research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 2| Part 5| September 2015| Pages 498-510
ISSN: 2052-2525

A systematic structural study of halogen bonding versus hydrogen bonding within competitive supramolecular systems

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Kansas State University, Manhattan, KS 66506, USA, and bDepartment of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA
*Correspondence e-mail: aakeroy@ksu.edu

Edited by C. Lecomte, Université de Lorraine, France (Received 29 April 2015; accepted 4 June 2015; online 30 July 2015)

As halogen bonds gain prevalence in supramolecular synthesis and materials chemistry, it has become necessary to examine more closely how such interactions compete with or complement hydrogen bonds whenever both are present within the same system. As hydrogen and halogen bonds have several fundamental features in common, it is often difficult to predict which will be the primary interaction in a supramolecular system, especially as they have comparable strength and geometric requirements. To address this challenge, a series of molecules containing both hydrogen- and halogen-bond donors were co-crystallized with various monotopic, ditopic symmetric and ditopic asymmetric acceptor molecules. The outcome of each reaction was examined using IR spectroscopy and, whenever possible, single-crystal X-ray diffraction. 24 crystal structures were obtained and subsequently analyzed, and the synthon preferences of the competing hydrogen- and halogen-bond donors were rationalized against a background of calculated molecular electrostatic potential values. It has been shown that readily accessible electrostatic potentials can offer useful practical guidelines for predicting the most likely primary synthons in these co-crystals as long as the potential differences are weighted appropriately.

1. Introduction

Practical synthetic crystal engineering requires the ability to organize and connect molecular building blocks into desired solid-state motifs and architectures. Such endeavors rely on site-specific intermolecular interactions that facilitate the preparation of homomeric constructions as well as of heteromeric co-crystals via selective and hierarchical self-assembly. To develop robust, versatile supramolecular synthetic strategies, we need more information about the relative importance of two of the most useful non-covalent synthetic tools; hydrogen bonds (HBs) and halogen bonds (XBs).

The nature of the hydrogen bond, and its role in structural chemistry, has been extensively documented since the early twentieth century. Pauling devoted considerable attention to `hydrogen bonding' in his seminal book from 1939 entitled Nature of the Chemical Bond (Pauling, 1960[Pauling, L. (1960). The Nature of the Chemical Bond. Cornell University Press, Ithaca, NY. The first edition was published in 1939.]), and 20 years later, Piementel and McLellan summarized most of the available experimental data and relevant theoretical interpretations in `The Hydrogen Bond' (Pimentel & McClellan, 1960[Pimentel, G. C. & McClellan, A. L. (1960). The Hydrogen Bond. San Fransisco: W. H. Freeman and Co.]). The abundance of papers on this topic has, almost inevitably, created occasional confusion regarding vocabulary as well as of the fundamentals of this interaction. It is interesting to note then that the most recent attempt by IUPAC (Arunan et al., 2011[Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1619.]) at unifying the language and terminology by which hydrogen bonding can be defined comes almost a century after Latimer and Rodebush proposed the concept of hydrogen bonding without actually using the term itself (Latimer & Rodebush, 1920[Latimer, W. M. & Rodebush, W. H. (1920). J. Am. Chem. Soc. 42, 1419-1433.]). The basis of the IUPAC report is a broad analysis of the relevance and magnitude of the physical forces that drive hydrogen bonding and the dominant contribution in most hydrogen-bond interactions is the electrostatic component. However, the hydrogen bond is partially covalent in nature (McWeeny, 1979[McWeeny, R. (1979). Coulson's Valence, 3rd ed. Oxford University Press.]; Del Bene, 1970[Del Bene, J. (1970). J. Chem. Phys. 52, 4858.]), and induction and dispersion, in addition to exchange correlation from short range repulsion, all have to be considered in order to fully appreciate the complexity of this chemical bond (Dykstra & Lisy, 2000[Dykstra, C. E. & Lisy, J. M. (2000). J. Mol. Struct. Theochem, 500, 375-390.]; Umeyama & Morokuma, 1977[Umeyama, H. & Morokuma, K. (1977). J. Am. Chem. Soc. 99, 1316-1332.]). The IUPAC team also used crystallographic data in order to find unique bond lengths, angles and energies characteristic of hydrogen bonding. However, since it was deemed difficult to choose definitive hydrogen-bond distances (Raghavendra et al., 2006[Raghavendra, B., Mandal, P. K. & Arunan, E. (2006). Phys. Chem. Chem. Phys. 8, 5276.]; Klein, 2006[Klein, R. A. (2006). Chem. Phys. Lett. 425, 128-133.]) or energies (Pauling, 1960[Pauling, L. (1960). The Nature of the Chemical Bond. Cornell University Press, Ithaca, NY. The first edition was published in 1939.]; Jeffrey & Saenger, 1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer Verlag.]; Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]), the linearity of a hydrogen bond was identified as the `discriminative attribute' (Elghobashi & González, 2006[Elghobashi, N. & González, L. (2006). J. Chem. Phys. 124, 174308.]). Spectroscopic data were also examined to find characteristic IR stretches and NMR shifts which would commonly accompany hydrogen bonds (e.g. frequent red-shift of X—H bands in the IR (Scheiner, 1997[Scheiner, S. (1997). Hydrogen Bonding: A Theoretical Perspective. Oxford University Press.]; Badger & Bauer, 1937[Badger, R. M. & Bauer, S. H. (1937). J. Chem. Phys. 5, 605.]) and a down-field shift in NMR (Hobza & Havlas, 2000[Hobza, P. & Havlas, Z. (2000). Chem. Rev. 100, 4253-4264.])). However, alternative interpretations and views remain as to whether these spectroscopic methods produce consistent changes in response to the influence of hydrogen-bond interactions (Scheiner & Kar, 2002[Scheiner, S. & Kar, T. (2002). J. Phys. Chem. A, 106, 1784-1789.]; Joseph & Jemmis, 2007[Joseph, J. & Jemmis, E. D. (2007). J. Am. Chem. Soc. 129, 4620-4632.]). The efforts by the IUPAC task force clearly demonstrate that this topic is still hugely important and very complex.

Following closely behind the hydrogen bond, the halogen bond was highlighted as a viable non-covalent interaction some 60 years ago by Hassel (Hassel, 1970[Hassel, O. (1970). Science, 170, 497-502.]). It subsequently went through a rather quiet patch until Metrangolo and Resnati rejuvenated this field through a number of key articles (Metrangolo et al., 2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]). The halogen bond displays many fundamental similarities to the hydrogen bond, and it has been dissected and debated recently in ways that are very reminiscent of the way in which hydrogen bonding has been described. This attention to halogen bonding is fully justified given its importance in supramolecular synthesis, materials chemistry, biological systems and drug design (Bauzá et al., 2011[Bauzá, A., Quiñonero, D., Frontera, A. & Deyà, P. M. (2011). Phys. Chem. Chem. Phys. 13, 20371.]; Sarwar et al., 2010[Sarwar, M. G., Dragisic, B., Salsberg, L. J., Gouliaras, C. & Taylor, M. S. (2010). J. Am. Chem. Soc. 132, 1646-1653.]). Halogen bonds are also `tunable' through covalent modifications to the molecule on which the donor sites are found (Riley & Hobza, 2008[Riley, K. E. & Hobza, P. (2008). J. Chem. Theory Comput. 4, 232-242.], 2011[Riley, K. E. & Hobza, P. (2011). Cryst. Growth Des. 11, 4272-4278.]). Electron-withdrawing groups facilitate the redistribution of electron density away from the tip of the halogen atom, thus making it more electropositive and a more effective halogen-bond donor. However, electrostatic forces are not solely responsible for defining the halogen bond as dispersion and induction also play a role (Jeziorski et al., 1994[Jeziorski, B., Moszynski, R. & Szalewicz, K. (1994). Chem. Rev. 94, 1887-1930.]), which means that the debate about the nature and strengths of different halogen-bond interactions is remarkably similar to that which has accompanied the hydrogen bond (Řezáč et al., 2012[Řezáč, J., Riley, K. E. & Hobza, J. (2012). J. Chem. Theory Comput. 8, 4285-4292.]; Riley & Hobza, 2013[Riley, K. E. & Hobza, P. (2013). Phys. Chem. Chem. Phys. 15, 17742.]).

The question is, where does all this information leave the practitioner of synthetic crystal engineering? Hydrogen bonds and halogen bonds are complicated and subtle, directional yet reversible, chemical bonds, so how do we develop strategies that fully utilize the synthetic possibilities that these interactions offer, without having to resort to a serendipitous supramolecular combinatorial approach? One way of getting some answers may be through systematic structural studies where relatively simple custom-designed probe molecules, equipped with potentially competing hydrogen- and halogen-bond donor sites are introduced to a series of molecules decorated with different acceptor sites. By examining the structural outcome of a sufficient number of experiments, it may be possible to identify some of the finer details in the structural landscape that surrounds competing (or complementary) hydrogen and halogen bonds.

Studies that clearly address the balance between HBs and XBs are still quite unusual, but Desiraju and co-workers examined supramolecular synthons created through aniline–phenol interactions which included an analysis of the role played by secondary halogen bonds and ππ interactions (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]). Bruce and co-workers examined the outcome of reactions between 4-halo-tetrafluorophenols, which can act as both XB and HB donors, and a series of amines, and found that in each of the 11 structures that were reported (eight iodo- and three bromo-based donors) the outcome was a salt which was dominated by charge-assisted N—H+⋯O (phenolate) hydrogen bonds (Takemura, McAllister, Hart et al., 2014[Takemura, A., McAllister, L. J., Hart, S., Pridmore, N. E., Karadakov, P. B., Whitwood, A. C. & Bruce, D. W. (2014). Chem. Eur. J. 20, 6721-6732.]). The loss of the —OH moiety as a hydrogen-bond donor (due to deprotonation) made it difficult to draw any conclusions about the possible competition between XB and HB donor sites. In another study with 4-iodotetrafluorobenzoic acid, 4-iodotetrafluorophenol and 4-bromotetrafluorophenol, Bruce and co-workers used dithiane as an acceptor molecule (Takemura, McAllister, Karadakov et al., 2014[Takemura, A., McAllister, L. J., Karadakov, P. B., Pridmore, N. E., Whitwood, A. C. & Bruce, D. W. (2014). CrystEngComm, 16, 4254.]) and found that careful co-former selection can lead to halogen-bond preference over hydrogen bonding consistent with an iodine basicity scale (Laurence et al., 2011[Laurence, C., Graton, M., Berthelot, M. & El Ghomari, M. J. (2011). Chem. Eur. J. 17, 6721.]), but the study only had access to four crystal structures of neutral co-crystals. Finally, Aakeröy and co-workers showed that in molecules containing both pyridine and amino-pyrimidine sites, hydrogen bonds are responsible for the assembly of the primary structural motif while halogen bonds play supporting roles (Aakeröy et al., 2009[Aakeröy, C. B., Schultheiss, N., Rajbanshi, A., Desper, J. & Moore, C. (2009). Cryst. Growth Des. 9, 432-441.]), and they also demonstrated that both hydrogen and halogen bonds can be used as simultaneous without structural interference if the main molecular recognition events are based upon a careful combination of geometric and electrostatic complementarity (Aakeröy et al., 2011[Aakeröy, C. B., Chopade, P. D., Ganser, C. & Desper, J. (2011). Chem. Commun. 47, 4688.]).

The goal of our study is primarily to utilize crystallographic data on co-crystals of a wide range of ditopic molecules, each carrying a hydrogen-bond donor and a halogen-bond donor, in order to determine which is the more effective supramolecular synthetic vector. Second, we want to explore a simplified electrostatic view of hydrogen/halogen-bond interactions as a versatile and practical method for a priori identifying the most likely or dominant synthon in a competitive molecular recognition event (the protocol and work plan are outlined in Figs. 1–3[link][link][link]).

[Figure 1]
Figure 1
The three postulated outcomes of co-crystallizations with a monotopic acceptor (X = halogen-bond donor; H = hydrogen-bond donor, A = halogen-/hydrogen-bond acceptor).
[Figure 2]
Figure 2
The three possible outcomes of co-crystallizations with a ditopic symmetric acceptor.
[Figure 3]
Figure 3
The four possible outcomes of co-crystallizations with a ditopic asymmetric acceptor (A1 = best acceptor; A2 = second best acceptor).

The first part of the study examines combinations of ditopic donors and monotopic acceptors with postulated outcomes presented in Fig. 1[link].

Second, ditopic symmetric acceptors were included in order to determine if the two donors were comparable in strength; this could be inferred if the HB donor formed an interaction with one acceptor site and the XB donor engaged with the other acceptor site, Fig. 2[link].

Finally, ditopic asymmetric acceptors were introduced, Fig. 3[link], to the HB/XB donors in order to probe how XB/HB donors would compete for acceptors sites offering electrostatic potential surfaces of different magnitudes (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

In order to eliminate potentially misleading data resulting from possible solubility differences between hydrogen-bond donors and halogen-bond donors, the two donor sites were attached to the same molecular backbone, Fig. 4[link].

[Figure 4]
Figure 4
The hydrogen-/halogen-bond donors used in this study. X = I, Br.

For the carboxylic acid and oxime donors, both the fluorinated and non-fluorinated versions of the iodo and bromo derivatives were used. However, the non-fluorinated phenolic ligands were not considered due to very low electrostatic potential values on the halogen-bond donors, indicating that they would not be competitive.

The results of this study may help us answer several key questions: which is more effective, the hydrogen-bond donor or the halogen-bond donor? Additionally, when in direct competition with one another for acceptor molecules, what is the most likely outcome? Even though numerous physical forces are needed to give a full account of either interaction, is it possible to use readily accessible electrostatic potential surfaces as a way of ranking competing donors as well as predicting the most likely synthons? The overall outcome of this study may help to formulate versatile and useful synthetic crystal engineering strategies that facilitate the directed assembly of specific solid-state motifs through predictable synthons.

2. Experimental

2.1. Synthesis of ligands

Unless otherwise noted, the donor and acceptor ligands, in addition to the solvents, used throughout these experiments were obtained commercially and without further purification. Melting points were taken using a Gallenkamp melting point apparatus (see Table 1[link]).

Table 1
Melting points of synthesized ditopic donors

Donor Observed melting point (°C) Literature data (°C)
IF4-COOH 136–139 dec. 140 dec. (Aakeröy et al., 2011[Aakeröy, C. B., Chopade, P. D., Ganser, C. & Desper, J. (2011). Chem. Commun. 47, 4688.])
BrF4-COOH 130–133 128–130 (Aakeröy et al., 2011[Aakeröy, C. B., Chopade, P. D., Ganser, C. & Desper, J. (2011). Chem. Commun. 47, 4688.])
IF4-OX 165–167 165–169 (Aakeröy, Sinha et al., 2012[Aakeröy, C. B., Sinha, A. S., Epa, K. N., Spartz, C. L. & Desper, J. (2012). Chem. Commun. 48, 11289.])
BrF4-OX 138–140 173–175 (Aakeröy, Sinha et al., 2012[Aakeröy, C. B., Sinha, A. S., Epa, K. N., Spartz, C. L. & Desper, J. (2012). Chem. Commun. 48, 11289.])
I-OX 101–108 101–103 (Aakeröy, Sinha et al., 2012[Aakeröy, C. B., Sinha, A. S., Epa, K. N., Spartz, C. L. & Desper, J. (2012). Chem. Commun. 48, 11289.])
Br-OX 100–105 110–112 (Narsaiah & Nagaiah, 2004[Narsaiah, A. & Nagaiah, K. (2004). Adv. Synth. Catal. 346, 1271-1274.])
IF4-OH 47–50 46–46.5 (Wen et al., 1994[Wen, J., Yu, H. & Chen, Q. (1994). J. Mater. Chem. 4, 1715.])

2,3,5,6-Tetrafluoro-4-iodobenzoic acid (IF4-COOH) and 4-bromo-2,3,5,6-tetrafluorobenzoic acid (BrF4-COOH) were synthesized according to previously reported methods in the literature (Aakeröy et al., 2011[Aakeröy, C. B., Chopade, P. D., Ganser, C. & Desper, J. (2011). Chem. Commun. 47, 4688.]), whereas 4-iodobenzoic acid (I-COOH) and 4-bromobenzoic acid (Br-COOH) were purchased. (E)-2,3,5,6-Tetrafluoro-4-iodobenzaldehyde oxime (IF­4-OX), (E)-4-bromo-2,3,5,6-tetrafluorobenzaldehyde oxime (BrF­4-OX), (E)-4-iodobenzaldehyde oxime (I-OX) and (E)-4-bromobenzaldehyde oxime (Br-OX) were synthesized using a mechanochemical route (Aakeröy, Sinha et al., 2012[Aakeröy, C. B., Sinha, A. S., Epa, K. N., Spartz, C. L. & Desper, J. (2012). Chem. Commun. 48, 11289.]). 2,3,5,6-Tetrafluoro-4-iodophenol (IF4-OH) was synthesized by treating the corresponding pentafluoro­iodo­benzene with tert-butyl alcohol under reflux (Wen et al., 1994[Wen, J., Yu, H. & Chen, Q. (1994). J. Mater. Chem. 4, 1715.]) and 4-bromo-2,3,5,6-tetrafluorophenol (BrF­4-OH) was obtained commercially.

4-(Pyridine-4-yl)pyridine-1-oxide, pyrazine-1-oxide and 2,3,5,6-tetramethylpyrazine-1-oxide were synthesized according to literature methods (Aakeröy et al., 2014a[Aakeröy, C. B., Wijethunga, T. K. & Desper, J. (2014a). CrystEngComm, 16, 28-31.]). 5,6-Dimethyl-1-(pyridin-3-ylmethyl)-1H-benzo[D]imidazole, 5,6-dimethyl-1-(pyridin-4-ylmethyl)-1H-benzo[D]imidazole (Aakeröy, Desper & Smith, 2007[Aakeröy, C. B., Desper, J. & Smith, M. M. (2007). Chem. Commun. p. 3936.]) and 1-(pyridin-4-ylmethyl)-1H-benzo[D]imidazole (Aakeröy, Epa, Forbes, Schultheiss & Desper, 2013[Aakeröy, C. B., Epa, K., Forbes, S., Schultheiss, N. & Desper, J. (2013). Chem. Eur. J. 19, 14998-15003.]) were synthesized according to published procedures (see Table 2[link]).

Table 2
Melting points of synthesized acceptors

Acceptor Observed melting point (°C) Literature data (°C)
A15 170–172 170–171 (Aakeröy et al., 2014a[Aakeröy, C. B., Wijethunga, T. K. & Desper, J. (2014a). CrystEngComm, 16, 28-31.])
A16 110–113 113–115 (Aakeröy et al., 2014a[Aakeröy, C. B., Wijethunga, T. K. & Desper, J. (2014a). CrystEngComm, 16, 28-31.])
A17 98–100 113–115 (Aakeröy et al., 2014a[Aakeröy, C. B., Wijethunga, T. K. & Desper, J. (2014a). CrystEngComm, 16, 28-31.])
A18 126–131 150–153 (Aakeröy, Desper & Smith, 2007[Aakeröy, C. B., Desper, J. & Smith, M. M. (2007). Chem. Commun. p. 3936.])
A19 98–108 105–110 (Aakeröy, Epa, Forbes, Schultheiss & Desper, 2013[Aakeröy, C. B., Epa, K., Forbes, S., Schultheiss, N. & Desper, J. (2013). Chem. Eur. J. 19, 14998-15003.])
A20 179–184 182–190 (Aakeröy, Desper & Smith, 2007[Aakeröy, C. B., Desper, J. & Smith, M. M. (2007). Chem. Commun. p. 3936.])

2.2. Electrostatic potential calculations

Calculations of molecular electrostatic surface potentials were carried out using DFT with the B3LYP level of theory and a 6-31++G** basis set in vacuum. All calculations were carried out using Spartan'08 software. All molecules were geometry optimized with the maxima and minima in the electrostatic potential surface (0.002 e a.u.−1 isosurface) determined using a positive point charge in the vacuum as a probe. The numbers indicate the interaction energy (kJ mol−1) between the positive point probe and the surface of the molecule at that particular point. These numbers could be correlated to the electrostatic charges on the atoms with the negative number corresponding to negative charge and positive number corresponding to positive charge. The program automatically identifies the maximum/minimum points on the surface.

2.3. IR analysis

The outcome of each attempted co-crystallization was analyzed using IR spectroscopy (Nicolet 380 FT-IR). Vibrational spectroscopy provides information about whether the two reactants have formed a heteromeric solid based on characteristic shifts or new key bands. For example, O—H⋯N(heterocycle) hydrogen bonds tend to produce two broad bands around 1900 and 2500 cm−1, Fig. 5[link].

[Figure 5]
Figure 5
IR spectrum of BrF4-COOH – 1, showing O—H⋯N features at 1900 and 2450 cm−1.

2.4. Synthesis of co-crystals

Ten HB/XB ditopic donor molecules were combined with 20 different acceptors in a series of co-crystallization experiments, Fig. 6[link].

[Figure 6]
Figure 6
(a) Halogen-/hydrogen-bond donors, and (b) HB/XB acceptors.

Stoichiometric amounts of the two reactants were mixed with a few drops of solvent and put through a solvent-assisted grinding protocol (James et al., 2012[James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W. & Waddell, D. C. (2012). Chem. Soc. Rev. 41, 413-447.]; Aakeröy, Sinha et al., 2012[Aakeröy, C. B., Sinha, A. S., Epa, K. N., Spartz, C. L. & Desper, J. (2012). Chem. Commun. 48, 11289.]; Aakeröy, Chopade et al., 2012[Aakeröy, C. B., Chopade, P. D., Ganser, C., Rajbanshi, A. & Desper, J. (2012). CrystEngComm, 14, 5845.]). The details for the preparation of compounds that yielded crystals suitable for single-crystal X-ray diffraction are shown in Table 3[link].

Table 3
Synthesis, melting points and crystal habit

DA D:A ratio Solvent Melting point (°C) Shape/color
IF4-COOH – 2 1:1 MeOH/CH2Cl2 125–129 Colorless blocks
IF4-COOH – 4 1:4 EtOH/CH2Cl2 102–104 Large colorless needles
IF4-COOH – 12 1:1 MeOH/trace CH2Cl2 165–170 dec. Colorless thin plates
IF4-COOH – 13 1:1 MeOH 138–141 dec Colorless rectangular prisms
IF4-COOH – 16 1:2 EtOAc/NitroMe 111–115 Colorless blocks
BrF4-COOH – 11 1:1 Chloroform 137–139 Off-white prisms
I-COOH – 11 1:1 MeOH/EtOH 190–192 Opaque prisms
I-COOH – 12 1:2 MeOH/EtOH 179–182 Colorless plates
Br-COOH – 2 1:4 MeOH 210–221 Colorless, flat, large plates
Br-COOH – 3 1:4 EtOAc 151–153 Colorless blocks
Br-COOH – 5 1:4 EtOAc 159–162 Colorless, short, thin needles
Br-COOH – 12 1:2 MeOH 159–164 dec. Colorless blocks
Br-COOH – 11 1:2 MeOH/EtOH 140–142 Colorless blocks
IF4-OX – 3 1:1 MeOH 90–94 dec. Yellow, wide needles
IF4-OX – 11 1:1 MeOH 135–142 Opaque, rectangular prisms
IF4-OX – 13 1:1 EtOAc/NitroMe 133–135 Colorless thin needles
BrF4-OX – 14 1:1 MeOH/EtOH 141–145 Colorless long, thin needles
Br-OX – 5 1:1 MeOH 108–112 Colorless, rectangular prisms
IF4-OH – 2 1:1 MeOH 97–98 dec. Light yellow needles
IF4-OH – 16 1:1 MeOH 102–106 dec. Large orange rectangular prism
BrF4-OH – 2 1:1 MeOH 100–103 dec. Light yellow needles
BrF4-OH – 11 1:1 MeOH 125–130 Colorless, long needles
BrF4-OH – 12 1:1 MeOH 118–119 Colorless, long, thin needles
BrF4-OH – 13 1:1 MeOH 119–121 dec. Flat colorless rectangular plate
†MeOH = methanol, EtOH = ethanol, CH2Cl2 = dichloromethane, EtOAc = ethyl acetate, NitroMe = nitromethane.

2.5. Crystal structure analysis

Crystallographic data can be found in the supporting information for all 24 structure determinations.

3. Results

3.1. Electrostatic potential calculations

The results for the ten HB/XB donors are displayed in Table 4[link], and the corresponding results for the 20 acceptors are included in the supporting information.

Table 4
Molecular electrostatic potential values for the HB/XB donors

Donor ligand Hydrogen atom (kJ mol−1) Halogen atom (kJ mol−1)
IF4-COOH 301.5 167.1
BrF4-COOH 288.3 139.1
I-COOH 266.9 112.8
Br-COOH 273.7 87.3
IF4-OX 273.8 158.9
BrF4-OX 279.0 127.8
I-OX 256.1 100.6
Br-OX 258.7 77.2
IF4-OH 304.8 149.6
BrF4-OH 315.3 125.8

3.2. IR analysis

Table 5[link] describes the outcomes of all 200 (10 × 20) attempted co-crystallizations as established by IR spectroscopy. The relative success rate for each donor, as well as for each acceptor, is also given.

Table 5
Outcome of co-crystal synthesis

In this table ([\surd]) indicates a co-crystal and (–) indicates no reaction.

  Donors  
IF4-COOH BrF4-COOH I-COOH Br-COOH IF4-OX BrF4-OX I- OX Br- OX IF4-OH BrF4-OH  
XB potential (kJ mol−1) 167 139 113 87 159 128 101 77 150 126  
HB potential (kJ mol−1) 302 288 267 274 247 279 256 259 305 315 % Success
Acceptors 1 [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] 70
  2 [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] 90
  3 [\surd] [\surd] [\surd] [\surd] [\surd] 50
  4 [\surd] [\surd] [\surd] 30
  5 [\surd] [\surd] [\surd] [\surd] [\surd] 50
  6 [\surd] [\surd] 20
  7 [\surd] [\surd] [\surd] 30
  8 [\surd] [\surd] [\surd] [\surd] [\surd] 50
  9 [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] 90
  10 [\surd] [\surd] [\surd] 30
  11 [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] 60
  12 [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] 60
  13 [\surd] [\surd] [\surd] [\surd] [\surd] 50
  14 [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] 70
  15 [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] 60
  16 [\surd] [\surd] [\surd] [\surd] [\surd] [\surd] 60
  17 [\surd] [\surd] [\surd] [\surd] [\surd] 50
  18 [\surd] [\surd] [\surd] [\surd] [\surd] 50
  19 [\surd] [\surd] 20
  20 [\surd] [\surd] [\surd] [\surd] [\surd] 50
  12/20 8/20 9/20 8/20 14/20 11/20 8/20 6/20 14/20 14/20  
% Success 60 40 45 40 70 55 40 30 70 70

Table 5[link] has been split into columns in order to emphasize the relationship between the different halogen-bond donors. For example, the first two columns show the fluorinated iodo- and bromo-species of benzoic acid, whereas the two columns to their right show the non-fluorinated analogues. This arrangement highlights the percent success for each donor type. It can be seen that in every case, the iodo-donor has an equivalent or higher percentage success than its analogous bromo-donor. Furthermore, the fluorinated analogues are more successful at co-crystal formation than their non-fluorinated counterparts, which is in agreement with the electrostatic potential values on the HB and XB donors, as shown at the top of the table.

3.3. Co-crystal results

Over half of the 200 different donor:acceptor reactions carried out produced co-crystals and 24 of them yielded crystals suitable for single-crystal X-ray diffraction. Each acceptor can be placed in one of three categories: monotopic, ditopic symmetric and ditopic asymmetric. The possible connectivities and stoichiometries of the resulting supramolecular assemblies were described in Figs. 1–3[link][link][link]. The results from the 24 new crystal structures are summarized in Tables 6–8[link][link][link].

Table 6
Monotopic acceptors (X = halogen-bond donor; H = hydrogen-bond donor; A = acceptor)

Crystal structures Scheme Codes
1/5
[Scheme 1]
IF4-COOH – 4
4/5
[Scheme 2]
IF4-OX – 3
Br-OX – 5
Br-COOH – 5
Br-COOH – 3
0
[Scheme 3]

Table 7
Ditopic symmetric acceptors (X = halogen-bond donor; H = hydrogen-bond donor; A = acceptor)

Crystal structures Scheme Codes
8/13
[Scheme 4]
I-COOH – 12
I-COOH – 11
BrF4-OH – 13
BrF4-COOH – 11
IF4-OX – 13
IF4-OX – 11
IF4-COOH – 13
IF4-COOH – 12
5/13
[Scheme 5]
Br-COOH – 11
Br-COOH – 12
BrF4-OX – 14
BrF4-OH – 11
BrF4-OH – 12
0
[Scheme 6]

Table 8
Ditopic asymmetric acceptors (X = halogen-bond donor; H = hydrogen-bond donor)

Crystal structures Scheme Codes
4/4
[Scheme 7]
IF4-OH – 16
IF4-OH – 2
Br-COOH – 2
BrF4-OH – 2
0
[Scheme 8]
0
[Scheme 9]
0
[Scheme 10]
The crystal structures of IF4-COOH – 16 and IF4-COOH – 2 were both disordered in such a way that no determination of binding preference of the HB and XB donor moieties could be made.

Detailed crystallographic data has been included in the supporting information and deposited with the CCDC (1059404–1059416, 1059418–1059428), but relevant information about the primary hydrogen and halogen bonds is shown in Table 9[link]. During the course of this study we were also able to isolate the structures for IF4-OH--5 (Takemura, McAllister, Hart et al., 2014[Takemura, A., McAllister, L. J., Hart, S., Pridmore, N. E., Karadakov, P. B., Whitwood, A. C. & Bruce, D. W. (2014). Chem. Eur. J. 20, 6721-6732.]) and IF4-OH--12 (Takemura, McAllister, Karadakov et al., 2014[Takemura, A., McAllister, L. J., Karadakov, P. B., Pridmore, N. E., Whitwood, A. C. & Bruce, D. W. (2014). CrystEngComm, 16, 4254.]), but since they were recently reported by Bruce and co-workers, we have not included them in our results and will instead examine them as part of the discussion.

Table 9
Summary of hydrogen and halogen bond lengths (Å) and angles (°)

Code HB distance (Å) heavy atom–A HB angle (°) XB distance (Å) XA % van der Waals radii reduction XB angle (°)
IF4-OX – 3 2.649 (3) 164.2
Br-OX – 5 2.678 (2) 171 (3)
Br-COOH – 5 2.509 (3) 173 (4)
2.690 (3) 172 (4)
Br-COOH – 3 2.7077 (16) 173.1 (18)
IF4-COOH – 4 2.531 (16) 164 2.788 (10) 21 173.7 (5)
I-COOH – 12 2.666 (9) 173.9 2.941 (8) 17 177.8 (3)
I-COOH – 11 2.681 (12) 173.1 2.950 (8) 16 176.2 (7)
BrF4-OH – 13 2.659 (3) 152 (4) 3.017 (2) 11 168.89 (11)
BrF4-COOH – 11 2.5975 (18) 175 (2) 2.7921 (14) 18 177.45 (7)
IF4-OX – 13 2.746 (3) 173 (3) 2.9972 (18) 15 173.15 (6)
IF4-OX – 11 2.690 (2) 174 (3) 2.8395 (18) 20 175.29 (7)
IF4-COOH – 13 2.550 (7) 162 3.093 (6) 12 174.8 (2)
IF4-COOH – 12 2.5285 (17) 176 (2) 2.7935 (14) 21 177.65 (5)
Br-COOH – 11 2.626 (2) 174 (3)
Br-COOH – 12 2.628 (4) 168.4
BrF4-OX – 14 2.693 (2) 173 (3)
BrF4-OH – 12 2.633 (3) 164 (5)
BrF4-OH – 11 2.556 (3) 158 (3)
IF4-OH – 16 2.644 (2) 156 (3) 2.9218 (15) 17 172.05 (6)
IF4-OH – 2 2.619 (2) 158 (3) 3.0486 (18) 14 174.76 (6)
IF4-COOH – 16 2.6469 (18) 155.7 2.8102 (11) 20 170.36 (4)
IF4-COOH – 2 2.653 (5) 174.8 2.997 (4) 15 176.48 (13)
Br-COOH – 2 2.663 (3) 160 (3) 3.224 (4) 5 170.94 (9)
BrF4-OH – 2 2.608 (2) 153.5 3.009 (2) 12 173.82 (7)

4. Discussion

The 24 crystal structures were analyzed and classified according to acceptor type in order to elucidate any patterns of behavior regarding the competition between hydrogen and halogen bonds.

4.1. Monotopic acceptors

Five crystal structures were obtained with monotopic acceptors and the predominant outcome (4/5) was a co-crystal in a 1:1 stoichiometry assembled from hydrogen bonds with no discernable contributions from halogen bonds (Fig. 7[link]). Three of the four representatives in this group (IF4-OX – 3, Br-OX – 5 and Br-COOH – 3) displayed near-identical behavior (as postulated in Fig. 1[link], bottom left) with the two reactants held together by near-linear hydrogen bonds resulting in 1:1 dimeric species with no evidence of proton transfer, Fig. 8[link].

[Figure 7]
Figure 7
Distribution of motifs with monotopic acceptors.
[Figure 8]
Figure 8
The main interaction in the crystal structure of IF4-OX – 3 (A = acceptor, H = hydrogen-bond donor).

However, in the fourth representative of this group, Br-COOH – 5, the outcome was somewhat different, even though only hydrogen bonding was noted as the structure-directing interactions. As a result of proton transfer from 4-bromobenzoic acid to 4-pyrrolidinopyridine (Fig. 9[link]), an organic salt was created containing a carboxylate moiety as the key acceptor site. In addition to the benzoate:pyridinium ions, the lattice also included one equivalent of 4-bromobenzoic acid. The pyrrolidinium ring is disordered, and the carboxylate site forms two hydrogen bonds, O—H⋯C—O and N—H⋯C—O.

[Figure 9]
Figure 9
The salient intermolecular features in the crystal structure of 4-pyrrolidinopyridinium 4-bromobenzoate 4-bromobenzoic acid (1:1:1) (A = acceptor, H = hydrogen-bond donor).

The presence of an `extra' neutral molecule in pyridinum carboxylates is not unexpected as it has been demonstrated (Aakeröy, Fasulo & Desper, 2007[Aakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). Mol. Pharm. 4, 317-322.]) that close to 40% of organic carboxylate salts appear either as solvates/hydrates or with an additional neutral acid molecule in the crystal lattice. The likely explanation for this behavior is that a carboxylate moiety represents a powerful charge-assisted two-atom hydrogen-bond acceptor site which is not readily satisfied by a single hydrogen-bond donor, thus making it necessary to bring in a `free' carboxylic acid or a suitable solvent molecule. In contrast, the charge distribution around a neutral carboxylic acid makes it a less powerful or demanding hydrogen-bond acceptor site. Strictly speaking, Br-COOH – 5 may not fit exactly with any of the postulated outcomes in Fig. 1[link], but since no halogen bonding was observed, it belongs in the category of structures of monotopic acceptors where hydrogen-bonding dominates over halogen bonding.

In the remaining crystal structure with a monotopic acceptor, both halogen bonds and hydrogen bonds participate in the structure-directing process. The crystal structure of tetrafluoro-4-iodobenzoic acid 4-benzoylpyridine (IF4-COOH – 4) displays interactions involving both the carboxylic acid and the activated iodine atom, and the outcome is a trimeric supermolecule in a 1:2 ratio, Fig. 10[link] (as postulated in Fig. 1[link]). Note that we are considering 4-benzoylpyridine as a monotopic species since ketones are generally regarded as very poor acceptor sites and compared to the capability of a pyridyl moiety, it is reasonable to classify benzoylpyridine as a monotopic acceptor.

[Figure 10]
Figure 10
The trimeric supermolecule in the crystal structure of IF4-COOH – 4 (A = acceptor, H = hydrogen-bond donor, X = halogen-bond donor).

Based on the five structures with monotopic acceptors, it seems that hydrogen bonding is marginally favored (we found no system when halogen bonds were present and hydrogen bonds were absent). However, it should be noted that in three of the four structures where hydrogen bonding was dominant, the potential halogen-bond donors were not activated through the presence of electron-withdrawing groups or an adjacent sp-hybridized C atom. On the other hand, in the case where hydrogen bonds and halogen bonds were present simultaneously, the latter were represented by strongly activated iodine atoms; IF4-COOH. These observations are discussed in detail later in the context of calculated molecular electrostatic potential values. It should be noted that the crystal structure of IF4-OH – 5 has been previously reported by Bruce and co-workers (Takemura, McAllister, Hart et al., 2014[Takemura, A., McAllister, L. J., Hart, S., Pridmore, N. E., Karadakov, P. B., Whitwood, A. C. & Bruce, D. W. (2014). Chem. Eur. J. 20, 6721-6732.]) (CCDC code: BIYFOG). The primary motifs in that structure are not the same as was found in IF4-COOH-4, due to the deprotonation of the hydroxyl group. The phenolate site has become the sole acceptor site and acts as a bifurcated acceptor to a charge-assisted N—H+ hydrogen bond and a C—I halogen bond. The bifurcated XB/HB interaction is almost symmetric with both C—O⋯H—N bond C—O⋯I bond angles close to 131°. The similarity in bond angles may indicate that the two interactions are very comparable in importance and that the two donors are equally competitive for the most prominent charge-rich regions around the phenolate oxygen atom.

4.2. Ditopic symmetric acceptors

Co-crystallizations involving ditopic molecules with two equivalent acceptor sites produced 13 crystal structures. We anticipated three different modes of assembly as shown in Fig. 2[link]: hydrogen bonds at both sites, halogen bonds at both sites or a halogen bond at one end and a hydrogen bond at the other end of the acceptor, producing an infinite one-dimensional chain. In eight co-crystals both donor types were involved in the assembly of supramolecular infinite chains, and in the remaining five structures both sides of the acceptor form a hydrogen bond, Fig. 11[link]. There was no instance where a halogen bond was solely responsible for the co-crystal assembly.

[Figure 11]
Figure 11
Distribution of motifs with ditopic symmetric acceptors.

The infinite chains resulting from alternating donor and acceptor molecules are all very similar in terms of connectivity and geometry, Fig. 12[link] (in some cases the HB/XB donor molecule was disordered over two positions).

[Figure 12]
Figure 12
Primary interactions in the crystal structures of (a) BrF4-OH – 13 and (b) IF4-OX – 11 (bottom) (A = acceptor, H = hydrogen-bond donor, X = halogen-bond donor).

The second assembly type, found in five of the 13 structures with ditopic acceptors, in which only hydrogen bonding is observed, effectively leads to discrete supramolecular trimers, Fig. 13[link], with none of the main acceptor moieties engaged in a halogen bond.

[Figure 13]
Figure 13
Supramolecular trimers in the structures of (a) Br-COOH – 12 and (b) BrF4-OX – 14 (A = acceptor, H = hydrogen-bond donor).

The five structures where only hydrogen bonds appeared all involved bromo-substituted donors (Br-COOH, BrF4-OX and BrF4-OH). The lower polarizability of bromine compared with that of iodine clearly puts the XB donor at a significant disadvantage. Most of the eight chain-like motifs utilized an iodine-based HB donor (I-COOH, IF4-OX, IF4-COOH) even though some bromo-substituted donor molecules did produce a C—Br⋯A halogen bond alongside the HB donor, as long as the aromatic backbone was decorated with F atoms to activate the XB donor (as in BrF4-OH and BrF4-COOH).

4.3. Ditopic asymmetric acceptors

The final selection of co-crystals contained a ditopic molecule with two acceptor sites with different calculated electrostatic potentials (Fig. 14[link]). The combination of these acceptors with the HB/XB donors could give rise to four possible scenarios, Fig. 3[link]. Either the HB donor interacts with the stronger acceptor, leaving the XB donor to interact with the weaker, or vice versa. Alternatively, only one of the two donor types engage with both acceptors. Six crystal structures were obtained in this group but two of them, (IF4-COOH—2 and IF4-COOH—16), displayed disorder such that any assignment of binding preference could not be made. The four remaining structures were obtained with two different acceptor molecules, pyrazine-mono-N-oxide (16) and 4-CN-py (2). In the crystal structure of the co-crystal of the former, the HB donor interacts with the better acceptor and the XB donor interacts with the second best acceptor (ranking based upon electrostatic potentials (Aakeröy et al., 2014b[Aakeröy, C. B., Wijethunga, T. K. & Desper, J. (2014b). J. Mol. Struct. 1072, 20-27.]; Aakeröy, Baldrighi et al., 2013[Aakeröy, C. B., Baldrighi, M., Desper, J., Metrangolo, P. & Resnati, G. (2013). Chem. Eur. J. 19, 16240-16247.]; Aakeröy, Chopade & Desper, 2013[Aakeröy, C. B., Chopade, P. D. & Desper, J. (2013). Cryst. Growth Des. 13, 4145-4150.]; Aakeröy, Epa, Forbes & Desper, 2013[Aakeröy, C. B., Epa, K. N., Forbes, S. & Desper, J. (2013). CrystEngComm, 15, 5946.]; Aakeröy, Epa, Forbes, Schultheiss & Desper, 2013[Aakeröy, C. B., Epa, K., Forbes, S., Schultheiss, N. & Desper, J. (2013). Chem. Eur. J. 19, 14998-15003.]; Aakeröy, Wijethunga & Desper, 2015[Aakeröy, C. B., Wijethunga, T. K. & Desper, J. (2015). New J. Chem. 39, 822-828.]) and keeping in mind that the potential on the N-oxide has to be distributed among several lone-pairs), Fig. 15[link].

[Figure 14]
Figure 14
Distribution of motifs with ditopic asymmetric acceptor ligands.
[Figure 15]
Figure 15
One-dimensional chains in the crystal structures of tetrafluoro-4-iodophenol pyrazine-1-oxide (A1 = best acceptor, A2 = second-best acceptor, H = hydrogen-bond donor, X = halogen-bond donor).

The three co-crystals with 4-CN-py displayed very consistent behavior; in each instance, the HB donor engaged with the py moiety, and the XB donor formed a halogen bond with the nitrile acceptor, Fig. 16[link].

[Figure 16]
Figure 16
One-dimensional chains in the crystal structure of 4-bromobenzoic acid 4-cyanopyridine (A1 = best acceptor, A2 = second-best acceptor, H = hydrogen-bond donor, X = halogen-bond donor).

We were surprised to note, however, that the DFT calculations indicated that the C=N group should be ranked as a better acceptor site than the py moiety as the calculated electrostatic potentials were −159 and −145 kJ mol−1, respectively. This ranking, (C=N) > (py), certainly seems counterintuitive, especially when considering extensive crystallographic data on reported co-crystals with 4-cyanopyridine; an analysis of existing relevant data clearly shows that the pyridine moiety is the preferred acceptor site. A few examples of motifs displayed by representative crystal structures are shown in Fig. 17[link].

[Figure 17]
Figure 17
Common hydrogen-bond patterns (a)–(b) (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]) and (c) (Zheng, 2012[Zheng, W.-N. (2012). Acta Cryst. E68, o1625.]) and halogen-bond pattern (d) (Bailey et al., 1997[Bailey, R. D., Drake, G. W., Grabarczyk, M., Hanks, T. W., Hook, L. L. & Pennington, W. T. (1997). J. Chem. Soc. Perkin Trans. 2, p. 277.]) in co-crystals with 4-CN-pyridine.

Ultimately, this particular asymmetric acceptor must be examined in more detail with competing XB and HB donor moieties on the same molecule. However, based upon extensive crystallographic data, we will, for the purpose of this study, assign a ranking of (py) > (C=N) as indicated by the symbols A1 and A2, respectively in Fig. 16[link]. The analysis presented in Fig. 14[link] is also based upon the same assignment.

Theoretical electrostatic potential calculations are known to offer valuable information about the relative strength of hydrogen bonds and halogen bonds (Murray & Politzer, 1991[Murray, J. S. & Politzer, P. (1991). J. Org. Chem. 56, 6715-6717.]; Murray et al., 1990[Murray, J. S., Ranganathan, S. & Politzer, P. (1990). J. Org. Chem. 56, 3734.]), and our results also indicate that a relatively simple electrostatic description of such interactions provide a useful tool for predicting the most likely practical supramolecular outcome, even in relatively complex systems with multiple binding possibilities. An advantage of this simplistic approach for practical co-crystal synthesis is that the ranking of the different donors and acceptors can be achieved using readily available computational tools. It can be seen from Table 4[link] that the electrostatic potential value on the HB donor is significantly higher than on the halogen bond site, and this holds true for all ten ditopic donors. However, it is not possible to make a prediction of the outcome purely based upon electrostatic potentials when the system under consideration contains both XB and HB donors. Although the expected relative importance of hydrogen-bond donor and halogen-bond donors can be ranked within each group based on electrostatic potentials, it does not mean that we can use the potential values in a direct comparison between the two different types of donor moieties.

However, the systematic study presented herein does offer some insight into how the potential values of competing HB and XB donors can be utilized as a tool for predicting structural outcomes. First, every one of the 24 co-crystals presented here displays hydrogen bonding as one of the primary stabilizing interactions, but not every structure contains an obvious structure-directing halogen bond. The crystal structures of monotopic and ditopic symmetric acceptors fall into two groups; those with halogen bonding (9/18), and those without (9/18). Second, a closer analysis of the electrostatic potential values on each of the halogen bond donors in these systems showed that those structures with halogen bonding present had an average potential on the XB donor of 146 kJ mol−1, whereas those without halogen bonding had an average potential of the XB donor of 107 kJ mol−1. Clearly, unless the XB donor is sufficiently electrophilic, it will not match the structural impact of the competing HB donor.

Another way of predicting the structural outcome in these systems involves using the relative differences in electrostatic potential of competing HB and XB donors. Therefore, for the purpose of this study, we define a single value, Q, as the difference in the electrostatic potential of the HB donor and the XB donor; Q = HB (potential) − XB (potential). The average Q value for the 11 structures that contained both hydrogen and halogen bonding (with monotopic or symmetric ditopic donors) was 142 kJ mol−1, whereas the average Q value for the nine structures that only displayed hydrogen bonding was 175 kJ mol−1. This underscores that the difference in electrostatic potential between competing sites can offer a good indication of what the outcome is likely to be in competitive supramolecular systems, Fig. 18[link].

[Figure 18]
Figure 18
Correlation between difference in electrostatic potential (Q value) between HB and XB donor and structural outcome.

If we were to rely on the average Q values as a way of estimating the outcome in the 20 structures with monotopic and symmetric ditopic acceptors, the correct primary structural features are predicting 89% of the time (in 16/18 structures). Only two outliers are observed, the first being the crystal structure of IF4-OX – 3, Fig. 8[link], where a hydrogen-bonded dimer was formed when we would have anticipated an HB/XB trimeric motif, with one donor molecule and two acceptors (the Q value in this case is 115 kJ mol−1). The second outlier among this group is the structure of BrF4-OH – 13, where the Q value for the donor is 189 kJ mol−1, and one would expect that HB would be formed exclusively resulting in a trimer. Instead, both the XB and the HB moieties act as donors and the result is an infinite chain, Fig. 12[link] (top).

In the case of the interactions between a dual XB/HB donor molecule with either monotopic or symmetric ditopic acceptor molecules, we have been able to correlate the structural behavior with the relative difference in the electrostatic potential values of the two donor sites. In order to examine how well (or poorly) these Q values work for predicting the primary outcomes of co-crystallizations with XB/HB ditopic donor molecules and monotopic and ditopic acceptors, we found five structures in the CSD of direct relevance to this work. There are four neutral co-crystals with IF4-OH which has a Q value of 155 kJ mol−1 (TONMIT/TONMAL (Präsang et al., 2008[Präsang, C., Nguyen, H. L., Horton, P. N., Whitwood, A. C. & Bruce, D. W. (2008). Chem. Commun. p. 6164.]), HIZRIT/HIZROZ (Takemura, McAllister, Karadakov et al., 2014[Takemura, A., McAllister, L. J., Karadakov, P. B., Pridmore, N. E., Whitwood, A. C. & Bruce, D. W. (2014). CrystEngComm, 16, 4254.])) and one co-crystal with BrF4-OH, which has a Q value of 190 kJ mol−1 (HIZREP (Takemura, McAllister, Karadakov et al., 2014[Takemura, A., McAllister, L. J., Karadakov, P. B., Pridmore, N. E., Whitwood, A. C. & Bruce, D. W. (2014). CrystEngComm, 16, 4254.])), Fig. 19[link].

[Figure 19]
Figure 19
Supramolecular trimers observed in CSD structures with (a) IF4-OH (Präsang et al., 2008[Präsang, C., Nguyen, H. L., Horton, P. N., Whitwood, A. C. & Bruce, D. W. (2008). Chem. Commun. p. 6164.]) and (b) BrF4-OH (Takemura, McAllister, Karadakov et al., 2014[Takemura, A., McAllister, L. J., Karadakov, P. B., Pridmore, N. E., Whitwood, A. C. & Bruce, D. W. (2014). CrystEngComm, 16, 4254.]) (A = acceptor, H = hydrogen-bond donor, X = halogen-bond donor).

Based on the relative differences in electrostatic potentials for the two donors, one would expect the first group to contain both hydrogen and halogen bonds, since it is nearer to the average Q value of 142 kJ mol−1 exhibited in those cases. The latter structure would be expected to display only hydrogen bonds, since it exceeds the average Q value of 175 kJ mol−1 in which no XB exist. These are, in fact, the outcomes for each of the five crystal structures (Fig. 19[link]). Even though there is still a relatively small amount of crystallographic data on co-crystals of molecules that contain one XB and one HB donor on the same molecular backbone, we have developed a simple electrostatic-based guideline for predicting the most likely practical outcome in systems with competing hydrogen bonds and halogen bonds. Once more relevant experimental data is added, the initial average Q values can be adjusted to better reflect the pattern preferences of a larger group of molecules. The work presented herein can offer a complement to studies that have examined connections and interrelationships between synthons, electron densities and structure or packing features in solids. For example, Hathwar and co-coworkers (Hathwar et al., 2011[Hathwar, V. R., Thakur, T. S., Row, T. N. G. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 616-623.]) have proposed a Supramolecular Synthon Based Fragments Approach (SBFA) that relies on the robustness and modularity of the supramolecular synthons to provide transferability of charge-density-derived parameters for structural fragments, thereby providing a tool for accessing charge densities of unknown compounds. The SBFA approach has been validated against experimental charge density data in order to examine the reliability of this methodology (Dubey et al., 2014[Dubey, R., Pavan, M. S., Guru Row, T. N. & Desiraju, G. R. (2014). IUCrJ, 1, 8-18.]).

The relationship between electron density and intermolecular bond energy has been examined for halogen bonds both theoretically (Amezaga et al., 2010[Amezaga, N. J. M., Pamies, S. C., Peruchena, N. M. & Sosa, G. L. (2010). J. Phys. Chem. A, 114, 552-562.]) and experimentally (Pavan et al., 2013[Pavan, M. S., Durga Prasad, K. & Guru Row, T. N. (2013). Chem. Commun. 49, 7558.]). Similarly, the nature and strength of hydrogen bonds have also been the subject of careful analyses using electron densities as a critical component (Jarzembska et al., 2013[Jarzembska, K. N., Kamiński, R., Wenger, E., Lecomte, C. & Dominiak, P. M. (2013). J. Phys. Chem. C, 117, 7764-7775.]) and such studies are not restricted to small molecules (Liebschner et al., 2011[Liebschner, D., Jelsch, C., Espinosa, E., Lecomte, C., Chabrière, E. & Guillot, B. (2011). J. Phys. Chem. A, 115, 12895-12904.]). Furthermore, the balance between intermolecular interactions is obviously not always going to be dominated by hydrogen and halogen bonds and other forces, including dispersion, are always present to a greater or lesser extent (Maloney et al., 2014[Maloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867-3882.]).

In our study we have selected XB and HB donors–acceptors where steric hindrance is unlikely to play a role, but the importance of geometric factors for synthon reliability and crystal packing features has been highlighted through the use of long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons (Ganguly & Desiraju, 2010[Ganguly, P. & Desiraju, G. R. (2010). CrystEngComm, 12, 817-833.]). Each LSAM can be characterized by specific geometries and relative orientations that may strongly influence the final assembly of the crystal lattice. This approach offers a complementary way of examining crystal assembly from individual molecules (or functional groups) to the final three-dimensional architecture and it may be particularly useful for constructing solids with specific unit-cell dimensions (Mukherjee et al., 2014[Mukherjee, A., Dixit, K., Sarma, S. P. & Desiraju, G. R. (2014). IUCrJ, 1, 228-239.]). The geometric disposition of chemical functionalities or binding sites can obviously influence the propensity for co-crystal formation and a multi-layered approach is especially necessary for rationalizing structures that defy expectations (Kaur et al., 2015[Kaur, R., Gautam, R., Cherukuvada, S. & Guru Row, T. N. (2015). IUCrJ, 2, 341-351.]).

It is fair to say that sophisticated charge/electron-density studies remain non-routine and therefore a simplistic approach, based on extensive crystallographic information and readily accessible computational data as demonstrated in our work, can offer guidelines for how to predict key structural features in complex organic compounds with multiple co-existing synthons that may be of considerable practical value.

5. Conclusions

This extensive structural study on the competition between hydrogen and halogen bonding in co-crystals has helped clarify the competition and balance between them in a practical supramolecular synthetic system. Building on a systematic co-crystal screen of 10 HB/XB donor molecules with 20 acceptors it has been shown that generally speaking hydrogen bonding is likely to be a more effective synthetic vector as a result of its presence in every one of the 24 structures obtained. However, halogen bonding is clearly also important for organizing molecules into well defined supramolecular motifs and extended architectures since such interactions appeared in 13 of the 24 structures. Whether a halogen bond appears alongside a hydrogen bond in any of the crystal structures herein or not is largely predicted upon the difference in electrostatic potential value between the HB donor and the XB donor (represented by the Q value). In structures of monotopic and symmetric ditopic acceptors where both XB and HB interactions were involved (9/18 occurrences) the average Q value was 142 kJ mol−1, whereas in the nine structures where only hydrogen bonding was present as a structure directing force, the average Q value was 175 kJ mol−1. We have deliberately avoided any discussions about how our results may or may not reflect the actual bond strengths of HB and XB interactions and instead simply focused on observed structural outcomes. The straightforward and readily applicable approach that comes out of this study for predicting the primary synthons is admittedly only based on electrostatics, but it nevertheless yields the correct synthons in 16 of the 18 structures. Obviously, further exceptions to our observations will arise, and it is clear that the structural landscape needs to be defined and examined with even greater resolution, but the information presented herein may offer a useful `rule-of-thumb' for how the balance between potentially competing XBs and HBs will manifest itself in practical co-crystal synthesis.

Supporting information


Computing details top

For all compounds, data collection: Bruker APEX2; cell refinement: Bruker SAINT; data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

(IF4OX3) CS—AS-9–3 4-I—F4-PhCHO oxime, 4-(Me2N)-pyridine top
Crystal data top
(C7H2F4INO)(C7H10N2)F(000) = 1712
Mr = 441.17Dx = 1.853 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.9735 (9) ÅCell parameters from 9973 reflections
b = 17.2451 (11) Åθ = 2.8–31.9°
c = 13.6166 (8) ŵ = 2.07 mm1
β = 105.489 (2)°T = 120 K
V = 3162.1 (3) Å3Plate, colourless
Z = 80.38 × 0.22 × 0.08 mm
Data collection top
Bruker APEX-II CCD
diffractometer
10414 independent reflections
Radiation source: fine-focus sealed tube7877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 32.1°, θmin = 2.4°
Absorption correction: multi-scan
SADABS
h = 2018
Tmin = 0.506, Tmax = 0.852k = 2525
33827 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.055P)2 + 2.5P]
where P = (Fo2 + 2Fc2)/3
10414 reflections(Δ/σ)max = 0.002
415 parametersΔρmax = 1.70 e Å3
0 restraintsΔρmin = 0.74 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I1_10.238568 (15)0.619982 (11)0.666171 (15)0.03923 (7)
C11_10.01738 (18)0.82016 (13)0.63176 (18)0.0224 (4)
C12_10.08197 (19)0.83847 (13)0.64211 (18)0.0240 (5)
F12_10.11069 (13)0.91197 (8)0.64024 (14)0.0352 (4)
C13_10.15294 (18)0.78177 (15)0.65205 (19)0.0251 (5)
F13_10.24662 (12)0.80315 (11)0.66036 (13)0.0385 (4)
C14_10.1301 (2)0.70361 (14)0.65328 (18)0.0259 (5)
C15_10.03219 (19)0.68451 (13)0.64337 (18)0.0241 (5)
F15_10.00362 (13)0.61034 (8)0.64230 (13)0.0337 (4)
C16_10.03839 (18)0.74151 (13)0.63359 (18)0.0231 (4)
F16_10.13304 (12)0.71959 (9)0.62407 (13)0.0331 (3)
C17_10.0984 (2)0.87517 (15)0.6183 (2)0.0319 (6)
H17A_10.16460.85640.60390.038*
N17_10.08309 (18)0.94832 (12)0.62526 (17)0.0297 (5)
O17_10.17064 (17)0.98850 (12)0.61126 (19)0.0446 (5)
H17_10.15961.03630.60900.054*
N21_10.1006 (2)1.13091 (13)0.60770 (18)0.0350 (5)
C22_10.1521 (2)1.19717 (15)0.5983 (2)0.0304 (5)
H22_10.22171.19390.58980.036*
C23_10.1107 (2)1.26982 (15)0.60030 (18)0.0276 (5)
H23_10.15151.31460.59350.033*
C24_10.0082 (2)1.27793 (15)0.61227 (18)0.0282 (5)
N24_10.03490 (19)1.34865 (14)0.6159 (2)0.0366 (5)
C25_10.0461 (2)1.20751 (17)0.6207 (2)0.0337 (6)
H25_10.11561.20830.62820.040*
C26_10.0032 (3)1.13844 (17)0.6178 (2)0.0376 (7)
H26_10.03491.09220.62350.045*
C27_10.0225 (3)1.41944 (16)0.6111 (2)0.0393 (7)
H27A_10.09211.40630.60480.059*
H27B_10.01801.45010.55190.059*
H27C_10.00391.44970.67340.059*
C28_10.1398 (3)1.3573 (3)0.6216 (3)0.0534 (9)
H28A_10.16981.30600.62110.080*
H28B_10.17321.38450.68460.080*
H28C_10.14701.38730.56280.080*
I2_20.730582 (16)0.585320 (12)0.653752 (16)0.04150 (7)
C11_20.47960 (19)0.38121 (13)0.62297 (18)0.0229 (4)
C12_20.57873 (19)0.36455 (14)0.63092 (19)0.0255 (5)
F12_20.60984 (13)0.29107 (9)0.63154 (14)0.0373 (4)
C13_20.6482 (2)0.42215 (15)0.6392 (2)0.0280 (5)
F13_20.74224 (12)0.40172 (11)0.64725 (15)0.0408 (4)
C14_20.6241 (2)0.50016 (15)0.63947 (19)0.0272 (5)
C15_20.5258 (2)0.51757 (13)0.63106 (19)0.0259 (5)
F15_20.49552 (14)0.59136 (8)0.62980 (14)0.0372 (4)
C16_20.45687 (19)0.45980 (14)0.62307 (19)0.0240 (5)
F16_20.36211 (11)0.48065 (9)0.61532 (13)0.0334 (3)
C17_20.4006 (2)0.32475 (15)0.6164 (2)0.0294 (5)
H17A_20.33490.34280.60920.035*
N17_20.41665 (18)0.25214 (12)0.61980 (18)0.0315 (5)
O17_20.33054 (17)0.21115 (11)0.61452 (19)0.0421 (5)
H17_20.34240.16340.61450.051*
N21_20.4036 (2)0.07053 (13)0.61670 (18)0.0346 (5)
C22_20.3514 (2)0.00439 (15)0.6041 (2)0.0315 (5)
H22_20.28150.00770.59350.038*
C23_20.3930 (2)0.06779 (15)0.60575 (19)0.0282 (5)
H23_20.35190.11250.59650.034*
C24_20.4960 (2)0.07611 (15)0.62095 (18)0.0274 (5)
N24_20.5392 (2)0.14630 (14)0.6256 (2)0.0367 (5)
C25_20.5504 (2)0.00587 (16)0.63217 (19)0.0312 (5)
H25_20.62020.00670.64150.037*
C26_20.5018 (2)0.06301 (16)0.6295 (2)0.0353 (6)
H26_20.54030.10910.63730.042*
C27_20.4802 (3)0.21685 (17)0.6117 (3)0.0437 (7)
H27A_20.41080.20380.60660.066*
H27B_20.50550.25140.67000.066*
H27C_20.48450.24290.54910.066*
C28_20.6447 (2)0.1546 (2)0.6345 (3)0.0464 (8)
H28A_20.67610.10330.64280.070*
H28B_20.65390.17920.57280.070*
H28C_20.67530.18680.69390.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I1_10.03648 (11)0.03669 (11)0.04441 (11)0.01578 (8)0.01063 (8)0.00106 (7)
C11_10.0247 (11)0.0178 (9)0.0271 (10)0.0014 (8)0.0111 (9)0.0002 (8)
C12_10.0274 (12)0.0183 (10)0.0282 (11)0.0051 (9)0.0105 (9)0.0010 (8)
F12_10.0344 (9)0.0198 (7)0.0532 (10)0.0080 (6)0.0147 (8)0.0021 (6)
C13_10.0198 (11)0.0289 (11)0.0288 (11)0.0039 (9)0.0102 (9)0.0010 (9)
F13_10.0215 (8)0.0443 (9)0.0506 (10)0.0050 (7)0.0116 (7)0.0012 (7)
C14_10.0283 (12)0.0241 (10)0.0263 (11)0.0029 (9)0.0089 (9)0.0011 (9)
C15_10.0297 (12)0.0164 (9)0.0268 (11)0.0016 (9)0.0084 (9)0.0008 (8)
F15_10.0405 (9)0.0153 (6)0.0458 (9)0.0035 (6)0.0123 (7)0.0006 (6)
C16_10.0213 (11)0.0204 (10)0.0286 (11)0.0032 (8)0.0085 (9)0.0001 (8)
F16_10.0229 (7)0.0248 (7)0.0536 (9)0.0080 (6)0.0135 (7)0.0004 (6)
C17_10.0266 (13)0.0237 (11)0.0465 (15)0.0012 (10)0.0116 (11)0.0037 (10)
N17_10.0314 (11)0.0225 (9)0.0349 (11)0.0054 (9)0.0085 (9)0.0020 (8)
O17_10.0372 (12)0.0229 (9)0.0707 (15)0.0091 (8)0.0089 (11)0.0026 (9)
N21_10.0479 (15)0.0253 (10)0.0337 (11)0.0066 (10)0.0144 (10)0.0014 (9)
C22_10.0362 (14)0.0253 (11)0.0309 (12)0.0021 (10)0.0111 (11)0.0016 (9)
C23_10.0346 (14)0.0241 (11)0.0259 (11)0.0071 (10)0.0111 (10)0.0032 (9)
C24_10.0344 (14)0.0273 (11)0.0234 (11)0.0036 (10)0.0089 (10)0.0012 (9)
N24_10.0342 (13)0.0326 (12)0.0453 (13)0.0032 (10)0.0147 (11)0.0033 (10)
C25_10.0351 (15)0.0370 (14)0.0296 (12)0.0136 (12)0.0095 (11)0.0016 (10)
C26_10.0526 (19)0.0301 (13)0.0308 (13)0.0149 (13)0.0123 (12)0.0022 (10)
C27_10.0493 (18)0.0242 (12)0.0436 (16)0.0022 (12)0.0109 (14)0.0004 (11)
C28_10.0347 (17)0.065 (2)0.058 (2)0.0094 (16)0.0090 (15)0.0100 (18)
I2_20.04046 (12)0.03715 (11)0.04750 (12)0.01716 (8)0.01279 (9)0.00109 (8)
C11_20.0245 (11)0.0197 (10)0.0263 (11)0.0013 (8)0.0101 (9)0.0005 (8)
C12_20.0265 (12)0.0202 (10)0.0311 (12)0.0028 (9)0.0099 (9)0.0037 (9)
F12_20.0324 (9)0.0208 (7)0.0591 (10)0.0077 (6)0.0126 (8)0.0069 (7)
C13_20.0230 (12)0.0288 (12)0.0345 (12)0.0013 (9)0.0117 (10)0.0026 (10)
F13_20.0240 (8)0.0409 (9)0.0598 (11)0.0026 (7)0.0154 (8)0.0079 (8)
C14_20.0282 (13)0.0252 (11)0.0292 (11)0.0049 (9)0.0093 (10)0.0005 (9)
C15_20.0336 (13)0.0158 (9)0.0290 (11)0.0027 (9)0.0096 (10)0.0012 (8)
F15_20.0437 (10)0.0160 (6)0.0507 (10)0.0034 (6)0.0107 (8)0.0030 (6)
C16_20.0234 (11)0.0215 (10)0.0286 (11)0.0040 (9)0.0094 (9)0.0014 (8)
F16_20.0242 (8)0.0251 (7)0.0509 (9)0.0065 (6)0.0101 (7)0.0020 (6)
C17_20.0244 (12)0.0245 (11)0.0411 (13)0.0011 (9)0.0122 (10)0.0019 (10)
N17_20.0350 (12)0.0218 (9)0.0381 (12)0.0043 (9)0.0107 (10)0.0008 (8)
O17_20.0382 (12)0.0230 (9)0.0672 (14)0.0074 (8)0.0177 (11)0.0022 (9)
N21_20.0426 (14)0.0237 (10)0.0359 (12)0.0057 (10)0.0080 (10)0.0030 (9)
C22_20.0305 (13)0.0279 (12)0.0351 (13)0.0039 (10)0.0073 (11)0.0017 (10)
C23_20.0310 (13)0.0237 (11)0.0299 (12)0.0089 (10)0.0083 (10)0.0000 (9)
C24_20.0313 (13)0.0275 (11)0.0239 (11)0.0055 (10)0.0086 (10)0.0009 (9)
N24_20.0352 (13)0.0321 (11)0.0459 (13)0.0019 (10)0.0161 (11)0.0025 (10)
C25_20.0284 (13)0.0356 (13)0.0283 (12)0.0083 (11)0.0054 (10)0.0030 (10)
C26_20.0435 (16)0.0274 (12)0.0319 (13)0.0154 (12)0.0047 (12)0.0011 (10)
C27_20.0490 (19)0.0262 (13)0.0566 (19)0.0027 (13)0.0155 (15)0.0035 (12)
C28_20.0337 (16)0.059 (2)0.0459 (17)0.0067 (15)0.0091 (13)0.0016 (15)
Geometric parameters (Å, º) top
I1_1—C14_12.066 (3)I2_2—C14_22.063 (3)
C11_1—C16_11.389 (3)C11_2—C12_21.390 (4)
C11_1—C12_11.394 (4)C11_2—C16_21.392 (3)
C11_1—C17_11.450 (4)C11_2—C17_21.457 (4)
C12_1—F12_11.332 (3)C12_2—F12_21.339 (3)
C12_1—C13_11.373 (4)C12_2—C13_21.372 (4)
C13_1—F13_11.335 (3)C13_2—F13_21.336 (3)
C13_1—C14_11.386 (3)C13_2—C14_21.387 (4)
C14_1—C15_11.378 (4)C14_2—C15_21.380 (4)
C15_1—F15_11.339 (3)C15_2—F15_21.340 (3)
C15_1—C16_11.373 (3)C15_2—C16_21.370 (4)
C16_1—F16_11.348 (3)C16_2—F16_21.349 (3)
C17_1—N17_11.279 (3)C17_2—N17_21.271 (3)
C17_1—H17A_10.9500C17_2—H17A_20.9500
N17_1—O17_11.374 (3)N17_2—O17_21.381 (3)
O17_1—H17_10.8400O17_2—H17_20.8400
N21_1—C26_11.337 (4)N21_2—C22_21.340 (3)
N21_1—C22_11.339 (3)N21_2—C26_21.342 (4)
C22_1—C23_11.378 (4)C22_2—C23_21.372 (4)
C22_1—H22_10.9500C22_2—H22_20.9500
C23_1—C24_11.404 (4)C23_2—C24_21.406 (4)
C23_1—H23_10.9500C23_2—H23_20.9500
C24_1—N24_11.356 (4)C24_2—N24_21.346 (4)
C24_1—C25_11.420 (4)C24_2—C25_21.416 (4)
N24_1—C27_11.453 (4)N24_2—C27_21.453 (4)
N24_1—C28_11.454 (4)N24_2—C28_21.454 (4)
C25_1—C26_11.371 (4)C25_2—C26_21.364 (4)
C25_1—H25_10.9500C25_2—H25_20.9500
C26_1—H26_10.9500C26_2—H26_20.9500
C27_1—H27A_10.9800C27_2—H27A_20.9800
C27_1—H27B_10.9800C27_2—H27B_20.9800
C27_1—H27C_10.9800C27_2—H27C_20.9800
C28_1—H28A_10.9800C28_2—H28A_20.9800
C28_1—H28B_10.9800C28_2—H28B_20.9800
C28_1—H28C_10.9800C28_2—H28C_20.9800
C16_1—C11_1—C12_1115.4 (2)C12_2—C11_2—C16_2115.1 (2)
C16_1—C11_1—C17_1118.6 (2)C12_2—C11_2—C17_2126.1 (2)
C12_1—C11_1—C17_1126.0 (2)C16_2—C11_2—C17_2118.8 (2)
F12_1—C12_1—C13_1117.8 (2)F12_2—C12_2—C13_2117.6 (2)
F12_1—C12_1—C11_1120.7 (2)F12_2—C12_2—C11_2120.7 (2)
C13_1—C12_1—C11_1121.5 (2)C13_2—C12_2—C11_2121.7 (2)
F13_1—C13_1—C12_1118.5 (2)F13_2—C13_2—C12_2118.3 (2)
F13_1—C13_1—C14_1119.4 (2)F13_2—C13_2—C14_2119.3 (2)
C12_1—C13_1—C14_1122.1 (2)C12_2—C13_2—C14_2122.3 (2)
C15_1—C14_1—C13_1117.2 (2)C15_2—C14_2—C13_2116.6 (2)
C15_1—C14_1—I1_1121.89 (18)C15_2—C14_2—I2_2121.98 (18)
C13_1—C14_1—I1_1120.91 (19)C13_2—C14_2—I2_2121.4 (2)
F15_1—C15_1—C16_1118.6 (2)F15_2—C15_2—C16_2118.4 (2)
F15_1—C15_1—C14_1121.0 (2)F15_2—C15_2—C14_2120.8 (2)
C16_1—C15_1—C14_1120.4 (2)C16_2—C15_2—C14_2120.8 (2)
F16_1—C16_1—C15_1118.0 (2)F16_2—C16_2—C15_2117.9 (2)
F16_1—C16_1—C11_1118.6 (2)F16_2—C16_2—C11_2118.6 (2)
C15_1—C16_1—C11_1123.4 (2)C15_2—C16_2—C11_2123.5 (2)
N17_1—C17_1—C11_1121.8 (3)N17_2—C17_2—C11_2122.2 (2)
N17_1—C17_1—H17A_1119.1N17_2—C17_2—H17A_2118.9
C11_1—C17_1—H17A_1119.1C11_2—C17_2—H17A_2118.9
C17_1—N17_1—O17_1111.2 (2)C17_2—N17_2—O17_2111.1 (2)
N17_1—O17_1—H17_1109.5N17_2—O17_2—H17_2109.5
C26_1—N21_1—C22_1115.7 (3)C22_2—N21_2—C26_2115.9 (2)
N21_1—C22_1—C23_1124.2 (3)N21_2—C22_2—C23_2123.8 (3)
N21_1—C22_1—H22_1117.9N21_2—C22_2—H22_2118.1
C23_1—C22_1—H22_1117.9C23_2—C22_2—H22_2118.1
C22_1—C23_1—C24_1120.2 (2)C22_2—C23_2—C24_2120.5 (2)
C22_1—C23_1—H23_1119.9C22_2—C23_2—H23_2119.7
C24_1—C23_1—H23_1119.9C24_2—C23_2—H23_2119.7
N24_1—C24_1—C23_1121.6 (2)N24_2—C24_2—C23_2121.8 (2)
N24_1—C24_1—C25_1122.9 (3)N24_2—C24_2—C25_2122.9 (3)
C23_1—C24_1—C25_1115.5 (2)C23_2—C24_2—C25_2115.3 (2)
C24_1—N24_1—C27_1121.3 (3)C24_2—N24_2—C27_2121.0 (3)
C24_1—N24_1—C28_1121.8 (3)C24_2—N24_2—C28_2121.6 (3)
C27_1—N24_1—C28_1116.9 (3)C27_2—N24_2—C28_2117.1 (3)
C26_1—C25_1—C24_1119.2 (3)C26_2—C25_2—C24_2119.6 (3)
C26_1—C25_1—H25_1120.4C26_2—C25_2—H25_2120.2
C24_1—C25_1—H25_1120.4C24_2—C25_2—H25_2120.2
N21_1—C26_1—C25_1125.2 (3)N21_2—C26_2—C25_2124.9 (2)
N21_1—C26_1—H26_1117.4N21_2—C26_2—H26_2117.6
C25_1—C26_1—H26_1117.4C25_2—C26_2—H26_2117.6
N24_1—C27_1—H27A_1109.5N24_2—C27_2—H27A_2109.5
N24_1—C27_1—H27B_1109.5N24_2—C27_2—H27B_2109.5
H27A_1—C27_1—H27B_1109.5H27A_2—C27_2—H27B_2109.5
N24_1—C27_1—H27C_1109.5N24_2—C27_2—H27C_2109.5
H27A_1—C27_1—H27C_1109.5H27A_2—C27_2—H27C_2109.5
H27B_1—C27_1—H27C_1109.5H27B_2—C27_2—H27C_2109.5
N24_1—C28_1—H28A_1109.5N24_2—C28_2—H28A_2109.5
N24_1—C28_1—H28B_1109.5N24_2—C28_2—H28B_2109.5
H28A_1—C28_1—H28B_1109.5H28A_2—C28_2—H28B_2109.5
N24_1—C28_1—H28C_1109.5N24_2—C28_2—H28C_2109.5
H28A_1—C28_1—H28C_1109.5H28A_2—C28_2—H28C_2109.5
H28B_1—C28_1—H28C_1109.5H28B_2—C28_2—H28C_2109.5
C16_1—C11_1—C12_1—F12_1179.2 (2)C16_2—C11_2—C12_2—F12_2179.9 (2)
C17_1—C11_1—C12_1—F12_10.0 (4)C17_2—C11_2—C12_2—F12_21.1 (4)
C16_1—C11_1—C12_1—C13_10.8 (4)C16_2—C11_2—C12_2—C13_20.6 (4)
C17_1—C11_1—C12_1—C13_1178.4 (2)C17_2—C11_2—C12_2—C13_2178.4 (3)
F12_1—C12_1—C13_1—F13_10.7 (3)F12_2—C12_2—C13_2—F13_20.1 (4)
C11_1—C12_1—C13_1—F13_1179.2 (2)C11_2—C12_2—C13_2—F13_2179.6 (2)
F12_1—C12_1—C13_1—C14_1179.0 (2)F12_2—C12_2—C13_2—C14_2180.0 (2)
C11_1—C12_1—C13_1—C14_10.6 (4)C11_2—C12_2—C13_2—C14_20.5 (4)
F13_1—C13_1—C14_1—C15_1179.3 (2)F13_2—C13_2—C14_2—C15_2179.9 (2)
C12_1—C13_1—C14_1—C15_10.4 (4)C12_2—C13_2—C14_2—C15_20.1 (4)
F13_1—C13_1—C14_1—I1_10.7 (3)F13_2—C13_2—C14_2—I2_20.8 (3)
C12_1—C13_1—C14_1—I1_1179.06 (18)C12_2—C13_2—C14_2—I2_2179.3 (2)
C13_1—C14_1—C15_1—F15_1179.0 (2)C13_2—C14_2—C15_2—F15_2179.5 (2)
I1_1—C14_1—C15_1—F15_10.4 (3)I2_2—C14_2—C15_2—F15_21.4 (3)
C13_1—C14_1—C15_1—C16_10.5 (4)C13_2—C14_2—C15_2—C16_20.1 (4)
I1_1—C14_1—C15_1—C16_1179.13 (18)I2_2—C14_2—C15_2—C16_2179.09 (18)
F15_1—C15_1—C16_1—F16_10.4 (3)F15_2—C15_2—C16_2—F16_20.6 (3)
C14_1—C15_1—C16_1—F16_1180.0 (2)C14_2—C15_2—C16_2—F16_2179.8 (2)
F15_1—C15_1—C16_1—C11_1178.7 (2)F15_2—C15_2—C16_2—C11_2179.7 (2)
C14_1—C15_1—C16_1—C11_10.8 (4)C14_2—C15_2—C16_2—C11_20.1 (4)
C12_1—C11_1—C16_1—F16_1179.9 (2)C12_2—C11_2—C16_2—F16_2179.8 (2)
C17_1—C11_1—C16_1—F16_10.8 (4)C17_2—C11_2—C16_2—F16_21.1 (4)
C12_1—C11_1—C16_1—C15_10.9 (4)C12_2—C11_2—C16_2—C15_20.5 (4)
C17_1—C11_1—C16_1—C15_1178.3 (2)C17_2—C11_2—C16_2—C15_2178.6 (2)
C16_1—C11_1—C17_1—N17_1173.4 (3)C12_2—C11_2—C17_2—N17_21.7 (4)
C12_1—C11_1—C17_1—N17_17.4 (4)C16_2—C11_2—C17_2—N17_2177.3 (3)
C11_1—C17_1—N17_1—O17_1179.0 (2)C11_2—C17_2—N17_2—O17_2178.5 (2)
C26_1—N21_1—C22_1—C23_11.1 (4)C26_2—N21_2—C22_2—C23_21.2 (4)
N21_1—C22_1—C23_1—C24_10.3 (4)N21_2—C22_2—C23_2—C24_20.2 (4)
C22_1—C23_1—C24_1—N24_1179.1 (2)C22_2—C23_2—C24_2—N24_2178.2 (3)
C22_1—C23_1—C24_1—C25_10.6 (4)C22_2—C23_2—C24_2—C25_21.0 (4)
C23_1—C24_1—N24_1—C27_12.2 (4)C23_2—C24_2—N24_2—C27_22.1 (4)
C25_1—C24_1—N24_1—C27_1177.5 (3)C25_2—C24_2—N24_2—C27_2178.8 (3)
C23_1—C24_1—N24_1—C28_1175.9 (3)C23_2—C24_2—N24_2—C28_2175.8 (3)
C25_1—C24_1—N24_1—C28_14.4 (4)C25_2—C24_2—N24_2—C28_25.0 (4)
N24_1—C24_1—C25_1—C26_1179.0 (3)N24_2—C24_2—C25_2—C26_2178.1 (3)
C23_1—C24_1—C25_1—C26_10.7 (4)C23_2—C24_2—C25_2—C26_21.1 (4)
C22_1—N21_1—C26_1—C25_11.0 (4)C22_2—N21_2—C26_2—C25_21.1 (4)
C24_1—C25_1—C26_1—N21_10.1 (4)C24_2—C25_2—C26_2—N21_20.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17_1—H17_1···N21_10.841.832.649 (3)164
O17_2—H17_2···N21_20.841.812.628 (3)163
(BrOX5) S—AV-14–5 4-Br-PhCH(=NOH), 4-(1-pyrrolidinyl)-pyridine top
Crystal data top
(C7H6BrNO)(C9H12N2)Z = 2
Mr = 348.24F(000) = 356
Triclinic, P1Dx = 1.518 Mg m3
a = 7.8090 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6156 (14) ÅCell parameters from 9017 reflections
c = 11.4520 (18) Åθ = 2.4–31.4°
α = 101.314 (5)°µ = 2.70 mm1
β = 94.225 (5)°T = 120 K
γ = 113.541 (4)°Prism, colourless
V = 761.9 (2) Å30.30 × 0.22 × 0.08 mm
Data collection top
Bruker APEX-II CCD
diffractometer
4635 independent reflections
Radiation source: fine-focus sealed tube3909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 31.5°, θmin = 2.4°
Absorption correction: multi-scan
SADABS
h = 1111
Tmin = 0.498, Tmax = 0.813k = 1413
16077 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.030P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
4635 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.10553 (3)0.80402 (2)0.024168 (18)0.03188 (7)
C110.5557 (2)0.64997 (19)0.12443 (15)0.0223 (3)
C120.5998 (2)0.7564 (2)0.05288 (16)0.0256 (3)
H120.72410.79890.03440.031*
C130.4664 (2)0.8019 (2)0.00795 (16)0.0255 (3)
H130.49760.87380.04180.031*
C140.2871 (2)0.7407 (2)0.03695 (16)0.0237 (3)
C150.2382 (2)0.6339 (2)0.10828 (16)0.0260 (3)
H150.11390.59250.12710.031*
C160.3728 (3)0.5890 (2)0.15132 (16)0.0255 (3)
H160.34040.51570.19990.031*
C170.7029 (2)0.6042 (2)0.16581 (16)0.0243 (3)
H17A0.82410.64850.14320.029*
N170.6731 (2)0.50698 (17)0.23105 (14)0.0262 (3)
O170.83261 (19)0.48073 (17)0.25530 (13)0.0313 (3)
H170.802 (4)0.422 (3)0.290 (2)0.038*
N210.7593 (2)0.2624 (2)0.38141 (16)0.0347 (4)
C220.8170 (3)0.2995 (2)0.50056 (19)0.0332 (4)
H220.86010.40610.54270.040*
C230.8186 (3)0.1963 (2)0.56604 (17)0.0293 (4)
H230.86240.23140.65080.035*
C240.7548 (2)0.0370 (2)0.50742 (16)0.0248 (3)
C250.6942 (3)0.0027 (2)0.38201 (17)0.0293 (4)
H250.64980.10810.33670.035*
C260.6996 (3)0.1112 (3)0.32567 (19)0.0353 (4)
H260.65800.08100.24080.042*
N310.7529 (2)0.07022 (18)0.56773 (14)0.0310 (3)
C32A0.8044 (3)0.0347 (2)0.69838 (18)0.0343 (4)0.818 (7)
H32A0.74510.03090.73910.041*0.818 (7)
H32B0.94360.02140.72340.041*0.818 (7)
C33A0.7314 (5)0.1901 (3)0.7287 (3)0.0353 (6)0.818 (7)
H33A0.59900.22320.74310.042*0.818 (7)
H33B0.81140.18790.80090.042*0.818 (7)
C34A0.7439 (6)0.2973 (4)0.6157 (3)0.0375 (7)0.818 (7)
H34A0.65350.40720.60770.045*0.818 (7)
H34B0.87360.29170.61820.045*0.818 (7)
C35A0.6923 (3)0.2352 (2)0.5101 (2)0.0343 (4)0.818 (7)
H35A0.76190.24930.44320.041*0.818 (7)
H35B0.55440.28750.47880.041*0.818 (7)
C32B0.8044 (3)0.0347 (2)0.69838 (18)0.0343 (4)0.182 (7)
H32C0.71260.00740.74170.041*0.182 (7)
H32D0.93420.04860.72860.041*0.182 (7)
C33B0.789 (2)0.2045 (17)0.7034 (14)0.0353 (6)0.182 (7)
H33C0.91720.20300.70830.042*0.182 (7)
H33D0.73900.23130.77680.042*0.182 (7)
C34B0.663 (3)0.3258 (18)0.5944 (15)0.0375 (7)0.182 (7)
H34C0.70270.41170.57150.045*0.182 (7)
H34D0.52880.36980.60590.045*0.182 (7)
C35B0.6923 (3)0.2352 (2)0.5101 (2)0.0343 (4)0.182 (7)
H35C0.57330.27300.45220.041*0.182 (7)
H35D0.79000.24760.46420.041*0.182 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02771 (10)0.03555 (11)0.03907 (12)0.01677 (8)0.00721 (7)0.01594 (8)
C110.0270 (8)0.0180 (7)0.0207 (8)0.0092 (6)0.0029 (6)0.0034 (6)
C120.0249 (8)0.0228 (8)0.0295 (9)0.0090 (6)0.0086 (6)0.0076 (7)
C130.0291 (8)0.0225 (8)0.0281 (9)0.0122 (7)0.0081 (6)0.0096 (7)
C140.0264 (8)0.0218 (7)0.0238 (8)0.0114 (6)0.0043 (6)0.0053 (6)
C150.0250 (8)0.0255 (8)0.0284 (9)0.0094 (7)0.0083 (6)0.0098 (7)
C160.0298 (8)0.0224 (8)0.0255 (8)0.0097 (7)0.0065 (6)0.0106 (6)
C170.0265 (8)0.0223 (8)0.0240 (8)0.0098 (6)0.0042 (6)0.0070 (6)
N170.0267 (7)0.0246 (7)0.0263 (7)0.0108 (6)0.0011 (5)0.0051 (6)
O170.0295 (7)0.0320 (7)0.0363 (8)0.0140 (6)0.0031 (5)0.0155 (6)
N210.0307 (8)0.0372 (9)0.0414 (9)0.0155 (7)0.0073 (7)0.0178 (7)
C220.0316 (9)0.0254 (9)0.0421 (11)0.0114 (7)0.0074 (8)0.0081 (8)
C230.0366 (10)0.0242 (8)0.0258 (9)0.0120 (7)0.0036 (7)0.0058 (7)
C240.0282 (8)0.0231 (8)0.0251 (8)0.0107 (7)0.0068 (6)0.0094 (6)
C250.0341 (9)0.0271 (8)0.0254 (9)0.0115 (7)0.0041 (7)0.0072 (7)
C260.0345 (10)0.0433 (11)0.0280 (9)0.0154 (9)0.0036 (7)0.0117 (8)
N310.0429 (9)0.0243 (7)0.0258 (8)0.0138 (7)0.0067 (6)0.0069 (6)
C32A0.0403 (10)0.0358 (10)0.0278 (9)0.0148 (8)0.0046 (8)0.0129 (8)
C33A0.0378 (16)0.0400 (13)0.0359 (14)0.0186 (11)0.0094 (11)0.0210 (11)
C34A0.0378 (18)0.0326 (13)0.0502 (16)0.0195 (14)0.0082 (14)0.0179 (12)
C35A0.0379 (10)0.0227 (8)0.0424 (11)0.0133 (8)0.0087 (8)0.0063 (8)
C32B0.0403 (10)0.0358 (10)0.0278 (9)0.0148 (8)0.0046 (8)0.0129 (8)
C33B0.0378 (16)0.0400 (13)0.0359 (14)0.0186 (11)0.0094 (11)0.0210 (11)
C34B0.0378 (18)0.0326 (13)0.0502 (16)0.0195 (14)0.0082 (14)0.0179 (12)
C35B0.0379 (10)0.0227 (8)0.0424 (11)0.0133 (8)0.0087 (8)0.0063 (8)
Geometric parameters (Å, º) top
Br1—C141.8927 (17)C24—C251.405 (3)
C11—C121.388 (2)C25—C261.365 (3)
C11—C161.395 (2)C25—H250.9500
C11—C171.465 (2)C26—H260.9500
C12—C131.384 (2)N31—C32A1.455 (2)
C12—H120.9500N31—C35A1.456 (2)
C13—C141.380 (2)C32A—C33A1.494 (3)
C13—H130.9500C32A—H32A0.9900
C14—C151.389 (2)C32A—H32B0.9900
C15—C161.380 (3)C33A—C34A1.524 (4)
C15—H150.9500C33A—H33A0.9900
C16—H160.9500C33A—H33B0.9900
C17—N171.270 (2)C34A—C35A1.545 (4)
C17—H17A0.9500C34A—H34A0.9900
N17—O171.385 (2)C34A—H34B0.9900
O17—H170.72 (3)C35A—H35A0.9900
N21—C221.335 (3)C35A—H35B0.9900
N21—C261.337 (3)C33B—C34B1.49 (2)
C22—C231.359 (3)C33B—H33C0.9900
C22—H220.9500C33B—H33D0.9900
C23—C241.408 (2)C34B—H34C0.9900
C23—H230.9500C34B—H34D0.9900
C24—N311.345 (2)
C12—C11—C16118.69 (16)N21—C26—C25124.68 (19)
C12—C11—C17118.21 (15)N21—C26—H26117.7
C16—C11—C17123.08 (15)C25—C26—H26117.7
C13—C12—C11121.40 (16)C24—N31—C32A123.51 (16)
C13—C12—H12119.3C24—N31—C35A123.72 (16)
C11—C12—H12119.3C32A—N31—C35A112.73 (16)
C14—C13—C12118.59 (16)N31—C32A—C33A105.09 (18)
C14—C13—H13120.7N31—C32A—H32A110.7
C12—C13—H13120.7C33A—C32A—H32A110.7
C13—C14—C15121.53 (16)N31—C32A—H32B110.7
C13—C14—Br1118.44 (13)C33A—C32A—H32B110.7
C15—C14—Br1120.03 (13)H32A—C32A—H32B108.8
C16—C15—C14118.97 (16)C32A—C33A—C34A102.5 (2)
C16—C15—H15120.5C32A—C33A—H33A111.3
C14—C15—H15120.5C34A—C33A—H33A111.3
C15—C16—C11120.82 (16)C32A—C33A—H33B111.3
C15—C16—H16119.6C34A—C33A—H33B111.3
C11—C16—H16119.6H33A—C33A—H33B109.2
N17—C17—C11121.93 (16)C33A—C34A—C35A104.7 (2)
N17—C17—H17A119.0C33A—C34A—H34A110.8
C11—C17—H17A119.0C35A—C34A—H34A110.8
C17—N17—O17110.65 (15)C33A—C34A—H34B110.8
N17—O17—H17103 (2)C35A—C34A—H34B110.8
C22—N21—C26115.57 (17)H34A—C34A—H34B108.9
N21—C22—C23124.90 (18)N31—C35A—C34A101.86 (19)
N21—C22—H22117.6N31—C35A—H35A111.4
C23—C22—H22117.6C34A—C35A—H35A111.4
C22—C23—C24119.53 (17)N31—C35A—H35B111.4
C22—C23—H23120.2C34A—C35A—H35B111.4
C24—C23—H23120.2H35A—C35A—H35B109.3
N31—C24—C25122.13 (16)C34B—C33B—H33C109.4
N31—C24—C23122.06 (16)C34B—C33B—H33D109.4
C25—C24—C23115.81 (16)H33C—C33B—H33D108.0
C26—C25—C24119.51 (17)C33B—C34B—H34C111.8
C26—C25—H25120.2C33B—C34B—H34D111.8
C24—C25—H25120.2H34C—C34B—H34D109.5
C16—C11—C12—C130.3 (3)C22—C23—C24—C250.4 (3)
C17—C11—C12—C13178.31 (16)N31—C24—C25—C26179.91 (18)
C11—C12—C13—C140.8 (3)C23—C24—C25—C260.2 (3)
C12—C13—C14—C150.8 (3)C22—N21—C26—C250.2 (3)
C12—C13—C14—Br1179.73 (13)C24—C25—C26—N210.1 (3)
C13—C14—C15—C160.3 (3)C25—C24—N31—C32A176.39 (18)
Br1—C14—C15—C16179.70 (13)C23—C24—N31—C32A3.9 (3)
C14—C15—C16—C110.3 (3)C25—C24—N31—C35A1.2 (3)
C12—C11—C16—C150.3 (3)C23—C24—N31—C35A178.51 (18)
C17—C11—C16—C15178.82 (16)C24—N31—C32A—C33A164.5 (2)
C12—C11—C17—N17179.69 (16)C35A—N31—C32A—C33A13.3 (3)
C16—C11—C17—N171.2 (3)N31—C32A—C33A—C34A30.3 (3)
C11—C17—N17—O17178.51 (14)C32A—C33A—C34A—C35A36.6 (3)
C26—N21—C22—C230.1 (3)C24—N31—C35A—C34A172.7 (2)
N21—C22—C23—C240.4 (3)C32A—N31—C35A—C34A9.6 (2)
C22—C23—C24—N31179.88 (18)C33A—C34A—C35A—N3128.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17···N210.72 (3)1.96 (3)2.678 (2)171 (3)
(BrCO5) SD-1–27-6–4 4-(1-pyrrolidinyl)-pyridine, (4-Br-PhCOOH)2 top
Crystal data top
(C9H12N2)(C7H5BrO2)2Z = 2
Mr = 550.25F(000) = 552
Triclinic, P1Dx = 1.650 Mg m3
a = 9.3718 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6497 (6) ÅCell parameters from 9903 reflections
c = 14.1666 (9) Åθ = 2.4–31.6°
α = 98.672 (3)°µ = 3.69 mm1
β = 105.769 (2)°T = 120 K
γ = 110.884 (3)°Prism, colourless
V = 1107.38 (12) Å30.32 × 0.18 × 0.12 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6911 independent reflections
Radiation source: fine-focus sealed tube4410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 31.7°, θmin = 1.6°
Absorption correction: multi-scan
SADABS
h = 1313
Tmin = 0.385, Tmax = 0.666k = 1314
26091 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.030P)2 + 3.P]
where P = (Fo2 + 2Fc2)/3
6911 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 1.97 e Å3
10 restraintsΔρmin = 2.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.1715 (3)0.2991 (3)0.3082 (2)0.0244 (6)
C12A0.2259 (4)0.1317 (4)0.2865 (3)0.0300 (7)0.525 (10)
H12A0.23580.09760.34790.036*0.525 (10)
H12B0.14750.10020.26490.036*0.525 (10)
C13A0.3877 (10)0.0633 (9)0.2028 (7)0.0354 (16)0.525 (10)
H13A0.43880.03330.15250.043*0.525 (10)
H13B0.45730.00010.23560.043*0.525 (10)
C14A0.4517 (12)0.1888 (13)0.2184 (8)0.034 (2)0.525 (10)
H14A0.53000.18310.15330.041*0.525 (10)
H14B0.50720.17590.26890.041*0.525 (10)
C15A0.3005 (4)0.3439 (4)0.2575 (3)0.0280 (7)0.525 (10)
H15A0.27970.38580.20060.034*0.525 (10)
H15B0.31180.42080.30620.034*0.525 (10)
C12B0.2259 (4)0.1317 (4)0.2865 (3)0.0300 (7)0.475 (10)
H12C0.19380.10010.34950.036*0.475 (10)
H12D0.18310.09230.23700.036*0.475 (10)
C13B0.4176 (11)0.0761 (10)0.2393 (8)0.0354 (16)0.475 (10)
H13C0.46970.02720.18990.043*0.475 (10)
H13D0.46590.07210.29350.043*0.475 (10)
C14B0.4385 (14)0.1958 (15)0.1870 (8)0.034 (2)0.475 (10)
H14C0.54540.19870.17950.041*0.475 (10)
H14D0.42950.17530.11870.041*0.475 (10)
C15B0.3005 (4)0.3439 (4)0.2575 (3)0.0280 (7)0.475 (10)
H15C0.26180.41730.21860.034*0.475 (10)
H15D0.33550.39270.30810.034*0.475 (10)
N210.2961 (3)0.6070 (3)0.4839 (2)0.0260 (6)
H210.398 (5)0.671 (5)0.514 (3)0.031*
C220.2560 (4)0.4557 (4)0.4657 (3)0.0285 (7)
H220.33740.42130.49340.034*
C230.1019 (4)0.3494 (4)0.4084 (3)0.0267 (7)
H230.07600.24230.39720.032*
C240.0198 (3)0.3998 (4)0.3655 (2)0.0218 (6)
C250.0279 (4)0.5598 (4)0.3871 (2)0.0252 (7)
H250.04970.59890.36070.030*
C260.1840 (4)0.6595 (4)0.4454 (2)0.0261 (7)
H260.21430.76750.45920.031*
Br11.36401 (5)1.32683 (5)0.91260 (4)0.05505 (16)
C310.8659 (4)1.0224 (3)0.6520 (2)0.0233 (6)
C370.7054 (4)0.9209 (4)0.5673 (2)0.0255 (7)
O310.6915 (3)0.9462 (3)0.48119 (18)0.0361 (6)
O320.6023 (3)0.8208 (3)0.58871 (18)0.0311 (5)
C321.0031 (4)1.1022 (4)0.6297 (3)0.0259 (7)
H320.99451.09480.56060.031*
C331.1523 (4)1.1926 (4)0.7070 (3)0.0306 (8)
H331.24641.24510.69150.037*
C341.1607 (4)1.2045 (4)0.8062 (3)0.0327 (8)
C351.0270 (4)1.1293 (4)0.8314 (3)0.0351 (8)
H351.03551.14070.90080.042*
C360.8789 (4)1.0361 (4)0.7529 (3)0.0288 (7)
H360.78600.98150.76880.035*
Br20.24046 (6)0.17510 (8)0.01179 (3)0.0838 (3)
C410.2627 (4)0.5240 (4)0.2247 (2)0.0243 (6)
C470.4233 (4)0.6324 (4)0.3042 (2)0.0253 (7)
O410.4400 (3)0.7745 (3)0.32983 (18)0.0319 (5)
H410.529 (5)0.828 (5)0.382 (3)0.038*
O420.5255 (3)0.5872 (3)0.34142 (19)0.0343 (6)
C420.2287 (5)0.3708 (4)0.1964 (3)0.0389 (9)
H420.30900.33590.22540.047*
C430.0783 (6)0.2653 (5)0.1258 (3)0.0511 (12)
H430.05470.15880.10620.061*
C440.0355 (4)0.3186 (5)0.0851 (3)0.0440 (11)
C450.0052 (4)0.4707 (6)0.1121 (3)0.0459 (11)
H450.08580.50510.08290.055*
C460.1453 (4)0.5744 (5)0.1830 (3)0.0342 (8)
H460.16790.68070.20300.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0206 (12)0.0198 (13)0.0268 (13)0.0060 (10)0.0055 (10)0.0011 (11)
C12A0.0273 (16)0.0208 (16)0.0335 (18)0.0042 (13)0.0089 (13)0.0023 (13)
C13A0.027 (3)0.027 (3)0.032 (4)0.001 (2)0.001 (3)0.002 (3)
C14A0.015 (2)0.046 (3)0.031 (5)0.0087 (19)0.006 (3)0.005 (4)
C15A0.0193 (14)0.0302 (17)0.0285 (16)0.0086 (13)0.0028 (12)0.0064 (14)
C12B0.0273 (16)0.0208 (16)0.0335 (18)0.0042 (13)0.0089 (13)0.0023 (13)
C13B0.027 (3)0.027 (3)0.032 (4)0.001 (2)0.001 (3)0.002 (3)
C14B0.015 (2)0.046 (3)0.031 (5)0.0087 (19)0.006 (3)0.005 (4)
C15B0.0193 (14)0.0302 (17)0.0285 (16)0.0086 (13)0.0028 (12)0.0064 (14)
N210.0176 (12)0.0292 (15)0.0215 (13)0.0039 (11)0.0031 (10)0.0019 (11)
C220.0195 (14)0.0346 (19)0.0305 (17)0.0117 (13)0.0064 (12)0.0106 (14)
C230.0226 (14)0.0236 (16)0.0336 (17)0.0093 (13)0.0097 (13)0.0083 (13)
C240.0193 (13)0.0204 (15)0.0225 (14)0.0060 (11)0.0076 (11)0.0024 (12)
C250.0212 (14)0.0233 (16)0.0269 (16)0.0091 (12)0.0048 (12)0.0027 (13)
C260.0250 (15)0.0220 (16)0.0250 (15)0.0062 (12)0.0070 (12)0.0015 (12)
Br10.02810 (19)0.0427 (2)0.0558 (3)0.00294 (16)0.01606 (17)0.00567 (19)
C310.0193 (13)0.0174 (14)0.0260 (15)0.0070 (11)0.0010 (11)0.0003 (12)
C370.0229 (14)0.0197 (15)0.0246 (15)0.0064 (12)0.0019 (12)0.0011 (12)
O310.0326 (13)0.0299 (13)0.0253 (12)0.0003 (10)0.0002 (10)0.0026 (10)
O320.0213 (11)0.0269 (12)0.0311 (12)0.0016 (9)0.0028 (9)0.0027 (10)
C320.0228 (14)0.0212 (15)0.0291 (16)0.0091 (12)0.0050 (12)0.0020 (13)
C330.0196 (14)0.0201 (16)0.045 (2)0.0058 (12)0.0065 (14)0.0052 (14)
C340.0197 (14)0.0202 (16)0.0398 (19)0.0050 (12)0.0070 (13)0.0014 (14)
C350.0290 (17)0.035 (2)0.0269 (17)0.0095 (15)0.0000 (13)0.0032 (15)
C360.0226 (14)0.0249 (17)0.0291 (17)0.0052 (13)0.0041 (13)0.0012 (13)
Br20.0346 (2)0.1141 (5)0.0307 (2)0.0294 (3)0.00512 (17)0.0155 (3)
C410.0198 (13)0.0272 (16)0.0191 (14)0.0048 (12)0.0050 (11)0.0035 (12)
C470.0193 (13)0.0303 (17)0.0209 (14)0.0060 (13)0.0056 (11)0.0058 (13)
O410.0286 (12)0.0266 (13)0.0260 (12)0.0049 (10)0.0006 (10)0.0031 (10)
O420.0244 (11)0.0394 (14)0.0325 (13)0.0130 (11)0.0014 (10)0.0076 (11)
C420.040 (2)0.034 (2)0.0296 (18)0.0110 (16)0.0008 (15)0.0038 (15)
C430.059 (3)0.032 (2)0.032 (2)0.0036 (19)0.0057 (19)0.0018 (17)
C440.0254 (17)0.056 (3)0.0193 (16)0.0095 (17)0.0044 (13)0.0037 (17)
C450.0241 (16)0.078 (3)0.0235 (17)0.0214 (19)0.0011 (13)0.0035 (18)
C460.0281 (16)0.042 (2)0.0242 (16)0.0150 (15)0.0019 (13)0.0013 (15)
Geometric parameters (Å, º) top
N11—C241.332 (4)C26—H260.9500
N11—C12A1.464 (4)Br1—C341.897 (3)
N11—C15A1.469 (4)C31—C361.382 (5)
C12A—C13A1.488 (8)C31—C321.391 (5)
C12A—H12A0.9900C31—C371.508 (4)
C12A—H12B0.9900C37—O321.241 (4)
C13A—C14A1.545 (12)C37—O311.262 (4)
C13A—H13A0.9500C32—C331.387 (4)
C13A—H13B0.9900C32—H320.9500
C14A—C15A1.538 (11)C33—C341.371 (5)
C14A—H14A0.9900C33—H330.9500
C14A—H14B0.9900C34—C351.378 (5)
C15A—H15A0.9900C35—C361.393 (4)
C15A—H15B0.9900C35—H350.9500
C13B—C14B1.504 (13)C36—H360.9500
C13B—H13B0.6815Br2—C441.894 (3)
C13B—H13C0.9900C41—C421.365 (5)
C13B—H13D0.9900C41—C461.382 (5)
C14B—H14C0.9900C41—C471.493 (4)
C14B—H14D0.9900C47—O421.216 (4)
N21—C221.335 (4)C47—O411.305 (4)
N21—C261.344 (4)O41—H410.87 (4)
N21—H210.87 (4)C42—C431.388 (5)
C22—C231.361 (4)C42—H420.9500
C22—H220.9500C43—C441.371 (7)
C23—C241.419 (4)C43—H430.9500
C23—H230.9500C44—C451.363 (6)
C24—C251.403 (4)C45—C461.385 (5)
C25—C261.360 (4)C45—H450.9500
C25—H250.9500C46—H460.9500
C24—N11—C12A123.5 (3)C26—C25—H25119.6
C24—N11—C15A123.7 (3)C24—C25—H25119.6
C12A—N11—C15A112.8 (2)N21—C26—C25120.8 (3)
N11—C12A—C13A106.0 (4)N21—C26—H26119.6
N11—C12A—H12A110.5C25—C26—H26119.6
C13A—C12A—H12A110.5C36—C31—C32119.1 (3)
N11—C12A—H12B110.5C36—C31—C37120.4 (3)
C13A—C12A—H12B110.5C32—C31—C37120.5 (3)
H12A—C12A—H12B108.7O32—C37—O31126.8 (3)
C12A—C13A—C14A102.5 (7)O32—C37—C31117.3 (3)
C12A—C13A—H13A128.7O31—C37—C31115.8 (3)
C14A—C13A—H13A128.7C33—C32—C31120.9 (3)
C12A—C13A—H13B100.8C33—C32—H32119.5
C14A—C13A—H13B91.7C31—C32—H32119.5
H13A—C13A—H13B80.0C34—C33—C32118.4 (3)
C15A—C14A—C13A105.8 (7)C34—C33—H33120.8
C15A—C14A—H14A110.6C32—C33—H33120.8
C13A—C14A—H14A110.6C33—C34—C35122.4 (3)
C15A—C14A—H14B110.6C33—C34—Br1118.9 (3)
C13A—C14A—H14B110.6C35—C34—Br1118.7 (3)
H14A—C14A—H14B108.7C34—C35—C36118.4 (3)
N11—C15A—C14A101.6 (5)C34—C35—H35120.8
N11—C15A—H15A111.5C36—C35—H35120.8
C14A—C15A—H15A111.5C31—C36—C35120.7 (3)
N11—C15A—H15B111.5C31—C36—H36119.7
C14A—C15A—H15B111.5C35—C36—H36119.7
H15A—C15A—H15B109.3C42—C41—C46119.5 (3)
C14B—C13B—H13B140.1C42—C41—C47119.0 (3)
C14B—C13B—H13C110.9C46—C41—C47121.4 (3)
H13B—C13B—H13C38.4O42—C47—O41124.7 (3)
C14B—C13B—H13D110.9O42—C47—C41121.1 (3)
H13B—C13B—H13D73.8O41—C47—C41114.2 (3)
H13C—C13B—H13D108.9C47—O41—H41109 (3)
C13B—C14B—H14C111.1C41—C42—C43120.8 (4)
C13B—C14B—H14D111.1C41—C42—H42119.6
H14C—C14B—H14D109.1C43—C42—H42119.6
C22—N21—C26120.6 (3)C44—C43—C42118.5 (4)
C22—N21—H21119 (3)C44—C43—H43120.8
C26—N21—H21120 (3)C42—C43—H43120.8
N21—C22—C23121.8 (3)C45—C44—C43122.0 (3)
N21—C22—H22119.1C45—C44—Br2119.5 (3)
C23—C22—H22119.1C43—C44—Br2118.6 (3)
C22—C23—C24119.5 (3)C44—C45—C46118.8 (4)
C22—C23—H23120.3C44—C45—H45120.6
C24—C23—H23120.3C46—C45—H45120.6
N11—C24—C25122.2 (3)C41—C46—C45120.4 (4)
N11—C24—C23121.1 (3)C41—C46—H46119.8
C25—C24—C23116.6 (3)C45—C46—H46119.8
C26—C25—C24120.7 (3)
C24—N11—C12A—C13A167.5 (5)C37—C31—C32—C33178.3 (3)
C15A—N11—C12A—C13A10.8 (5)C31—C32—C33—C341.5 (5)
N11—C12A—C13A—C14A27.1 (8)C32—C33—C34—C350.4 (5)
C12A—C13A—C14A—C15A34.2 (10)C32—C33—C34—Br1179.7 (2)
C24—N11—C15A—C14A171.1 (5)C33—C34—C35—C361.0 (5)
C12A—N11—C15A—C14A10.6 (5)Br1—C34—C35—C36178.2 (3)
C13A—C14A—C15A—N1127.3 (8)C32—C31—C36—C350.4 (5)
C26—N21—C22—C230.2 (5)C37—C31—C36—C35179.8 (3)
N21—C22—C23—C240.8 (5)C34—C35—C36—C311.4 (5)
C12A—N11—C24—C25178.4 (3)C42—C41—C47—O422.3 (5)
C15A—N11—C24—C253.5 (5)C46—C41—C47—O42179.3 (3)
C12A—N11—C24—C231.3 (5)C42—C41—C47—O41176.3 (3)
C15A—N11—C24—C23176.8 (3)C46—C41—C47—O410.6 (5)
C22—C23—C24—N11179.3 (3)C46—C41—C42—C430.4 (6)
C22—C23—C24—C251.0 (5)C47—C41—C42—C43177.4 (4)
N11—C24—C25—C26179.6 (3)C41—C42—C43—C440.0 (6)
C23—C24—C25—C260.7 (5)C42—C43—C44—C450.3 (6)
C22—N21—C26—C250.1 (5)C42—C43—C44—Br2179.7 (3)
C24—C25—C26—N210.1 (5)C43—C44—C45—C460.0 (6)
C36—C31—C37—O3219.3 (5)Br2—C44—C45—C46179.9 (3)
C32—C31—C37—O32160.1 (3)C42—C41—C46—C450.7 (6)
C36—C31—C37—O31161.5 (3)C47—C41—C46—C45177.6 (3)
C32—C31—C37—O3119.1 (4)C44—C45—C46—C410.5 (6)
C36—C31—C32—C331.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O320.87 (4)1.83 (4)2.690 (3)172 (4)
O41—H41···O310.87 (4)1.64 (4)2.509 (3)173 (4)
(BrCO3) D-1–27-6–2 4-(Me2N)-pyridine, 4-Br-PhCOOH top
Crystal data top
(C7H10N2)(C7H5BrO2)F(000) = 656
Mr = 323.19Dx = 1.578 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5603 (12) ÅCell parameters from 9987 reflections
b = 8.1700 (8) Åθ = 2.9–31.9°
c = 12.2863 (12) ŵ = 3.02 mm1
β = 92.157 (3)°T = 120 K
V = 1360.2 (2) Å3Prism, colourless
Z = 40.32 × 0.22 × 0.18 mm
Data collection top
Bruker APEX-II CCD
diffractometer
4543 independent reflections
Radiation source: fine-focus sealed tube3653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 33.1°, θmin = 2.9°
Absorption correction: multi-scan
SADABS
h = 1919
Tmin = 0.659, Tmax = 0.747k = 812
19711 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.030P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
4543 reflections(Δ/σ)max = 0.002
177 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.992962 (10)0.129265 (18)0.285184 (13)0.03245 (6)
N110.49287 (8)0.78104 (14)0.56978 (10)0.0223 (2)
H110.5384 (13)0.723 (2)0.5621 (14)0.027*
C120.47955 (10)0.85247 (16)0.66676 (11)0.0225 (3)
H120.52620.83320.72500.027*
C130.40089 (10)0.95167 (16)0.68368 (11)0.0212 (2)
H130.39341.00100.75290.025*
C140.33011 (9)0.98126 (15)0.59780 (10)0.0199 (2)
N140.24969 (8)1.07262 (15)0.61198 (9)0.0228 (2)
C170.23290 (11)1.14745 (18)0.71750 (12)0.0265 (3)
H17A0.23381.06260.77390.040*
H17B0.16861.20240.71510.040*
H17C0.28501.22770.73440.040*
C180.17896 (11)1.10311 (18)0.52190 (12)0.0274 (3)
H18A0.15330.99860.49380.041*
H18B0.21171.16170.46380.041*
H18C0.12441.16960.54760.041*
C150.34862 (10)0.90663 (17)0.49649 (11)0.0227 (3)
H150.30480.92530.43560.027*
C160.42899 (10)0.80807 (17)0.48574 (11)0.0234 (3)
H160.43980.75780.41750.028*
C210.74314 (10)0.46646 (15)0.41008 (10)0.0206 (2)
C270.65733 (10)0.56540 (16)0.45032 (11)0.0213 (2)
O210.65932 (8)0.60196 (13)0.55052 (8)0.0272 (2)
O220.59097 (8)0.60303 (13)0.38245 (8)0.0286 (2)
C220.73759 (11)0.40222 (17)0.30519 (11)0.0239 (3)
H220.68170.42570.25890.029*
C230.81242 (11)0.30440 (17)0.26715 (11)0.0254 (3)
H230.80790.26030.19560.030*
C240.89362 (10)0.27209 (16)0.33510 (12)0.0244 (3)
C250.90260 (10)0.33761 (18)0.43889 (12)0.0268 (3)
H250.95960.31660.48400.032*
C260.82671 (10)0.43473 (17)0.47604 (11)0.0239 (3)
H260.83190.48000.54720.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02564 (8)0.02917 (9)0.04322 (10)0.00354 (5)0.01028 (6)0.00146 (6)
N110.0208 (5)0.0236 (6)0.0228 (6)0.0007 (4)0.0037 (4)0.0006 (4)
C120.0216 (6)0.0262 (6)0.0195 (6)0.0019 (5)0.0015 (5)0.0015 (5)
C130.0235 (6)0.0228 (6)0.0174 (6)0.0017 (5)0.0002 (5)0.0001 (5)
C140.0204 (6)0.0198 (6)0.0196 (6)0.0034 (4)0.0009 (5)0.0023 (5)
N140.0220 (5)0.0259 (5)0.0204 (5)0.0016 (4)0.0004 (4)0.0009 (4)
C170.0267 (7)0.0296 (7)0.0236 (7)0.0037 (5)0.0051 (5)0.0011 (5)
C180.0242 (6)0.0290 (7)0.0284 (7)0.0018 (5)0.0044 (5)0.0036 (5)
C150.0241 (6)0.0268 (6)0.0170 (6)0.0026 (5)0.0022 (5)0.0006 (5)
C160.0255 (6)0.0265 (7)0.0184 (6)0.0035 (5)0.0025 (5)0.0022 (5)
C210.0231 (6)0.0191 (6)0.0195 (6)0.0014 (4)0.0019 (5)0.0031 (4)
C270.0222 (6)0.0222 (6)0.0197 (6)0.0016 (5)0.0015 (5)0.0020 (5)
O210.0265 (5)0.0358 (6)0.0194 (5)0.0044 (4)0.0007 (4)0.0025 (4)
O220.0274 (5)0.0367 (6)0.0215 (5)0.0076 (4)0.0020 (4)0.0002 (4)
C220.0261 (6)0.0248 (6)0.0206 (6)0.0009 (5)0.0001 (5)0.0024 (5)
C230.0319 (7)0.0231 (6)0.0213 (6)0.0014 (5)0.0040 (5)0.0003 (5)
C240.0219 (6)0.0202 (6)0.0315 (7)0.0005 (5)0.0072 (5)0.0017 (5)
C250.0225 (6)0.0286 (7)0.0290 (7)0.0005 (5)0.0021 (5)0.0017 (5)
C260.0249 (6)0.0257 (6)0.0211 (6)0.0009 (5)0.0001 (5)0.0007 (5)
Geometric parameters (Å, º) top
Br1—C241.9012 (14)C18—H18C0.9800
N11—C161.3409 (18)C15—C161.365 (2)
N11—C121.3450 (18)C15—H150.9500
N11—H110.787 (18)C16—H160.9500
C12—C131.3618 (19)C21—C221.3909 (19)
C12—H120.9500C21—C261.3924 (18)
C13—C141.4202 (17)C21—C271.5149 (19)
C13—H130.9500C27—O221.2424 (16)
C14—N141.3383 (17)C27—O211.2660 (16)
C14—C151.4169 (19)C22—C231.387 (2)
N14—C181.4584 (17)C22—H220.9500
N14—C171.4590 (18)C23—C241.382 (2)
C17—H17A0.9800C23—H230.9500
C17—H17B0.9800C24—C251.384 (2)
C17—H17C0.9800C25—C261.390 (2)
C18—H18A0.9800C25—H250.9500
C18—H18B0.9800C26—H260.9500
C16—N11—C12120.42 (12)C16—C15—C14120.48 (12)
C16—N11—H11119.6 (13)C16—C15—H15119.8
C12—N11—H11120.0 (13)C14—C15—H15119.8
N11—C12—C13121.70 (12)N11—C16—C15121.16 (13)
N11—C12—H12119.1N11—C16—H16119.4
C13—C12—H12119.1C15—C16—H16119.4
C12—C13—C14119.95 (12)C22—C21—C26118.91 (13)
C12—C13—H13120.0C22—C21—C27119.23 (12)
C14—C13—H13120.0C26—C21—C27121.85 (12)
N14—C14—C15121.77 (12)O22—C27—O21125.64 (13)
N14—C14—C13121.97 (12)O22—C27—C21117.31 (12)
C15—C14—C13116.25 (12)O21—C27—C21117.05 (11)
C14—N14—C18120.82 (12)C23—C22—C21121.00 (13)
C14—N14—C17120.30 (11)C23—C22—H22119.5
C18—N14—C17118.86 (12)C21—C22—H22119.5
N14—C17—H17A109.5C24—C23—C22118.88 (13)
N14—C17—H17B109.5C24—C23—H23120.6
H17A—C17—H17B109.5C22—C23—H23120.6
N14—C17—H17C109.5C23—C24—C25121.54 (13)
H17A—C17—H17C109.5C23—C24—Br1118.72 (11)
H17B—C17—H17C109.5C25—C24—Br1119.71 (11)
N14—C18—H18A109.5C24—C25—C26118.86 (13)
N14—C18—H18B109.5C24—C25—H25120.6
H18A—C18—H18B109.5C26—C25—H25120.6
N14—C18—H18C109.5C25—C26—C21120.77 (13)
H18A—C18—H18C109.5C25—C26—H26119.6
H18B—C18—H18C109.5C21—C26—H26119.6
C16—N11—C12—C131.0 (2)C26—C21—C27—O22172.17 (13)
N11—C12—C13—C140.3 (2)C22—C21—C27—O21170.39 (12)
C12—C13—C14—N14177.33 (13)C26—C21—C27—O218.14 (19)
C12—C13—C14—C151.79 (18)C26—C21—C22—C231.7 (2)
C15—C14—N14—C181.88 (19)C27—C21—C22—C23176.84 (12)
C13—C14—N14—C18179.05 (12)C21—C22—C23—C240.4 (2)
C15—C14—N14—C17179.91 (12)C22—C23—C24—C251.3 (2)
C13—C14—N14—C170.83 (19)C22—C23—C24—Br1176.96 (10)
N14—C14—C15—C16177.05 (13)C23—C24—C25—C261.6 (2)
C13—C14—C15—C162.08 (19)Br1—C24—C25—C26176.60 (11)
C12—N11—C16—C150.7 (2)C24—C25—C26—C210.3 (2)
C14—C15—C16—N110.9 (2)C22—C21—C26—C251.4 (2)
C22—C21—C27—O229.31 (18)C27—C21—C26—C25177.15 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O210.787 (18)1.925 (19)2.7077 (16)173.1 (18)
(IF4CO4) SD—A-1–4 4-I—F4-PhCOOH, 4-benzoylpyridine top
Crystal data top
(C7HF4IO2)(C12H9NO)2F(000) = 1360
Mr = 686.38Dx = 1.638 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 25.216 (2) ÅCell parameters from 9991 reflections
b = 6.0746 (5) Åθ = 2.2–32.6°
c = 19.0419 (16) ŵ = 1.22 mm1
β = 107.453 (3)°T = 120 K
V = 2782.5 (4) Å3Prism, colourless
Z = 40.34 × 0.28 × 0.22 mm
Data collection top
Bruker APEX-II CCD
diffractometer
8074 independent reflections
Radiation source: fine-focus sealed tube7262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 32.6°, θmin = 1.1°
Absorption correction: multi-scan
TWINABS
h = 2837
Tmin = 0.682, Tmax = 0.775k = 89
20908 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.060P)2 + 40.P]
where P = (Fo2 + 2Fc2)/3
8074 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 1.00 e Å3
45 restraintsΔρmin = 2.48 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.59562 (5)0.2770 (4)0.40541 (5)0.02201 (14)0.4641 (14)
C31A0.4643 (4)0.5518 (15)0.1783 (5)0.0181 (17)*0.4641 (14)
C32A0.4558 (4)0.3530 (14)0.2060 (5)0.0165 (17)*0.4641 (14)
C33A0.4926 (5)0.2706 (17)0.2714 (6)0.0144 (17)*0.4641 (14)
C34A0.5396 (4)0.3967 (16)0.3088 (5)0.0170 (18)*0.4641 (14)
C35A0.5458 (4)0.5959 (16)0.2785 (6)0.0149 (18)*0.4641 (14)
C36A0.5107 (4)0.6721 (19)0.2164 (6)0.025 (2)*0.4641 (14)
F32A0.4112 (4)0.2308 (16)0.1719 (5)0.0190 (12)*0.4641 (14)
F33A0.4792 (5)0.0734 (18)0.2971 (6)0.0272 (15)*0.4641 (14)
F35A0.5879 (4)0.7332 (18)0.3140 (5)0.0199 (13)*0.4641 (14)
F36A0.5164 (5)0.8619 (19)0.1882 (7)0.0242 (14)*0.4641 (14)
C37A0.4260 (4)0.6389 (13)0.1083 (5)0.02201 (14)0.4641 (14)
O31A0.3748 (4)0.6668 (19)0.1055 (6)0.026 (2)*0.4641 (14)
H31A0.35580.69300.06190.031*0.4641 (14)
O32A0.4453 (5)0.681 (2)0.0547 (6)0.041 (4)*0.4641 (14)
I20.40382 (4)0.6333 (4)0.09502 (4)0.02201 (14)0.5359 (14)
C31B0.5366 (4)0.3763 (17)0.3242 (5)0.0170 (18)*0.5359 (14)
C32B0.5440 (4)0.5745 (17)0.2943 (5)0.0149 (18)*0.5359 (14)
C33B0.5081 (5)0.641 (2)0.2265 (6)0.025 (2)*0.5359 (14)
C34B0.4631 (4)0.5066 (18)0.1876 (5)0.0181 (17)*0.5359 (14)
C35B0.4586 (5)0.3087 (18)0.2199 (5)0.0165 (17)*0.5359 (14)
C36B0.4919 (5)0.2474 (18)0.2859 (5)0.0144 (17)*0.5359 (14)
F32B0.5840 (3)0.7156 (14)0.3312 (4)0.0199 (13)*0.5359 (14)
F33B0.5158 (5)0.8477 (16)0.2015 (6)0.0242 (14)*0.5359 (14)
F35B0.4143 (3)0.1796 (14)0.1865 (4)0.0190 (12)*0.5359 (14)
F36B0.4841 (4)0.0619 (16)0.3147 (5)0.0272 (15)*0.5359 (14)
C37B0.5743 (5)0.296 (2)0.3959 (6)0.02201 (14)0.5359 (14)
O31B0.6274 (3)0.3176 (13)0.4024 (4)0.0112 (13)*0.5359 (14)
H31B0.64630.24510.43890.013*0.5359 (14)
O32B0.5547 (4)0.1831 (19)0.4389 (5)0.031 (2)*0.5359 (14)
N11_10.3184 (3)0.8189 (16)0.0181 (4)0.0308 (16)*
C12_10.2691 (2)0.7378 (12)0.0533 (3)0.0116 (10)*
H12_10.25980.59590.03960.014*
C13_10.2308 (3)0.8461 (14)0.1083 (4)0.0181 (13)*
H13_10.19560.78130.13150.022*
C14_10.2444 (3)1.0625 (13)0.1311 (4)0.0160 (12)*
C15_10.2950 (3)1.1214 (14)0.0934 (4)0.0207 (13)*
H15_10.30781.25100.11100.025*
C16_10.3296 (3)1.0372 (16)0.0380 (4)0.0264 (16)*
H16_10.36181.11530.01060.032*
C17_10.2008 (3)1.1916 (11)0.1892 (3)0.0123 (11)*
O17_10.21480 (19)1.3916 (9)0.1917 (2)0.0163 (8)*
C21_10.1647 (2)1.0873 (12)0.2531 (3)0.0120 (11)*
C22_10.1668 (3)0.8773 (15)0.2843 (4)0.0200 (14)*
H22_10.19720.78650.25920.024*
C23_10.1331 (3)0.7959 (15)0.3413 (4)0.0227 (14)*
H23_10.13770.65170.35790.027*
C24_10.0836 (3)0.9450 (14)0.3829 (4)0.0220 (14)*
H24_10.05680.89510.42660.026*
C25_10.0791 (2)1.1601 (12)0.3538 (3)0.0148 (11)*
H25_10.04881.25340.37750.018*
C26_10.1163 (3)1.2253 (15)0.2954 (4)0.0211 (14)*
H26_10.11301.36960.27790.025*
N11_20.6851 (3)0.0892 (12)0.5165 (3)0.0196 (12)*
C12_20.7388 (4)0.1722 (18)0.5551 (5)0.035 (2)*
H12_20.75140.30600.53960.041*
C13_20.7724 (3)0.0607 (14)0.6141 (4)0.0179 (13)*
H13_20.80690.12320.64170.021*
C14_20.7574 (3)0.1324 (13)0.6330 (3)0.0142 (12)*
C15_20.7056 (2)0.2453 (11)0.5933 (3)0.0114 (10)*
H15_20.69580.39070.60290.014*
C16_20.6706 (3)0.0943 (14)0.5350 (4)0.0208 (14)*
H16_20.63400.14240.50980.025*
C17_20.7899 (2)0.2734 (11)0.6943 (3)0.0117 (10)*
O17_20.7955 (2)0.4771 (10)0.6828 (3)0.0249 (11)*
C21_20.8389 (3)0.1773 (15)0.7588 (4)0.0205 (14)*
C22_20.8288 (3)0.0327 (14)0.7789 (4)0.0179 (13)*
H22_20.79830.12090.75250.021*
C23_20.8721 (3)0.1045 (15)0.8475 (4)0.0228 (14)*
H23_20.86790.24640.86610.027*
C24_20.9125 (3)0.0043 (16)0.8819 (4)0.0257 (16)*
H24_20.93790.05240.92560.031*
C25_20.9204 (3)0.2004 (13)0.8575 (4)0.0202 (13)*
H25_20.95250.28150.88360.024*
C26_20.8813 (3)0.3001 (13)0.7909 (4)0.0171 (13)*
H26_20.88690.44180.77330.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0217 (3)0.0243 (2)0.0185 (2)0.0022 (2)0.00375 (17)0.00311 (16)
C37A0.0217 (3)0.0243 (2)0.0185 (2)0.0022 (2)0.00375 (17)0.00311 (16)
I20.0217 (3)0.0243 (2)0.0185 (2)0.0022 (2)0.00375 (17)0.00311 (16)
C37B0.0217 (3)0.0243 (2)0.0185 (2)0.0022 (2)0.00375 (17)0.00311 (16)
Geometric parameters (Å, º) top
I1—C34A2.086 (9)C15_1—H15_10.9500
C31A—C32A1.360 (11)C16_1—H16_10.9500
C31A—C36A1.386 (13)C17_1—O17_11.270 (8)
C31A—C37A1.489 (12)C17_1—C21_11.431 (8)
C32A—F32A1.341 (11)C21_1—C22_11.414 (11)
C32A—C33A1.403 (11)C21_1—C26_11.500 (10)
C33A—F33A1.374 (12)C22_1—C23_11.263 (10)
C33A—C34A1.412 (13)C22_1—H22_10.9500
C34A—C35A1.370 (12)C23_1—C24_11.553 (11)
C35A—C36A1.329 (11)C23_1—H23_10.9500
C35A—F35A1.360 (11)C24_1—C25_11.437 (11)
C36A—F36A1.298 (12)C24_1—H24_10.9500
C37A—O32A1.280 (12)C25_1—C26_11.283 (9)
C37A—O31A1.288 (12)C25_1—H25_10.9500
O31A—H31A0.8400C26_1—H26_10.9500
I2—C34B2.087 (9)N11_2—C16_21.257 (11)
C31B—C32B1.369 (11)N11_2—C12_21.425 (11)
C31B—C36B1.387 (13)C12_2—C13_21.367 (11)
C31B—C37B1.493 (12)C12_2—H12_20.9500
C32B—F32B1.350 (10)C13_2—C14_21.316 (11)
C32B—C33B1.395 (11)C13_2—H13_20.9500
C33B—F33B1.379 (12)C14_2—C15_21.468 (9)
C33B—C34B1.412 (13)C14_2—C17_21.480 (9)
C34B—C35B1.371 (11)C15_2—C16_21.505 (9)
C35B—C36B1.338 (11)C15_2—H15_20.9500
C35B—F35B1.357 (10)C16_2—H16_20.9500
C36B—F36B1.294 (11)C17_2—O17_21.272 (8)
C37B—O32B1.274 (12)C17_2—C21_21.570 (10)
C37B—O31B1.315 (12)C21_2—C26_21.297 (10)
O31B—H31B0.8400C21_2—C22_21.377 (11)
N11_1—C12_11.318 (10)C22_2—C23_21.494 (10)
N11_1—C16_11.431 (13)C22_2—H22_20.9500
C12_1—C13_11.363 (9)C23_2—C24_21.227 (11)
C12_1—H12_10.9500C23_2—H23_20.9500
C13_1—C14_11.457 (11)C24_2—C25_21.315 (12)
C13_1—H13_10.9500C24_2—H24_20.9500
C14_1—C15_11.313 (9)C25_2—C26_21.482 (9)
C14_1—C17_11.522 (9)C25_2—H25_20.9500
C15_1—C16_11.258 (10)C26_2—H26_20.9500
C32A—C31A—C36A118.1 (9)N11_1—C16_1—H16_1121.4
C32A—C31A—C37A121.8 (8)O17_1—C17_1—C21_1120.3 (6)
C36A—C31A—C37A120.0 (7)O17_1—C17_1—C14_1111.9 (6)
F32A—C32A—C31A120.7 (8)C21_1—C17_1—C14_1121.7 (6)
F32A—C32A—C33A117.9 (8)C22_1—C21_1—C17_1131.5 (6)
C31A—C32A—C33A121.4 (9)C22_1—C21_1—C26_1113.9 (6)
F33A—C33A—C32A117.4 (9)C17_1—C21_1—C26_1114.6 (6)
F33A—C33A—C34A123.5 (9)C23_1—C22_1—C21_1127.9 (8)
C32A—C33A—C34A119.1 (9)C23_1—C22_1—H22_1116.0
C35A—C34A—C33A116.8 (9)C21_1—C22_1—H22_1116.0
C35A—C34A—I1123.2 (7)C22_1—C23_1—C24_1116.2 (8)
C33A—C34A—I1120.0 (7)C22_1—C23_1—H23_1121.9
C36A—C35A—F35A116.1 (9)C24_1—C23_1—H23_1121.9
C36A—C35A—C34A123.6 (9)C25_1—C24_1—C23_1118.5 (6)
F35A—C35A—C34A120.2 (9)C25_1—C24_1—H24_1120.8
F36A—C36A—C35A123.4 (10)C23_1—C24_1—H24_1120.8
F36A—C36A—C31A115.6 (9)C26_1—C25_1—C24_1119.6 (7)
C35A—C36A—C31A121.0 (10)C26_1—C25_1—H25_1120.2
O32A—C37A—O31A123.8 (10)C24_1—C25_1—H25_1120.2
O32A—C37A—C31A119.0 (9)C25_1—C26_1—C21_1123.9 (8)
O31A—C37A—C31A117.2 (8)C25_1—C26_1—H26_1118.1
C37A—O31A—H31A109.5C21_1—C26_1—H26_1118.1
C32B—C31B—C36B117.9 (8)C16_2—N11_2—C12_2118.7 (7)
C32B—C31B—C37B122.8 (9)C13_2—C12_2—N11_2120.5 (9)
C36B—C31B—C37B119.3 (9)C13_2—C12_2—H12_2119.8
F32B—C32B—C31B121.1 (8)N11_2—C12_2—H12_2119.8
F32B—C32B—C33B118.4 (8)C14_2—C13_2—C12_2120.6 (8)
C31B—C32B—C33B120.4 (9)C14_2—C13_2—H13_2119.7
F33B—C33B—C32B117.6 (9)C12_2—C13_2—H13_2119.7
F33B—C33B—C34B121.2 (9)C13_2—C14_2—C15_2124.0 (6)
C32B—C33B—C34B121.1 (9)C13_2—C14_2—C17_2126.6 (6)
C35B—C34B—C33B115.6 (8)C15_2—C14_2—C17_2109.4 (6)
C35B—C34B—I2124.5 (7)C14_2—C15_2—C16_2109.3 (6)
C33B—C34B—I2119.3 (7)C14_2—C15_2—H15_2125.4
C36B—C35B—F35B118.5 (8)C16_2—C15_2—H15_2125.4
C36B—C35B—C34B123.5 (9)N11_2—C16_2—C15_2126.3 (7)
F35B—C35B—C34B117.7 (8)N11_2—C16_2—H16_2116.9
F36B—C36B—C35B120.5 (9)C15_2—C16_2—H16_2116.9
F36B—C36B—C31B118.1 (8)O17_2—C17_2—C14_2119.4 (6)
C35B—C36B—C31B121.3 (9)O17_2—C17_2—C21_2113.2 (6)
O32B—C37B—O31B125.1 (10)C14_2—C17_2—C21_2121.4 (6)
O32B—C37B—C31B120.0 (10)C26_2—C21_2—C22_2126.6 (7)
O31B—C37B—C31B113.8 (8)C26_2—C21_2—C17_2119.9 (7)
C37B—O31B—H31B109.5C22_2—C21_2—C17_2113.3 (6)
C12_1—N11_1—C16_1116.3 (8)C21_2—C22_2—C23_2111.5 (7)
N11_1—C12_1—C13_1123.6 (7)C21_2—C22_2—H22_2124.2
N11_1—C12_1—H12_1118.2C23_2—C22_2—H22_2124.2
C13_1—C12_1—H12_1118.2C24_2—C23_2—C22_2125.5 (8)
C12_1—C13_1—C14_1119.2 (6)C24_2—C23_2—H23_2117.2
C12_1—C13_1—H13_1120.4C22_2—C23_2—H23_2117.2
C14_1—C13_1—H13_1120.4C23_2—C24_2—C25_2119.3 (8)
C15_1—C14_1—C13_1111.1 (7)C23_2—C24_2—H24_2120.4
C15_1—C14_1—C17_1129.0 (7)C25_2—C24_2—H24_2120.4
C13_1—C14_1—C17_1119.9 (6)C24_2—C25_2—C26_2122.7 (7)
C16_1—C15_1—C14_1131.6 (8)C24_2—C25_2—H25_2118.7
C16_1—C15_1—H15_1114.2C26_2—C25_2—H25_2118.7
C14_1—C15_1—H15_1114.2C21_2—C26_2—C25_2114.3 (7)
C15_1—C16_1—N11_1117.2 (8)C21_2—C26_2—H26_2122.9
C15_1—C16_1—H16_1121.4C25_2—C26_2—H26_2122.9
C36A—C31A—C32A—F32A179.1 (12)C32B—C31B—C37B—O32B145.0 (14)
C37A—C31A—C32A—F32A2.1 (12)C36B—C31B—C37B—O32B35 (2)
C36A—C31A—C32A—C33A0.2 (6)C32B—C31B—C37B—O31B46.3 (18)
C37A—C31A—C32A—C33A178.9 (5)C36B—C31B—C37B—O31B133.9 (13)
F32A—C32A—C33A—F33A2.1 (11)C16_1—N11_1—C12_1—C13_12.9 (11)
C31A—C32A—C33A—F33A176.9 (12)N11_1—C12_1—C13_1—C14_11.0 (10)
F32A—C32A—C33A—C34A179.4 (12)C12_1—C13_1—C14_1—C15_11.0 (9)
C31A—C32A—C33A—C34A0.4 (8)C12_1—C13_1—C14_1—C17_1176.3 (6)
F33A—C33A—C34A—C35A176.4 (13)C13_1—C14_1—C15_1—C16_18.8 (12)
C32A—C33A—C34A—C35A0.7 (11)C17_1—C14_1—C15_1—C16_1168.2 (8)
F33A—C33A—C34A—I13.8 (15)C14_1—C15_1—C16_1—N11_113.2 (13)
C32A—C33A—C34A—I1179.2 (5)C12_1—N11_1—C16_1—C15_19.0 (11)
C33A—C34A—C35A—C36A0.8 (12)C15_1—C14_1—C17_1—O17_110.4 (10)
I1—C34A—C35A—C36A179.0 (6)C13_1—C14_1—C17_1—O17_1166.3 (6)
C33A—C34A—C35A—F35A175.6 (12)C15_1—C14_1—C17_1—C21_1142.1 (7)
I1—C34A—C35A—F35A4.6 (14)C13_1—C14_1—C17_1—C21_141.2 (9)
F35A—C35A—C36A—F36A2.8 (15)O17_1—C17_1—C21_1—C22_1136.2 (7)
C34A—C35A—C36A—F36A179.3 (14)C14_1—C17_1—C21_1—C22_114.1 (10)
F35A—C35A—C36A—C31A175.9 (11)O17_1—C17_1—C21_1—C26_143.0 (8)
C34A—C35A—C36A—C31A0.6 (12)C14_1—C17_1—C21_1—C26_1166.8 (6)
C32A—C31A—C36A—F36A179.1 (13)C17_1—C21_1—C22_1—C23_1179.9 (8)
C37A—C31A—C36A—F36A2.2 (14)C26_1—C21_1—C22_1—C23_10.9 (11)
C32A—C31A—C36A—C35A0.3 (9)C21_1—C22_1—C23_1—C24_10.6 (12)
C37A—C31A—C36A—C35A179.0 (7)C22_1—C23_1—C24_1—C25_10.7 (10)
C32A—C31A—C37A—O32A119.9 (10)C23_1—C24_1—C25_1—C26_11.3 (10)
C36A—C31A—C37A—O32A58.8 (11)C24_1—C25_1—C26_1—C21_11.6 (11)
C32A—C31A—C37A—O31A59.8 (9)C22_1—C21_1—C26_1—C25_11.4 (10)
C36A—C31A—C37A—O31A121.5 (10)C17_1—C21_1—C26_1—C25_1179.3 (7)
C36B—C31B—C32B—F32B174.9 (12)C16_2—N11_2—C12_2—C13_24.1 (12)
C37B—C31B—C32B—F32B4.9 (19)N11_2—C12_2—C13_2—C14_24.8 (12)
C36B—C31B—C32B—C33B1.3 (18)C12_2—C13_2—C14_2—C15_21.3 (11)
C37B—C31B—C32B—C33B178.9 (13)C12_2—C13_2—C14_2—C17_2178.6 (7)
F32B—C32B—C33B—F33B0.1 (19)C13_2—C14_2—C15_2—C16_26.9 (9)
C31B—C32B—C33B—F33B176.1 (14)C17_2—C14_2—C15_2—C16_2175.4 (5)
F32B—C32B—C33B—C34B175.6 (13)C12_2—N11_2—C16_2—C15_22.7 (11)
C31B—C32B—C33B—C34B1 (2)C14_2—C15_2—C16_2—N11_27.7 (9)
F33B—C33B—C34B—C35B177.0 (15)C13_2—C14_2—C17_2—O17_2132.4 (7)
C32B—C33B—C34B—C35B1.7 (19)C15_2—C14_2—C17_2—O17_245.3 (8)
F33B—C33B—C34B—I25 (2)C13_2—C14_2—C17_2—C21_218.6 (10)
C32B—C33B—C34B—I2170.6 (10)C15_2—C14_2—C17_2—C21_2163.8 (6)
C33B—C34B—C35B—C36B3.7 (18)O17_2—C17_2—C21_2—C26_24.6 (9)
I2—C34B—C35B—C36B168.1 (10)C14_2—C17_2—C21_2—C26_2147.9 (7)
C33B—C34B—C35B—F35B176.5 (13)O17_2—C17_2—C21_2—C22_2170.5 (6)
I2—C34B—C35B—F35B4.7 (18)C14_2—C17_2—C21_2—C22_236.9 (8)
F35B—C35B—C36B—F36B4.5 (19)C26_2—C21_2—C22_2—C23_23.6 (11)
C34B—C35B—C36B—F36B177.2 (14)C17_2—C21_2—C22_2—C23_2171.2 (6)
F35B—C35B—C36B—C31B177.4 (13)C21_2—C22_2—C23_2—C24_21.6 (11)
C34B—C35B—C36B—C31B4.6 (19)C22_2—C23_2—C24_2—C25_21.0 (12)
C32B—C31B—C36B—F36B178.6 (13)C23_2—C24_2—C25_2—C26_22.0 (12)
C37B—C31B—C36B—F36B1.2 (19)C22_2—C21_2—C26_2—C25_22.9 (11)
C32B—C31B—C36B—C35B3.2 (18)C17_2—C21_2—C26_2—C25_2171.6 (6)
C37B—C31B—C36B—C35B177.0 (12)C24_2—C25_2—C26_2—C21_20.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31A—H31A···N11_10.841.712.531 (13)164
O31B—H31B···N11_20.841.782.620 (10)179
(ICO12) CS—AE-5–12 4-iodobenzoic acid, 4,4'-bipyridyl top
Crystal data top
(C7H5IO2)(C10H8N2)Z = 1
Mr = 404.19F(000) = 198
Triclinic, P1Dx = 1.803 Mg m3
a = 6.2888 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4027 (6) ÅCell parameters from 6673 reflections
c = 8.1348 (6) Åθ = 2.5–33.1°
α = 84.773 (3)°µ = 2.16 mm1
β = 82.604 (3)°T = 120 K
γ = 83.781 (2)°Plate, colorless
V = 372.20 (5) Å30.32 × 0.22 × 0.06 mm
Data collection top
Bruker APEX-II CCD
diffractometer
2379 independent reflections
Radiation source: fine-focus sealed tube2262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 33.1°, θmin = 2.5°
Absorption correction: multi-scan
SADABS
h = 99
Tmin = 0.612, Tmax = 0.747k = 1110
8430 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.025P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
2379 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.46 e Å3
13 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.4372 (9)0.5876 (12)0.3152 (12)0.0249 (9)0.50
C120.6240 (11)0.6622 (17)0.2859 (18)0.0276 (10)0.50
H120.73940.60270.21740.033*0.50
C130.658 (2)0.823 (3)0.351 (3)0.0270 (13)0.50
H130.78950.87540.31910.032*0.50
C140.500 (2)0.906 (2)0.461 (3)0.0198 (15)0.50
C150.3029 (19)0.830 (2)0.489 (2)0.0263 (11)0.50
H150.18440.88730.55640.032*0.50
C160.2821 (12)0.6715 (15)0.4167 (16)0.0277 (10)0.50
H160.14900.61930.44120.033*0.50
N210.6213 (9)1.3923 (12)0.6674 (12)0.0249 (9)0.50
C220.4307 (11)1.3265 (17)0.7036 (18)0.0276 (10)0.50
H220.32391.38780.77800.033*0.50
C230.382 (2)1.172 (3)0.637 (3)0.0270 (13)0.50
H230.24121.13350.66210.032*0.50
C240.537 (2)1.074 (2)0.535 (3)0.0198 (15)0.50
C250.7346 (19)1.149 (2)0.491 (2)0.0263 (11)0.50
H250.84241.09490.41250.032*0.50
C260.7685 (12)1.3040 (15)0.5654 (16)0.0277 (10)0.50
H260.90601.34880.54140.033*0.50
C310.0777 (15)0.1553 (11)0.0867 (10)0.0185 (11)0.50
C320.1309 (13)0.1875 (8)0.0276 (11)0.0195 (10)0.50
H320.21570.30050.04160.023*0.50
C330.2052 (18)0.0544 (9)0.0485 (12)0.0213 (12)0.50
H330.34030.07540.09090.026*0.50
C340.0803 (16)0.1147 (12)0.0639 (11)0.0224 (13)0.50
I10.21158 (3)0.31720 (3)0.17736 (3)0.02283 (7)0.50
C350.1174 (15)0.1417 (8)0.0098 (11)0.0230 (12)0.50
H350.20120.25550.02230.028*0.50
C360.1979 (18)0.0068 (8)0.0627 (12)0.0193 (11)0.50
H360.33830.02680.09630.023*0.50
C370.1482 (7)0.3093 (6)0.1669 (5)0.02283 (7)0.50
O310.3553 (4)0.2924 (3)0.1788 (3)0.0321 (5)0.50
H310.38860.38620.21620.039*0.50
O320.0231 (4)0.4336 (4)0.2171 (4)0.0504 (8)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.033 (3)0.0217 (18)0.0222 (18)0.007 (2)0.004 (2)0.0055 (11)
C120.030 (3)0.0270 (14)0.0265 (17)0.004 (3)0.000 (3)0.0069 (10)
C130.027 (5)0.0293 (12)0.026 (3)0.012 (3)0.001 (3)0.0028 (10)
C140.022 (4)0.020 (3)0.0199 (12)0.006 (3)0.008 (3)0.0004 (19)
C150.026 (3)0.029 (3)0.026 (3)0.012 (3)0.004 (2)0.0105 (14)
C160.026 (3)0.028 (3)0.032 (2)0.012 (2)0.002 (3)0.0069 (15)
N210.033 (3)0.0217 (18)0.0222 (18)0.007 (2)0.004 (2)0.0055 (11)
C220.030 (3)0.0270 (14)0.0265 (17)0.004 (3)0.000 (3)0.0069 (10)
C230.027 (5)0.0293 (12)0.026 (3)0.012 (3)0.001 (3)0.0028 (10)
C240.022 (4)0.020 (3)0.0199 (12)0.006 (3)0.008 (3)0.0004 (19)
C250.026 (3)0.029 (3)0.026 (3)0.012 (3)0.004 (2)0.0105 (14)
C260.026 (3)0.028 (3)0.032 (2)0.012 (2)0.002 (3)0.0069 (15)
C310.0221 (14)0.022 (3)0.015 (2)0.011 (2)0.0041 (15)0.0062 (17)
C320.0207 (18)0.010 (3)0.030 (2)0.002 (2)0.0039 (13)0.0074 (19)
C330.0231 (15)0.013 (3)0.030 (2)0.005 (3)0.0074 (15)0.002 (2)
C340.0300 (18)0.026 (4)0.016 (2)0.017 (2)0.0044 (16)0.0091 (18)
I10.02846 (13)0.02027 (9)0.02241 (9)0.00802 (8)0.00482 (8)0.00674 (6)
C350.0271 (17)0.011 (3)0.031 (2)0.003 (2)0.0051 (15)0.006 (2)
C360.0227 (18)0.013 (3)0.0251 (19)0.007 (3)0.0070 (13)0.003 (2)
C370.02846 (13)0.02027 (9)0.02241 (9)0.00802 (8)0.00482 (8)0.00674 (6)
O310.0262 (12)0.0292 (11)0.0461 (14)0.0081 (8)0.0105 (9)0.0163 (10)
O320.0325 (11)0.0453 (15)0.080 (2)0.0080 (10)0.0018 (12)0.0433 (15)
Geometric parameters (Å, º) top
N11—C161.332 (6)C25—C261.394 (9)
N11—C121.336 (8)C25—H250.9500
C12—C131.391 (9)C26—H260.9500
C12—H120.9500C31—C361.363 (9)
C13—C141.381 (10)C31—C321.443 (13)
C13—H130.9500C31—C371.497 (6)
C14—C151.400 (9)C32—C331.363 (9)
C14—C241.482 (3)C32—H320.9500
C15—C161.387 (9)C33—C341.411 (11)
C15—H150.9500C33—H330.9500
C16—H160.9500C34—C351.360 (15)
N21—C261.320 (7)C34—I12.121 (6)
N21—C221.330 (8)C35—C361.377 (10)
C22—C231.387 (9)C35—H350.9500
C22—H220.9500C36—H360.9500
C23—C241.386 (9)C37—O321.208 (5)
C23—H230.9500C37—O311.310 (4)
C24—C251.405 (9)O31—H310.8400
C16—N11—C12116.6 (8)C26—C25—H25120.8
N11—C12—C13123.2 (7)C24—C25—H25120.8
N11—C12—H12118.4N21—C26—C25124.0 (7)
C13—C12—H12118.4N21—C26—H26118.0
C14—C13—C12120.3 (10)C25—C26—H26118.0
C14—C13—H13119.9C36—C31—C32119.2 (6)
C12—C13—H13119.9C36—C31—C37124.8 (8)
C13—C14—C15116.3 (10)C32—C31—C37116.0 (7)
C13—C14—C24120.7 (7)C33—C32—C31119.5 (7)
C15—C14—C24122.9 (6)C33—C32—H32120.3
C16—C15—C14119.4 (8)C31—C32—H32120.3
C16—C15—H15120.3C32—C33—C34119.6 (10)
C14—C15—H15120.3C32—C33—H33120.2
N11—C16—C15124.0 (8)C34—C33—H33120.2
N11—C16—H16118.0C35—C34—C33120.1 (7)
C15—C16—H16118.0C35—C34—I1122.6 (6)
C26—N21—C22117.7 (8)C33—C34—I1117.3 (7)
N21—C22—C23122.7 (8)C34—C35—C36121.0 (8)
N21—C22—H22118.7C34—C35—H35119.5
C23—C22—H22118.7C36—C35—H35119.5
C24—C23—C22120.2 (10)C31—C36—C35120.5 (10)
C24—C23—H23119.9C31—C36—H36119.7
C22—C23—H23119.9C35—C36—H36119.7
C23—C24—C25116.7 (10)O32—C37—O31124.5 (3)
C23—C24—C14123.9 (7)O32—C37—C31122.3 (5)
C25—C24—C14119.3 (6)O31—C37—C31113.1 (5)
C26—C25—C24118.3 (8)C37—O31—H31109.5
C16—N11—C12—C132 (3)C14—C24—C25—C26178.1 (12)
N11—C12—C13—C145 (4)C22—N21—C26—C251 (2)
C12—C13—C14—C156 (4)C24—C25—C26—N214 (3)
C12—C13—C14—C24178.2 (18)C36—C31—C32—C331.1 (12)
C13—C14—C15—C165 (4)C37—C31—C32—C33179.3 (7)
C24—C14—C15—C16179.3 (12)C31—C32—C33—C341.9 (12)
C12—N11—C16—C151 (2)C32—C33—C34—C353.0 (13)
C14—C15—C16—N113 (3)C32—C33—C34—I1178.2 (7)
C26—N21—C22—C231 (3)C33—C34—C35—C361.0 (13)
N21—C22—C23—C243 (4)I1—C34—C35—C36179.7 (7)
C22—C23—C24—C256 (4)C32—C31—C36—C353.1 (12)
C22—C23—C24—C14178.7 (17)C37—C31—C36—C35178.9 (8)
C13—C14—C24—C23175 (4)C34—C35—C36—C312.1 (12)
C15—C14—C24—C230 (2)C36—C31—C37—O32164.1 (8)
C13—C14—C24—C250.1 (19)C32—C31—C37—O3217.8 (10)
C15—C14—C24—C25175 (3)C36—C31—C37—O3114.7 (10)
C23—C24—C25—C266 (4)C32—C31—C37—O31163.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···N110.841.832.666 (9)174
O31—H31···N21i0.841.962.773 (8)163
Symmetry code: (i) x+1, y+2, z+1.
(ICO11) SD—A-1–5 4-iodobenzoic acid, 1,2-bis(4-pyridyl)ethane top
Crystal data top
(C7H5IO2)(C12H12N2)F(000) = 428
Mr = 432.25Dx = 1.679 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 10.7653 (5) ÅCell parameters from 4247 reflections
b = 7.3634 (4) Åθ = 2.3–31.8°
c = 11.4066 (6) ŵ = 1.89 mm1
β = 109.025 (2)°T = 120 K
V = 854.80 (8) Å3Block, colourless
Z = 20.26 × 0.22 × 0.16 mm
Data collection top
Bruker APEX-II CCD
diffractometer
11346 independent reflections
Radiation source: fine-focus sealed tube9582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
φ and ω scansθmax = 32.2°, θmin = 2.3°
Absorption correction: multi-scan
TWINABS
h = 1615
Tmin = 0.640, Tmax = 0.752k = 1010
11340 measured reflectionsl = 016
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.070P)2 + 0.030P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
11346 reflectionsΔρmax = 0.59 e Å3
189 parametersΔρmin = 1.18 e Å3
97 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.2946 (5)0.2753 (5)0.5771 (4)0.0514 (6)
C120.4217 (5)0.3002 (5)0.6277 (4)0.0455 (5)
H120.46880.34440.57620.055*
C130.4914 (4)0.2664 (5)0.7503 (4)0.0368 (4)
H130.58330.28880.78220.044*
C140.4239 (4)0.1987 (5)0.8264 (3)0.0296 (4)
C150.2902 (4)0.1714 (5)0.7748 (4)0.0349 (4)
H150.24070.12650.82400.042*
C160.2292 (5)0.2104 (6)0.6502 (4)0.0482 (7)
H160.13730.19030.61510.058*
C170.4926 (5)0.1595 (6)0.9602 (3)0.0417 (5)
H17A0.57740.09910.96940.050*
H17B0.43850.07460.99050.050*
N210.7022 (5)0.2166 (5)1.4309 (4)0.0514 (6)
C220.5770 (5)0.1843 (5)1.3724 (4)0.0455 (5)
H220.52640.13421.41890.055*
C230.5151 (5)0.2179 (6)1.2498 (4)0.0368 (4)
H230.42420.19131.21380.044*
C240.5840 (4)0.2910 (5)1.1767 (3)0.0296 (4)
C250.7170 (4)0.3242 (5)1.2371 (4)0.0349 (4)
H250.77020.37291.19270.042*
C260.7709 (5)0.2858 (6)1.3621 (5)0.0482 (7)
H260.86170.30981.40150.058*
C270.5181 (5)0.3311 (5)1.0396 (3)0.0417 (5)
H27A0.57460.41421.01100.050*
H27B0.43350.39371.02810.050*
I10.15116 (3)0.26724 (4)0.30827 (2)0.02559 (10)0.6234 (11)
C31A0.0614 (14)0.2582 (19)0.1163 (9)0.0283 (14)0.6234 (11)
C32A0.0576 (14)0.1734 (19)0.0642 (9)0.0288 (12)0.6234 (11)
H32A0.09760.11300.11630.035*0.6234 (11)
C33A0.1204 (16)0.174 (2)0.0627 (10)0.0297 (14)0.6234 (11)
H33A0.20350.11720.09690.036*0.6234 (11)
C34A0.0622 (13)0.258 (2)0.1395 (9)0.0283 (14)0.6234 (11)
C35A0.0603 (13)0.3488 (18)0.0873 (10)0.0288 (12)0.6234 (11)
H35A0.10000.40970.13940.035*0.6234 (11)
C36A0.1215 (16)0.347 (2)0.0402 (10)0.0297 (14)0.6234 (11)
H36A0.20380.40630.07580.036*0.6234 (11)
C37A0.1187 (8)0.2654 (12)0.2772 (7)0.0273 (2)0.6234 (11)
O31A0.2302 (4)0.1740 (6)0.3228 (4)0.0393 (6)0.6234 (11)
H31A0.25690.18210.40050.047*0.6234 (11)
O32A0.0606 (5)0.3283 (7)0.3440 (4)0.0504 (8)0.6234 (11)
I20.14357 (6)0.23818 (10)0.30640 (5)0.0273 (2)0.3766 (11)
C31B0.050 (2)0.250 (3)0.1126 (16)0.0283 (14)0.3766 (11)
C32B0.069 (2)0.332 (3)0.0617 (16)0.0288 (12)0.3766 (11)
H32B0.11280.38470.11330.035*0.3766 (11)
C33B0.126 (3)0.337 (4)0.0666 (17)0.0297 (14)0.3766 (11)
H33B0.20810.39520.10250.036*0.3766 (11)
C34B0.063 (2)0.259 (3)0.1427 (15)0.0283 (14)0.3766 (11)
C35B0.058 (2)0.164 (3)0.0896 (16)0.0288 (12)0.3766 (11)
H35B0.10000.10590.14090.035*0.3766 (11)
C36B0.113 (3)0.159 (4)0.0375 (18)0.0297 (14)0.3766 (11)
H36B0.19220.09470.07500.036*0.3766 (11)
C37B0.1174 (12)0.2586 (15)0.2793 (10)0.02559 (10)0.3766 (11)
O31B0.2390 (7)0.3219 (11)0.3235 (6)0.0393 (6)0.3766 (11)
H31B0.26630.31220.40110.047*0.3766 (11)
O32B0.0646 (8)0.1927 (12)0.3464 (6)0.0504 (8)0.3766 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0844 (17)0.0354 (9)0.0202 (9)0.0157 (9)0.0023 (10)0.0057 (7)
C120.0798 (16)0.0370 (10)0.0232 (10)0.0014 (11)0.0215 (10)0.0003 (8)
C130.0411 (10)0.0417 (11)0.0291 (11)0.0067 (8)0.0136 (9)0.0064 (8)
C140.0405 (9)0.0301 (8)0.0166 (8)0.0020 (7)0.0074 (7)0.0047 (6)
C150.0387 (9)0.0284 (8)0.0388 (11)0.0031 (7)0.0144 (8)0.0074 (7)
C160.0426 (12)0.0320 (10)0.0485 (14)0.0073 (8)0.0147 (10)0.0158 (9)
C170.0671 (14)0.0356 (10)0.0170 (9)0.0007 (10)0.0062 (8)0.0036 (8)
N210.0844 (17)0.0354 (9)0.0202 (9)0.0157 (9)0.0023 (10)0.0057 (7)
C220.0798 (16)0.0370 (10)0.0232 (10)0.0014 (11)0.0215 (10)0.0003 (8)
C230.0411 (10)0.0417 (11)0.0291 (11)0.0067 (8)0.0136 (9)0.0064 (8)
C240.0405 (9)0.0301 (8)0.0166 (8)0.0020 (7)0.0074 (7)0.0047 (6)
C250.0387 (9)0.0284 (8)0.0388 (11)0.0031 (7)0.0144 (8)0.0074 (7)
C260.0426 (12)0.0320 (10)0.0485 (14)0.0073 (8)0.0147 (10)0.0158 (9)
C270.0671 (14)0.0356 (10)0.0170 (9)0.0007 (10)0.0062 (8)0.0036 (8)
I10.0334 (2)0.02608 (14)0.01443 (16)0.0037 (3)0.00380 (10)0.0028 (3)
C31A0.0313 (16)0.0297 (11)0.023 (5)0.0042 (10)0.007 (3)0.001 (3)
C32A0.0346 (13)0.029 (2)0.025 (4)0.0012 (12)0.013 (3)0.005 (3)
C33A0.0308 (16)0.033 (2)0.025 (5)0.0003 (15)0.007 (3)0.001 (3)
C34A0.0313 (16)0.0297 (11)0.023 (5)0.0042 (10)0.007 (3)0.001 (3)
C35A0.0346 (13)0.029 (2)0.025 (4)0.0012 (12)0.013 (3)0.005 (3)
C36A0.0308 (16)0.033 (2)0.025 (5)0.0003 (15)0.007 (3)0.001 (3)
C37A0.0355 (4)0.0269 (4)0.0166 (4)0.0008 (3)0.0043 (3)0.0005 (3)
O31A0.0398 (16)0.0534 (17)0.0188 (13)0.0046 (14)0.0013 (11)0.0027 (12)
O32A0.0574 (19)0.076 (2)0.0168 (13)0.0144 (18)0.0109 (13)0.0088 (14)
I20.0355 (4)0.0269 (4)0.0166 (4)0.0008 (3)0.0043 (3)0.0005 (3)
C31B0.0313 (16)0.0297 (11)0.023 (5)0.0042 (10)0.007 (3)0.001 (3)
C32B0.0346 (13)0.029 (2)0.025 (4)0.0012 (12)0.013 (3)0.005 (3)
C33B0.0308 (16)0.033 (2)0.025 (5)0.0003 (15)0.007 (3)0.001 (3)
C34B0.0313 (16)0.0297 (11)0.023 (5)0.0042 (10)0.007 (3)0.001 (3)
C35B0.0346 (13)0.029 (2)0.025 (4)0.0012 (12)0.013 (3)0.005 (3)
C36B0.0308 (16)0.033 (2)0.025 (5)0.0003 (15)0.007 (3)0.001 (3)
C37B0.0334 (2)0.02608 (14)0.01443 (16)0.0037 (3)0.00380 (10)0.0028 (3)
O31B0.0398 (16)0.0534 (17)0.0188 (13)0.0046 (14)0.0013 (11)0.0027 (12)
O32B0.0574 (19)0.076 (2)0.0168 (13)0.0144 (18)0.0109 (13)0.0088 (14)
Geometric parameters (Å, º) top
N11—C121.313 (7)C31A—C36A1.403 (15)
N11—C161.342 (8)C32A—C33A1.384 (14)
C12—C131.377 (6)C32A—H32A0.9500
C12—H120.9500C33A—C34A1.378 (15)
C13—C141.393 (5)C33A—H33A0.9500
C13—H130.9500C34A—C35A1.423 (17)
C14—C151.381 (5)C34A—C37A1.488 (12)
C14—C171.492 (5)C35A—C36A1.387 (14)
C15—C161.388 (6)C35A—H35A0.9500
C15—H150.9500C36A—H36A0.9500
C16—H160.9500C37A—O32A1.224 (9)
C17—C271.526 (4)C37A—O31A1.326 (8)
C17—H17A0.9900O31A—H31A0.8400
C17—H17B0.9900I2—C31B2.112 (17)
N21—C221.316 (6)C31B—C32B1.36 (3)
N21—C261.342 (8)C31B—C36B1.42 (2)
C22—C231.362 (6)C32B—C33B1.39 (2)
C22—H220.9500C32B—H32B0.9500
C23—C241.393 (5)C33B—C34B1.39 (2)
C23—H230.9500C33B—H33B0.9500
C24—C251.393 (5)C34B—C35B1.43 (3)
C24—C271.521 (5)C34B—C37B1.475 (17)
C25—C261.382 (6)C35B—C36B1.38 (2)
C25—H250.9500C35B—H35B0.9500
C26—H260.9500C36B—H36B0.9500
C27—H27A0.9900C37B—O32B1.195 (12)
C27—H27B0.9900C37B—O31B1.325 (12)
I1—C31A2.086 (10)O31B—H31B0.8400
C31A—C32A1.375 (17)
C12—N11—C16117.3 (4)C32A—C31A—C36A119.9 (10)
N11—C12—C13124.5 (4)C32A—C31A—I1121.0 (8)
N11—C12—H12117.7C36A—C31A—I1119.0 (10)
C13—C12—H12117.7C31A—C32A—C33A121.2 (10)
C12—C13—C14118.3 (4)C31A—C32A—H32A119.4
C12—C13—H13120.8C33A—C32A—H32A119.4
C14—C13—H13120.8C34A—C33A—C32A120.0 (13)
C15—C14—C13118.0 (3)C34A—C33A—H33A120.0
C15—C14—C17120.5 (3)C32A—C33A—H33A120.0
C13—C14—C17121.4 (4)C33A—C34A—C35A119.6 (10)
C14—C15—C16119.1 (4)C33A—C34A—C37A124.9 (11)
C14—C15—H15120.5C35A—C34A—C37A115.4 (10)
C16—C15—H15120.5C36A—C35A—C34A119.6 (10)
N11—C16—C15122.8 (4)C36A—C35A—H35A120.2
N11—C16—H16118.6C34A—C35A—H35A120.2
C15—C16—H16118.6C35A—C36A—C31A119.7 (13)
C14—C17—C27112.3 (3)C35A—C36A—H36A120.2
C14—C17—H17A109.1C31A—C36A—H36A120.2
C27—C17—H17A109.1O32A—C37A—O31A121.9 (6)
C14—C17—H17B109.1O32A—C37A—C34A123.7 (8)
C27—C17—H17B109.1O31A—C37A—C34A113.8 (8)
H17A—C17—H17B107.9C37A—O31A—H31A109.5
C22—N21—C26116.2 (4)C32B—C31B—C36B121.2 (17)
N21—C22—C23124.4 (4)C32B—C31B—I2121.7 (14)
N21—C22—H22117.8C36B—C31B—I2117.0 (15)
C23—C22—H22117.8C31B—C32B—C33B119.3 (18)
C22—C23—C24120.5 (4)C31B—C32B—H32B120.4
C22—C23—H23119.8C33B—C32B—H32B120.4
C24—C23—H23119.8C34B—C33B—C32B121 (2)
C23—C24—C25115.7 (3)C34B—C33B—H33B119.6
C23—C24—C27122.0 (4)C32B—C33B—H33B119.6
C25—C24—C27122.3 (3)C33B—C34B—C35B120.0 (17)
C26—C25—C24119.6 (4)C33B—C34B—C37B123.7 (18)
C26—C25—H25120.2C35B—C34B—C37B116.2 (15)
C24—C25—H25120.2C36B—C35B—C34B118.6 (17)
N21—C26—C25123.6 (4)C36B—C35B—H35B120.7
N21—C26—H26118.2C34B—C35B—H35B120.7
C25—C26—H26118.2C35B—C36B—C31B120 (2)
C24—C27—C17112.5 (3)C35B—C36B—H36B120.0
C24—C27—H27A109.1C31B—C36B—H36B120.0
C17—C27—H27A109.1O32B—C37B—O31B121.2 (10)
C24—C27—H27B109.1O32B—C37B—C34B124.6 (13)
C17—C27—H27B109.1O31B—C37B—C34B113.9 (12)
H27A—C27—H27B107.8C37B—O31B—H31B109.5
C16—N11—C12—C130.9 (6)C32A—C33A—C34A—C37A178.7 (13)
N11—C12—C13—C141.0 (6)C33A—C34A—C35A—C36A2 (2)
C12—C13—C14—C150.8 (5)C37A—C34A—C35A—C36A179.0 (13)
C12—C13—C14—C17179.8 (4)C34A—C35A—C36A—C31A1 (2)
C13—C14—C15—C160.6 (5)C32A—C31A—C36A—C35A0 (2)
C17—C14—C15—C16179.6 (4)I1—C31A—C36A—C35A177.3 (12)
C12—N11—C16—C150.6 (6)C33A—C34A—C37A—O32A174.0 (13)
C14—C15—C16—N110.5 (6)C35A—C34A—C37A—O32A6.7 (17)
C15—C14—C17—C27100.2 (4)C33A—C34A—C37A—O31A3.2 (18)
C13—C14—C17—C2778.7 (5)C35A—C34A—C37A—O31A177.5 (10)
C26—N21—C22—C230.6 (6)C36B—C31B—C32B—C33B5 (3)
N21—C22—C23—C240.1 (6)I2—C31B—C32B—C33B179 (2)
C22—C23—C24—C250.5 (6)C31B—C32B—C33B—C34B1 (4)
C22—C23—C24—C27179.7 (4)C32B—C33B—C34B—C35B3 (4)
C23—C24—C25—C260.6 (5)C32B—C33B—C34B—C37B180 (2)
C27—C24—C25—C26179.6 (4)C33B—C34B—C35B—C36B3 (3)
C22—N21—C26—C250.5 (6)C37B—C34B—C35B—C36B179 (2)
C24—C25—C26—N210.2 (6)C34B—C35B—C36B—C31B1 (4)
C23—C24—C27—C1775.6 (5)C32B—C31B—C36B—C35B5 (4)
C25—C24—C27—C17104.2 (4)I2—C31B—C36B—C35B179 (2)
C14—C17—C27—C24178.1 (4)C33B—C34B—C37B—O32B180 (2)
C36A—C31A—C32A—C33A0.2 (19)C35B—C34B—C37B—O32B4 (3)
I1—C31A—C32A—C33A176.9 (12)C33B—C34B—C37B—O31B7 (3)
C31A—C32A—C33A—C34A1 (2)C35B—C34B—C37B—O31B169.5 (17)
C32A—C33A—C34A—C35A2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31A—H31A···N21i0.841.852.681 (6)173
O31B—H31B···N110.841.952.778 (8)169
Symmetry code: (i) x1, y, z2.
(BrF4OH13) SD-1–20-12–7 4-Br—F4-PhOH, 2,3,5,6-Me4-pyrazine top
Crystal data top
(C6HBrF4O)(C8H12N2)Z = 2
Mr = 381.17F(000) = 380
Triclinic, P1Dx = 1.732 Mg m3
a = 4.4175 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5878 (13) ÅCell parameters from 4524 reflections
c = 13.4274 (14) Åθ = 3.3–30.5°
α = 80.827 (4)°µ = 2.86 mm1
β = 82.672 (3)°T = 120 K
γ = 87.809 (4)°Rod, colourless
V = 730.96 (13) Å30.24 × 0.08 × 0.04 mm
Data collection top
Bruker APEX-II CCD
diffractometer
4088 independent reflections
Radiation source: fine-focus sealed tube3211 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 31.7°, θmin = 2.1°
Absorption correction: multi-scan
SADABS
h = 65
Tmin = 0.547, Tmax = 0.894k = 1617
11188 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
4088 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 1.09 e Å3
0 restraintsΔρmin = 1.72 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.4210 (7)0.2966 (3)0.3636 (2)0.0239 (6)
O110.5184 (6)0.3194 (2)0.44741 (16)0.0305 (5)
H110.398 (9)0.276 (3)0.505 (3)0.037*
C120.5258 (7)0.3579 (2)0.2701 (2)0.0233 (6)
F120.7180 (4)0.43861 (15)0.26876 (14)0.0311 (4)
C130.4397 (7)0.3373 (2)0.1803 (2)0.0233 (6)
F130.5457 (5)0.40086 (15)0.09433 (13)0.0308 (4)
C140.2469 (7)0.2552 (3)0.1781 (2)0.0245 (6)
Br10.13777 (7)0.22463 (3)0.05528 (2)0.02877 (13)
C150.1391 (7)0.1944 (3)0.2704 (2)0.0247 (6)
F150.0526 (4)0.11337 (16)0.27309 (14)0.0310 (4)
C160.2264 (7)0.2148 (3)0.3596 (2)0.0243 (6)
F160.1205 (5)0.15136 (16)0.44743 (13)0.0317 (4)
N210.2616 (6)0.2449 (2)0.63431 (18)0.0253 (5)
C220.0607 (7)0.3098 (2)0.6785 (2)0.0233 (6)
C230.0373 (7)0.2876 (3)0.7828 (2)0.0243 (6)
N240.0694 (6)0.2004 (2)0.83937 (18)0.0249 (5)
C250.2694 (7)0.1351 (2)0.7952 (2)0.0237 (6)
C260.3686 (7)0.1571 (3)0.6908 (2)0.0243 (6)
C320.0503 (8)0.4062 (3)0.6115 (2)0.0323 (7)
H32A0.07930.38650.54570.048*
H32B0.10060.46330.60120.048*
H32C0.24480.43210.64370.048*
C330.2548 (8)0.3599 (3)0.8359 (2)0.0322 (7)
H33A0.32400.32380.90480.048*
H33B0.43100.37680.79830.048*
H33C0.15240.42660.83960.048*
C350.3892 (8)0.0398 (3)0.8621 (2)0.0294 (7)
H35A0.24710.02320.92450.044*
H35B0.58920.05650.87930.044*
H35C0.40950.02240.82600.044*
C360.5879 (8)0.0850 (3)0.6375 (2)0.0322 (7)
H36A0.64720.11950.56730.048*
H36B0.49040.01640.63740.048*
H36C0.76970.07200.67290.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0282 (15)0.0318 (16)0.0123 (12)0.0002 (12)0.0011 (11)0.0062 (11)
O110.0390 (13)0.0409 (14)0.0129 (10)0.0106 (11)0.0017 (9)0.0068 (9)
C120.0254 (14)0.0269 (16)0.0179 (13)0.0044 (12)0.0005 (11)0.0060 (11)
F120.0376 (11)0.0352 (11)0.0209 (9)0.0108 (8)0.0003 (8)0.0068 (7)
C130.0301 (15)0.0286 (16)0.0098 (12)0.0008 (12)0.0041 (10)0.0045 (10)
F130.0438 (11)0.0341 (10)0.0127 (8)0.0060 (8)0.0041 (7)0.0028 (7)
C140.0279 (15)0.0362 (17)0.0098 (12)0.0037 (13)0.0015 (10)0.0070 (11)
Br10.0367 (2)0.0372 (2)0.01414 (16)0.00015 (14)0.00392 (12)0.00882 (12)
C150.0264 (15)0.0294 (16)0.0183 (13)0.0000 (12)0.0004 (11)0.0065 (11)
F150.0363 (10)0.0364 (11)0.0220 (9)0.0094 (8)0.0024 (8)0.0088 (8)
C160.0282 (15)0.0328 (17)0.0106 (12)0.0015 (12)0.0031 (10)0.0038 (11)
F160.0424 (11)0.0381 (11)0.0124 (8)0.0108 (9)0.0034 (7)0.0005 (7)
N210.0313 (14)0.0328 (14)0.0129 (11)0.0063 (11)0.0020 (9)0.0062 (9)
C220.0313 (16)0.0266 (15)0.0135 (13)0.0046 (12)0.0050 (11)0.0055 (11)
C230.0283 (15)0.0289 (16)0.0171 (13)0.0052 (12)0.0025 (11)0.0067 (11)
N240.0317 (14)0.0310 (14)0.0129 (11)0.0066 (11)0.0016 (10)0.0054 (9)
C250.0287 (15)0.0275 (16)0.0163 (13)0.0055 (12)0.0050 (11)0.0046 (11)
C260.0276 (15)0.0303 (16)0.0157 (13)0.0050 (12)0.0016 (11)0.0051 (11)
C320.046 (2)0.0346 (18)0.0163 (14)0.0024 (15)0.0075 (13)0.0031 (12)
C330.0360 (18)0.0386 (19)0.0208 (15)0.0041 (15)0.0007 (13)0.0051 (13)
C350.0392 (18)0.0317 (17)0.0177 (14)0.0001 (14)0.0056 (13)0.0034 (12)
C360.0369 (18)0.0378 (19)0.0212 (15)0.0012 (14)0.0015 (13)0.0070 (13)
Geometric parameters (Å, º) top
C11—O111.331 (4)C23—C331.492 (4)
C11—C161.379 (5)N24—C251.332 (4)
C11—C121.398 (4)C25—C261.402 (4)
O11—H110.98 (4)C25—C351.501 (4)
C12—F121.345 (4)C26—C361.496 (4)
C12—C131.375 (4)C32—H32A0.9800
C13—F131.337 (3)C32—H32B0.9800
C13—C141.369 (5)C32—H32C0.9800
C14—C151.387 (4)C33—H33A0.9800
C14—Br11.877 (3)C33—H33B0.9800
C15—F151.344 (4)C33—H33C0.9800
C15—C161.367 (4)C35—H35A0.9800
C16—F161.355 (3)C35—H35B0.9800
N21—C221.331 (4)C35—H35C0.9800
N21—C261.343 (4)C36—H36A0.9800
C22—C231.398 (4)C36—H36B0.9800
C22—C321.498 (4)C36—H36C0.9800
C23—N241.338 (4)
O11—C11—C16125.5 (3)C26—C25—C35121.9 (3)
O11—C11—C12118.8 (3)N21—C26—C25119.9 (3)
C16—C11—C12115.7 (3)N21—C26—C36117.5 (3)
C11—O11—H11107 (3)C25—C26—C36122.6 (3)
F12—C12—C13119.6 (3)C22—C32—H32A109.5
F12—C12—C11118.6 (3)C22—C32—H32B109.5
C13—C12—C11121.8 (3)H32A—C32—H32B109.5
F13—C13—C14120.4 (3)C22—C32—H32C109.5
F13—C13—C12118.1 (3)H32A—C32—H32C109.5
C14—C13—C12121.4 (3)H32B—C32—H32C109.5
C13—C14—C15117.3 (3)C23—C33—H33A109.5
C13—C14—Br1121.5 (2)C23—C33—H33B109.5
C15—C14—Br1121.2 (2)H33A—C33—H33B109.5
F15—C15—C16118.9 (3)C23—C33—H33C109.5
F15—C15—C14119.9 (3)H33A—C33—H33C109.5
C16—C15—C14121.1 (3)H33B—C33—H33C109.5
F16—C16—C15118.9 (3)C25—C35—H35A109.5
F16—C16—C11118.5 (3)C25—C35—H35B109.5
C15—C16—C11122.6 (3)H35A—C35—H35B109.5
C22—N21—C26119.3 (3)C25—C35—H35C109.5
N21—C22—C23120.6 (3)H35A—C35—H35C109.5
N21—C22—C32116.8 (3)H35B—C35—H35C109.5
C23—C22—C32122.6 (3)C26—C36—H36A109.5
N24—C23—C22120.2 (3)C26—C36—H36B109.5
N24—C23—C33117.4 (3)H36A—C36—H36B109.5
C22—C23—C33122.4 (3)C26—C36—H36C109.5
C25—N24—C23119.3 (3)H36A—C36—H36C109.5
N24—C25—C26120.7 (3)H36B—C36—H36C109.5
N24—C25—C35117.5 (3)
O11—C11—C12—F120.9 (4)O11—C11—C16—F160.4 (5)
C16—C11—C12—F12179.6 (3)C12—C11—C16—F16179.0 (3)
O11—C11—C12—C13178.6 (3)O11—C11—C16—C15178.8 (3)
C16—C11—C12—C130.1 (5)C12—C11—C16—C150.3 (5)
F12—C12—C13—F131.7 (4)C26—N21—C22—C230.5 (5)
C11—C12—C13—F13178.8 (3)C26—N21—C22—C32179.9 (3)
F12—C12—C13—C14179.4 (3)N21—C22—C23—N240.3 (5)
C11—C12—C13—C140.2 (5)C32—C22—C23—N24179.9 (3)
F13—C13—C14—C15178.2 (3)N21—C22—C23—C33178.1 (3)
C12—C13—C14—C150.7 (5)C32—C22—C23—C331.5 (5)
F13—C13—C14—Br12.8 (4)C22—C23—N24—C250.1 (5)
C12—C13—C14—Br1178.3 (2)C33—C23—N24—C25178.5 (3)
C13—C14—C15—F15179.5 (3)C23—N24—C25—C260.2 (5)
Br1—C14—C15—F151.5 (4)C23—N24—C25—C35178.4 (3)
C13—C14—C15—C161.0 (5)C22—N21—C26—C250.3 (5)
Br1—C14—C15—C16178.0 (2)C22—N21—C26—C36178.5 (3)
F15—C15—C16—F161.1 (5)N24—C25—C26—N210.0 (5)
C14—C15—C16—F16178.4 (3)C35—C25—C26—N21178.2 (3)
F15—C15—C16—C11179.7 (3)N24—C25—C26—C36178.8 (3)
C14—C15—C16—C110.8 (5)C35—C25—C26—C363.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···N210.98 (4)1.75 (4)2.659 (3)152 (4)
(BrF4CO11) SD-1–22-2–5 4-Br—F4-PhCOOH, 1,2-bis(4-pyridyl)ethane top
Crystal data top
(C7HBrF4O2)(C12H12N2)Z = 2
Mr = 457.22F(000) = 456
Triclinic, P1Dx = 1.762 Mg m3
a = 4.8727 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7621 (7) ÅCell parameters from 9988 reflections
c = 16.595 (1) Åθ = 2.5–32.8°
α = 87.808 (2)°µ = 2.45 mm1
β = 85.332 (2)°T = 120 K
γ = 83.646 (2)°Prism, colourless
V = 861.66 (9) Å30.28 × 0.16 × 0.16 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6066 independent reflections
Radiation source: fine-focus sealed tube5273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 32.9°, θmin = 1.2°
Absorption correction: multi-scan
SADABS
h = 37
Tmin = 0.548, Tmax = 0.696k = 1515
23701 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.040P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
6066 reflections(Δ/σ)max = 0.002
287 parametersΔρmax = 0.68 e Å3
35 restraintsΔρmin = 0.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.3858 (3)0.30864 (13)0.46600 (8)0.0194 (2)
H110.228 (5)0.318 (2)0.5008 (14)0.023*
C120.5240 (3)0.19460 (15)0.45556 (10)0.0211 (3)
H120.46670.12540.48730.025*
C130.7477 (3)0.17679 (15)0.39945 (9)0.0204 (3)
H130.84250.09560.39180.024*
C140.8342 (3)0.27918 (14)0.35383 (9)0.0179 (3)
C150.6911 (3)0.39700 (15)0.36797 (9)0.0199 (3)
H150.74940.46880.33930.024*
C160.4651 (3)0.40876 (15)0.42368 (9)0.0199 (3)
H160.36460.48860.43220.024*
C171.0651 (3)0.26262 (15)0.28824 (9)0.0199 (3)
H17A1.17300.18010.29570.024*
H17B1.19100.32800.29200.024*
N211.6385 (3)0.21284 (15)0.02475 (8)0.0255 (3)
C221.5143 (4)0.32680 (18)0.04051 (10)0.0273 (3)
H221.58390.39590.01150.033*
C231.2899 (4)0.35082 (16)0.09667 (10)0.0233 (3)
H231.21040.43420.10580.028*
C241.1830 (3)0.25104 (15)0.13940 (9)0.0189 (3)
C251.3093 (3)0.13176 (16)0.12278 (10)0.0227 (3)
H251.24200.06060.15000.027*
C261.5351 (4)0.11773 (17)0.06598 (10)0.0246 (3)
H261.62090.03560.05600.029*
C270.9508 (3)0.27147 (16)0.20431 (9)0.0206 (3)
H27A0.82080.20770.20100.025*
H27B0.84770.35500.19610.025*
Br10.95931 (4)0.21285 (2)0.894916 (10)0.02096 (6)0.9464 (7)
C31A0.2783 (4)0.22968 (15)0.67721 (11)0.0167 (3)0.9464 (7)
C37A0.0532 (4)0.2303 (2)0.60814 (13)0.02269 (16)0.9464 (7)
O31A0.0390 (3)0.33718 (12)0.57136 (8)0.02269 (16)0.9464 (7)
O32A0.0911 (3)0.13414 (11)0.59292 (7)0.02269 (16)0.9464 (7)
C32A0.4270 (4)0.12706 (16)0.69192 (11)0.0173 (3)0.9464 (7)
F32A0.3781 (3)0.02825 (10)0.64405 (9)0.0229 (2)0.9464 (7)
C33A0.6290 (4)0.12269 (15)0.75460 (12)0.0182 (3)0.9464 (7)
F33A0.7688 (3)0.02185 (10)0.76404 (11)0.0249 (3)0.9464 (7)
C34A0.6930 (4)0.22050 (17)0.80673 (11)0.0185 (3)0.9464 (7)
C35A0.5457 (4)0.32324 (17)0.79339 (13)0.0187 (3)0.9464 (7)
F35A0.5942 (3)0.41986 (12)0.84319 (10)0.0259 (3)0.9464 (7)
C36A0.3439 (4)0.32729 (16)0.73039 (12)0.0177 (3)0.9464 (7)
F36A0.2021 (4)0.42773 (13)0.72420 (10)0.0241 (3)0.9464 (7)
Br20.0326 (7)0.2663 (3)0.6001 (2)0.02269 (16)0.0536 (7)
C31B0.706 (7)0.242 (2)0.8179 (18)0.0185 (3)0.0536 (7)
C37B0.945 (6)0.2447 (17)0.8836 (17)0.02096 (6)0.0536 (7)
O31B0.955 (4)0.1409 (16)0.9242 (11)0.02096 (6)0.0536 (7)
O32B1.079 (4)0.3434 (16)0.8966 (12)0.02096 (6)0.0536 (7)
C32B0.562 (9)0.347 (3)0.804 (2)0.0187 (3)0.0536 (7)
F32B0.624 (7)0.446 (2)0.8508 (19)0.0259 (3)0.0536 (7)
C33B0.358 (8)0.352 (3)0.742 (2)0.0177 (3)0.0536 (7)
F33B0.211 (7)0.451 (3)0.735 (2)0.0241 (3)0.0536 (7)
C34B0.298 (7)0.259 (2)0.6881 (17)0.0167 (3)0.0536 (7)
C35B0.435 (8)0.153 (2)0.702 (2)0.0173 (3)0.0536 (7)
F35B0.380 (7)0.058 (2)0.6519 (18)0.0229 (2)0.0536 (7)
C36B0.661 (6)0.154 (2)0.7580 (18)0.0182 (3)0.0536 (7)
F36B0.792 (7)0.050 (2)0.763 (2)0.0249 (3)0.0536 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0165 (6)0.0232 (6)0.0180 (6)0.0012 (5)0.0019 (5)0.0030 (5)
C120.0222 (7)0.0202 (7)0.0205 (7)0.0031 (6)0.0011 (6)0.0003 (5)
C130.0209 (7)0.0195 (7)0.0200 (7)0.0003 (5)0.0008 (5)0.0021 (5)
C140.0161 (6)0.0218 (7)0.0158 (6)0.0020 (5)0.0001 (5)0.0029 (5)
C150.0200 (7)0.0196 (7)0.0195 (6)0.0024 (5)0.0017 (5)0.0003 (5)
C160.0206 (7)0.0199 (7)0.0189 (6)0.0004 (5)0.0005 (5)0.0028 (5)
C170.0171 (6)0.0260 (7)0.0161 (6)0.0011 (5)0.0013 (5)0.0016 (5)
N210.0216 (6)0.0349 (8)0.0189 (6)0.0014 (6)0.0026 (5)0.0027 (5)
C220.0268 (8)0.0314 (9)0.0225 (7)0.0051 (7)0.0055 (6)0.0038 (6)
C230.0245 (7)0.0217 (7)0.0225 (7)0.0008 (6)0.0031 (6)0.0009 (6)
C240.0171 (6)0.0234 (7)0.0164 (6)0.0024 (5)0.0003 (5)0.0025 (5)
C250.0238 (7)0.0225 (7)0.0219 (7)0.0038 (6)0.0001 (6)0.0021 (6)
C260.0231 (7)0.0276 (8)0.0222 (7)0.0025 (6)0.0010 (6)0.0066 (6)
C270.0177 (6)0.0271 (7)0.0169 (6)0.0029 (6)0.0012 (5)0.0019 (5)
Br10.01706 (8)0.02808 (10)0.01661 (9)0.00113 (7)0.00269 (5)0.00168 (6)
C31A0.0147 (6)0.0179 (8)0.0167 (7)0.0000 (6)0.0012 (5)0.0002 (6)
C37A0.0218 (3)0.0218 (4)0.0223 (3)0.0018 (3)0.0046 (3)0.0021 (3)
O31A0.0218 (3)0.0218 (4)0.0223 (3)0.0018 (3)0.0046 (3)0.0021 (3)
O32A0.0218 (3)0.0218 (4)0.0223 (3)0.0018 (3)0.0046 (3)0.0021 (3)
C32A0.0186 (6)0.0155 (8)0.0176 (8)0.0014 (7)0.0000 (6)0.0019 (6)
F32A0.0250 (5)0.0178 (6)0.0253 (5)0.0028 (5)0.0040 (4)0.0060 (5)
C33A0.0171 (7)0.0173 (8)0.0200 (7)0.0029 (6)0.0005 (5)0.0018 (6)
F33A0.0263 (6)0.0216 (6)0.0272 (5)0.0091 (6)0.0039 (4)0.0012 (6)
C34A0.0150 (6)0.0236 (8)0.0161 (8)0.0005 (6)0.0013 (5)0.0009 (6)
C35A0.0198 (7)0.0184 (9)0.0173 (8)0.0002 (7)0.0009 (6)0.0024 (6)
F35A0.0308 (7)0.0232 (7)0.0228 (6)0.0024 (6)0.0060 (4)0.0080 (5)
C36A0.0186 (7)0.0167 (8)0.0176 (8)0.0027 (7)0.0002 (6)0.0001 (5)
F36A0.0277 (5)0.0203 (7)0.0250 (7)0.0093 (5)0.0041 (5)0.0032 (4)
Br20.0218 (3)0.0218 (4)0.0223 (3)0.0018 (3)0.0046 (3)0.0021 (3)
C31B0.0150 (6)0.0236 (8)0.0161 (8)0.0005 (6)0.0013 (5)0.0009 (6)
C37B0.01706 (8)0.02808 (10)0.01661 (9)0.00113 (7)0.00269 (5)0.00168 (6)
O31B0.01706 (8)0.02808 (10)0.01661 (9)0.00113 (7)0.00269 (5)0.00168 (6)
O32B0.01706 (8)0.02808 (10)0.01661 (9)0.00113 (7)0.00269 (5)0.00168 (6)
C32B0.0198 (7)0.0184 (9)0.0173 (8)0.0002 (7)0.0009 (6)0.0024 (6)
F32B0.0308 (7)0.0232 (7)0.0228 (6)0.0024 (6)0.0060 (4)0.0080 (5)
C33B0.0186 (7)0.0167 (8)0.0176 (8)0.0027 (7)0.0002 (6)0.0001 (5)
F33B0.0277 (5)0.0203 (7)0.0250 (7)0.0093 (5)0.0041 (5)0.0032 (4)
C34B0.0147 (6)0.0179 (8)0.0167 (7)0.0000 (6)0.0012 (5)0.0002 (6)
C35B0.0186 (6)0.0155 (8)0.0176 (8)0.0014 (7)0.0000 (6)0.0019 (6)
F35B0.0250 (5)0.0178 (6)0.0253 (5)0.0028 (5)0.0040 (4)0.0060 (5)
C36B0.0171 (7)0.0173 (8)0.0200 (7)0.0029 (6)0.0005 (5)0.0018 (6)
F36B0.0263 (6)0.0216 (6)0.0272 (5)0.0091 (6)0.0039 (4)0.0012 (6)
Geometric parameters (Å, º) top
N11—C161.339 (2)Br1—C34A1.8808 (16)
N11—C121.343 (2)C31A—C32A1.390 (2)
N11—H110.92 (2)C31A—C36A1.391 (2)
C12—C131.376 (2)C31A—C37A1.521 (3)
C12—H120.9500C37A—O32A1.208 (2)
C13—C141.397 (2)C37A—O31A1.287 (3)
C13—H130.9500C32A—F32A1.3404 (18)
C14—C151.396 (2)C32A—C33A1.376 (2)
C14—C171.501 (2)C33A—F33A1.341 (2)
C15—C161.377 (2)C33A—C34A1.381 (2)
C15—H150.9500C34A—C35A1.385 (2)
C16—H160.9500C35A—F35A1.3415 (19)
C17—C271.538 (2)C35A—C36A1.378 (2)
C17—H17A0.9900C36A—F36A1.3423 (19)
C17—H17B0.9900Br2—C34B1.875 (9)
N21—C221.332 (2)C31B—C36B1.387 (9)
N21—C261.332 (2)C31B—C32B1.395 (9)
C22—C231.386 (2)C31B—C37B1.527 (9)
C22—H220.9500C37B—O32B1.201 (9)
C23—C241.390 (2)C37B—O31B1.287 (9)
C23—H230.9500C32B—F32B1.338 (9)
C24—C251.388 (2)C32B—C33B1.372 (9)
C24—C271.501 (2)C33B—F33B1.343 (9)
C25—C261.388 (2)C33B—C34B1.371 (9)
C25—H250.9500C34B—C35B1.385 (9)
C26—H260.9500C35B—F35B1.336 (9)
C27—H27A0.9900C35B—C36B1.382 (9)
C27—H27B0.9900C36B—F36B1.343 (9)
C16—N11—C12121.15 (14)C17—C27—H27B109.6
C16—N11—H11118.7 (14)H27A—C27—H27B108.1
C12—N11—H11120.1 (14)C32A—C31A—C36A115.88 (14)
N11—C12—C13120.81 (15)C32A—C31A—C37A120.69 (15)
N11—C12—H12119.6C36A—C31A—C37A123.40 (16)
C13—C12—H12119.6O32A—C37A—O31A126.69 (19)
C12—C13—C14119.42 (14)O32A—C37A—C31A118.82 (19)
C12—C13—H13120.3O31A—C37A—C31A114.49 (16)
C14—C13—H13120.3F32A—C32A—C33A117.57 (15)
C15—C14—C13118.27 (14)F32A—C32A—C31A120.27 (15)
C15—C14—C17120.55 (14)C33A—C32A—C31A122.16 (15)
C13—C14—C17121.10 (14)F33A—C33A—C32A118.92 (16)
C16—C15—C14119.74 (15)F33A—C33A—C34A119.70 (15)
C16—C15—H15120.1C32A—C33A—C34A121.37 (16)
C14—C15—H15120.1C33A—C34A—C35A117.32 (15)
N11—C16—C15120.56 (14)C33A—C34A—Br1121.67 (13)
N11—C16—H16119.7C35A—C34A—Br1120.97 (12)
C15—C16—H16119.7F35A—C35A—C36A118.88 (15)
C14—C17—C27110.88 (12)F35A—C35A—C34A120.02 (15)
C14—C17—H17A109.5C36A—C35A—C34A121.09 (15)
C27—C17—H17A109.5F36A—C36A—C35A117.16 (14)
C14—C17—H17B109.5F36A—C36A—C31A120.60 (14)
C27—C17—H17B109.5C35A—C36A—C31A122.17 (15)
H17A—C17—H17B108.1C36B—C31B—C32B115.4 (11)
C22—N21—C26116.60 (15)C36B—C31B—C37B123.4 (14)
N21—C22—C23124.06 (16)C32B—C31B—C37B119.4 (11)
N21—C22—H22118.0O32B—C37B—O31B128.1 (14)
C23—C22—H22118.0O32B—C37B—C31B117.7 (13)
C22—C23—C24118.99 (15)O31B—C37B—C31B113.7 (13)
C22—C23—H23120.5F32B—C32B—C33B118.3 (13)
C24—C23—H23120.5F32B—C32B—C31B120.1 (13)
C25—C24—C23117.35 (15)C33B—C32B—C31B121.6 (10)
C25—C24—C27121.08 (15)F33B—C33B—C34B118.9 (12)
C23—C24—C27121.47 (14)F33B—C33B—C32B119.4 (12)
C24—C25—C26119.21 (16)C34B—C33B—C32B121.6 (10)
C24—C25—H25120.4C33B—C34B—C35B117.2 (9)
C26—C25—H25120.4C33B—C34B—Br2122.9 (9)
N21—C26—C25123.77 (16)C35B—C34B—Br2119.9 (9)
N21—C26—H26118.1F35B—C35B—C36B119.1 (13)
C25—C26—H26118.1F35B—C35B—C34B119.7 (13)
C24—C27—C17110.36 (12)C36B—C35B—C34B120.2 (12)
C24—C27—H27A109.6F36B—C36B—C35B115.9 (13)
C17—C27—H27A109.6F36B—C36B—C31B121.1 (14)
C24—C27—H27B109.6C35B—C36B—C31B121.0 (12)
C16—N11—C12—C131.6 (2)C33A—C34A—C35A—C36A0.2 (3)
N11—C12—C13—C141.0 (2)Br1—C34A—C35A—C36A177.81 (19)
C12—C13—C14—C150.9 (2)F35A—C35A—C36A—F36A1.7 (3)
C12—C13—C14—C17175.91 (14)C34A—C35A—C36A—F36A176.9 (2)
C13—C14—C15—C162.3 (2)F35A—C35A—C36A—C31A178.8 (2)
C17—C14—C15—C16174.55 (14)C34A—C35A—C36A—C31A0.2 (4)
C12—N11—C16—C150.2 (2)C32A—C31A—C36A—F36A176.3 (2)
C14—C15—C16—N111.8 (2)C37A—C31A—C36A—F36A1.9 (3)
C15—C14—C17—C2773.61 (18)C32A—C31A—C36A—C35A0.6 (3)
C13—C14—C17—C27103.15 (17)C37A—C31A—C36A—C35A178.8 (2)
C26—N21—C22—C230.5 (3)C36B—C31B—C37B—O32B133 (4)
N21—C22—C23—C240.6 (3)C32B—C31B—C37B—O32B32 (5)
C22—C23—C24—C250.1 (2)C36B—C31B—C37B—O31B55 (5)
C22—C23—C24—C27176.49 (15)C32B—C31B—C37B—O31B141 (4)
C23—C24—C25—C260.8 (2)C36B—C31B—C32B—F32B169 (5)
C27—C24—C25—C26175.80 (14)C37B—C31B—C32B—F32B3 (7)
C22—N21—C26—C250.3 (2)C36B—C31B—C32B—C33B10 (7)
C24—C25—C26—N211.0 (2)C37B—C31B—C32B—C33B176 (4)
C25—C24—C27—C1777.59 (18)F32B—C32B—C33B—F33B6 (8)
C23—C24—C27—C1798.90 (18)C31B—C32B—C33B—F33B175 (5)
C14—C17—C27—C24178.35 (13)F32B—C32B—C33B—C34B175 (5)
C32A—C31A—C37A—O32A36.9 (3)C31B—C32B—C33B—C34B4 (8)
C36A—C31A—C37A—O32A141.2 (2)F33B—C33B—C34B—C35B174 (5)
C32A—C31A—C37A—O31A142.9 (2)C32B—C33B—C34B—C35B5 (8)
C36A—C31A—C37A—O31A38.9 (3)F33B—C33B—C34B—Br24 (7)
C36A—C31A—C32A—F32A179.9 (2)C32B—C33B—C34B—Br2177 (4)
C37A—C31A—C32A—F32A1.6 (3)C33B—C34B—C35B—F35B179 (5)
C36A—C31A—C32A—C33A0.7 (3)Br2—C34B—C35B—F35B1 (6)
C37A—C31A—C32A—C33A178.99 (19)C33B—C34B—C35B—C36B13 (7)
F32A—C32A—C33A—F33A1.0 (3)Br2—C34B—C35B—C36B169 (4)
C31A—C32A—C33A—F33A178.4 (2)F35B—C35B—C36B—F36B7 (6)
F32A—C32A—C33A—C34A179.9 (2)C34B—C35B—C36B—F36B176 (4)
C31A—C32A—C33A—C34A0.4 (3)F35B—C35B—C36B—C31B172 (4)
F33A—C33A—C34A—C35A178.9 (2)C34B—C35B—C36B—C31B20 (7)
C32A—C33A—C34A—C35A0.0 (3)C32B—C31B—C36B—F36B179 (5)
F33A—C33A—C34A—Br13.5 (3)C37B—C31B—C36B—F36B14 (6)
C32A—C33A—C34A—Br1177.66 (17)C32B—C31B—C36B—C35B18 (6)
C33A—C34A—C35A—F35A178.4 (2)C37B—C31B—C36B—C35B177 (4)
Br1—C34A—C35A—F35A0.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O31A0.92 (2)1.68 (2)2.5975 (18)175 (2)
(IF4OX13) SD-1–20-9–7 4-I—F4-PhCH=NOH, Me4-pyrazine top
Crystal data top
(C7H2F4INO)(C8H12N2)F(000) = 888
Mr = 455.19Dx = 1.865 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.1573 (2) ÅCell parameters from 9976 reflections
b = 14.8817 (8) Åθ = 2.9–33.2°
c = 26.2084 (13) ŵ = 2.03 mm1
β = 91.345 (1)°T = 120 K
V = 1621.01 (14) Å3Rod, colourless
Z = 40.36 × 0.14 × 0.06 mm
Data collection top
Bruker APEX-II CCD
diffractometer
5424 independent reflections
Radiation source: fine-focus sealed tube5028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 33.1°, θmin = 2.7°
Absorption correction: multi-scan
SADABS
h = 66
Tmin = 0.529, Tmax = 0.888k = 1821
19470 measured reflectionsl = 4037
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.020P)2 + 2.P]
where P = (Fo2 + 2Fc2)/3
5424 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.92 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.71982 (3)0.240045 (9)0.028023 (5)0.02385 (5)
N110.9309 (4)0.33955 (12)0.38141 (7)0.0229 (3)
C120.8490 (5)0.28645 (14)0.34210 (8)0.0230 (4)
C130.6697 (5)0.32078 (14)0.30044 (7)0.0225 (4)
N140.5881 (5)0.40726 (12)0.29930 (7)0.0234 (3)
C150.6735 (5)0.46117 (14)0.33840 (8)0.0229 (4)
C160.8433 (5)0.42582 (14)0.38057 (8)0.0228 (4)
C220.9499 (6)0.19006 (15)0.34550 (9)0.0301 (4)
H22A1.17890.18670.35510.045*
H22B0.91370.16100.31230.045*
H22C0.82330.15940.37130.045*
C230.5713 (6)0.26379 (16)0.25558 (9)0.0297 (4)
H23A0.42460.29790.23310.044*
H23B0.46220.20960.26760.044*
H23C0.76260.24650.23670.044*
C250.5846 (7)0.55825 (16)0.33335 (9)0.0336 (5)
H25A0.51520.57070.29810.050*
H25B0.77170.59560.34230.050*
H25C0.40870.57200.35630.050*
C260.9274 (7)0.48030 (16)0.42712 (9)0.0322 (5)
H26A0.85500.44870.45760.048*
H26B0.82110.53900.42470.048*
H26C1.16100.48880.42950.048*
C310.2600 (5)0.39935 (14)0.12149 (7)0.0206 (3)
C370.1376 (5)0.45268 (14)0.16467 (8)0.0235 (4)
H37A0.22920.51000.17110.028*
N370.0890 (5)0.42394 (13)0.19385 (7)0.0255 (3)
O370.1686 (4)0.48753 (12)0.23083 (6)0.0294 (3)
H370.305 (8)0.461 (2)0.2496 (14)0.035*
C320.1978 (5)0.30871 (14)0.11312 (7)0.0211 (3)
F320.0082 (4)0.26174 (9)0.14545 (5)0.0295 (3)
C330.3282 (5)0.26346 (13)0.07156 (8)0.0218 (3)
F330.2628 (4)0.17566 (9)0.06688 (5)0.0289 (3)
C340.5232 (5)0.30598 (14)0.03534 (7)0.0209 (3)
C350.5864 (5)0.39591 (14)0.04333 (8)0.0225 (4)
F350.7766 (3)0.44116 (10)0.01068 (5)0.0308 (3)
C360.4602 (5)0.44086 (13)0.08525 (8)0.0214 (3)
F360.5334 (4)0.52774 (9)0.09095 (5)0.0303 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02159 (7)0.02909 (8)0.02090 (7)0.00027 (5)0.00114 (4)0.00444 (4)
N110.0254 (8)0.0228 (8)0.0204 (7)0.0039 (6)0.0009 (6)0.0014 (6)
C120.0274 (9)0.0209 (9)0.0206 (8)0.0028 (7)0.0021 (7)0.0012 (7)
C130.0251 (9)0.0244 (9)0.0181 (8)0.0040 (7)0.0026 (7)0.0004 (7)
N140.0271 (8)0.0246 (8)0.0185 (7)0.0026 (6)0.0001 (6)0.0004 (6)
C150.0264 (9)0.0222 (9)0.0202 (8)0.0020 (7)0.0003 (7)0.0003 (7)
C160.0253 (9)0.0232 (9)0.0199 (8)0.0039 (7)0.0013 (7)0.0002 (7)
C220.0393 (12)0.0227 (10)0.0284 (10)0.0002 (8)0.0001 (9)0.0003 (8)
C230.0397 (12)0.0282 (10)0.0209 (9)0.0031 (9)0.0022 (8)0.0034 (7)
C250.0484 (14)0.0234 (10)0.0287 (11)0.0025 (9)0.0064 (10)0.0010 (8)
C260.0424 (13)0.0270 (10)0.0267 (10)0.0021 (9)0.0105 (9)0.0041 (8)
C310.0204 (8)0.0234 (9)0.0181 (8)0.0011 (7)0.0011 (6)0.0021 (6)
C370.0261 (9)0.0244 (9)0.0199 (8)0.0002 (7)0.0007 (7)0.0001 (7)
N370.0279 (9)0.0300 (9)0.0184 (7)0.0012 (7)0.0007 (6)0.0012 (6)
O370.0348 (9)0.0309 (8)0.0221 (7)0.0006 (7)0.0067 (6)0.0021 (6)
C320.0221 (9)0.0234 (9)0.0178 (8)0.0032 (7)0.0018 (6)0.0044 (6)
F320.0383 (7)0.0278 (6)0.0220 (6)0.0089 (5)0.0058 (5)0.0048 (5)
C330.0251 (9)0.0201 (8)0.0202 (8)0.0019 (7)0.0035 (7)0.0018 (6)
F330.0414 (8)0.0194 (6)0.0258 (6)0.0046 (5)0.0015 (5)0.0012 (5)
C340.0197 (8)0.0248 (9)0.0183 (8)0.0013 (7)0.0014 (6)0.0010 (7)
C350.0203 (9)0.0269 (9)0.0202 (8)0.0050 (7)0.0010 (7)0.0015 (7)
F350.0319 (7)0.0323 (7)0.0275 (6)0.0121 (5)0.0096 (5)0.0010 (5)
C360.0215 (9)0.0207 (9)0.0218 (8)0.0047 (7)0.0001 (7)0.0006 (7)
F360.0391 (8)0.0225 (6)0.0291 (6)0.0097 (5)0.0046 (5)0.0033 (5)
Geometric parameters (Å, º) top
I1—C342.080 (2)C25—H25C0.9800
N11—C161.335 (3)C26—H26A0.9800
N11—C121.336 (3)C26—H26B0.9800
C12—C131.404 (3)C26—H26C0.9800
C12—C221.497 (3)C31—C321.392 (3)
C13—N141.331 (3)C31—C361.393 (3)
C13—C231.499 (3)C31—C371.464 (3)
N14—C151.343 (3)C37—N371.273 (3)
C15—C161.400 (3)C37—H37A0.9500
C15—C251.496 (3)N37—O371.389 (2)
C16—C261.499 (3)O37—H370.84 (4)
C22—H22A0.9800C32—F321.340 (2)
C22—H22B0.9800C32—C331.380 (3)
C22—H22C0.9800C33—F331.341 (2)
C23—H23A0.9800C33—C341.387 (3)
C23—H23B0.9800C34—C351.381 (3)
C23—H23C0.9800C35—F351.334 (2)
C25—H25A0.9800C35—C361.379 (3)
C25—H25B0.9800C36—F361.338 (2)
C16—N11—C12119.44 (18)H25B—C25—H25C109.5
N11—C12—C13120.37 (19)C16—C26—H26A109.5
N11—C12—C22117.06 (19)C16—C26—H26B109.5
C13—C12—C22122.56 (19)H26A—C26—H26B109.5
N14—C13—C12119.99 (19)C16—C26—H26C109.5
N14—C13—C23117.69 (19)H26A—C26—H26C109.5
C12—C13—C23122.3 (2)H26B—C26—H26C109.5
C13—N14—C15119.85 (18)C32—C31—C36115.64 (18)
N14—C15—C16119.83 (19)C32—C31—C37125.80 (18)
N14—C15—C25116.67 (19)C36—C31—C37118.56 (18)
C16—C15—C25123.48 (19)N37—C37—C31121.4 (2)
N11—C16—C15120.47 (19)N37—C37—H37A119.3
N11—C16—C26116.64 (19)C31—C37—H37A119.3
C15—C16—C26122.9 (2)C37—N37—O37110.55 (19)
C12—C22—H22A109.5N37—O37—H37104 (2)
C12—C22—H22B109.5F32—C32—C33117.30 (18)
H22A—C22—H22B109.5F32—C32—C31120.95 (18)
C12—C22—H22C109.5C33—C32—C31121.75 (18)
H22A—C22—H22C109.5F33—C33—C32118.09 (18)
H22B—C22—H22C109.5F33—C33—C34119.91 (18)
C13—C23—H23A109.5C32—C33—C34122.00 (19)
C13—C23—H23B109.5C35—C34—C33116.67 (18)
H23A—C23—H23B109.5C35—C34—I1120.38 (15)
C13—C23—H23C109.5C33—C34—I1122.94 (15)
H23A—C23—H23C109.5F35—C35—C36118.34 (18)
H23B—C23—H23C109.5F35—C35—C34120.28 (18)
C15—C25—H25A109.5C36—C35—C34121.37 (18)
C15—C25—H25B109.5F36—C36—C35118.33 (18)
H25A—C25—H25B109.5F36—C36—C31119.12 (18)
C15—C25—H25C109.5C35—C36—C31122.55 (19)
H25A—C25—H25C109.5
C16—N11—C12—C130.6 (3)C37—C31—C32—C33179.0 (2)
C16—N11—C12—C22179.2 (2)F32—C32—C33—F331.4 (3)
N11—C12—C13—N141.9 (3)C31—C32—C33—F33178.41 (18)
C22—C12—C13—N14179.6 (2)F32—C32—C33—C34178.92 (18)
N11—C12—C13—C23179.8 (2)C31—C32—C33—C341.2 (3)
C22—C12—C13—C231.3 (3)F33—C33—C34—C35178.43 (18)
C12—C13—N14—C151.0 (3)C32—C33—C34—C351.2 (3)
C23—C13—N14—C15179.4 (2)F33—C33—C34—I10.9 (3)
C13—N14—C15—C161.1 (3)C32—C33—C34—I1179.43 (15)
C13—N14—C15—C25177.6 (2)C33—C34—C35—F35178.82 (19)
C12—N11—C16—C151.5 (3)I1—C34—C35—F350.6 (3)
C12—N11—C16—C26176.7 (2)C33—C34—C35—C360.2 (3)
N14—C15—C16—N112.4 (3)I1—C34—C35—C36179.59 (16)
C25—C15—C16—N11176.2 (2)F35—C35—C36—F360.3 (3)
N14—C15—C16—C26175.7 (2)C34—C35—C36—F36179.39 (19)
C25—C15—C16—C265.7 (4)F35—C35—C36—C31179.86 (19)
C32—C31—C37—N3713.5 (3)C34—C35—C36—C310.8 (3)
C36—C31—C37—N37167.3 (2)C32—C31—C36—F36179.40 (18)
C31—C37—N37—O37178.18 (18)C37—C31—C36—F360.1 (3)
C36—C31—C32—F32179.95 (18)C32—C31—C36—C350.8 (3)
C37—C31—C32—F320.8 (3)C37—C31—C36—C35179.9 (2)
C36—C31—C32—C330.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O37—H37···N140.84 (4)1.91 (4)2.746 (3)173 (3)
(IF4OX11) CS—AS-9–11 4-I—F4-PhCHO oxime, 1,2-bis(4-pyridyl)ethane top
Crystal data top
(C7H2F4INO)(C12H12N2)F(000) = 984
Mr = 503.23Dx = 1.775 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.2801 (9) ÅCell parameters from 9874 reflections
b = 11.2226 (15) Åθ = 2.4–31.7°
c = 26.846 (4) ŵ = 1.75 mm1
β = 95.661 (4)°T = 120 K
V = 1882.8 (5) Å3Plate, colourless
Z = 40.34 × 0.28 × 0.14 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6405 independent reflections
Radiation source: fine-focus sealed tube5234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 32.0°, θmin = 2.0°
Absorption correction: multi-scan
SADABS
h = 89
Tmin = 0.587, Tmax = 0.791k = 1615
28823 measured reflectionsl = 3940
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.040P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
6405 reflections(Δ/σ)max = 0.003
256 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C111.0834 (3)0.61419 (16)0.34975 (6)0.0322 (3)
C121.0054 (3)0.50210 (17)0.36022 (7)0.0344 (3)
F120.81031 (17)0.46804 (11)0.34078 (5)0.0447 (3)
C131.1241 (3)0.42204 (16)0.39035 (7)0.0353 (3)
F131.0372 (2)0.31534 (10)0.39857 (6)0.0478 (3)
C141.3293 (3)0.44800 (16)0.41139 (6)0.0341 (3)
I11.51017 (2)0.328867 (12)0.458343 (4)0.04006 (5)
C151.4094 (3)0.55835 (17)0.40050 (6)0.0339 (3)
F151.60875 (17)0.58920 (11)0.41906 (4)0.0422 (3)
C161.2901 (3)0.63888 (17)0.37104 (7)0.0332 (3)
F161.37725 (18)0.74594 (10)0.36298 (4)0.0430 (3)
C170.9682 (3)0.70613 (18)0.31989 (7)0.0363 (4)
H17A1.03370.78170.31670.044*
N170.7806 (3)0.68800 (14)0.29777 (6)0.0377 (3)
O170.7077 (2)0.78911 (14)0.27185 (6)0.0449 (3)
H170.583 (5)0.768 (3)0.2586 (10)0.054*
N210.3302 (3)0.70842 (17)0.22878 (6)0.0424 (4)
C220.3054 (3)0.5901 (2)0.22987 (8)0.0435 (4)
H220.41670.54340.24660.052*
C230.1258 (3)0.53254 (19)0.20789 (7)0.0424 (4)
H230.11500.44820.20950.051*
C240.0390 (3)0.5995 (2)0.18341 (7)0.0406 (4)
C250.0134 (3)0.7214 (2)0.18205 (7)0.0429 (4)
H250.12180.77030.16550.051*
C260.1709 (4)0.7712 (2)0.20492 (7)0.0434 (4)
H260.18580.85540.20370.052*
C270.2374 (3)0.5415 (2)0.15795 (8)0.0487 (5)
H27A0.26590.46610.17530.058*
H27B0.36190.59480.15990.058*
N310.7163 (3)0.31924 (17)0.02210 (7)0.0463 (4)
C320.7484 (3)0.4285 (2)0.03839 (8)0.0513 (5)
H320.88670.46220.03110.062*
C330.5940 (4)0.4967 (2)0.06521 (8)0.0479 (5)
H330.62620.57480.07590.058*
C340.3915 (3)0.44918 (18)0.07623 (7)0.0396 (4)
C350.3588 (4)0.33600 (18)0.05991 (9)0.0444 (5)
H350.22270.29950.06700.053*
C360.5225 (4)0.2743 (2)0.03306 (8)0.0466 (5)
H360.49470.19600.02200.056*
C370.2086 (4)0.5164 (2)0.10446 (9)0.0570 (6)
H37A0.07560.46970.10310.068*
H37B0.18970.59310.08720.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0296 (7)0.0333 (9)0.0333 (8)0.0003 (6)0.0012 (6)0.0042 (6)
C120.0283 (7)0.0358 (9)0.0386 (8)0.0026 (6)0.0001 (6)0.0048 (7)
F120.0313 (5)0.0417 (6)0.0587 (7)0.0070 (4)0.0073 (5)0.0016 (5)
C130.0356 (8)0.0311 (9)0.0393 (9)0.0026 (7)0.0033 (7)0.0020 (7)
F130.0428 (6)0.0357 (6)0.0640 (8)0.0075 (5)0.0006 (5)0.0072 (5)
C140.0342 (8)0.0356 (9)0.0322 (8)0.0026 (7)0.0022 (6)0.0025 (7)
I10.04208 (8)0.04368 (9)0.03394 (7)0.00812 (5)0.00129 (5)0.00145 (4)
C150.0283 (7)0.0403 (9)0.0326 (8)0.0013 (6)0.0006 (6)0.0050 (7)
F150.0313 (5)0.0484 (7)0.0450 (6)0.0052 (4)0.0067 (4)0.0045 (5)
C160.0319 (8)0.0323 (8)0.0353 (8)0.0048 (6)0.0024 (6)0.0031 (7)
F160.0392 (6)0.0373 (6)0.0513 (7)0.0097 (5)0.0019 (5)0.0026 (5)
C170.0352 (8)0.0339 (9)0.0392 (9)0.0000 (7)0.0006 (7)0.0021 (7)
N170.0373 (8)0.0366 (8)0.0379 (8)0.0043 (6)0.0025 (6)0.0023 (6)
O170.0390 (7)0.0410 (7)0.0521 (8)0.0055 (6)0.0083 (6)0.0036 (7)
N210.0430 (9)0.0486 (10)0.0341 (8)0.0011 (7)0.0042 (6)0.0000 (7)
C220.0402 (9)0.0481 (11)0.0406 (10)0.0068 (8)0.0046 (7)0.0043 (8)
C230.0453 (10)0.0413 (10)0.0394 (9)0.0012 (8)0.0021 (7)0.0017 (8)
C240.0392 (9)0.0525 (12)0.0293 (8)0.0014 (8)0.0016 (6)0.0023 (7)
C250.0435 (10)0.0511 (12)0.0327 (9)0.0087 (9)0.0029 (7)0.0054 (8)
C260.0524 (11)0.0432 (11)0.0333 (9)0.0026 (9)0.0020 (7)0.0015 (8)
C270.0409 (10)0.0671 (15)0.0370 (9)0.0083 (9)0.0023 (7)0.0035 (9)
N310.0407 (9)0.0594 (12)0.0375 (8)0.0078 (7)0.0022 (7)0.0035 (7)
C320.0391 (10)0.0703 (15)0.0436 (11)0.0154 (10)0.0010 (8)0.0004 (10)
C330.0608 (12)0.0399 (11)0.0431 (10)0.0112 (9)0.0050 (9)0.0043 (8)
C340.0460 (10)0.0404 (10)0.0324 (8)0.0075 (8)0.0034 (7)0.0023 (7)
C350.0390 (10)0.0437 (11)0.0487 (11)0.0046 (8)0.0056 (8)0.0022 (8)
C360.0525 (12)0.0354 (11)0.0503 (11)0.0013 (8)0.0034 (9)0.0061 (8)
C370.0596 (13)0.0696 (16)0.0430 (11)0.0264 (12)0.0109 (9)0.0176 (10)
Geometric parameters (Å, º) top
C11—C121.389 (3)C24—C251.378 (3)
C11—C161.394 (2)C24—C271.509 (3)
C11—C171.455 (3)C25—C261.375 (3)
C12—F121.3392 (19)C25—H250.9500
C12—C131.378 (3)C26—H260.9500
C13—F131.343 (2)C27—C371.492 (3)
C13—C141.386 (2)C27—H27A0.9900
C14—C151.379 (3)C27—H27B0.9900
C14—I12.0936 (18)N31—C361.323 (3)
C15—F151.3463 (19)N31—C321.324 (3)
C15—C161.373 (3)C32—C331.381 (3)
C16—F161.347 (2)C32—H320.9500
C17—N171.282 (2)C33—C341.384 (3)
C17—H17A0.9500C33—H330.9500
N17—O171.385 (2)C34—C351.366 (3)
O17—H170.86 (3)C34—C371.514 (3)
N21—C221.338 (3)C35—C361.382 (3)
N21—C261.335 (3)C35—H350.9500
C22—C231.380 (3)C36—H360.9500
C22—H220.9500C37—H37A0.9900
C23—C241.391 (3)C37—H37B0.9900
C23—H230.9500
C12—C11—C16115.47 (16)C26—C25—H25120.4
C12—C11—C17125.99 (16)C24—C25—H25120.4
C16—C11—C17118.53 (17)N21—C26—C25123.9 (2)
F12—C12—C13117.64 (16)N21—C26—H26118.1
F12—C12—C11120.47 (16)C25—C26—H26118.1
C13—C12—C11121.89 (16)C37—C27—C24110.14 (18)
F13—C13—C12118.21 (16)C37—C27—H27A109.6
F13—C13—C14119.80 (16)C24—C27—H27A109.6
C12—C13—C14121.98 (17)C37—C27—H27B109.6
C15—C14—C13116.50 (16)C24—C27—H27B109.6
C15—C14—I1120.92 (13)H27A—C27—H27B108.1
C13—C14—I1122.58 (14)C36—N31—C32116.50 (19)
F15—C15—C16118.59 (16)N31—C32—C33124.3 (2)
F15—C15—C14119.85 (16)N31—C32—H32117.9
C16—C15—C14121.57 (16)C33—C32—H32117.9
F16—C16—C15118.19 (15)C32—C33—C34118.8 (2)
F16—C16—C11119.23 (16)C32—C33—H33120.6
C15—C16—C11122.58 (17)C34—C33—H33120.6
N17—C17—C11121.81 (18)C35—C34—C33117.01 (19)
N17—C17—H17A119.1C35—C34—C37119.6 (2)
C11—C17—H17A119.1C33—C34—C37123.4 (2)
C17—N17—O17110.23 (17)C34—C35—C36120.4 (2)
N17—O17—H17103.0 (19)C34—C35—H35119.8
C22—N21—C26116.83 (18)C36—C35—H35119.8
N21—C22—C23123.17 (18)N31—C36—C35123.1 (2)
N21—C22—H22118.4N31—C36—H36118.5
C23—C22—H22118.4C35—C36—H36118.5
C22—C23—C24119.2 (2)C27—C37—C34114.70 (18)
C22—C23—H23120.4C27—C37—H37A108.6
C24—C23—H23120.4C34—C37—H37A108.6
C25—C24—C23117.75 (18)C27—C37—H37B108.6
C25—C24—C27120.68 (18)C34—C37—H37B108.6
C23—C24—C27121.5 (2)H37A—C37—H37B107.6
C26—C25—C24119.19 (18)
C16—C11—C12—F12178.54 (16)C12—C11—C17—N173.7 (3)
C17—C11—C12—F122.6 (3)C16—C11—C17—N17177.48 (18)
C16—C11—C12—C131.0 (3)C11—C17—N17—O17179.74 (16)
C17—C11—C12—C13177.79 (18)C26—N21—C22—C230.1 (3)
F12—C12—C13—F130.3 (3)N21—C22—C23—C240.2 (3)
C11—C12—C13—F13179.89 (17)C22—C23—C24—C250.5 (3)
F12—C12—C13—C14178.67 (16)C22—C23—C24—C27178.95 (19)
C11—C12—C13—C140.9 (3)C23—C24—C25—C260.4 (3)
F13—C13—C14—C15178.76 (16)C27—C24—C25—C26178.92 (19)
C12—C13—C14—C150.2 (3)C22—N21—C26—C250.2 (3)
F13—C13—C14—I12.2 (2)C24—C25—C26—N210.1 (3)
C12—C13—C14—I1178.83 (14)C25—C24—C27—C3787.2 (3)
C13—C14—C15—F15179.12 (16)C23—C24—C27—C3791.3 (3)
I1—C14—C15—F151.9 (2)C36—N31—C32—C330.5 (3)
C13—C14—C15—C161.1 (3)N31—C32—C33—C340.1 (4)
I1—C14—C15—C16177.91 (14)C32—C33—C34—C350.6 (3)
F15—C15—C16—F161.3 (2)C32—C33—C34—C37178.8 (2)
C14—C15—C16—F16178.49 (16)C33—C34—C35—C360.9 (3)
F15—C15—C16—C11179.23 (16)C37—C34—C35—C36178.5 (2)
C14—C15—C16—C111.0 (3)C32—N31—C36—C350.2 (3)
C12—C11—C16—F16179.59 (16)C34—C35—C36—N310.5 (4)
C17—C11—C16—F160.7 (3)C24—C27—C37—C34175.4 (2)
C12—C11—C16—C150.1 (3)C35—C34—C37—C27113.4 (3)
C17—C11—C16—C15178.82 (17)C33—C34—C37—C2767.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17···N210.86 (3)1.83 (3)2.690 (2)174 (3)
(IF4CO13) SD-1–8-1–7 4-I—F4-PhCOOH, 2,3,5,6-Me4-pyrazine top
Crystal data top
(C7HF4IO2)(C8H12N2)Dx = 1.904 Mg m3
Mr = 456.17Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 5785 reflections
a = 17.5616 (10) Åθ = 2.8–32.5°
b = 14.8078 (9) ŵ = 2.07 mm1
c = 6.1199 (3) ÅT = 120 K
V = 1591.47 (15) Å3Plate, colourless
Z = 40.38 × 0.20 × 0.10 mm
F(000) = 888
Data collection top
Bruker APEX-II CCD
diffractometer
4502 independent reflections
Radiation source: fine-focus sealed tube3352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 32.5°, θmin = 1.8°
Absorption correction: multi-scan
SADABS
h = 2425
Tmin = 0.507, Tmax = 0.820k = 2221
12591 measured reflectionsl = 59
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4502 reflectionsΔρmax = 3.16 e Å3
221 parametersΔρmin = 2.34 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.014819 (17)0.25687 (2)0.37970 (17)0.03077 (12)
C110.1458 (3)0.3565 (4)0.2293 (9)0.0268 (10)
C170.2009 (2)0.3857 (4)0.4158 (9)0.0261 (11)
O110.18993 (19)0.3452 (3)0.5886 (7)0.0356 (9)
H110.22840.35050.66920.043*
O120.2450 (2)0.4470 (3)0.3750 (7)0.0345 (9)
C120.1102 (3)0.4171 (3)0.0956 (10)0.0283 (11)
F120.11947 (15)0.50572 (17)0.1205 (7)0.0319 (6)
C130.0618 (3)0.3895 (4)0.0732 (9)0.0308 (11)
F130.02929 (19)0.4525 (2)0.2000 (6)0.0386 (8)
C140.0495 (3)0.2988 (4)0.1124 (9)0.0297 (11)
C150.0850 (4)0.2379 (4)0.0235 (11)0.0298 (12)
F150.0750 (2)0.1488 (2)0.0068 (6)0.0386 (8)
C160.1312 (3)0.2657 (4)0.1872 (11)0.0274 (11)
F160.1664 (2)0.2016 (2)0.3089 (6)0.0388 (8)
N210.2961 (2)0.3306 (3)0.8706 (7)0.0261 (9)
C220.3059 (4)0.2457 (3)0.9356 (10)0.0262 (11)
C230.3564 (3)0.2237 (3)1.1052 (14)0.0287 (11)
N240.3948 (3)0.2901 (3)1.2016 (8)0.0286 (9)
C250.3864 (3)0.3749 (3)1.1362 (12)0.0258 (9)
C260.3363 (3)0.3964 (4)0.9656 (9)0.0270 (10)
C320.2621 (3)0.1716 (4)0.8174 (12)0.0348 (13)
H32A0.22680.19890.71250.052*
H32B0.23330.13590.92400.052*
H32C0.29790.13230.73980.052*
C330.3692 (3)0.1286 (4)1.1714 (10)0.0344 (14)
H33A0.40650.12661.29020.052*
H33B0.38840.09421.04630.052*
H33C0.32100.10221.22140.052*
C350.4293 (3)0.4476 (4)1.2547 (11)0.0364 (13)
H35A0.46750.42001.35060.055*
H35B0.39380.48351.34250.055*
H35C0.45480.48681.14830.055*
C360.3251 (3)0.4907 (4)0.8880 (9)0.0318 (11)
H36A0.29150.49060.76000.048*
H36B0.37440.51690.84830.048*
H36C0.30180.52671.00470.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02517 (17)0.0469 (2)0.02022 (17)0.00504 (11)0.0003 (2)0.0033 (3)
C110.024 (2)0.034 (3)0.022 (2)0.000 (2)0.0020 (19)0.001 (2)
C170.0145 (18)0.035 (3)0.029 (3)0.0005 (18)0.0083 (19)0.011 (2)
O110.0290 (16)0.046 (2)0.032 (3)0.0051 (14)0.0066 (18)0.006 (2)
O120.0345 (18)0.041 (2)0.028 (2)0.0043 (18)0.0028 (17)0.0006 (19)
C120.029 (2)0.035 (2)0.021 (3)0.0023 (17)0.002 (2)0.005 (2)
F120.0377 (13)0.0283 (13)0.0296 (14)0.0023 (10)0.0056 (19)0.006 (2)
C130.031 (3)0.037 (3)0.025 (2)0.001 (2)0.003 (2)0.000 (2)
F130.0463 (18)0.0364 (19)0.0330 (19)0.0010 (15)0.0154 (16)0.0052 (16)
C140.029 (2)0.043 (3)0.018 (2)0.005 (2)0.002 (2)0.005 (2)
C150.031 (3)0.033 (3)0.025 (3)0.001 (2)0.002 (2)0.001 (2)
F150.0462 (18)0.0354 (17)0.0343 (18)0.0019 (16)0.0019 (16)0.0020 (16)
C160.027 (3)0.030 (3)0.025 (3)0.003 (2)0.004 (2)0.004 (2)
F160.0470 (19)0.0368 (19)0.0325 (18)0.0058 (16)0.0097 (17)0.0056 (16)
N210.030 (2)0.030 (2)0.0189 (18)0.0027 (18)0.0027 (18)0.0019 (18)
C220.027 (3)0.033 (3)0.018 (2)0.0015 (18)0.002 (2)0.0024 (19)
C230.028 (2)0.035 (2)0.023 (3)0.0002 (18)0.006 (3)0.012 (3)
N240.032 (2)0.030 (2)0.024 (2)0.0035 (19)0.0034 (18)0.0004 (19)
C250.0246 (18)0.030 (2)0.023 (2)0.0007 (16)0.005 (2)0.001 (3)
C260.025 (2)0.036 (3)0.020 (2)0.002 (2)0.0038 (19)0.000 (2)
C320.034 (3)0.034 (3)0.035 (3)0.002 (2)0.005 (2)0.006 (3)
C330.035 (3)0.036 (3)0.033 (3)0.003 (2)0.006 (2)0.006 (2)
C350.039 (3)0.039 (3)0.032 (3)0.005 (2)0.008 (3)0.003 (3)
C360.037 (3)0.030 (3)0.028 (3)0.004 (2)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
I1—C142.083 (5)C23—N241.330 (8)
C11—C121.367 (8)C23—C331.482 (8)
C11—C161.391 (8)N24—C251.327 (7)
C11—C171.558 (7)C25—C261.402 (8)
C17—O121.220 (6)C25—C351.501 (8)
C17—O111.231 (7)C26—C361.488 (8)
O11—H110.8400C32—H32A0.9800
C12—F121.331 (6)C32—H32B0.9800
C12—C131.398 (8)C32—H32C0.9800
C13—F131.342 (7)C33—H33A0.9800
C13—C141.380 (8)C33—H33B0.9800
C14—C151.377 (9)C33—H33C0.9800
C15—F151.343 (6)C35—H35A0.9800
C15—C161.353 (9)C35—H35B0.9800
C16—F161.356 (7)C35—H35C0.9800
N21—C221.330 (7)C36—H36A0.9800
N21—C261.335 (7)C36—H36B0.9800
C22—C231.404 (10)C36—H36C0.9800
C22—C321.523 (8)
C12—C11—C16116.1 (5)N24—C25—C26120.6 (5)
C12—C11—C17122.7 (5)N24—C25—C35118.5 (5)
C16—C11—C17121.2 (5)C26—C25—C35120.9 (5)
O12—C17—O11129.6 (5)N21—C26—C25119.4 (5)
O12—C17—C11116.9 (5)N21—C26—C36118.4 (5)
O11—C17—C11113.4 (4)C25—C26—C36122.2 (5)
C17—O11—H11109.5C22—C32—H32A109.5
F12—C12—C11121.5 (5)C22—C32—H32B109.5
F12—C12—C13116.6 (5)H32A—C32—H32B109.5
C11—C12—C13121.8 (5)C22—C32—H32C109.5
F13—C13—C14120.6 (5)H32A—C32—H32C109.5
F13—C13—C12118.8 (5)H32B—C32—H32C109.5
C14—C13—C12120.5 (5)C23—C33—H33A109.5
C15—C14—C13117.5 (5)C23—C33—H33B109.5
C15—C14—I1121.6 (4)H33A—C33—H33B109.5
C13—C14—I1120.8 (4)C23—C33—H33C109.5
F15—C15—C16118.7 (5)H33A—C33—H33C109.5
F15—C15—C14120.1 (6)H33B—C33—H33C109.5
C16—C15—C14121.2 (5)C25—C35—H35A109.5
C15—C16—F16117.8 (5)C25—C35—H35B109.5
C15—C16—C11122.8 (5)H35A—C35—H35B109.5
F16—C16—C11119.4 (6)C25—C35—H35C109.5
C22—N21—C26119.4 (5)H35A—C35—H35C109.5
N21—C22—C23121.5 (5)H35B—C35—H35C109.5
N21—C22—C32118.3 (5)C26—C36—H36A109.5
C23—C22—C32120.2 (5)C26—C36—H36B109.5
N24—C23—C22118.4 (5)H36A—C36—H36B109.5
N24—C23—C33120.3 (6)C26—C36—H36C109.5
C22—C23—C33121.2 (5)H36A—C36—H36C109.5
C25—N24—C23120.7 (5)H36B—C36—H36C109.5
C12—C11—C17—O1241.2 (7)F15—C15—C16—C11179.2 (5)
C16—C11—C17—O12137.6 (6)C14—C15—C16—C110.0 (10)
C12—C11—C17—O11135.2 (5)C12—C11—C16—C150.5 (9)
C16—C11—C17—O1145.9 (7)C17—C11—C16—C15178.4 (5)
C16—C11—C12—F12179.7 (5)C12—C11—C16—F16178.0 (5)
C17—C11—C12—F121.4 (8)C17—C11—C16—F160.9 (8)
C16—C11—C12—C130.1 (8)C26—N21—C22—C231.3 (9)
C17—C11—C12—C13179.0 (5)C26—N21—C22—C32177.2 (5)
F12—C12—C13—F131.1 (8)N21—C22—C23—N240.2 (10)
C11—C12—C13—F13179.3 (5)C32—C22—C23—N24178.7 (6)
F12—C12—C13—C14179.3 (5)N21—C22—C23—C33177.7 (6)
C11—C12—C13—C141.0 (9)C32—C22—C23—C330.8 (10)
F13—C13—C14—C15179.6 (5)C22—C23—N24—C251.2 (9)
C12—C13—C14—C151.4 (9)C33—C23—N24—C25176.8 (6)
F13—C13—C14—I13.5 (8)C23—N24—C25—C260.7 (9)
C12—C13—C14—I1174.7 (4)C23—N24—C25—C35178.3 (6)
C13—C14—C15—F15179.9 (5)C22—N21—C26—C251.8 (8)
I1—C14—C15—F154.0 (8)C22—N21—C26—C36179.2 (5)
C13—C14—C15—C160.9 (9)N24—C25—C26—N210.9 (8)
I1—C14—C15—C16175.2 (5)C35—C25—C26—N21176.8 (5)
F15—C15—C16—F161.6 (9)N24—C25—C26—C36179.8 (5)
C14—C15—C16—F16177.6 (6)C35—C25—C26—C362.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···N210.841.742.550 (6)162
(IF4CO12) SD—A-5–6 4-I—F4-PhCOOH, 4,4'-bipyridyl top
Crystal data top
(C7HIF4O2)(C10H8N2)F(000) = 920
Mr = 476.16Dx = 1.959 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1699 (6) ÅCell parameters from 9917 reflections
b = 11.1933 (6) Åθ = 2.5–32.6°
c = 12.2448 (6) ŵ = 2.04 mm1
β = 104.562 (2)°T = 120 K
V = 1614.42 (14) Å3Prism, colourless
Z = 40.24 × 0.14 × 0.08 mm
Data collection top
Bruker APEX-II CCD
diffractometer
5816 independent reflections
Radiation source: fine-focus sealed tube5229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 32.6°, θmin = 1.7°
Absorption correction: multi-scan
SADABS
h = 1817
Tmin = 0.640, Tmax = 0.854k = 1616
26566 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.025P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
5816 reflections(Δ/σ)max = 0.002
238 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.036163 (9)0.724735 (9)0.828205 (9)0.01951 (4)
N110.54874 (12)0.66860 (13)0.35776 (12)0.0187 (2)
H110.4986 (19)0.669 (2)0.4297 (18)0.022*
C120.57110 (14)0.56961 (15)0.30681 (15)0.0208 (3)
H120.54410.49510.32650.025*
C130.63248 (14)0.57246 (14)0.22613 (15)0.0203 (3)
H130.64510.50100.18920.024*
C140.67593 (13)0.68080 (13)0.19918 (13)0.0157 (3)
C150.65085 (15)0.78316 (14)0.25372 (15)0.0206 (3)
H150.67830.85880.23740.025*
C160.58658 (16)0.77441 (14)0.33081 (15)0.0217 (3)
H160.56850.84490.36590.026*
N210.89668 (12)0.69739 (13)0.02385 (13)0.0213 (3)
C220.85414 (16)0.79577 (15)0.01063 (15)0.0229 (3)
H220.87560.87070.01390.027*
C230.78034 (15)0.79533 (15)0.08027 (15)0.0208 (3)
H230.75150.86830.10140.025*
C240.74873 (13)0.68641 (14)0.11902 (13)0.0159 (3)
C250.79247 (14)0.58335 (15)0.08219 (15)0.0217 (3)
H250.77270.50690.10510.026*
C260.86508 (15)0.59324 (15)0.01191 (16)0.0235 (3)
H260.89410.52190.01230.028*
C310.29754 (14)0.74777 (14)0.57945 (13)0.0170 (3)
C370.37709 (15)0.75246 (15)0.50208 (14)0.0195 (3)
O310.44329 (11)0.66239 (11)0.51118 (11)0.0241 (2)
O320.37174 (13)0.83722 (12)0.43812 (12)0.0296 (3)
C320.23196 (14)0.64774 (14)0.58437 (14)0.0186 (3)
F320.23763 (10)0.55296 (9)0.51917 (9)0.0259 (2)
C330.15654 (14)0.64330 (14)0.65181 (14)0.0188 (3)
F330.09572 (10)0.54327 (9)0.65067 (10)0.0277 (2)
C340.14372 (14)0.73845 (14)0.71956 (14)0.0182 (3)
C350.20831 (14)0.83908 (14)0.71431 (14)0.0191 (3)
F350.20064 (10)0.93554 (10)0.77715 (10)0.0295 (2)
C360.28269 (14)0.84368 (14)0.64599 (14)0.0180 (3)
F360.34337 (9)0.94427 (9)0.64655 (9)0.0245 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01980 (5)0.02146 (6)0.02006 (6)0.00124 (3)0.01017 (4)0.00028 (4)
N110.0197 (6)0.0191 (6)0.0201 (6)0.0006 (5)0.0101 (5)0.0000 (5)
C120.0241 (7)0.0176 (7)0.0252 (8)0.0013 (5)0.0145 (6)0.0004 (6)
C130.0244 (7)0.0151 (6)0.0258 (8)0.0003 (5)0.0144 (6)0.0008 (6)
C140.0162 (6)0.0151 (6)0.0171 (6)0.0010 (5)0.0065 (5)0.0003 (5)
C150.0274 (8)0.0149 (6)0.0234 (8)0.0004 (5)0.0136 (6)0.0004 (5)
C160.0279 (8)0.0179 (7)0.0233 (8)0.0007 (6)0.0141 (7)0.0017 (6)
N210.0219 (6)0.0229 (6)0.0229 (7)0.0002 (5)0.0130 (5)0.0018 (5)
C220.0297 (8)0.0197 (7)0.0241 (8)0.0021 (6)0.0160 (7)0.0029 (6)
C230.0255 (8)0.0170 (6)0.0243 (8)0.0008 (6)0.0141 (6)0.0011 (6)
C240.0161 (6)0.0150 (6)0.0178 (6)0.0001 (5)0.0064 (5)0.0007 (5)
C250.0248 (8)0.0162 (6)0.0287 (8)0.0003 (5)0.0151 (7)0.0001 (6)
C260.0262 (8)0.0202 (7)0.0301 (9)0.0016 (6)0.0179 (7)0.0012 (6)
C310.0195 (7)0.0172 (6)0.0169 (7)0.0009 (5)0.0092 (6)0.0002 (5)
C370.0223 (7)0.0193 (6)0.0192 (7)0.0012 (5)0.0095 (6)0.0011 (5)
O310.0294 (6)0.0219 (6)0.0270 (6)0.0065 (5)0.0182 (5)0.0053 (5)
O320.0392 (7)0.0229 (6)0.0351 (7)0.0078 (5)0.0248 (6)0.0111 (5)
C320.0240 (7)0.0150 (6)0.0198 (7)0.0001 (5)0.0111 (6)0.0026 (5)
F320.0380 (6)0.0163 (4)0.0303 (5)0.0046 (4)0.0215 (5)0.0080 (4)
C330.0222 (7)0.0163 (6)0.0214 (7)0.0026 (5)0.0118 (6)0.0008 (5)
F330.0358 (6)0.0200 (5)0.0345 (6)0.0097 (4)0.0225 (5)0.0057 (4)
C340.0205 (7)0.0188 (7)0.0182 (7)0.0008 (5)0.0104 (6)0.0004 (5)
C350.0238 (7)0.0177 (6)0.0182 (7)0.0004 (5)0.0098 (6)0.0047 (5)
F350.0416 (6)0.0214 (5)0.0329 (6)0.0061 (4)0.0229 (5)0.0121 (4)
C360.0214 (7)0.0155 (6)0.0186 (7)0.0023 (5)0.0081 (6)0.0011 (5)
F360.0297 (5)0.0179 (4)0.0297 (5)0.0077 (4)0.0146 (4)0.0046 (4)
Geometric parameters (Å, º) top
I1—C342.0934 (16)C24—C251.392 (2)
N11—C121.333 (2)C25—C261.384 (2)
N11—C161.342 (2)C25—H250.9500
N11—H111.19 (2)C26—H260.9500
C12—C131.381 (2)C31—C321.385 (2)
C12—H120.9500C31—C361.387 (2)
C13—C141.395 (2)C31—C371.516 (2)
C13—H130.9500C37—O321.221 (2)
C14—C151.398 (2)C37—O311.278 (2)
C14—C241.480 (2)O31—H111.34 (2)
C15—C161.373 (2)C32—F321.3399 (17)
C15—H150.9500C32—C331.381 (2)
C16—H160.9500C33—F331.3404 (18)
N21—C221.330 (2)C33—C341.383 (2)
N21—C261.335 (2)C34—C351.384 (2)
C22—C231.385 (2)C35—F351.3426 (18)
C22—H220.9500C35—C361.379 (2)
C23—C241.397 (2)C36—F361.3455 (18)
C23—H230.9500
C12—N11—C16119.71 (14)C26—C25—C24119.41 (15)
C12—N11—H11123.7 (11)C26—C25—H25120.3
C16—N11—H11116.5 (11)C24—C25—H25120.3
N11—C12—C13121.78 (15)N21—C26—C25123.72 (15)
N11—C12—H12119.1N21—C26—H26118.1
C13—C12—H12119.1C25—C26—H26118.1
C12—C13—C14119.65 (14)C32—C31—C36116.02 (14)
C12—C13—H13120.2C32—C31—C37121.37 (14)
C14—C13—H13120.2C36—C31—C37122.57 (14)
C13—C14—C15117.26 (14)O32—C37—O31126.84 (16)
C13—C14—C24121.30 (13)O32—C37—C31119.21 (15)
C15—C14—C24121.41 (14)O31—C37—C31113.94 (14)
C16—C15—C14120.05 (14)C37—O31—H11108.3 (10)
C16—C15—H15120.0F32—C32—C33117.99 (14)
C14—C15—H15120.0F32—C32—C31119.84 (14)
N11—C16—C15121.49 (15)C33—C32—C31122.13 (14)
N11—C16—H16119.3F33—C33—C32118.17 (14)
C15—C16—H16119.3F33—C33—C34120.29 (14)
C22—N21—C26116.85 (14)C32—C33—C34121.55 (14)
N21—C22—C23123.84 (15)C33—C34—C35116.60 (14)
N21—C22—H22118.1C33—C34—I1120.51 (12)
C23—C22—H22118.1C35—C34—I1122.84 (11)
C22—C23—C24119.26 (15)F35—C35—C36117.93 (14)
C22—C23—H23120.4F35—C35—C34120.37 (14)
C24—C23—H23120.4C36—C35—C34121.70 (14)
C25—C24—C23116.92 (14)F36—C36—C35118.11 (14)
C25—C24—C14121.41 (14)F36—C36—C31119.90 (14)
C23—C24—C14121.62 (14)C35—C36—C31121.98 (14)
C16—N11—C12—C130.1 (3)C36—C31—C32—F32177.24 (15)
N11—C12—C13—C142.2 (3)C37—C31—C32—F320.5 (2)
C12—C13—C14—C152.3 (3)C36—C31—C32—C330.3 (2)
C12—C13—C14—C24175.75 (16)C37—C31—C32—C33178.00 (16)
C13—C14—C15—C160.5 (3)F32—C32—C33—F331.9 (2)
C24—C14—C15—C16177.55 (16)C31—C32—C33—F33179.43 (16)
C12—N11—C16—C151.8 (3)F32—C32—C33—C34178.50 (16)
C14—C15—C16—N111.6 (3)C31—C32—C33—C340.9 (3)
C26—N21—C22—C230.0 (3)F33—C33—C34—C35178.94 (16)
N21—C22—C23—C241.0 (3)C32—C33—C34—C351.4 (3)
C22—C23—C24—C251.4 (3)F33—C33—C34—I13.4 (2)
C22—C23—C24—C14176.14 (16)C32—C33—C34—I1176.17 (13)
C13—C14—C24—C2511.0 (2)C33—C34—C35—F35179.79 (16)
C15—C14—C24—C25166.89 (17)I1—C34—C35—F352.7 (2)
C13—C14—C24—C23171.50 (16)C33—C34—C35—C360.8 (3)
C15—C14—C24—C2310.6 (2)I1—C34—C35—C36176.79 (13)
C23—C24—C25—C261.0 (3)F35—C35—C36—F360.2 (2)
C14—C24—C25—C26176.57 (16)C34—C35—C36—F36179.27 (16)
C22—N21—C26—C250.5 (3)F35—C35—C36—C31179.02 (16)
C24—C25—C26—N210.0 (3)C34—C35—C36—C310.4 (3)
C32—C31—C37—O32128.44 (19)C32—C31—C36—F36179.76 (15)
C36—C31—C37—O3249.1 (3)C37—C31—C36—F362.5 (2)
C32—C31—C37—O3150.6 (2)C32—C31—C36—C351.0 (2)
C36—C31—C37—O31131.82 (17)C37—C31—C36—C35178.65 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O311.19 (2)1.34 (2)2.5285 (17)176 (2)
(BrCO11) SD-1–27-6–5 1,2-bis(4-pyridyl)ethane, (4-Br-PhCOOH)2 top
Crystal data top
(C12H12N2)(C7H5BrO2)2Z = 1
Mr = 586.28F(000) = 294
Triclinic, P1Dx = 1.689 Mg m3
a = 7.1108 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4624 (4) ÅCell parameters from 6775 reflections
c = 11.2299 (6) Åθ = 2.8–32.9°
α = 93.434 (2)°µ = 3.55 mm1
β = 94.022 (2)°T = 120 K
γ = 103.373 (2)°Plate, colourless
V = 576.53 (5) Å30.34 × 0.22 × 0.06 mm
Data collection top
Bruker APEX-II CCD
diffractometer
4144 independent reflections
Radiation source: fine-focus sealed tube3417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 33.2°, θmin = 1.8°
Absorption correction: multi-scan
SADABS
h = 1010
Tmin = 0.378, Tmax = 0.815k = 1111
13290 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.065P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
4144 reflections(Δ/σ)max = 0.002
157 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 1.01 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.2019 (3)0.9603 (2)0.36740 (17)0.0222 (3)
C120.3794 (3)0.9729 (3)0.3303 (2)0.0229 (4)
H120.42921.06830.28060.027*
C130.4924 (3)0.8527 (3)0.36146 (19)0.0207 (4)
H130.61740.86610.33320.025*
C140.4231 (3)0.7114 (3)0.43455 (18)0.0192 (3)
C150.2396 (3)0.6999 (3)0.47291 (19)0.0220 (4)
H150.18630.60670.52330.026*
C160.1345 (3)0.8254 (3)0.4371 (2)0.0234 (4)
H160.00870.81490.46360.028*
C170.5495 (3)0.5830 (3)0.46874 (19)0.0209 (4)
H17A0.66240.65420.52190.025*
H17B0.59960.53850.39530.025*
Br10.34658 (3)1.87116 (3)0.04548 (2)0.02855 (9)
C210.0148 (3)1.4482 (3)0.18747 (17)0.0179 (3)
C270.0972 (3)1.3182 (3)0.23586 (18)0.0189 (3)
O210.0107 (2)1.1762 (2)0.28247 (16)0.0276 (3)
H210.053 (5)1.102 (5)0.306 (3)0.033*
O220.2719 (2)1.3448 (2)0.23445 (16)0.0282 (3)
C220.0858 (3)1.6105 (3)0.14412 (19)0.0208 (4)
H220.22301.63490.14400.025*
C230.0119 (3)1.7364 (3)0.10132 (19)0.0222 (4)
H230.05671.84770.07210.027*
C240.2122 (3)1.6972 (3)0.10176 (19)0.0205 (4)
C250.3165 (3)1.5356 (3)0.1423 (2)0.0232 (4)
H250.45391.51060.14080.028*
C260.2160 (3)1.4107 (3)0.1853 (2)0.0218 (4)
H260.28511.29880.21350.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0224 (8)0.0167 (7)0.0287 (9)0.0073 (6)0.0003 (6)0.0030 (6)
C120.0240 (9)0.0175 (8)0.0283 (10)0.0065 (7)0.0012 (7)0.0051 (7)
C130.0197 (8)0.0169 (8)0.0262 (10)0.0054 (6)0.0023 (7)0.0030 (7)
C140.0185 (8)0.0155 (8)0.0240 (9)0.0059 (6)0.0014 (6)0.0014 (7)
C150.0204 (8)0.0194 (8)0.0277 (10)0.0067 (7)0.0024 (7)0.0056 (7)
C160.0197 (8)0.0206 (9)0.0316 (11)0.0080 (7)0.0019 (7)0.0034 (8)
C170.0177 (8)0.0184 (8)0.0284 (10)0.0074 (6)0.0012 (7)0.0045 (7)
Br10.02723 (12)0.02552 (12)0.03712 (15)0.01302 (8)0.00177 (8)0.01073 (9)
C210.0169 (8)0.0176 (8)0.0195 (9)0.0051 (6)0.0008 (6)0.0011 (6)
C270.0190 (8)0.0173 (8)0.0207 (9)0.0052 (6)0.0002 (6)0.0020 (7)
O210.0198 (7)0.0236 (7)0.0432 (9)0.0090 (6)0.0050 (6)0.0155 (7)
O220.0181 (7)0.0273 (8)0.0411 (9)0.0075 (6)0.0018 (6)0.0094 (7)
C220.0159 (8)0.0201 (8)0.0257 (10)0.0032 (6)0.0002 (6)0.0031 (7)
C230.0206 (8)0.0192 (8)0.0262 (10)0.0030 (7)0.0009 (7)0.0055 (7)
C240.0193 (8)0.0197 (8)0.0246 (9)0.0081 (7)0.0013 (7)0.0051 (7)
C250.0158 (8)0.0224 (9)0.0323 (11)0.0051 (7)0.0023 (7)0.0066 (8)
C260.0170 (8)0.0188 (8)0.0302 (10)0.0043 (6)0.0027 (7)0.0061 (7)
Geometric parameters (Å, º) top
N11—C161.334 (3)C21—C261.391 (3)
N11—C121.341 (3)C21—C221.391 (3)
C12—C131.380 (3)C21—C271.493 (3)
C12—H120.9500C27—O221.213 (2)
C13—C141.396 (3)C27—O211.316 (2)
C13—H130.9500O21—H210.83 (4)
C14—C151.388 (3)C22—C231.381 (3)
C14—C171.506 (3)C22—H220.9500
C15—C161.387 (3)C23—C241.387 (3)
C15—H150.9500C23—H230.9500
C16—H160.9500C24—C251.382 (3)
C17—C17i1.515 (4)C25—C261.388 (3)
C17—H17A0.9900C25—H250.9500
C17—H17B0.9900C26—H260.9500
Br1—C241.8934 (19)
C16—N11—C12117.79 (18)C26—C21—C22119.69 (18)
N11—C12—C13122.58 (19)C26—C21—C27121.56 (17)
N11—C12—H12118.7C22—C21—C27118.75 (17)
C13—C12—H12118.7O22—C27—O21123.69 (18)
C12—C13—C14119.98 (18)O22—C27—C21122.62 (18)
C12—C13—H13120.0O21—C27—C21113.68 (16)
C14—C13—H13120.0C27—O21—H21112 (2)
C15—C14—C13117.03 (17)C23—C22—C21120.55 (18)
C15—C14—C17123.78 (18)C23—C22—H22119.7
C13—C14—C17119.18 (17)C21—C22—H22119.7
C16—C15—C14119.52 (19)C22—C23—C24118.67 (18)
C16—C15—H15120.2C22—C23—H23120.7
C14—C15—H15120.2C24—C23—H23120.7
N11—C16—C15123.10 (19)C25—C24—C23122.08 (18)
N11—C16—H16118.5C25—C24—Br1119.08 (14)
C15—C16—H16118.5C23—C24—Br1118.83 (15)
C14—C17—C17i115.1 (2)C24—C25—C26118.53 (18)
C14—C17—H17A108.5C24—C25—H25120.7
C17i—C17—H17A108.5C26—C25—H25120.7
C14—C17—H17B108.5C25—C26—C21120.45 (18)
C17i—C17—H17B108.5C25—C26—H26119.8
H17A—C17—H17B107.5C21—C26—H26119.8
C16—N11—C12—C130.0 (3)C26—C21—C27—O214.5 (3)
N11—C12—C13—C140.1 (3)C22—C21—C27—O21175.25 (19)
C12—C13—C14—C150.1 (3)C26—C21—C22—C231.4 (3)
C12—C13—C14—C17179.29 (19)C27—C21—C22—C23178.41 (19)
C13—C14—C15—C160.5 (3)C21—C22—C23—C240.4 (3)
C17—C14—C15—C16179.58 (19)C22—C23—C24—C250.7 (3)
C12—N11—C16—C150.3 (3)C22—C23—C24—Br1179.03 (16)
C14—C15—C16—N110.6 (3)C23—C24—C25—C260.9 (3)
C15—C14—C17—C17i10.2 (3)Br1—C24—C25—C26178.87 (16)
C13—C14—C17—C17i170.7 (2)C24—C25—C26—C210.1 (3)
C26—C21—C27—O22177.2 (2)C22—C21—C26—C251.2 (3)
C22—C21—C27—O223.1 (3)C27—C21—C26—C25178.57 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···N110.83 (4)1.80 (4)2.626 (2)174 (3)
(BrCO12) CS—AL-6–12 4,4'-bipyridyl, (4-Br-PhCOOH)2 top
Crystal data top
(C10H8N2)(C7H5BrO2)2F(000) = 1668
Mr = 558.22Dx = 1.720 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.0467 (6) ÅCell parameters from 3538 reflections
b = 28.9658 (18) Åθ = 2.7–25.5°
c = 10.7956 (7) ŵ = 3.80 mm1
β = 110.603 (2)°T = 120 K
V = 3233.4 (3) Å3Needle, colourless
Z = 60.34 × 0.08 × 0.04 mm
Data collection top
Bruker APEX-II CCD
diffractometer
17575 independent reflections
Radiation source: fine-focus sealed tube9657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
φ and ω scansθmax = 31.6°, θmin = 2.0°
Absorption correction: multi-scan
TWINABS
h = 1514
Tmin = 0.359, Tmax = 0.863k = 041
17557 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
17575 reflections(Δ/σ)max = 0.002
437 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.03 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11_10.0362 (3)0.38315 (10)0.0785 (3)0.0360 (7)
C12_10.0194 (3)0.41425 (13)0.1721 (3)0.0387 (8)
H12_10.04920.40440.26180.046*
C13_10.0361 (3)0.45971 (13)0.1461 (3)0.0374 (8)
H13_10.07730.48030.21680.045*
C14_10.0075 (3)0.47564 (12)0.0157 (3)0.0304 (7)
C15_10.0650 (4)0.44269 (13)0.0809 (3)0.0433 (9)
H15_10.09620.45100.17180.052*
C16_10.0760 (3)0.39800 (13)0.0432 (3)0.0401 (8)
H16_10.11590.37630.11120.048*
N11_20.6444 (2)0.43767 (8)0.5571 (2)0.0244 (5)
C12_20.6315 (3)0.41935 (10)0.4391 (3)0.0247 (6)
H12_20.62980.43970.36950.030*
C13_20.6206 (3)0.37333 (11)0.4135 (3)0.0249 (6)
H13_20.61110.36220.32780.030*
C14_20.6234 (3)0.34230 (10)0.5140 (3)0.0218 (6)
C15_20.6387 (3)0.36131 (11)0.6369 (3)0.0253 (6)
H15_20.64280.34170.70880.030*
C16_20.6478 (3)0.40815 (10)0.6543 (3)0.0260 (6)
H16_20.65700.42030.73880.031*
N11_30.5803 (2)0.19660 (9)0.4462 (2)0.0266 (5)
C12_30.6428 (3)0.21376 (11)0.5672 (3)0.0290 (7)
H12_30.67690.19280.63880.035*
C13_30.6599 (3)0.26038 (10)0.5924 (3)0.0255 (6)
H13_30.70570.27090.67980.031*
C14_30.6108 (3)0.29197 (10)0.4910 (3)0.0228 (6)
C15_30.5454 (3)0.27387 (11)0.3648 (3)0.0261 (6)
H15_30.50930.29390.29140.031*
C16_30.5341 (3)0.22684 (11)0.3481 (3)0.0286 (7)
H16_30.49070.21530.26140.034*
Br1_10.02853 (3)0.058958 (13)0.03885 (4)0.04202 (11)
C21_10.0612 (3)0.21896 (12)0.0196 (3)0.0289 (7)
C22_10.0928 (3)0.19316 (12)0.0965 (3)0.0322 (7)
H22_10.11990.20840.17980.039*
C23_10.0848 (3)0.14594 (13)0.0909 (3)0.0339 (7)
H23_10.10750.12830.17000.041*
C24_10.0433 (3)0.12425 (12)0.0310 (3)0.0306 (7)
C25_10.0123 (3)0.14940 (13)