodsky, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press. Google Scholar
Kroon, J., Peerdeman, A. F. & Bijvoet, J. M. (1965). Acta Cryst. 19, 293–297. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
McKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136–2141. CrossRef CAS Google Scholar
Melhado, E. M. (1980). Historical Studies in the Physical Sciences, Mitscherlich's Discovery of Isomorphism, 11, 87–123. Google Scholar
Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127. Web of Science CrossRef CAS Google Scholar
Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science CrossRef PubMed CAS Google Scholar
Mitscherlich, E. (1822). Abhl. Akad. Berl. p. 43. Google Scholar
Moragues-Bartolome, A. M., Jones, W. & Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 2552–2559. CAS Google Scholar
Morrow, S. I. (1969). J. Chem. Educ. 46, 580–583. CrossRef CAS Google Scholar
Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514–2524. Web of Science CrossRef CAS PubMed Google Scholar
Nangia, A. & Desiraju, G. R. (1998). Top. Curr. Chem. 198, 57–95. CrossRef CAS Google Scholar
Perutz, M. F. (1956). Acta Cryst. 9, 867–873. CrossRef CAS IUCr Journals Web of Science Google Scholar
Reddy, L. S., Babu, N. J. & Nangia, A. (2006). Chem. Commun. p. 1369. Web of Science CSD CrossRef Google Scholar
Reddy, L. S., Bhatt, P. M., Banerjee, R., Nangia, A. & Kruger, G. J. (2007). Chem. Asian J. 2, 505–513. Web of Science CSD CrossRef PubMed CAS Google Scholar
Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090–4093. CSD CrossRef CAS Web of Science Google Scholar
Remenar, J. F., Peterson, M. L., Stephens, P. W., Zhang, Z., Zimenkov, Y. & Hickey, M. B. (2007). Mol. Pharm. 4, 386–400. Web of Science CSD CrossRef PubMed CAS Google Scholar
Saha, B. K. & Nangia, A. (2007). Heteroat. Chem. 18, 185–194. Web of Science CSD CrossRef CAS Google Scholar
Sanphui, P. & Rajput, L. (2014). Acta Cryst. B70, 81–90. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sanphui, P., Sarma, B. & Nangia, A. (2010). Cryst. Growth Des. 10, 4550–4564. Web of Science CSD CrossRef CAS Google Scholar
Sarma, B., Nath, N. K., Bhogala, B. R. & Nangia, A. (2009). Cryst. Growth Des. 9, 1546–1557. Web of Science CSD CrossRef CAS Google Scholar
Sauer, O., Schmidt, A. & Kratky, C. (1997). J. Appl. Cryst. 30, 476–486. CrossRef CAS Web of Science IUCr Journals Google Scholar
Schmidt, G. M. (1971). J. Pure Appl. Chem. 27, p. 647. CrossRef Google Scholar
Shan, N., Toda, F. & Jones, W. (2002). Chem. Commun. pp. 2372–2373. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thakuria, R. & Nangia, A. (2013). Cryst. Growth Des. 13, 3672–3680. Web of Science CSD CrossRef CAS Google Scholar
Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402. CSD CrossRef Web of Science Google Scholar
Trask, A. V., Haynes, D. A., Motherwell, W. D. S. & Jones, W. (2006). Chem. Commun. pp. 51–53. Web of Science CSD CrossRef Google Scholar
Trask, A. V. & Jones, W. (2005). Top. Curr. Chem. 254, 41–70. CAS Google Scholar
Trask, A. V., Motherwell, W. D. S. & Jones, W. (2004). Chem. Commun. p. 890. Web of Science CSD CrossRef Google Scholar
Trask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. Growth Des. 5, 1013–1021. Web of Science CSD CrossRef CAS Google Scholar
Trask, A. V., Motherwell, W. D. S. & Jones, W. (2006). Int. J. Pharm. 320, 114–123. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ueto, T., Takata, N., Muroyama, N., Nedu, A., Sasaki, A., Tanida, S. & Terada, K. (2012). Cryst. Growth Des. 12, 485–494. Web of Science CSD CrossRef CAS Google Scholar
US-FDA (2014). GRAS list, https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ , Accessed 04/12/2014. Google Scholar
Vainshtein, B. K., Fridkin, V. M. & Indenbom, V. L. (1982). Modern Crystallography, Vol. II. Berlin: Springer-Verlag. Google Scholar
Vangala, V. R., Mondal, R., Broder, C. K., Howard, J. A. K. & Desiraju, G. R. (2005). Cryst. Growth Des. 5, 99–104. Web of Science CSD CrossRef CAS Google Scholar
Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003a). CrystEngComm, 5, 164–168. Web of Science CSD CrossRef CAS Google Scholar
Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003b). Cryst. Growth Des. 3, 783–790. Web of Science CSD CrossRef CAS Google Scholar
Walsh, R. D. B., Bradner, M. W., Fleishman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186–187. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.