research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
ISSN: 2052-2525

Snapshot and crystallographic observations of kinetic and thermodynamic products for NO2S2 macrocyclic complexes

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: sslee@gnu.ac.kr

Edited by C.-Y. Su, Sun Yat-Sen University, China (Received 18 August 2017; accepted 17 October 2017)

Direct observation and structural characterization of a kinetic product and a thermodynamic product for complexes with an NO2S2 macrocycle (L) are reported. L reacts with copper(I) iodide to give a mononuclear complex [Cu(L)]2(Cu2I4)·2CH2Cl2 (1), featuring three separate units. When cadmium(II) iodide was reacted with L, an anion-coordinated complex [Cd(L)I]2(Cd2I6)·4CH3CN (2) with a needle-type crystal shape was formed as the kinetic product. Interestingly, when the needle-type kinetic product was left undisturbed in the mother solution it gradually transformed to the pseudo-dimer complex [Cd2(L)2I2](Cd2I6) (3) with a brick-type crystal shape as the thermodynamic product. The dissolution–recrystallization process resulted in the elimination of the lattice solvent molecules (aceto­nitrile) in 2 and the contraction of two neighboring macrocyclic complex units [Cd(L)I]+, forming the pseudo-dimer 3 via an intermolecular Cd⋯I interaction between two monomers. For the entire process from kinetic to thermodynamic products, it was possible to obtain sequential photographic snapshots, single-crystal X-ray structures and powder X-ray diffraction patterns. For the copper(I) and cadmium(II) complexes, competitive NMR results agree with the solid-state data that show copper(I) has a higher affinity for L than does cadmium(II).

1. Introduction

Similar to organic reactions, self-assembly of synthetic co­ordination processes affords not only thermodynamic products but also kinetic products when the energy for the latter is trapped in local minima (Percec et al., 2011[Percec, V., Hudson, S. D., Peterca, M., Leowanawat, P., Aqad, E., Graf, R., Spiess, H. W., Zeng, X., Ungar, G. & Heiney, P. A. (2011). J. Am. Chem. Soc. 133, 18479-18494.]; Gammon et al., 2010[Gammon, J. J., Gessner, V. H., Barker, G. R., Granander, J., Whitwood, A. C., Strohmann, C., O'Brien, P. & Kelly, B. (2010). J. Am. Chem. Soc. 132, 13922-13927.]; Hwang et al., 2004[Hwang, W., Zhang, S., Kamm, R. D. & Karplus, M. (2004). Proc. Natl Acad. Sci. USA, 101, 12916-12921.]; Hasenknopf et al., 1998[Hasenknopf, B., Lehn, J.-M., Boumediene, N., Leize, E. & Van Dorsselaer, A. (1998). Angew. Chem. Int. Ed. 37, 3265-3268.]). In principle, the reason for the two products is the difference in their activation energy: kinetic products form rapidly and they usually occur at lower temperature, while thermodynamic products form slowly or at higher temperatures (Fig. 1[link]) (Martí-Rujas & Kawano, 2013[Martí-Rujas, J. & Kawano, M. (2013). Acc. Chem. Res. 46, 493-505.]; Martí-Rujas et al., 2011[Martí-Rujas, J., Islam, N., Hashizume, D., Izumi, F., Fujita, M. & Kawano, M. (2011). J. Am. Chem. Soc. 133, 5853-5860.]). The kinetic states in the self-assembly of coordination products play a crucial role in understanding the mechanism and final products as well as the fundamental aspects of functionalization (Percec et al., 2011[Percec, V., Hudson, S. D., Peterca, M., Leowanawat, P., Aqad, E., Graf, R., Spiess, H. W., Zeng, X., Ungar, G. & Heiney, P. A. (2011). J. Am. Chem. Soc. 133, 18479-18494.]; Gammon et al., 2010[Gammon, J. J., Gessner, V. H., Barker, G. R., Granander, J., Whitwood, A. C., Strohmann, C., O'Brien, P. & Kelly, B. (2010). J. Am. Chem. Soc. 132, 13922-13927.]; Hwang et al., 2004[Hwang, W., Zhang, S., Kamm, R. D. & Karplus, M. (2004). Proc. Natl Acad. Sci. USA, 101, 12916-12921.]; Hasenknopf et al., 1998[Hasenknopf, B., Lehn, J.-M., Boumediene, N., Leize, E. & Van Dorsselaer, A. (1998). Angew. Chem. Int. Ed. 37, 3265-3268.]; Martí-Rujas & Kawano, 2013[Martí-Rujas, J. & Kawano, M. (2013). Acc. Chem. Res. 46, 493-505.]; Martí-Rujas et al., 2011[Martí-Rujas, J., Islam, N., Hashizume, D., Izumi, F., Fujita, M. & Kawano, M. (2011). J. Am. Chem. Soc. 133, 5853-5860.]). However, it is hard to recognize or separate these two products completely and structurally characterize them in the single-crystal state as pure forms due to the difficulty of growing single crystals, because fast precipitation so often leads to the kinetic product. Kawano and co-workers proposed an ab initio powder X-ray diffraction (PXRD) approach as an alternative methodology to overcome these difficulties (Martí-Rujas & Kawano, 2013[Martí-Rujas, J. & Kawano, M. (2013). Acc. Chem. Res. 46, 493-505.]; Martí-Rujas et al., 2011[Martí-Rujas, J., Islam, N., Hashizume, D., Izumi, F., Fujita, M. & Kawano, M. (2011). J. Am. Chem. Soc. 133, 5853-5860.]). Recently, Ohtsu & Kawano (2017[Ohtsu, H. & Kawano, M. (2017). Chem. Commun. 53, 8818-8829.]) highlighted the kinetic effect in self-assembly of coordination networks.

[Figure 1]
Figure 1
Reaction routes for a kinetic product via fast crystallization and a thermodynamic product via slow crystallization in the assembly reaction.

In our previous work, removal of the coordinated or noncoordinated solvent molecules of supramolecular complexes has played a key role in the reaction process between the kinetic and thermodynamic products (Lee et al., 2010[Lee, S. Y., Jung, J. H., Vittal, J. J. & Lee, S. S. (2010). Cryst. Growth Des. 10, 1033-1036.], 2013[Lee, S.-G., Park, K.-M., Habata, Y. & Lee, S. S. (2013). Inorg. Chem. 52, 8416-8426.]; Ju et al., 2015[Ju, H., Clegg, J., Park, K.-M., Lindoy, L. F. & Lee, S. S. (2015). J. Am. Chem. Soc. 137, 9535-9538.], 2017[Ju, H., Lee, S. Y., Lee, E., Kim, S., Park, I.-H. & Lee, S. S. (2017). Supramol. Chem. 29, 723-729.]). We recently isolated a 19-membered NO2S2 macrocycle L (see scheme[link]) and a 38-membered macrocycle from the mixed products of the [1:1] and [2:2] cyclization reactions, respectively (Kang et al., 2016[Kang, Y., Park, I.-H., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Dalton Trans. 45, 4528-4533.]). In complexes with copper(I) iodide, the smaller macrocycle L forms a typical mononuclear complex in which all donors in the ring cavity cooperatively bind to the central copper(I) ion (Kang et al., 2016[Kang, Y., Park, I.-H., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Dalton Trans. 45, 4528-4533.]), while the larger macrocycle affords a tetranuclear bis(macrocycle) complex adopting a double-decker structure as a first example of this type (Kang et al., 2016[Kang, Y., Park, I.-H., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Dalton Trans. 45, 4528-4533.]). Sulfur donors in crown-type macrocycles have a tendency to lead metal coordination outside the cavity (exo-coordination) to form discrete or infinite complexes with some thia­philic metal ions (Lee, Kim et al., 2008[Lee, J. Y., Kim, H. J., Jung, J. H., Sim, W. & Lee, S. S. (2008). J. Am. Chem. Soc. 130, 13838-13839.]; Lee, Lee et al., 2008[Lee, J. Y., Lee, S. Y., Sim, W., Park, K.-M., Kim, J. & Lee, S. S. (2008). J. Am. Chem. Soc. 130, 6902-6903.]; Park et al., 2012[Park, S., Lee, S. Y., Park, K.-M. & Lee, S. S. (2012). Acc. Chem. Res. 45, 391-403.], 2014[Park, I.-H., Kim, J.-Y., Kim, K. & Lee, S. S. (2014). Cryst. Growth Des. 14, 6012-6023.]). However, the presence of a pyridine subunit in L is expected to locate the metal ion inside the cavity (Lee et al., 2016[Lee, H.-H., Lee, E., Ju, H., Kim, S., Park, I.-H. & Lee, S. S. (2016). Inorg. Chem. 55, 2634-2640.], 2015[Lee, E., Park, K.-M., Ikeda, M., Kuwahara, S., Habata, Y. & Lee, S. S. (2015). Inorg. Chem. 54, 5372-5383.]; Drahoš et al., 2017[Drahoš, B., Herchel, R. & Trávníček, Z. (2017). Inorg. Chem. 56, 5076-5088.]; Fedorov et al., 2017[Fedorov, Yu. V., Fedorova, O. A., Kalmykov, S. N., Oshchepkov, M. S., Nelubina, Yu. V., Arkhipov, D. E., Egorova, B. V. & Zubenko, A. D. (2017). Polyhedron, 124, 229-236.]). Considering the binding affinity of L to metal ions with respect to their donor basicity, we have employed copper(I) and cadmium(II) ions (iodide form).

[Scheme 1]

In the present work, the ligand L yields two products of CdI2 with different crystal habits depending on the reaction time. Sometimes a mixture of crystalline products can be separated manually in pure form under a microscope because of their different crystal habits (Moreno-Calvo et al., 2010[Moreno-Calvo, E., Calvet, T., Cuevas-Diarte, M. A. & Aquilano, D. (2010). Cryst. Growth Des. 10, 4262-4271.]; Ryu et al., 2014[Ryu, H., Park, K.-M., Ikeda, M., Habata, Y. & Lee, S. S. (2014). Inorg. Chem. 53, 4029-4038.]; Park et al., 2014[Park, I.-H., Kim, J.-Y., Kim, K. & Lee, S. S. (2014). Cryst. Growth Des. 14, 6012-6023.]). In view of these intriguing results we decided to follow the reaction process more closely, in order to obtain insight into the structural and mechanical factors that may act. Fortunately, we were able to obtain a series of snapshot images for the two products with different crystal habits exhibiting growth–dissolution–recrystallization depending on the time between the kinetic and thermodynamic control processes. Here, we report several complexes of L which offer an opportunity to identify the kinetic and thermodynamic products via visual methods because of the slow reaction process and different crystal habits. The details are discussed below.

2. Results and discussion

2.1. Copper(I) iodide complex 1

L was prepared as described by us previously (Kang et al., 2016[Kang, Y., Park, I.-H., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Dalton Trans. 45, 4528-4533.]). The reaction of L in di­chloro­methane with CuI in aceto­nitrile afforded a colorless crystalline product, 1. The X-ray analysis revealed that 1 features three separate metal-containing units with the formula [Cu(L)]2(Cu2I4)·2CH2Cl2: two macrocyclic copper(I) complex cations [Cu(L)]+ and one anionic copper(I) iodide cluster (Cu2I4)2− (Fig. 2[link] and Table 1[link]). Since the inversion center is located in the middle of the anionic cluster, the asymmetric unit contains one macrocyclic cation and one half of the cluster. In the macrocyclic complex cation, the copper(I) center binds to all donors of L in a twisted conformation, adopting a distorted square-pyramidal coordination geometry (τ = 0.25; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. 1349-1356.]) with atoms N1, O1, O2 and S1 defining a square plane, and atom S2 the apex. The Cu2I4 cluster is planar, similar to other examples reported (Haase et al., 2011[Haase, R., Beschnitt, T., Flörke, U. & Herres-Pawlis, S. (2011). Inorg. Chim. Acta, 374, 546-557.]; Basu et al., 1987[Basu, A., Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1987). J. Chem. Soc. Chem. Commun. pp. 1724-1725.]; Kia et al., 2007[Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369-3375.]; Bhaduri et al., 1991[Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1991). J. Chem. Soc. Dalton Trans. pp. 2539-2543.]). The Cu1—N1 bond distance [2.032 (8) Å] is consistent with the strong coordination of copper(I) toward the pyridine N atom. The Cu—S bond distances [Cu1—S1 = 2.274 (3) Å and Cu1—S2 = 2.255 (3) Å] are typical and the Cu—O bond distances [Cu1—O1 = 2.712 (7) Å and Cu1—O2 = 2.657 (8) Å] are also normal.

Table 1
Crystallographic data and refinement parameters

  1 2 3 4 5
CCDC refcode 1566938 1566939 1566940 1566941 1566942
Formula C30H29Cl2Cu2I2NO2 S2 C29H27Cd2I4NO2S2 C58H54Cd4I8N2O4S C116H106Cd8I16N4O8S8 C29H27CdCuI3NO2S2
Formula weight 951.44 1218.03 2436.07 4870.12 1042.28
Crystal system Triclinic Monoclinic Triclinic Triclinic Triclinic
Space group [P{\overline 1}] C2/c [P{\overline 1}] [P{\overline 1}] [P{\overline 1}]
a (Å) 11.7925 (4) 23.3017 (6) 11.660 (3) 11.3166 (11) 8.9645 (2)
b (Å) 11.9665 (4) 13.4569 (4) 12.147 (3) 13.4404 (15) 14.4098 (3)
c (Å) 13.4375 (4) 26.9935 (7) 12.585 (4) 24.586 (2) 14.8826 (3)
α (°) 93.290 (2) 90 75.142 (11) 86.655 (7) 65.8530 (10)
β (°) 95.681 (2) 102.9630 (10) 87.056 (13) 89.396 (6) 73.3860 (10)
γ (°) 118.683 (2) 90 86.996 (13) 78.371 (7) 81.5460 (10)
V3) 1643.38 (10) 8248.6 (4) 1719.2 3656.6 (6) 1680.04 (6)
Z 2 8 1 1 2
Dcalc (Mg m−3) 1.923 2.092 2.353 2.212 2.060
μ (mm−1) 3.491 4.158 4.977 4.680 4.172
2θmax (°) 52.00 52.00 52.00 48.00 52.00
Reflections collected 22525 36289 28690 23781 28556
Independent reflections 6174 (Rint = 0.0384) 8103 (Rint = 0.0499) 6745 (Rint = 0.0283) 8432 (Rint = 0.0842) 6602 (Rint = 0.0254)
Goodness-of-fit on F2 1.113 1.112 1.062 1.129 1.042
R1, wR2 [I > 2σ(I)] 0.0738, 0.2191 0.0432, 0.0992 0.0205, 0.0440 0.1848, 0.4191 0.0168, 0.0376
R1, wR2 (all data) 0.0935, 0.2336 0.0535, 0.1025 0.0247, 0.0457 0.2147, 0.4304 0.0194, 0.0388
[Figure 2]
Figure 2
The molecular structure of 1, [Cu(L)]2(Cu2I4)·2CH2Cl2, showing the three separate metal-containing units. The noncoordinated solvent molecule has been omitted.

Recently, we have reported a copper(I) iodide complex of L with the formula [Cu(L)]I3·ether isolated from di­chloro­methane/aceto­nitrile/ether (Kang et al., 2016[Kang, Y., Park, I.-H., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Dalton Trans. 45, 4528-4533.]). In this case, the cationic complex part [Cu(L)]+ is also five-coordinate, adopting a distorted square-pyramidal geometry (τ = 0.31), but one triiodide ion (I3) exists as a counteranion due to the partial oxidation of copper(I) to copper(II) (Kang et al., 2016[Kang, Y., Park, I.-H., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Dalton Trans. 45, 4528-4533.]; Lee et al., 2017[Lee, H.-H., Park, I.-H., Kim, S., Lee, E., Ju, H., Jung, J. H., Ikeda, M., Habata, Y. & Lee, S. S. (2017). Chem. Sci. 8, 2592-2596.]).

2.2. Cadmium(II) iodide complexes: kinetic product 2 and thermodynamic product 3

It is notable that the complexation of L with CdI2 yields two products whose crystal shapes are different, 2 forming needles and 3 forming bricks, and their compositions change depending on the reaction time (Fig. 3[link]). In these observations, we provide decisive evidence for the stepwise formation of a kinetic product and a thermodynamic product, not only to the naked eye but also via a crystallographic approach. The details are discussed in the next section.

[Figure 3]
Figure 3
Cartoon presentation of time-dependent crystal growth, dissolution and recrystallization in the mother solution: 2 forms needles and 3 forms bricks.

When L was reacted with CdI2 in di­chloro­methane/aceto­nitrile, as mentioned above, two products, 2 and 3, identified by eye due to their different crystal habits, were isolated. Thus, time-series snapshots for the single-crystal growth process were recorded by optical microscope photography (Fig. 4[link], see also Fig. S1 and Movie S1 in the supporting information). Indeed, slow evaporation of this reaction mixture for 10 h gave a colorless needle-shaped crystalline product 2 (Fig. 4[link]a). When the needle-shaped product 2 was left undisturbed in the mother solution, a small brick-shaped crystalline product 3 appeared after 34 h (Fig. 4[link]b). Thereafter, the size and number of crystals of the brick-shaped product 3 increased and the needle-shaped crystals of 2 gradually disappeared (Figs. 4[link]c–4[link]e). After 96 h, 2 disappeared completely and only 3 was present (Fig. 4[link]f).

[Figure 4]
Figure 4
Time-series snapshot optical microscope images for 2 and 3 in the mother solution. (a) Needle-shaped crystals of 2 obtained after 10 h. (b) Brick-shaped crystals of 3 appear (orange circles). (c)–(f) The needles of 2 disappear gradually and the number and size of the bricks of 3 increase. (g) Only the brick-shaped crystals of 3 exist after 96 h.

Single-crystal X-ray analysis revealed that the two observed types of crystals, 2 and 3, have different cell parameters, compositions and structures (Moreno-Calvo et al., 2010[Moreno-Calvo, E., Calvet, T., Cuevas-Diarte, M. A. & Aquilano, D. (2010). Cryst. Growth Des. 10, 4262-4271.]; Ryu et al., 2014[Ryu, H., Park, K.-M., Ikeda, M., Habata, Y. & Lee, S. S. (2014). Inorg. Chem. 53, 4029-4038.]; Park et al., 2014[Park, I.-H., Kim, J.-Y., Kim, K. & Lee, S. S. (2014). Cryst. Growth Des. 14, 6012-6023.]). For instance, the needle-shaped product, 2, crystallizes in the monoclinic space group C2/c with the formula [Cd(L)I]2(Cd2I6)·4CH3CN (Fig. 5[link]a, and Table S2 in the supporting information), while the brick-shaped product, 3, crystallizes in the triclinic space group [P{\overline 1}] with the formula [Cd2(L)2I2](Cd2I6) (Fig. 5[link]b, and Table S3 in the supporting information]. Comparison of the PXRD patterns for each separate product and the simulated patterns for the corresponding single crystals indicates that the two species are effectively separate, showing bulk purity (Fig. 6[link]). Even though both complexes share some common features, it is of great interest to compare these two structures to reveal what happens during the reaction process in solution.

[Figure 5]
Figure 5
Molecular structures of (a) 2, [Cd(L)I]2(Cd2I6)·4CH3CN, and (b) 3, [Cd2(L)2I2](Cd2I6), isolated from the dissolution–recrystallization process involving the loss of lattice solvent molecules from 2 (aceto­nitrile, not shown) in solution. The anionic (Cd2I6)2− clusters in both products have been omitted. The distances between Cd1 and I1A are 3.5768(8) Å (red arrow) in 2 and 3.3827(8) Å (dashed lines) in 3.
[Figure 6]
Figure 6
The PXRD patterns of 2, 3 and 4.

Again, complex 2 contains three separate metal-containing units: two macrocyclic complex cation units [Cd(L)I]+ and one anionic cadmium(II) iodide cluster unit (Cd2I6)2− (not shown in Fig. 5[link]a). In 2, the two macrocyclic complex units face each other with a Cd1⋯I1A distance of 3.5768 (8) Å, which is similar to the sum of the van der Waals radii rVDW (3.56 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) (Fig. 5[link]a). The CdII center in the macrocyclic complex unit is six-coordinate, being bound to all five donors from L which adopts a bent and twisted conformation. The coordination sphere is completed by one iodide anion, with the Cd1—I1 bond distance being 2.7422 (7) Å.

The key structural feature of 3 is its pseudo-dimeric form via the associated change in the Cd1A⋯I1 distance from 3.5768 (8) to 3.3827 (8) Å; the latter value is shorter than its rVDW (3.56 Å) (Fig. 5[link]b). Large conformation changes in the macrocycle are also observed due to the removal of the lattice solvent molecules and the dimeric interaction. The metal centers in both 2 and 3 are six-coordinate, adopting a monocapped square-pyramidal geometry (Fig. 7[link]). However, the rearrangement from 2 to 3 involves geometric changes to the coordination sphere as well as conformational changes of L. Considering the interatomic distances between Cd1A and I1, it might be concluded that the removal of the lattice aceto­nitrile molecules in 2 induces the contraction of the molecule, resulting in the pseudo-dimer formation of 3.

[Figure 7]
Figure 7
The coordination geometry of the cadmium(II) center in (a) 2 and (b) 3, showing a distorted monocapped square-pyramidal arrangement.

Some modified crystallization approaches were also carried out, affording isolation of brick-shaped 3 directly from the reaction mixture (Lee et al., 2010[Lee, S. Y., Jung, J. H., Vittal, J. J. & Lee, S. S. (2010). Cryst. Growth Des. 10, 1033-1036.], 2013[Lee, S.-G., Park, K.-M., Habata, Y. & Lee, S. S. (2013). Inorg. Chem. 52, 8416-8426.]; Ju et al., 2015[Ju, H., Clegg, J., Park, K.-M., Lindoy, L. F. & Lee, S. S. (2015). J. Am. Chem. Soc. 137, 9535-9538.], 2017[Ju, H., Lee, S. Y., Lee, E., Kim, S., Park, I.-H. & Lee, S. S. (2017). Supramol. Chem. 29, 723-729.]). For example, under identical reaction conditions but with stirring at 50°C for 20 min (Fig. 5[link]), a solid precipitate was obtained. The PXRD pattern confirmed that this solid is pure complex 3 (Fig. 6[link]), suggesting direct preparation at the higher temperature as depicted in Fig. 1[link]. Alternatively, when several single crystals of 3 were added as seeds to the corresponding freshly prepared reaction mixture solution, a large quantity of brick-shaped 3 was obtained via extra crystal nucleation and crystal growth without the appearance of the metastable species 2. Furthermore, solvent diffusion of a di­chloro­methane solution of L into an aceto­nitrile solution of cadmium(II) iodide gave only product 3.

When we consider the snapshot images together with the high temperature and the seeding approaches showing direct preparation of 3, the observed crystal habit changing from 2 to 3 in the mother solution can be understood in terms of the reaction process, from kinetic product 2 to thermodynamic product 3. Earlier, our time-dependent crystallization experiments showed that a one-dimensional silver(I) perchlorate coordination polymer of an O2S2 macrocycle is a kinetic product and transforms into a thermodynamically more stable two-dimensional network (Lee et al., 2010[Lee, S. Y., Jung, J. H., Vittal, J. J. & Lee, S. S. (2010). Cryst. Growth Des. 10, 1033-1036.]). More recently, our group introduced a disilver(I) solvato-complex of a 40-membered N4O4S4 macrocycle as a kinetic product which shows rearrangement to the desolvated thermodynamic product (Lee et al., 2013[Lee, S.-G., Park, K.-M., Habata, Y. & Lee, S. S. (2013). Inorg. Chem. 52, 8416-8426.]).

2.3. A single-crystal-to-single-crystal transformation of 2 in air

In air, unlike in the mother solution, kinetic product 2, [Cd(L)I]2(Cd2I6)·4CH3CN, showed a different transformation behavior (Fig. 8[link]). In 2, as mentioned, four lattice aceto­nitrile molecules are trapped in each formula unit. When colorless crystals of 2 were filtered off and isolated from the mother solution and kept in air, we confirmed that three lattice aceto­nitrile molecules were removed by sublimation within several hours to give compound 4, [Cd(L)I]2[(Cd2I6)·CH3CN] (Fig. 8[link]). During this partial sublimation process, the crystals lost transparency but it was possible to obtain the single-crystal structure. Notably, the removal of the lattice solvent molecules by partial sublimation also induced some structural changes in the complex.

[Figure 8]
Figure 8
The SCSC transformation of 2 (top) to 4 (bottom) via the partial removal of the lattice solvent molecules. The anionic clusters (Cd2I6)2− have been omitted.

Unlike the parent complex 2, for example, complex 4 has two crystallographically different CdII atoms (Cd1 and Cd2). In addition, some changes in the pairwise interaction between two macrocyclic complex units were observed: the distance between Cd1A and I1 in 2 is 3.5768 (8) Å, while it is 3.415 (7) Å (Cd1A⋯I1) and 3.690 (7) Å (Cd2⋯I2B) in 4. Due to the sublimation of the solvent molecules followed by the structural change, 4 shows a high R1 value (0.1848; Table 1[link]). Recently, we reported some examples of the sliding re­arrangement of a double-decker type complex (Kang et al., 2016[Kang, Y., Park, I.-H., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Dalton Trans. 45, 4528-4533.]) of the [2:2] cyclization analogue of L and a one-dimensional coordination polymer of the bis-di­thia­macrocycle (Kim et al., 2016[Kim, S., Siewe, A. D., Lee, E. Ju. H., Park, I.-H., Park, K. M., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Inorg. Chem. 55, 2018-2022.]) via a single-crystal-to-single-crystal (SCSC) transformation upon desolvation in air. The homogeneity of 4 was confirmed by PXRD patterns (Fig. 6[link]). Exposure of 4 to aceto­nitrile liquid and vapor results in no structural change, suggesting that the above structural transformation is not reversible.

2.4. Complexation with a mixture of CuI and CdI2

As an extension of the above homonuclear copper(I) iodide complex 1 and cadmium(II) iodide complexes 24, we investigated the relative reactivity of copper(I) and cadmium(II) as soft acids towards L in both the solid and solution states. When a mixture of copper(I) iodide and cadmium(II) iodide was reacted with L in aceto­nitrile/di­chloro­methane, a yellow block-shaped crystalline product 5 was isolated. X-ray analysis revealed that 5 contains three separate metal-containing parts in the formula [Cu(L)]2(Cd2I6) (Fig. 9[link]a): two macrocyclic monocopper(I) complex cations and one (Cd2I6)2− cluster anion, indicating a preferential coordination affinity of copper(I) over cadmium(II) towards L. Since the inversion center exists in the middle of the (Cd2I6)2− cluster, the asymmetric unit contains one macrocyclic copper(I) complex unit and half a cluster. The copper(I) center inside the cavity is five-coordinate, being bound by all the donors from L in a twisted conformation. The CuI coordination geometry is a distorted square-pyramidal geometry (τ = 0.29) with donors S1, O1, O2 and N1 of L defining a distorted square plane and the S2 donor in an axial position (Fig. 9[link]b).

[Figure 9]
Figure 9
The molecular structure of 5, [Cu(L)]2(Cd2I6), showing the three separate parts. (a) A general view and (b) the distorted square-pyramidal coordination geometry of the copper(I) center. [Symmetry code: (A) 1 - x, 1 - y, 1 - z.]

2.5. Comparative NMR study of CuI and CdII complexation

Comparative NMR experiments for the competition reactions of copper(I) and cadmium(II) toward L were also performed. In Fig. 10[link], the signals of the aliphatic protons (H1–H3) in L are well resolved and identified. As shown in Fig. 10[link](a) line (B), the addition of 1–4 equivalents of copper(I) causes downfield shifts for H1–H3 of 0.15–0.3 p.p.m. and indicates that complexation with fast ligand exchange is occurring on the NMR time scale. In this case, the chemical shift changes are H3 > H2 > H1, indicating that copper(I) favors binding to the S donors rather than to the O donors. Further addition of cadmium(II) (1–4 equivalents) led to no significant chemical shift changes [Fig. 10[link]a lines (F) and (I)], suggesting that the copper(I) complex formed earlier is maintained and no further reaction occurs (as proposed in Fig. 10[link]c).

[Figure 10]
Figure 10
1H NMR spectra of the aliphatic region for L in CD3CN via stepwise addition of (a) Cd2+ and Cu+, and (b) Cu+ and Cd2+. [L] = 5 mM. (c) The proposed complexation equilibria between the corresponding species in solution.

Comparative NMR experiments for the above competition reaction were also performed in the reverse order of salt addition [that is, cadmium(II) followed by copper(I)]. As shown in Fig. 10[link](b) lines (A) and (E), the cadmium(II) complexation proceeds by two steps. First, the addition of one equivalent of cadmium(II) causes downfield shifts for H1–H3. On addition of another one equivalent of cadmium(II), further downfield shifts of each peak were observed, in keeping with the formation of a dicadmium(II) species [Cd2L]4+ (Fig. 10[link]b). On addition of one equivalent of copper(I), larger upfield shifts occur and the spectral pattern in Fig. 10[link](a) line (I) becomes the same as that shown in Fig. 10[link](b) line (I), suggesting that the respective reactions finally reach the formation of the monocopper(I) species [CuL]+ (Fig. 10[link]c, anticlockwise direction starting from L). Again, this result agrees with the solid-state data in showing that copper(I) has a higher affinity for L than does cadmium(II). Considering the size effect of the metal ions [CdII (4d10) is slightly larger than CuI (3d10)] on their affinity towards the 19-membered ring cavity of L, CdII is expected to have a higher affinity, unlike the results obtained from the X-ray and NMR data in this work. Consequently, the greater thia­philic nature of CuI than of CdII could be the main reason associated with the shorter bond distances of CuI—S (2.25–2.27 Å) in 1 than those of CdII—S (2.67–2.74 Å) in 2.

3. Conclusions

In summary, sequential photographic snapshots, single-crystal X-ray structures and PXRD patterns of cadmium(II) iodide complexes of an NO2S3 macrocycle enable us to identify kinetic and thermodynamic products. From the visual data, it was found that the reaction process from the kinetic product to the thermodynamic product resulted in the elimination of the lattice solvents and the contraction of two facing macrocyclic complex units, resulting in the formation of a pseudo-dimer via a Cd⋯I interaction. In the competition reactions, L shows preferential complexation behavior towards copper(I) over cadmium(II) in both solid and solution states.

4. Experimental

4.1. General

All chemicals were purchased from commercial sources and used as received. All solvents used were of reagent grade. Elemental analyses were carried out on a LECO CHNS-932 elemental analyzer. Thermogravimetric analyses were recorded on a TA Instruments TGA-Q50 thermogravimetric analyzer. The FT–IR spectra were recorded using a Thermo Fisher Scientific Nicolet iS 10 FT–IR spectrometer with KBr pellets.

4.2. Preparation of [Cu(L)]2(Cu2I4)·2CH2Cl2, 1

CuI (12 mg, 0.062 mmol) was dissolved in methanol (l.0 ml) and added to a solution of L (10 mg, 0.021 mmol) in di­chloro­methane (l.0 ml). A white precipitate formed immediately and this was filtered off. Colorless crystalline 1 suitable for X-ray analysis was obtained by vapor diffusion of di­ethyl ether into a dimethylformamide (0.5 ml) solution of the precipitate (yield 35%). Analysis, calculated for C60H58Cl4Cu4I4N2O4S4: C 38.98, H 3.10, N 1.54, S 7.05%; found: C 39.23, H 3.27, N 1.44, S 6.83%. IR (KBr pellet, ν, cm−1): 2925, 2855, 1719, 1655, 1560, 1459, 1377, 1341, 1296, 1245, 1219, 1186, 1159, 1106, 1048, 1027, 807, 753.

4.3. Preparation of [Cd(L)I]2(Cd2I6)·4CH3CN, 2, and [Cd2(L)2I2](Cd2I6), 3

A solution of CdI2 (24 mg, 0.066 mmol) in aceto­nitrile (0.5 ml) was added to a solution of L (10 mg, 0.021 mmol) in di­chloro­methane (0.5 ml). Slow evaporation of the solution afforded two kinds of crystals: at the beginning (within 2 d) colorless needle-shaped crystals of 2 formed in the vial, which converted to the pale-yellow block-shaped crystals of 3 after 4 d. Separately, white precipitates of 2 and 3 were obtained from a reaction mixture of L and CdI2 in aceto­nitrile/di­chloro­methane at room temperature and 50°C for 10 min, respectively. For 3, yield 70%. Analysis, calculated for C58H54Cd4I8N2O4S4: C 28.59, H 2.23, N 1.15, S 5.26%; found: C 28.47, H 2.14, N 1.35, S 5.45%. IR (KBr pellet, ν, cm−1): 2958, 2920, 2863, 1925, 1719, 1686, 1604, 1579, 1560, 1543, 1508, 1490, 1455, 1440, 1400, 1385, 1372, 1290, 1277, 1246, 1220, 1181, 1161, 1111, 1099, 1047, 1032, 943, 902, 869, 842.

4.4. Preparation of [Cd(L)I]2(Cd2I6)2·CH3CN, 4

Single crystals of 4 were obtained from single crystals of 2 which had been kept at room temperature for 10 min in air. Analysis, calculated for C120H114Cd8I16N6O8S8: C 29.09, H 2.32, N 1.70, S 5.18%; found: C 28.75, H 2.18, N 1.24, S 5.44%. IR (KBr pellet, ν, cm−1): 3051, 2957, 2919, 2344, 1719, 1638, 1604, 1579, 1560, 1543, 1490, 1454, 1440, 1412, 1400, 1385, 1371, 1292, 1276, 1246, 1220, 1193, 1180, 1160, 1111, 1098, 1047, 1032, 1012, 902, 867, 841, 807.

4.5. Preparation of [Cu(L)]2(Cd2I6), 5

CuI (12 mg, 0.062 mmol) and CdI2 (24 mg, 0.066 mmol) were dissolved in aceto­nitrile (l.0 ml) and the solution was layered on a solution of L (10 mg, 0.08 mmol) in di­chloro­methane (l.0 ml). The (layered) mixture afforded a yellow crystalline product, 5, suitable for X-ray analysis (yield 45%). Analysis, calculated for C58H54Cd2Cu2I6N2O4S4: C 33.42, H 2.61, N 1.34, S 6.15%; found: C 33.77, H 2.53, N 1.28, S 6.41%. IR (KBr pellet, ν, cm−1): 2966, 2926, 2855, 1871, 1735, 1655, 1560, 1491, 1459, 1490, 1459, 1253, 1244, 1218, 1188, 1161, 1106, 1075, 1048, 1023, 958, 939, 908, 758, 742.

4.6. X-ray crystallographic analysis

Crystal data for 15 were collected at 173 K on a Bruker SMART APEXII ULTRA diffractometer equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å) generated by a rotating anode. The cell parameters for the compounds were obtained from a least-squares refinement of the spot (from 36 collected frames). Data collection, data reduction and absorption correction were carried out using the software package APEX2 (Bruker, 2008[Bruker (2008). APEX2. Version 2009.1-0. Bruker AXS Inc., Madison, Wisconsin, USA.]). All calculations for the structure determination were carried out using the SHELXTL package (Bruker, 2001[Bruker (2001). SHELXTL-PC. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.]). In all cases, all non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed in idealized positions and refined iso­tropically in a riding manner along with their respective parent atoms. Due to the sublimation of the solvent molecules (aceto­nitrile) of 2 followed by a structural change, 4 shows relatively high R values. Since the remaining lattice solvent molecules (four aceto­nitrile molecules in 2 and one aceto­nitrile molecule in 4) are highly disordered, the contribution of solvent electron density was removed using the SQUEEZE routine in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Several SHELXTL restraints were used in the refinements of 1 and 4. In 1, SADI was used to keep within a reasonable geometry for the non-disordered part of the di­chloro­methane molecule. In 4, SADI, DFIX, SIMU and soft constraints were used to keep within a reasonable geometry for the non-disordered part of the macrocyclic ligand. Relevant crystal data collection and refinement data for the crystal structures of 15 are summarized in Table 1[link], and in Tables S1–S5 in the supporting information.

Supporting information


Computing details top

For all structures, data collection: Bruker APEX2; cell refinement: Bruker SAINT; data reduction: Bruker SAINT. Program(s) used to solve structure: Bruker SHELXTL for (1), (2), (3), (4); SHELXS97 (Sheldrick, 2008) for (5). Program(s) used to refine structure: Bruker SHELXTL for (1); SHELXL2014/7 (Sheldrick, 2014) for (2), (3), (4); SHELXL97 (Sheldrick, 2008) for (5). For all structures, molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

(1) top
Crystal data top
C30H29Cl2Cu2I2NO2S2Z = 2
Mr = 951.44F(000) = 924
Triclinic, P1Dx = 1.923 Mg m3
a = 11.7925 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9665 (4) ÅCell parameters from 6962 reflections
c = 13.4375 (4) Åθ = 2.3–27.0°
α = 93.290 (2)°µ = 3.49 mm1
β = 95.681 (2)°T = 173 K
γ = 118.683 (2)°Plate, pink
V = 1643.38 (9) Å30.10 × 0.06 × 0.04 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6174 independent reflections
Radiation source: fine-focus sealed tube4789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
SADABS
h = 1414
Tmin = 0.722, Tmax = 0.873k = 1414
22525 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1254P)2 + 21.3275P]
where P = (Fo2 + 2Fc2)/3
6174 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 3.30 e Å3
1 restraintΔρmin = 2.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.70988 (12)0.20707 (12)0.86183 (9)0.0224 (3)
Cu20.93539 (15)0.88287 (15)0.46019 (11)0.0389 (4)
I10.91757 (7)1.05828 (7)0.36858 (5)0.0316 (2)
I20.81705 (8)0.65719 (8)0.37430 (6)0.0446 (3)
S10.4984 (2)0.1255 (2)0.79061 (18)0.0230 (5)
S20.8488 (2)0.2193 (3)0.75367 (18)0.0230 (5)
O10.7952 (6)0.0632 (7)0.9593 (5)0.0235 (15)
O20.7012 (7)0.4240 (8)0.8932 (5)0.0299 (16)
N10.7811 (7)0.2833 (8)1.0081 (6)0.0201 (17)
C10.7805 (10)0.2112 (10)1.0804 (8)0.025 (2)
C20.8167 (11)0.2578 (13)1.1816 (8)0.036 (3)
H2A0.81660.20401.23090.043*
C30.8536 (12)0.3866 (13)1.2093 (8)0.040 (3)
H3A0.87660.42171.27820.048*
C40.8557 (11)0.4606 (11)1.1351 (8)0.032 (2)
H4A0.88110.54841.15200.038*
C50.8216 (9)0.4085 (10)1.0371 (8)0.024 (2)
C60.8290 (10)0.4888 (11)0.9526 (8)0.028 (2)
H6A0.85110.57660.97980.033*
H6B0.89630.49460.91130.033*
C70.6853 (10)0.4511 (10)0.7984 (8)0.025 (2)
C80.7804 (11)0.5512 (11)0.7562 (8)0.031 (2)
H8A0.86400.60520.79420.037*
C90.7533 (14)0.5724 (12)0.6582 (9)0.040 (3)
H9A0.81810.64090.62920.048*
C100.6316 (12)0.4932 (12)0.6035 (8)0.035 (3)
H10A0.61260.50700.53640.042*
C110.5380 (12)0.3947 (11)0.6457 (8)0.032 (2)
H11A0.45420.34180.60750.038*
C120.5629 (10)0.3706 (11)0.7431 (8)0.027 (2)
C130.4656 (10)0.2597 (11)0.7898 (8)0.028 (2)
H13A0.37730.22930.75240.034*
H13B0.46550.28970.86000.034*
C140.4865 (10)0.0887 (11)0.6555 (8)0.027 (2)
H14A0.39640.06050.62300.033*
H14B0.54660.16690.62730.033*
C150.5209 (10)0.0159 (11)0.6331 (7)0.026 (2)
C160.4209 (11)0.1414 (11)0.6226 (8)0.032 (2)
H16A0.33400.15990.62810.039*
C170.4494 (14)0.2415 (12)0.6038 (9)0.042 (3)
H17A0.38100.32790.59760.050*
C180.5712 (14)0.2175 (13)0.5944 (9)0.042 (3)
H18A0.58870.28630.58230.050*
C190.6697 (12)0.0934 (12)0.6024 (8)0.033 (3)
H19A0.75510.07700.59390.040*
C200.6479 (10)0.0107 (11)0.6230 (7)0.027 (2)
C210.7589 (10)0.1449 (11)0.6275 (8)0.029 (2)
H21A0.72400.19900.59990.035*
H21B0.82090.14380.58340.035*
C220.9016 (10)0.1037 (11)0.7823 (8)0.026 (2)
H22A0.82390.01840.78160.031*
H22B0.95140.09660.72940.031*
C230.9865 (9)0.1410 (9)0.8843 (7)0.021 (2)
C241.1195 (10)0.1886 (11)0.8918 (9)0.030 (2)
H24A1.15920.20630.83220.037*
C251.1963 (10)0.2110 (11)0.9815 (8)0.027 (2)
H25A1.28750.24250.98400.033*
C261.1398 (10)0.1875 (10)1.0690 (9)0.030 (2)
H26A1.19260.20351.13190.036*
C271.0058 (10)0.1405 (10)1.0650 (8)0.027 (2)
H27A0.96670.12421.12480.032*
C280.9301 (9)0.1176 (9)0.9719 (8)0.022 (2)
C290.7380 (10)0.0730 (11)1.0450 (8)0.028 (2)
H29A0.76380.03451.10000.034*
H29B0.64170.02441.02800.034*
Cl1S0.5146 (9)0.7735 (11)0.8731 (8)0.171 (4)
Cl2S0.4434 (9)0.5256 (9)0.9127 (7)0.148 (3)
C1S0.4817 (16)0.6243 (11)0.8211 (12)0.070 (5)
H1SA0.40780.59020.76540.084*
H1SB0.55910.63030.79370.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0251 (6)0.0189 (7)0.0253 (6)0.0125 (5)0.0038 (5)0.0013 (5)
Cu20.0394 (8)0.0372 (9)0.0422 (8)0.0202 (7)0.0078 (6)0.0035 (7)
I10.0362 (4)0.0318 (5)0.0317 (4)0.0212 (4)0.0007 (3)0.0052 (3)
I20.0460 (5)0.0356 (5)0.0461 (5)0.0146 (4)0.0105 (4)0.0028 (4)
S10.0216 (11)0.0189 (13)0.0289 (12)0.0093 (10)0.0079 (9)0.0052 (10)
S20.0184 (11)0.0223 (14)0.0283 (12)0.0096 (10)0.0054 (9)0.0040 (10)
O10.020 (3)0.016 (4)0.035 (4)0.008 (3)0.007 (3)0.004 (3)
O20.027 (4)0.030 (5)0.032 (4)0.014 (3)0.003 (3)0.011 (3)
N10.017 (4)0.016 (5)0.028 (4)0.010 (3)0.002 (3)0.003 (3)
C10.021 (5)0.024 (6)0.031 (5)0.012 (4)0.008 (4)0.006 (4)
C20.038 (6)0.045 (8)0.031 (6)0.026 (6)0.002 (5)0.006 (5)
C30.045 (7)0.051 (8)0.027 (5)0.030 (6)0.004 (5)0.009 (5)
C40.033 (6)0.026 (6)0.041 (6)0.019 (5)0.005 (5)0.005 (5)
C50.018 (5)0.022 (6)0.034 (5)0.012 (4)0.001 (4)0.001 (4)
C60.026 (5)0.026 (6)0.033 (5)0.014 (5)0.002 (4)0.001 (4)
C70.027 (5)0.022 (6)0.032 (5)0.017 (5)0.004 (4)0.002 (4)
C80.033 (6)0.024 (6)0.035 (6)0.013 (5)0.006 (4)0.006 (5)
C90.058 (8)0.025 (7)0.039 (6)0.020 (6)0.016 (6)0.010 (5)
C100.051 (7)0.029 (7)0.029 (5)0.022 (6)0.004 (5)0.005 (5)
C110.042 (6)0.029 (7)0.035 (6)0.027 (6)0.000 (5)0.000 (5)
C120.023 (5)0.026 (6)0.039 (6)0.016 (5)0.007 (4)0.002 (4)
C130.028 (5)0.029 (6)0.036 (6)0.022 (5)0.005 (4)0.002 (5)
C140.023 (5)0.031 (6)0.027 (5)0.013 (5)0.004 (4)0.002 (4)
C150.030 (5)0.027 (6)0.022 (5)0.014 (5)0.005 (4)0.004 (4)
C160.032 (6)0.025 (6)0.037 (6)0.013 (5)0.003 (5)0.000 (5)
C170.060 (8)0.017 (6)0.044 (7)0.017 (6)0.003 (6)0.002 (5)
C180.067 (9)0.040 (8)0.033 (6)0.041 (7)0.001 (6)0.006 (5)
C190.038 (6)0.036 (7)0.032 (6)0.024 (6)0.003 (5)0.007 (5)
C200.027 (5)0.037 (7)0.017 (4)0.016 (5)0.006 (4)0.001 (4)
C210.024 (5)0.036 (7)0.024 (5)0.013 (5)0.002 (4)0.002 (4)
C220.026 (5)0.024 (6)0.030 (5)0.014 (5)0.006 (4)0.002 (4)
C230.024 (5)0.012 (5)0.033 (5)0.014 (4)0.002 (4)0.001 (4)
C240.026 (5)0.021 (6)0.045 (6)0.011 (5)0.007 (5)0.004 (5)
C250.018 (5)0.028 (6)0.039 (6)0.014 (5)0.002 (4)0.002 (5)
C260.029 (5)0.016 (6)0.044 (6)0.014 (5)0.005 (5)0.002 (4)
C270.033 (5)0.019 (6)0.037 (6)0.019 (5)0.011 (4)0.008 (4)
C280.023 (5)0.008 (5)0.038 (5)0.010 (4)0.008 (4)0.003 (4)
C290.029 (5)0.027 (6)0.035 (5)0.016 (5)0.014 (4)0.011 (5)
Cl1S0.123 (6)0.196 (10)0.185 (8)0.088 (7)0.059 (6)0.011 (7)
Cl2S0.133 (6)0.140 (7)0.177 (8)0.077 (6)0.013 (6)0.018 (6)
C1S0.052 (9)0.071 (12)0.068 (10)0.018 (9)0.010 (8)0.017 (9)
Geometric parameters (Å, º) top
Cu1—N12.032 (8)C7—C81.389 (16)
Cu1—S22.255 (3)C7—C121.392 (15)
Cu1—S12.274 (3)C8—C91.390 (16)
Cu2—I22.5057 (17)C9—C101.380 (18)
Cu2—Cu2i2.561 (3)C10—C111.372 (18)
Cu2—I12.5757 (17)C11—C121.390 (15)
Cu2—I1i2.5784 (16)C12—C131.499 (16)
I1—Cu2i2.5785 (16)C14—C151.514 (15)
S1—C141.818 (10)C15—C161.382 (16)
S1—C131.825 (10)C15—C201.396 (14)
S2—C221.815 (10)C16—C171.407 (16)
S2—C211.832 (10)C17—C181.344 (19)
O1—C281.387 (12)C18—C191.366 (19)
O1—C291.417 (12)C19—C201.405 (15)
O2—C71.349 (12)C20—C211.501 (16)
O2—C61.442 (12)C22—C231.518 (14)
N1—C11.334 (13)C23—C241.379 (14)
N1—C51.355 (13)C23—C281.386 (14)
C1—C21.382 (15)C24—C251.363 (15)
C1—C291.510 (16)C25—C261.385 (16)
C2—C31.401 (18)C26—C271.394 (15)
C3—C41.365 (18)C27—C281.393 (15)
C4—C51.358 (15)Cl1S—C1S1.722 (13)
C5—C61.511 (15)Cl2S—C1S1.697 (13)
N1—Cu1—S2119.6 (2)C7—C8—C9120.1 (11)
N1—Cu1—S1125.1 (2)C10—C9—C8119.5 (12)
S2—Cu1—S1115.05 (10)C11—C10—C9120.2 (11)
I2—Cu2—Cu2i176.68 (10)C10—C11—C12121.5 (11)
I2—Cu2—I1118.37 (6)C11—C12—C7118.2 (11)
Cu2i—Cu2—I160.26 (6)C11—C12—C13123.1 (10)
I2—Cu2—I1i121.12 (7)C7—C12—C13118.7 (10)
Cu2i—Cu2—I1i60.15 (6)C12—C13—S1113.5 (7)
I1—Cu2—I1i120.42 (6)C15—C14—S1110.7 (7)
Cu2—I1—Cu2i59.58 (6)C16—C15—C20120.2 (10)
C14—S1—C1398.8 (5)C16—C15—C14117.4 (9)
C14—S1—Cu1108.9 (3)C20—C15—C14122.5 (10)
C13—S1—Cu1106.8 (4)C15—C16—C17119.1 (11)
C22—S2—C2198.4 (5)C18—C17—C16121.4 (12)
C22—S2—Cu1107.2 (4)C17—C18—C19119.6 (11)
C21—S2—Cu1110.3 (3)C18—C19—C20121.7 (11)
C28—O1—C29117.0 (8)C15—C20—C19118.0 (10)
C7—O2—C6119.7 (8)C15—C20—C21122.6 (10)
C1—N1—C5117.1 (8)C19—C20—C21119.3 (9)
C1—N1—Cu1122.0 (7)C20—C21—S2114.9 (7)
C5—N1—Cu1120.7 (7)C23—C22—S2112.2 (7)
N1—C1—C2123.3 (10)C24—C23—C28118.2 (9)
N1—C1—C29115.6 (9)C24—C23—C22121.1 (9)
C2—C1—C29121.1 (10)C28—C23—C22120.4 (9)
C1—C2—C3118.1 (11)C25—C24—C23122.4 (10)
C4—C3—C2118.5 (10)C24—C25—C26119.3 (10)
C5—C4—C3119.9 (11)C25—C26—C27120.2 (10)
N1—C5—C4123.0 (10)C28—C27—C26119.0 (10)
N1—C5—C6115.5 (9)C23—C28—O1115.7 (9)
C4—C5—C6121.5 (10)C23—C28—C27120.8 (9)
O2—C6—C5105.6 (8)O1—C28—C27123.4 (9)
O2—C7—C8124.6 (10)O1—C29—C1111.2 (8)
O2—C7—C12114.9 (10)Cl2S—C1S—Cl1S108.2 (10)
C8—C7—C12120.5 (10)
Symmetry code: (i) x+2, y+2, z+1.
(2) top
Crystal data top
C29H27Cd2I4NO2S2F(000) = 4512
Mr = 1218.03Dx = 1.962 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.3017 (6) ÅCell parameters from 9484 reflections
b = 13.4569 (4) Åθ = 2.2–26.9°
c = 26.9935 (7) ŵ = 4.15 mm1
β = 102.963 (1)°T = 173 K
V = 8248.6 (4) Å3Needle, colourless
Z = 80.24 × 0.07 × 0.04 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6760 reflections with I > 2σ(I)
φ and ω scansRint = 0.050
Absorption correction: multi-scan
SADABS
θmax = 26.0°, θmin = 1.6°
Tmin = 0.435, Tmax = 0.851h = 2828
36289 measured reflectionsk = 1516
8103 independent reflectionsl = 3333
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0281P)2 + 115.2429P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
8103 reflectionsΔρmax = 1.49 e Å3
362 parametersΔρmin = 0.91 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.43100 (2)0.91855 (4)0.52336 (2)0.03691 (13)
I20.45809 (2)0.41593 (4)0.81128 (2)0.03181 (12)
I30.64996 (2)0.51409 (4)0.84762 (2)0.03908 (14)
I40.60782 (3)0.18524 (4)0.80892 (2)0.04304 (15)
Cd10.54881 (2)0.87965 (4)0.55728 (2)0.02864 (13)
Cd20.57467 (3)0.37768 (4)0.79557 (2)0.03299 (14)
S10.55129 (7)0.80366 (13)0.46359 (6)0.0258 (4)
S20.57244 (8)0.71247 (14)0.61020 (6)0.0282 (4)
O10.5143 (2)0.9178 (4)0.65211 (18)0.0336 (12)
O20.6539 (2)0.8744 (4)0.55757 (19)0.0333 (12)
N10.6020 (3)0.9983 (4)0.6112 (2)0.0276 (13)
C10.6562 (3)1.0253 (5)0.6055 (3)0.0304 (17)
C20.6835 (4)1.1129 (6)0.6253 (3)0.046 (2)
H2A0.72131.13060.62040.055*
C30.6533 (5)1.1736 (6)0.6524 (3)0.055 (3)
H3A0.66981.23550.66540.066*
C40.5992 (4)1.1440 (6)0.6607 (3)0.042 (2)
H4A0.57931.18360.68070.051*
C50.5751 (4)1.0570 (6)0.6396 (2)0.0329 (18)
C60.5161 (4)1.0219 (6)0.6472 (3)0.0381 (19)
H6A0.50811.05330.67810.046*
H6B0.48481.04310.61790.046*
C70.5460 (4)0.8749 (6)0.6973 (3)0.0343 (17)
C80.5717 (4)0.9305 (6)0.7399 (3)0.040 (2)
H8A0.57041.00100.73890.048*
C90.5989 (5)0.8817 (7)0.7836 (3)0.053 (2)
H9A0.61500.91850.81350.064*
C100.6030 (4)0.7798 (7)0.7842 (3)0.049 (2)
H10A0.62420.74650.81370.059*
C110.5772 (4)0.7281 (7)0.7433 (3)0.042 (2)
H11A0.57870.65760.74490.050*
C120.5480 (4)0.7730 (5)0.6980 (3)0.0338 (18)
C130.5209 (3)0.7137 (6)0.6513 (3)0.0327 (17)
H13A0.48330.74440.63350.039*
H13B0.51280.64500.66090.039*
C140.5483 (3)0.6063 (5)0.5682 (3)0.0332 (17)
H14A0.57820.59390.54810.040*
H14B0.54710.54690.58960.040*
C150.4901 (3)0.6166 (5)0.5326 (3)0.0284 (16)
C160.4385 (4)0.5916 (6)0.5488 (3)0.0355 (18)
H16A0.44170.56800.58250.043*
C170.3843 (4)0.6002 (6)0.5175 (3)0.043 (2)
H17A0.35020.58490.52990.052*
C180.3783 (3)0.6319 (6)0.4665 (3)0.0376 (18)
H18A0.34060.63730.44430.045*
C190.4266 (3)0.6536 (6)0.4508 (3)0.0342 (17)
H19A0.42220.67530.41670.041*
C200.4831 (3)0.6468 (5)0.4807 (2)0.0248 (15)
C210.5348 (3)0.6705 (5)0.4589 (2)0.0267 (15)
H21A0.52650.65000.42270.032*
H21B0.56950.63270.47730.032*
C220.6281 (3)0.8026 (6)0.4580 (3)0.0331 (17)
H22A0.63040.77130.42530.040*
H22B0.64220.87190.45760.040*
C230.6681 (3)0.7467 (5)0.5012 (2)0.0261 (15)
C240.6893 (3)0.6525 (6)0.4932 (3)0.0333 (17)
H24A0.67830.62220.46070.040*
C250.7268 (3)0.6027 (6)0.5334 (3)0.0386 (19)
H25A0.74270.53980.52780.046*
C260.7405 (3)0.6454 (6)0.5811 (3)0.040 (2)
H26A0.76590.61160.60840.048*
C270.7180 (3)0.7358 (6)0.5893 (3)0.0365 (18)
H27A0.72750.76490.62220.044*
C280.6815 (3)0.7846 (5)0.5499 (3)0.0282 (16)
C290.6902 (4)0.9561 (6)0.5778 (4)0.046 (2)
H29A0.70230.99250.54990.055*
H29B0.72610.93190.60160.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0285 (3)0.0360 (3)0.0431 (3)0.0057 (2)0.0014 (2)0.0031 (2)
I20.0440 (3)0.0323 (3)0.0193 (2)0.0026 (2)0.00772 (19)0.00396 (19)
I30.0382 (3)0.0368 (3)0.0368 (3)0.0059 (2)0.0031 (2)0.0037 (2)
I40.0671 (4)0.0298 (3)0.0289 (3)0.0023 (3)0.0038 (2)0.0004 (2)
Cd10.0275 (3)0.0299 (3)0.0268 (3)0.0046 (2)0.0025 (2)0.0031 (2)
Cd20.0418 (3)0.0300 (3)0.0249 (3)0.0020 (3)0.0026 (2)0.0003 (2)
S10.0262 (9)0.0277 (9)0.0217 (8)0.0004 (7)0.0013 (7)0.0042 (7)
S20.0328 (9)0.0299 (10)0.0209 (8)0.0020 (8)0.0039 (7)0.0005 (7)
O10.046 (3)0.033 (3)0.023 (2)0.007 (2)0.009 (2)0.004 (2)
O20.030 (3)0.029 (3)0.036 (3)0.003 (2)0.000 (2)0.013 (2)
N10.037 (3)0.020 (3)0.024 (3)0.002 (3)0.002 (2)0.002 (2)
C10.045 (5)0.019 (4)0.024 (3)0.009 (3)0.001 (3)0.002 (3)
C20.054 (5)0.027 (4)0.051 (5)0.002 (4)0.002 (4)0.003 (4)
C30.096 (8)0.019 (4)0.040 (5)0.011 (5)0.004 (5)0.011 (4)
C40.065 (6)0.031 (4)0.034 (4)0.013 (4)0.016 (4)0.001 (3)
C50.053 (5)0.029 (4)0.015 (3)0.018 (4)0.004 (3)0.005 (3)
C60.050 (5)0.037 (5)0.027 (4)0.011 (4)0.008 (3)0.002 (3)
C70.047 (5)0.032 (4)0.026 (4)0.011 (4)0.013 (3)0.010 (3)
C80.065 (6)0.028 (4)0.024 (4)0.011 (4)0.004 (4)0.001 (3)
C90.086 (7)0.048 (6)0.022 (4)0.007 (5)0.005 (4)0.004 (4)
C100.074 (6)0.045 (5)0.027 (4)0.006 (5)0.006 (4)0.010 (4)
C110.062 (5)0.043 (5)0.019 (4)0.006 (4)0.006 (4)0.012 (3)
C120.058 (5)0.024 (4)0.020 (3)0.001 (4)0.012 (3)0.000 (3)
C130.042 (4)0.026 (4)0.032 (4)0.005 (3)0.012 (3)0.002 (3)
C140.046 (5)0.024 (4)0.027 (4)0.006 (3)0.004 (3)0.003 (3)
C150.040 (4)0.019 (3)0.026 (4)0.000 (3)0.009 (3)0.004 (3)
C160.050 (5)0.027 (4)0.034 (4)0.004 (4)0.018 (4)0.003 (3)
C170.046 (5)0.044 (5)0.044 (5)0.018 (4)0.019 (4)0.011 (4)
C180.025 (4)0.042 (5)0.042 (4)0.003 (3)0.001 (3)0.003 (4)
C190.038 (4)0.035 (4)0.028 (4)0.003 (3)0.003 (3)0.007 (3)
C200.033 (4)0.014 (3)0.025 (3)0.003 (3)0.003 (3)0.004 (3)
C210.032 (4)0.027 (4)0.020 (3)0.001 (3)0.003 (3)0.003 (3)
C220.031 (4)0.042 (5)0.024 (4)0.001 (3)0.003 (3)0.004 (3)
C230.026 (4)0.030 (4)0.023 (3)0.001 (3)0.006 (3)0.002 (3)
C240.030 (4)0.035 (4)0.036 (4)0.002 (3)0.009 (3)0.005 (3)
C250.026 (4)0.030 (4)0.062 (5)0.006 (3)0.014 (4)0.009 (4)
C260.027 (4)0.046 (5)0.045 (5)0.012 (4)0.005 (3)0.017 (4)
C270.033 (4)0.048 (5)0.028 (4)0.007 (4)0.006 (3)0.002 (3)
C280.024 (4)0.032 (4)0.028 (4)0.009 (3)0.006 (3)0.003 (3)
C290.045 (5)0.038 (5)0.056 (5)0.005 (4)0.011 (4)0.022 (4)
Geometric parameters (Å, º) top
I1—Cd12.7422 (7)C4—C51.368 (11)
I2—Cd2i2.8598 (7)C5—C61.510 (12)
I2—Cd22.8882 (8)C7—C121.372 (10)
I3—Cd22.7046 (7)C7—C81.390 (11)
I4—Cd22.7033 (8)C8—C91.374 (11)
Cd1—N12.321 (6)C9—C101.374 (13)
Cd1—O22.447 (5)C10—C111.330 (12)
Cd1—S22.6557 (19)C11—C121.396 (10)
Cd1—S12.7404 (18)C12—C131.506 (10)
Cd2—I2i2.8599 (7)C14—C151.482 (10)
S1—C221.828 (7)C15—C161.411 (10)
S1—C211.832 (7)C15—C201.431 (9)
S2—C131.809 (7)C16—C171.357 (12)
S2—C141.832 (7)C17—C181.418 (11)
O1—C71.401 (8)C18—C191.320 (11)
O1—C61.409 (9)C19—C201.385 (10)
O2—C281.407 (8)C20—C211.490 (10)
O2—C291.420 (9)C22—C231.520 (10)
N1—C51.351 (9)C23—C281.379 (9)
N1—C11.355 (10)C23—C241.394 (10)
C1—C21.388 (11)C24—C251.401 (11)
C1—C291.524 (10)C25—C261.381 (12)
C2—C31.389 (13)C26—C271.363 (11)
C3—C41.386 (13)C27—C281.370 (10)
Cd2i—I2—Cd282.36 (2)C4—C5—C6120.9 (7)
N1—Cd1—O267.96 (19)O1—C6—C5111.7 (6)
N1—Cd1—S2103.20 (15)C12—C7—C8121.3 (7)
O2—Cd1—S283.53 (13)C12—C7—O1115.7 (7)
N1—Cd1—S1135.71 (15)C8—C7—O1122.9 (7)
O2—Cd1—S176.35 (12)C9—C8—C7118.9 (8)
S2—Cd1—S197.79 (5)C10—C9—C8120.4 (8)
N1—Cd1—I1115.57 (15)C11—C10—C9119.6 (8)
O2—Cd1—I1158.79 (13)C10—C11—C12122.9 (8)
S2—Cd1—I1114.37 (5)C7—C12—C11116.9 (7)
S1—Cd1—I189.43 (4)C7—C12—C13120.8 (7)
I4—Cd2—I3116.64 (3)C11—C12—C13122.3 (7)
I4—Cd2—I2i108.09 (2)C12—C13—S2107.9 (5)
I3—Cd2—I2i113.39 (2)C15—C14—S2116.0 (5)
I4—Cd2—I2113.66 (3)C16—C15—C20116.9 (7)
I3—Cd2—I2108.94 (2)C16—C15—C14119.7 (7)
I2i—Cd2—I293.95 (2)C20—C15—C14123.3 (7)
C22—S1—C21100.4 (4)C17—C16—C15121.8 (7)
C22—S1—Cd1107.6 (2)C16—C17—C18120.3 (7)
C21—S1—Cd1112.5 (2)C19—C18—C17118.2 (7)
C13—S2—C14103.4 (4)C18—C19—C20124.5 (7)
C13—S2—Cd1103.6 (3)C19—C20—C15118.2 (7)
C14—S2—Cd1109.3 (2)C19—C20—C21120.3 (6)
C7—O1—C6118.1 (6)C15—C20—C21121.5 (6)
C28—O2—C29117.9 (6)C20—C21—S1110.9 (5)
C28—O2—Cd1121.0 (4)C23—C22—S1112.6 (5)
C29—O2—Cd1119.3 (4)C28—C23—C24118.2 (7)
C5—N1—C1118.1 (6)C28—C23—C22121.1 (6)
C5—N1—Cd1120.5 (5)C24—C23—C22120.5 (6)
C1—N1—Cd1119.6 (4)C23—C24—C25119.7 (7)
N1—C1—C2122.9 (7)C26—C25—C24119.8 (7)
N1—C1—C29119.5 (6)C27—C26—C25120.4 (7)
C2—C1—C29117.6 (7)C26—C27—C28119.7 (7)
C1—C2—C3117.3 (9)C27—C28—C23122.1 (7)
C4—C3—C2120.2 (8)C27—C28—O2121.5 (6)
C5—C4—C3118.9 (8)C23—C28—O2116.4 (6)
N1—C5—C4122.5 (8)O2—C29—C1109.3 (7)
N1—C5—C6116.6 (7)
Symmetry code: (i) x+1, y, z+3/2.
(3) top
Crystal data top
C58H54Cd4I8N2O4S4Z = 1
Mr = 2436.07F(000) = 1128
Triclinic, P1Dx = 2.353 Mg m3
a = 11.660 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.147 (3) ÅCell parameters from 9132 reflections
c = 12.585 (4) Åθ = 2.4–28.4°
α = 75.142 (11)°µ = 4.98 mm1
β = 87.056 (13)°T = 173 K
γ = 86.996 (13)°Block, colourless
V = 1719.2 (8) Å30.14 × 0.09 × 0.08 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6018 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scanθmax = 26.0°, θmin = 1.7°
h = 1414
28690 measured reflectionsk = 1414
6745 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0149P)2 + 1.4801P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
6745 reflectionsΔρmax = 1.42 e Å3
361 parametersΔρmin = 1.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.62247 (2)0.43008 (2)0.89896 (2)0.03269 (5)
I21.01894 (2)0.16721 (2)0.48612 (2)0.03822 (6)
I30.95448 (2)0.09314 (2)0.15983 (2)0.05247 (7)
I40.66156 (2)0.03206 (2)0.42216 (2)0.04602 (7)
Cd10.39016 (2)0.39221 (2)0.93283 (2)0.03191 (6)
Cd20.89292 (2)0.03513 (2)0.37694 (2)0.03771 (6)
S10.34902 (6)0.59802 (6)0.79258 (6)0.03052 (16)
S20.33845 (6)0.29372 (7)0.77553 (6)0.03280 (17)
O10.46792 (17)0.16895 (17)1.00624 (16)0.0331 (5)
O20.17769 (17)0.44975 (19)0.95656 (16)0.0362 (5)
N10.3124 (2)0.2909 (2)1.09663 (19)0.0280 (5)
C10.2120 (2)0.3234 (2)1.1382 (2)0.0294 (6)
C20.1789 (3)0.2828 (3)1.2474 (3)0.0373 (7)
H2A0.10650.30591.27450.045*
C30.2517 (3)0.2087 (3)1.3166 (3)0.0410 (8)
H3A0.23160.18201.39260.049*
C40.3545 (3)0.1737 (3)1.2740 (2)0.0376 (8)
H4A0.40570.12181.32030.045*
C50.3819 (2)0.2145 (2)1.1640 (2)0.0299 (7)
C60.4919 (3)0.1773 (3)1.1144 (2)0.0319 (7)
H6A0.55150.23351.11040.038*
H6B0.52010.10251.15970.038*
C70.5557 (3)0.1366 (2)0.9411 (2)0.0316 (7)
C80.6678 (3)0.1143 (3)0.9716 (3)0.0386 (8)
H8A0.68940.11811.04230.046*
C90.7494 (3)0.0860 (3)0.8967 (3)0.0481 (9)
H9A0.82700.06940.91700.058*
C100.7186 (3)0.0820 (3)0.7938 (3)0.0515 (9)
H10A0.77500.06430.74290.062*
C110.6053 (3)0.1039 (3)0.7643 (3)0.0437 (8)
H11A0.58450.10030.69330.052*
C120.5212 (3)0.1310 (2)0.8375 (3)0.0340 (7)
C130.3980 (3)0.1473 (3)0.8103 (3)0.0365 (7)
H13A0.35240.10280.87390.044*
H13B0.38720.11420.74750.044*
C140.4343 (3)0.3603 (3)0.6598 (2)0.0373 (7)
H14A0.49780.39530.68710.045*
H14B0.46830.30140.62460.045*
C150.3703 (2)0.4498 (3)0.5767 (2)0.0318 (7)
C160.3141 (3)0.4151 (3)0.4963 (3)0.0423 (8)
H16A0.31420.33630.49880.051*
C170.2581 (3)0.4928 (3)0.4129 (3)0.0456 (9)
H17A0.22140.46760.35820.055*
C180.2561 (3)0.6069 (3)0.4101 (3)0.0429 (8)
H18A0.21850.66100.35280.051*
C190.3087 (3)0.6426 (3)0.4907 (2)0.0367 (7)
H19A0.30610.72140.48850.044*
C200.3657 (2)0.5653 (3)0.5750 (2)0.0313 (7)
C210.4226 (3)0.6123 (3)0.6578 (2)0.0355 (7)
H21A0.43390.69440.62470.043*
H21B0.49990.57440.67000.043*
C220.1967 (3)0.6207 (3)0.7659 (3)0.0356 (7)
H22A0.15960.65880.82020.043*
H22B0.18820.67330.69210.043*
C230.1331 (2)0.5147 (2)0.7706 (2)0.0299 (7)
C240.0857 (3)0.4970 (3)0.6778 (3)0.0412 (8)
H24A0.09410.55240.60950.049*
C250.0268 (3)0.4008 (4)0.6829 (3)0.0563 (10)
H25A0.00490.38990.61850.068*
C260.0136 (3)0.3208 (4)0.7804 (4)0.0585 (11)
H26A0.02820.25480.78390.070*
C270.0610 (3)0.3353 (3)0.8747 (3)0.0428 (8)
H27A0.05260.27920.94260.051*
C280.1200 (2)0.4313 (3)0.8687 (2)0.0309 (7)
C290.1322 (3)0.4086 (3)1.0667 (2)0.0388 (8)
H29A0.05830.37271.06460.047*
H29B0.11650.47381.09960.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02912 (11)0.03471 (12)0.03501 (11)0.00425 (8)0.00121 (8)0.01018 (9)
I20.04028 (12)0.03363 (12)0.04013 (12)0.00684 (9)0.00472 (9)0.00930 (9)
I30.05806 (15)0.06057 (17)0.03465 (13)0.00353 (12)0.00391 (11)0.00691 (11)
I40.02996 (12)0.05859 (16)0.04756 (14)0.00171 (10)0.00366 (9)0.01023 (11)
Cd10.02803 (12)0.03427 (13)0.02920 (12)0.00075 (9)0.00331 (9)0.00134 (10)
Cd20.03274 (13)0.04300 (15)0.03409 (13)0.00324 (10)0.00193 (10)0.00463 (11)
S10.0359 (4)0.0288 (4)0.0273 (4)0.0039 (3)0.0011 (3)0.0074 (3)
S20.0295 (4)0.0343 (4)0.0336 (4)0.0015 (3)0.0002 (3)0.0075 (3)
O10.0306 (11)0.0370 (12)0.0330 (11)0.0006 (9)0.0012 (9)0.0122 (10)
O20.0310 (11)0.0461 (14)0.0275 (11)0.0060 (10)0.0005 (9)0.0014 (10)
N10.0288 (13)0.0276 (13)0.0268 (13)0.0031 (10)0.0027 (10)0.0055 (11)
C10.0303 (16)0.0299 (16)0.0278 (16)0.0052 (12)0.0033 (12)0.0074 (13)
C20.0348 (17)0.0403 (19)0.0342 (18)0.0027 (14)0.0062 (14)0.0057 (15)
C30.050 (2)0.044 (2)0.0262 (17)0.0028 (16)0.0048 (15)0.0045 (15)
C40.046 (2)0.0336 (18)0.0302 (17)0.0005 (15)0.0023 (14)0.0030 (14)
C50.0340 (16)0.0225 (15)0.0331 (17)0.0029 (12)0.0026 (13)0.0062 (13)
C60.0360 (17)0.0285 (17)0.0300 (16)0.0023 (13)0.0035 (13)0.0053 (13)
C70.0333 (17)0.0231 (16)0.0375 (17)0.0010 (12)0.0054 (13)0.0080 (13)
C80.0383 (18)0.0271 (17)0.048 (2)0.0022 (13)0.0002 (15)0.0071 (15)
C90.0386 (19)0.040 (2)0.064 (2)0.0045 (15)0.0077 (17)0.0123 (18)
C100.050 (2)0.042 (2)0.060 (2)0.0057 (17)0.0181 (18)0.0147 (18)
C110.058 (2)0.0300 (18)0.043 (2)0.0044 (15)0.0075 (17)0.0119 (15)
C120.0412 (18)0.0203 (16)0.0397 (18)0.0003 (13)0.0038 (14)0.0077 (13)
C130.0442 (19)0.0278 (17)0.0402 (18)0.0018 (14)0.0022 (14)0.0135 (14)
C140.0359 (17)0.042 (2)0.0307 (17)0.0052 (14)0.0029 (13)0.0063 (15)
C150.0278 (15)0.0381 (18)0.0276 (16)0.0007 (13)0.0032 (12)0.0063 (14)
C160.047 (2)0.043 (2)0.0388 (19)0.0008 (16)0.0027 (15)0.0156 (16)
C170.046 (2)0.063 (3)0.0316 (18)0.0005 (17)0.0076 (15)0.0180 (17)
C180.0352 (18)0.058 (2)0.0306 (18)0.0065 (16)0.0053 (14)0.0036 (16)
C190.0346 (17)0.0384 (19)0.0321 (17)0.0047 (14)0.0045 (13)0.0025 (14)
C200.0268 (15)0.0399 (19)0.0264 (16)0.0015 (13)0.0072 (12)0.0085 (14)
C210.0363 (17)0.0386 (19)0.0296 (16)0.0081 (14)0.0022 (13)0.0041 (14)
C220.0363 (17)0.0292 (17)0.0369 (18)0.0087 (13)0.0033 (14)0.0033 (14)
C230.0225 (15)0.0291 (17)0.0354 (17)0.0079 (12)0.0017 (12)0.0053 (13)
C240.0298 (17)0.055 (2)0.0361 (18)0.0029 (15)0.0064 (14)0.0064 (16)
C250.043 (2)0.079 (3)0.053 (2)0.012 (2)0.0079 (17)0.024 (2)
C260.043 (2)0.062 (3)0.078 (3)0.0200 (19)0.003 (2)0.027 (2)
C270.0333 (18)0.039 (2)0.051 (2)0.0049 (14)0.0048 (15)0.0026 (16)
C280.0197 (14)0.0343 (18)0.0361 (17)0.0043 (12)0.0005 (12)0.0057 (14)
C290.0306 (17)0.053 (2)0.0287 (17)0.0026 (15)0.0064 (13)0.0048 (15)
Geometric parameters (Å, º) top
I1—Cd12.7643 (8)C4—C51.372 (4)
I2—Cd22.8609 (7)C5—C61.498 (4)
I2—Cd2i2.8937 (7)C7—C81.375 (4)
I3—Cd22.7096 (8)C7—C121.402 (4)
I4—Cd22.7284 (8)C8—C91.397 (5)
Cd1—N12.283 (2)C9—C101.375 (5)
Cd1—O22.562 (2)C10—C111.384 (5)
Cd1—S22.6697 (10)C11—C121.395 (4)
Cd1—S12.7007 (10)C12—C131.486 (4)
Cd2—I2i2.8937 (7)C14—C151.499 (4)
S1—C221.819 (3)C15—C161.395 (4)
S1—C211.832 (3)C15—C201.396 (4)
S2—C131.828 (3)C16—C171.383 (5)
S2—C141.830 (3)C17—C181.376 (5)
O1—C71.383 (3)C18—C191.382 (5)
O1—C61.434 (3)C19—C201.394 (4)
O2—C281.394 (4)C20—C211.507 (4)
O2—C291.432 (3)C22—C231.505 (4)
N1—C11.340 (4)C23—C241.387 (4)
N1—C51.351 (4)C23—C281.390 (4)
C1—C21.378 (4)C24—C251.372 (5)
C1—C291.501 (4)C25—C261.363 (5)
C2—C31.372 (4)C26—C271.389 (5)
C3—C41.379 (5)C27—C281.368 (4)
Cd2—I2—Cd2i87.28 (2)C4—C5—C6120.9 (3)
N1—Cd1—O268.67 (8)O1—C6—C5107.1 (2)
N1—Cd1—S2108.61 (7)C8—C7—O1124.3 (3)
O2—Cd1—S290.03 (5)C8—C7—C12121.9 (3)
N1—Cd1—S1136.33 (6)O1—C7—C12113.8 (3)
O2—Cd1—S171.82 (5)C7—C8—C9118.8 (3)
S2—Cd1—S189.05 (3)C10—C9—C8120.6 (3)
N1—Cd1—I1122.75 (6)C9—C10—C11120.0 (3)
O2—Cd1—I1155.06 (5)C10—C11—C12120.9 (3)
S2—Cd1—I1104.83 (2)C11—C12—C7117.8 (3)
S1—Cd1—I188.24 (2)C11—C12—C13121.7 (3)
I3—Cd2—I4114.705 (16)C7—C12—C13120.4 (3)
I3—Cd2—I2110.028 (18)C12—C13—S2116.8 (2)
I4—Cd2—I2114.726 (19)C15—C14—S2110.8 (2)
I3—Cd2—I2i117.63 (2)C16—C15—C20118.9 (3)
I4—Cd2—I2i105.210 (18)C16—C15—C14117.8 (3)
I2—Cd2—I2i92.72 (2)C20—C15—C14123.4 (3)
C22—S1—C21105.78 (15)C17—C16—C15121.6 (3)
C22—S1—Cd1110.53 (10)C18—C17—C16119.3 (3)
C21—S1—Cd1112.84 (11)C17—C18—C19119.9 (3)
C13—S2—C14101.13 (15)C18—C19—C20121.4 (3)
C13—S2—Cd1108.41 (11)C19—C20—C15118.9 (3)
C14—S2—Cd1103.18 (11)C19—C20—C21117.7 (3)
C7—O1—C6119.3 (2)C15—C20—C21123.4 (3)
C28—O2—C29119.9 (2)C20—C21—S1117.7 (2)
C28—O2—Cd1107.90 (16)C23—C22—S1115.4 (2)
C29—O2—Cd1113.29 (16)C24—C23—C28117.8 (3)
C1—N1—C5118.6 (2)C24—C23—C22121.4 (3)
C1—N1—Cd1121.66 (19)C28—C23—C22120.7 (3)
C5—N1—Cd1117.77 (19)C25—C24—C23121.1 (3)
N1—C1—C2122.0 (3)C26—C25—C24120.1 (3)
N1—C1—C29120.5 (2)C25—C26—C27120.3 (3)
C2—C1—C29117.4 (3)C28—C27—C26119.2 (3)
C3—C2—C1119.2 (3)C27—C28—C23121.5 (3)
C2—C3—C4119.0 (3)C27—C28—O2123.5 (3)
C5—C4—C3119.3 (3)C23—C28—O2114.9 (3)
N1—C5—C4121.8 (3)O2—C29—C1112.8 (2)
N1—C5—C6117.3 (3)
Symmetry code: (i) x+2, y, z+1.
(4) top
Crystal data top
C116H106Cd8I16N4O8S8Z = 1
Mr = 4870.12F(000) = 2254
Triclinic, P1Dx = 2.212 Mg m3
a = 11.3166 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.4404 (15) ÅCell parameters from 7371 reflections
c = 24.586 (2) Åθ = 2.2–23.3°
α = 86.655 (7)°µ = 4.68 mm1
β = 89.396 (6)°T = 171 K
γ = 78.371 (7)°Needle, colourless
V = 3656.6 (6) Å30.28 × 0.07 × 0.04 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6056 reflections with I > 2σ(I)
φ and ω scansRint = 0.084
Absorption correction: multi-scan
SADABS
θmax = 23.3°, θmin = 2.6°
Tmin = 0.354, Tmax = 0.835h = 1211
23781 measured reflectionsk = 1414
8432 independent reflectionsl = 2727
Refinement top
Refinement on F21058 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.185H-atom parameters constrained
wR(F2) = 0.430 w = 1/[σ2(Fo2) + (0.0399P)2 + 1891.6968P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
8432 reflectionsΔρmax = 3.80 e Å3
625 parametersΔρmin = 1.97 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.8278 (5)0.4588 (4)0.01012 (19)0.0463 (13)
I20.6656 (4)0.3836 (3)0.47947 (17)0.0361 (11)
I30.1337 (5)0.0839 (4)0.20741 (17)0.0424 (13)
I40.0914 (5)0.0091 (4)0.35744 (18)0.0533 (15)
I50.1638 (4)0.2639 (3)0.29398 (17)0.0387 (12)
I60.2511 (4)0.0287 (3)0.17434 (16)0.0385 (12)
I70.4491 (5)0.2967 (4)0.16511 (18)0.0465 (13)
I80.5310 (5)0.0557 (4)0.29864 (17)0.0445 (13)
Cd11.0374 (5)0.3747 (4)0.06605 (18)0.0347 (12)
Cd20.4349 (5)0.3914 (4)0.44006 (17)0.0311 (12)
Cd30.0758 (5)0.0802 (4)0.26107 (19)0.0390 (13)
Cd40.3730 (5)0.1681 (4)0.23137 (19)0.0386 (13)
S11.0101 (14)0.2126 (12)0.1296 (6)0.035 (4)
S21.1323 (12)0.2687 (10)0.0232 (6)0.040 (4)
S30.4220 (13)0.2289 (11)0.3863 (5)0.029 (3)
S40.3772 (12)0.3336 (9)0.5417 (6)0.029 (3)
O11.254 (4)0.308 (3)0.0877 (17)0.041 (5)
O20.869 (4)0.443 (3)0.1553 (17)0.044 (8)
O30.204 (4)0.420 (3)0.4350 (16)0.035 (5)
O40.573 (4)0.408 (3)0.3429 (15)0.034 (7)
N11.104 (4)0.470 (3)0.1298 (15)0.039 (7)
C11.025 (3)0.553 (3)0.1500 (17)0.041 (7)
C21.071 (4)0.629 (3)0.1731 (17)0.042 (7)
H2A1.01750.68610.18690.050*
C31.195 (4)0.623 (3)0.1759 (17)0.042 (7)
H3A1.22620.67510.19170.051*
C41.273 (3)0.540 (3)0.1557 (18)0.043 (7)
H4A1.35790.53550.15760.051*
C51.228 (3)0.464 (3)0.1326 (17)0.043 (7)
C61.311 (7)0.379 (6)0.117 (3)0.054 (14)
H6A1.35190.34240.15010.064*
H6B1.37280.40170.09360.064*
C71.306 (4)0.213 (2)0.0890 (16)0.043 (6)
C81.337 (4)0.152 (3)0.1363 (12)0.044 (7)
H8A1.32580.18030.17080.053*
C91.385 (4)0.048 (3)0.1330 (13)0.044 (7)
H9A1.40580.00660.16530.053*
C101.401 (4)0.006 (2)0.0825 (16)0.043 (7)
H10A1.43360.06410.08020.052*
C111.370 (4)0.068 (3)0.0352 (12)0.042 (7)
H11A1.38140.03900.00070.050*
C121.323 (4)0.171 (3)0.0385 (13)0.042 (6)
C131.2930 (13)0.235 (5)0.013 (2)0.044 (7)
H13A1.33090.19680.04430.053*
H13B1.32620.29740.01170.053*
C141.100 (4)0.1431 (14)0.024 (3)0.047 (8)
H14A1.12130.11400.06020.056*
H14B1.14490.09710.00450.056*
C150.956 (3)0.160 (4)0.0141 (18)0.047 (7)
C160.884 (4)0.188 (4)0.0600 (14)0.049 (7)
H16A0.91910.20220.09410.058*
C170.760 (4)0.194 (4)0.0561 (15)0.050 (7)
H17A0.71050.21280.08750.060*
C180.709 (3)0.173 (4)0.0063 (18)0.050 (7)
H18A0.62390.17730.00360.059*
C190.781 (4)0.146 (4)0.0397 (14)0.047 (7)
H19A0.74580.13110.07370.056*
C200.905 (4)0.139 (4)0.0358 (15)0.046 (7)
C210.995 (6)0.111 (2)0.0871 (15)0.041 (7)
H21A1.07560.08130.07330.049*
H21B0.96710.05780.11040.049*
C220.8588 (19)0.246 (5)0.1555 (19)0.035 (7)
H22A0.80450.28980.12870.041*
H22B0.82580.18410.16540.041*
C230.877 (4)0.305 (3)0.2080 (11)0.033 (6)
C240.876 (4)0.254 (2)0.2588 (14)0.034 (6)
H24A0.88200.18210.26130.040*
C250.867 (4)0.307 (3)0.3058 (11)0.033 (6)
H25A0.86660.27230.34050.040*
C260.858 (4)0.412 (3)0.3021 (11)0.033 (6)
H26A0.85210.44880.33430.039*
C270.859 (4)0.463 (2)0.2514 (14)0.033 (6)
H27A0.85290.53500.24890.040*
C280.868 (4)0.410 (3)0.2043 (11)0.032 (6)
C290.891 (6)0.561 (5)0.143 (2)0.039 (8)
H29A0.86570.58600.10520.046*
H29B0.84480.60740.16870.046*
N20.347 (3)0.521 (2)0.3790 (13)0.028 (6)
C300.429 (3)0.565 (3)0.3479 (15)0.034 (7)
C310.389 (3)0.658 (3)0.3191 (15)0.036 (7)
H31A0.44470.68820.29790.043*
C320.269 (3)0.707 (2)0.3215 (15)0.037 (6)
H32A0.24190.77000.30180.044*
C330.188 (3)0.662 (3)0.3526 (16)0.035 (7)
H33A0.10530.69560.35420.042*
C340.227 (3)0.570 (3)0.3814 (14)0.033 (7)
C350.150 (6)0.509 (6)0.409 (3)0.06 (2)
H35A0.10030.55090.43570.077*
H35B0.09370.49280.38150.077*
C360.140 (3)0.354 (2)0.4582 (12)0.037 (6)
C370.076 (3)0.311 (3)0.4217 (10)0.037 (6)
H37A0.07260.33310.38420.045*
C380.015 (4)0.235 (3)0.4400 (13)0.037 (6)
H38A0.02920.20540.41500.044*
C390.019 (4)0.203 (3)0.4948 (14)0.037 (6)
H39A0.02200.15070.50720.044*
C400.084 (4)0.246 (3)0.5313 (10)0.037 (6)
H40A0.08720.22370.56870.045*
C410.145 (3)0.322 (3)0.5130 (11)0.037 (6)
C420.2159 (12)0.368 (3)0.5489 (14)0.034 (6)
H42A0.19500.35080.58700.040*
H42B0.19170.44320.54290.040*
C430.402 (5)0.1969 (9)0.5463 (18)0.031 (7)
H43A0.39020.17210.58430.038*
H43B0.34300.17370.52290.038*
C440.525 (3)0.157 (3)0.5284 (12)0.031 (6)
C450.619 (3)0.145 (3)0.5654 (11)0.034 (6)
H45A0.60640.17520.59960.040*
C460.733 (3)0.091 (3)0.5523 (12)0.034 (6)
H46A0.79750.08320.57760.041*
C470.752 (3)0.047 (3)0.5022 (14)0.033 (6)
H47A0.82970.00990.49330.039*
C480.658 (3)0.058 (3)0.4652 (11)0.029 (6)
C490.544 (3)0.113 (3)0.4783 (11)0.029 (6)
C500.438 (5)0.125 (2)0.4368 (13)0.026 (6)
H50A0.36170.13160.45770.032*
H50B0.44770.06070.41760.032*
C510.564 (2)0.207 (5)0.3507 (15)0.027 (6)
H51A0.62600.22530.37390.033*
H51B0.58810.13310.34480.033*
C520.561 (4)0.266 (3)0.2963 (10)0.031 (6)
C530.557 (4)0.212 (2)0.2498 (13)0.032 (6)
H53A0.55290.14240.25290.038*
C540.558 (4)0.262 (3)0.1986 (11)0.032 (6)
H54A0.55490.22580.16670.039*
C550.563 (4)0.365 (3)0.1940 (10)0.031 (6)
H55A0.56420.39840.15900.038*
C560.568 (4)0.418 (2)0.2405 (13)0.031 (6)
H56A0.57140.48760.23740.037*
C570.567 (4)0.368 (3)0.2917 (11)0.031 (6)
C580.547 (6)0.524 (5)0.343 (2)0.033 (7)
H58A0.59070.54360.37430.039*
H58B0.57830.55160.30940.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.051 (3)0.034 (3)0.053 (3)0.006 (3)0.007 (2)0.002 (2)
I20.035 (3)0.027 (3)0.046 (2)0.008 (2)0.0022 (19)0.0013 (19)
I30.050 (3)0.037 (3)0.039 (2)0.007 (3)0.012 (2)0.003 (2)
I40.092 (4)0.040 (3)0.036 (2)0.028 (3)0.018 (2)0.015 (2)
I50.052 (3)0.024 (3)0.040 (2)0.007 (2)0.002 (2)0.0040 (18)
I60.050 (3)0.032 (3)0.035 (2)0.013 (2)0.0119 (19)0.0013 (18)
I70.065 (4)0.033 (3)0.046 (3)0.016 (3)0.007 (2)0.010 (2)
I80.066 (4)0.032 (3)0.035 (2)0.010 (3)0.019 (2)0.0079 (19)
Cd10.044 (3)0.025 (3)0.037 (2)0.010 (2)0.002 (2)0.0050 (19)
Cd20.034 (3)0.026 (3)0.033 (2)0.009 (2)0.0056 (19)0.0031 (19)
Cd30.051 (4)0.031 (3)0.036 (2)0.010 (3)0.010 (2)0.008 (2)
Cd40.050 (4)0.031 (3)0.039 (3)0.015 (3)0.011 (2)0.005 (2)
S10.037 (9)0.029 (7)0.038 (6)0.005 (6)0.007 (5)0.001 (5)
S20.052 (8)0.035 (8)0.038 (7)0.017 (6)0.013 (5)0.002 (5)
S30.030 (6)0.025 (6)0.033 (5)0.008 (5)0.004 (4)0.001 (4)
S40.035 (6)0.028 (6)0.027 (5)0.011 (5)0.007 (4)0.002 (4)
O10.046 (9)0.033 (9)0.046 (11)0.010 (6)0.006 (7)0.010 (7)
O20.06 (2)0.038 (12)0.037 (9)0.014 (11)0.002 (9)0.004 (8)
O30.035 (8)0.027 (9)0.043 (10)0.008 (6)0.004 (6)0.002 (7)
O40.044 (18)0.032 (10)0.029 (9)0.011 (9)0.004 (9)0.001 (7)
N10.049 (10)0.030 (10)0.041 (14)0.010 (7)0.004 (8)0.007 (10)
C10.050 (11)0.031 (10)0.044 (15)0.009 (8)0.005 (8)0.008 (10)
C20.050 (12)0.032 (10)0.045 (14)0.009 (8)0.006 (9)0.010 (10)
C30.050 (12)0.032 (11)0.046 (14)0.009 (9)0.005 (10)0.010 (10)
C40.049 (11)0.032 (11)0.047 (15)0.010 (8)0.004 (9)0.011 (10)
C50.049 (10)0.033 (11)0.050 (16)0.009 (8)0.002 (8)0.012 (11)
C60.048 (11)0.040 (13)0.08 (3)0.008 (8)0.000 (10)0.025 (17)
C70.049 (12)0.033 (9)0.045 (11)0.007 (7)0.010 (8)0.009 (7)
C80.051 (14)0.034 (10)0.046 (11)0.005 (9)0.011 (9)0.007 (8)
C90.052 (15)0.033 (10)0.046 (12)0.005 (9)0.013 (10)0.006 (8)
C100.051 (15)0.033 (10)0.046 (12)0.007 (9)0.014 (10)0.006 (8)
C110.050 (14)0.032 (10)0.045 (11)0.008 (8)0.014 (9)0.007 (8)
C120.050 (13)0.032 (9)0.045 (10)0.009 (8)0.011 (8)0.008 (7)
C130.054 (10)0.034 (13)0.047 (12)0.013 (8)0.009 (7)0.007 (9)
C140.056 (13)0.034 (11)0.054 (18)0.017 (9)0.006 (10)0.003 (10)
C150.055 (12)0.036 (14)0.054 (11)0.018 (10)0.005 (9)0.001 (9)
C160.057 (13)0.036 (15)0.057 (12)0.019 (11)0.002 (9)0.000 (10)
C170.056 (13)0.037 (16)0.059 (12)0.018 (11)0.001 (10)0.000 (11)
C180.055 (13)0.038 (16)0.059 (12)0.017 (11)0.000 (10)0.001 (11)
C190.053 (13)0.034 (16)0.057 (12)0.018 (10)0.002 (9)0.001 (11)
C200.053 (12)0.034 (15)0.053 (11)0.017 (10)0.004 (9)0.001 (9)
C210.046 (15)0.032 (11)0.048 (11)0.013 (10)0.010 (10)0.005 (9)
C220.035 (12)0.032 (13)0.037 (10)0.007 (9)0.003 (8)0.003 (9)
C230.027 (12)0.034 (9)0.037 (8)0.004 (8)0.004 (7)0.005 (7)
C240.029 (13)0.034 (10)0.037 (9)0.002 (9)0.005 (8)0.005 (7)
C250.027 (12)0.034 (10)0.036 (9)0.002 (8)0.005 (8)0.004 (7)
C260.028 (10)0.034 (9)0.035 (8)0.002 (8)0.005 (7)0.005 (7)
C270.028 (12)0.034 (10)0.037 (8)0.003 (8)0.004 (8)0.004 (7)
C280.026 (13)0.034 (9)0.037 (8)0.003 (8)0.004 (7)0.005 (7)
C290.050 (12)0.035 (11)0.032 (18)0.011 (8)0.006 (9)0.007 (10)
N20.036 (8)0.023 (8)0.027 (9)0.009 (5)0.000 (6)0.004 (6)
C300.040 (9)0.031 (9)0.033 (12)0.011 (7)0.003 (8)0.001 (9)
C310.042 (10)0.032 (9)0.034 (12)0.010 (8)0.003 (9)0.002 (9)
C320.042 (11)0.032 (9)0.036 (12)0.009 (8)0.002 (9)0.002 (9)
C330.040 (10)0.030 (9)0.035 (13)0.006 (7)0.001 (8)0.003 (9)
C340.038 (9)0.029 (9)0.033 (14)0.007 (6)0.001 (7)0.002 (9)
C350.039 (10)0.047 (17)0.10 (4)0.004 (7)0.008 (9)0.03 (2)
C360.039 (10)0.029 (11)0.045 (9)0.011 (9)0.003 (7)0.002 (7)
C370.038 (11)0.029 (12)0.046 (10)0.011 (10)0.002 (8)0.002 (8)
C380.038 (12)0.027 (12)0.047 (11)0.009 (10)0.003 (9)0.001 (9)
C390.038 (12)0.026 (12)0.047 (11)0.010 (10)0.004 (9)0.002 (9)
C400.038 (11)0.027 (11)0.047 (10)0.010 (10)0.003 (8)0.001 (8)
C410.040 (10)0.028 (11)0.046 (9)0.011 (9)0.003 (7)0.002 (7)
C420.035 (7)0.029 (10)0.038 (9)0.010 (6)0.008 (6)0.000 (7)
C430.036 (10)0.028 (9)0.032 (13)0.011 (6)0.006 (8)0.001 (7)
C440.035 (8)0.029 (9)0.030 (8)0.011 (6)0.004 (6)0.001 (6)
C450.037 (9)0.033 (11)0.032 (8)0.011 (7)0.003 (7)0.001 (8)
C460.037 (9)0.034 (11)0.032 (9)0.011 (8)0.003 (7)0.003 (8)
C470.034 (9)0.032 (11)0.033 (9)0.009 (7)0.002 (7)0.003 (8)
C480.030 (8)0.028 (9)0.030 (8)0.008 (6)0.003 (6)0.002 (6)
C490.030 (7)0.028 (8)0.030 (7)0.009 (5)0.003 (5)0.001 (5)
C500.026 (9)0.025 (8)0.027 (8)0.005 (6)0.005 (6)0.001 (6)
C510.026 (9)0.030 (9)0.028 (8)0.009 (7)0.000 (6)0.001 (6)
C520.036 (15)0.033 (10)0.029 (8)0.015 (9)0.002 (7)0.001 (7)
C530.035 (16)0.034 (11)0.029 (8)0.017 (10)0.001 (8)0.002 (7)
C540.035 (16)0.035 (11)0.031 (9)0.016 (11)0.001 (8)0.001 (8)
C550.032 (16)0.034 (11)0.031 (9)0.015 (11)0.000 (8)0.001 (8)
C560.032 (16)0.033 (11)0.030 (9)0.015 (10)0.001 (8)0.000 (7)
C570.033 (16)0.033 (10)0.029 (8)0.014 (9)0.000 (8)0.001 (7)
C580.040 (10)0.032 (10)0.027 (16)0.011 (8)0.001 (8)0.001 (9)
Geometric parameters (Å, º) top
I1—Cd12.757 (7)C11—C121.3900
I2—Cd22.774 (7)C12—C131.49 (6)
I3—Cd32.694 (7)C14—C151.61 (6)
I4—Cd32.706 (6)C15—C161.3900
I5—Cd42.872 (7)C15—C201.3900
I5—Cd32.913 (7)C16—C171.3900
I6—Cd42.841 (6)C17—C181.3900
I6—Cd32.885 (7)C18—C191.3900
I7—Cd42.709 (7)C19—C201.3900
I8—Cd42.712 (7)C20—C211.61 (5)
Cd1—N12.30 (3)C22—C231.59 (6)
Cd1—O12.49 (5)C23—C241.3900
Cd1—S12.673 (16)C23—C281.3900
Cd1—S22.775 (16)C24—C251.3900
Cd2—N22.30 (3)C25—C261.3900
Cd2—O32.57 (4)C26—C271.3900
Cd2—S32.647 (16)C27—C281.3900
Cd2—S42.687 (14)N2—C301.3900
S1—C221.8000 (11)N2—C341.3900
S1—C211.8000 (11)C30—C581.35 (7)
S2—C141.8000 (8)C30—C311.3900
S2—C131.8000 (8)C31—C321.3900
S3—C511.8000 (11)C32—C331.3900
S3—C501.8000 (11)C33—C341.3900
S4—C431.8000 (8)C34—C351.451 (10)
S4—C421.8000 (11)C36—C371.3900
O1—C71.29 (5)C36—C411.3900
O1—C61.48 (8)C37—C381.3900
O2—C281.26 (5)C38—C391.3900
O2—C291.66 (8)C39—C401.3900
O3—C361.35 (5)C40—C411.3900
O3—C351.35 (8)C41—C421.4500 (11)
O4—C571.40 (4)C43—C441.47 (6)
O4—C581.53 (7)C44—C451.3900
N1—C11.3900C44—C491.3900
N1—C51.3900C45—C461.3900
C1—C21.3900C46—C471.3900
C1—C291.51 (7)C47—C481.3900
C2—C31.3900C48—C491.3900
C3—C41.3900C49—C501.56 (6)
C4—C51.3900C51—C521.51 (5)
C5—C61.39 (8)C52—C531.3900
C7—C81.3900C52—C571.3900
C7—C121.3900C53—C541.3900
C8—C91.3900C54—C551.3900
C9—C101.3900C55—C561.3900
C10—C111.3900C56—C571.3900
Cd4—I5—Cd384.02 (19)C11—C12—C13119 (4)
Cd4—I6—Cd385.09 (18)C7—C12—C13121 (4)
N1—Cd1—O169.3 (14)C12—C13—S2111 (3)
N1—Cd1—S199.9 (10)C15—C14—S2104 (3)
O1—Cd1—S182.3 (11)C16—C15—C20120.0
N1—Cd1—I1117.9 (11)C16—C15—C14116 (4)
O1—Cd1—I1161.8 (10)C20—C15—C14124 (4)
S1—Cd1—I1111.2 (4)C15—C16—C17120.0
N1—Cd1—S2137.3 (11)C16—C17—C18120.0
O1—Cd1—S274.3 (10)C19—C18—C17120.0
S1—Cd1—S296.7 (4)C18—C19—C20120.0
I1—Cd1—S291.5 (3)C19—C20—C15120.0
N2—Cd2—O365.5 (13)C19—C20—C21123 (3)
N2—Cd2—S3101.6 (9)C15—C20—C21117 (3)
O3—Cd2—S382.8 (10)C20—C21—S1118 (3)
N2—Cd2—S4133.1 (9)C23—C22—S1102 (3)
O3—Cd2—S477.9 (9)C24—C23—C28120.0
S3—Cd2—S4101.8 (4)C24—C23—C22118 (3)
N2—Cd2—I2120.3 (9)C28—C23—C22121 (3)
O3—Cd2—I2161.0 (9)C25—C24—C23120.0
S3—Cd2—I2111.8 (4)C24—C25—C26120.0
S4—Cd2—I286.9 (3)C25—C26—C27120.0
I3—Cd3—I4114.9 (2)C28—C27—C26120.0
I3—Cd3—I6102.2 (2)O2—C28—C27129 (3)
I4—Cd3—I6125.0 (3)O2—C28—C23111 (3)
I3—Cd3—I5122.8 (2)C27—C28—C23120.0
I4—Cd3—I599.75 (19)C1—C29—O2105 (5)
I6—Cd3—I591.79 (19)C30—N2—C34120.0
I7—Cd4—I8120.2 (3)C30—N2—Cd2114.8 (18)
I7—Cd4—I6112.9 (2)C34—N2—Cd2123.4 (17)
I8—Cd4—I6105.8 (2)C58—C30—C31116 (3)
I7—Cd4—I5112.8 (2)C58—C30—N2124 (3)
I8—Cd4—I5108.1 (2)C31—C30—N2120.0
I6—Cd4—I593.6 (2)C30—C31—C32120.0
C22—S1—C21100 (3)C33—C32—C31120.0
C22—S1—Cd1105 (2)C32—C33—C34120.0
C21—S1—Cd1108.9 (15)C33—C34—N2120.0
C14—S2—C1399 (3)C33—C34—C35125 (4)
C14—S2—Cd1114 (2)N2—C34—C35114 (4)
C13—S2—Cd1107 (2)O3—C35—C34117 (5)
C51—S3—C50104 (3)O3—C36—C37115 (3)
C51—S3—Cd2102 (2)O3—C36—C41125 (3)
C50—S3—Cd2105.9 (15)C37—C36—C41120.0
C43—S4—C42102 (2)C36—C37—C38120.0
C43—S4—Cd2107.6 (17)C39—C38—C37120.0
C42—S4—Cd2108.2 (14)C40—C39—C38120.0
C7—O1—C6119 (5)C39—C40—C41120.0
C7—O1—Cd1125 (4)C40—C41—C36120.0
C6—O1—Cd1114 (4)C40—C41—C42123 (3)
C28—O2—C29118 (4)C36—C41—C42117 (3)
C36—O3—C35122 (4)C41—C42—S4116 (2)
C36—O3—Cd2123 (3)C44—C43—S4108 (3)
C35—O3—Cd2115 (3)C45—C44—C49120.0
C57—O4—C58116 (4)C45—C44—C43119.3 (9)
C1—N1—C5120.0C49—C44—C43119.6 (9)
C1—N1—Cd1120 (2)C46—C45—C44120.0
C5—N1—Cd1116 (2)C45—C46—C47120.0
N1—C1—C2120.0C48—C47—C46120.0
N1—C1—C29118 (4)C49—C48—C47120.0
C2—C1—C29122 (4)C48—C49—C44120.0
C3—C2—C1120.0C48—C49—C50120 (2)
C2—C3—C4120.0C44—C49—C50120 (2)
C5—C4—C3120.0C49—C50—S3117 (3)
C4—C5—N1120.0C52—C51—S3114 (3)
C4—C5—C6117 (4)C53—C52—C57120.0
N1—C5—C6123 (4)C53—C52—C51118 (3)
C5—C6—O1112 (6)C57—C52—C51122 (3)
O1—C7—C8125 (3)C52—C53—C54120.0
O1—C7—C12115 (3)C55—C54—C53120.0
C8—C7—C12120.0C56—C55—C54120.0
C9—C8—C7120.0C55—C56—C57120.0
C10—C9—C8120.0C56—C57—C52120.0
C9—C10—C11120.0C56—C57—O4128 (3)
C12—C11—C10120.0C52—C57—O4112 (3)
C11—C12—C7120.0C30—C58—O4113 (5)
(5) top
Crystal data top
C29H27CdCuI3NO2S2Z = 2
Mr = 1042.28F(000) = 984
Triclinic, P1Dx = 2.060 Mg m3
a = 8.9645 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.4098 (3) ÅCell parameters from 9946 reflections
c = 14.8826 (3) Åθ = 2.4–28.2°
α = 65.853 (1)°µ = 4.17 mm1
β = 73.386 (1)°T = 173 K
γ = 81.546 (1)°Block, yellow
V = 1680.04 (6) Å30.16 × 0.13 × 0.08 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6602 independent reflections
Radiation source: fine-focus sealed tube6072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
SADABS
h = 1011
Tmin = 0.555, Tmax = 0.731k = 1717
28556 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.039H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0142P)2 + 0.8501P]
where P = (Fo2 + 2Fc2)/3
6602 reflections(Δ/σ)max = 0.002
352 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.334817 (17)0.570963 (11)0.417466 (11)0.03154 (4)
I20.78474 (2)0.720549 (13)0.270645 (12)0.04207 (5)
I30.50493 (2)0.746988 (11)0.573707 (12)0.03658 (5)
Cd10.58973 (2)0.633019 (12)0.459040 (12)0.03091 (5)
Cu10.71141 (3)0.782628 (19)0.805463 (19)0.02697 (6)
S60.54119 (7)0.90661 (4)0.73933 (4)0.03141 (12)
S70.76104 (6)0.77521 (4)0.94931 (4)0.02880 (12)
O10.60261 (16)0.59508 (11)0.92203 (10)0.0263 (3)
O20.91204 (19)0.87876 (11)0.63583 (12)0.0358 (4)
N10.8249 (2)0.68636 (12)0.73864 (12)0.0231 (4)
C10.7622 (3)0.59806 (16)0.75973 (15)0.0254 (5)
C20.8381 (3)0.52894 (17)0.71897 (17)0.0338 (5)
H2A0.79110.46690.73640.041*
C30.9835 (3)0.55053 (18)0.65239 (18)0.0383 (6)
H3A1.03780.50370.62320.046*
C41.0484 (3)0.64076 (17)0.62899 (17)0.0341 (5)
H4A1.14780.65760.58280.041*
C50.9670 (2)0.70685 (16)0.67370 (15)0.0263 (5)
C61.0349 (3)0.80467 (16)0.65316 (17)0.0303 (5)
H6A1.07020.79980.71230.036*
H6B1.12460.82190.59270.036*
C70.9287 (3)0.97381 (16)0.63162 (16)0.0323 (5)
C81.0639 (3)1.00707 (18)0.63336 (18)0.0384 (6)
H8A1.15450.96370.63790.046*
C91.0647 (3)1.10572 (19)0.62833 (19)0.0452 (7)
H9A1.15681.13010.62940.054*
C100.9334 (4)1.16794 (19)0.62183 (19)0.0463 (7)
H10A0.93471.23490.61890.056*
C110.7987 (3)1.13335 (17)0.61950 (18)0.0409 (6)
H11A0.70851.17720.61490.049*
C120.7932 (3)1.03560 (16)0.62383 (16)0.0333 (5)
C130.6516 (3)0.99696 (17)0.61825 (17)0.0363 (5)
H13A0.68390.96360.56890.044*
H13B0.58171.05580.59160.044*
C140.4960 (3)0.98708 (18)0.81265 (18)0.0375 (6)
H14A0.59391.01010.81400.045*
H14B0.43381.04800.78000.045*
C150.4060 (3)0.92836 (18)0.91948 (19)0.0362 (6)
C160.2447 (3)0.9248 (2)0.9386 (2)0.0501 (7)
H16A0.19590.95780.88410.060*
C170.1549 (3)0.8742 (3)1.0355 (3)0.0612 (8)
H17A0.04540.87181.04710.073*
C180.2238 (4)0.8277 (3)1.1145 (2)0.0601 (8)
H18A0.16210.79351.18130.072*
C190.3835 (3)0.8302 (2)1.0976 (2)0.0454 (7)
H19A0.43010.79801.15320.055*
C200.4772 (3)0.87956 (18)0.99993 (18)0.0342 (5)
C210.6502 (3)0.87679 (18)0.98713 (18)0.0352 (5)
H21A0.66910.86921.05220.042*
H21B0.69120.94310.93530.042*
C220.6583 (3)0.66568 (17)1.05339 (16)0.0331 (5)
H22A0.65990.66711.11900.040*
H22B0.54810.67101.05070.040*
C230.7287 (3)0.56666 (16)1.04878 (16)0.0294 (5)
C240.8198 (3)0.50510 (19)1.11388 (18)0.0409 (6)
H24A0.84190.52751.16040.049*
C250.8787 (3)0.4116 (2)1.1117 (2)0.0476 (7)
H25A0.94180.37061.15620.057*
C260.8468 (3)0.37772 (18)1.0458 (2)0.0408 (6)
H26A0.88680.31311.04530.049*
C270.7563 (3)0.43737 (17)0.97987 (17)0.0315 (5)
H27A0.73380.41400.93420.038*
C280.6991 (2)0.53130 (16)0.98137 (15)0.0262 (5)
C290.6034 (3)0.57983 (17)0.83261 (16)0.0292 (5)
H29A0.52570.62700.79900.035*
H29B0.57390.50940.85200.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03521 (8)0.02948 (8)0.03594 (9)0.00290 (6)0.01611 (7)0.01512 (6)
I20.05104 (10)0.04403 (10)0.03065 (9)0.01449 (8)0.00463 (7)0.01343 (7)
I30.05155 (10)0.03202 (8)0.03505 (9)0.00990 (7)0.02211 (7)0.01797 (7)
Cd10.03665 (10)0.02822 (9)0.03065 (9)0.00121 (7)0.00924 (7)0.01354 (7)
Cu10.02960 (14)0.02192 (13)0.02473 (14)0.00067 (11)0.00116 (11)0.00870 (11)
S60.0346 (3)0.0276 (3)0.0310 (3)0.0044 (2)0.0093 (2)0.0114 (2)
S70.0294 (3)0.0275 (3)0.0285 (3)0.0021 (2)0.0052 (2)0.0109 (2)
O10.0236 (7)0.0307 (8)0.0233 (8)0.0010 (6)0.0081 (6)0.0077 (6)
O20.0379 (9)0.0218 (8)0.0465 (10)0.0018 (7)0.0086 (8)0.0130 (7)
N10.0259 (9)0.0220 (8)0.0197 (9)0.0000 (7)0.0062 (7)0.0064 (7)
C10.0317 (12)0.0262 (11)0.0208 (10)0.0017 (9)0.0125 (9)0.0073 (9)
C20.0481 (14)0.0286 (11)0.0310 (12)0.0054 (10)0.0129 (11)0.0145 (10)
C30.0498 (15)0.0322 (12)0.0354 (13)0.0040 (11)0.0049 (11)0.0212 (11)
C40.0370 (13)0.0329 (12)0.0279 (12)0.0008 (10)0.0012 (10)0.0144 (10)
C50.0298 (12)0.0249 (11)0.0216 (11)0.0004 (9)0.0054 (9)0.0077 (9)
C60.0311 (12)0.0247 (11)0.0294 (12)0.0026 (9)0.0010 (9)0.0099 (9)
C70.0462 (14)0.0228 (11)0.0219 (11)0.0077 (10)0.0006 (10)0.0058 (9)
C80.0441 (14)0.0307 (12)0.0364 (13)0.0083 (11)0.0011 (11)0.0129 (10)
C90.0602 (17)0.0375 (14)0.0399 (15)0.0191 (13)0.0054 (13)0.0159 (12)
C100.077 (2)0.0252 (12)0.0380 (14)0.0065 (13)0.0141 (13)0.0118 (11)
C110.0656 (18)0.0223 (11)0.0321 (13)0.0038 (11)0.0171 (12)0.0064 (10)
C120.0497 (15)0.0237 (11)0.0200 (11)0.0025 (10)0.0075 (10)0.0024 (9)
C130.0484 (15)0.0284 (12)0.0274 (12)0.0043 (11)0.0140 (11)0.0049 (10)
C140.0409 (14)0.0304 (12)0.0423 (14)0.0090 (11)0.0092 (11)0.0195 (11)
C150.0327 (13)0.0365 (13)0.0436 (14)0.0042 (10)0.0019 (11)0.0265 (11)
C160.0364 (15)0.0621 (18)0.0601 (18)0.0102 (13)0.0099 (13)0.0374 (15)
C170.0319 (15)0.082 (2)0.075 (2)0.0047 (15)0.0059 (15)0.0473 (19)
C180.0482 (18)0.073 (2)0.0540 (19)0.0123 (16)0.0172 (15)0.0368 (17)
C190.0495 (16)0.0507 (16)0.0373 (14)0.0030 (13)0.0034 (12)0.0271 (13)
C200.0339 (13)0.0365 (12)0.0374 (13)0.0010 (10)0.0012 (10)0.0253 (11)
C210.0387 (13)0.0331 (12)0.0373 (13)0.0012 (10)0.0064 (11)0.0193 (11)
C220.0388 (13)0.0359 (12)0.0218 (11)0.0100 (10)0.0031 (10)0.0086 (10)
C230.0310 (12)0.0297 (11)0.0227 (11)0.0079 (9)0.0063 (9)0.0033 (9)
C240.0505 (15)0.0417 (14)0.0309 (13)0.0107 (12)0.0204 (11)0.0045 (11)
C250.0529 (17)0.0394 (14)0.0450 (16)0.0004 (12)0.0302 (13)0.0007 (12)
C260.0383 (14)0.0280 (12)0.0478 (15)0.0001 (10)0.0144 (12)0.0046 (11)
C270.0301 (12)0.0302 (12)0.0324 (12)0.0041 (10)0.0078 (10)0.0093 (10)
C280.0196 (10)0.0301 (11)0.0232 (11)0.0062 (9)0.0042 (8)0.0036 (9)
C290.0303 (12)0.0327 (12)0.0273 (11)0.0054 (9)0.0119 (9)0.0095 (9)
Geometric parameters (Å, º) top
I1—Cd1i2.8604 (2)C5—C61.498 (3)
I1—Cd12.8751 (2)C7—C81.378 (3)
I2—Cd12.7314 (2)C7—C121.400 (3)
I3—Cd12.7150 (2)C8—C91.394 (3)
Cd1—I1i2.8603 (2)C9—C101.373 (4)
Cu1—N12.0207 (17)C10—C111.387 (4)
Cu1—S62.2600 (6)C11—C121.391 (3)
Cu1—S72.2662 (6)C12—C131.495 (3)
S6—C141.829 (2)C14—C151.504 (3)
S6—C131.833 (2)C15—C161.395 (4)
S7—C221.830 (2)C15—C201.397 (3)
S7—C211.837 (2)C16—C171.381 (4)
O1—C281.382 (2)C17—C181.365 (5)
O1—C291.433 (3)C18—C191.383 (4)
O2—C71.374 (3)C19—C201.398 (3)
O2—C61.418 (3)C20—C211.503 (3)
N1—C11.348 (3)C22—C231.493 (3)
N1—C51.348 (3)C23—C241.389 (3)
C1—C21.372 (3)C23—C281.396 (3)
C1—C291.505 (3)C24—C251.383 (4)
C2—C31.381 (3)C25—C261.370 (4)
C3—C41.373 (3)C26—C271.386 (3)
C4—C51.385 (3)C27—C281.382 (3)
Cd1i—I1—Cd187.178 (6)C8—C7—C12122.6 (2)
I3—Cd1—I2116.441 (8)C7—C8—C9118.5 (2)
I3—Cd1—I1i109.558 (7)C10—C9—C8120.4 (3)
I2—Cd1—I1i117.538 (8)C9—C10—C11120.2 (2)
I3—Cd1—I1114.680 (8)C10—C11—C12121.1 (2)
I2—Cd1—I1103.343 (7)C11—C12—C7117.1 (2)
I1i—Cd1—I192.822 (6)C11—C12—C13122.6 (2)
N1—Cu1—S6123.10 (5)C7—C12—C13120.3 (2)
N1—Cu1—S7120.30 (5)C12—C13—S6115.02 (16)
S6—Cu1—S7116.53 (2)C15—C14—S6109.84 (16)
C14—S6—C1398.96 (11)C16—C15—C20119.2 (2)
C14—S6—Cu1107.13 (8)C16—C15—C14118.3 (2)
C13—S6—Cu1107.18 (8)C20—C15—C14122.5 (2)
C22—S7—C2198.81 (11)C17—C16—C15121.2 (3)
C22—S7—Cu1106.37 (8)C18—C17—C16119.8 (3)
C21—S7—Cu1110.22 (8)C17—C18—C19120.2 (3)
C28—O1—C29117.10 (17)C18—C19—C20121.1 (3)
C7—O2—C6119.26 (18)C15—C20—C19118.6 (2)
C1—N1—C5117.79 (18)C15—C20—C21123.4 (2)
C1—N1—Cu1120.85 (14)C19—C20—C21118.0 (2)
C5—N1—Cu1121.34 (14)C20—C21—S7115.45 (16)
N1—C1—C2122.6 (2)C23—C22—S7112.56 (15)
N1—C1—C29115.16 (19)C24—C23—C28118.0 (2)
C2—C1—C29122.2 (2)C24—C23—C22121.4 (2)
C1—C2—C3119.3 (2)C28—C23—C22120.6 (2)
C4—C3—C2119.0 (2)C25—C24—C23120.7 (2)
C3—C4—C5119.1 (2)C26—C25—C24120.4 (2)
N1—C5—C4122.3 (2)C25—C26—C27120.3 (2)
N1—C5—C6116.59 (18)C28—C27—C26119.2 (2)
C4—C5—C6121.1 (2)C27—C28—O1124.0 (2)
O2—C6—C5104.99 (18)C27—C28—C23121.4 (2)
O2—C7—C8124.5 (2)O1—C28—C23114.46 (19)
O2—C7—C12112.9 (2)O1—C29—C1110.66 (17)
Symmetry code: (i) x+1, y+1, z+1.
 

Funding information

The following funding is acknowledged: National Research Foundation of Korea (grant No. 2016R1A2A2A05918799; grant No. 2017R1A4A1014595).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. 1349–1356.  Google Scholar
First citationBasu, A., Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1987). J. Chem. Soc. Chem. Commun. pp. 1724–1725.  CSD CrossRef Web of Science Google Scholar
First citationBhaduri, S., Sapre, N. Y. & Jones, P. G. (1991). J. Chem. Soc. Dalton Trans. pp. 2539–2543.  CSD CrossRef Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SHELXTL-PC. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2. Version 2009.1-0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrahoš, B., Herchel, R. & Trávníček, Z. (2017). Inorg. Chem. 56, 5076–5088.  Web of Science PubMed Google Scholar
First citationFedorov, Yu. V., Fedorova, O. A., Kalmykov, S. N., Oshchepkov, M. S., Nelubina, Yu. V., Arkhipov, D. E., Egorova, B. V. & Zubenko, A. D. (2017). Polyhedron, 124, 229–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationGammon, J. J., Gessner, V. H., Barker, G. R., Granander, J., Whitwood, A. C., Strohmann, C., O'Brien, P. & Kelly, B. (2010). J. Am. Chem. Soc. 132, 13922–13927.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHaase, R., Beschnitt, T., Flörke, U. & Herres-Pawlis, S. (2011). Inorg. Chim. Acta, 374, 546–557.  Web of Science CSD CrossRef CAS Google Scholar
First citationHasenknopf, B., Lehn, J.-M., Boumediene, N., Leize, E. & Van Dorsselaer, A. (1998). Angew. Chem. Int. Ed. 37, 3265–3268.  CrossRef CAS Google Scholar
First citationHwang, W., Zhang, S., Kamm, R. D. & Karplus, M. (2004). Proc. Natl Acad. Sci. USA, 101, 12916–12921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJu, H., Clegg, J., Park, K.-M., Lindoy, L. F. & Lee, S. S. (2015). J. Am. Chem. Soc. 137, 9535–9538.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJu, H., Lee, S. Y., Lee, E., Kim, S., Park, I.-H. & Lee, S. S. (2017). Supramol. Chem. 29, 723–729.  Web of Science CSD CrossRef CAS Google Scholar
First citationKang, Y., Park, I.-H., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Dalton Trans. 45, 4528–4533.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369–3375.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, S., Siewe, A. D., Lee, E. Ju. H., Park, I.-H., Park, K. M., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Inorg. Chem. 55, 2018–2022.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, S. Y., Jung, J. H., Vittal, J. J. & Lee, S. S. (2010). Cryst. Growth Des. 10, 1033–1036.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, J. Y., Kim, H. J., Jung, J. H., Sim, W. & Lee, S. S. (2008). J. Am. Chem. Soc. 130, 13838–13839.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLee, H.-H., Lee, E., Ju, H., Kim, S., Park, I.-H. & Lee, S. S. (2016). Inorg. Chem. 55, 2634–2640.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, J. Y., Lee, S. Y., Sim, W., Park, K.-M., Kim, J. & Lee, S. S. (2008). J. Am. Chem. Soc. 130, 6902–6903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLee, S.-G., Park, K.-M., Habata, Y. & Lee, S. S. (2013). Inorg. Chem. 52, 8416–8426.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, E., Park, K.-M., Ikeda, M., Kuwahara, S., Habata, Y. & Lee, S. S. (2015). Inorg. Chem. 54, 5372–5383.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, H.-H., Park, I.-H., Kim, S., Lee, E., Ju, H., Jung, J. H., Ikeda, M., Habata, Y. & Lee, S. S. (2017). Chem. Sci. 8, 2592–2596.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMartí-Rujas, J., Islam, N., Hashizume, D., Izumi, F., Fujita, M. & Kawano, M. (2011). J. Am. Chem. Soc. 133, 5853–5860.  Web of Science PubMed Google Scholar
First citationMartí-Rujas, J. & Kawano, M. (2013). Acc. Chem. Res. 46, 493–505.  Web of Science PubMed Google Scholar
First citationMoreno-Calvo, E., Calvet, T., Cuevas-Diarte, M. A. & Aquilano, D. (2010). Cryst. Growth Des. 10, 4262–4271.  CAS Google Scholar
First citationOhtsu, H. & Kawano, M. (2017). Chem. Commun. 53, 8818–8829.  Web of Science CrossRef CAS Google Scholar
First citationPark, I.-H., Kim, H. J., Ju, H., Lee, E., Kim, S. & Lee, S. S. (2016). CrystEngComm, 18, 5253–5256.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Kim, J.-Y., Kim, K. & Lee, S. S. (2014). Cryst. Growth Des. 14, 6012–6023.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, S., Lee, S. Y., Park, K.-M. & Lee, S. S. (2012). Acc. Chem. Res. 45, 391–403.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPercec, V., Hudson, S. D., Peterca, M., Leowanawat, P., Aqad, E., Graf, R., Spiess, H. W., Zeng, X., Ungar, G. & Heiney, P. A. (2011). J. Am. Chem. Soc. 133, 18479–18494.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRyu, H., Park, K.-M., Ikeda, M., Habata, Y. & Lee, S. S. (2014). Inorg. Chem. 53, 4029–4038.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
ISSN: 2052-2525