research papers
Acemetacin cocrystal structures by powder X-ray diffraction
aSchool of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Central University PO, Hyderabad 500 046, India, bDepartment of Chemistry, M. V. Lomonosov Moscow State University, 1–3 Leninskie Gory, Moscow 119991, Russian Federation, cA. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31 Leninsky Prospect, Moscow 119 071, Russian Federation, and dCSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India
*Correspondence e-mail: vladimir@struct.chem.msu.ru, ashwini.nangia@gmail.com
Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R32(9)R22(8)R32(9) with three different syn (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study.
Keywords: crystal engineering; co-crystals; molecular crystals.
1. Introduction
Cocrystallization is a standard strategy to tailor physicochemical properties of drugs based on their chemical constituents (Childs et al., 2004; Duggirala et al., 2016; Bolla & Nangia, 2016) and supramolecular structure through crystal engineering (Desiraju et al., 2011; Desiraju, 2013). Pharmaceutical cocrystals (Almarsson & Zaworotko, 2004; Schultheiss & Newman, 2009; Thakuria et al., 2013) belong to a subclass of multicomponent systems in which one of the molecules must be an Active Pharmaceutical Ingredient (API) and the coformer is a Generally Regarded as Safe (GRAS) substance (https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/; accessed on 20/08/2016). Cocrystals incorporate pharmaceutically acceptable coformers and the drug substance into the same to provide a new composition of the API (Aitipamula et al., 2012). Numerous cocrystal systems have been reported previously in more than a decade to modify the physicochemical and pharmacokinetic properties of drugs, notably solubility and bioavailability. The unique advantage of cocrystals is that they are amenable to those drugs which lack an ionizable and thus present an alternative to the traditional salts for improving solubility and dissolution rate (Childs et al., 2004; Bolla et al., 2013), physical stability (Babu et al., 2012; Trask et al., 2006), bioavailability (Weyna et al., 2012; Ganesh et al., 2015), permeability (Sanphui, Devi et al., 2015) and mechanical properties (Sun & Hou, 2008; Sanphui, Mishra et al., 2015). However, certain drugs can be difficult to crystallize as single crystals, and one such example in our experience is acemetacin, whether it is the pure drug or its cocrystals. Structure solution from powder diffraction data for acemetacin cocrystals is reported in this paper as part of our continuing studies on this system (Sanphui et al., 2013, 2014).
Acemetacin (ACM) is a glycolic acid ester prodrug of indomethacin and belongs to the non-steroidal anti-inflammatory drug (NSAID) class. It is metabolized to indomethacin, which then acts as an inhibitor of cyclooxygenase to produce the anti-inflammatory effects. ACM is sold under the trade name Emflex as 60 mg capsules (Merck KGaA). Solid-state forms of acemetacin have been studied by Chávez-Piña et al. (2007), Yoneda et al. (1981), Burger & Lettenbichler (1993) and Gelbrich et al. (2007). In our previous findings (Sanphui et al., 2013, 2014), the crystal structures of ACM Form I and II were identified as synthon polymorphs of carboxylic acid dimer and catemer motifs. The binary adducts of cocrystals with nicotinamide (NAM), isonicotinamide (INA), picolinamide (PAM) and caprolactam (CPR) are stabilized by acid–amide hetero synthons and the p-aminobenzoic acid (PABA) cocrystal has the hetero acid dimer synthon. We noted that ACM tends to form a hydrate during any kind of solution-based cocrystal preparation, and so its crystallization was carried out in strictly anhydrous melt conditions (solventless). The structures of ACM Form I, ACM–INA and ACM–PABA were solved using single-crystal X-ray diffraction and those of Form II polymorph and cocrystals ACM–PAM, ACM–CPR, salt ACM–PPZ were solved by high-resolution powder X-ray diffraction data [Scheme 1, where superscript a indicates coformers reported in a previous study (Sanphui et al., 2014) and superscript b coformers reported in this study].
Among the binary systems reported in our previous papers, the ACM–NAM cocrystal was characterized by IR, powder X-ray diffraction (PXRD) and et al., 2014), and from powder data (SDPD) was also not successful at that time. The cocrystal of ACM with p-aminobenzoic acid showed poor quality diffraction data and there was proton disorder in the ACM-COOH group. Therefore, high-resolution powder diffraction data were collected to solve the of ACM–PABA and nicotinamide cocrystals.
(DSC) but crystallization to obtain good diffraction quality single crystals was unsuccessful (SanphuiSingle-crystal X-ray diffraction is undoubtedly the most powerful tool to elucidate the molecular structure. However, the requirement for single crystals of appropriate size and quality limits the scope of this technique, because many materials crystallize as microcrystalline powders. Fortunately, there have been rapid advances during the past two decades in et al., 1994; Chernyshev, 2001; Harris, 2003; Le Bail et al., 2009). SDPD is the method of choice when there is difficulty obtaining the optimum size single crystals and also when phase transformation, hydration or solvate formation issues complicate the isolation of good quality single crystals for data collection. Recently Ueto et al. (2012) reported furosemide−nicotinamide cocrystal polymorphs and cocrystal hydrate crystal structures solved from high-resolution powder data. The crystal structures of several API forms with three-dimensional coordinates determined have been reported using high-resolution powder data (David & Shankland, 2008; Braga et al., 2012; Chernyshev et al., 2013). In this background, we report crystal structures of acemetacin cocrystals listed in Scheme 1 (part b) from high-resolution powder diffraction data.
from powder diffraction data (SDPD; Harris2. Experimental
2.1. Preparation of acemetacin cocrystals/salts
Acemetacin was purchased from Dalian Hong Ri Dong Sheng Import & Export Co. Ltd, China, https://dlhongridongsheng.guidechem.com/ and used as such without further purification. All the coformers were purchased form Sigma-Aldrich, India, and solvents are of analytically pure grade. ACM and the appropriate coformer was weighed in a 1:1 stoichiometric ratio in a 25 ml beaker and melted at 160°C. Cooling of the melt gave a glassy phase at room temperature (30°C) after 1–2 h, which was crystallized from different solvents, e.g. methyl isobutyl ketone (MIBK) and EtOAc. The solvents must be anhydrous (dry) to avoid the formation of ACM hydrates as by-products in crystallization. ACM–NAM-I, ACM–NAM-H, ACM–VLM, ACM–2HP and ACM–PABA cocrystals were prepared by melt crystallization. ACM–PABA was crystallized from dry EtOAc solvent. The purity and of phases was confirmed by DSC (single endotherm).
2.2. Powder X-ray diffraction
Bulk samples were analyzed by powder X-ray diffraction using a Bruker AXS D8 powder diffractometer (Bruker-AXS, Karlsruhe, Germany). Experimental conditions: Cu Kα radiation (λ = 1.5418 Å); 40 kV, 30 mA; scan range 5–50° 2θ. High-resolution X-ray powder diffraction data for ACM–NAM-I, ACM–NAM-H, ACM–2HP, ACM–PABA and ACM–VLM were collected at room temperature using a Huber G670 Guinier camera with an image plate detector and Cu Kα1 radiation (λ = 1.5406 Å). The unit-cell dimensions were determined using three indexing programs: TREOR90, ITO and AUTOX (Werner et al., 1985; Visser, 1969; Zlokazov, 1992, 1995). The crystal structures were solved using the simulated annealing technique (Zhukov et al., 2001) and refined using MRIA (Zlokazov & Chernyshev, 1992) following the procedure published earlier (Sanphui et al., 2014). The initial molecular models for acemetacin and coformer molecules were taken from the Cambridge Structural Database (ConQuest, Version 1.18 with updates; Groom & Allen, 2014). In simulated annealing runs (without H atoms), the total number of was either 20 or 21, i.e. 14 parameters for the acemetacin molecule (three translational, three rotational and eight torsional) and six or seven parameters for the coformer were varied. For ACM–NAM-H, the presence of solvent in the asymmetric part was approximated by a water molecule disordered over two positions. The occupancies were fixed to 0.5 s.o.f. and powder data collection, parameters, hydrogen-bonding values are given in Tables 1 and 2. The diffraction profiles after the final bond-restrained are shown later in the paper. X-Seed (Barbour, 2001) was used to prepare the figures and packing diagrams.
|
2.3. Thermal analysis
−1. Samples were purged with a stream of dry N2 flow at 80 ml min−1.
(DSC) was performed on a Mettler Toledo DSC 822e module. Samples were placed in crimped but vented aluminium sample pans, with a typical sample size of 2–5 mg. The temperature range was 30–200°C at a heating rate of 5°C min2.4. Solid-state NMR spectroscopy
Approximately 100 mg of fine crystalline sample was tightly packed into a zirconia rotor with the help of Teflon stick up to the cap Kel-F mark. A cross-polarization, magic angle spinning (CP-MAS) pulse sequence was used for spectral acquisition. Each sample was spun at a frequency of 5.0 ± 0.01 kHz and the magic angle setting was calibrated by the KBr method. Each data set was subjected to a 5.0 Hz line-broadening factor and subsequently Fourier transformed and phase corrected to produce a frequency domain spectrum. Solid-state 13C NMR spectra were obtained on a Bruker (Bruker BioSpin, Karlsruhe, Germany) Ultrashield 400 spectrometer utilizing a 13C resonant frequency of 100 MHz (magnetic field strength of 9.39 T). The chemical shifts were referenced to trimethylsilyl (TMS) using glycine (δglycine = 43.3 p.p.m.) as an external secondary standard. 15N CP-MAS spectra recorded at 400 MHz were referenced to glycine N and then the chemical shifts were recalculated to nitromethane (δglycine = −347.6 p.p.m.).
3. Results and discussion
The chemical units present in the crystal structures of Form I, II and cocrystals with INA, PAM, PABA are displayed in Fig. 1. Experimental conditions to yield single crystals in different solvents always resulted in either ACM hydrate or a precipitate. We therefore used the microcrystalline sample to solve the crystal structures from powder X-ray data collected at high resolution. The crystal structures of ACM–NAM were determined as two forms, an anhydrate ACM–NAM-I and a cocrystal hydrate ACM–NAM-H. X-ray parameters are summarized in Table 1 and hydrogen-bond metrics in Table 2. The binary adducts were prepared by melt crystallization and characterized by their melting point, PXRD and DSC. The bulk phase purity was checked by PXRD and DSC.
3.1. Crystal structures of binary cocrystals
3.1.1. ACM–NAM-I (1:1)
ACM–NAM-I (1:1) crystallized in the monoclinic P21/c. The molecular packing is stabilized by an acid–pyridine primary synthon and further by an amide–acid hydrogen bond (Fig. 2a). NAM molecules are bonded through amide catemer chains along the 21 screw axis and also interact with ACM molecules to give a sandwich-type packing (Fig. 2b). The two-dimensional packing of the in Fig. 2(c) shows the separation of ACM and NAM domains in the structure.
3.1.2. ACM−NAM-H (1:1:1)
ACM–NAM-H is a hydrated form of ACM–NAM, wherein ACM, NAM and H2O cocrystallize in an equimolar ratio in the of the . The acid–pyridine synthon, similar to that observed in ACM–NAM, is observed (Fig. 3a) and furthermore NAM amide homodimers are present here, in contrast to the amide catemer chain in the anhydrate. The anti-N—H of NAM forms N—H⋯O hydrogen bonds with the amide group of ACM (Fig. 3b). Water molecules are present in the (001) plane in a disorder state split over two sites with s.o.f. of 0.6 and 0.4, which extend via the O—H⋯O=C H bond with the acid group of ACM. The water molecules act as spacers between different layers along the c-axis (Fig. 3c).
3.1.3. ACM–VLM (1:1)
The ACM–VLM (1:1) cocrystal in the a) R32(9)R22(8)R32(9) graph-set motif (Etter et al., 1990; Bernstein et al., 1995) with VLM and is similar to the caprolactam cocrystal from our previous report (Sanphui et al., 2014) (see Fig. 1f). The R32(9)R22(8)R32(9) motif extends in the (010) plane with C—H⋯O and C—H⋯Cl interactions (Fig. 4b). VLM molecules form sandwiches with ACM molecules in the along the c-axis (Fig. 4c).
consists of an acid–amide three-point synthon (Fig. 43.1.4. ACM–2HP (1:1)
ACM–2HP (1:1) crystallized in the P21/c via the acid–amide three-point synthon R32(9)R22(8)R32(9) (Fig. 5a), similar to that in CPR and VLM cocrystals. These synthons extend via C—H⋯O interactions with adjacent ACM molecules via glycolate ester CH2 and amide C=O to result in a layered packing (Fig. 5b). 2HP molecules are sandwiched with ACM molecules along the c-axis (Fig. 5c).
3.1.5. ACM–PABA (1:1)
The ACM–PABA (1:1) et al., 2014). However, the diffraction quality of the tiny needle-shape single crystals was not good enough and so proton disorder in the COOH group and C=O, C—O distances could not be measured to a high enough precision (Fig. 6a). In order to resolve this issue, we revisited the ACM–PABA structure by SDPD. The bond distances of the COOH group in ACM and PABA are now measured accurately and show that the COOH group is present as a neutral group to confirm that the structure is a cocrystal (and not a salt or salt-cocrystal; Fig. 6b and c). The significance of the SDPD technique is demonstrated in this cocrystal structure.
has been reported by us previously (SanphuiAll crystallographic parameters and hydrogen bond distances are listed in Tables 1 and 2.
3.2. Conformational analysis
The alkyl chain, glycolic ester, p-Cl-benzoyl group and OMe groups attached to the planar indole ring exhibit conformational flexibility. The rotations about C—C bonds (Fig. 7a) are classified as Type I or II. The orientation of the p-Cl-benzoyl and OMe group in ACM hydrate (Fig. 7b) match with that of ACM–NAM-I, ACM–NAM-H in Type I conformation, whereas the other cocrystals match with Form I ACM labeled as Type II. The orientation of the OMe group of ACM–PPZ adopts a parallel conformation with ACMH (Type I) and the p-Cl-benzoyl group exhibits good similarity with ACM Form I (Type II), and it resides in the middle of Type I and II. The alkyl chain part such as glycolic acid is flexible (Fig. S2 of the supporting information) and shows variable conformations in the structures (torsion angles are listed in Table S2). ACMH, ACM–NAM-I and ACM–NAM-H adopt the same conformation (Type I), whereas the cocrystals ACM–PABA, ACM–PAM, ACM–INA, ACM–CPR, ACM–VLM and ACM–2HP are in parallel conformation with ACM Form I (Type II); the PPZ salt is in between the two conformations. The strong hydrogen-bonding synthons result in conformation changes to guide the overall packing, but a detailed understanding of conformation changes with packing forces (intra- and intermolecular) in crystal structures is still elusive.
3.3. PXRD and DSC analysis of binary cocrystals
The products of cocrystallization were characterized by their powder XRD pattern and the overlay of experimental line profile on the calculated lines from the ). Apart from ACM–NAM which is polymorphic, all other cocrystals were crystallized in a single phase.
(Fig. 8Crystallization of ACM–NAM melted solid from solvents such as methyl isobutyl ketone and methyl ethyl ketone gave Form I, whereas dry EtOAC, acetonitrile, resulted in a hydrate (ACM–NAM-H). PXRD of ACM–NAM-I and ACM–NAM-H are different. A broad endotherm was observed at 90–100°C for ACM–NAM-H, whereas Form I starts to melt at 111°C (Fig. 9). Since DSC shows melting below 100°C and a single endotherm, our preliminary assumption was these two products are polymorphs. After solving the from SDPD the same result was confirmed in that Form I is anhydrate (ACM–NAM-I), whereas Form II is a hydrate (ACM–NAM-H). The existence of the water in was proven by SDPD to show that water loss from the hydrate and melting occurs simultaneously in this compound. ACM–VLM and ACM–2HP were similarly characterized by DSC in the bulk phase (Fig. 9).
3.4. Solid-state NMR spectroscopy
Solid-state NMR (Tishmack et al., 2003; Widdifield et al., 2013) is an informative tool to characterize cocrystals. The purpose of the NMR experiments was twofold: to confirm the molecular structure of the cocrystal and its stoichiometry, and to confirm the proton state in terms of salt-cocrystal state. Such questions are best answered by 15N NMR spectroscopy because the of neutral and ionic NH+ will be very different. Three distinct carbonyl peaks exist for ACM (carboxylic acid, ester and carboxamide). The coformers NAM, VLM and 2HP have a C=O bond group also, which makes it extremely challenging to assign carbon peaks unambiguously in 13C ss-NMR spectra (Fig. 10a; δ values are listed in Table S1). The presence of four different carbonyl peaks in the 150–180 p.p.m. region is characteristic of ACM–VLM, whereas ACM–NAM-I and the hydrate exhibit a difference of 51–62 p.p.m. in the aromatic region. 15N ss-NMR spectra were recorded, but the peak intensities were extremely low. There is a clear shift observed in 15N ss-NMR, e.g. NAM peak at 102.5 shifted to 106.8 in Form I and 99.4 p.p.m. in the hydrate form (Fig. 10b, Table S1).
3.5. Hirshfeld surface analysis
Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009; Spackman & McKinnon, 2002) is related to the proximity of near neighbor molecules and the intermolecular interactions. Hirshfeld analysis allows a pictorial identification of the characteristic interactions throughout the structure. The fingerprint plots and surface analysis of ACM cocrystals are displayed in Fig. 11 and Fig. S1. Each exhibits a unique fingerprint plot of weak interactions present in that particular system, and it is easy to differentiate the percentage of H⋯X hydrogen bond to hetero atom interactions. The Hirshfeld surface analysis shows that O⋯H, C⋯H, N⋯H and Cl⋯H interactions vary from one cocrystal structure to another (Fig. 12), and that their total contribution is less than 50%. The isotropic van der Waals and C—H⋯π, H⋯H, π⋯π interaction wings appear at the top of the fingerprint region. Among all the hetero interactions observed in this study, H⋯O has a major contribution to the two-dimensional fingerplots (Fig. 12).
4. Conclusions
The advantage and ease of SDPD is successfully demonstrated in this study on acemetacin cocrystals. Cocrystals of ACM–PABA, ACM–NAM-I, ACM–NAM-H, ACM−VLM and ACM−2HP were prepared by melt crystallization and their crystal structures solved using three-dimensional parameters obtained from high-resolution powder X-ray data. ss-NMR spectroscopy enabled the identification of cocrystals and different forms of NAM based on the shift in 13C and 15N resonance values. The novel binary phases of ACM–NAM were prepared by solidification of the melt phase followed by recrystallization from anhydrous solvents in dry conditions. The observed proton disorder in PABA cocrystal, which was previous solved as a less accurate is now improved using high-resolution SDPD data. ACM–NAM-I, ACM–NAM-H are confirmed as anhydrate and hydrate forms by high-resolution powder data. DSC suggests single endotherms for both the forms and crystallization experiments for single crystals resulting in ACM hydrate, showing that SDPD is the method of choice to confirm the two forms. Hirshfeld surface analysis exhibits unique fingerplots for different solid phases and differences in wings and spikes for the novel phases. The contribution of OH interactions in these crystal structures is visually depicted in Hirshfeld plots.
Supporting information
https://doi.org/10.1107/S2052252517002305/ed5011sup1.cif
contains datablocks ACM2HP, ACMNAMH, ACMNAMI, ACMPABA, ACMVLM. DOI:Rietveld powder data: contains datablock ACM2HP. DOI: https://doi.org/10.1107/S2052252517002305/ed5011ACM2HPsup2.rtv
Rietveld powder data: contains datablock ACMNAMH. DOI: https://doi.org/10.1107/S2052252517002305/ed5011ACMNAMHsup3.rtv
Rietveld powder data: contains datablock ACMNAMI. DOI: https://doi.org/10.1107/S2052252517002305/ed5011ACMNAMIsup4.rtv
Rietveld powder data: contains datablock ACMPABA. DOI: https://doi.org/10.1107/S2052252517002305/ed5011ACMPABAsup5.rtv
Rietveld powder data: contains datablock ACMVLM. DOI: https://doi.org/10.1107/S2052252517002305/ed5011ACMVLMsup6.rtv
Supporting tables and figures. DOI: https://doi.org/10.1107/S2052252517002305/ed5011sup7.pdf
For all compounds, data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell
MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software; program(s) used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA, SHELXL97 (Sheldrick, 2008).C21H18ClNO6·C5H5NO | F(000) = 1064 |
Mr = 510.91 | Dx = 1.430 Mg m−3 |
Monoclinic, P21/c | Melting point: 410 K |
Hall symbol: -P 2ybc | Cu Kα1 radiation, λ = 1.54059 Å |
a = 23.1400 (18) Å | µ = 1.87 mm−1 |
b = 5.1900 (8) Å | T = 298 K |
c = 21.2642 (19) Å | Particle morphology: no specific habit |
β = 111.714 (17)° | light grey |
V = 2372.5 (5) Å3 | flat_sheet, 15 × 1 mm |
Z = 4 | Specimen preparation: Prepared at 298 K and 101 kPa |
Guinier camera G670 diffractometer | Data collection mode: transmission |
Radiation source: line-focus sealed tube | Scan method: continuous |
Curved Germanium (111) monochromator | 2θmin = 3.000°, 2θmax = 85.000°, 2θstep = 0.01° |
Specimen mounting: thin layer on the non-diffracting silicon plate |
Refinement on Inet | Profile function: split-type pseudo-Voigt (Toraya, 1986) |
Least-squares matrix: full with fixed elements per cycle | 187 parameters |
Rp = 0.021 | 121 restraints |
Rwp = 0.027 | H-atom parameters not refined |
Rexp = 0.019 | Weighting scheme based on measured s.u.'s |
RBragg = 0.052 | (Δ/σ)max < 0.001 |
8201 data points | Background function: Chebyshev polynomial up to the 5th order |
Excluded region(s): none | Preferred orientation correction: March-Dollase (1986) texture correction. Direction of | [010], texture parameter r = 0.98(1).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.93520 (14) | 1.5144 (6) | 0.18680 (15) | 0.0450 (16)* | |
C1 | 0.8667 (5) | 1.345 (3) | 0.1662 (5) | 0.058 (6)* | |
C2 | 0.8620 (5) | 1.144 (2) | 0.2059 (5) | 0.056 (5)* | |
H2 | 0.8957 | 1.0988 | 0.2445 | 0.067* | |
C3 | 0.8061 (5) | 1.009 (2) | 0.1879 (5) | 0.049 (6)* | |
H3 | 0.8033 | 0.8657 | 0.2128 | 0.059* | |
C4 | 0.7541 (5) | 1.089 (2) | 0.1324 (5) | 0.055 (6)* | |
C5 | 0.7581 (5) | 1.293 (2) | 0.0914 (5) | 0.048 (5)* | |
H5 | 0.7237 | 1.3432 | 0.0540 | 0.058* | |
C6 | 0.8164 (5) | 1.423 (2) | 0.1083 (5) | 0.055 (5)* | |
H6 | 0.8210 | 1.5565 | 0.0814 | 0.066* | |
C7 | 0.6957 (5) | 0.938 (2) | 0.1125 (5) | 0.053 (5)* | |
C8 | 0.6702 (5) | 1.017 (2) | 0.2170 (5) | 0.056 (5)* | |
C9 | 0.6281 (4) | 0.909 (2) | 0.2418 (5) | 0.064 (6)* | |
C10 | 0.5962 (4) | 0.704 (2) | 0.1960 (5) | 0.056 (6)* | |
C11 | 0.6190 (5) | 0.697 (2) | 0.1439 (5) | 0.063 (6)* | |
C12 | 0.5956 (5) | 0.520 (2) | 0.0910 (5) | 0.051 (5)* | |
H12 | 0.6104 | 0.5194 | 0.0558 | 0.061* | |
C13 | 0.5496 (4) | 0.343 (2) | 0.0911 (5) | 0.049 (6)* | |
H13 | 0.5340 | 0.2242 | 0.0561 | 0.059* | |
C14 | 0.5277 (5) | 0.346 (2) | 0.1437 (5) | 0.061 (6)* | |
C15 | 0.5511 (5) | 0.525 (2) | 0.1968 (5) | 0.054 (5)* | |
H15 | 0.5367 | 0.5242 | 0.2323 | 0.065* | |
C16 | 0.4537 (5) | 0.028 (2) | 0.0900 (5) | 0.056 (5)* | |
H16A | 0.4242 | −0.0782 | 0.1000 | 0.084* | |
H16B | 0.4832 | −0.0803 | 0.0804 | 0.084* | |
H16C | 0.4323 | 0.1333 | 0.0513 | 0.084* | |
C17 | 0.7116 (4) | 1.234 (2) | 0.2468 (5) | 0.051 (5)* | |
H17A | 0.7360 | 1.2712 | 0.2200 | 0.076* | |
H17B | 0.7387 | 1.1902 | 0.2920 | 0.076* | |
H17C | 0.6873 | 1.3824 | 0.2480 | 0.076* | |
C18 | 0.6169 (5) | 0.990 (2) | 0.3053 (5) | 0.054 (6)* | |
H18A | 0.5751 | 0.9408 | 0.3006 | 0.065* | |
H18B | 0.6198 | 1.1766 | 0.3094 | 0.065* | |
C19 | 0.6640 (4) | 0.868 (3) | 0.3708 (5) | 0.061 (6)* | |
C20 | 0.7375 (5) | 0.576 (2) | 0.4351 (5) | 0.056 (6)* | |
H20A | 0.7445 | 0.3919 | 0.4362 | 0.067* | |
H20B | 0.7220 | 0.6178 | 0.4705 | 0.067* | |
C21 | 0.7985 (5) | 0.713 (2) | 0.4495 (5) | 0.062 (6)* | |
N1 | 0.6649 (3) | 0.8872 (19) | 0.1564 (4) | 0.051 (4)* | |
O1 | 0.6662 (3) | 0.9055 (15) | 0.0518 (3) | 0.046 (3)* | |
O2 | 0.4846 (3) | 0.1827 (14) | 0.1450 (3) | 0.047 (3)* | |
O3 | 0.6722 (3) | 1.0035 (14) | 0.4187 (3) | 0.045 (4)* | |
O4 | 0.6918 (3) | 0.6439 (15) | 0.3714 (3) | 0.042 (3)* | |
O5 | 0.8019 (3) | 0.8857 (15) | 0.4129 (3) | 0.048 (3)* | |
O6 | 0.8438 (3) | 0.6269 (15) | 0.5020 (3) | 0.050 (3)* | |
H6A | 0.8755 | 0.7090 | 0.5071 | 0.075* | |
O7 | 0.9500 (3) | 0.8186 (15) | 0.5190 (3) | 0.044 (3)* | |
N2 | 1.0540 (4) | 0.7944 (18) | 0.5701 (4) | 0.050 (4)* | |
H2A | 1.0571 | 0.9288 | 0.5479 | 0.060* | |
C22 | 0.9959 (5) | 0.709 (2) | 0.5613 (5) | 0.047 (5)* | |
C23 | 0.9937 (5) | 0.485 (2) | 0.6000 (5) | 0.051 (6)* | |
H23 | 0.9554 | 0.4181 | 0.5967 | 0.061* | |
C24 | 1.0465 (5) | 0.371 (2) | 0.6411 (5) | 0.053 (6)* | |
H24 | 1.0442 | 0.2242 | 0.6651 | 0.064* | |
C25 | 1.1050 (4) | 0.471 (2) | 0.6481 (4) | 0.051 (6)* | |
H25 | 1.1414 | 0.3935 | 0.6771 | 0.061* | |
C26 | 1.1072 (5) | 0.682 (2) | 0.6115 (6) | 0.063 (5)* | |
H26 | 1.1454 | 0.7499 | 0.6149 | 0.075* |
Cl1—C1 | 1.722 (12) | C16—H16A | 0.96 |
C1—C2 | 1.369 (18) | C16—H16B | 0.96 |
C1—C6 | 1.405 (13) | C16—H16C | 0.96 |
C2—C3 | 1.394 (15) | C17—H17A | 0.96 |
C2—H2 | 0.93 | C17—H17B | 0.96 |
C3—C4 | 1.402 (12) | C17—H17C | 0.96 |
C3—H3 | 0.93 | C18—C19 | 1.552 (13) |
C4—C5 | 1.395 (17) | C18—H18A | 0.97 |
C4—C7 | 1.484 (15) | C18—H18B | 0.97 |
C5—C6 | 1.429 (15) | C19—O3 | 1.193 (14) |
C5—H5 | 0.93 | C19—O4 | 1.327 (15) |
C6—H6 | 0.93 | C20—O4 | 1.420 (11) |
C7—O1 | 1.228 (11) | C20—C21 | 1.507 (16) |
C7—N1 | 1.393 (16) | C20—H20A | 0.97 |
C8—C9 | 1.387 (18) | C20—H20B | 0.97 |
C8—N1 | 1.419 (15) | C21—O5 | 1.207 (15) |
C8—C17 | 1.460 (15) | C21—O6 | 1.296 (11) |
C9—C10 | 1.447 (15) | O6—H6A | 0.82 |
C9—C18 | 1.525 (17) | O7—C22 | 1.246 (11) |
C10—C11 | 1.393 (17) | N2—C26 | 1.352 (12) |
C10—C15 | 1.404 (17) | N2—C22 | 1.361 (15) |
C11—C12 | 1.397 (15) | N2—H2A | 0.86 |
C11—N1 | 1.401 (15) | C22—C23 | 1.436 (16) |
C12—C13 | 1.407 (17) | C23—C24 | 1.348 (14) |
C12—H12 | 0.93 | C23—H23 | 0.93 |
C13—C14 | 1.389 (17) | C24—C25 | 1.405 (16) |
C13—H13 | 0.93 | C24—H24 | 0.93 |
C14—O2 | 1.317 (14) | C25—C26 | 1.357 (17) |
C14—C15 | 1.406 (16) | C25—H25 | 0.93 |
C15—H15 | 0.93 | C26—H26 | 0.93 |
C16—O2 | 1.381 (12) | ||
C2—C1—C6 | 122.0 (10) | H16B—C16—H16C | 109.5 |
C2—C1—Cl1 | 120.5 (7) | C8—C17—H17A | 109.5 |
C6—C1—Cl1 | 117.5 (10) | C8—C17—H17B | 109.5 |
C1—C2—C3 | 119.3 (8) | H17A—C17—H17B | 109.5 |
C1—C2—H2 | 120.3 | C8—C17—H17C | 109.5 |
C3—C2—H2 | 120.3 | H17A—C17—H17C | 109.4 |
C2—C3—C4 | 120.1 (11) | H17B—C17—H17C | 109.5 |
C2—C3—H3 | 119.9 | C9—C18—C19 | 112.9 (9) |
C4—C3—H3 | 119.9 | C9—C18—H18A | 109.0 |
C5—C4—C3 | 121.1 (10) | C19—C18—H18A | 109.0 |
C5—C4—C7 | 119.2 (8) | C9—C18—H18B | 109.0 |
C3—C4—C7 | 119.4 (11) | C19—C18—H18B | 109.0 |
C4—C5—C6 | 118.3 (8) | H18A—C18—H18B | 107.7 |
C4—C5—H5 | 120.8 | O3—C19—O4 | 125.8 (9) |
C6—C5—H5 | 120.9 | O3—C19—C18 | 111.2 (10) |
C1—C6—C5 | 118.9 (11) | O4—C19—C18 | 123.0 (10) |
C1—C6—H6 | 120.5 | O4—C20—C21 | 112.9 (10) |
C5—C6—H6 | 120.5 | O4—C20—H20A | 109.0 |
O1—C7—N1 | 117.1 (9) | C21—C20—H20A | 109.0 |
O1—C7—C4 | 117.7 (11) | O4—C20—H20B | 109.0 |
N1—C7—C4 | 123.2 (9) | C21—C20—H20B | 109.0 |
C9—C8—N1 | 108.4 (9) | H20A—C20—H20B | 107.8 |
C9—C8—C17 | 125.9 (11) | O5—C21—O6 | 125.9 (10) |
N1—C8—C17 | 125.7 (11) | O5—C21—C20 | 119.9 (8) |
C8—C9—C10 | 107.3 (10) | O6—C21—C20 | 114.2 (10) |
C8—C9—C18 | 126.8 (10) | C7—N1—C11 | 123.0 (9) |
C10—C9—C18 | 126.0 (10) | C7—N1—C8 | 128.6 (9) |
C11—C10—C15 | 119.6 (10) | C11—N1—C8 | 108.2 (9) |
C11—C10—C9 | 107.8 (10) | C14—O2—C16 | 121.1 (9) |
C15—C10—C9 | 132.6 (11) | C19—O4—C20 | 114.4 (8) |
C10—C11—C12 | 120.7 (11) | C21—O6—H6A | 109.5 |
C10—C11—N1 | 108.3 (9) | C26—N2—C22 | 124.3 (10) |
C12—C11—N1 | 131.0 (11) | C26—N2—H2A | 117.8 |
C11—C12—C13 | 119.8 (12) | C22—N2—H2A | 117.8 |
C11—C12—H12 | 120.1 | O7—C22—N2 | 119.0 (10) |
C13—C12—H12 | 120.1 | O7—C22—C23 | 125.5 (11) |
C14—C13—C12 | 119.7 (10) | N2—C22—C23 | 115.3 (9) |
C14—C13—H13 | 120.1 | C24—C23—C22 | 120.8 (11) |
C12—C13—H13 | 120.2 | C24—C23—H23 | 119.6 |
O2—C14—C13 | 121.0 (10) | C22—C23—H23 | 119.6 |
O2—C14—C15 | 118.5 (11) | C23—C24—C25 | 120.9 (11) |
C13—C14—C15 | 120.5 (11) | C23—C24—H24 | 119.5 |
C10—C15—C14 | 119.7 (11) | C25—C24—H24 | 119.6 |
C10—C15—H15 | 120.2 | C26—C25—C24 | 118.4 (9) |
C14—C15—H15 | 120.2 | C26—C25—H25 | 120.8 |
O2—C16—H16A | 109.5 | C24—C25—H25 | 120.8 |
O2—C16—H16B | 109.5 | N2—C26—C25 | 120.3 (10) |
H16A—C16—H16B | 109.5 | N2—C26—H26 | 119.9 |
O2—C16—H16C | 109.5 | C25—C26—H26 | 119.9 |
H16A—C16—H16C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O7 | 0.82 | 1.74 | 2.550 (10) | 167.8 |
N2—H2A···O7i | 0.86 | 1.90 | 2.739 (12) | 166.2 |
Symmetry code: (i) −x+2, −y+2, −z+1. |
C21H18ClNO6·C6H6N2O·H2O | Z = 2 |
Mr = 555.96 | F(000) = 580 |
Triclinic, P1 | Dx = 1.383 Mg m−3 |
Hall symbol: -P 1 | Melting point: 364 K |
a = 21.348 (2) Å | Cu Kα1 radiation, λ = 1.54059 Å |
b = 4.1931 (12) Å | µ = 1.74 mm−1 |
c = 15.2174 (19) Å | T = 298 K |
α = 90.567 (17)° | Particle morphology: no specific habit |
β = 101.40 (2)° | light grey |
γ = 89.473 (16)° | flat_sheet, 15 × 1 mm |
V = 1335.2 (4) Å3 | Specimen preparation: Prepared at 298 K and 101 kPa |
Guinier camera G670 diffractometer | Data collection mode: transmission |
Radiation source: line-focus sealed tube | Scan method: continuous |
Curved Germanium (111) monochromator | 2θmin = 3.000°, 2θmax = 75.000°, 2θstep = 0.01° |
Specimen mounting: thin layer on the non-diffracting silicon plate |
Refinement on Inet | Profile function: split-type pseudo-Voigt (Toraya, 1986) |
Least-squares matrix: full with fixed elements per cycle | 203 parameters |
Rp = 0.016 | 125 restraints |
Rwp = 0.019 | H-atom parameters not refined |
Rexp = 0.016 | Weighting scheme based on measured s.u.'s |
RBragg = 0.036 | (Δ/σ)max = 0.003 |
7201 data points | Background function: Chebyshev polynomial up to the 5th order |
Excluded region(s): none | Preferred orientation correction: March-Dollase (1986) texture correction. Direction of | [1-10], texture parameter r = 0.96(1).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | −0.0912 (2) | 0.5223 (11) | 0.5983 (3) | 0.070 (2)* | |
C1 | −0.0141 (7) | 0.499 (4) | 0.6606 (9) | 0.081 (8)* | |
C2 | 0.0057 (7) | 0.672 (4) | 0.7395 (10) | 0.076 (7)* | |
H2 | −0.0220 | 0.8140 | 0.7602 | 0.091* | |
C3 | 0.0696 (7) | 0.627 (4) | 0.7878 (10) | 0.075 (7)* | |
H3 | 0.0838 | 0.7330 | 0.8419 | 0.090* | |
C4 | 0.1107 (6) | 0.421 (4) | 0.7528 (9) | 0.069 (7)* | |
C5 | 0.0893 (7) | 0.250 (4) | 0.6731 (10) | 0.085 (7)* | |
H5 | 0.1165 | 0.1060 | 0.6523 | 0.102* | |
C6 | 0.0280 (7) | 0.296 (4) | 0.6256 (9) | 0.075 (7)* | |
H6 | 0.0145 | 0.1940 | 0.5707 | 0.090* | |
C7 | 0.1771 (7) | 0.383 (4) | 0.8020 (10) | 0.083 (7)* | |
C8 | 0.2864 (6) | 0.138 (4) | 0.8104 (10) | 0.078 (8)* | |
C9 | 0.3315 (7) | 0.141 (4) | 0.7563 (10) | 0.080 (7)* | |
C10 | 0.3042 (6) | 0.322 (4) | 0.6767 (9) | 0.070 (7)* | |
C11 | 0.2435 (7) | 0.427 (4) | 0.6863 (10) | 0.074 (7)* | |
C12 | 0.2073 (6) | 0.618 (4) | 0.6197 (9) | 0.070 (7)* | |
H12 | 0.1665 | 0.6857 | 0.6243 | 0.084* | |
C13 | 0.2334 (6) | 0.705 (4) | 0.5460 (10) | 0.075 (7)* | |
H13 | 0.2099 | 0.8378 | 0.5028 | 0.090* | |
C14 | 0.2937 (6) | 0.600 (4) | 0.5356 (10) | 0.077 (7)* | |
C15 | 0.3297 (7) | 0.407 (4) | 0.6020 (10) | 0.088 (8)* | |
H15 | 0.3702 | 0.3359 | 0.5966 | 0.105* | |
C16 | 0.3754 (6) | 0.576 (4) | 0.4517 (9) | 0.074 (7)* | |
H16A | 0.3852 | 0.6657 | 0.3982 | 0.111* | |
H16B | 0.3734 | 0.3481 | 0.4458 | 0.111* | |
H16C | 0.4080 | 0.6334 | 0.5022 | 0.111* | |
C17 | 0.2938 (7) | −0.028 (4) | 0.8966 (10) | 0.073 (7)* | |
H17A | 0.2562 | 0.0056 | 0.9214 | 0.110* | |
H17B | 0.3304 | 0.0535 | 0.9374 | 0.110* | |
H17C | 0.2996 | −0.2525 | 0.8873 | 0.110* | |
C18 | 0.3953 (7) | −0.026 (4) | 0.7737 (9) | 0.081 (7)* | |
H18A | 0.4102 | −0.0372 | 0.7175 | 0.097* | |
H18B | 0.3887 | −0.2430 | 0.7911 | 0.097* | |
C19 | 0.4483 (6) | 0.115 (4) | 0.8437 (10) | 0.063 (7)* | |
C20 | 0.5515 (6) | 0.220 (4) | 0.9132 (9) | 0.079 (8)* | |
H20A | 0.5729 | 0.1036 | 0.9655 | 0.095* | |
H20B | 0.5275 | 0.3938 | 0.9334 | 0.095* | |
C21 | 0.6004 (7) | 0.353 (4) | 0.8653 (10) | 0.073 (7)* | |
O1 | 0.1833 (4) | 0.348 (2) | 0.8831 (6) | 0.065 (4)* | |
O2 | 0.3168 (4) | 0.694 (2) | 0.4645 (6) | 0.060 (4)* | |
O3 | 0.4321 (4) | 0.338 (2) | 0.8852 (6) | 0.069 (4)* | |
O4 | 0.5084 (4) | 0.011 (2) | 0.8557 (6) | 0.067 (5)* | |
O5 | 0.5902 (4) | 0.353 (2) | 0.7843 (6) | 0.068 (5)* | |
O6 | 0.6524 (4) | 0.449 (2) | 0.9179 (6) | 0.061 (4)* | |
H6A | 0.6770 | 0.5184 | 0.8877 | 0.092* | |
N1 | 0.2309 (5) | 0.309 (3) | 0.7664 (7) | 0.064 (6)* | |
N2 | 0.9174 (5) | 0.833 (3) | 1.0147 (7) | 0.066 (6)* | |
H2A | 0.9549 | 0.8436 | 1.0479 | 0.079* | |
H2B | 0.8859 | 0.7637 | 1.0364 | 0.079* | |
N3 | 0.7329 (5) | 0.721 (3) | 0.8427 (7) | 0.070 (6)* | |
O7 | 0.9533 (4) | 1.026 (3) | 0.8979 (6) | 0.072 (4)* | |
C22 | 0.9080 (7) | 0.926 (4) | 0.9293 (10) | 0.079 (7)* | |
C23 | 0.8414 (6) | 0.904 (4) | 0.8725 (9) | 0.071 (7)* | |
C24 | 0.7908 (6) | 0.741 (4) | 0.8947 (9) | 0.078 (8)* | |
H24 | 0.7976 | 0.6392 | 0.9497 | 0.093* | |
C25 | 0.7243 (6) | 0.863 (4) | 0.7642 (9) | 0.075 (7)* | |
H25 | 0.6845 | 0.8451 | 0.7265 | 0.090* | |
C26 | 0.7713 (7) | 1.039 (4) | 0.7339 (10) | 0.085 (8)* | |
H26 | 0.7629 | 1.1431 | 0.6792 | 0.102* | |
C27 | 0.8297 (7) | 1.048 (4) | 0.7885 (10) | 0.082 (8)* | |
H27 | 0.8627 | 1.1538 | 0.7696 | 0.098* | |
O1W | 0.5037 (10) | 1.063 (6) | 0.5957 (14) | 0.159 (12)* | 0.50 |
H1WA | 0.5206 | 1.0020 | 0.6460 | 0.238* | 0.50 |
H1WB | 0.4784 | 1.2106 | 0.5981 | 0.238* | 0.50 |
O2W | 0.5017 (10) | 0.618 (6) | 0.6279 (14) | 0.183 (13)* | 0.50 |
H2WA | 0.5087 | 0.5753 | 0.6814 | 0.274* | 0.50 |
H2WB | 0.5257 | 0.7547 | 0.6153 | 0.274* | 0.50 |
Cl1—C1 | 1.733 (14) | C17—H17A | 0.96 |
C1—C2 | 1.39 (2) | C17—H17B | 0.96 |
C1—C6 | 1.41 (2) | C17—H17C | 0.96 |
C2—C3 | 1.428 (19) | C18—C19 | 1.513 (19) |
C2—H2 | 0.93 | C18—H18A | 0.97 |
C3—C4 | 1.40 (2) | C18—H18B | 0.97 |
C3—H3 | 0.93 | C19—O3 | 1.208 (19) |
C4—C5 | 1.40 (2) | C19—O4 | 1.331 (16) |
C4—C7 | 1.474 (19) | C20—O4 | 1.436 (17) |
C5—C6 | 1.377 (19) | C20—C21 | 1.50 (2) |
C5—H5 | 0.93 | C20—H20A | 0.97 |
C6—H6 | 0.93 | C20—H20B | 0.97 |
C7—O1 | 1.225 (17) | C21—O5 | 1.209 (17) |
C7—N1 | 1.39 (2) | C21—O6 | 1.299 (16) |
C8—C9 | 1.39 (2) | O6—H6A | 0.82 |
C8—N1 | 1.430 (17) | N2—C22 | 1.336 (19) |
C8—C17 | 1.47 (2) | N2—H2A | 0.86 |
C9—C10 | 1.46 (2) | N2—H2B | 0.86 |
C9—C18 | 1.50 (2) | N3—C25 | 1.319 (19) |
C10—C11 | 1.40 (2) | N3—C24 | 1.332 (16) |
C10—C15 | 1.40 (2) | O7—C22 | 1.239 (19) |
C11—N1 | 1.39 (2) | C22—C23 | 1.515 (18) |
C11—C12 | 1.40 (2) | C23—C24 | 1.38 (2) |
C12—C13 | 1.40 (2) | C23—C27 | 1.40 (2) |
C12—H12 | 0.93 | C24—H24 | 0.93 |
C13—C14 | 1.40 (2) | C25—C26 | 1.40 (2) |
C13—H13 | 0.93 | C25—H25 | 0.9302 |
C14—O2 | 1.339 (19) | C26—C27 | 1.355 (19) |
C14—C15 | 1.40 (2) | C26—H26 | 0.9303 |
C15—H15 | 0.93 | C27—H27 | 0.9304 |
C16—O2 | 1.389 (17) | O1W—H1WA | 0.82 |
C16—H16A | 0.96 | O1W—H1WB | 0.82 |
C16—H16B | 0.96 | O2W—H2WA | 0.82 |
C16—H16C | 0.96 | O2W—H2WB | 0.82 |
C2—C1—C6 | 121.8 (13) | H17A—C17—H17B | 109.4 |
C2—C1—Cl1 | 122.5 (12) | C8—C17—H17C | 109.5 |
C6—C1—Cl1 | 115.7 (10) | H17A—C17—H17C | 109.4 |
C1—C2—C3 | 118.2 (14) | H17B—C17—H17C | 109.4 |
C1—C2—H2 | 120.9 | C9—C18—C19 | 118.1 (13) |
C3—C2—H2 | 120.9 | C9—C18—H18A | 107.7 |
C4—C3—C2 | 119.4 (13) | C19—C18—H18A | 107.7 |
C4—C3—H3 | 120.3 | C9—C18—H18B | 107.8 |
C2—C3—H3 | 120.3 | C19—C18—H18B | 107.8 |
C3—C4—C5 | 121.0 (12) | H18A—C18—H18B | 107.1 |
C3—C4—C7 | 118.9 (13) | O3—C19—O4 | 122.8 (12) |
C5—C4—C7 | 120.1 (14) | O3—C19—C18 | 114.6 (12) |
C6—C5—C4 | 119.9 (14) | O4—C19—C18 | 122.5 (13) |
C6—C5—H5 | 120.1 | O4—C20—C21 | 111.2 (12) |
C4—C5—H5 | 120.0 | O4—C20—H20A | 109.4 |
C5—C6—C1 | 119.6 (13) | C21—C20—H20A | 109.4 |
C5—C6—H6 | 120.2 | O4—C20—H20B | 109.4 |
C1—C6—H6 | 120.2 | C21—C20—H20B | 109.4 |
O1—C7—N1 | 115.6 (12) | H20A—C20—H20B | 108.0 |
O1—C7—C4 | 115.3 (14) | O5—C21—O6 | 125.8 (14) |
N1—C7—C4 | 127.4 (13) | O5—C21—C20 | 119.8 (12) |
C9—C8—N1 | 108.7 (12) | O6—C21—C20 | 114.4 (12) |
C9—C8—C17 | 125.0 (13) | C14—O2—C16 | 119.6 (11) |
N1—C8—C17 | 126.2 (13) | C19—O4—C20 | 111.8 (11) |
C8—C9—C10 | 107.1 (13) | C21—O6—H6A | 109.5 |
C8—C9—C18 | 126.8 (14) | C7—N1—C11 | 125.4 (12) |
C10—C9—C18 | 126.1 (14) | C7—N1—C8 | 126.3 (12) |
C11—C10—C15 | 121.3 (13) | C11—N1—C8 | 107.8 (11) |
C11—C10—C9 | 107.5 (13) | C22—N2—H2A | 120.0 |
C15—C10—C9 | 131.1 (13) | C22—N2—H2B | 120.0 |
N1—C11—C10 | 108.9 (12) | H2A—N2—H2B | 120.0 |
N1—C11—C12 | 131.8 (14) | C25—N3—C24 | 117.0 (13) |
C10—C11—C12 | 119.3 (14) | O7—C22—N2 | 120.1 (12) |
C11—C12—C13 | 119.1 (13) | O7—C22—C23 | 121.2 (13) |
C11—C12—H12 | 120.4 | N2—C22—C23 | 118.7 (13) |
C13—C12—H12 | 120.5 | C24—C23—C27 | 116.0 (12) |
C14—C13—C12 | 121.9 (13) | C24—C23—C22 | 125.8 (13) |
C14—C13—H13 | 119.0 | C27—C23—C22 | 118.2 (13) |
C12—C13—H13 | 119.1 | N3—C24—C23 | 124.6 (13) |
O2—C14—C13 | 119.5 (12) | N3—C24—H24 | 117.7 |
O2—C14—C15 | 121.5 (13) | C23—C24—H24 | 117.7 |
C13—C14—C15 | 118.9 (14) | N3—C25—C26 | 124.2 (12) |
C14—C15—C10 | 119.5 (14) | N3—C25—H25 | 117.9 |
C14—C15—H15 | 120.3 | C26—C25—H25 | 117.9 |
C10—C15—H15 | 120.2 | C27—C26—C25 | 116.6 (14) |
O2—C16—H16A | 109.4 | C27—C26—H26 | 121.7 |
O2—C16—H16B | 109.5 | C25—C26—H26 | 121.7 |
H16A—C16—H16B | 109.5 | C26—C27—C23 | 121.5 (15) |
O2—C16—H16C | 109.5 | C26—C27—H27 | 119.2 |
H16A—C16—H16C | 109.4 | C23—C27—H27 | 119.2 |
H16B—C16—H16C | 109.5 | H1WA—O1W—H1WB | 111.5 |
C8—C17—H17A | 109.5 | H2WA—O2W—H2WB | 113.1 |
C8—C17—H17B | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···N3 | 0.82 | 1.72 | 2.530 (14) | 168 |
N2—H2A···O7i | 0.86 | 2.05 | 2.881 (14) | 163 |
N2—H2B···O1ii | 0.86 | 2.15 | 2.999 (14) | 167 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+1, −z+2. |
C21H18ClNO6·C6H6N2O | F(000) = 1120 |
Mr = 537.94 | Dx = 1.406 Mg m−3 |
Monoclinic, P21/c | Melting point: 384 K |
Hall symbol: -P 2ybc | Cu Kα1 radiation, λ = 1.54059 Å |
a = 4.8977 (11) Å | µ = 1.78 mm−1 |
b = 40.914 (4) Å | T = 298 K |
c = 12.8874 (19) Å | Particle morphology: no specific habit |
β = 100.328 (18)° | yellow |
V = 2540.6 (7) Å3 | flat_sheet, 15 × 1 mm |
Z = 4 | Specimen preparation: Prepared at 298 K and 101 kPa |
Guinier camera G670 diffractometer | Data collection mode: transmission |
Radiation source: line-focus sealed tube | Scan method: continuous |
Curved Germanium (111) monochromator | 2θmin = 3.000°, 2θmax = 75.000°, 2θstep = 0.01° |
Specimen mounting: thin layer on the non-diffracting silicon plate |
Refinement on Inet | Profile function: split-type pseudo-Voigt (Toraya, 1986) |
Least-squares matrix: full with fixed elements per cycle | 195 parameters |
Rp = 0.016 | 125 restraints |
Rwp = 0.018 | H-atom parameters not refined |
Rexp = 0.017 | Weighting scheme based on measured s.u.'s |
RBragg = 0.036 | (Δ/σ)max = 0.001 |
7201 data points | Background function: Chebyshev polynomial up to the 5th order |
Excluded region(s): none | Preferred orientation correction: March-Dollase (1986) texture correction. Direction of | [100], texture parameter r = 0.98(1).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.5288 (10) | 0.86210 (10) | 0.0468 (3) | 0.081 (2)* | |
O1 | 0.957 (2) | 0.7318 (2) | 0.3175 (8) | 0.073 (5)* | |
O2 | 0.103 (2) | 0.6517 (2) | −0.1540 (7) | 0.062 (5)* | |
O3 | 1.151 (2) | 0.5993 (2) | 0.3156 (7) | 0.077 (5)* | |
O4 | 0.7316 (18) | 0.5849 (2) | 0.2352 (7) | 0.068 (5)* | |
O5 | 0.367 (2) | 0.5381 (2) | 0.2088 (8) | 0.082 (5)* | |
O6 | 0.420 (2) | 0.5262 (2) | 0.3811 (8) | 0.086 (5)* | |
H6A | 0.2921 | 0.5135 | 0.3618 | 0.129* | |
N1 | 0.867 (3) | 0.7022 (3) | 0.1699 (9) | 0.071 (6)* | |
C1 | 0.629 (3) | 0.8243 (3) | 0.0970 (12) | 0.092 (8)* | |
C2 | 0.548 (4) | 0.8137 (3) | 0.1883 (12) | 0.087 (8)* | |
H2 | 0.4379 | 0.8269 | 0.2226 | 0.105* | |
C3 | 0.631 (3) | 0.7834 (3) | 0.2284 (12) | 0.083 (8)* | |
H3 | 0.5839 | 0.7763 | 0.2915 | 0.100* | |
C4 | 0.789 (3) | 0.7632 (3) | 0.1722 (12) | 0.079 (8)* | |
C5 | 0.868 (3) | 0.7733 (3) | 0.0788 (12) | 0.088 (9)* | |
H5 | 0.9710 | 0.7596 | 0.0428 | 0.106* | |
C6 | 0.788 (4) | 0.8050 (3) | 0.0400 (11) | 0.086 (8)* | |
H6 | 0.8398 | 0.8128 | −0.0215 | 0.103* | |
C7 | 0.884 (3) | 0.7320 (3) | 0.2190 (12) | 0.086 (8)* | |
C8 | 1.037 (4) | 0.6743 (3) | 0.2002 (12) | 0.080 (8)* | |
C9 | 0.937 (3) | 0.6490 (4) | 0.1319 (12) | 0.081 (7)* | |
C11 | 0.656 (3) | 0.6931 (3) | 0.0862 (11) | 0.081 (8)* | |
C10 | 0.698 (3) | 0.6600 (3) | 0.0612 (10) | 0.072 (8)* | |
C12 | 0.442 (3) | 0.7115 (3) | 0.0296 (11) | 0.075 (8)* | |
H12 | 0.4236 | 0.7333 | 0.0470 | 0.090* | |
C13 | 0.254 (3) | 0.6977 (3) | −0.0533 (10) | 0.074 (8)* | |
H13 | 0.1116 | 0.7101 | −0.0916 | 0.089* | |
C14 | 0.288 (3) | 0.6642 (3) | −0.0772 (11) | 0.072 (8)* | |
C15 | 0.510 (3) | 0.6463 (4) | −0.0242 (11) | 0.079 (7)* | |
H15 | 0.5358 | 0.6249 | −0.0449 | 0.095* | |
C16 | 0.081 (3) | 0.6189 (3) | −0.1701 (12) | 0.075 (8)* | |
H16A | −0.0642 | 0.6145 | −0.2292 | 0.112* | |
H16B | 0.0373 | 0.6085 | −0.1083 | 0.112* | |
H16C | 0.2533 | 0.6105 | −0.1843 | 0.112* | |
C17 | 1.287 (3) | 0.6745 (3) | 0.2824 (12) | 0.080 (8)* | |
H17A | 1.3036 | 0.6953 | 0.3173 | 0.120* | |
H17B | 1.4473 | 0.6707 | 0.2509 | 0.120* | |
H17C | 1.2729 | 0.6576 | 0.3328 | 0.120* | |
C18 | 1.071 (3) | 0.6142 (3) | 0.1414 (12) | 0.078 (7)* | |
H18A | 1.2717 | 0.6158 | 0.1514 | 0.094* | |
H18B | 1.0059 | 0.6016 | 0.0781 | 0.094* | |
C19 | 0.980 (3) | 0.5975 (3) | 0.2401 (12) | 0.073 (8)* | |
C20 | 0.714 (3) | 0.5654 (3) | 0.3274 (10) | 0.073 (8)* | |
H20A | 0.6804 | 0.5794 | 0.3845 | 0.088* | |
H20B | 0.8869 | 0.5538 | 0.3503 | 0.088* | |
C21 | 0.480 (3) | 0.5414 (3) | 0.3001 (11) | 0.074 (8)* | |
O7 | −0.719 (2) | 0.4478 (2) | 0.0779 (7) | 0.066 (5)* | |
N2 | −0.323 (2) | 0.4548 (2) | 0.0148 (8) | 0.072 (6)* | |
H2A | −0.4030 | 0.4522 | −0.0497 | 0.086* | |
H2B | −0.1475 | 0.4586 | 0.0296 | 0.086* | |
N3 | 0.043 (3) | 0.4841 (2) | 0.3262 (9) | 0.067 (6)* | |
C22 | −0.472 (3) | 0.4530 (3) | 0.0928 (10) | 0.065 (8)* | |
C23 | −0.321 (3) | 0.4587 (3) | 0.2041 (12) | 0.067 (7)* | |
C24 | −0.087 (3) | 0.4788 (3) | 0.2299 (11) | 0.069 (8)* | |
H24 | −0.0206 | 0.4890 | 0.1750 | 0.083* | |
C25 | −0.042 (3) | 0.4671 (3) | 0.4034 (12) | 0.074 (8)* | |
H25 | 0.0525 | 0.4700 | 0.4721 | 0.089* | |
C26 | −0.262 (3) | 0.4455 (3) | 0.3862 (12) | 0.080 (7)* | |
H26 | −0.3153 | 0.4341 | 0.4418 | 0.096* | |
C27 | −0.402 (3) | 0.4414 (3) | 0.2841 (11) | 0.073 (8)* | |
H27 | −0.5496 | 0.4269 | 0.2698 | 0.087* |
Cl1—C1 | 1.714 (14) | C12—H12 | 0.93 |
O1—C7 | 1.256 (18) | C13—C14 | 1.421 (18) |
O2—C14 | 1.319 (16) | C13—H13 | 0.93 |
O2—C16 | 1.359 (16) | C14—C15 | 1.38 (2) |
O3—C19 | 1.167 (17) | C15—H15 | 0.93 |
O4—C19 | 1.311 (18) | C16—H16A | 0.96 |
O4—C20 | 1.447 (16) | C16—H16B | 0.96 |
O5—C21 | 1.216 (17) | C16—H16C | 0.96 |
O6—C21 | 1.293 (19) | C17—H17A | 0.96 |
O6—H6A | 0.82 | C17—H17B | 0.96 |
N1—C7 | 1.369 (18) | C17—H17C | 0.96 |
N1—C11 | 1.405 (17) | C18—C19 | 1.58 (2) |
N1—C8 | 1.424 (19) | C18—H18A | 0.97 |
C1—C2 | 1.38 (2) | C18—H18B | 0.97 |
C1—C6 | 1.41 (2) | C20—C21 | 1.50 (2) |
C2—C3 | 1.377 (19) | C20—H20A | 0.97 |
C2—H2 | 0.93 | C20—H20B | 0.97 |
C3—C4 | 1.42 (2) | O7—C22 | 1.207 (18) |
C3—H3 | 0.93 | N2—C22 | 1.35 (2) |
C4—C5 | 1.39 (2) | N2—H2A | 0.86 |
C4—C7 | 1.452 (19) | N2—H2B | 0.86 |
C5—C6 | 1.420 (19) | N3—C24 | 1.309 (18) |
C5—H5 | 0.93 | N3—C25 | 1.34 (2) |
C6—H6 | 0.93 | C22—C23 | 1.509 (19) |
C8—C9 | 1.39 (2) | C23—C27 | 1.37 (2) |
C8—C17 | 1.47 (2) | C23—C24 | 1.40 (2) |
C9—C10 | 1.42 (2) | C24—H24 | 0.9299 |
C9—C18 | 1.56 (2) | C25—C26 | 1.38 (2) |
C11—C12 | 1.39 (2) | C25—H25 | 0.93 |
C11—C10 | 1.416 (19) | C26—C27 | 1.379 (19) |
C10—C15 | 1.418 (19) | C26—H26 | 0.93 |
C12—C13 | 1.398 (19) | C27—H27 | 0.93 |
C14—O2—C16 | 121.6 (10) | O2—C16—H16B | 109.4 |
C19—O4—C20 | 111.7 (10) | H16A—C16—H16B | 109.5 |
C21—O6—H6A | 109.5 | O2—C16—H16C | 109.5 |
C7—N1—C11 | 124.4 (12) | H16A—C16—H16C | 109.5 |
C7—N1—C8 | 127.1 (12) | H16B—C16—H16C | 109.5 |
C11—N1—C8 | 108.1 (11) | C8—C17—H17A | 109.5 |
C2—C1—C6 | 122.8 (13) | C8—C17—H17B | 109.5 |
C2—C1—Cl1 | 120.0 (12) | H17A—C17—H17B | 109.5 |
C6—C1—Cl1 | 117.2 (11) | C8—C17—H17C | 109.5 |
C3—C2—C1 | 119.6 (15) | H17A—C17—H17C | 109.5 |
C3—C2—H2 | 120.2 | H17B—C17—H17C | 109.5 |
C1—C2—H2 | 120.2 | C9—C18—C19 | 106.4 (12) |
C2—C3—C4 | 119.0 (15) | C9—C18—H18A | 110.4 |
C2—C3—H3 | 120.5 | C19—C18—H18A | 110.4 |
C4—C3—H3 | 120.5 | C9—C18—H18B | 110.5 |
C5—C4—C3 | 122.1 (13) | C19—C18—H18B | 110.5 |
C5—C4—C7 | 120.1 (14) | H18A—C18—H18B | 108.6 |
C3—C4—C7 | 117.7 (14) | O3—C19—O4 | 125.8 (15) |
C4—C5—C6 | 118.3 (14) | O3—C19—C18 | 112.3 (13) |
C4—C5—H5 | 120.9 | O4—C19—C18 | 121.7 (12) |
C6—C5—H5 | 120.9 | O4—C20—C21 | 108.9 (10) |
C1—C6—C5 | 118.2 (14) | O4—C20—H20A | 109.9 |
C1—C6—H6 | 120.9 | C21—C20—H20A | 109.9 |
C5—C6—H6 | 120.9 | O4—C20—H20B | 109.9 |
O1—C7—N1 | 116.3 (12) | C21—C20—H20B | 109.9 |
O1—C7—C4 | 116.0 (13) | H20A—C20—H20B | 108.3 |
N1—C7—C4 | 127.1 (13) | O5—C21—O6 | 126.6 (14) |
C9—C8—N1 | 107.6 (12) | O5—C21—C20 | 119.9 (14) |
C9—C8—C17 | 127.8 (14) | O6—C21—C20 | 113.5 (12) |
N1—C8—C17 | 124.3 (12) | C22—N2—H2A | 120.0 |
C8—C9—C10 | 109.0 (13) | C22—N2—H2B | 120.0 |
C8—C9—C18 | 122.4 (13) | H2A—N2—H2B | 120.0 |
C10—C9—C18 | 128.6 (12) | C24—N3—C25 | 117.0 (12) |
C12—C11—N1 | 130.0 (12) | O7—C22—N2 | 123.5 (12) |
C12—C11—C10 | 121.8 (12) | O7—C22—C23 | 119.0 (13) |
N1—C11—C10 | 108.1 (11) | N2—C22—C23 | 117.4 (13) |
C11—C10—C15 | 117.0 (12) | C27—C23—C24 | 117.3 (13) |
C11—C10—C9 | 107.1 (12) | C27—C23—C22 | 118.6 (12) |
C15—C10—C9 | 135.9 (13) | C24—C23—C22 | 123.8 (14) |
C11—C12—C13 | 121.0 (13) | N3—C24—C23 | 124.2 (14) |
C11—C12—H12 | 119.5 | N3—C24—H24 | 117.9 |
C13—C12—H12 | 119.5 | C23—C24—H24 | 117.9 |
C12—C13—C14 | 118.0 (13) | N3—C25—C26 | 123.4 (13) |
C12—C13—H13 | 121.0 | N3—C25—H25 | 118.3 |
C14—C13—H13 | 121.0 | C26—C25—H25 | 118.3 |
O2—C14—C15 | 122.5 (12) | C27—C26—C25 | 118.0 (14) |
O2—C14—C13 | 116.5 (12) | C27—C26—H26 | 121.0 |
C15—C14—C13 | 121.0 (13) | C25—C26—H26 | 121.0 |
C14—C15—C10 | 121.1 (14) | C23—C27—C26 | 119.8 (14) |
C14—C15—H15 | 119.4 | C23—C27—H27 | 120.1 |
C10—C15—H15 | 119.4 | C26—C27—H27 | 120.1 |
O2—C16—H16A | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···N3 | 0.82 | 1.71 | 2.532 (15) | 174.9 |
N2—H2A···O5i | 0.86 | 2.13 | 2.866 (15) | 143.7 |
N2—H2B···O7ii | 0.86 | 2.13 | 2.938 (15) | 157.3 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y, z. |
C21H18ClNO6·C7H7NO2 | F(000) = 576 |
Mr = 552.95 | Dx = 1.417 Mg m−3 |
Monoclinic, P21 | Melting point: 431 K |
Hall symbol: P 2yb | Cu Kα1 radiation, λ = 1.54059 Å |
a = 17.2939 (18) Å | µ = 1.78 mm−1 |
b = 4.8191 (7) Å | T = 298 K |
c = 16.9544 (15) Å | Particle morphology: no specific habit |
β = 113.529 (17)° | light yellow |
V = 1295.5 (3) Å3 | flat_sheet, 15 × 1 mm |
Z = 2 | Specimen preparation: Prepared at 298 K and 101 kPa |
Guinier camera G670 diffractometer | Data collection mode: transmission |
Radiation source: line-focus sealed tube | Scan method: continuous |
Curved Germanium (111) monochromator | 2θmin = 3.000°, 2θmax = 75.000°, 2θstep = 0.01° |
Specimen mounting: thin layer on the non-diffracting silicon plate |
Refinement on Inet | Profile function: split-type pseudo-Voigt (Toraya, 1986) |
Least-squares matrix: full with fixed elements per cycle | 197 parameters |
Rp = 0.018 | 131 restraints |
Rwp = 0.024 | H-atom parameters not refined |
Rexp = 0.017 | Weighting scheme based on measured s.u.'s |
RBragg = 0.040 | (Δ/σ)max = 0.002 |
7201 data points | Background function: Chebyshev polynomial up to the 5th order |
Excluded region(s): none | Preferred orientation correction: March-Dollase (1986) texture correction. Direction of | [010], texture parameter r = 0.99(1).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.0427 (2) | 0.3730 | 0.6862 (2) | 0.0620 (16)* | |
C1 | 0.9470 (7) | 0.306 (4) | 0.6061 (7) | 0.073 (7)* | |
C2 | 0.9424 (7) | 0.096 (4) | 0.5448 (8) | 0.066 (7)* | |
H2 | 0.9897 | −0.0031 | 0.5480 | 0.079* | |
C3 | 0.8629 (8) | 0.049 (4) | 0.4800 (8) | 0.067 (7)* | |
H3 | 0.8579 | −0.0820 | 0.4378 | 0.081* | |
C4 | 0.7910 (7) | 0.187 (4) | 0.4754 (8) | 0.071 (7)* | |
C5 | 0.7952 (8) | 0.394 (5) | 0.5360 (8) | 0.076 (6)* | |
H5 | 0.7476 | 0.4906 | 0.5329 | 0.091* | |
C6 | 0.8766 (7) | 0.446 (4) | 0.6026 (8) | 0.069 (6)* | |
H6 | 0.8819 | 0.5777 | 0.6445 | 0.083* | |
C7 | 0.7075 (8) | 0.107 (4) | 0.4108 (8) | 0.075 (7)* | |
C8 | 0.7233 (8) | 0.204 (3) | 0.2721 (8) | 0.065 (6)* | |
C9 | 0.6838 (8) | 0.104 (4) | 0.1884 (8) | 0.073 (6)* | |
C10 | 0.6236 (7) | −0.104 (4) | 0.1891 (8) | 0.072 (6)* | |
C11 | 0.6274 (8) | −0.124 (5) | 0.2727 (8) | 0.082 (6)* | |
C12 | 0.5765 (7) | −0.310 (3) | 0.2930 (8) | 0.066 (6)* | |
H12 | 0.5801 | −0.3217 | 0.3491 | 0.079* | |
C13 | 0.5197 (8) | −0.482 (3) | 0.2287 (8) | 0.073 (7)* | |
H13 | 0.4867 | −0.6100 | 0.2422 | 0.088* | |
C14 | 0.5136 (8) | −0.456 (3) | 0.1445 (8) | 0.076 (7)* | |
C15 | 0.5668 (8) | −0.276 (4) | 0.1250 (8) | 0.079 (7)* | |
H15 | 0.5646 | −0.2695 | 0.0693 | 0.095* | |
C16 | 0.3962 (8) | −0.750 (3) | 0.0952 (7) | 0.068 (6)* | |
H16A | 0.3641 | −0.8561 | 0.0447 | 0.102* | |
H16B | 0.3602 | −0.6164 | 0.1056 | 0.102* | |
H16C | 0.4193 | −0.8726 | 0.1438 | 0.102* | |
C17 | 0.7879 (7) | 0.419 (4) | 0.2997 (8) | 0.072 (7)* | |
H17A | 0.8053 | 0.4517 | 0.3602 | 0.108* | |
H17B | 0.7654 | 0.5870 | 0.2686 | 0.108* | |
H17C | 0.8355 | 0.3597 | 0.2884 | 0.108* | |
C18 | 0.6977 (8) | 0.217 (3) | 0.1119 (7) | 0.063 (6)* | |
H18A | 0.6426 | 0.2392 | 0.0655 | 0.076* | |
H18B | 0.7216 | 0.4008 | 0.1272 | 0.076* | |
C19 | 0.7509 (7) | 0.065 (4) | 0.0763 (8) | 0.066 (6)* | |
C20 | 0.8239 (7) | −0.070 (4) | −0.0041 (8) | 0.070 (6)* | |
H20A | 0.8158 | −0.0843 | −0.0639 | 0.084* | |
H20B | 0.8160 | −0.2529 | 0.0153 | 0.084* | |
C21 | 0.9122 (8) | 0.027 (3) | 0.0483 (8) | 0.073 (7)* | |
N1 | 0.6900 (6) | 0.061 (3) | 0.3245 (6) | 0.065 (5)* | |
O1 | 0.6469 (5) | 0.112 (2) | 0.4320 (5) | 0.061 (4)* | |
O2 | 0.4606 (4) | −0.616 (2) | 0.0832 (5) | 0.057 (4)* | |
O3 | 0.7856 (5) | −0.140 (2) | 0.1181 (5) | 0.061 (4)* | |
O4 | 0.7616 (5) | 0.117 (2) | 0.0029 (5) | 0.062 (4)* | |
O5 | 0.9249 (5) | 0.208 (2) | 0.1019 (5) | 0.056 (4)* | |
O6 | 0.9699 (5) | −0.101 (3) | 0.0324 (5) | 0.065 (4)* | |
H6A | 1.0162 | −0.0380 | 0.0631 | 0.098* | |
N2 | 1.4863 (6) | 0.283 (3) | 0.4351 (6) | 0.069 (5)* | |
H2A | 1.5266 | 0.1879 | 0.4310 | 0.083* | |
H2B | 1.4967 | 0.3962 | 0.4773 | 0.083* | |
O7 | 1.0937 (5) | 0.322 (2) | 0.2094 (5) | 0.063 (4)* | |
H7 | 1.0457 | 0.2929 | 0.1740 | 0.094* | |
O8 | 1.1243 (4) | −0.021 (2) | 0.1376 (5) | 0.058 (4)* | |
C22 | 1.1468 (7) | 0.155 (4) | 0.1943 (8) | 0.070 (6)* | |
C23 | 1.2359 (8) | 0.192 (4) | 0.2554 (8) | 0.069 (6)* | |
C24 | 1.3011 (7) | 0.041 (3) | 0.2458 (8) | 0.073 (7)* | |
H24 | 1.2885 | −0.0827 | 0.2002 | 0.088* | |
C25 | 1.3839 (8) | 0.074 (4) | 0.3037 (8) | 0.065 (6)* | |
H25 | 1.4265 | −0.0257 | 0.2960 | 0.078* | |
C26 | 1.4041 (7) | 0.254 (3) | 0.3733 (8) | 0.071 (7)* | |
C27 | 1.3386 (8) | 0.407 (4) | 0.3826 (8) | 0.073 (6)* | |
H27 | 1.3509 | 0.5312 | 0.4279 | 0.088* | |
C28 | 1.2567 (8) | 0.372 (4) | 0.3249 (8) | 0.077 (6)* | |
H28 | 1.2141 | 0.4712 | 0.3326 | 0.092* |
Cl1—C1 | 1.701 (11) | C16—H16C | 0.9598 |
C1—C6 | 1.37 (2) | C17—H17A | 0.9605 |
C1—C2 | 1.43 (2) | C17—H17B | 0.9601 |
C2—C3 | 1.394 (15) | C17—H17C | 0.9596 |
C2—H2 | 0.9303 | C18—C19 | 1.48 (2) |
C3—C4 | 1.39 (2) | C18—H18A | 0.9701 |
C3—H3 | 0.9300 | C18—H18B | 0.9702 |
C4—C5 | 1.41 (2) | C19—O3 | 1.224 (18) |
C4—C7 | 1.473 (16) | C19—O4 | 1.353 (17) |
C5—C6 | 1.432 (15) | C20—O4 | 1.446 (19) |
C5—H5 | 0.9297 | C20—C21 | 1.502 (17) |
C6—H6 | 0.9298 | C20—H20A | 0.9705 |
C7—O1 | 1.237 (18) | C20—H20B | 0.9700 |
C7—N1 | 1.388 (17) | C21—O5 | 1.214 (17) |
C8—C9 | 1.392 (18) | C21—O6 | 1.289 (18) |
C8—N1 | 1.42 (2) | O6—H6A | 0.8200 |
C8—C17 | 1.46 (2) | N2—C26 | 1.396 (13) |
C9—C10 | 1.45 (2) | N2—H2A | 0.8603 |
C9—C18 | 1.51 (2) | N2—H2B | 0.8597 |
C10—C11 | 1.40 (2) | O7—C22 | 1.320 (19) |
C10—C15 | 1.41 (2) | O7—H7 | 0.8199 |
C11—C12 | 1.39 (2) | O8—C22 | 1.222 (18) |
C11—N1 | 1.41 (2) | C22—C23 | 1.485 (16) |
C12—C13 | 1.407 (18) | C23—C28 | 1.39 (2) |
C12—H12 | 0.9303 | C23—C24 | 1.41 (2) |
C13—C14 | 1.39 (2) | C24—C25 | 1.384 (15) |
C13—H13 | 0.9297 | C24—H24 | 0.9302 |
C14—O2 | 1.322 (15) | C25—C26 | 1.39 (2) |
C14—C15 | 1.40 (2) | C25—H25 | 0.9303 |
C15—H15 | 0.9300 | C26—C27 | 1.41 (2) |
C16—O2 | 1.372 (18) | C27—C28 | 1.372 (16) |
C16—H16A | 0.9600 | C27—H27 | 0.9301 |
C16—H16B | 0.9603 | C28—H28 | 0.9298 |
C6—C1—C2 | 121.7 (10) | H17A—C17—H17B | 109.4 |
C6—C1—Cl1 | 120.3 (11) | C8—C17—H17C | 109.5 |
C2—C1—Cl1 | 118.0 (10) | H17A—C17—H17C | 109.5 |
C3—C2—C1 | 116.2 (13) | H17B—C17—H17C | 109.5 |
C3—C2—H2 | 121.9 | C19—C18—C9 | 120.7 (13) |
C1—C2—H2 | 122.0 | C19—C18—H18A | 107.1 |
C4—C3—C2 | 123.0 (14) | C9—C18—H18A | 107.2 |
C4—C3—H3 | 118.5 | C19—C18—H18B | 107.1 |
C2—C3—H3 | 118.5 | C9—C18—H18B | 107.2 |
C3—C4—C5 | 121.0 (11) | H18A—C18—H18B | 106.8 |
C3—C4—C7 | 120.4 (14) | O3—C19—O4 | 118.0 (14) |
C5—C4—C7 | 118.4 (13) | O3—C19—C18 | 113.8 (13) |
C4—C5—C6 | 116.5 (14) | O4—C19—C18 | 128.1 (13) |
C4—C5—H5 | 121.7 | O4—C20—C21 | 111.9 (13) |
C6—C5—H5 | 121.8 | O4—C20—H20A | 109.3 |
C1—C6—C5 | 121.6 (14) | C21—C20—H20A | 109.2 |
C1—C6—H6 | 119.2 | O4—C20—H20B | 109.3 |
C5—C6—H6 | 119.2 | C21—C20—H20B | 109.2 |
O1—C7—N1 | 117.1 (10) | H20A—C20—H20B | 107.9 |
O1—C7—C4 | 118.1 (12) | O5—C21—O6 | 125.1 (11) |
N1—C7—C4 | 124.2 (13) | O5—C21—C20 | 120.2 (13) |
C9—C8—N1 | 108.4 (12) | O6—C21—C20 | 114.7 (12) |
C9—C8—C17 | 125.0 (14) | C7—N1—C11 | 123.3 (13) |
N1—C8—C17 | 126.6 (11) | C7—N1—C8 | 127.7 (12) |
C8—C9—C10 | 107.0 (13) | C11—N1—C8 | 108.7 (11) |
C8—C9—C18 | 124.8 (14) | C14—O2—C16 | 120.5 (11) |
C10—C9—C18 | 128.0 (11) | C19—O4—C20 | 109.8 (11) |
C11—C10—C15 | 118.7 (16) | C21—O6—H6A | 109.5 |
C11—C10—C9 | 108.2 (13) | C26—N2—H2A | 120.0 |
C15—C10—C9 | 133.1 (13) | C26—N2—H2B | 120.0 |
C12—C11—C10 | 121.0 (14) | H2A—N2—H2B | 120.0 |
C12—C11—N1 | 131.2 (13) | C22—O7—H7 | 109.5 |
C10—C11—N1 | 107.7 (15) | O8—C22—O7 | 123.2 (10) |
C11—C12—C13 | 120.1 (13) | O8—C22—C23 | 123.2 (14) |
C11—C12—H12 | 120.0 | O7—C22—C23 | 113.6 (13) |
C13—C12—H12 | 119.9 | C28—C23—C24 | 118.3 (11) |
C14—C13—C12 | 119.1 (14) | C28—C23—C22 | 120.8 (14) |
C14—C13—H13 | 120.5 | C24—C23—C22 | 120.9 (13) |
C12—C13—H13 | 120.5 | C25—C24—C23 | 120.6 (13) |
O2—C14—C13 | 119.9 (14) | C25—C24—H24 | 119.7 |
O2—C14—C15 | 119.4 (12) | C23—C24—H24 | 119.7 |
C13—C14—C15 | 120.5 (12) | C24—C25—C26 | 120.7 (14) |
C14—C15—C10 | 120.4 (13) | C24—C25—H25 | 119.6 |
C14—C15—H15 | 119.8 | C26—C25—H25 | 119.6 |
C10—C15—H15 | 119.8 | C25—C26—N2 | 122.3 (13) |
O2—C16—H16A | 109.5 | C25—C26—C27 | 118.6 (10) |
O2—C16—H16B | 109.5 | N2—C26—C27 | 119.1 (12) |
H16A—C16—H16B | 109.4 | C28—C27—C26 | 120.2 (14) |
O2—C16—H16C | 109.5 | C28—C27—H27 | 119.9 |
H16A—C16—H16C | 109.5 | C26—C27—H27 | 119.9 |
H16B—C16—H16C | 109.5 | C27—C28—C23 | 121.6 (15) |
C8—C17—H17A | 109.5 | C27—C28—H28 | 119.2 |
C8—C17—H17B | 109.5 | C23—C28—H28 | 119.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O8 | 0.82 | 1.79 | 2.581 (9) | 161.0 |
O7—H7···O5 | 0.82 | 2.00 | 2.811 (10) | 171.9 |
N2—H2A···O1i | 0.86 | 2.11 | 2.918 (15) | 157.2 |
N2—H2B···N2ii | 0.86 | 2.33 | 3.168 (13) | 166.0 |
Symmetry codes: (i) x+1, y, z; (ii) −x+3, y+1/2, −z+1. |
C21H18ClNO6·C5H9NO | Z = 2 |
Mr = 514.95 | F(000) = 540 |
Triclinic, P1 | Dx = 1.380 Mg m−3 |
Hall symbol: -P 1 | Melting point: 388 K |
a = 11.7638 (12) Å | Cu Kα1 radiation, λ = 1.54059 Å |
b = 20.5548 (19) Å | µ = 1.79 mm−1 |
c = 5.1627 (9) Å | T = 298 K |
α = 89.543 (14)° | Particle morphology: no specific habit |
β = 93.300 (16)° | light grey |
γ = 96.276 (17)° | flat_sheet, 15 × 1 mm |
V = 1238.8 (3) Å3 | Specimen preparation: Prepared at 298 K and 101 kPa |
Guinier camera G670 diffractometer | Data collection mode: transmission |
Radiation source: line-focus sealed tube | Scan method: continuous |
Curved Germanium (111) monochromator | 2θmin = 3.000°, 2θmax = 75.000°, 2θstep = 0.01° |
Specimen mounting: thin layer on the non-diffracting silicon plate |
Refinement on Inet | Profile function: split-type pseudo-Voigt (Toraya, 1986) |
Least-squares matrix: full with fixed elements per cycle | 187 parameters |
Rp = 0.021 | 123 restraints |
Rwp = 0.027 | H-atom parameters not refined |
Rexp = 0.018 | Weighting scheme based on measured s.u.'s |
RBragg = 0.056 | (Δ/σ)max = 0.002 |
7201 data points | Background function: Chebyshev polynomial up to the 5th order |
Excluded region(s): none | Preferred orientation correction: March-Dollase (1986) texture correction. Direction of | [010], texture parameter r = 0.99(1).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.3984 (3) | 0.5582 (2) | 1.1000 (8) | 0.0550 (19)* | |
C1 | 0.4332 (12) | 0.6358 (7) | 0.992 (3) | 0.061 (7)* | |
C2 | 0.3902 (11) | 0.6882 (6) | 1.111 (3) | 0.062 (7)* | |
H2 | 0.3416 | 0.6809 | 1.2467 | 0.075* | |
C3 | 0.4212 (11) | 0.7509 (6) | 1.024 (3) | 0.054 (7)* | |
H3 | 0.3967 | 0.7861 | 1.1090 | 0.065* | |
C4 | 0.4884 (12) | 0.7629 (7) | 0.811 (3) | 0.061 (7)* | |
C5 | 0.5363 (12) | 0.7115 (7) | 0.696 (3) | 0.064 (7)* | |
H5 | 0.5870 | 0.7194 | 0.5650 | 0.077* | |
C6 | 0.5048 (13) | 0.6467 (7) | 0.786 (3) | 0.067 (7)* | |
H6 | 0.5321 | 0.6115 | 0.7071 | 0.080* | |
C7 | 0.5183 (12) | 0.8309 (7) | 0.721 (3) | 0.061 (7)* | |
C8 | 0.7329 (12) | 0.8357 (7) | 0.810 (3) | 0.058 (7)* | |
C9 | 0.8271 (12) | 0.8714 (7) | 0.710 (3) | 0.054 (7)* | |
C10 | 0.7837 (12) | 0.9127 (7) | 0.506 (3) | 0.067 (7)* | |
C11 | 0.6644 (12) | 0.9014 (7) | 0.493 (3) | 0.066 (7)* | |
C12 | 0.5996 (12) | 0.9342 (7) | 0.309 (3) | 0.064 (7)* | |
H12 | 0.5203 | 0.9251 | 0.2960 | 0.077* | |
C13 | 0.6545 (11) | 0.9809 (7) | 0.145 (3) | 0.056 (7)* | |
H13 | 0.6114 | 1.0052 | 0.0313 | 0.067* | |
C14 | 0.7735 (12) | 0.9907 (7) | 0.153 (3) | 0.063 (7)* | |
C15 | 0.8384 (12) | 0.9586 (7) | 0.339 (3) | 0.065 (7)* | |
H15 | 0.9177 | 0.9677 | 0.3525 | 0.078* | |
C16 | 0.7623 (12) | 1.0699 (7) | −0.174 (3) | 0.065 (7)* | |
H16A | 0.8129 | 1.0982 | −0.2752 | 0.098* | |
H16B | 0.7172 | 1.0958 | −0.0750 | 0.098* | |
H16C | 0.7127 | 1.0412 | −0.2867 | 0.098* | |
C17 | 0.7346 (12) | 0.7883 (7) | 1.023 (3) | 0.057 (7)* | |
H17A | 0.6576 | 0.7706 | 1.0535 | 0.085* | |
H17B | 0.7692 | 0.8096 | 1.1771 | 0.085* | |
H17C | 0.7780 | 0.7536 | 0.9774 | 0.085* | |
C18 | 0.9525 (12) | 0.8677 (6) | 0.790 (3) | 0.056 (7)* | |
H18A | 0.9577 | 0.8544 | 0.9709 | 0.067* | |
H18B | 0.9925 | 0.9114 | 0.7792 | 0.067* | |
C19 | 1.0154 (12) | 0.8217 (7) | 0.635 (3) | 0.063 (7)* | |
C20 | 1.1616 (12) | 0.7615 (7) | 0.535 (3) | 0.059 (7)* | |
H20A | 1.2435 | 0.7678 | 0.5139 | 0.071* | |
H20B | 1.1235 | 0.7558 | 0.3640 | 0.071* | |
C21 | 1.1345 (12) | 0.7003 (7) | 0.689 (3) | 0.058 (7)* | |
N1 | 0.6319 (9) | 0.8558 (5) | 0.684 (2) | 0.058 (5)* | |
O1 | 0.4436 (8) | 0.8634 (4) | 0.6449 (17) | 0.053 (4)* | |
O2 | 0.8263 (8) | 1.0331 (4) | −0.0060 (17) | 0.058 (4)* | |
O3 | 0.9514 (8) | 0.7868 (4) | 0.4890 (18) | 0.050 (4)* | |
O4 | 1.1285 (7) | 0.8187 (4) | 0.6486 (16) | 0.047 (4)* | |
O5 | 1.0846 (8) | 0.7016 (4) | 0.8875 (17) | 0.060 (4)* | |
O6 | 1.1672 (7) | 0.6477 (4) | 0.5891 (17) | 0.051 (4)* | |
H6A | 1.1497 | 0.6162 | 0.6827 | 0.077* | |
N2 | 1.0862 (9) | 0.4276 (5) | 0.830 (2) | 0.056 (5)* | |
H2A | 1.0395 | 0.4264 | 0.9525 | 0.067* | |
O7 | 1.0730 (8) | 0.5348 (4) | 0.7990 (16) | 0.062 (4)* | |
C22 | 1.1265 (12) | 0.3657 (7) | 0.761 (3) | 0.055 (7)* | |
H22A | 1.0626 | 0.3315 | 0.7561 | 0.066* | |
H22B | 1.1827 | 0.3541 | 0.8933 | 0.066* | |
C23 | 1.1791 (12) | 0.3694 (7) | 0.502 (3) | 0.067 (7)* | |
H23A | 1.2209 | 0.3318 | 0.4828 | 0.081* | |
H23B | 1.1187 | 0.3677 | 0.3657 | 0.081* | |
C24 | 1.2582 (12) | 0.4303 (7) | 0.474 (3) | 0.059 (7)* | |
H24A | 1.2883 | 0.4314 | 0.3028 | 0.071* | |
H24B | 1.3221 | 0.4303 | 0.6012 | 0.071* | |
C25 | 1.1974 (12) | 0.4910 (7) | 0.511 (3) | 0.057 (7)* | |
H25A | 1.2547 | 0.5278 | 0.5485 | 0.069* | |
H25B | 1.1565 | 0.5004 | 0.3485 | 0.069* | |
C26 | 1.1142 (12) | 0.4857 (7) | 0.722 (3) | 0.060 (7)* |
Cl1—C1 | 1.700 (14) | C16—H16C | 0.9603 |
C1—C6 | 1.40 (2) | C17—H17A | 0.9597 |
C1—C2 | 1.40 (2) | C17—H17B | 0.9599 |
C2—C3 | 1.380 (19) | C17—H17C | 0.9607 |
C2—H2 | 0.9299 | C18—C19 | 1.52 (2) |
C3—C4 | 1.39 (2) | C18—H18A | 0.9697 |
C3—H3 | 0.9301 | C18—H18B | 0.9703 |
C4—C5 | 1.40 (2) | C19—O3 | 1.213 (16) |
C4—C7 | 1.482 (19) | C19—O4 | 1.337 (17) |
C5—C6 | 1.424 (19) | C20—O4 | 1.419 (17) |
C5—H5 | 0.9308 | C20—C21 | 1.495 (19) |
C6—H6 | 0.9300 | C20—H20A | 0.9700 |
C7—O1 | 1.207 (17) | C20—H20B | 0.9700 |
C7—N1 | 1.402 (17) | C21—O5 | 1.214 (17) |
C8—C9 | 1.385 (19) | C21—O6 | 1.305 (17) |
C8—N1 | 1.423 (18) | O6—H6A | 0.8200 |
C8—C17 | 1.46 (2) | N2—C26 | 1.329 (18) |
C9—C10 | 1.45 (2) | N2—C22 | 1.459 (18) |
C9—C18 | 1.52 (2) | N2—H2A | 0.8598 |
C10—C11 | 1.40 (2) | O7—C26 | 1.243 (18) |
C10—C15 | 1.40 (2) | C22—C23 | 1.50 (2) |
C11—N1 | 1.393 (18) | C22—H22A | 0.9697 |
C11—C12 | 1.40 (2) | C22—H22B | 0.9704 |
C12—C13 | 1.41 (2) | C23—C24 | 1.487 (19) |
C12—H12 | 0.9299 | C23—H23A | 0.9702 |
C13—C14 | 1.391 (19) | C23—H23B | 0.9701 |
C13—H13 | 0.9298 | C24—C25 | 1.52 (2) |
C14—O2 | 1.321 (17) | C24—H24A | 0.9700 |
C14—C15 | 1.40 (2) | C24—H24B | 0.9703 |
C15—H15 | 0.9298 | C25—C26 | 1.50 (2) |
C16—O2 | 1.388 (17) | C25—H25A | 0.9700 |
C16—H16A | 0.9599 | C25—H25B | 0.9702 |
C16—H16B | 0.9602 | ||
C6—C1—C2 | 120.6 (12) | H17B—C17—H17C | 109.4 |
C6—C1—Cl1 | 119.7 (11) | C9—C18—C19 | 116.7 (11) |
C2—C1—Cl1 | 119.7 (11) | C9—C18—H18A | 108.1 |
C3—C2—C1 | 118.8 (13) | C19—C18—H18A | 108.2 |
C3—C2—H2 | 120.6 | C9—C18—H18B | 108.1 |
C1—C2—H2 | 120.6 | C19—C18—H18B | 108.1 |
C2—C3—C4 | 121.7 (13) | H18A—C18—H18B | 107.3 |
C2—C3—H3 | 119.1 | O3—C19—O4 | 121.6 (13) |
C4—C3—H3 | 119.2 | O3—C19—C18 | 112.7 (12) |
C3—C4—C5 | 120.2 (13) | O4—C19—C18 | 125.6 (12) |
C3—C4—C7 | 120.0 (13) | O4—C20—C21 | 114.3 (12) |
C5—C4—C7 | 119.5 (13) | O4—C20—H20A | 108.7 |
C4—C5—C6 | 118.0 (13) | C21—C20—H20A | 108.7 |
C4—C5—H5 | 121.0 | O4—C20—H20B | 108.7 |
C6—C5—H5 | 121.0 | C21—C20—H20B | 108.7 |
C1—C6—C5 | 120.4 (13) | H20A—C20—H20B | 107.6 |
C1—C6—H6 | 119.8 | O5—C21—O6 | 124.7 (12) |
C5—C6—H6 | 119.8 | O5—C21—C20 | 120.5 (13) |
O1—C7—N1 | 117.7 (12) | O6—C21—C20 | 114.8 (12) |
O1—C7—C4 | 120.0 (12) | C11—N1—C7 | 124.2 (11) |
N1—C7—C4 | 121.6 (13) | C11—N1—C8 | 108.2 (11) |
C9—C8—N1 | 108.6 (12) | C7—N1—C8 | 127.3 (11) |
C9—C8—C17 | 126.5 (13) | C14—O2—C16 | 119.6 (11) |
N1—C8—C17 | 124.8 (12) | C19—O4—C20 | 113.8 (10) |
C8—C9—C10 | 106.9 (12) | C21—O6—H6A | 109.5 |
C8—C9—C18 | 127.3 (12) | C26—N2—C22 | 126.7 (12) |
C10—C9—C18 | 125.8 (12) | C26—N2—H2A | 116.7 |
C11—C10—C15 | 119.8 (13) | C22—N2—H2A | 116.7 |
C11—C10—C9 | 107.8 (12) | N2—C22—C23 | 111.8 (11) |
C15—C10—C9 | 132.4 (13) | N2—C22—H22A | 109.3 |
N1—C11—C10 | 108.4 (12) | C23—C22—H22A | 109.3 |
N1—C11—C12 | 131.4 (13) | N2—C22—H22B | 109.2 |
C10—C11—C12 | 120.2 (13) | C23—C22—H22B | 109.2 |
C11—C12—C13 | 119.9 (12) | H22A—C22—H22B | 107.9 |
C11—C12—H12 | 120.0 | C24—C23—C22 | 112.1 (12) |
C13—C12—H12 | 120.0 | C24—C23—H23A | 109.2 |
C14—C13—C12 | 119.7 (13) | C22—C23—H23A | 109.2 |
C14—C13—H13 | 120.1 | C24—C23—H23B | 109.2 |
C12—C13—H13 | 120.2 | C22—C23—H23B | 109.2 |
O2—C14—C13 | 120.4 (13) | H23A—C23—H23B | 107.9 |
O2—C14—C15 | 119.3 (12) | C23—C24—C25 | 111.3 (12) |
C13—C14—C15 | 120.2 (13) | C23—C24—H24A | 109.4 |
C14—C15—C10 | 119.9 (13) | C25—C24—H24A | 109.4 |
C14—C15—H15 | 120.0 | C23—C24—H24B | 109.4 |
C10—C15—H15 | 120.1 | C25—C24—H24B | 109.3 |
O2—C16—H16A | 109.5 | H24A—C24—H24B | 108.0 |
O2—C16—H16B | 109.5 | C26—C25—C24 | 114.8 (12) |
H16A—C16—H16B | 109.5 | C26—C25—H25A | 108.6 |
O2—C16—H16C | 109.5 | C24—C25—H25A | 108.6 |
H16A—C16—H16C | 109.5 | C26—C25—H25B | 108.6 |
H16B—C16—H16C | 109.4 | C24—C25—H25B | 108.5 |
C8—C17—H17A | 109.5 | H25A—C25—H25B | 107.5 |
C8—C17—H17B | 109.5 | O7—C26—N2 | 120.1 (13) |
H17A—C17—H17B | 109.5 | O7—C26—C25 | 120.9 (13) |
C8—C17—H17C | 109.5 | N2—C26—C25 | 119.0 (13) |
H17A—C17—H17C | 109.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O7 | 0.82 | 1.92 | 2.706 (12) | 160.0 |
N2—H2A···O7i | 0.86 | 2.12 | 2.921 (15) | 155.5 |
Symmetry code: (i) −x+2, −y+1, −z+2. |
Acknowledgements
G. Bolla thanks UGC for a Fellowship. We thank DST-SERB scheme on Multi-component cocrystals (EMR/2015/002075) and JC Bose Fellowship (SR/S2/JCB-06/2009) for funding and University Grants Commission (UPE) and DST-PURSE and DST-FIST for providing instrumentation facilities.
References
Aitipamula, S. et al. (2012). Cryst. Growth Des. 12, 2147–2152. Web of Science CrossRef CAS Google Scholar
Almarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. 17, 1889–1896. Web of Science CrossRef Google Scholar
Babu, N. J., Sanphui, P. & Nangia, A. (2012). Chem. Asian J. 7, 2274–2285. Web of Science CSD CrossRef CAS PubMed Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bolla, G. & Nangia, A. (2016). Chem. Commun. 52, 8342–8360. Web of Science CrossRef CAS Google Scholar
Bolla, G., Sanphui, P. & Nangia, A. (2013). Cryst. Growth Des. 13, 1988–2003. Web of Science CSD CrossRef CAS Google Scholar
Braga, D., Grepioni, F., Maini, L., Lampronti, G. I., Capucci, D. & Cuocci, C. (2012). CrystEngComm, 14, 3521–3527. Web of Science CSD CrossRef CAS Google Scholar
Burger, A. & Lettenbichler, A. (1993). Pharmazie, 48, 262–272. CAS Google Scholar
Chávez-Piña, A. E., McKnight, W., Dicay, M., Castañeda-Hernández, G. & Wallace, J. L. (2007). Br. J. Pharmacol. 152, 930–938. Web of Science PubMed Google Scholar
Chernyshev, V. V. (2001). Russ. Chem. Bull. 50, 2273–2292. Web of Science CrossRef CAS Google Scholar
Chernyshev, V. V., Shkavrov, S. V., Paseshnichenko, K. A., Puryaeva, T. P. & Velikodny, Y. A. (2013). Acta Cryst. C69, 263–266. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Childs, S. L., Chyall, L. J., Dunlap, J. T., Smolenskaya, V. N., Stahly, B. C. & Stahly, G. P. (2004). J. Am. Chem. Soc. 126, 13335–13342. Web of Science CSD CrossRef PubMed CAS Google Scholar
David, W. I. F. & Shankland, K. (2008). Acta Cryst. A64, 52–64. Web of Science CrossRef CAS IUCr Journals Google Scholar
Desiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952–9967. Web of Science CrossRef CAS PubMed Google Scholar
Desiraju, G. R., Vittal, J. & Ramanan, A. (2011). Crystal Engineering: A Textbook. Singapore: World Scientific. Google Scholar
Duggirala, N. K., Perry, M. L., Almarsson, Ö. & Zaworotko, M. J. (2016). Chem. Commun. 52, 640–655. Web of Science CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ganesh, M., Jeon, U. J., Ubaidulla, U., Hemalatha, P., Saravanakumar, A., Peng, M. M. & Jang, H. T. (2015). Int. J. Biol. Macromol. 74, 310–317. Web of Science CrossRef CAS PubMed Google Scholar
Gelbrich, T., Haddow, M. F. & Griesser, U. J. (2007). Acta Cryst. C63, o451–o453. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Harris, K. D. M., Tremayne, M., Lightfoot, P. & Bruce, P. G. (1994). J. Am. Chem. Soc. 116, 3543–3547. CSD CrossRef CAS Web of Science Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Le Bail, A. et al. (2009). Powder Diffr. 24, 255–262. Google Scholar
Sanphui, P., Bolla, G., Das, U., Mukherjee, A. K. & Nangia, A. (2013). CrystEngComm, 15, 34–38. Web of Science CSD CrossRef CAS Google Scholar
Sanphui, P., Bolla, G., Nangia, A. & Chernyshev, V. (2014). IUCrJ, 1, 136–150. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Sanphui, P., Devi, V. K., Clara, D., Malviya, N., Ganguly, S. & Desiraju, G. R. (2015). Mol. Pharm. 12, 1615–1622. Web of Science CrossRef CAS PubMed Google Scholar
Sanphui, P., Mishra, M. K., Ramamurty, U. & Desiraju, G. R. (2015). Mol. Pharm. 12, 889–897. Web of Science CSD CrossRef CAS PubMed Google Scholar
Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967. Web of Science CSD CrossRef PubMed CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Sun, C. C. & Hou, H. (2008). Cryst. Growth Des. 8, 1575–1579. Web of Science CrossRef CAS Google Scholar
Thakuria, R., Delori, A., Jones, W., Lipert, M. P., Roy, L. & Rodríguez-Hornedo, N. (2013). Int. J. Pharm. 453, 101–125. Web of Science CrossRef CAS PubMed Google Scholar
Tishmack, P. A., Bugay, D. E. & Byrn, S. R. (2003). J. Pharm. Sci. 92, 441–474. Web of Science CrossRef PubMed CAS Google Scholar
Trask, A. V., Motherwell, W. D. S. & Jones, W. (2006). Int. J. Pharm. 320, 114–123. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ueto, T., Takata, N., Muroyama, N., Nedu, A., Sasaki, A., Tanida, S. & Terada, K. (2012). Cryst. Growth Des. 12, 485–494. Web of Science CSD CrossRef CAS Google Scholar
Visser, J. W. (1969). J. Appl. Cryst. 2, 89–95. CrossRef CAS IUCr Journals Web of Science Google Scholar
Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367–370. CrossRef CAS Web of Science IUCr Journals Google Scholar
Weyna, D. R., Cheney, M. L., Shan, N., Hanna, M., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2012). Mol. Pharm. 9, 2094–2102. Web of Science CrossRef CAS PubMed Google Scholar
Widdifield, C. M., Cavallo, G., Facey, G. A., Pilati, T., Lin, J., Metrangolo, P., Resnati, G. & Bryce, D. L. (2013). Chem. Eur. J. 19, 11949–11962. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yoneda, M., Ohkawa, Y., Watanabe, Y., Ogawa, M. & Nagai, H. (1981). Yakugaku Zasshi, 101, 939–944. CrossRef CAS PubMed Web of Science Google Scholar
Zhukov, S. G., Chernyshev, V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. Z. (2001). Kristallogr. 216, 5–9. CAS Google Scholar
Zlokazov, V. B. (1992). J. Appl. Cryst. 25, 69–72. CrossRef Web of Science IUCr Journals Google Scholar
Zlokazov, V. B. (1995). Comput. Phys. Commun. 85, 415–422. CrossRef CAS Web of Science Google Scholar
Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451. CrossRef Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.