research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 5| Part 2| March 2018| Pages 182-189
ISSN: 2052-2525

Isomerism in double-pillared-layer coordination polymers – structures and photoreactivity

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, and bDepartment of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
*Correspondence e-mail: sslee@gnu.ac.kr, chmjjv@nus.edu.sg

Edited by C. Lecomte, Université de Lorraine, France (Received 18 September 2017; accepted 22 January 2018; online 14 February 2018)

The existence of isomerism in coordination polymeric structures offers opportunities to understand structure–function relationships. Herein the serendipitous isolation is reported of two isomeric double-pillared-layer coordination polymeric structures arising from two different types of carboxyl­ate bonding of benzene-1,4-di­carboxyl­ate ligands to zinc(II), which constitutes a new type of structural isomerism. The different bonding modes not only alter the shape and size of the pores, but also the nature of interpenetration and photoreactivity. Although two trans,cis,trans-bpeb ligands with conjugated olefin bonds are aligned in close proximity in both of the structures, one isomer undergoes a double [2 + 2] cyclo­addition reaction and the second isomer only offers an incomplete single cyclo­addition product. This work demonstrates how small changes in the structural connectivity can have an impact on the overall structural, physical and chemical properties of such materials.

1. Introduction

Recent advances in the design and construction of a wide variety of highly crystalline coordination polymers (CPs) and metal–organic frameworks (MOFs) are mainly based on the self-assembly of these compounds in a one-pot crystallization process (Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed. New York: John Wiley and Sons.]; Ramanan & Whittingham, 2006[Ramanan, A. & Whittingham, M. S. (2006). Cryst. Growth Des. 6, 2419-2421.]). Researchers seek to engineer, fine tune and control the chemical composition, dimensionality, connectivity, topology, interpenetration, pore size and shape of these solid-state materials in order to vary their physical and chemical properties for various applications (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]; Horike et al., 2009[Horike, S., Shimomura, S. & Kitagawa, S. (2009). Nat. Chem. 1, 695-704.]; Long & Yaghi, 2009[Long, J. R. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213-1214.]; Zhou et al., 2012[Zhou, H.-C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673-674.]; Janiak, 2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]; Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]; Zaworotko, 2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]; Zhang et al., 2008[Zhang, J.-P., Huang, X.-C. & Chen, X.-M. (2008). Chem. Soc. Rev. 38, 2385-2396.]). In other words, the solid-state properties are dictated by the molecular packing, which in turn is influenced by crystallization conditions. The crystallization conditions may yield not only different polymorphs but also isomeric products. In the multi-dimensional coordination polymeric structures, various types of structural and stereoisomerism are possible that are similar to those encountered in discrete molecules, in addition to supramolecular isomerism (Moulton & Zaworotko, 2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]; Zaworotko, 2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]; Zhang et al., 2008[Zhang, J.-P., Huang, X.-C. & Chen, X.-M. (2008). Chem. Soc. Rev. 38, 2385-2396.]; Guillerm et al., 2014[Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X., Adil, K., Lah, M. S. & Eddaoudi, M. (2014). Chem. Soc. Rev. 43, 6141-6172.]). These isomers provide opportunities to improve our understanding of the structure–function relationship in these polymeric materials. In this respect, new types of isomerism in CPs and MOFs have been discovered to yield interesting solid properties (Blake, 2001[Blake, A. J., Brooks, N. R., Champness, N. R., Crew, M., Gregory, D. H., Hubberstey, P., Schröder, M., Deveson, A., Fenske, D. & Hanton, L. R. (2001). Chem. Commun. pp. 1432-1433.]; Barnett et al., 2012[Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2012). Chem. Commun. pp. 1640-1641.]; Hu et al., 2012[Hu, J.-S., Qin, L., Zhang, M.-D., Yao, X.-Q., Li, Y.-Z., Guo, Z.-J., Zheng, H.-G. & Xue, Z.-L. (2012). Chem. Commun. 48, 681-683.]; Panda et al., 2013[Panda, T., Kundu, T. & Banerjee, R. (2013). Chem. Commun. 49, 6197-6199.]; Poplaukhin & Tiekink, 2010[Poplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302-1306.]; Manna et al., 2008[Manna, S. C., Zangrando, E., Ribas, J. & Ray Chaudhuri, N. (2008). Eur. J. Inorg. Chem. 9, 1400-1405.]; Karmakar et al., 2017[Karmakar, A., Paul, A. & Pombeiro, A. J. L. (2017). CrystEngComm, 19, 4666-4695.]).

Carboxylates are known to have a variety of bonding modes to the metal centres (Guo et al., 2013[Guo, X.-G., Yang, W.-B., Wu, X.-Y., Zhang, Q.-K., Lin, L., Yu, R. M., in, & Lu, C. (2013). CrystEngComm, 15, 3654-3663.]). Dicarboxylate spacer ligands such as the 1,4-benzenedicarboxylate anion can connect metal ions in three different ways using their chelating and bridging abilities, as shown in Fig. 1[link](a). These three types of bonding modes can generate two structural isomers while maintaining the same (4,4) connectivity as shown in Figs. 1[link](b) and 1(c) (Gong et al., 2013[Gong, Y., Li, J., Jiang, P.-G., Li, Q.-F. & Lin, J.-H. (2013). Dalton Trans. 42, 1603-1611.]; Park et al., 2017[Park, I.-H., Kang, Y., Lee, E., Chanthapally, A., Lee, S. S. & Vittal, J. J. (2017). Aust. J. Chem. 70, 461-467.]). It may be noted that the isomer containing both type-I and type-II di­carboxyl­ate linkages in the [M2(di­carboxyl­ate)2] layer (Fig. 1[link]b) has an ideal rectangular shape with mm symmetry. The second isomer with type-III linkages has the shape of an ideal square with fourfold rotational symmetry in the [M2(dicarboxylate)2] building block, as displayed in Fig. 1[link](c).

[Figure 1]
Figure 1
(a) Three types of connectivities of bdc in the chelating and bridging modes. Two structural isomers in the double-pillared-layer structure [M2(di­carboxyl­ate)2(pillar)2]. (b) The (4,4) `rectangular' net has an idealized local mm symmetry with type-I and type-II linkages. (c) The (4,4) `square' net has an idealized local fourfold rotational symmetry with type-III connectivity of di­carboxyl­ates. A rhombus-shaped net is also possible for type-III linkages. The axial positions are occupied by di­pyridyl pillar ligands, which have been omitted for clarity.

Synthesis and isolation of these two closely related structural isomers are challenging. Furthermore, they are expected to form concomitantly in one synthesis. These two types of connectivities have been reported recently for dicarboxylates with different chemical compositions (Gong et al., 2013[Gong, Y., Li, J., Jiang, P.-G., Li, Q.-F. & Lin, J.-H. (2013). Dalton Trans. 42, 1603-1611.]; Park et al., 2017[Park, I.-H., Kang, Y., Lee, E., Chanthapally, A., Lee, S. S. & Vittal, J. J. (2017). Aust. J. Chem. 70, 461-467.]). To the best of our knowledge, such structural isomerism has not yet been documented in metal complexes or CPs with the same chemical formula.

The influence of the single- and double-pillared-layer structures on the physical properties and chemical reactivities has been investigated (Takashima et al., 2011[Takashima, Y., Furukawa, S. & Kitagawa, S. (2011). CrystEngComm, 13, 3360-3363.]; Mahata et al., 2006[Mahata, P., Madras, G. & Natarajan, S. (2006). J. Phys. Chem. B, 110, 13759-13768.]; Kitaura et al., 2002[Kitaura, R., Kitagawa, S., Kubota, Y., Kobayashi, T. C., Kindo, K., Mita, Y., Matsuo, A., Kobayashi, M., Chang, H. C., Ozawa, T. C., Suzuki, M., Sakata, M. & Takata, M. (2002). Science, 298, 2358-2361.], 2003[Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. (2003). Angew. Chem. Int. Ed. 42, 428-431.]; Kitagawa & Matsuda, 2007[Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490-2509.]; Sato et al., 2010[Sato, H., Matsuda, R., Sugimoto, K., Takata, M. & Kitagawa, S. (2010). Nat. Mater. 9, 661-666.]; Park, Medishetty et al., 2014[Park, I.-H., Medishetty, R., Kim, J.-Y., Lee, S. S. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5591-5595.]; Park et al., 2015[Park, I.-H., Medishetty, R., Lee, H.-H., Herng, T. S., Ding, J., Lee, S. S. & Vittal, J. J. (2015). Cryst. Growth Des. 15, 4156-4161.]; Chun et al., 2005[Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J. 11, 3521-3529.]; Seo et al., 2009[Seo, J., Matsuda, R., Sakamoto, H., Bonneau, C. & Kitagawa, S. (2009). J. Am. Chem. Soc. 131, 12792-12800.]; Maji et al., 2004[Maji, T. K., Uemura, K., Chang, H. C., Matsuda, R. & Kitagawa, S. (2004). Angew. Chem. Int. Ed. 43, 3269-3272.]; Henke et al., 2012[Henke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. (2012). J. Am. Chem. Soc. 134, 9464-9474.]). Supramolecular isomers with different dimensionalities and topologies have been shown to possess different physical properties (Moulton & Zaworotko, 2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]; Zaworotko, 2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]). Since the two structural isomers described here have the same topology and differ only in their dicarboxylate bonding modes, it is interesting to investigate their properties. During our attempts to grow higher quality single crystals suitable for X-ray intensity data collection, we isolated a double-pillared-layer coordination polymeric structure with the molecular formula {Zn2(bpeb)2(bdc)2] {bdc = 1,4-benzenedicarboxylate, bpeb = 1,4-bis[2-(4-pyridyl)ethenyl]benzene}[link], when dimethylformamide (DMF) was used as one of the solvents. When DMF was replaced by dimethylacetamide (DMA), we were able to isolate two structural isomers formed concomitantly in a one-pot synthesis as major and minor products. Of these two isomers exhibiting twofold interpenetration, one has parallel and the other has perpendicular interpenetration with respect to the bpeb pillar ligands. As these pillar ligands have olefin bonds arranged in close proximity, it gives an opportunity to investigate the [2 + 2] cycloaddition photoreactivity in these two supramolecular isomers. Further photoluminescent properties were also recorded and discussed in this report.

[Scheme 1]

2. Results and discussion

The single crystals of [Zn2(bpeb)2(bdc)2]·2DMF·2H2O·0.5DMSO (1) were obtained from Zn(NO3)2·6H2O, H2bdc and bpeb in a 1:1:1 molar ratio in a mixture of DMF, dimethyl sulfoxide (DMSO) and water along with a few drops of NaOH solution heated at 393 K for 48 h. When DMF was replaced by DMA, a similar solvothermal synthesis yielded the supra­molecular isomers of [Zn2(bpeb)2(bdc)2]·2DMA·2H2O (2) and [Zn2(bpeb)2(bdc)2]·DMA (3) concomitantly. Plate-like yellow crystals of (2) were the major product, whereas pale-yellow rod-shaped crystals of (3) were the minor product (less than 1%) in this reaction. We were unable to obtain (3) in larger quantities by changing the experimental conditions. The solid-state structures determined from single-crystal X-ray diffraction techniques are described below.

The asymmetric unit of (1), which crystallized in P21/c with Z = 4, has a formula unit in which both bpeb ligands are disordered, see Fig. 2[link](a). Interestingly, each bpeb ligand has both trans,trans,trans (all-trans) and trans,cis,trans conformations in the ratio of 60:40, respectively. The dinuclear repeating unit consists of two ZnII atoms bridged by two carboxyl­ate groups; each ZnII is chelated by a carboxylate group (Fig. 2[link]b). The bridging carboxyl­ates have a syn-anti-μ2-η1:η1 bonding mode observed from the two sets of Zn—O—C angles [128.9 (3)° and 128.4 (3)°; 150.2 (3)° and 148.1 (3)°]. The [Zn2(O2C—C)2] is roughly planar. The exo-carboxylate groups in the para positions of the bdc ligands are connected to generate a (4,4) layer structure of [Zn2(bdc)2]. In fact, the Zn—bpeb—Zn distance and the diagonal distances between the centres of the Zn2 dimer in the Zn2(bdc)2 rhomboidal ring are the a, b and c unit-cell lengths. Furthermore, a closer examination reveals that each bdc has type-III carboxylate bonding. The (4,4) grid is rhombus-shaped as a result of the symmetrical bonding, with the dimensions 12.530 × 12.554 Å and an angle of 79°. The axial positions of the highly distorted octahedral ZnII centres are occupied by the nitrogen atoms of the bpeb ligands. The bpeb ligands are acting like pillars, connecting the [Zn2(bdc)2] layers through pyridyl groups to produce double-pillared-layer structures with primitive cubic unit (pcu) topology (Fig. 2[link]c). The structure is doubly interpenetrated as a result of the large empty space. It may be noted that a pair of bpeb pillars from the neighbouring pcu unit penetrate each rhomboidal ring in the [Zn2(bdc)2] layer, thus forming a twofold parallel interpenetration as displayed in Fig. 2[link](c). The empty cavity generated by the bpeb ligands is filled by the double interpenetration. The total potential solvent area volume in (1), calculated using PLATON (Spek, 2009[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), is 1633 Å3, which is 26.8% of the unit-cell volume 6094.6 Å3.

[Figure 2]
Figure 2
(a) The (4,4) net formed by Zn2(bdc)2 in (1). (b) Single pcu unit showing the orientations of the bpeb pillars. (c) Twofold parallel interpenetration of the pcu units. For clarity, the disorder and hydrogen atoms are not shown.

Compound (2) was the major product of the crystallization using DMA in the solvothermal reaction and crystallized in the orthorhombic space group Pcca (No. 54) with Z = 4 (Fig. S2 in the supporting information). The asymmetric unit has half of the formula unit, i.e. [Zn(bpeb)(bdc)]. In this structure, the middle ring (C8–C15) of the bpeb is disordered and hence a mixture of all-trans and trans,cis,trans conformations are present (Fig. S2a). Otherwise, the structural description is very similar to that of (1) with type-III bonding of the bdc ligand as well as twofold parallel interpenetration (Fig. S2d). However, the Zn—bpeb—Zn distance and the diagonal distances between the centres of the Zn2 dimer in the Zn2(bdc)2 rhomboidal ring are the b, a and c unit-cell lengths. The total potential solvent area volume in (2), calculated using PLATON (Spek, 2009[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), is 1912 Å3, which is 30.6% of the unit-cell volume 6247.5 Å3.

The minor product (3) crystallized in the monoclinic space group C2/c with Z = 8 (Fig. 3[link]). The asymmetric unit contains the building unit [Zn2(bpeb)2(bdc)2]. In this `no disorder' structure, both bpeb have trans,cis,trans conformations (Fig. 3[link]b). Furthermore, two types of bdc bonding, namely type-I and type-II, are present in the [Zn2(bdc)2] layer (Fig. 3[link]a), resulting in a parallelogram-shaped (4,4) grid with the dimensions 14.948  × 10.159 Å and an angle of 77.1°. The overall connectivity has pcu topology (Fig. 3[link]c) similar to (1) and (2). This also has twofold interpenetration, but the [Zn2(bpeb)2(bdc)2] units are normal with respect to each other as shown in Fig. 3[link](c). This could be attributed to insufficient space for the two bpeb pillars to interpenetrate the (4,4) net. On the other hand, the void formed by Zn—bpeb—Zn and Zn-(type-II) bdc—Zn with the dimensions 20.127 × 14.948 Å is sufficient to form a twofold perpendicular interpenetration. The total potential solvent area volume in (3), calculated using PLATON (Spek, 2009[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), is 2769.2 Å3, which is 24.3% of the unit-cell volume 11 388.7 Å3, indicating that this structure is more efficiently packed than (2).

[Figure 3]
Figure 3
(a) The (4,4) net formed by Zn2(bdc)2 in (3). (b) Single pcu unit showing the orientations of the bpeb pillars. (c) Twofold perpendicular interpenetration of the pcu units. For clarity, the hydrogen atoms are not shown.

In the double-pillared-layer structures, the two ZnII centres assist in bringing the axial bpeb pillar ligands closer such that the olefin pairs satisfy Schmidt's conditions for a [2 + 2] photo­cyclo­addition reaction (Schmidt, 1971[Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647-678.]). Interestingly, the two disordered bpeb ligands in (1) adopt a mixture of all-trans and trans,cis,trans-conformation (Fig. 2[link]b). Nonetheless, the six-membered rings in the two bpeb ligands are aligned in a face-to-face manner with a separation in the range 3.572–4.150 Å. The centres of the two olefin pairs are also separated by a distance in the range 3.854–4.006 Å, which is congenial for double [2 + 2] cyclo­addition reactions. However, because of the presence of mixed conformations in the disordered ligands, it was difficult to predict a priori the outcome of the photoreaction under UV light.

The 1H NMR spectrum of solid (1) was collected after irradiation under UV light for 48 h and dissolution in DMSO-d6 aided by a drop of HNO3; it showed the appearance of cyclo­butane peaks at 4.9–4.6 and 5.3–5.20 p.p.m. along with other peaks attributed to the aromatic protons in the region 7.7–8.9 p.p.m. (Fig. S14). Although 1H NMR data indicated double dimerization, the nature of the product was not clear. To investigate the solid-state structure of the photo-irradiated product of (1), named (4), we attempted to obtain single crystals of product (4) at the end of the cyclo­addition reaction and eventually succeeded.

The single-crystal X-ray crystallographic analysis of [Zn2(tppcp)(bdc)2] (4) [tppcp = tetrakis­(4-pyridyl)-1,2,9,10-diethano­[2.2]para­cyclo­phane, Fig. 4[link]a)] proved the quantitative photo cyclo­addition of the trans,cis,trans-bpeb pairs (Fig. 4[link]b). Obviously the partially disordered all-trans conformation had changed to the trans,cis,trans conformation under UV light. Interestingly the space group changed to Pcca with Z = 4 and the asymmetric unit contained half of the unit-cell formula. The double [2 + 2] cyclo­addition product tppcp is disordered due to the presence of a centre of inversion at the centre of the ligand structure. Furthermore, the Zn—(tppcp)—Zn distance and diagonal distances between the centres of the Zn2 dimer in the Zn2(bdc)2 rhomboidal ring are the b, a and c unit-cell lengths. Therefore, the packing is very similar to that of (2).

[Figure 4]
Figure 4
(a) Structure of the double-dimerized photoproduct of bpeb pairs, namely, tppcp. (b) A portion of the structure of (4) showing the double-dimerized photoproduct of trans,cis,trans-bpeb pairs. For clarity, the disorder and hydrogen atoms are not shown.

In (2), both the bpeb pairs have a disordered mixture of all-trans and trans,cis,trans conformations similar to (1). The olefin bonds in these bpeb pairs were separated by 3.544 and 3.728 Å, hence (2) is also expected to be photoreactive. The photoreactivity of (2) was investigated under UV light. Solid (2) was irradiated under UV light for 48 h; the irradiated product (5) was dissolved in DMSO-d6 aided by of a drop of HNO3 to obtain an 1H NMR spectrum, which showed the appearance of cyclo­butane peaks at 4.6–4.9 p.p.m. along with other peaks attributed to aromatic protons in the region 7.7–8.9 p.p.m. (Fig. S15). In order to gain more insight into the nature of the photoproduct, we attempted a single-crystal-to-single-crystal (SCSC) reaction under UV light and succeeded.

As proven by single-crystal X-ray crystallography, the space group (Pcca) of the photoproduct [Zn2(tppcp)(bdc)2] (5) was retained from (2). Although the quality of the structure was poor, it was found to be isotypical to that of (4). The quantitative photocyclo­addition of the trans,cis,trans-bpeb pairs was observed. It is interesting to find that both (1) and (2) crystallized in two different space groups, yet gave isotypical photoproducts (4) and (5). It is noted that the double dimerization in bpeb has been reported in both organic compounds and MOFs, but arising only from all-trans-bpeb pairs (Papaefstathiou et al., 2005[Papaefstathiou, G. S., Friščić, T. & MacGillivray, L. R. (2005). J. Am. Chem. Soc. 127, 14160-14161.]; Friščič & MacGillivray, 2003[Friščič, T. & MacGillivray, L. R. (2003). Chem. Commun. pp. 1306-1307.]; Liu et al., 2010[Liu, D., Ren, Z.-G., Li, H.-X., Lang, J.-P., Li, N.-Y. & Abrahams, B. F. (2010). Angew. Chem. Int. Ed. 49, 4767-4770.]).

Finally, the solid-state photoreactivity of (3) was examined under UV light. The bpeb pairs have trans,cis,trans conformation, arranged in an approximately face-to-face manner with an interplanar angle of 11.4°. This was also expected to be photoreactive as the olefin bonds in these bpeb pairs were separated by 3.938 and 3.927 Å. Solid (3) was irradiated under UV light for 48 h and the irradiated product (6) was treated under similar conditons to (1) in order to obtain an 1H NMR spectrum. It showed the appearance of cyclo­butane peaks at 5.08 and 4.86 p.p.m. along with other peaks attributed to aromatic protons in the region 7.7–8.9 p.p.m. (Fig. S16). There were a number of unreacted olefin groups indicated by the presence of peaks at 7.62 and 8.00 p.p.m.. It appears that (3) undergoes an incomplete [2 + 2] cyclo­addition reaction.

In order to gain more insight into the nature of the above photoproduct, we attempted an SCSC reaction under UV light. and we were able to get single crystals of the partially photodimerized product. X-ray crystallographic analysis of (6) shows that the cyclo­butane ring was formed between one of the two bpeb pairs, as shown in Fig. 5[link]. Furthermore, only partial dimerization (38.9%) occurred in this crystal. Prolonged UV irradiation only destroyed the single crystals. We were unable to confirm whether complete dimerization of the single olefin pairs is possible in (3), resulting from a lack of suitable single crystals and the scarcity of the compound. Such photodimerization of single olefin pairs in bpeb has been reported before (Friščić & MacGillivray, 2006[Friščić, T. & MacGillivray, L. R. (2006). Aust. J. Chem. 59, 613-616.]). It is evident that the photoreactive behaviour of (3) is completely different from that of (1) and (2). The packing in (3) is more efficient than in (2), as shown by the respective void volumes [30.6% in (2) versus 24.3% in (3). This indicates that the bpeb pairs in (3) do not have enough free volume to undergo double dimerization as in (1) or (2) and provides an explanation for the inability of (3) to remian as a single crystal after quantitative single dimerization. This is also supported by non-parallel orientations of the central phenyl­ene rings (interplanar angle, 29.9°) of the bpeb pairs in (3).

[Figure 5]
Figure 5
(a) The structural diagram of the monocyclized bpeb pairs in (6). (b) A portion of the structure of (6) showing the monocyclized bpeb pairs as the pillar in the photoproduct of (3). For clarity, the disorder and hydrogen atoms are not shown.

3. Conclusions

In summary, we have serendipitously isolated two structural isomers as a result of the different bonding modes of carboxyl­ates in the bdc ligands present in the double-pillared-layer coordination polymers. We were able to synthesize one of the isomers (1) exclusively, but only a small quantity of the second isomer (3). These isomers are expected to have similar energies and are likely to be kinetic products. The MOF with diamondoid topology reported previously is also a supramolecular isomer to (1)-(3), this could be considered as the thermodynamic product (Park, Chanthapally et al., 2014[Park, I.-H., Chanthapally, A., Zhang, Z., Lee, S. S., Zaworotko, M. J. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 414-419.]; Park et al. 2016[Park, I.-H., Mulijanto, C. R., Lee, H.-H., Kang, Y., Lee, E., Chanthapally, A., Lee, S. S. & Vittal, J. J. (2016). Cryst. Growth Des. 16, 2504-2508.]). We have not found suitable experimental conditions to synthesize (3) exclusively despite many attempts. The isolation of energetically similar isomers can be compared with discovering new polymorphs of organic crystals (Haleblian & McCrone, 1969[Haleblian, J. & McCrone, W. (1969). J. Sci. 58, 911-929.]; Bernstein, 2002[Bernstein, J. (2002). Polymorphism in Molecular Crystals. IUCr Monographs on Crystallography. Oxford University Press.]). These new types of structural isomers have a different packing efficiency, nature of interpenetration and photoreactivity. The two pillared trans,cis,trans-bpeb ligands with conjugated olefin bonds are closely aligned to each other in both structures. The isomers (1) and (2) can undergo face-to-face double [2 + 2] cyclo­addition reactions and the isomer (3) yields only the partial single cyclo­addition product, (6). These results highlight how small structural differences can influence the overall structural, physical and chemical properties. Perpendicular interpenetration observed in (3) seems to be more efficient for crystal packing, but this is not congenial for face-to-face double dimerization of the bpeb pairs. This work highlights the possibility of fine tuning the packing and photoreactivity of CPs and MOFs through structural isomerism.

4. Experimental

4.1. General

All the chemicals were reagent grade and were used without further purification. The bpeb ligand was synthesized by the reported procedure (Gutov et al., 2009[Gutov, A. V., Rusanov, E. B., Chepeleva, L. V., Garasevich, S. G., Ryabitskii, A. B. & Chernega, A. N. (2009). Russ. J. Gen. Chem. 79, 1513-1518.]). Elemental analyses were carried out using a LECO CHNS-932 elemental analyser. The infrared (IR) spectra (4000–400 cm-1) were recorded on a Thermo Fisher Scientific Nicolet iS 10 F T-IR spectrometer using KBr pellets. Thermogravimetric analyses (TGA) were performed under a nitro­gen atmosphere with a heating rate of 5 K min−1 using a TA Instruments TGA-Q50 thermogravimetric analyser. For the TGA analysis, drying the product at 343 K for 24 h led to the loss of guest water molecules. The solid-state emission spectra were obtained from a Shimadzu RF-5301PC, using powder samples packed between glass slides in air at room temperature (296 K) using an excitation wavelength of 360 nm. Powder X-ray diffraction (PXRD) patterns were recorded on a D8 DISCOVER with GADDS (Bruker AXS) with graphite-monochromated Cu Kα radiation (λ = 1.54056 Å) at room temperature (296 K). The UV–vis spectra were recorded on a Shimadzu UV-3600 UV-VIS-NIR spectrometer. The UV irradiation experiments were carried out on a LUZCHEM UV reactor with an 8 W dark-blue phosphor lamp (300–400 nm).

4.2. Preparation of [Zn2(bpeb)2(bdc)2]·2DMF·2H2O·0.5DMSO (1)

A mixture of bpeb (20.2 mg, 0.071 mmol), H2bdc (12.0 mg, 0.072 mmol) and Zn(NO3)2·4H2O (18.6 mg, 0.071 mmol) dissolved in DMF (3 ml), H2O (1 ml) and DMSO (0.5 ml) were placed in a 10 ml glass tube, and then 3–4 drops of 0.1 M NaOH were added. The tube was sealed and kept at 393 K for 48 h, followed by cooling to room temperature (296 K) over 8 h. Pale-yellow block-shaped crystals of (1) suitable for X-ray analysis were obtained (yield 45%). Analysis, calculated for [C63H61N6O12.5S0.5Zn2]: C, 60.58; H, 4.92; N, 6.73; S, 1.28%; found: C, 60.45; H, 4.63; N, 6.66; S, 1.47%; IR (KBr pellet) 3447, 3051, 2926, 2838, 1676, 1605, 1501, 1429, 1385, 1257, 1220, 1132, 1092, 1067, 1017, 970, 875, 835, 750 and 659 cm−1.

4.3. Preparation of a mixture of [Zn2(bpeb)2(bdc)2]·2DMA ·2H2O (2) and [Zn2(bpeb)2(bdc)2]·DMA (3)

A mixture of bpeb (19.9 mg, 0.070 mmol), H2bdc (11.8 mg, 0.071 mmol) and Zn(NO3)2·4H2O (18.8 mg, 0.072 mmol) dissolved in DMA (3 ml), H2O (1 ml) and DMSO (0.5 ml) were placed in a 10 ml glass tube, and then 3–4 drops of 0.1 M NaOH were added. The tube was sealed and kept at 393 K for 48 h, followed by cooling to room temperature (296 K) over 8 h. Pale-yellow plate-shaped crystals (2) (major) and pale-yellow rod-shaped crystals (3) (as a minor product, less than ~1% yield) suitable for X-ray analysis were obtained. For (2): analysis, calculated for [C64H62N6O12Zn2]: C, 62.09; H, 5.05; N, 6.79%; found: C, 62.15; H, 5.02; N, 7.21%; IR (KBr pellet) 3026, 2884, 2821, 1637, 1609, 1508, 1388, 1224, 1036, 954, 869, 840, 752 and 664 cm−1. For (3): IR (KBr pellet) 3033, 2895, 1631, 1543, 1388, 1237, 1073, 949, 830, 751, 715 and 668 cm−1. (3) was produced only in very low yield, hence no analytical or IR data could be obtained for this compound.

4.4. Preparation of [Zn2(tppcp)(bdc)2]·1.6DMF·2.8H2O·0.2DMSO (4)

(4) was obtained by UV irradiation of the single crystals of (1) for 48 h. Analysis, calculated for [C61.2H58N5.6O12.6S0.2Zn2]: C, 60.71; H, 4.83; N, 6.48; S, 0.53%; found: C, 60.95; H, 4.72; N, 6.19; S, 0.49%; IR (KBr pellet) 3447, 3045, 2946, 2883, 1674, 1616, 1542, 1507, 1387, 1224, 1093, 1071, 830, 751 and 669 cm−1.

4.5. Preparation of [Zn2(tppcp)(bdc)2]·2DMA·2H2O (5) and [Zn2(bpeb)0.6(bpbpvpcb)0.4(bdc)2]·DMA (6)

(5) and (6) were obtained by UV irradiation of the single crystals of (2) and (3) for 48 h, respectively. For (5): analysis, calculated for [C62.8H61.5N5.7O12.8Zn2]: C, 61.24; H, 5.03; N, 6.48; found: C, 61.11; H, 4.79; N, 6.17%; IR (KBr pellet) 3447, 3044, 2943, 1618, 1501, 1388, 1224, 1071, 1016, 928, 829, 751, 706 and 669 cm−1. For (6): IR (KBr pellet) 3051, 2932, 1605, 1524, 1375, 1237, 1073, 949, 830, 751, 715 and 668 cm−1. (6) was produced only in very low yield, hence no analytical or IR data could be obtained for this compound.

4.6. X-ray crystallographic analysis

Crystal data for (1) were collected at 100 K and (2)-(6) were collected at 173 K on a Bruker SMART APEX II ULTRA diffractometer equipped with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) generated by a rotating anode (Table 1[link]). The preliminary cell parameters for the compounds were obtained from a least-squares refinement (from 36 collected frames). Data collection, data reduction and absorption correction were carried out using the software package of APEX2 (Bruker, 2008[Bruker (2008). APEX2 Version 2009.1-0 Data Collection and Processing Software. Bruker AXS Inc., Madison, Wisconsin, USA.]). All of the calculations for the structure determination were carried out using the SHELXTL package (Bruker, 2001[Bruker (2001). SHELXTL-PC Version 6.22 Program for Solution and Refinement of Crystal Structures. Bruker AXS Inc., Madison, Wisconsin, USA.]). Relevant crystal data collection and refinement data for the crystal structures of (1)(6) are summarized in Table S1.

Table 1
Crystallographic data and refinement parameters of (1)-(6)

  (1) CCDC 1558995 (2) CCDC 1558996 (3) CCDC 1558997
Formula C56H40N4O8Zn2 C56H40N4O8Zn2 C56H40N4O8Zn2
Formula weight 1027.66 1027.66 1027.66
Temperature (K) 100 173 173
Crystal system Monoclinic Orthorhombic Monoclinic
Space group P21/c Pcca C2/c
a (Å) 20.3028 (9) 19.490 (3) 27.5072 (12)
b (Å) 19.3686 (9) 20.220 (3) 29.3890 (14)
c (Å) 15.9389 (7) 15.854 (2) 14.9485 (7)
β (°) 103.500 (2) 90 109.537 (2)
V3) 6094.6 (5) 6247.8 (15) 11388.7 (9)
Z 4 4 8
Dcalc(g cm−3) 1.120 1.093 1.199
μ (mm−1) 0.835 0.815 0.894
2θmax (°) 52 52 52
Reflections collected 128744 49542 55236
Independent reflections 11944 (Rint = 0.0378) 5982 (Rint = 0.1052) 14223 (Rint = 0.0878)
Goodness-of-fit on F2 1.176 1.083 1.094
R1, wR2 [I > 2σ(I)] 0.0719, 0.1571 0.1233, 0.3828 0.0434, 0.1265
R1, wR2 (all data) 0.0804, 0.1606 0.1673, 0.3555 0.0593, 0.1325
  (4) CCDC 1558998 (5) CCDC 1558999 (6) CCDC 1559000
Formula C56H40N4O8Zn2 C56H40N4O8Zn2 C56H40N4O8Zn2
Formula weight 1027.66 1027.66 1027.66
Temperature (K) 173 173 173
Crystal system Orthorhombic Orthorhombic Monoclinic
Space group Pcca Pcca C2/c
a (Å) 20.030 (3) 20.0663 (6) 27.430 (2)
b (Å) 20.005 (3) 19.9342 (7) 29.305 (2)
c (Å) 15.145 (2) 14.8166 (5) 14.9087 (11)
β (°) 90 90 107.070 (5)
V3) 6068.8 (14) 5926.7 (3) 11456.2 (16)
Z 4 4 8
Dcalc(g (cm−3) 1.125 1.152 1.192
μ (mm−1-1) 0.839 0.859 0.889
2θmax (°) 52. 52. 53.
Reflections collected 46693 64566 50356
Independent reflections 5979 (Rint = 0.0739) 5651 (Rint = 0.1189) 11878 (Rint = 0.0918)
Goodness-of-fit on F2 1.115 1.027 1.035
R1, wR2 [I > 2σ(I)] 0.0731, 0.2166 0.1094, 0.3151 0.0862, 0.2151
R1, wR2 (all data) 0.0.0993, 0.2313 0.1736, 0.3466 0.1439, 0.2377

5. Related literature

The following references are cited in the supporting information: Balamurugan et al. (2012[Balamurugan, S., Nithyanandan, S., Selvarasu, C., Yeap, G. Y. & Kannan, P. (2012). Polymer, 53, 4104-4111.]); Elacqua et al. (2009[Elacqua, E., Bucar, D. K., Skvortsova, Y., Baltrusaitis, J., Geng, M. L. & MacGillivray, L. R. (2009). Org. Lett. 11, 5106-5109.]); Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]); Horner & Hünig (1982[Horner, M. & Hünig, S. (1982). Liebigs Ann. Chem. 1982, 1183-1210.]); Peedikakkal & Vittal (2008[Peedikakkal, A. M. P., Koh, L. L. & Vittal, J. J. (2008). Chem. Commun. pp. 441-443.]); Peedikakkal et al. (2010[Peedikakkal, A. M. P., Peh, C. S. Y., Koh, L. L. & Vittal, J. J. (2010). Inorg. Chem. 49, 6775-6777.]).

Supporting information


Computing details top

Data collection: Bruker APEX2; cell refinement: Bruker SAINT; data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2014); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

(1) top
Crystal data top
C56H40N4O8Zn2F(000) = 2112
Mr = 1027.66Dx = 1.120 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.3028 (9) ÅCell parameters from 9779 reflections
b = 19.3686 (9) Åθ = 2.3–28.2°
c = 15.9389 (7) ŵ = 0.84 mm1
β = 103.500 (2)°T = 100 K
V = 6094.6 (5) Å3Block, pale_yellow
Z = 40.31 × 0.25 × 0.19 mm
Data collection top
Bruker D8 Venture
diffractometer
10294 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
SADABS (Sheldrick, 2011)
θmax = 26.0°, θmin = 2.1°
Tmin = 0.688, Tmax = 0.746h = 2525
128744 measured reflectionsk = 2323
11944 independent reflectionsl = 1919
Refinement top
Refinement on F256 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0319P)2 + 24.952P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
11944 reflectionsΔρmax = 1.67 e Å3
817 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Our initial attempt to refine the structure using the normal data was not satisfactory and hence the data were SQUEEZED. O4 was disordered with occupancies fixed at 0.6 and 0.4. Anisotropic thermal parameters were refined for these two O atoms without any restraints/constraints. The two bpeb ligands were disordered. Two disorder components were included and a common occupancy was refined to 0.605 (6). Anisotropic thermal parameters were refined for all the non-hydrogen atoms in the major component. Soft constraints like FLAT SAME were used for some of the phenyl and pyridyl rings. For the non-hydrogen atoms in the minor disorder, only isotropic thermal parameter could be refined after all the options tried. Again, FLAT and SAME were used to retain a reasonably ideal geometry of few phenyl and pyridyl rings. The agreement factors are much better for this data as compared to the normal data.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.83225 (2)0.44184 (2)0.63870 (3)0.02214 (13)
Zn20.81884 (2)0.55904 (2)0.83594 (3)0.02146 (12)
O10.82995 (17)0.54032 (15)0.6033 (2)0.0381 (8)
O20.79866 (16)0.59234 (18)0.7127 (2)0.0377 (8)
O30.8232 (2)0.8448 (2)0.3830 (4)0.0789 (17)
O40.8256 (4)0.9034 (4)0.4865 (5)0.0385 (17)0.6
O4A0.8096 (8)0.9119 (6)0.5190 (8)0.049 (3)0.4
O50.81994 (17)0.46003 (15)0.8719 (2)0.0371 (8)
O60.84739 (17)0.40779 (18)0.7610 (2)0.0398 (8)
O70.8215 (2)0.1502 (2)1.0832 (4)0.0719 (15)
O80.8360 (3)0.0910 (2)0.9703 (4)0.0917 (19)
N10.7208 (10)0.4465 (9)0.6250 (10)0.031 (3)0.605 (6)
C10.6942 (9)0.3906 (9)0.6755 (11)0.043 (4)0.605 (6)
H10.72470.35770.70760.051*0.605 (6)
C20.6296 (6)0.3873 (9)0.6752 (9)0.040 (3)0.605 (6)
H20.61310.34730.69820.048*0.605 (6)
C30.5839 (7)0.4404 (8)0.6425 (9)0.042 (3)0.605 (6)
C40.6111 (5)0.4914 (7)0.6018 (9)0.044 (3)0.605 (6)
H40.58360.52880.57570.053*0.605 (6)
C50.6778 (8)0.4888 (7)0.5985 (10)0.045 (3)0.605 (6)
H50.69260.52710.57040.054*0.605 (6)
C60.5142 (5)0.4465 (8)0.6460 (6)0.052 (3)0.605 (6)
H60.49010.48560.61870.062*0.605 (6)
C70.4813 (5)0.4034 (7)0.6831 (6)0.048 (3)0.605 (6)
H70.50590.36470.71080.058*0.605 (6)
C80.4085 (4)0.4084 (7)0.6869 (6)0.049 (3)0.605 (6)
C90.3825 (5)0.3541 (7)0.7317 (7)0.061 (3)0.605 (6)
H90.41170.31840.75920.073*0.605 (6)
C100.3147 (5)0.3541 (6)0.7350 (6)0.057 (3)0.605 (6)
H100.29790.31790.76440.069*0.605 (6)
C110.2708 (5)0.4068 (7)0.6952 (6)0.053 (3)0.605 (6)
C120.2969 (5)0.4597 (7)0.6532 (7)0.057 (3)0.605 (6)
H120.26860.49690.62810.069*0.605 (6)
C130.3648 (5)0.4579 (7)0.6481 (7)0.064 (3)0.605 (6)
H130.38090.49290.61610.077*0.605 (6)
C140.2001 (4)0.4054 (6)0.7003 (5)0.053 (3)0.605 (6)
H140.18680.36910.73280.064*0.605 (6)
C150.1543 (5)0.4486 (6)0.6647 (6)0.044 (2)0.605 (6)
H150.16900.48650.63580.052*0.605 (6)
N20.0630 (11)0.4460 (6)0.6508 (10)0.026 (3)0.605 (6)
C160.0175 (7)0.3994 (7)0.6993 (9)0.034 (3)0.605 (6)
H160.03560.36520.73020.040*0.605 (6)
C170.0515 (5)0.3984 (7)0.7067 (7)0.038 (3)0.605 (6)
H170.07860.36440.74160.046*0.605 (6)
C180.0814 (6)0.4466 (6)0.6634 (6)0.033 (2)0.605 (6)
C190.0381 (5)0.4937 (6)0.6150 (9)0.032 (2)0.605 (6)
H190.05610.52830.58450.038*0.605 (6)
C200.0297 (7)0.4927 (7)0.6094 (10)0.031 (3)0.605 (6)
H200.05640.52680.57420.037*0.605 (6)
N30.7070 (5)0.5613 (6)0.8221 (7)0.020 (2)0.605 (6)
C210.6715 (5)0.6141 (6)0.7798 (7)0.033 (2)0.605 (6)
H210.69380.64660.75150.040*0.605 (6)
C220.6057 (5)0.6224 (7)0.7762 (7)0.043 (2)0.605 (6)
H220.58180.65950.74380.051*0.605 (6)
C230.5719 (4)0.5777 (6)0.8189 (6)0.0323 (19)0.605 (6)
C240.6102 (5)0.5260 (7)0.8646 (8)0.055 (3)0.605 (6)
H240.59020.49430.89670.066*0.605 (6)
C250.6776 (7)0.5200 (7)0.8642 (10)0.055 (4)0.605 (6)
H250.70330.48380.89630.066*0.605 (6)
C260.5004 (4)0.5901 (7)0.8174 (6)0.044 (2)0.605 (6)
H260.48080.62990.78660.052*0.605 (6)
C270.4605 (6)0.5537 (11)0.8525 (9)0.070 (5)0.605 (6)
H270.48010.51370.88270.083*0.605 (6)
C280.3903 (4)0.5658 (5)0.8521 (5)0.050 (3)0.605 (6)
C290.3534 (4)0.6241 (6)0.8174 (5)0.057 (3)0.605 (6)
H290.37590.66070.79570.068*0.605 (6)
C300.2841 (4)0.6300 (7)0.8139 (6)0.064 (4)0.605 (6)
H300.26050.67040.79010.077*0.605 (6)
C310.2501 (5)0.5785 (6)0.8440 (5)0.061 (4)0.605 (6)
C320.2867 (6)0.5217 (7)0.8810 (7)0.064 (4)0.605 (6)
H320.26450.48660.90560.077*0.605 (6)
C330.3555 (5)0.5146 (7)0.8834 (7)0.062 (3)0.605 (6)
H330.37860.47380.90690.074*0.605 (6)
C340.1771 (4)0.5874 (6)0.8342 (5)0.052 (3)0.605 (6)
H340.15780.62850.80630.062*0.605 (6)
C350.1387 (5)0.5482 (5)0.8577 (6)0.047 (2)0.605 (6)
H350.15930.50680.88310.056*0.605 (6)
N40.0713 (8)0.5562 (6)0.8478 (8)0.025 (3)0.605 (6)
C360.0421 (6)0.6044 (7)0.8070 (8)0.029 (3)0.605 (6)
H360.06970.64000.77620.035*0.605 (6)
C370.0250 (5)0.6040 (6)0.8082 (7)0.032 (3)0.605 (6)
H370.04320.63850.77770.038*0.605 (6)
C380.0671 (6)0.5531 (6)0.8540 (6)0.032 (2)0.605 (6)
C390.0356 (5)0.5040 (6)0.8947 (8)0.031 (3)0.605 (6)
H390.06160.46770.92630.038*0.605 (6)
C400.0304 (7)0.5073 (6)0.8902 (9)0.028 (3)0.605 (6)
H400.04980.47250.91890.033*0.605 (6)
N1Z0.7253 (14)0.4391 (15)0.6393 (15)0.019 (5)*0.395 (6)
C1Z0.6966 (18)0.4017 (15)0.6636 (17)0.040 (7)*0.395 (6)
H1Z0.71870.35920.68170.048*0.395 (6)
C2Z0.6218 (17)0.4083 (13)0.673 (2)0.051 (8)*0.395 (6)
H2Z0.60260.37840.70820.061*0.395 (6)
C3Z0.5876 (14)0.4603 (12)0.6269 (16)0.038 (6)*0.395 (6)
C4Z0.6165 (11)0.5049 (11)0.5782 (12)0.038 (5)*0.395 (6)
H4Z0.58990.53890.54270.045*0.395 (6)
C5Z0.6854 (11)0.4989 (10)0.5822 (12)0.024 (4)*0.395 (6)
H5Z0.70770.52980.55170.029*0.395 (6)
C6Z0.5132 (9)0.4694 (9)0.6208 (12)0.047 (5)*0.395 (6)
H6Z0.48990.50220.58010.056*0.395 (6)
C7Z0.4783 (11)0.4367 (10)0.6659 (13)0.051 (5)*0.395 (6)
H7Z0.50180.40140.70220.061*0.395 (6)
C8Z0.4066 (9)0.4466 (7)0.6689 (9)0.042 (4)*0.395 (6)
C9Z0.3761 (8)0.3960 (8)0.7099 (9)0.048 (4)*0.395 (6)
H9Z0.40250.35850.73780.057*0.395 (6)
C10Z0.3086 (7)0.3997 (7)0.7107 (8)0.033 (3)*0.395 (6)
H10Z0.28900.36510.73950.040*0.395 (6)
C11Z0.2686 (7)0.4543 (6)0.6690 (8)0.027 (3)*0.395 (6)
C12Z0.3010 (7)0.5050 (8)0.6293 (10)0.051 (4)*0.395 (6)
H12Z0.27490.54260.60110.061*0.395 (6)
C13Z0.3687 (8)0.5022 (9)0.6299 (11)0.058 (4)*0.395 (6)
H13Z0.38920.53790.60390.069*0.395 (6)
C14Z0.1979 (6)0.4602 (6)0.6605 (7)0.028 (2)*0.395 (6)
H14Z0.17650.49850.62820.033*0.395 (6)
C15Z0.1551 (7)0.4155 (8)0.6945 (9)0.035 (3)*0.395 (6)
H15Z0.17490.37690.72780.042*0.395 (6)
N2Z0.0560 (16)0.4376 (9)0.6590 (15)0.016 (4)*0.395 (6)
C16Z0.0262 (10)0.3854 (9)0.7013 (12)0.018 (4)*0.395 (6)
H16Z0.05170.35210.72390.021*0.395 (6)
C17Z0.0447 (9)0.3777 (7)0.7139 (11)0.022 (4)*0.395 (6)
H17Z0.06670.33920.74530.027*0.395 (6)
C18Z0.0821 (9)0.4260 (7)0.6809 (9)0.018 (3)*0.395 (6)
C19Z0.0469 (10)0.4813 (11)0.6367 (12)0.027 (5)*0.395 (6)
H19Z0.07000.51670.61390.033*0.395 (6)
C20Z0.0242 (11)0.4839 (11)0.6261 (13)0.019 (5)*0.395 (6)
H20Z0.04900.52070.59410.022*0.395 (6)
N3Z0.7198 (11)0.5526 (13)0.8313 (16)0.037 (6)*0.395 (6)
C21Z0.6682 (11)0.5900 (10)0.7793 (14)0.041 (6)*0.395 (6)
H21Z0.68200.61780.73730.050*0.395 (6)
C22Z0.5972 (12)0.5941 (11)0.7775 (17)0.060 (7)*0.395 (6)
H22Z0.56740.62500.74060.072*0.395 (6)
C23Z0.5750 (11)0.5488 (9)0.8350 (12)0.039 (5)*0.395 (6)
C24Z0.6203 (9)0.5042 (8)0.8833 (11)0.037 (4)*0.395 (6)
H24Z0.60550.47240.92040.044*0.395 (6)
C25Z0.6872 (11)0.5046 (10)0.8792 (13)0.037 (5)*0.395 (6)
H25Z0.71520.46980.91110.045*0.395 (6)
C26Z0.4979 (12)0.5554 (12)0.8316 (14)0.065 (6)*0.395 (6)
H26Z0.47290.59000.79550.079*0.395 (6)
C27Z0.4710 (18)0.5226 (16)0.868 (2)0.095 (12)*0.395 (6)
H27Z0.49760.48890.90410.115*0.395 (6)
C28Z0.3938 (10)0.5243 (8)0.8692 (10)0.053 (4)*0.395 (6)
C29Z0.3543 (10)0.5730 (10)0.8254 (11)0.069 (5)*0.395 (6)
H29Z0.37340.60600.79390.082*0.395 (6)
C30Z0.2828 (10)0.5772 (10)0.8243 (12)0.071 (5)*0.395 (6)
H30Z0.25480.61230.79300.085*0.395 (6)
C31Z0.2576 (9)0.5281 (8)0.8707 (11)0.041 (4)*0.395 (6)
C32Z0.2992 (7)0.4778 (8)0.9142 (10)0.046 (3)*0.395 (6)
H32Z0.28090.44290.94390.055*0.395 (6)
C33Z0.3701 (8)0.4770 (9)0.9157 (11)0.061 (4)*0.395 (6)
H33Z0.39940.44380.94890.074*0.395 (6)
C34Z0.1848 (6)0.5299 (6)0.8738 (7)0.027 (2)*0.395 (6)
H34Z0.17060.49530.90800.032*0.395 (6)
C35Z0.1333 (8)0.5778 (8)0.8312 (9)0.036 (3)*0.395 (6)
H35Z0.14570.61440.79830.043*0.395 (6)
N4Z0.0781 (12)0.5644 (10)0.8375 (12)0.015 (4)*0.395 (6)
C36Z0.0525 (10)0.6166 (10)0.8028 (12)0.022 (5)*0.395 (6)
H36Z0.08270.65190.77580.026*0.395 (6)
C37Z0.0172 (9)0.6238 (8)0.8030 (11)0.022 (4)*0.395 (6)
H37Z0.03300.66400.77980.027*0.395 (6)
C38Z0.0613 (11)0.5717 (8)0.8371 (10)0.019 (4)*0.395 (6)
C39Z0.0357 (10)0.5189 (10)0.8778 (13)0.032 (5)*0.395 (6)
H39Z0.06470.48360.90710.039*0.395 (6)
C40Z0.0344 (12)0.5179 (13)0.8756 (13)0.026 (6)*0.395 (6)
H40Z0.05090.48080.90380.031*0.395 (6)
C410.8141 (2)0.5920 (2)0.6407 (3)0.0261 (9)
C420.8130 (2)0.6603 (2)0.5955 (2)0.0221 (8)
C430.8113 (2)0.7222 (2)0.6393 (3)0.0300 (9)
H430.80880.72210.69800.036*
C440.8134 (2)0.7845 (2)0.5958 (3)0.0396 (12)
H440.81260.82700.62520.048*
C450.8167 (2)0.7843 (2)0.5095 (3)0.0372 (11)
C460.8177 (2)0.7225 (2)0.4673 (3)0.0350 (10)
H460.81880.72250.40800.042*
C470.8171 (2)0.6606 (2)0.5098 (3)0.0291 (9)
H470.81940.61830.48050.035*
C480.8202 (3)0.8516 (3)0.4612 (5)0.062 (2)
C490.83203 (19)0.4079 (2)0.8321 (3)0.0242 (8)
C500.82906 (19)0.3392 (2)0.8760 (3)0.0214 (8)
C510.8212 (2)0.3376 (2)0.9595 (3)0.0301 (9)
H510.81610.37950.98830.036*
C520.8206 (3)0.2751 (2)1.0013 (3)0.0374 (11)
H520.81540.27421.05900.045*
C530.8278 (2)0.2138 (2)0.9593 (3)0.0357 (11)
C540.8344 (3)0.2155 (2)0.8750 (3)0.0386 (11)
H540.83780.17350.84550.046*
C550.8362 (2)0.2773 (2)0.8334 (3)0.0318 (10)
H550.84210.27810.77600.038*
C560.8280 (2)0.1454 (3)1.0058 (5)0.0573 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0301 (3)0.0138 (2)0.0250 (2)0.00096 (18)0.01170 (19)0.00135 (18)
Zn20.0292 (3)0.0148 (2)0.0227 (2)0.00016 (18)0.01069 (18)0.00091 (17)
O10.0436 (19)0.0156 (14)0.063 (2)0.0039 (13)0.0271 (17)0.0091 (14)
O20.0347 (18)0.049 (2)0.0309 (16)0.0044 (15)0.0106 (14)0.0153 (15)
O30.053 (3)0.077 (3)0.118 (4)0.021 (2)0.042 (3)0.078 (3)
O40.044 (4)0.018 (4)0.052 (5)0.001 (3)0.009 (4)0.008 (4)
O4A0.094 (11)0.012 (4)0.042 (7)0.003 (5)0.018 (6)0.004 (4)
O50.047 (2)0.0170 (15)0.054 (2)0.0007 (13)0.0253 (16)0.0060 (14)
O60.045 (2)0.046 (2)0.0342 (17)0.0055 (16)0.0213 (15)0.0188 (15)
O70.043 (2)0.059 (3)0.127 (4)0.0237 (19)0.047 (3)0.067 (3)
O80.097 (4)0.016 (2)0.138 (5)0.004 (2)0.020 (3)0.022 (2)
N10.044 (6)0.026 (7)0.020 (6)0.000 (4)0.002 (5)0.001 (5)
C10.038 (6)0.053 (8)0.036 (6)0.018 (5)0.007 (4)0.022 (5)
C20.021 (5)0.054 (9)0.046 (6)0.001 (6)0.009 (4)0.000 (6)
C30.034 (6)0.050 (8)0.041 (6)0.010 (6)0.009 (5)0.010 (6)
C40.023 (5)0.046 (7)0.061 (8)0.007 (5)0.002 (5)0.011 (6)
C50.045 (7)0.032 (6)0.060 (8)0.009 (5)0.016 (6)0.010 (5)
C60.031 (5)0.094 (9)0.027 (5)0.006 (5)0.002 (4)0.012 (6)
C70.028 (5)0.081 (9)0.033 (5)0.003 (5)0.003 (4)0.015 (5)
C80.023 (4)0.080 (8)0.047 (5)0.013 (5)0.016 (4)0.017 (5)
C90.025 (4)0.107 (10)0.055 (6)0.023 (5)0.018 (4)0.015 (6)
C100.035 (5)0.087 (8)0.054 (6)0.019 (5)0.018 (4)0.015 (6)
C110.031 (5)0.095 (9)0.035 (5)0.012 (5)0.012 (4)0.018 (5)
C120.026 (5)0.097 (10)0.048 (6)0.007 (5)0.005 (4)0.009 (6)
C130.021 (5)0.104 (10)0.069 (7)0.003 (5)0.016 (5)0.019 (7)
C140.027 (5)0.100 (8)0.030 (4)0.013 (5)0.002 (3)0.025 (5)
C150.045 (6)0.056 (6)0.034 (4)0.009 (5)0.017 (4)0.019 (4)
N20.033 (7)0.021 (5)0.025 (5)0.009 (4)0.009 (4)0.001 (3)
C160.037 (6)0.027 (6)0.040 (6)0.003 (5)0.016 (4)0.002 (5)
C170.026 (5)0.039 (7)0.049 (6)0.002 (5)0.011 (4)0.012 (5)
C180.047 (6)0.028 (5)0.026 (5)0.013 (5)0.012 (4)0.011 (4)
C190.028 (5)0.035 (6)0.037 (7)0.010 (4)0.014 (5)0.006 (5)
C200.034 (6)0.027 (6)0.035 (7)0.006 (4)0.014 (5)0.008 (5)
N30.007 (4)0.032 (5)0.020 (4)0.004 (4)0.002 (3)0.009 (3)
C210.027 (5)0.024 (5)0.047 (6)0.003 (4)0.004 (3)0.003 (4)
C220.031 (5)0.050 (7)0.049 (6)0.004 (5)0.012 (4)0.003 (5)
C230.026 (4)0.047 (6)0.023 (4)0.001 (4)0.004 (3)0.002 (4)
C240.031 (6)0.060 (7)0.077 (8)0.014 (5)0.018 (5)0.034 (6)
C250.036 (6)0.053 (7)0.076 (9)0.014 (5)0.013 (5)0.036 (6)
C260.011 (4)0.074 (8)0.046 (5)0.005 (4)0.008 (3)0.001 (5)
C270.029 (5)0.136 (16)0.049 (6)0.018 (8)0.020 (5)0.047 (9)
C280.014 (4)0.092 (9)0.039 (5)0.006 (5)0.003 (3)0.019 (5)
C290.025 (4)0.102 (9)0.045 (5)0.000 (5)0.011 (4)0.018 (5)
C300.016 (4)0.122 (11)0.052 (6)0.011 (5)0.001 (4)0.033 (6)
C310.024 (5)0.130 (12)0.030 (4)0.006 (6)0.008 (4)0.028 (6)
C320.040 (7)0.118 (12)0.036 (5)0.022 (7)0.011 (5)0.012 (6)
C330.026 (5)0.095 (9)0.066 (7)0.000 (5)0.012 (5)0.003 (6)
C340.030 (5)0.101 (8)0.025 (4)0.030 (5)0.006 (3)0.023 (5)
C350.067 (7)0.033 (5)0.035 (5)0.004 (5)0.000 (4)0.019 (4)
N40.029 (6)0.017 (5)0.024 (5)0.009 (4)0.003 (4)0.005 (3)
C360.022 (5)0.029 (6)0.035 (5)0.008 (4)0.005 (4)0.005 (4)
C370.035 (6)0.022 (5)0.041 (5)0.006 (5)0.014 (4)0.003 (5)
C380.032 (5)0.038 (6)0.023 (5)0.008 (5)0.001 (4)0.009 (4)
C390.042 (6)0.018 (5)0.028 (5)0.007 (4)0.004 (4)0.003 (4)
C400.037 (6)0.016 (5)0.023 (5)0.007 (4)0.009 (4)0.010 (4)
C410.020 (2)0.024 (2)0.037 (2)0.0031 (16)0.0115 (17)0.0104 (18)
C420.024 (2)0.0184 (19)0.0236 (19)0.0025 (15)0.0043 (16)0.0017 (15)
C430.038 (2)0.025 (2)0.024 (2)0.0067 (18)0.0012 (18)0.0030 (17)
C440.042 (3)0.017 (2)0.050 (3)0.0041 (19)0.008 (2)0.003 (2)
C450.028 (2)0.023 (2)0.055 (3)0.0044 (18)0.003 (2)0.017 (2)
C460.038 (3)0.037 (3)0.032 (2)0.001 (2)0.013 (2)0.012 (2)
C470.038 (2)0.023 (2)0.028 (2)0.0003 (18)0.0109 (18)0.0012 (17)
C480.022 (3)0.036 (3)0.114 (6)0.007 (2)0.010 (3)0.042 (4)
C490.0160 (19)0.024 (2)0.034 (2)0.0000 (15)0.0077 (16)0.0048 (17)
C500.0187 (19)0.0191 (19)0.026 (2)0.0036 (15)0.0052 (15)0.0009 (15)
C510.043 (3)0.018 (2)0.031 (2)0.0009 (18)0.0110 (19)0.0032 (17)
C520.047 (3)0.038 (3)0.029 (2)0.003 (2)0.011 (2)0.015 (2)
C530.027 (2)0.021 (2)0.057 (3)0.0034 (17)0.004 (2)0.014 (2)
C540.046 (3)0.017 (2)0.050 (3)0.0019 (19)0.005 (2)0.0030 (19)
C550.034 (2)0.029 (2)0.033 (2)0.0071 (19)0.0088 (19)0.0034 (18)
C560.023 (3)0.042 (3)0.102 (5)0.003 (2)0.005 (3)0.044 (3)
Geometric parameters (Å, º) top
Zn1—O7i1.980 (4)N4—C361.351 (15)
Zn1—O11.986 (3)N4—Zn2vi2.195 (16)
Zn1—O62.013 (3)C36—C371.358 (15)
Zn1—N2ii2.09 (2)C37—C381.395 (13)
Zn1—N1Z2.17 (3)C38—C391.388 (14)
Zn1—N2Zii2.22 (3)C39—C401.326 (15)
Zn1—N12.223 (19)N1Z—C1Z1.06 (3)
Zn2—N3Z2.00 (2)N1Z—C5Z1.58 (3)
Zn2—O52.000 (3)C1Z—C2Z1.57 (5)
Zn2—O3iii2.001 (4)C2Z—C3Z1.34 (3)
Zn2—O22.017 (3)C3Z—C4Z1.38 (3)
Zn2—N4Zii2.09 (2)C3Z—C6Z1.50 (3)
Zn2—N4ii2.195 (16)C4Z—C5Z1.39 (3)
Zn2—N32.230 (10)C6Z—C7Z1.29 (3)
Zn2—O4iii2.481 (8)C7Z—C8Z1.48 (3)
O1—C411.244 (5)C8Z—C13Z1.384 (18)
O2—C411.258 (5)C8Z—C9Z1.400 (17)
O3—C481.269 (9)C9Z—C10Z1.376 (19)
O3—Zn2iv2.001 (4)C10Z—C11Z1.403 (15)
O4—O4A0.693 (10)C11Z—C12Z1.411 (16)
O4—C481.078 (10)C11Z—C14Z1.414 (19)
O4—Zn2iv2.481 (8)C12Z—C13Z1.373 (19)
O4A—C481.534 (13)C14Z—C15Z1.420 (18)
O5—C491.246 (5)C15Z—C18Z1.46 (2)
O6—C491.242 (5)N2Z—C20Z1.29 (3)
O7—C561.273 (8)N2Z—C16Z1.29 (2)
O7—Zn1v1.980 (4)N2Z—Zn1vi2.22 (3)
O8—C561.226 (8)C16Z—C17Z1.41 (2)
N1—C51.20 (2)C17Z—C18Z1.386 (15)
N1—C11.52 (2)C18Z—C19Z1.385 (16)
C1—C21.31 (2)C19Z—C20Z1.41 (3)
C2—C31.40 (2)N3Z—C21Z1.38 (3)
C3—C41.366 (19)N3Z—C25Z1.46 (3)
C3—C61.434 (16)C21Z—C22Z1.44 (3)
C4—C51.368 (19)C22Z—C23Z1.42 (3)
C6—C71.296 (17)C23Z—C24Z1.36 (2)
C7—C81.497 (13)C23Z—C26Z1.56 (3)
C8—C131.354 (17)C24Z—C25Z1.37 (3)
C8—C91.438 (16)C26Z—C27Z1.09 (4)
C9—C101.388 (12)C27Z—C28Z1.57 (4)
C10—C111.407 (16)C28Z—C29Z1.325 (19)
C11—C121.393 (16)C28Z—C33Z1.337 (19)
C11—C141.456 (13)C29Z—C30Z1.45 (2)
C12—C131.402 (14)C30Z—C31Z1.376 (19)
C14—C151.281 (15)C31Z—C32Z1.367 (17)
C15—C181.475 (14)C31Z—C34Z1.49 (2)
N2—C201.385 (18)C32Z—C33Z1.433 (19)
N2—C161.391 (19)C34Z—C35Z1.443 (18)
N2—Zn1vi2.09 (2)C35Z—C38Z1.49 (3)
C16—C171.379 (16)N4Z—C40Z1.31 (2)
C17—C181.384 (13)N4Z—C36Z1.32 (2)
C18—C191.373 (14)N4Z—Zn2vi2.09 (2)
C19—C201.358 (16)C36Z—C37Z1.42 (2)
N3—C251.277 (18)C37Z—C38Z1.375 (16)
N3—C211.339 (16)C38Z—C39Z1.376 (18)
C21—C221.334 (14)C39Z—C40Z1.42 (3)
C22—C231.379 (16)C41—C421.506 (5)
C23—C241.368 (15)C42—C471.388 (6)
C23—C261.466 (11)C42—C431.391 (6)
C24—C251.376 (17)C43—C441.396 (6)
C26—C271.30 (2)C44—C451.393 (7)
C27—C281.441 (14)C45—C461.375 (7)
C28—C331.377 (13)C45—C481.524 (6)
C28—C291.396 (12)C46—C471.378 (6)
C29—C301.399 (10)C49—C501.512 (5)
C30—C311.362 (14)C50—C511.377 (6)
C31—C321.381 (13)C50—C551.402 (6)
C31—C341.463 (12)C51—C521.384 (6)
C32—C331.395 (13)C52—C531.387 (7)
C34—C351.209 (14)C53—C541.382 (7)
C35—C381.445 (16)C53—C561.518 (6)
N4—C401.334 (14)C54—C551.374 (6)
O7i—Zn1—O1138.2 (2)C36—N4—Zn2vi119.5 (9)
O7i—Zn1—O696.6 (2)N4—C36—C37122.7 (12)
O1—Zn1—O6125.28 (15)C36—C37—C38120.1 (10)
O7i—Zn1—N2ii94.6 (4)C39—C38—C37115.8 (10)
O1—Zn1—N2ii86.8 (3)C39—C38—C35120.3 (9)
O6—Zn1—N2ii90.1 (4)C37—C38—C35123.8 (11)
O7i—Zn1—N1Z88.5 (8)C40—C39—C38120.8 (10)
O1—Zn1—N1Z93.9 (8)C39—C40—N4124.2 (13)
O6—Zn1—N1Z85.1 (6)C1Z—N1Z—C5Z117 (3)
O7i—Zn1—N2Zii92.0 (6)C1Z—N1Z—Zn1131 (3)
O1—Zn1—N2Zii91.8 (4)C5Z—N1Z—Zn1111.0 (16)
O6—Zn1—N2Zii85.8 (5)N1Z—C1Z—C2Z128 (3)
N1Z—Zn1—N2Zii170.9 (8)C3Z—C2Z—C1Z113 (3)
O7i—Zn1—N189.4 (5)C2Z—C3Z—C4Z123 (3)
O1—Zn1—N188.7 (5)C2Z—C3Z—C6Z121 (3)
O6—Zn1—N191.7 (4)C4Z—C3Z—C6Z116 (2)
N2ii—Zn1—N1175.4 (6)C3Z—C4Z—C5Z118 (2)
N3Z—Zn2—O583.9 (7)C4Z—C5Z—N1Z117.7 (17)
N3Z—Zn2—O3iii91.6 (7)C7Z—C6Z—C3Z125.6 (19)
O5—Zn2—O3iii142.0 (2)C6Z—C7Z—C8Z128.9 (17)
N3Z—Zn2—O290.6 (7)C13Z—C8Z—C9Z119.7 (17)
O5—Zn2—O2124.86 (14)C13Z—C8Z—C7Z122.3 (14)
O3iii—Zn2—O292.8 (2)C9Z—C8Z—C7Z118.0 (14)
N3Z—Zn2—N4Zii178.4 (9)C10Z—C9Z—C8Z121.2 (14)
O5—Zn2—N4Zii95.7 (5)C9Z—C10Z—C11Z120.2 (13)
O3iii—Zn2—N4Zii89.6 (6)C10Z—C11Z—C12Z117.2 (14)
O2—Zn2—N4Zii88.4 (5)C10Z—C11Z—C14Z124.6 (13)
O5—Zn2—N4ii90.5 (3)C12Z—C11Z—C14Z118.1 (10)
O3iii—Zn2—N4ii92.0 (4)C13Z—C12Z—C11Z122.8 (14)
O2—Zn2—N4ii93.6 (3)C12Z—C13Z—C8Z118.9 (15)
O5—Zn2—N389.4 (3)C11Z—C14Z—C15Z127.8 (12)
O3iii—Zn2—N388.5 (3)C14Z—C15Z—C18Z123.2 (13)
O2—Zn2—N385.8 (3)C20Z—N2Z—C16Z123 (3)
N4ii—Zn2—N3179.2 (5)C20Z—N2Z—Zn1vi120.6 (17)
N3Z—Zn2—O4iii83.2 (7)C16Z—N2Z—Zn1vi116.4 (16)
O5—Zn2—O4iii90.6 (2)N2Z—C16Z—C17Z119.7 (19)
O3iii—Zn2—O4iii51.5 (2)C18Z—C17Z—C16Z120.4 (14)
O2—Zn2—O4iii143.3 (2)C19Z—C18Z—C17Z116.8 (16)
N4Zii—Zn2—O4iii98.3 (6)C19Z—C18Z—C15Z124.7 (15)
N4ii—Zn2—O4iii95.6 (4)C17Z—C18Z—C15Z118.5 (13)
N3—Zn2—O4iii85.1 (3)C18Z—C19Z—C20Z118.7 (16)
C41—O1—Zn1128.9 (3)N2Z—C20Z—C19Z121.5 (19)
C41—O2—Zn2148.1 (3)C21Z—N3Z—C25Z106.0 (19)
C48—O3—Zn2iv105.3 (4)C21Z—N3Z—Zn2127.2 (18)
O4A—O4—C48118.5 (18)C25Z—N3Z—Zn2126.7 (16)
O4A—O4—Zn2iv136.4 (17)N3Z—C21Z—C22Z131 (2)
C48—O4—Zn2iv86.1 (6)C23Z—C22Z—C21Z115 (2)
O4—O4A—C4838.2 (12)C24Z—C23Z—C22Z118.9 (18)
C49—O5—Zn2128.4 (3)C24Z—C23Z—C26Z127.7 (17)
C49—O6—Zn1150.2 (3)C22Z—C23Z—C26Z113 (2)
C56—O7—Zn1v110.0 (4)C23Z—C24Z—C25Z120.9 (17)
C5—N1—C1110.7 (16)C24Z—C25Z—N3Z127.1 (18)
C5—N1—Zn1134.6 (13)C27Z—C26Z—C23Z124 (3)
C1—N1—Zn1113.5 (11)C26Z—C27Z—C28Z128 (3)
C2—C1—N1120.7 (16)C29Z—C28Z—C33Z122 (2)
C1—C2—C3122.7 (15)C29Z—C28Z—C27Z119.4 (19)
C4—C3—C2113.6 (11)C33Z—C28Z—C27Z118.7 (17)
C4—C3—C6118.1 (14)C28Z—C29Z—C30Z121.8 (18)
C2—C3—C6128.3 (14)C31Z—C30Z—C29Z116.9 (16)
C3—C4—C5120.4 (12)C32Z—C31Z—C30Z120.0 (18)
N1—C5—C4131.0 (14)C32Z—C31Z—C34Z120.1 (12)
C7—C6—C3125.7 (13)C30Z—C31Z—C34Z119.9 (15)
C6—C7—C8126.6 (12)C31Z—C32Z—C33Z121.1 (15)
C13—C8—C9117.9 (10)C28Z—C33Z—C32Z118.2 (16)
C13—C8—C7125.1 (11)C35Z—C34Z—C31Z128.0 (12)
C9—C8—C7117.0 (11)C34Z—C35Z—C38Z122.2 (14)
C10—C9—C8120.1 (12)C40Z—N4Z—C36Z116 (2)
C9—C10—C11120.8 (11)C40Z—N4Z—Zn2vi122.7 (15)
C12—C11—C10118.6 (10)C36Z—N4Z—Zn2vi121.7 (15)
C12—C11—C14122.0 (12)N4Z—C36Z—C37Z124.4 (17)
C10—C11—C14119.4 (10)C38Z—C37Z—C36Z119.1 (16)
C11—C12—C13120.0 (12)C37Z—C38Z—C39Z116.6 (18)
C8—C13—C12122.6 (12)C37Z—C38Z—C35Z118.3 (14)
C15—C14—C11125.9 (11)C39Z—C38Z—C35Z124.9 (16)
C14—C15—C18127.7 (11)C38Z—C39Z—C40Z119.1 (16)
C20—N2—C16110.7 (16)N4Z—C40Z—C39Z124.9 (19)
C20—N2—Zn1vi125.5 (11)O1—C41—O2126.1 (4)
C16—N2—Zn1vi123.7 (10)O1—C41—C42117.0 (4)
C17—C16—N2126.0 (12)O2—C41—C42116.9 (4)
C16—C17—C18120.2 (11)C47—C42—C43120.3 (4)
C19—C18—C17115.5 (10)C47—C42—C41118.5 (4)
C19—C18—C15120.0 (9)C43—C42—C41121.1 (4)
C17—C18—C15124.4 (11)C42—C43—C44119.2 (4)
C20—C19—C18122.3 (11)C45—C44—C43120.1 (4)
C19—C20—N2125.3 (14)C46—C45—C44119.7 (4)
C25—N3—C21118.7 (11)C46—C45—C48119.3 (5)
C25—N3—Zn2121.6 (10)C44—C45—C48121.0 (5)
C21—N3—Zn2118.8 (8)C45—C46—C47120.9 (4)
C22—C21—N3122.0 (11)C46—C47—C42119.7 (4)
C21—C22—C23120.8 (10)O4—C48—O3116.1 (7)
C24—C23—C22115.8 (9)O4—C48—C45128.3 (8)
C24—C23—C26124.5 (11)O3—C48—C45115.3 (6)
C22—C23—C26119.6 (10)O4—C48—O4A23.4 (7)
C23—C24—C25120.1 (10)O3—C48—O4A135.6 (6)
N3—C25—C24122.4 (12)C45—C48—O4A108.6 (7)
C27—C26—C23128.4 (13)O6—C49—O5125.9 (4)
C26—C27—C28128.8 (17)O6—C49—C50117.7 (4)
C33—C28—C29116.9 (9)O5—C49—C50116.3 (4)
C33—C28—C27118.2 (12)C51—C50—C55119.8 (4)
C29—C28—C27124.8 (12)C51—C50—C49119.5 (4)
C28—C29—C30121.6 (10)C55—C50—C49120.6 (4)
C31—C30—C29120.9 (11)C50—C51—C52120.1 (4)
C30—C31—C32117.8 (10)C51—C52—C53120.2 (4)
C30—C31—C34117.4 (9)C54—C53—C52119.6 (4)
C32—C31—C34124.7 (10)C54—C53—C56120.4 (5)
C31—C32—C33121.7 (11)C52—C53—C56120.0 (5)
C28—C33—C32121.0 (10)C55—C54—C53120.6 (4)
C35—C34—C31127.1 (12)C54—C55—C50119.6 (4)
C34—C35—C38131.4 (12)O8—C56—O7124.4 (5)
C40—N4—C36116.3 (15)O8—C56—C53120.7 (6)
C40—N4—Zn2vi124.1 (10)O7—C56—C53114.8 (6)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z.
 
(2) top
Crystal data top
C56H40N4O8Zn2Dx = 1.093 Mg m3
Mr = 1027.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccaCell parameters from 7985 reflections
a = 19.490 (3) Åθ = 2.3–21.6°
b = 20.220 (3) ŵ = 0.82 mm1
c = 15.854 (2) ÅT = 173 K
V = 6247.8 (15) Å3Plate, yellow
Z = 40.20 × 0.15 × 0.08 mm
F(000) = 2112
Data collection top
Bruker APEX-II CCD
diffractometer
3603 reflections with I > 2σ(I)
φ and ω scansRint = 0.105
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
θmax = 26.0°, θmin = 1.9°
Tmin = 0.861, Tmax = 0.931h = 2321
49542 measured reflectionsk = 2412
5982 independent reflectionsl = 1619
Refinement top
Refinement on F268 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.123H-atom parameters constrained
wR(F2) = 0.383 w = 1/[σ2(Fo2) + (0.1884P)2 + 22.1646P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5982 reflectionsΔρmax = 1.45 e Å3
246 parametersΔρmin = 1.02 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. It was not possible to locate the solvents in the lattice and the agreement factors were still unreasonably high (R1 = 0.2065) we have Squeezed the data.The bpeb ligand was disordered. Only the disorder component in the middle of the ligand (C8 to C15) was resolved. Two models were included and refined. Hard constraints were used to hold the geometry close to ideal. Only common isotropic thermal parameters were refined for each group of disorder. A common occupancy factor of the two disorder components were refined to 0.611 (17). From this data only the connectivity could be confirmed beyond any doubt and the bond distances and angles should be treated with caution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.43808 (5)0.32954 (5)0.35173 (5)0.0496 (4)
O10.5342 (3)0.3326 (3)0.3893 (5)0.0791 (19)
O20.5880 (4)0.3246 (4)0.2725 (4)0.088 (2)
O30.8426 (5)0.3252 (4)0.6037 (8)0.122 (4)
O40.8996 (5)0.3278 (4)0.4963 (8)0.119 (4)
N10.4428 (3)0.2256 (3)0.3529 (4)0.070 (2)
C10.3984 (4)0.1898 (4)0.3017 (5)0.110 (4)
H10.36560.21230.26780.133*
C20.4018 (6)0.1212 (4)0.3001 (6)0.124 (5)
H20.37150.09670.26510.148*
C30.4498 (6)0.0883 (3)0.3496 (7)0.165 (9)
C40.4942 (5)0.1241 (4)0.4008 (7)0.142 (6)
H40.52700.10160.43470.170*
C50.4908 (4)0.1927 (4)0.4024 (5)0.100 (4)
H50.52110.21710.43740.120*
C60.4614 (14)0.0140 (8)0.3592 (15)0.203 (10)*
H60.50110.00250.39070.244*
C70.4308 (10)0.0299 (9)0.3351 (16)0.223 (12)*
H70.38950.01870.30670.268*
C80.4451 (8)0.1031 (4)0.3408 (12)0.115 (4)*0.611 (18)
C90.3951 (7)0.1453 (5)0.3089 (12)0.115 (4)*0.611 (18)
H90.35490.12760.28350.138*0.611 (18)
C100.4038 (8)0.2134 (5)0.3142 (12)0.115 (4)*0.611 (18)
H100.36960.24220.29240.138*0.611 (18)
C110.4626 (8)0.2393 (4)0.3513 (12)0.115 (4)*0.611 (18)
C120.5126 (7)0.1972 (6)0.3831 (11)0.115 (4)*0.611 (18)
H120.55270.21490.40850.138*0.611 (18)
C130.5038 (7)0.1291 (5)0.3779 (12)0.115 (4)*0.611 (18)
H130.53800.10020.39970.138*0.611 (18)
C140.4706 (11)0.3129 (8)0.3584 (14)0.115 (4)*0.611 (18)
H140.50980.32870.38760.138*0.611 (18)
C150.4342 (8)0.3513 (7)0.3321 (10)0.115 (4)*0.611 (18)
H150.39620.33230.30330.138*0.611 (18)
C8A0.4192 (12)0.1047 (5)0.3290 (19)0.120 (6)*0.389 (18)
C9A0.3621 (11)0.1316 (6)0.2891 (18)0.120 (6)*0.389 (18)
H9A0.32760.10330.26680.144*0.389 (18)
C10A0.3555 (11)0.1998 (7)0.2817 (17)0.120 (6)*0.389 (18)
H10A0.31650.21810.25450.144*0.389 (18)
C11A0.4060 (12)0.2411 (5)0.3143 (19)0.120 (6)*0.389 (18)
C12A0.4630 (12)0.2143 (7)0.3542 (19)0.120 (6)*0.389 (18)
H12A0.49750.24250.37640.144*0.389 (18)
C13A0.4696 (11)0.1461 (7)0.3615 (19)0.120 (6)*0.389 (18)
H13A0.50870.12770.38880.144*0.389 (18)
C14A0.3972 (15)0.3155 (9)0.307 (2)0.120 (6)*0.389 (18)
H14A0.35730.33190.28000.144*0.389 (18)
C15A0.4342 (8)0.3513 (7)0.3321 (10)0.120 (6)*0.389 (18)
H15A0.47380.33250.35740.144*0.389 (18)
N20.4338 (4)0.5692 (4)0.3437 (4)0.065 (2)
C160.3808 (5)0.5309 (5)0.2928 (5)0.072 (3)
H160.34620.55430.26290.087*
C170.3822 (6)0.4649 (5)0.2895 (6)0.076 (3)
H170.34810.44300.25710.091*
C180.4322 (6)0.4253 (5)0.3322 (6)0.082 (3)
C190.4831 (6)0.4584 (5)0.3794 (6)0.079 (3)
H190.51730.43240.40630.094*
C200.4862 (5)0.5244 (5)0.3887 (6)0.071 (3)
H200.52080.54350.42310.086*
C210.5877 (5)0.3271 (4)0.3480 (5)0.0508 (19)
C220.6548 (4)0.3250 (3)0.3920 (4)0.0398 (16)
C230.7173 (5)0.3269 (5)0.3496 (6)0.064 (2)
H230.71740.32840.28970.077*
C240.7785 (5)0.3266 (4)0.3919 (7)0.071 (3)
H240.82050.32780.36170.085*
C250.7783 (5)0.3245 (4)0.4782 (7)0.065 (3)
C260.7186 (6)0.3239 (4)0.5216 (6)0.073 (3)
H260.71920.32290.58150.088*
C270.6576 (5)0.3248 (4)0.4796 (5)0.056 (2)
H270.61600.32530.51090.067*
C280.8434 (7)0.3261 (5)0.5294 (13)0.104 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0365 (6)0.0764 (7)0.0360 (6)0.0008 (4)0.0013 (4)0.0022 (4)
O10.040 (4)0.106 (5)0.092 (5)0.012 (3)0.009 (4)0.003 (4)
O20.099 (6)0.118 (6)0.047 (4)0.004 (4)0.027 (4)0.013 (3)
O30.109 (8)0.088 (6)0.168 (10)0.011 (4)0.106 (8)0.005 (6)
O40.059 (6)0.098 (6)0.199 (11)0.006 (4)0.044 (6)0.023 (6)
N10.056 (5)0.094 (6)0.059 (5)0.007 (4)0.004 (4)0.003 (4)
C10.154 (14)0.093 (9)0.085 (9)0.029 (8)0.008 (9)0.016 (6)
C20.158 (15)0.103 (11)0.111 (11)0.019 (9)0.004 (10)0.033 (8)
C30.24 (2)0.076 (10)0.18 (2)0.007 (12)0.087 (16)0.003 (11)
C40.173 (17)0.090 (10)0.163 (16)0.001 (10)0.045 (13)0.004 (9)
C50.098 (10)0.088 (8)0.113 (10)0.002 (7)0.003 (8)0.009 (7)
N20.073 (6)0.084 (5)0.038 (4)0.003 (4)0.019 (4)0.000 (3)
C160.090 (8)0.081 (7)0.045 (5)0.007 (5)0.019 (5)0.010 (4)
C170.102 (9)0.067 (6)0.058 (6)0.009 (5)0.004 (6)0.002 (4)
C180.104 (9)0.090 (7)0.051 (6)0.011 (7)0.025 (6)0.002 (5)
C190.098 (9)0.078 (7)0.060 (6)0.001 (6)0.028 (6)0.000 (5)
C200.074 (7)0.082 (7)0.058 (5)0.010 (5)0.014 (5)0.011 (5)
C210.047 (5)0.054 (5)0.051 (5)0.004 (4)0.010 (4)0.002 (4)
C220.043 (4)0.043 (4)0.033 (4)0.004 (3)0.000 (3)0.003 (3)
C230.038 (5)0.100 (7)0.055 (5)0.006 (4)0.006 (4)0.004 (4)
C240.046 (5)0.073 (6)0.094 (8)0.003 (4)0.005 (5)0.016 (5)
C250.048 (6)0.056 (5)0.092 (8)0.003 (4)0.024 (5)0.006 (4)
C260.082 (7)0.093 (7)0.045 (5)0.003 (6)0.027 (5)0.007 (4)
C270.045 (5)0.067 (5)0.055 (5)0.002 (4)0.002 (4)0.004 (4)
C280.058 (8)0.061 (6)0.194 (15)0.011 (5)0.083 (10)0.018 (8)
Geometric parameters (Å, º) top
Zn1—O11.966 (6)C12—C131.3900
Zn1—O3i1.992 (8)C14—C151.132 (19)
Zn1—O2ii2.036 (6)C15—C181.497 (15)
Zn1—N2iii2.053 (8)C8A—C9A1.3900
Zn1—N12.104 (5)C8A—C13A1.3900
O1—C211.237 (11)C9A—C10A1.3900
O2—C211.198 (10)C10A—C11A1.3900
O2—Zn1ii2.036 (6)C11A—C12A1.3900
O3—C281.18 (2)C11A—C14A1.517 (17)
O3—Zn1iv1.992 (8)C12A—C13A1.3900
O4—C281.215 (19)C14A—C15A1.10 (2)
N1—C11.3900C15A—C181.497 (15)
N1—C51.3900N2—C161.523 (10)
C1—C21.3900N2—C201.540 (10)
C2—C31.3900N2—Zn1v2.053 (8)
C3—C41.3900C16—C171.336 (12)
C3—C61.527 (17)C17—C181.432 (14)
C4—C51.3900C18—C191.411 (14)
C6—C71.14 (2)C19—C201.344 (13)
C7—C81.509 (16)C21—C221.482 (11)
C7—C8A1.533 (16)C22—C271.389 (11)
C8—C91.3900C22—C231.392 (11)
C8—C131.3900C23—C241.368 (13)
C9—C101.3900C24—C251.369 (15)
C10—C111.3900C25—C261.352 (14)
C11—C121.3900C25—C281.506 (13)
C11—C141.499 (16)C26—C271.363 (13)
O1—Zn1—O3i141.6 (5)C9A—C8A—C7122.2 (7)
O1—Zn1—O2ii122.1 (3)C13A—C8A—C7117.8 (7)
O3i—Zn1—O2ii96.2 (5)C8A—C9A—C10A120.0
O1—Zn1—N2iii91.5 (3)C11A—C10A—C9A120.0
O3i—Zn1—N2iii91.6 (3)C12A—C11A—C10A120.0
O2ii—Zn1—N2iii88.8 (3)C12A—C11A—C14A120.7 (8)
O1—Zn1—N189.3 (3)C10A—C11A—C14A119.3 (7)
O3i—Zn1—N189.7 (3)C13A—C12A—C11A120.0
O2ii—Zn1—N188.3 (3)C12A—C13A—C8A120.0
N2iii—Zn1—N1177.0 (2)C15A—C14A—C11A123.7 (18)
C21—O1—Zn1129.8 (7)C14A—C15A—C18130.2 (17)
C21—O2—Zn1ii164.4 (8)C16—N2—C20113.4 (7)
C28—O3—Zn1iv110.0 (11)C16—N2—Zn1v124.6 (6)
C1—N1—C5120.0C20—N2—Zn1v122.1 (6)
C1—N1—Zn1119.2 (4)C17—C16—N2120.9 (9)
C5—N1—Zn1120.8 (4)C16—C17—C18123.7 (10)
C2—C1—N1120.0C19—C18—C17117.7 (10)
C1—C2—C3120.0C19—C18—C15117.2 (11)
C4—C3—C2120.0C17—C18—C15125.2 (11)
C4—C3—C6111.2 (12)C19—C18—C15A117.2 (11)
C2—C3—C6128.8 (12)C17—C18—C15A125.2 (11)
C3—C4—C5120.0C20—C19—C18124.0 (11)
C4—C5—N1120.0C19—C20—N2120.3 (9)
C7—C6—C3131 (3)O2—C21—O1122.4 (9)
C6—C7—C8131 (2)O2—C21—C22117.8 (9)
C6—C7—C8A150 (2)O1—C21—C22119.8 (8)
C9—C8—C13120.0C27—C22—C23116.6 (8)
C9—C8—C7116.8 (7)C27—C22—C21120.4 (7)
C13—C8—C7123.2 (7)C23—C22—C21122.9 (7)
C10—C9—C8120.0C24—C23—C22121.8 (8)
C9—C10—C11120.0C23—C24—C25119.2 (9)
C10—C11—C12120.0C26—C25—C24120.7 (9)
C10—C11—C14119.4 (7)C26—C25—C28116.8 (12)
C12—C11—C14120.5 (7)C24—C25—C28122.4 (12)
C11—C12—C13120.0C25—C26—C27120.1 (9)
C12—C13—C8120.0C26—C27—C22121.6 (9)
C15—C14—C11126.1 (17)O3—C28—O4116.3 (10)
C14—C15—C18134.6 (17)O3—C28—C25121.9 (16)
C9A—C8A—C13A120.0O4—C28—C25121.8 (18)
Symmetry codes: (i) x1/2, y, z+1; (ii) x+1, y, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y, z+1; (v) x, y1, z.
 
(3) top
Crystal data top
C56H40N4O8Zn2F(000) = 4224
Mr = 1027.66Dx = 1.199 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.5072 (12) ÅCell parameters from 9884 reflections
b = 29.3890 (14) Åθ = 2.2–27.7°
c = 14.9485 (7) ŵ = 0.89 mm1
β = 109.537 (2)°T = 173 K
V = 11388.7 (9) Å3Block, yellow
Z = 80.70 × 0.38 × 0.20 mm
Data collection top
Bruker APEX-II CCD
diffractometer
10607 reflections with I > 2σ(I)
φ and ω scansRint = 0.045
Absorption correction: multi-scan
SADABS (Sheldrick, 2014)
θmax = 28.4°, θmin = 2.0°
Tmin = 0.601, Tmax = 0.848h = 3636
55236 measured reflectionsk = 3938
14223 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0743P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
14223 reflectionsΔρmax = 0.63 e Å3
631 parametersΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Initially normal data were used to refine the structure. Due to problems in idenditifying the electron densities and refining the atoms we used squeeze program. Further all the other data in this series were squeezed. For uniformity, this data were also squeezed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.36217 (2)0.12686 (2)0.35512 (2)0.02048 (8)
Zn20.37649 (2)0.11015 (2)0.63940 (2)0.01875 (8)
O10.33304 (6)0.14731 (7)0.20868 (13)0.0385 (4)
O20.39216 (7)0.09401 (6)0.24723 (12)0.0329 (4)
O30.31877 (6)0.17322 (5)0.39355 (12)0.0266 (4)
O40.31991 (5)0.14291 (5)0.53128 (12)0.0241 (3)
O50.41238 (6)0.09576 (5)0.46907 (12)0.0290 (4)
O60.42133 (6)0.06354 (5)0.60787 (13)0.0271 (4)
O70.40158 (9)0.09983 (8)0.78483 (15)0.0511 (6)
O80.34472 (8)0.15447 (10)0.75038 (16)0.0674 (7)
N10.42369 (7)0.17652 (6)0.37377 (15)0.0260 (4)
C10.47128 (9)0.16381 (8)0.3797 (2)0.0333 (6)
H10.47890.13220.38360.040*
C20.51014 (9)0.19367 (9)0.3805 (2)0.0368 (6)
H20.54310.18260.38330.044*
C30.50063 (9)0.24001 (9)0.37722 (19)0.0348 (6)
C40.45182 (10)0.25308 (9)0.3744 (2)0.0408 (7)
H40.44360.28450.37350.049*
C50.41515 (10)0.22124 (8)0.3728 (2)0.0342 (6)
H50.38210.23150.37090.041*
C60.53845 (11)0.27479 (10)0.3751 (2)0.0439 (7)
H6A0.52930.30540.38220.053*
C70.58392 (10)0.26858 (10)0.3644 (2)0.0459 (7)
H7A0.59440.23810.36000.055*
C80.61944 (10)0.30488 (11)0.3587 (2)0.0443 (7)
C90.66457 (11)0.29549 (11)0.3417 (3)0.0727 (13)
H90.67310.26480.33370.087*
C100.69787 (11)0.33001 (12)0.3360 (3)0.0733 (13)
H100.72850.32240.32330.088*
C110.68747 (11)0.37510 (10)0.3484 (2)0.0462 (7)
C120.64192 (16)0.38415 (12)0.3637 (4)0.0780 (14)
H120.63300.41490.37040.094*
C130.60913 (15)0.35041 (12)0.3695 (3)0.0790 (14)
H130.57830.35830.38120.095*
C140.72338 (11)0.41180 (10)0.3432 (2)0.0468 (7)
H140.75380.40310.33090.056*
C150.71647 (11)0.45546 (10)0.3542 (2)0.0452 (7)
H150.68580.46350.36630.054*
N20.81127 (7)0.56947 (7)0.34426 (14)0.0261 (4)
C160.82737 (9)0.52686 (8)0.33915 (19)0.0307 (5)
H160.86030.52280.33280.037*
C170.79923 (9)0.48869 (9)0.3425 (2)0.0353 (6)
H170.81300.45930.33960.042*
C180.75037 (10)0.49317 (9)0.35015 (19)0.0362 (6)
C190.73360 (10)0.53800 (10)0.3552 (2)0.0420 (7)
H190.70070.54330.36090.050*
C200.76451 (9)0.57414 (9)0.3520 (2)0.0355 (6)
H200.75200.60400.35530.043*
N30.42792 (6)0.16464 (6)0.64022 (14)0.0213 (4)
C210.47581 (8)0.15703 (8)0.63891 (17)0.0243 (5)
H210.48790.12650.64440.029*
C220.50808 (8)0.19083 (8)0.63009 (17)0.0261 (5)
H220.54130.18350.62780.031*
C230.49221 (8)0.23587 (8)0.62457 (18)0.0287 (5)
C240.44270 (8)0.24372 (8)0.62699 (19)0.0300 (5)
H240.42980.27390.62270.036*
C250.41264 (8)0.20806 (8)0.63551 (18)0.0256 (5)
H250.37930.21440.63820.031*
C260.52495 (9)0.27387 (9)0.6173 (2)0.0352 (6)
H260.50900.30270.59930.042*
C270.57527 (9)0.27102 (9)0.6340 (2)0.0377 (6)
H270.59080.24200.65130.045*
C280.60936 (9)0.30867 (9)0.6281 (2)0.0375 (6)
C290.66197 (10)0.30145 (9)0.6551 (2)0.0446 (7)
H290.67550.27230.67810.053*
C300.69534 (10)0.33562 (9)0.6494 (2)0.0447 (7)
H300.73120.32950.66710.054*
C310.67706 (10)0.37887 (10)0.6182 (2)0.0423 (7)
C320.62364 (11)0.38644 (10)0.5922 (3)0.0520 (9)
H320.61030.41600.57230.062*
C330.59052 (10)0.35219 (10)0.5950 (3)0.0508 (8)
H330.55450.35790.57440.061*
C340.71308 (10)0.41438 (9)0.6139 (2)0.0408 (7)
H340.74810.40550.62830.049*
C350.70242 (9)0.45771 (9)0.5921 (2)0.0393 (7)
H350.66730.46690.57260.047*
N40.81727 (7)0.55927 (6)0.61949 (15)0.0258 (4)
C360.82726 (9)0.51506 (8)0.6118 (2)0.0305 (5)
H360.86110.50660.61500.037*
C370.79081 (9)0.48115 (8)0.5995 (2)0.0323 (6)
H370.79970.45030.59330.039*
C380.74135 (9)0.49230 (8)0.59617 (19)0.0298 (5)
C390.73097 (9)0.53843 (9)0.6023 (2)0.0349 (6)
H390.69740.54790.59880.042*
C400.76929 (9)0.57021 (9)0.6135 (2)0.0324 (6)
H400.76110.60140.61720.039*
C410.36413 (9)0.12113 (9)0.18884 (18)0.0285 (5)
C420.36743 (9)0.12382 (8)0.09027 (17)0.0247 (5)
C430.39878 (9)0.09375 (8)0.06325 (18)0.0284 (5)
H430.41870.07190.10720.034*
C440.34010 (9)0.15683 (9)0.02763 (19)0.0326 (6)
H440.31940.17800.04660.039*
C450.30855 (7)0.17317 (7)0.46960 (17)0.0206 (4)
C460.27828 (7)0.21343 (7)0.48507 (16)0.0198 (4)
C470.25822 (8)0.24497 (8)0.41405 (17)0.0231 (5)
H470.26390.24150.35510.028*
C480.27035 (8)0.21811 (7)0.57225 (17)0.0226 (5)
H480.28420.19650.62140.027*
C490.43006 (7)0.06596 (7)0.53053 (17)0.0208 (5)
C500.46643 (7)0.03150 (7)0.51475 (17)0.0201 (4)
C510.47184 (8)0.02826 (7)0.42561 (17)0.0218 (5)
H510.45270.04770.37530.026*
C520.49439 (8)0.00372 (7)0.58868 (17)0.0232 (5)
H520.49050.00650.64920.028*
C530.37308 (11)0.12767 (11)0.8070 (2)0.0434 (8)
C540.37310 (9)0.12799 (9)0.90839 (18)0.0307 (6)
C550.40116 (9)0.09554 (9)0.97197 (19)0.0315 (6)
H550.42210.07450.95310.038*
C560.34310 (9)0.15882 (9)0.9363 (2)0.0363 (6)
H560.32440.18150.89320.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02228 (13)0.02142 (14)0.02110 (15)0.00133 (9)0.01174 (11)0.00148 (11)
Zn20.02133 (12)0.01782 (13)0.02088 (15)0.00067 (9)0.01206 (11)0.00013 (10)
O10.0343 (9)0.0550 (12)0.0317 (10)0.0019 (8)0.0186 (8)0.0105 (9)
O20.0417 (9)0.0364 (10)0.0231 (9)0.0053 (8)0.0141 (8)0.0032 (8)
O30.0329 (8)0.0233 (8)0.0310 (10)0.0075 (6)0.0203 (8)0.0009 (7)
O40.0234 (7)0.0205 (7)0.0299 (9)0.0030 (6)0.0110 (7)0.0019 (7)
O50.0305 (8)0.0249 (8)0.0294 (10)0.0082 (7)0.0069 (8)0.0005 (8)
O60.0310 (8)0.0208 (8)0.0394 (10)0.0014 (6)0.0251 (8)0.0004 (8)
O70.0788 (14)0.0570 (13)0.0314 (11)0.0300 (12)0.0369 (11)0.0139 (10)
O80.0540 (13)0.113 (2)0.0343 (13)0.0098 (14)0.0136 (11)0.0251 (14)
N10.0300 (9)0.0236 (10)0.0281 (11)0.0028 (8)0.0147 (9)0.0017 (9)
C10.0314 (12)0.0238 (12)0.0477 (17)0.0012 (9)0.0173 (12)0.0001 (12)
C20.0292 (12)0.0341 (14)0.0487 (18)0.0055 (10)0.0151 (12)0.0005 (13)
C30.0395 (13)0.0348 (14)0.0336 (15)0.0116 (11)0.0167 (12)0.0038 (12)
C40.0514 (15)0.0246 (12)0.0559 (19)0.0056 (11)0.0307 (15)0.0015 (13)
C50.0374 (12)0.0267 (12)0.0461 (17)0.0009 (10)0.0240 (13)0.0004 (12)
C60.0515 (16)0.0348 (15)0.0520 (19)0.0179 (12)0.0260 (15)0.0038 (14)
C70.0452 (15)0.0436 (16)0.0444 (18)0.0193 (13)0.0092 (14)0.0055 (14)
C80.0439 (15)0.0463 (17)0.0412 (17)0.0192 (13)0.0121 (14)0.0052 (14)
C90.0379 (15)0.0436 (18)0.132 (4)0.0048 (13)0.022 (2)0.021 (2)
C100.0346 (15)0.052 (2)0.131 (4)0.0090 (14)0.024 (2)0.019 (2)
C110.0457 (15)0.0441 (16)0.0452 (18)0.0219 (13)0.0105 (14)0.0006 (15)
C120.091 (3)0.0450 (19)0.130 (4)0.0337 (19)0.079 (3)0.024 (2)
C130.086 (3)0.055 (2)0.128 (4)0.0330 (19)0.078 (3)0.029 (2)
C140.0378 (14)0.0485 (18)0.0518 (19)0.0172 (13)0.0118 (14)0.0053 (16)
C150.0466 (15)0.0466 (17)0.0486 (19)0.0228 (13)0.0241 (15)0.0071 (15)
N20.0279 (9)0.0268 (10)0.0257 (11)0.0052 (8)0.0116 (9)0.0026 (9)
C160.0264 (11)0.0323 (13)0.0349 (15)0.0053 (9)0.0124 (11)0.0031 (12)
C170.0344 (12)0.0305 (13)0.0398 (16)0.0057 (10)0.0108 (12)0.0004 (12)
C180.0394 (13)0.0411 (15)0.0306 (14)0.0157 (11)0.0149 (12)0.0047 (13)
C190.0343 (13)0.0471 (16)0.0520 (19)0.0122 (12)0.0244 (14)0.0116 (15)
C200.0313 (12)0.0384 (14)0.0409 (16)0.0060 (10)0.0177 (12)0.0081 (13)
N30.0215 (8)0.0225 (9)0.0202 (10)0.0012 (7)0.0074 (8)0.0003 (8)
C210.0233 (10)0.0227 (11)0.0255 (12)0.0020 (8)0.0065 (10)0.0041 (10)
C220.0223 (10)0.0297 (12)0.0265 (13)0.0028 (9)0.0087 (10)0.0022 (11)
C230.0259 (11)0.0320 (12)0.0275 (13)0.0080 (9)0.0080 (10)0.0001 (11)
C240.0283 (11)0.0222 (11)0.0385 (15)0.0015 (9)0.0098 (11)0.0007 (11)
C250.0227 (10)0.0248 (11)0.0296 (13)0.0011 (9)0.0091 (10)0.0001 (10)
C260.0350 (12)0.0283 (13)0.0438 (16)0.0064 (10)0.0150 (12)0.0057 (12)
C270.0345 (12)0.0323 (13)0.0461 (17)0.0093 (11)0.0134 (13)0.0054 (13)
C280.0305 (12)0.0330 (13)0.0470 (17)0.0091 (10)0.0102 (12)0.0081 (13)
C290.0326 (13)0.0313 (14)0.068 (2)0.0043 (11)0.0152 (14)0.0094 (15)
C300.0299 (12)0.0371 (15)0.065 (2)0.0057 (11)0.0130 (14)0.0101 (15)
C310.0356 (13)0.0384 (15)0.0525 (19)0.0124 (11)0.0139 (14)0.0052 (14)
C320.0344 (14)0.0370 (15)0.083 (3)0.0041 (11)0.0171 (16)0.0187 (17)
C330.0286 (12)0.0478 (17)0.076 (2)0.0034 (12)0.0177 (15)0.0181 (17)
C340.0306 (12)0.0405 (15)0.0497 (18)0.0095 (11)0.0114 (13)0.0088 (14)
C350.0297 (12)0.0349 (14)0.0548 (19)0.0079 (11)0.0159 (13)0.0055 (14)
N40.0248 (9)0.0221 (9)0.0337 (12)0.0006 (7)0.0140 (9)0.0036 (9)
C360.0297 (11)0.0246 (12)0.0413 (15)0.0017 (9)0.0172 (12)0.0020 (11)
C370.0321 (12)0.0234 (11)0.0450 (16)0.0010 (9)0.0178 (12)0.0034 (12)
C380.0292 (11)0.0294 (12)0.0320 (14)0.0064 (9)0.0118 (11)0.0053 (11)
C390.0237 (11)0.0346 (13)0.0490 (17)0.0006 (10)0.0156 (12)0.0094 (13)
C400.0296 (11)0.0290 (12)0.0451 (16)0.0027 (9)0.0213 (12)0.0055 (12)
C410.0300 (11)0.0356 (13)0.0239 (13)0.0115 (10)0.0143 (11)0.0076 (11)
C420.0276 (11)0.0284 (12)0.0221 (12)0.0047 (9)0.0135 (10)0.0013 (10)
C430.0364 (12)0.0258 (12)0.0257 (13)0.0002 (10)0.0141 (11)0.0020 (11)
C440.0312 (12)0.0357 (14)0.0339 (15)0.0034 (10)0.0149 (11)0.0003 (12)
C450.0179 (9)0.0186 (10)0.0257 (12)0.0013 (8)0.0078 (9)0.0011 (10)
C460.0191 (9)0.0200 (10)0.0220 (11)0.0013 (8)0.0091 (9)0.0008 (9)
C470.0257 (10)0.0263 (11)0.0201 (12)0.0053 (9)0.0116 (9)0.0002 (10)
C480.0261 (10)0.0223 (11)0.0217 (12)0.0043 (8)0.0110 (10)0.0031 (10)
C490.0163 (9)0.0183 (10)0.0285 (12)0.0028 (8)0.0084 (9)0.0060 (10)
C500.0190 (9)0.0177 (10)0.0268 (12)0.0008 (8)0.0117 (9)0.0027 (10)
C510.0243 (10)0.0204 (10)0.0227 (12)0.0041 (8)0.0105 (9)0.0028 (10)
C520.0287 (11)0.0232 (11)0.0235 (12)0.0014 (9)0.0163 (10)0.0001 (10)
C530.0447 (15)0.066 (2)0.0187 (13)0.0306 (14)0.0094 (12)0.0055 (14)
C540.0337 (12)0.0390 (14)0.0221 (13)0.0138 (10)0.0128 (11)0.0015 (11)
C550.0369 (12)0.0336 (13)0.0296 (14)0.0043 (10)0.0187 (12)0.0038 (12)
C560.0347 (12)0.0419 (15)0.0300 (14)0.0013 (11)0.0076 (12)0.0127 (13)
Geometric parameters (Å, º) top
Zn1—O32.0175 (15)C19—C201.371 (3)
Zn1—O52.0176 (17)N3—C251.338 (3)
Zn1—O12.150 (2)N3—C211.343 (3)
Zn1—N2i2.1631 (18)C21—C221.368 (3)
Zn1—N12.1810 (18)C22—C231.387 (3)
Zn1—O22.2590 (17)C23—C241.394 (3)
Zn1—C412.510 (3)C23—C261.461 (3)
Zn2—O62.0022 (15)C24—C251.367 (3)
Zn2—O42.0686 (16)C26—C271.325 (3)
Zn2—O72.071 (2)C27—C281.472 (3)
Zn2—N32.1342 (17)C28—C291.382 (3)
Zn2—N4i2.1572 (18)C28—C331.406 (4)
Zn2—O82.487 (3)C29—C301.382 (3)
Zn2—C532.590 (3)C30—C311.389 (4)
O1—C411.257 (3)C31—C321.406 (4)
O2—C411.242 (3)C31—C341.455 (3)
O3—C451.259 (3)C32—C331.368 (4)
O4—C451.243 (3)C34—C351.323 (4)
O5—C491.245 (3)C35—C381.463 (3)
O6—C491.259 (3)N4—C401.332 (3)
O7—C531.252 (4)N4—C361.341 (3)
O8—C531.226 (4)N4—Zn2ii2.1571 (18)
N1—C51.334 (3)C36—C371.382 (3)
N1—C11.336 (3)C37—C381.384 (3)
C1—C21.380 (3)C38—C391.395 (3)
C2—C31.385 (4)C39—C401.376 (3)
C3—C41.383 (3)C41—C421.508 (3)
C3—C61.467 (3)C42—C441.383 (3)
C4—C51.370 (3)C42—C431.386 (3)
C6—C71.325 (4)C43—C55iii1.389 (3)
C7—C81.468 (4)C44—C56iii1.396 (4)
C8—C91.376 (4)C45—C461.508 (3)
C8—C131.388 (5)C46—C471.378 (3)
C9—C101.388 (4)C46—C481.398 (3)
C10—C111.381 (5)C47—C48iv1.395 (3)
C11—C121.373 (5)C48—C47iv1.394 (3)
C11—C141.482 (4)C49—C501.497 (3)
C12—C131.362 (4)C50—C521.382 (3)
C14—C151.316 (4)C50—C511.393 (3)
C15—C181.463 (3)C51—C52v1.387 (3)
N2—C201.336 (3)C52—C51v1.387 (3)
N2—C161.339 (3)C53—C541.516 (4)
N2—Zn1ii2.1630 (18)C54—C561.381 (4)
C16—C171.373 (3)C54—C551.385 (4)
C17—C181.393 (3)C55—C43vi1.389 (3)
C18—C191.406 (4)C56—C44vi1.396 (4)
O3—Zn1—O5111.64 (7)C16—C17—C18119.8 (2)
O3—Zn1—O192.66 (7)C17—C18—C19115.8 (2)
O5—Zn1—O1154.57 (7)C17—C18—C15125.3 (3)
O3—Zn1—N2i96.78 (7)C19—C18—C15118.9 (2)
O5—Zn1—N2i87.33 (7)C20—C19—C18120.3 (2)
O1—Zn1—N2i97.47 (7)N2—C20—C19123.3 (2)
O3—Zn1—N191.11 (7)C25—N3—C21116.78 (19)
O5—Zn1—N184.97 (7)C25—N3—Zn2121.29 (14)
O1—Zn1—N187.25 (7)C21—N3—Zn2121.78 (15)
N2i—Zn1—N1170.58 (7)N3—C21—C22123.5 (2)
O3—Zn1—O2152.13 (7)C21—C22—C23119.8 (2)
O5—Zn1—O295.67 (7)C22—C23—C24116.5 (2)
O1—Zn1—O259.56 (7)C22—C23—C26123.0 (2)
N2i—Zn1—O289.71 (7)C24—C23—C26120.5 (2)
N1—Zn1—O285.66 (7)C25—C24—C23120.1 (2)
O3—Zn1—C41122.54 (8)N3—C25—C24123.2 (2)
O5—Zn1—C41124.78 (8)C27—C26—C23124.7 (2)
O1—Zn1—C4130.06 (7)C26—C27—C28126.0 (3)
N2i—Zn1—C4195.81 (7)C29—C28—C33118.0 (2)
N1—Zn1—C4184.19 (7)C29—C28—C27119.5 (2)
O2—Zn1—C4129.59 (7)C33—C28—C27122.5 (2)
O6—Zn2—O4119.75 (7)C30—C29—C28121.5 (3)
O6—Zn2—O797.56 (9)C29—C30—C31120.8 (2)
O4—Zn2—O7141.97 (8)C30—C31—C32117.7 (2)
O6—Zn2—N393.17 (6)C30—C31—C34119.7 (2)
O4—Zn2—N388.81 (6)C32—C31—C34122.6 (3)
O7—Zn2—N396.68 (7)C33—C32—C31121.3 (3)
O6—Zn2—N4i89.40 (7)C32—C33—C28120.6 (2)
O4—Zn2—N4i83.04 (7)C35—C34—C31127.1 (3)
O7—Zn2—N4i90.83 (8)C34—C35—C38124.0 (2)
N3—Zn2—N4i171.67 (7)C40—N4—C36117.1 (2)
O6—Zn2—O8153.78 (8)C40—N4—Zn2ii121.85 (16)
O4—Zn2—O886.39 (7)C36—N4—Zn2ii121.09 (14)
O7—Zn2—O856.26 (8)N4—C36—C37123.4 (2)
N3—Zn2—O889.04 (7)C36—C37—C38119.6 (2)
N4i—Zn2—O892.15 (7)C37—C38—C39116.6 (2)
O6—Zn2—C53126.03 (10)C37—C38—C35122.3 (2)
O4—Zn2—C53113.71 (9)C39—C38—C35121.0 (2)
O7—Zn2—C5328.49 (9)C40—C39—C38120.2 (2)
N3—Zn2—C5394.80 (8)N4—C40—C39123.1 (2)
N4i—Zn2—C5390.07 (8)O2—C41—O1122.6 (2)
O8—Zn2—C5327.86 (9)O2—C41—C42119.6 (2)
C41—O1—Zn191.02 (16)O1—C41—C42117.8 (2)
C41—O2—Zn186.47 (14)O2—C41—Zn163.94 (13)
C45—O3—Zn1126.04 (14)O1—C41—Zn158.92 (13)
C45—O4—Zn2148.13 (14)C42—C41—Zn1172.85 (17)
C49—O5—Zn1158.45 (15)C44—C42—C43120.0 (2)
C49—O6—Zn2119.95 (14)C44—C42—C41120.1 (2)
C53—O7—Zn299.41 (19)C43—C42—C41119.9 (2)
C53—O8—Zn280.8 (2)C42—C43—C55iii120.0 (2)
C5—N1—C1116.2 (2)C42—C44—C56iii119.7 (2)
C5—N1—Zn1122.11 (15)O4—C45—O3126.4 (2)
C1—N1—Zn1121.51 (16)O4—C45—C46117.5 (2)
N1—C1—C2124.2 (2)O3—C45—C46116.03 (19)
C1—C2—C3119.3 (2)C47—C46—C48120.32 (19)
C4—C3—C2116.4 (2)C47—C46—C45120.6 (2)
C4—C3—C6119.6 (2)C48—C46—C45119.1 (2)
C2—C3—C6124.0 (2)C46—C47—C48iv120.7 (2)
C5—C4—C3120.8 (2)C47iv—C48—C46119.0 (2)
N1—C5—C4123.1 (2)O5—C49—O6124.77 (19)
C7—C6—C3127.7 (3)O5—C49—C50118.5 (2)
C6—C7—C8125.4 (3)O6—C49—C50116.7 (2)
C9—C8—C13116.5 (3)C52—C50—C51121.04 (19)
C9—C8—C7121.6 (3)C52—C50—C49119.7 (2)
C13—C8—C7121.9 (3)C51—C50—C49119.2 (2)
C8—C9—C10121.3 (3)C52v—C51—C50119.0 (2)
C11—C10—C9121.5 (3)C50—C52—C51v120.0 (2)
C12—C11—C10116.7 (3)O8—C53—O7123.2 (3)
C12—C11—C14121.9 (3)O8—C53—C54118.3 (3)
C10—C11—C14121.3 (3)O7—C53—C54118.5 (3)
C13—C12—C11122.0 (3)O8—C53—Zn271.39 (18)
C12—C13—C8121.9 (3)O7—C53—Zn252.10 (15)
C15—C14—C11125.2 (3)C54—C53—Zn2168.7 (2)
C14—C15—C18127.8 (3)C56—C54—C55119.8 (2)
C20—N2—C16116.6 (2)C56—C54—C53120.4 (3)
C20—N2—Zn1ii122.08 (17)C55—C54—C53119.7 (2)
C16—N2—Zn1ii121.01 (15)C54—C55—C43vi120.1 (2)
N2—C16—C17124.1 (2)C54—C56—C44vi120.3 (2)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z1; (iv) x+1/2, y+1/2, z+1; (v) x+1, y, z+1; (vi) x, y, z+1.
 
(4) top
Crystal data top
C56H40N4O8Zn2Dx = 1.125 Mg m3
Mr = 1027.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccaCell parameters from 9984 reflections
a = 20.030 (3) Åθ = 2.3–27.3°
b = 20.005 (3) ŵ = 0.84 mm1
c = 15.145 (2) ÅT = 173 K
V = 6068.8 (14) Å3Block, red
Z = 40.46 × 0.41 × 0.30 mm
F(000) = 2112
Data collection top
Bruker APEX-II CCD
diffractometer
3975 reflections with I > 2σ(I)
φ and ω scansRint = 0.074
Absorption correction: multi-scan
SADABS (Sheldrick, 2011)
θmax = 26.0°, θmin = 2.0°
Tmin = 0.703, Tmax = 0.801h = 2424
46693 measured reflectionsk = 2424
5979 independent reflectionsl = 1818
Refinement top
Refinement on F2440 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.1154P)2 + 7.2582P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
5979 reflectionsΔρmax = 0.91 e Å3
294 parametersΔρmin = 0.72 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystallized in the orthorhombic space group Pcca with Z = 4. The asymmetric unit contains half of the formula unit. The dimer formed by dimerization of trans,cis,trans-bpeb disordered due to crystallographic centre of inversion. Due to this disorder soft constraints (FLAT, SAME, SADI) were used to retain the geometry of molecule. Only isotropic thermal parameter could be refined for these bpeb-dimer fragment. Again one DMF was disordered by crystallographic inversion centre. The rest of the electron densities were too complicated to resolve. Hence they were assigned as O atoms of water molecules. They could as well be highly disordered DMF.[Zn2(bdc)2(dimer)].DMF.6.5H2O. For uniformity, the referee suggested to squeeze the data and hence squeezed. The agreement factors of the squeezed better than the unsqueezed data.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.43270 (3)0.66969 (2)0.85781 (3)0.0250 (2)
O10.52593 (15)0.67007 (14)0.9065 (2)0.0355 (8)
O20.57615 (18)0.67078 (17)0.7764 (2)0.0449 (9)
O30.8303 (2)0.67234 (15)1.1227 (3)0.0521 (11)
O40.8841 (2)0.67063 (16)0.9961 (3)0.0565 (11)
N10.4379 (6)0.5644 (5)0.8558 (8)0.024 (4)*0.5
C10.4867 (6)0.5310 (5)0.8977 (8)0.034 (4)*0.5
H10.51490.55560.93630.041*0.5
C20.4988 (5)0.4633 (4)0.8886 (7)0.029 (3)*0.5
H2A0.53360.44260.92120.035*0.5
C30.4601 (5)0.4260 (4)0.8318 (7)0.024 (2)*0.5
C40.4064 (6)0.4579 (4)0.7932 (7)0.030 (3)*0.5
H40.37670.43390.75600.037*0.5
C50.3963 (6)0.5258 (5)0.8095 (9)0.033 (4)*0.5
H50.35710.54590.78610.039*0.5
C60.4863 (5)0.3575 (4)0.8109 (6)0.033 (2)*0.5
H60.50620.33580.86420.040*0.5
C70.4391 (5)0.3084 (5)0.7602 (6)0.043 (2)*0.5
H70.39700.33210.74350.052*0.5
C80.4224 (5)0.2409 (5)0.8006 (7)0.051 (3)*0.5
C90.4677 (6)0.2060 (4)0.8435 (6)0.041 (2)*0.5
H90.50390.22990.86900.049*0.5
C100.4669 (6)0.1379 (5)0.8546 (7)0.059 (3)*0.5
H100.49910.11650.89090.071*0.5
C110.4195 (7)0.1021 (6)0.8128 (10)0.079 (4)*0.5
C120.3664 (7)0.1385 (5)0.7824 (9)0.073 (4)*0.5
H120.32650.11590.76640.087*0.5
C130.3694 (7)0.2077 (5)0.7745 (9)0.079 (4)*0.5
H130.33270.23120.74980.095*0.5
C140.4371 (8)0.0329 (8)0.7736 (10)0.108 (6)*0.5
H140.39420.00890.76180.129*0.5
C150.4872 (8)0.0191 (7)0.8174 (10)0.103 (6)*0.5
H150.51160.00240.86760.123*0.5
N20.4371 (5)0.2216 (4)0.8662 (7)0.027 (3)*0.5
C160.3959 (6)0.1848 (5)0.8195 (8)0.045 (3)*0.5
H160.36070.20700.78930.054*0.5
C170.4001 (7)0.1157 (6)0.8108 (11)0.084 (5)*0.5
H170.36680.09090.78040.101*0.5
C180.4543 (6)0.0853 (5)0.8480 (9)0.058 (4)*0.5
C190.4928 (6)0.1198 (5)0.9043 (9)0.058 (4)*0.5
H190.52610.09780.93830.070*0.5
C200.4830 (6)0.1884 (5)0.9119 (9)0.041 (3)*0.5
H200.51050.21270.95160.050*0.5
N30.5710 (6)0.5599 (6)0.6504 (8)0.031 (5)*0.5
C210.5219 (6)0.5235 (5)0.6137 (8)0.038 (5)*0.5
H210.49230.54420.57310.046*0.5
C220.5134 (6)0.4561 (5)0.6339 (8)0.040 (3)*0.5
H220.47850.43160.60630.048*0.5
C230.5551 (5)0.4247 (4)0.6936 (7)0.033 (3)*0.5
C240.6073 (6)0.4620 (5)0.7256 (8)0.036 (3)*0.5
H240.64030.44140.76150.043*0.5
C250.6122 (6)0.5296 (5)0.7058 (8)0.026 (3)*0.5
H250.64650.55510.73310.031*0.5
C260.5369 (5)0.3566 (4)0.7298 (6)0.038 (2)*0.5
H260.57840.33210.74710.045*0.5
C270.4897 (5)0.3085 (5)0.6782 (6)0.049 (3)*0.5
H270.46940.33200.62650.059*0.5
C280.5137 (7)0.2388 (6)0.6514 (9)0.073 (4)*0.5
C290.5648 (8)0.2054 (7)0.6847 (12)0.099 (6)*0.5
H290.60060.22890.71180.119*0.5
C300.5661 (9)0.1352 (8)0.6801 (15)0.126 (8)*0.5
H300.60590.11250.69630.151*0.5
C310.5126 (9)0.0986 (7)0.6532 (12)0.106 (6)*0.5
C320.4692 (10)0.1341 (8)0.6038 (14)0.139 (7)*0.5
H320.43940.11150.56530.166*0.5
C330.4680 (8)0.2029 (7)0.6086 (11)0.102 (5)*0.5
H330.43260.22600.57990.122*0.5
C340.4806 (8)0.0313 (7)0.6838 (9)0.094 (5)*0.5
H340.45600.00880.63470.113*0.5
C350.5328 (8)0.0178 (7)0.7296 (10)0.107 (6)*0.5
H350.57490.00740.74230.129*0.5
N40.5664 (5)0.2225 (5)0.6544 (7)0.036 (3)*0.5
C360.6065 (5)0.1894 (5)0.7073 (8)0.039 (3)*0.5
H360.64140.21300.73610.047*0.5
C370.5999 (6)0.1224 (5)0.7227 (9)0.054 (3)*0.5
H370.63140.10100.76000.065*0.5
C380.5507 (7)0.0856 (6)0.6874 (10)0.071 (4)*0.5
C390.5090 (7)0.1163 (6)0.6309 (10)0.063 (4)*0.5
H390.47450.09250.60150.076*0.5
C400.5186 (7)0.1851 (5)0.6172 (9)0.052 (4)*0.5
H400.48860.20700.57820.062*0.5
C410.5766 (2)0.67179 (19)0.8582 (3)0.0286 (11)
C420.6429 (2)0.67537 (18)0.9037 (3)0.0260 (9)
C430.6469 (3)0.6791 (2)0.9952 (3)0.0380 (11)
H430.60690.68161.02890.046*
C440.7073 (3)0.6794 (2)1.0380 (3)0.0410 (12)
H440.70880.68281.10050.049*
C450.7657 (2)0.67477 (19)0.9908 (4)0.0361 (11)
C460.7626 (2)0.6705 (2)0.8997 (3)0.0361 (11)
H460.80270.66670.86660.043*
C470.7017 (3)0.6716 (2)0.8560 (3)0.0353 (11)
H470.70040.66970.79330.042*
C480.8319 (3)0.6726 (2)1.0396 (4)0.0469 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0203 (3)0.0253 (3)0.0296 (3)0.0000 (2)0.0023 (2)0.00168 (18)
O10.0140 (16)0.0446 (18)0.048 (2)0.0013 (13)0.0009 (16)0.0029 (14)
O20.037 (2)0.067 (2)0.0299 (17)0.0076 (17)0.0089 (16)0.0097 (15)
O30.054 (3)0.0392 (19)0.063 (2)0.0023 (17)0.033 (2)0.0006 (16)
O40.029 (2)0.046 (2)0.094 (3)0.0004 (16)0.024 (2)0.0005 (19)
C410.023 (3)0.027 (2)0.036 (3)0.0016 (18)0.008 (2)0.0027 (18)
C420.018 (2)0.025 (2)0.035 (2)0.0003 (17)0.0058 (19)0.0030 (17)
C430.025 (3)0.051 (3)0.038 (3)0.005 (2)0.003 (2)0.004 (2)
C440.035 (3)0.047 (3)0.041 (3)0.007 (2)0.015 (2)0.003 (2)
C450.024 (3)0.027 (2)0.057 (3)0.0028 (19)0.014 (2)0.003 (2)
C460.023 (3)0.033 (2)0.053 (3)0.0020 (19)0.003 (2)0.000 (2)
C470.026 (3)0.048 (3)0.032 (2)0.004 (2)0.000 (2)0.000 (2)
C480.031 (3)0.023 (2)0.086 (4)0.001 (2)0.020 (3)0.001 (2)
Geometric parameters (Å, º) top
Zn1—O12.008 (3)C16—C171.391 (11)
Zn1—O2i2.040 (3)C17—C181.366 (12)
Zn1—O3ii2.073 (4)C18—C191.341 (12)
Zn1—N12.110 (10)C19—C201.391 (10)
Zn1—O4ii2.418 (4)N3—C251.324 (11)
Zn1—C48ii2.548 (6)N3—C211.344 (11)
O1—C411.253 (6)C21—C221.392 (11)
O2—C411.239 (5)C22—C231.384 (11)
O2—Zn1i2.040 (3)C23—C241.372 (11)
O3—C481.259 (7)C23—C261.513 (10)
O3—Zn1iii2.073 (4)C24—C251.389 (10)
O4—C481.237 (7)C26—C271.559 (11)
O4—Zn1iii2.418 (4)C27—C281.530 (12)
N1—C51.336 (11)C28—C291.322 (12)
N1—C11.344 (11)C28—C331.332 (12)
C1—C21.382 (10)C29—C301.407 (13)
C2—C31.378 (11)C30—C311.360 (13)
C3—C41.381 (11)C31—C321.348 (13)
C3—C61.501 (9)C31—C341.562 (13)
C4—C51.395 (10)C32—C331.380 (13)
C6—C71.565 (11)C34—C351.593 (13)
C6—C261.591 (10)C35—C381.543 (13)
C7—C81.521 (11)N4—C361.313 (11)
C7—C271.603 (11)N4—C401.340 (11)
C8—C131.313 (11)C36—C371.367 (10)
C8—C91.316 (11)C37—C381.341 (12)
C9—C101.373 (11)C38—C391.343 (12)
C10—C111.347 (12)C39—C401.406 (11)
C11—C121.369 (12)C41—C421.497 (6)
C11—C141.547 (13)C42—C471.384 (7)
C12—C131.391 (12)C42—C431.390 (6)
C14—C151.590 (14)C43—C441.373 (7)
C14—C341.615 (13)C44—C451.374 (8)
C15—C181.552 (13)C45—C461.383 (7)
C15—C351.613 (13)C45—C481.518 (7)
N2—C161.313 (11)C46—C471.389 (7)
N2—C201.328 (10)C48—Zn1iii2.548 (6)
O1—Zn1—O2i116.53 (14)N2—C20—C19123.2 (10)
O1—Zn1—O3ii150.21 (16)C25—N3—C21117.9 (11)
O2i—Zn1—O3ii93.19 (16)N3—C21—C22121.7 (11)
O1—Zn1—N187.9 (3)C23—C22—C21120.6 (10)
O2i—Zn1—N190.0 (3)C24—C23—C22116.4 (8)
O3ii—Zn1—N194.4 (3)C24—C23—C26123.1 (9)
O1—Zn1—O4ii92.18 (15)C22—C23—C26120.0 (9)
O2i—Zn1—O4ii151.26 (15)C23—C24—C25120.5 (10)
O3ii—Zn1—O4ii58.07 (16)N3—C25—C24122.6 (11)
N1—Zn1—O4ii92.4 (3)C23—C26—C27121.3 (9)
O1—Zn1—C48ii120.85 (18)C23—C26—C6115.0 (8)
O2i—Zn1—C48ii122.58 (19)C27—C26—C690.5 (6)
O3ii—Zn1—C48ii29.39 (18)C28—C27—C26120.3 (9)
N1—Zn1—C48ii94.1 (4)C28—C27—C7113.8 (9)
O4ii—Zn1—C48ii28.68 (17)C26—C27—C789.8 (5)
C41—O1—Zn1122.7 (3)C29—C28—C33116.5 (12)
C41—O2—Zn1i175.5 (4)C29—C28—C27127.0 (12)
C48—O3—Zn1iii96.7 (4)C33—C28—C27113.9 (11)
C48—O4—Zn1iii81.5 (4)C28—C29—C30119.9 (14)
C5—N1—C1114.5 (10)C31—C30—C29122.5 (15)
C5—N1—Zn1123.7 (8)C32—C31—C30113.0 (14)
C1—N1—Zn1121.7 (8)C32—C31—C34110.8 (14)
N1—C1—C2124.5 (11)C30—C31—C34134.3 (15)
C3—C2—C1119.7 (9)C31—C32—C33120.5 (14)
C2—C3—C4116.8 (7)C28—C33—C32123.4 (13)
C2—C3—C6115.4 (8)C31—C34—C35113.0 (13)
C4—C3—C6127.3 (9)C31—C34—C14117.0 (14)
C3—C4—C5119.3 (9)C35—C34—C1490.0 (6)
N1—C5—C4124.4 (11)C38—C35—C34120.9 (14)
C3—C6—C7117.6 (9)C38—C35—C15117.3 (14)
C3—C6—C26113.3 (8)C34—C35—C1589.8 (6)
C7—C6—C2690.0 (6)C36—N4—C40114.4 (10)
C8—C7—C6119.5 (8)N4—C36—C37122.6 (10)
C8—C7—C27116.9 (8)C38—C37—C36122.8 (11)
C6—C7—C2789.8 (5)C37—C38—C39117.4 (10)
C13—C8—C9116.0 (10)C37—C38—C35119.2 (11)
C13—C8—C7120.3 (9)C39—C38—C35121.4 (12)
C9—C8—C7121.2 (9)C38—C39—C40117.1 (11)
C8—C9—C10125.3 (10)N4—C40—C39125.6 (12)
C11—C10—C9118.6 (11)O2—C41—O1125.3 (4)
C10—C11—C12115.0 (11)O2—C41—C42117.9 (4)
C10—C11—C14119.7 (12)O1—C41—C42116.8 (4)
C12—C11—C14121.6 (11)C47—C42—C43118.3 (4)
C11—C12—C13121.7 (11)C47—C42—C41120.7 (4)
C8—C13—C12120.8 (11)C43—C42—C41120.9 (4)
C11—C14—C15124.7 (13)C44—C43—C42121.4 (5)
C11—C14—C34117.6 (14)C43—C44—C45120.3 (4)
C15—C14—C3489.9 (6)C44—C45—C46118.9 (4)
C18—C15—C14114.4 (14)C44—C45—C48119.5 (5)
C18—C15—C35120.1 (14)C46—C45—C48121.6 (5)
C14—C15—C3590.2 (7)C45—C46—C47121.0 (5)
C16—N2—C20115.8 (9)C42—C47—C46119.9 (4)
N2—C16—C17124.8 (11)O4—C48—O3123.7 (5)
C18—C17—C16116.8 (12)O4—C48—C45118.6 (6)
C19—C18—C17119.4 (10)O3—C48—C45117.7 (5)
C19—C18—C15112.6 (11)O4—C48—Zn1iii69.8 (3)
C17—C18—C15126.5 (12)O3—C48—Zn1iii53.9 (3)
C18—C19—C20118.6 (10)C45—C48—Zn1iii171.6 (5)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x1/2, y, z+2; (iii) x+1/2, y, z+2.
 
(5) top
Crystal data top
C56H40N4O8Zn2Dx = 1.152 Mg m3
Mr = 1027.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccaCell parameters from 9896 reflections
a = 20.0663 (6) Åθ = 2.3–26.4°
b = 19.9342 (7) ŵ = 0.86 mm1
c = 14.8166 (5) ÅT = 173 K
V = 5926.7 (3) Å3Plate, yellow
Z = 40.14 × 0.10 × 0.07 mm
F(000) = 2112
Data collection top
Bruker APEX-II CCD
diffractometer
3043 reflections with I > 2σ(I)
φ and ω scansRint = 0.119
Absorption correction: multi-scan
SADABS (Sheldrick, 2012)
θmax = 26.0°, θmin = 2.0°
Tmin = 0.888, Tmax = 0.965h = 2424
64566 measured reflectionsk = 2322
5651 independent reflectionsl = 1718
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.109 w = 1/[σ2(Fo2) + (0.1667P)2 + 25.0974P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.347(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.90 e Å3
5651 reflectionsΔρmin = 0.62 e Å3
295 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
440 restraintsExtinction coefficient: 0.00009 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.43536 (4)0.66393 (5)0.86152 (6)0.0481 (4)
O10.5286 (3)0.6667 (3)0.9082 (4)0.0653 (16)
O20.5750 (3)0.6654 (5)0.7752 (5)0.100 (3)
O30.8356 (3)0.6657 (4)1.1149 (6)0.091 (2)
O40.8874 (3)0.6652 (3)0.9852 (6)0.091 (2)
N10.4377 (9)0.5542 (8)0.8686 (13)0.060 (8)*0.5
C10.4903 (8)0.5237 (8)0.8992 (12)0.047 (6)*0.5
H10.52080.55020.93280.056*0.5
C20.5065 (10)0.4579 (8)0.8883 (14)0.073 (7)*0.5
H2A0.54640.44010.91300.088*0.5
C30.4633 (8)0.4183 (8)0.8405 (13)0.058 (5)*0.5
C40.4056 (9)0.4478 (9)0.8074 (13)0.060 (5)*0.5
H40.37300.42280.77520.072*0.5
C50.3984 (13)0.5148 (10)0.824 (2)0.126 (15)*0.5
H50.35960.53520.79920.151*0.5
C60.4903 (11)0.3506 (9)0.8117 (15)0.088 (7)*0.5
H60.50950.32690.86520.106*0.5
C70.4416 (12)0.2991 (14)0.7553 (18)0.142 (12)*0.5
H70.40060.32170.73190.171*0.5
C80.4260 (15)0.2328 (11)0.8054 (19)0.110 (9)*0.5
C90.4636 (15)0.1945 (16)0.855 (2)0.19 (2)*0.5
H90.49680.21800.88830.226*0.5
C100.4637 (16)0.1265 (16)0.869 (2)0.128 (10)*0.5
H100.49360.10450.90880.154*0.5
C110.416 (3)0.0931 (17)0.819 (4)0.42 (7)*0.5
C120.3713 (19)0.1313 (19)0.770 (3)0.215 (19)*0.5
H120.33430.11060.74110.258*0.5
C130.3807 (18)0.1989 (18)0.763 (3)0.25 (2)*0.5
H130.35160.22310.72440.299*0.5
C140.451 (4)0.050 (3)0.747 (5)0.52 (8)*0.5
H140.40850.03520.71880.618*0.5
C150.458 (4)0.020 (2)0.808 (4)0.26 (3)*0.5
H150.48450.00050.85900.314*0.5
N20.4366 (7)0.2265 (7)0.8650 (10)0.041 (4)*0.5
C160.3878 (11)0.1918 (13)0.8316 (19)0.119 (12)*0.5
H160.35000.21630.81160.143*0.5
C170.3850 (17)0.1233 (15)0.822 (3)0.27 (3)*0.5
H170.34750.10190.79570.326*0.5
C180.4389 (17)0.0869 (14)0.853 (3)0.20 (3)*0.5
C190.4937 (11)0.1221 (9)0.8850 (15)0.087 (7)*0.5
H190.53480.10050.89830.104*0.5
C200.4851 (10)0.1898 (9)0.8966 (16)0.080 (8)*0.5
H200.51790.21240.93130.097*0.5
N30.5640 (7)0.5577 (7)0.6508 (12)0.037 (5)*0.5
C210.5187 (10)0.5165 (8)0.6206 (13)0.075 (9)*0.5
H210.48490.53620.58440.090*0.5
C220.5132 (10)0.4491 (8)0.6335 (14)0.062 (5)*0.5
H220.47990.42320.60410.074*0.5
C230.5588 (9)0.4204 (8)0.6920 (14)0.072 (6)*0.5
C240.6110 (9)0.4600 (8)0.7212 (14)0.066 (6)*0.5
H240.64540.44260.75850.079*0.5
C250.6107 (7)0.5249 (7)0.6940 (12)0.037 (4)*0.5
H250.64960.55000.70810.044*0.5
C260.5450 (13)0.3504 (11)0.7280 (17)0.121 (9)*0.5
H260.58780.33040.75000.145*0.5
C270.5011 (14)0.2916 (14)0.676 (2)0.156 (12)*0.5
H270.48370.31030.61840.187*0.5
C280.5338 (18)0.2218 (14)0.657 (2)0.128 (12)*0.5
C290.5796 (18)0.1781 (18)0.679 (3)0.72 (15)*0.5
H290.61910.19580.70490.865*0.5
C300.578 (2)0.1098 (16)0.668 (3)0.164 (18)*0.5
H300.61440.08200.68310.196*0.5
C310.519 (3)0.0840 (19)0.635 (4)0.27 (3)*0.5
C320.470 (2)0.127 (3)0.605 (4)0.30 (3)*0.5
H320.43030.11150.57710.362*0.5
C330.4824 (19)0.194 (2)0.618 (3)0.25 (3)*0.5
H330.44950.22380.59560.303*0.5
C340.497 (4)0.014 (2)0.667 (3)0.33 (4)*0.5
H340.46790.00810.62060.396*0.5
C350.522 (5)0.042 (3)0.743 (4)0.81 (12)*0.5
H350.56360.02360.77150.972*0.5
N40.5694 (18)0.2312 (15)0.646 (2)0.17 (2)*0.5
C360.6030 (12)0.1964 (12)0.7042 (19)0.103 (9)*0.5
H360.63660.21920.73730.124*0.5
C370.5941 (13)0.1292 (12)0.7226 (19)0.120 (9)*0.5
H370.62060.10660.76630.144*0.5
C380.5452 (15)0.0963 (12)0.675 (2)0.111 (11)*0.5
C390.508 (3)0.131 (2)0.612 (5)0.55 (9)*0.5
H390.47300.11030.57850.662*0.5
C400.524 (2)0.197 (2)0.603 (4)0.28 (4)*0.5
H400.49850.22140.55990.333*0.5
C410.5789 (4)0.6670 (4)0.8546 (6)0.054 (2)
C420.6448 (3)0.6686 (4)0.8998 (6)0.049 (2)
C430.6503 (4)0.6678 (5)0.9920 (6)0.073 (3)
H430.61110.66661.02780.087*
C440.7115 (5)0.6686 (6)1.0335 (7)0.088 (3)
H440.71420.67061.09750.106*
C450.7696 (4)0.6667 (4)0.9821 (7)0.062 (2)
C460.7647 (4)0.6670 (4)0.8914 (7)0.059 (2)
H460.80400.66760.85560.070*
C470.7020 (4)0.6667 (5)0.8497 (6)0.066 (3)
H470.69920.66510.78580.079*
C480.8366 (5)0.6644 (5)1.0297 (9)0.078 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0239 (5)0.0662 (7)0.0543 (6)0.0003 (4)0.0028 (4)0.0026 (5)
O10.027 (3)0.091 (5)0.078 (4)0.005 (3)0.004 (3)0.000 (3)
O20.057 (4)0.184 (9)0.058 (4)0.007 (4)0.018 (3)0.030 (5)
O30.053 (4)0.112 (6)0.107 (6)0.008 (4)0.039 (4)0.014 (5)
O40.038 (4)0.096 (5)0.140 (7)0.006 (3)0.014 (4)0.005 (5)
C410.040 (4)0.061 (6)0.060 (6)0.001 (4)0.011 (4)0.012 (5)
C420.029 (4)0.057 (5)0.062 (5)0.002 (4)0.003 (3)0.003 (4)
C430.036 (4)0.129 (9)0.054 (5)0.010 (5)0.002 (4)0.009 (6)
C440.045 (5)0.154 (11)0.065 (6)0.000 (6)0.015 (5)0.005 (6)
C450.032 (4)0.070 (6)0.085 (7)0.004 (4)0.010 (4)0.001 (5)
C460.027 (4)0.061 (6)0.089 (7)0.004 (4)0.012 (4)0.008 (5)
C470.037 (4)0.093 (7)0.067 (6)0.006 (4)0.004 (4)0.014 (5)
C480.038 (5)0.067 (7)0.129 (10)0.019 (5)0.020 (6)0.005 (7)
Geometric parameters (Å, º) top
Zn1—O11.996 (5)C16—C171.373 (17)
Zn1—O3i2.033 (7)C17—C181.380 (18)
Zn1—O2ii2.036 (7)C18—C191.387 (17)
Zn1—N12.189 (16)C19—C201.372 (16)
Zn1—O4i2.466 (8)N3—C211.305 (14)
Zn1—C48i2.555 (11)N3—C251.309 (12)
O1—C411.283 (10)C21—C221.362 (15)
O2—C411.180 (10)C22—C231.384 (16)
O2—Zn1ii2.036 (7)C23—C241.382 (16)
O3—C481.263 (13)C23—C261.520 (19)
O3—Zn1iii2.033 (7)C24—C251.355 (14)
O4—C481.214 (13)C26—C271.65 (2)
O4—Zn1iii2.466 (8)C27—C281.57 (2)
N1—C51.298 (14)C28—C291.306 (16)
N1—C11.299 (13)C28—C331.308 (16)
C1—C21.360 (14)C29—C301.370 (17)
C2—C31.370 (16)C30—C311.377 (18)
C3—C41.389 (16)C31—C321.378 (18)
C3—C61.514 (18)C31—C341.54 (2)
C4—C51.365 (15)C32—C331.367 (17)
C6—C71.64 (2)C34—C351.66 (2)
C6—C261.66 (2)C35—C381.54 (2)
C7—C81.55 (2)N4—C361.301 (15)
C7—C271.68 (2)N4—C401.303 (16)
C8—C131.295 (16)C36—C371.379 (16)
C8—C91.302 (16)C37—C381.377 (17)
C9—C101.370 (17)C38—C391.379 (18)
C10—C111.384 (18)C39—C401.365 (17)
C11—C121.381 (18)C41—C421.484 (11)
C11—C141.54 (2)C42—C471.367 (11)
C12—C131.365 (17)C42—C431.370 (11)
C14—C151.66 (2)C43—C441.373 (13)
C14—C341.67 (2)C44—C451.393 (13)
C15—C181.55 (2)C45—C461.348 (12)
C15—C351.67 (2)C45—C481.518 (12)
N2—C161.298 (15)C46—C471.402 (11)
N2—C201.303 (14)C48—Zn1iii2.555 (10)
O1—Zn1—O3i149.7 (3)N2—C20—C19127.0 (16)
O1—Zn1—O2ii116.1 (3)C21—N3—C25110.6 (14)
O3i—Zn1—O2ii94.0 (3)N3—C21—C22129.1 (17)
O1—Zn1—N189.5 (5)C21—C22—C23116.2 (15)
O3i—Zn1—N191.8 (5)C24—C23—C22117.5 (14)
O2ii—Zn1—N193.7 (6)C24—C23—C26123.5 (16)
O1—Zn1—O4i92.7 (3)C22—C23—C26118.6 (18)
O3i—Zn1—O4i57.1 (3)C25—C24—C23116.6 (15)
O2ii—Zn1—O4i151.1 (3)N3—C25—C24128.7 (15)
N1—Zn1—O4i88.6 (5)C23—C26—C27126 (2)
O1—Zn1—C48i120.6 (3)C23—C26—C6112 (2)
O3i—Zn1—C48i29.2 (3)C27—C26—C689.6 (7)
O2ii—Zn1—C48i123.2 (4)C28—C27—C26119 (3)
N1—Zn1—C48i89.4 (6)C28—C27—C7120 (3)
O4i—Zn1—C48i27.9 (3)C26—C27—C789.7 (7)
C41—O1—Zn1121.5 (6)C29—C28—C33112 (2)
C41—O2—Zn1ii177.8 (7)C29—C28—C27147 (3)
C48—O3—Zn1iii99.0 (7)C33—C28—C2797 (3)
C48—O4—Zn1iii80.1 (7)C28—C29—C30128 (2)
C5—N1—C1112.9 (16)C29—C30—C31116 (2)
C5—N1—Zn1124.5 (14)C30—C31—C32119 (2)
C1—N1—Zn1120.2 (12)C30—C31—C34118 (5)
N1—C1—C2127.2 (17)C32—C31—C34118 (5)
C1—C2—C3117.8 (16)C33—C32—C31116 (2)
C2—C3—C4117.7 (14)C28—C33—C32128 (2)
C2—C3—C6115.7 (15)C31—C34—C35137 (6)
C4—C3—C6125.2 (16)C31—C34—C1489 (4)
C5—C4—C3116.1 (15)C35—C34—C1488.6 (10)
N1—C5—C4128.2 (19)C38—C35—C3497 (4)
C3—C6—C7119 (2)C38—C35—C15142 (8)
C3—C6—C26116.7 (18)C34—C35—C1588.7 (10)
C7—C6—C2690.6 (7)C36—N4—C40114 (2)
C8—C7—C6114 (2)N4—C36—C37125.8 (19)
C8—C7—C27114 (3)C38—C37—C36117.0 (17)
C6—C7—C2789.3 (7)C37—C38—C39120 (2)
C13—C8—C9112 (2)C37—C38—C35102 (3)
C13—C8—C7111 (3)C39—C38—C35129 (5)
C9—C8—C7131 (3)C40—C39—C38115 (2)
C8—C9—C10132 (2)N4—C40—C39129 (2)
C9—C10—C11113.4 (19)O2—C41—O1124.4 (8)
C12—C11—C10118 (2)O2—C41—C42120.7 (8)
C12—C11—C14104 (4)O1—C41—C42114.9 (8)
C10—C11—C14109 (5)C47—C42—C43118.3 (7)
C13—C12—C11120 (2)C47—C42—C41120.1 (8)
C8—C13—C12125 (2)C43—C42—C41121.5 (8)
C11—C14—C1597 (4)C42—C43—C44121.2 (9)
C11—C14—C34171 (6)C43—C44—C45120.2 (9)
C15—C14—C3488.8 (10)C46—C45—C44118.9 (8)
C18—C15—C14160 (6)C46—C45—C48121.8 (9)
C18—C15—C35102 (5)C44—C45—C48119.3 (9)
C14—C15—C3588.5 (10)C45—C46—C47120.3 (8)
C16—N2—C20113.7 (16)C42—C47—C46120.9 (8)
N2—C16—C17126.8 (19)O4—C48—O3123.7 (10)
C16—C17—C18117 (2)O4—C48—C45119.5 (11)
C17—C18—C19118 (2)O3—C48—C45116.7 (10)
C17—C18—C15121 (4)O4—C48—Zn1iii72.0 (6)
C19—C18—C15113 (4)O3—C48—Zn1iii51.8 (5)
C20—C19—C18116.1 (17)C45—C48—Zn1iii168.4 (9)
Symmetry codes: (i) x1/2, y, z+2; (ii) x+1, y, z+3/2; (iii) x+1/2, y, z+2.
 
(6) top
Crystal data top
C56H40N4O8Zn2F(000) = 4224
Mr = 1027.66Dx = 1.192 Mg m3
Monoclinic, C2/cMo Kαlpha radiation, λ = 0.71073 Å
a = 27.430 (2) ÅCell parameters from 5473 reflections
b = 29.305 (2) Åθ = 2.2–28.3°
c = 14.9087 (11) ŵ = 0.89 mm1
β = 107.070 (5)°T = 173 K
V = 11456.2 (16) Å3Plate, yellow
Z = 80.45 × 0.13 × 0.08 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6657 reflections with I > 2σ(I)
φ and ω scansRint = 0.092
Absorption correction: multi-scan
SADABS (Sheldrick, 2011)
θmax = 26.5°, θmin = 1.4°
Tmin = 0.702, Tmax = 0.937h = 3034
50356 measured reflectionsk = 3632
11878 independent reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.086 w = 1/[σ2(Fo2) + (0.1042P)2 + 43.8779P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.238(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.73 e Å3
11878 reflectionsΔρmin = 0.71 e Å3
605 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
85 restraintsExtinction coefficient: 0.00013 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Initially refinement was attempted with normal data with R(int) = 0.1078. Due to high agreement factors and problem in completing satisfactory refinements of the structural model, SQUEEZEd data was used. The refinement is marred by the disorder created by the partial dimerization. Only one of the two olefin bonds was found to form cyclobutane ring. The dimerized fragment (C8a - C40a) was included in the refinement. A common occupancy factor was refined to 0.610 (6). Only isotropic thermal parameters were refined for these "disordered" fragments, as anisotropic refinement failed. Even though the geometry of the rings were confined to hexagon using FLAT, SADI and SAME options they were not strictly maintained in some cases. However, the agreement factors are better than the unsqueezed data and hence reported here. Although the bond distances and angles are not very accurate for a detailed comparison, partial single dimerization photoreaction is proved beyond any doubt.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.35888 (3)0.11982 (3)0.36020 (5)0.0497 (3)
Zn20.38071 (3)0.11393 (2)0.64715 (5)0.0352 (2)
O10.40609 (17)0.09055 (16)0.4745 (3)0.0568 (13)
O20.42725 (15)0.06664 (13)0.6188 (3)0.0417 (10)
O30.31447 (17)0.16602 (15)0.3973 (3)0.0527 (12)
O40.32509 (16)0.14580 (14)0.5441 (3)0.0455 (10)
O50.33097 (19)0.13939 (18)0.2168 (3)0.0649 (14)
O60.39190 (18)0.08752 (16)0.2499 (3)0.0569 (12)
O70.3465 (2)0.1621 (3)0.7626 (4)0.096 (2)
O80.4033 (2)0.10638 (19)0.7890 (3)0.0759 (17)
N10.4192 (2)0.17021 (19)0.3738 (4)0.0543 (15)
C10.4678 (3)0.1593 (3)0.3806 (5)0.0586 (18)
H10.47630.12780.38480.070*
C20.5052 (3)0.1885 (3)0.3819 (5)0.069 (2)
H20.53840.17740.38610.083*
C30.4961 (4)0.2347 (3)0.3771 (6)0.077 (2)
C40.4484 (4)0.2469 (3)0.3765 (7)0.099 (3)
H40.44070.27830.37980.118*
C50.4104 (4)0.2150 (3)0.3712 (6)0.079 (2)
H50.37680.22550.36560.095*
C60.5330 (4)0.2700 (4)0.3732 (8)0.114 (4)
H60.52340.30070.38000.137*
C70.5794 (4)0.2635 (4)0.3608 (7)0.107 (3)
H70.58960.23300.35370.128*
C80.6158 (5)0.3008 (4)0.3575 (6)0.055 (3)*0.610 (6)
C90.6619 (7)0.2899 (7)0.3382 (13)0.115 (6)*0.610 (6)
H90.67070.25930.32920.138*0.610 (6)
C100.6954 (8)0.3277 (7)0.3325 (15)0.145 (8)*0.610 (6)
H100.72440.32190.31150.174*0.610 (6)
C110.6862 (6)0.3734 (6)0.3575 (13)0.094 (5)*0.610 (6)
C120.6356 (6)0.3813 (5)0.3608 (11)0.083 (5)*0.610 (6)
H120.62350.41190.35340.100*0.610 (6)
C130.6003 (10)0.3457 (8)0.3747 (19)0.186 (13)*0.610 (6)
H130.57070.35190.39310.224*0.610 (6)
C140.7212 (7)0.4077 (6)0.3465 (12)0.101 (5)*0.610 (6)
H140.75200.39850.33480.122*0.610 (6)
C150.7120 (7)0.4524 (6)0.3522 (11)0.115 (6)*0.610 (6)
H150.67940.46060.35720.138*0.610 (6)
N20.8119 (4)0.5678 (4)0.3481 (6)0.049 (3)*0.610 (6)
C160.8284 (6)0.5229 (4)0.3546 (8)0.062 (4)*0.610 (6)
H160.86330.51750.36060.075*0.610 (6)
C170.7979 (5)0.4855 (5)0.3529 (8)0.068 (4)*0.610 (6)
H170.81160.45570.35270.082*0.610 (6)
C180.7486 (5)0.4907 (5)0.3515 (9)0.078 (4)*0.610 (6)
C190.7293 (8)0.5341 (7)0.3433 (12)0.129 (8)*0.610 (6)
H190.69460.53930.33980.155*0.610 (6)
C200.7607 (7)0.5699 (7)0.3403 (12)0.114 (9)*0.610 (6)
H200.74550.59940.33190.137*0.610 (6)
N30.43078 (19)0.16878 (16)0.6424 (3)0.0371 (11)
C210.4780 (2)0.1614 (2)0.6374 (4)0.0398 (14)
H210.49000.13090.64090.048*
C220.5101 (2)0.1961 (2)0.6272 (4)0.0444 (15)
H220.54310.18890.62290.053*
C230.4949 (3)0.2409 (2)0.6234 (4)0.0527 (18)
C240.4455 (3)0.2483 (2)0.6277 (5)0.0566 (19)
H240.43250.27850.62460.068*
C250.4156 (2)0.2121 (2)0.6363 (4)0.0466 (16)
H250.38190.21830.63800.056*
C260.5259 (3)0.2795 (3)0.6151 (6)0.081 (3)
H260.50990.30790.59380.098*
C270.5774 (3)0.2761 (3)0.6371 (5)0.078 (3)
H270.59290.24720.65440.094*
C280.6100 (6)0.3155 (6)0.6350 (6)0.063 (5)*0.610 (6)
C290.6617 (6)0.3078 (5)0.6653 (10)0.058 (4)*0.610 (6)
H290.67370.27830.68730.070*0.610 (6)
C300.6964 (5)0.3409 (5)0.6650 (10)0.065 (4)*0.610 (6)
H300.73200.33510.68520.079*0.610 (6)
C310.6770 (4)0.3832 (4)0.6337 (10)0.060 (3)*0.610 (6)
C320.6266 (5)0.3933 (5)0.6072 (11)0.079 (4)*0.610 (6)
H320.61470.42280.58440.095*0.610 (6)
C330.5936 (5)0.3599 (5)0.6143 (10)0.068 (4)*0.610 (6)
H330.55870.36710.60500.082*0.610 (6)
C340.7145 (5)0.4190 (4)0.6294 (9)0.071 (4)*0.610 (6)
H340.74910.40990.64130.085*0.610 (6)
C350.7035 (6)0.4632 (4)0.6100 (9)0.083 (4)*0.610 (6)
H350.66890.47260.59210.100*0.610 (6)
N40.8204 (3)0.5619 (3)0.6264 (6)0.034 (3)*0.610 (6)
C360.8290 (4)0.5182 (4)0.6224 (7)0.042 (3)*0.610 (6)
H360.86190.50810.62220.051*0.610 (6)
C370.7923 (6)0.4873 (6)0.6185 (10)0.054 (6)*0.610 (6)
H370.80040.45580.61760.064*0.610 (6)
C380.7453 (5)0.4991 (4)0.6159 (8)0.053 (3)*0.610 (6)
C390.7367 (4)0.5439 (4)0.6221 (8)0.045 (3)*0.610 (6)
H390.70360.55400.62070.054*0.610 (6)
C400.7738 (4)0.5749 (4)0.6304 (9)0.039 (4)*0.610 (6)
H400.76730.60610.63910.047*0.610 (6)
C410.4294 (2)0.06515 (17)0.5374 (4)0.0317 (12)
C420.30854 (19)0.17142 (19)0.4763 (4)0.0335 (13)
C430.2559 (2)0.2402 (2)0.4140 (4)0.0372 (14)
H430.25940.23310.35400.045*
C440.27810 (19)0.21240 (18)0.4886 (3)0.0283 (12)
C450.2715 (2)0.2216 (2)0.5756 (4)0.0373 (14)
H450.28560.20190.62740.045*
C460.4977 (2)0.00602 (19)0.5898 (4)0.0339 (13)
H460.49580.01000.65190.041*
C470.46626 (19)0.03103 (16)0.5179 (4)0.0266 (11)
C480.4681 (2)0.02454 (19)0.4264 (4)0.0348 (13)
H480.44590.04110.37600.042*
C490.3636 (2)0.1148 (2)0.1958 (4)0.0486 (16)
C500.3750 (3)0.1331 (3)0.8143 (5)0.063 (2)
C510.3402 (2)0.1538 (2)0.0395 (4)0.0448 (15)
H510.31890.17350.06180.054*
C520.3687 (2)0.1203 (2)0.0975 (4)0.0376 (14)
C530.3995 (2)0.0918 (2)0.0649 (4)0.0377 (14)
H530.41890.06880.10450.045*
C540.4020 (2)0.0967 (2)0.9744 (4)0.0435 (15)
H540.42360.07720.95220.052*
C550.3737 (2)0.1296 (2)0.9156 (4)0.0425 (15)
C560.3433 (2)0.1583 (2)0.9473 (4)0.0496 (17)
H560.32420.18130.90720.060*
C8A0.615 (3)0.311 (3)0.365 (2)0.34 (5)*0.390 (6)
C9A0.6585 (8)0.2936 (7)0.3977 (14)0.072 (6)*0.390 (6)
H9A0.66530.26220.41180.086*0.390 (6)
C10A0.6939 (8)0.3272 (6)0.4100 (13)0.063 (5)*0.390 (6)
H10A0.72950.32160.42500.076*0.390 (6)
C11A0.6732 (8)0.3701 (6)0.3985 (14)0.058 (5)*0.390 (6)
C12A0.6241 (15)0.3820 (13)0.349 (4)0.38 (6)*0.390 (6)
H12A0.61410.41250.33070.461*0.390 (6)
C13A0.5912 (9)0.3460 (8)0.3272 (18)0.078 (7)*0.390 (6)
H13A0.55640.34710.29080.094*0.390 (6)
C14A0.7164 (8)0.4069 (6)0.4474 (12)0.072 (6)*0.390 (6)
H14A0.75020.39930.43880.086*0.390 (6)
C15A0.7026 (8)0.4589 (6)0.4303 (12)0.074 (6)*0.390 (6)
H15A0.66660.46290.39020.089*0.390 (6)
N2A0.8022 (5)0.5558 (5)0.3554 (8)0.034 (4)*0.390 (6)
C16A0.8155 (7)0.5150 (6)0.3701 (10)0.045 (5)*0.390 (6)
H16A0.84820.50650.36620.054*0.390 (6)
C17A0.7847 (6)0.4812 (5)0.3921 (10)0.045 (4)*0.390 (6)
H17A0.79760.45100.40310.054*0.390 (6)
C18A0.7379 (6)0.4895 (6)0.3983 (11)0.057 (5)*0.390 (6)
C19A0.7286 (7)0.5333 (6)0.3840 (12)0.051 (5)*0.390 (6)
H19A0.69600.54330.38620.061*0.390 (6)
C20A0.7607 (7)0.5673 (7)0.3659 (14)0.049 (5)*0.390 (6)
H20A0.75080.59850.36190.059*0.390 (6)
C28A0.6152 (9)0.3119 (8)0.6185 (8)0.057 (7)*0.390 (6)
C29A0.6676 (8)0.3036 (7)0.6431 (14)0.050 (6)*0.390 (6)
H29A0.68140.27510.66830.060*0.390 (6)
C30A0.6991 (8)0.3387 (7)0.6293 (16)0.067 (7)*0.390 (6)
H30A0.73480.33310.64880.080*0.390 (6)
C31A0.6831 (6)0.3814 (6)0.5896 (14)0.056 (5)*0.390 (6)
C32A0.6298 (7)0.3861 (7)0.5625 (15)0.066 (6)*0.390 (6)
H32A0.61590.41390.53340.079*0.390 (6)
C33A0.5960 (6)0.3532 (5)0.5750 (12)0.041 (4)*0.390 (6)
H33A0.56030.35860.55430.049*0.390 (6)
C34A0.7188 (8)0.4110 (6)0.5558 (13)0.066 (5)*0.390 (6)
H34A0.75460.40660.59640.080*0.390 (6)
C35A0.7064 (9)0.4628 (6)0.5412 (12)0.078 (6)*0.390 (6)
H35A0.67380.47200.55330.093*0.390 (6)
N4A0.8257 (6)0.5652 (5)0.6546 (10)0.038 (4)*0.390 (6)
C36A0.7752 (11)0.5722 (10)0.6161 (15)0.112 (17)*0.390 (6)
H36A0.76420.60300.61190.134*0.390 (6)
C37A0.7352 (8)0.5378 (6)0.5800 (13)0.062 (6)*0.390 (6)
H37A0.70060.54660.55380.074*0.390 (6)
C38A0.7492 (6)0.4921 (5)0.5850 (10)0.032 (4)*0.390 (6)
C39A0.8008 (9)0.4828 (9)0.6188 (15)0.057 (11)*0.390 (6)
H39A0.81330.45260.61840.068*0.390 (6)
C40A0.8357 (6)0.5207 (5)0.6551 (11)0.028 (4)*0.390 (6)
H40A0.87030.51250.68300.034*0.390 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0631 (5)0.0617 (5)0.0292 (4)0.0353 (4)0.0215 (3)0.0027 (3)
Zn20.0431 (4)0.0339 (4)0.0357 (4)0.0114 (3)0.0227 (3)0.0030 (3)
O10.052 (3)0.063 (3)0.051 (3)0.036 (2)0.009 (2)0.003 (2)
O20.053 (3)0.037 (2)0.049 (3)0.0067 (19)0.038 (2)0.0021 (19)
O30.063 (3)0.065 (3)0.038 (2)0.037 (2)0.028 (2)0.003 (2)
O40.047 (3)0.045 (3)0.048 (3)0.012 (2)0.020 (2)0.008 (2)
O50.071 (3)0.097 (4)0.037 (3)0.024 (3)0.033 (2)0.003 (3)
O60.072 (3)0.069 (3)0.030 (2)0.014 (3)0.016 (2)0.011 (2)
O70.083 (4)0.166 (6)0.040 (3)0.012 (4)0.020 (3)0.041 (4)
O80.113 (5)0.088 (4)0.051 (3)0.038 (3)0.063 (3)0.015 (3)
N10.064 (4)0.058 (4)0.049 (3)0.017 (3)0.029 (3)0.005 (3)
C10.065 (5)0.056 (4)0.055 (4)0.009 (4)0.020 (4)0.001 (3)
C20.071 (6)0.073 (6)0.058 (5)0.006 (4)0.010 (4)0.007 (4)
C30.089 (7)0.067 (6)0.067 (6)0.003 (5)0.014 (5)0.006 (4)
C40.137 (10)0.051 (5)0.134 (9)0.012 (6)0.080 (8)0.014 (5)
C50.096 (7)0.066 (6)0.089 (6)0.023 (5)0.048 (5)0.015 (5)
C60.081 (7)0.122 (9)0.145 (11)0.022 (7)0.044 (7)0.012 (8)
C70.118 (9)0.090 (7)0.100 (8)0.016 (7)0.014 (7)0.002 (6)
N30.050 (3)0.036 (3)0.025 (2)0.007 (2)0.010 (2)0.001 (2)
C210.047 (4)0.044 (4)0.026 (3)0.002 (3)0.007 (3)0.004 (3)
C220.038 (3)0.052 (4)0.040 (4)0.003 (3)0.008 (3)0.001 (3)
C230.053 (5)0.051 (4)0.044 (4)0.008 (3)0.001 (3)0.001 (3)
C240.048 (4)0.034 (4)0.075 (5)0.006 (3)0.002 (4)0.003 (3)
C250.046 (4)0.043 (4)0.048 (4)0.009 (3)0.008 (3)0.001 (3)
C260.056 (5)0.078 (6)0.100 (7)0.016 (4)0.006 (5)0.021 (5)
C270.082 (6)0.069 (5)0.070 (5)0.019 (5)0.000 (5)0.014 (4)
C410.025 (3)0.025 (3)0.049 (4)0.003 (2)0.018 (3)0.004 (3)
C420.022 (3)0.038 (3)0.039 (3)0.007 (2)0.007 (2)0.002 (3)
C430.032 (3)0.054 (4)0.030 (3)0.011 (3)0.014 (2)0.001 (3)
C440.026 (3)0.042 (3)0.021 (3)0.005 (2)0.014 (2)0.001 (2)
C450.041 (3)0.044 (3)0.029 (3)0.010 (3)0.015 (3)0.007 (3)
C460.044 (3)0.038 (3)0.028 (3)0.001 (3)0.022 (3)0.000 (2)
C470.028 (3)0.023 (3)0.034 (3)0.002 (2)0.016 (2)0.008 (2)
C480.040 (3)0.038 (3)0.029 (3)0.005 (3)0.013 (2)0.001 (2)
C490.048 (4)0.066 (4)0.036 (3)0.012 (3)0.020 (3)0.008 (3)
C500.062 (5)0.097 (6)0.035 (4)0.036 (5)0.021 (4)0.001 (4)
C510.046 (4)0.055 (4)0.041 (3)0.010 (3)0.024 (3)0.004 (3)
C520.028 (3)0.054 (4)0.032 (3)0.005 (3)0.011 (2)0.001 (3)
C530.043 (3)0.038 (3)0.033 (3)0.006 (3)0.012 (3)0.003 (3)
C540.052 (4)0.045 (4)0.043 (4)0.010 (3)0.028 (3)0.004 (3)
C550.036 (3)0.060 (4)0.034 (3)0.003 (3)0.013 (3)0.003 (3)
C560.055 (4)0.050 (4)0.043 (4)0.014 (3)0.012 (3)0.025 (3)
Geometric parameters (Å, º) top
Zn1—N2i1.970 (12)C32—C331.360 (16)
Zn1—O32.004 (4)C34—C351.342 (13)
Zn1—O12.005 (4)C35—C381.539 (19)
Zn1—O52.128 (4)N4—C361.308 (12)
Zn1—N12.183 (6)N4—C401.351 (13)
Zn1—O62.301 (4)N4—Zn2ii2.202 (10)
Zn1—N2Ai2.424 (16)C36—C371.342 (17)
Zn1—C492.497 (6)C37—C381.325 (16)
Zn2—O22.011 (4)C38—C391.341 (14)
Zn2—O82.034 (5)C39—C401.342 (14)
Zn2—O42.045 (4)C41—C471.509 (7)
Zn2—N4Ai2.102 (16)C42—C441.504 (7)
Zn2—N32.129 (5)C43—C441.368 (7)
Zn2—N4i2.202 (10)C43—C45iii1.383 (8)
O1—C411.221 (7)C44—C451.389 (7)
O2—C411.233 (6)C45—C43iii1.383 (8)
O3—C421.246 (7)C46—C48iv1.368 (7)
O4—C421.234 (6)C46—C471.374 (7)
O5—C491.258 (7)C47—C481.393 (7)
O6—C491.235 (7)C48—C46iv1.368 (7)
O7—C501.254 (10)C49—C521.521 (8)
O8—C501.237 (10)C50—C551.525 (9)
N1—C51.335 (9)C51—C521.387 (8)
N1—C11.346 (9)C51—C56v1.408 (8)
C1—C21.332 (10)C52—C531.374 (8)
C2—C31.374 (11)C53—C54v1.379 (8)
C3—C41.353 (12)C54—C551.378 (9)
C3—C61.461 (13)C54—C53vi1.379 (8)
C4—C51.384 (12)C55—C561.363 (9)
C6—C71.354 (11)C56—C51vi1.408 (8)
C7—C81.490 (18)C8A—C9A1.25 (4)
C7—C8A1.70 (11)C8A—C13A1.26 (4)
C8—C91.41 (2)C9A—C10A1.36 (3)
C8—C131.43 (2)C10A—C11A1.37 (2)
C9—C101.46 (2)C11A—C12A1.38 (3)
C10—C111.432 (19)C11A—C14A1.61 (3)
C11—C121.421 (18)C12A—C13A1.37 (3)
C11—C141.43 (2)C14A—C15A1.574 (18)
C12—C131.48 (2)C14A—C34A1.601 (18)
C14—C151.340 (14)C15A—C18A1.50 (3)
C15—C181.51 (2)C15A—C35A1.629 (18)
N2—C201.376 (18)N2A—C20A1.240 (19)
N2—C161.388 (15)N2A—C16A1.249 (18)
N2—Zn1ii1.970 (12)N2A—Zn1ii2.424 (16)
C16—C171.372 (17)C16A—C17A1.40 (2)
C17—C181.356 (16)C17A—C18A1.334 (19)
C18—C191.368 (17)C18A—C19A1.314 (19)
C19—C201.37 (2)C19A—C20A1.41 (2)
N3—C251.332 (7)C28A—C29A1.40 (2)
N3—C211.336 (7)C28A—C33A1.40 (2)
C21—C221.383 (8)C29A—C30A1.40 (2)
C22—C231.373 (9)C30A—C31A1.40 (2)
C23—C241.394 (9)C31A—C32A1.40 (2)
C23—C261.442 (10)C31A—C34A1.50 (3)
C24—C251.370 (9)C32A—C33A1.39 (2)
C26—C271.357 (10)C34A—C35A1.557 (18)
C27—C281.47 (2)C35A—C38A1.45 (3)
C27—C28A1.56 (3)N4A—C40A1.332 (19)
C28—C291.376 (16)N4A—C36A1.35 (2)
C28—C331.380 (16)N4A—Zn2ii2.102 (16)
C29—C301.358 (16)C36A—C37A1.47 (3)
C30—C311.376 (14)C37A—C38A1.39 (2)
C31—C321.356 (14)C38A—C39A1.38 (2)
C31—C341.483 (18)C39A—C40A1.46 (3)
N2i—Zn1—O396.5 (3)C30—C31—C34116.6 (11)
N2i—Zn1—O189.4 (3)C31—C32—C33117.8 (13)
O3—Zn1—O1110.35 (17)C32—C33—C28121.0 (14)
N2i—Zn1—O594.8 (3)C35—C34—C31125.2 (13)
O3—Zn1—O591.52 (17)C34—C35—C38122.1 (13)
O1—Zn1—O5157.15 (17)C36—N4—C40117.5 (10)
N2i—Zn1—N1171.9 (3)C36—N4—Zn2ii123.1 (7)
O3—Zn1—N191.3 (2)C40—N4—Zn2ii118.7 (7)
O1—Zn1—N185.8 (2)N4—C36—C37121.3 (12)
O5—Zn1—N187.2 (2)C38—C37—C36122.5 (15)
N2i—Zn1—O690.1 (3)C37—C38—C39116.2 (14)
O3—Zn1—O6150.87 (17)C37—C38—C35121.7 (12)
O1—Zn1—O698.03 (16)C39—C38—C35122.0 (11)
O5—Zn1—O659.59 (16)C38—C39—C40121.6 (11)
N1—Zn1—O684.13 (18)C39—C40—N4120.6 (11)
O3—Zn1—N2Ai95.4 (3)O1—C41—O2124.6 (5)
O1—Zn1—N2Ai86.7 (3)O1—C41—C47119.1 (5)
O5—Zn1—N2Ai98.1 (3)O2—C41—C47116.2 (5)
N1—Zn1—N2Ai171.3 (3)O4—C42—O3125.4 (5)
O6—Zn1—N2Ai92.5 (3)O4—C42—C44118.0 (5)
N2i—Zn1—C4994.9 (3)O3—C42—C44116.6 (5)
O3—Zn1—C49121.42 (19)C44—C43—C45iii121.2 (5)
O1—Zn1—C49127.06 (19)C43—C44—C45119.7 (5)
O5—Zn1—C4930.24 (18)C43—C44—C42120.5 (5)
N1—Zn1—C4982.8 (2)C45—C44—C42119.9 (5)
O6—Zn1—C4929.49 (17)C43iii—C45—C44119.1 (5)
N2Ai—Zn1—C4998.2 (3)C48iv—C46—C47121.2 (5)
O2—Zn2—O897.2 (2)C46—C47—C48119.7 (5)
O2—Zn2—O4122.43 (17)C46—C47—C41120.4 (5)
O8—Zn2—O4139.7 (2)C48—C47—C41119.9 (5)
O2—Zn2—N4Ai93.0 (4)C46iv—C48—C47119.1 (5)
O8—Zn2—N4Ai82.9 (4)O6—C49—O5124.4 (6)
O4—Zn2—N4Ai87.8 (4)O6—C49—C52118.7 (5)
O2—Zn2—N393.31 (17)O5—C49—C52116.9 (6)
O8—Zn2—N396.54 (18)O6—C49—Zn166.4 (3)
O4—Zn2—N388.66 (17)O5—C49—Zn158.4 (3)
O2—Zn2—N4i89.5 (2)C52—C49—Zn1170.2 (5)
O8—Zn2—N4i93.3 (3)O8—C50—O7125.2 (7)
O4—Zn2—N4i81.2 (2)O8—C50—C55117.3 (7)
N3—Zn2—N4i169.3 (2)O7—C50—C55117.5 (8)
C41—O1—Zn1167.3 (4)C52—C51—C56v119.4 (5)
C41—O2—Zn2116.7 (4)C53—C52—C51120.1 (5)
C42—O3—Zn1127.2 (4)C53—C52—C49121.1 (5)
C42—O4—Zn2155.1 (4)C51—C52—C49118.8 (5)
C49—O5—Zn191.3 (4)C52—C53—C54v119.6 (6)
C49—O6—Zn184.1 (4)C55—C54—C53vi121.0 (6)
C50—O8—Zn2102.8 (5)C56—C55—C54120.0 (6)
C5—N1—C1113.8 (7)C56—C55—C50119.8 (6)
C5—N1—Zn1122.4 (6)C54—C55—C50120.2 (6)
C1—N1—Zn1123.7 (5)C55—C56—C51vi119.9 (6)
C2—C1—N1126.2 (7)C9A—C8A—C13A145 (10)
C1—C2—C3120.2 (8)C9A—C8A—C799 (5)
C4—C3—C2114.9 (9)C13A—C8A—C7115 (6)
C4—C3—C6119.6 (9)C8A—C9A—C10A108 (5)
C2—C3—C6125.5 (9)C9A—C10A—C11A113.1 (19)
C3—C4—C5122.2 (9)C10A—C11A—C12A127 (3)
N1—C5—C4122.3 (8)C10A—C11A—C14A109.5 (16)
C7—C6—C3126.6 (11)C12A—C11A—C14A123 (2)
C6—C7—C8124.5 (11)C13A—C12A—C11A114 (3)
C6—C7—C8A116.0 (13)C8A—C13A—C12A107 (5)
C9—C8—C13125.0 (17)C15A—C14A—C34A91.6 (12)
C9—C8—C7119.3 (12)C15A—C14A—C11A117.8 (16)
C13—C8—C7115.6 (13)C34A—C14A—C11A108.3 (15)
C8—C9—C10117.3 (16)C18A—C15A—C14A118.9 (16)
C11—C10—C9122.1 (18)C18A—C15A—C35A115.3 (14)
C12—C11—C10114.3 (17)C14A—C15A—C35A87.8 (12)
C12—C11—C14125.7 (15)C20A—N2A—C16A118.0 (19)
C10—C11—C14116.7 (16)C20A—N2A—Zn1ii112.9 (11)
C11—C12—C13125.1 (17)C16A—N2A—Zn1ii125.7 (12)
C8—C13—C12112.6 (18)N2A—C16A—C17A123.5 (17)
C15—C14—C11122.2 (17)C18A—C17A—C16A122.9 (16)
C14—C15—C18126.1 (17)C19A—C18A—C17A108.4 (18)
C20—N2—C16110.6 (15)C19A—C18A—C15A121.4 (16)
C20—N2—Zn1ii126.7 (11)C17A—C18A—C15A129.6 (15)
C16—N2—Zn1ii122.4 (9)C18A—C19A—C20A128.2 (18)
C17—C16—N2124.9 (13)N2A—C20A—C19A118.7 (17)
C18—C17—C16120.6 (13)C29A—C28A—C33A119 (2)
C17—C18—C19117.6 (16)C28A—C29A—C30A117.8 (19)
C17—C18—C15125.4 (14)C31A—C30A—C29A126.1 (19)
C19—C18—C15116.9 (14)C30A—C31A—C32A112.4 (19)
C20—C19—C18119.1 (19)C30A—C31A—C34A120.3 (16)
C19—C20—N2126.8 (19)C32A—C31A—C34A124.9 (16)
C25—N3—C21116.1 (5)C33A—C32A—C31A124.9 (17)
C25—N3—Zn2122.0 (4)C32A—C33A—C28A119.2 (18)
C21—N3—Zn2121.7 (4)C31A—C34A—C35A118.2 (16)
N3—C21—C22123.1 (6)C31A—C34A—C14A117.2 (16)
C23—C22—C21120.9 (6)C35A—C34A—C14A89.4 (12)
C22—C23—C24115.8 (6)C38A—C35A—C34A113.7 (16)
C22—C23—C26125.1 (7)C38A—C35A—C15A107.6 (14)
C24—C23—C26119.1 (7)C34A—C35A—C15A91.2 (12)
C25—C24—C23120.1 (6)C40A—N4A—C36A109 (2)
N3—C25—C24124.1 (6)C40A—N4A—Zn2ii121.1 (11)
C27—C26—C23121.3 (8)C36A—N4A—Zn2ii122.5 (13)
C26—C27—C28122.4 (9)N4A—C36A—C37A128 (2)
C29—C28—C33117.7 (17)C38A—C37A—C36A118 (2)
C29—C28—C27116.2 (12)C39A—C38A—C37A117 (2)
C33—C28—C27125.8 (13)C39A—C38A—C35A130.9 (16)
C30—C29—C28122.5 (14)C37A—C38A—C35A111.9 (15)
C29—C30—C31116.3 (13)C38A—C39A—C40A118 (2)
C32—C31—C30123.7 (14)N4A—C40A—C39A129.1 (17)
C32—C31—C34119.7 (11)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y, z+1; (v) x, y, z1; (vi) x, y, z+1.
 
(xtl4_sqd) top
Crystal data top
C56H40N4O8Zn2Dx = 1.125 Mg m3
Mr = 1027.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccaCell parameters from 9984 reflections
a = 20.030 (3) Åθ = 2.3–27.3°
b = 20.005 (3) ŵ = 0.84 mm1
c = 15.145 (2) ÅT = 173 K
V = 6068.8 (14) Å3Block, red
Z = 40.46 × 0.41 × 0.30 mm
F(000) = 2112
Data collection top
Bruker APEX-II CCD
diffractometer
3975 reflections with I > 2σ(I)
φ and ω scansRint = 0.074
Absorption correction: multi-scan
SADABS (Sheldrick, 2011)
θmax = 26.0°, θmin = 2.0°
Tmin = 0.703, Tmax = 0.801h = 2424
46693 measured reflectionsk = 2424
5979 independent reflectionsl = 1818
Refinement top
Refinement on F2440 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.1154P)2 + 7.2582P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
5979 reflectionsΔρmax = 0.91 e Å3
294 parametersΔρmin = 0.72 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystallized in the orthorhombic space group Pcca with Z = 4. The asymmetric unit contains half of the formula unit. The dimer formed by dimerization of trans,cis,trans-bpeb disordered due to crystallographic centre of inversion. Due to this disorder soft constraints (FLAT, SAME, SADI) were used to retain the geometry of molecule. Only isotropic thermal parameter could be refined for these bpeb-dimer fragment. Again one DMF was disordered by crystallographic inversion centre. The rest of the electron densities were too complicated to resolve. Hence they were assigned as O atoms of water molecules. They could as well be highly disordered DMF.[Zn2(bdc)2(dimer)].DMF.6.5H2O. For uniformity, the referee suggested to squeeze the data and hence squeezed. The agreement factors of the squeezed better than the unsqueezed data.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.43270 (3)0.66969 (2)0.85781 (3)0.0250 (2)
O10.52593 (15)0.67007 (14)0.9065 (2)0.0355 (8)
O20.57615 (18)0.67078 (17)0.7764 (2)0.0449 (9)
O30.8303 (2)0.67234 (15)1.1227 (3)0.0521 (11)
O40.8841 (2)0.67063 (16)0.9961 (3)0.0565 (11)
N10.4379 (6)0.5644 (5)0.8558 (8)0.024 (4)*0.5
C10.4867 (6)0.5310 (5)0.8977 (8)0.034 (4)*0.5
H10.51490.55560.93630.041*0.5
C20.4988 (5)0.4633 (4)0.8886 (7)0.029 (3)*0.5
H2A0.53360.44260.92120.035*0.5
C30.4601 (5)0.4260 (4)0.8318 (7)0.024 (2)*0.5
C40.4064 (6)0.4579 (4)0.7932 (7)0.030 (3)*0.5
H40.37670.43390.75600.037*0.5
C50.3963 (6)0.5258 (5)0.8095 (9)0.033 (4)*0.5
H50.35710.54590.78610.039*0.5
C60.4863 (5)0.3575 (4)0.8109 (6)0.033 (2)*0.5
H60.50620.33580.86420.040*0.5
C70.4391 (5)0.3084 (5)0.7602 (6)0.043 (2)*0.5
H70.39700.33210.74350.052*0.5
C80.4224 (5)0.2409 (5)0.8006 (7)0.051 (3)*0.5
C90.4677 (6)0.2060 (4)0.8435 (6)0.041 (2)*0.5
H90.50390.22990.86900.049*0.5
C100.4669 (6)0.1379 (5)0.8546 (7)0.059 (3)*0.5
H100.49910.11650.89090.071*0.5
C110.4195 (7)0.1021 (6)0.8128 (10)0.079 (4)*0.5
C120.3664 (7)0.1385 (5)0.7824 (9)0.073 (4)*0.5
H120.32650.11590.76640.087*0.5
C130.3694 (7)0.2077 (5)0.7745 (9)0.079 (4)*0.5
H130.33270.23120.74980.095*0.5
C140.4371 (8)0.0329 (8)0.7736 (10)0.108 (6)*0.5
H140.39420.00890.76180.129*0.5
C150.4872 (8)0.0191 (7)0.8174 (10)0.103 (6)*0.5
H150.51160.00240.86760.123*0.5
N20.4371 (5)0.2216 (4)0.8662 (7)0.027 (3)*0.5
C160.3959 (6)0.1848 (5)0.8195 (8)0.045 (3)*0.5
H160.36070.20700.78930.054*0.5
C170.4001 (7)0.1157 (6)0.8108 (11)0.084 (5)*0.5
H170.36680.09090.78040.101*0.5
C180.4543 (6)0.0853 (5)0.8480 (9)0.058 (4)*0.5
C190.4928 (6)0.1198 (5)0.9043 (9)0.058 (4)*0.5
H190.52610.09780.93830.070*0.5
C200.4830 (6)0.1884 (5)0.9119 (9)0.041 (3)*0.5
H200.51050.21270.95160.050*0.5
N30.5710 (6)0.5599 (6)0.6504 (8)0.031 (5)*0.5
C210.5219 (6)0.5235 (5)0.6137 (8)0.038 (5)*0.5
H210.49230.54420.57310.046*0.5
C220.5134 (6)0.4561 (5)0.6339 (8)0.040 (3)*0.5
H220.47850.43160.60630.048*0.5
C230.5551 (5)0.4247 (4)0.6936 (7)0.033 (3)*0.5
C240.6073 (6)0.4620 (5)0.7256 (8)0.036 (3)*0.5
H240.64030.44140.76150.043*0.5
C250.6122 (6)0.5296 (5)0.7058 (8)0.026 (3)*0.5
H250.64650.55510.73310.031*0.5
C260.5369 (5)0.3566 (4)0.7298 (6)0.038 (2)*0.5
H260.57840.33210.74710.045*0.5
C270.4897 (5)0.3085 (5)0.6782 (6)0.049 (3)*0.5
H270.46940.33200.62650.059*0.5
C280.5137 (7)0.2388 (6)0.6514 (9)0.073 (4)*0.5
C290.5648 (8)0.2054 (7)0.6847 (12)0.099 (6)*0.5
H290.60060.22890.71180.119*0.5
C300.5661 (9)0.1352 (8)0.6801 (15)0.126 (8)*0.5
H300.60590.11250.69630.151*0.5
C310.5126 (9)0.0986 (7)0.6532 (12)0.106 (6)*0.5
C320.4692 (10)0.1341 (8)0.6038 (14)0.139 (7)*0.5
H320.43940.11150.56530.166*0.5
C330.4680 (8)0.2029 (7)0.6086 (11)0.102 (5)*0.5
H330.43260.22600.57990.122*0.5
C340.4806 (8)0.0313 (7)0.6838 (9)0.094 (5)*0.5
H340.45600.00880.63470.113*0.5
C350.5328 (8)0.0178 (7)0.7296 (10)0.107 (6)*0.5
H350.57490.00740.74230.129*0.5
N40.5664 (5)0.2225 (5)0.6544 (7)0.036 (3)*0.5
C360.6065 (5)0.1894 (5)0.7073 (8)0.039 (3)*0.5
H360.64140.21300.73610.047*0.5
C370.5999 (6)0.1224 (5)0.7227 (9)0.054 (3)*0.5
H370.63140.10100.76000.065*0.5
C380.5507 (7)0.0856 (6)0.6874 (10)0.071 (4)*0.5
C390.5090 (7)0.1163 (6)0.6309 (10)0.063 (4)*0.5
H390.47450.09250.60150.076*0.5
C400.5186 (7)0.1851 (5)0.6172 (9)0.052 (4)*0.5
H400.48860.20700.57820.062*0.5
C410.5766 (2)0.67179 (19)0.8582 (3)0.0286 (11)
C420.6429 (2)0.67537 (18)0.9037 (3)0.0260 (9)
C430.6469 (3)0.6791 (2)0.9952 (3)0.0380 (11)
H430.60690.68161.02890.046*
C440.7073 (3)0.6794 (2)1.0380 (3)0.0410 (12)
H440.70880.68281.10050.049*
C450.7657 (2)0.67477 (19)0.9908 (4)0.0361 (11)
C460.7626 (2)0.6705 (2)0.8997 (3)0.0361 (11)
H460.80270.66670.86660.043*
C470.7017 (3)0.6716 (2)0.8560 (3)0.0353 (11)
H470.70040.66970.79330.042*
C480.8319 (3)0.6726 (2)1.0396 (4)0.0469 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0203 (3)0.0253 (3)0.0296 (3)0.0000 (2)0.0023 (2)0.00168 (18)
O10.0140 (16)0.0446 (18)0.048 (2)0.0013 (13)0.0009 (16)0.0029 (14)
O20.037 (2)0.067 (2)0.0299 (17)0.0076 (17)0.0089 (16)0.0097 (15)
O30.054 (3)0.0392 (19)0.063 (2)0.0023 (17)0.033 (2)0.0006 (16)
O40.029 (2)0.046 (2)0.094 (3)0.0004 (16)0.024 (2)0.0005 (19)
C410.023 (3)0.027 (2)0.036 (3)0.0016 (18)0.008 (2)0.0027 (18)
C420.018 (2)0.025 (2)0.035 (2)0.0003 (17)0.0058 (19)0.0030 (17)
C430.025 (3)0.051 (3)0.038 (3)0.005 (2)0.003 (2)0.004 (2)
C440.035 (3)0.047 (3)0.041 (3)0.007 (2)0.015 (2)0.003 (2)
C450.024 (3)0.027 (2)0.057 (3)0.0028 (19)0.014 (2)0.003 (2)
C460.023 (3)0.033 (2)0.053 (3)0.0020 (19)0.003 (2)0.000 (2)
C470.026 (3)0.048 (3)0.032 (2)0.004 (2)0.000 (2)0.000 (2)
C480.031 (3)0.023 (2)0.086 (4)0.001 (2)0.020 (3)0.001 (2)
Geometric parameters (Å, º) top
Zn1—O12.008 (3)C16—C171.391 (11)
Zn1—O2i2.040 (3)C17—C181.366 (12)
Zn1—O3ii2.073 (4)C18—C191.341 (12)
Zn1—N12.110 (10)C19—C201.391 (10)
Zn1—O4ii2.418 (4)N3—C251.324 (11)
Zn1—C48ii2.548 (6)N3—C211.344 (11)
O1—C411.253 (6)C21—C221.392 (11)
O2—C411.239 (5)C22—C231.384 (11)
O2—Zn1i2.040 (3)C23—C241.372 (11)
O3—C481.259 (7)C23—C261.513 (10)
O3—Zn1iii2.073 (4)C24—C251.389 (10)
O4—C481.237 (7)C26—C271.559 (11)
O4—Zn1iii2.418 (4)C27—C281.530 (12)
N1—C51.336 (11)C28—C291.322 (12)
N1—C11.344 (11)C28—C331.332 (12)
C1—C21.382 (10)C29—C301.407 (13)
C2—C31.378 (11)C30—C311.360 (13)
C3—C41.381 (11)C31—C321.348 (13)
C3—C61.501 (9)C31—C341.562 (13)
C4—C51.395 (10)C32—C331.380 (13)
C6—C71.565 (11)C34—C351.593 (13)
C6—C261.591 (10)C35—C381.543 (13)
C7—C81.521 (11)N4—C361.313 (11)
C7—C271.603 (11)N4—C401.340 (11)
C8—C131.313 (11)C36—C371.367 (10)
C8—C91.316 (11)C37—C381.341 (12)
C9—C101.373 (11)C38—C391.343 (12)
C10—C111.347 (12)C39—C401.406 (11)
C11—C121.369 (12)C41—C421.497 (6)
C11—C141.547 (13)C42—C471.384 (7)
C12—C131.391 (12)C42—C431.390 (6)
C14—C151.590 (14)C43—C441.373 (7)
C14—C341.615 (13)C44—C451.374 (8)
C15—C181.552 (13)C45—C461.383 (7)
C15—C351.613 (13)C45—C481.518 (7)
N2—C161.313 (11)C46—C471.389 (7)
N2—C201.328 (10)C48—Zn1iii2.548 (6)
O1—Zn1—O2i116.53 (14)N2—C20—C19123.2 (10)
O1—Zn1—O3ii150.21 (16)C25—N3—C21117.9 (11)
O2i—Zn1—O3ii93.19 (16)N3—C21—C22121.7 (11)
O1—Zn1—N187.9 (3)C23—C22—C21120.6 (10)
O2i—Zn1—N190.0 (3)C24—C23—C22116.4 (8)
O3ii—Zn1—N194.4 (3)C24—C23—C26123.1 (9)
O1—Zn1—O4ii92.18 (15)C22—C23—C26120.0 (9)
O2i—Zn1—O4ii151.26 (15)C23—C24—C25120.5 (10)
O3ii—Zn1—O4ii58.07 (16)N3—C25—C24122.6 (11)
N1—Zn1—O4ii92.4 (3)C23—C26—C27121.3 (9)
O1—Zn1—C48ii120.85 (18)C23—C26—C6115.0 (8)
O2i—Zn1—C48ii122.58 (19)C27—C26—C690.5 (6)
O3ii—Zn1—C48ii29.39 (18)C28—C27—C26120.3 (9)
N1—Zn1—C48ii94.1 (4)C28—C27—C7113.8 (9)
O4ii—Zn1—C48ii28.68 (17)C26—C27—C789.8 (5)
C41—O1—Zn1122.7 (3)C29—C28—C33116.5 (12)
C41—O2—Zn1i175.5 (4)C29—C28—C27127.0 (12)
C48—O3—Zn1iii96.7 (4)C33—C28—C27113.9 (11)
C48—O4—Zn1iii81.5 (4)C28—C29—C30119.9 (14)
C5—N1—C1114.5 (10)C31—C30—C29122.5 (15)
C5—N1—Zn1123.7 (8)C32—C31—C30113.0 (14)
C1—N1—Zn1121.7 (8)C32—C31—C34110.8 (14)
N1—C1—C2124.5 (11)C30—C31—C34134.3 (15)
C3—C2—C1119.7 (9)C31—C32—C33120.5 (14)
C2—C3—C4116.8 (7)C28—C33—C32123.4 (13)
C2—C3—C6115.4 (8)C31—C34—C35113.0 (13)
C4—C3—C6127.3 (9)C31—C34—C14117.0 (14)
C3—C4—C5119.3 (9)C35—C34—C1490.0 (6)
N1—C5—C4124.4 (11)C38—C35—C34120.9 (14)
C3—C6—C7117.6 (9)C38—C35—C15117.3 (14)
C3—C6—C26113.3 (8)C34—C35—C1589.8 (6)
C7—C6—C2690.0 (6)C36—N4—C40114.4 (10)
C8—C7—C6119.5 (8)N4—C36—C37122.6 (10)
C8—C7—C27116.9 (8)C38—C37—C36122.8 (11)
C6—C7—C2789.8 (5)C37—C38—C39117.4 (10)
C13—C8—C9116.0 (10)C37—C38—C35119.2 (11)
C13—C8—C7120.3 (9)C39—C38—C35121.4 (12)
C9—C8—C7121.2 (9)C38—C39—C40117.1 (11)
C8—C9—C10125.3 (10)N4—C40—C39125.6 (12)
C11—C10—C9118.6 (11)O2—C41—O1125.3 (4)
C10—C11—C12115.0 (11)O2—C41—C42117.9 (4)
C10—C11—C14119.7 (12)O1—C41—C42116.8 (4)
C12—C11—C14121.6 (11)C47—C42—C43118.3 (4)
C11—C12—C13121.7 (11)C47—C42—C41120.7 (4)
C8—C13—C12120.8 (11)C43—C42—C41120.9 (4)
C11—C14—C15124.7 (13)C44—C43—C42121.4 (5)
C11—C14—C34117.6 (14)C43—C44—C45120.3 (4)
C15—C14—C3489.9 (6)C44—C45—C46118.9 (4)
C18—C15—C14114.4 (14)C44—C45—C48119.5 (5)
C18—C15—C35120.1 (14)C46—C45—C48121.6 (5)
C14—C15—C3590.2 (7)C45—C46—C47121.0 (5)
C16—N2—C20115.8 (9)C42—C47—C46119.9 (4)
N2—C16—C17124.8 (11)O4—C48—O3123.7 (5)
C18—C17—C16116.8 (12)O4—C48—C45118.6 (6)
C19—C18—C17119.4 (10)O3—C48—C45117.7 (5)
C19—C18—C15112.6 (11)O4—C48—Zn1iii69.8 (3)
C17—C18—C15126.5 (12)O3—C48—Zn1iii53.9 (3)
C18—C19—C20118.6 (10)C45—C48—Zn1iii171.6 (5)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x1/2, y, z+2; (iii) x+1/2, y, z+2.
 

Funding information

Funding for this research was provided by: Ministry of Education - Singapore (National University of Singapore Tier 1 grant No. R-143-000-678-114 to Jagadese J. Vittal); National Research Foundation of Korea (NRF) (grant No. 2016R1A2A2A05918799 to Shim Sung Lee; award No. 2017R1A4A1014595 to Shim Sung Lee).

References

First citationBalamurugan, S., Nithyanandan, S., Selvarasu, C., Yeap, G. Y. & Kannan, P. (2012). Polymer, 53, 4104–4111.  Web of Science CrossRef CAS Google Scholar
First citationBarnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2012). Chem. Commun. pp. 1640–1641.  Google Scholar
First citationBernstein, J. (2002). Polymorphism in Molecular Crystals. IUCr Monographs on Crystallography. Oxford University Press.  Google Scholar
First citationBlake, A. J., Brooks, N. R., Champness, N. R., Crew, M., Gregory, D. H., Hubberstey, P., Schröder, M., Deveson, A., Fenske, D. & Hanton, L. R. (2001). Chem. Commun. pp. 1432–1433.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SHELXTL-PC Version 6.22 Program for Solution and Refinement of Crystal Structures. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 Version 2009.1–0 Data Collection and Processing Software. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J. 11, 3521–3529.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationElacqua, E., Bucar, D. K., Skvortsova, Y., Baltrusaitis, J., Geng, M. L. & MacGillivray, L. R. (2009). Org. Lett. 11, 5106–5109.  Web of Science CrossRef CAS Google Scholar
First citationFriščič, T. & MacGillivray, L. R. (2003). Chem. Commun. pp. 1306–1307.  Google Scholar
First citationFriščić, T. & MacGillivray, L. R. (2006). Aust. J. Chem. 59, 613–616.  Google Scholar
First citationGong, Y., Li, J., Jiang, P.-G., Li, Q.-F. & Lin, J.-H. (2013). Dalton Trans. 42, 1603–1611.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X., Adil, K., Lah, M. S. & Eddaoudi, M. (2014). Chem. Soc. Rev. 43, 6141–6172.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuo, X.-G., Yang, W.-B., Wu, X.-Y., Zhang, Q.-K., Lin, L., Yu, R. M., in, & Lu, C. (2013). CrystEngComm, 15, 3654–3663.  Google Scholar
First citationGutov, A. V., Rusanov, E. B., Chepeleva, L. V., Garasevich, S. G., Ryabitskii, A. B. & Chernega, A. N. (2009). Russ. J. Gen. Chem. 79, 1513–1518.  Web of Science CrossRef CAS Google Scholar
First citationHaleblian, J. & McCrone, W. (1969). J. Sci. 58, 911–929.  CAS Google Scholar
First citationHenke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. (2012). J. Am. Chem. Soc. 134, 9464–9474.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHorike, S., Shimomura, S. & Kitagawa, S. (2009). Nat. Chem. 1, 695–704.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHorner, M. & Hünig, S. (1982). Liebigs Ann. Chem. 1982, 1183–1210.  CrossRef Google Scholar
First citationHu, J.-S., Qin, L., Zhang, M.-D., Yao, X.-Q., Li, Y.-Z., Guo, Z.-J., Zheng, H.-G. & Xue, Z.-L. (2012). Chem. Commun. 48, 681–683.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationKarmakar, A., Paul, A. & Pombeiro, A. J. L. (2017). CrystEngComm, 19, 4666–4695.  Web of Science CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490–2509.  Web of Science CrossRef CAS Google Scholar
First citationKitaura, R., Kitagawa, S., Kubota, Y., Kobayashi, T. C., Kindo, K., Mita, Y., Matsuo, A., Kobayashi, M., Chang, H. C., Ozawa, T. C., Suzuki, M., Sakata, M. & Takata, M. (2002). Science, 298, 2358–2361.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. (2003). Angew. Chem. Int. Ed. 42, 428–431.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, D., Ren, Z.-G., Li, H.-X., Lang, J.-P., Li, N.-Y. & Abrahams, B. F. (2010). Angew. Chem. Int. Ed. 49, 4767–4770.  Web of Science CSD CrossRef CAS Google Scholar
First citationLong, J. R. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213–1214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMahata, P., Madras, G. & Natarajan, S. (2006). J. Phys. Chem. B, 110, 13759–13768.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaji, T. K., Uemura, K., Chang, H. C., Matsuda, R. & Kitagawa, S. (2004). Angew. Chem. Int. Ed. 43, 3269–3272.  Web of Science CSD CrossRef CAS Google Scholar
First citationManna, S. C., Zangrando, E., Ribas, J. & Ray Chaudhuri, N. (2008). Eur. J. Inorg. Chem. 9, 1400–1405.  Web of Science CSD CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPanda, T., Kundu, T. & Banerjee, R. (2013). Chem. Commun. 49, 6197–6199.  Web of Science CSD CrossRef CAS Google Scholar
First citationPapaefstathiou, G. S., Friščić, T. & MacGillivray, L. R. (2005). J. Am. Chem. Soc. 127, 14160–14161.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Chanthapally, A., Zhang, Z., Lee, S. S., Zaworotko, M. J. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 414–419.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Kang, Y., Lee, E., Chanthapally, A., Lee, S. S. & Vittal, J. J. (2017). Aust. J. Chem. 70, 461–467.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Medishetty, R., Kim, J.-Y., Lee, S. S. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5591–5595.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Medishetty, R., Lee, H.-H., Herng, T. S., Ding, J., Lee, S. S. & Vittal, J. J. (2015). Cryst. Growth Des. 15, 4156–4161.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Mulijanto, C. R., Lee, H.-H., Kang, Y., Lee, E., Chanthapally, A., Lee, S. S. & Vittal, J. J. (2016). Cryst. Growth Des. 16, 2504–2508.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeedikakkal, A. M. P., Koh, L. L. & Vittal, J. J. (2008). Chem. Commun. pp. 441–443.  Web of Science CSD CrossRef Google Scholar
First citationPeedikakkal, A. M. P., Peh, C. S. Y., Koh, L. L. & Vittal, J. J. (2010). Inorg. Chem. 49, 6775–6777.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPoplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302–1306.  Web of Science CSD CrossRef Google Scholar
First citationRamanan, A. & Whittingham, M. S. (2006). Cryst. Growth Des. 6, 2419–2421.  Web of Science CrossRef CAS Google Scholar
First citationSato, H., Matsuda, R., Sugimoto, K., Takata, M. & Kitagawa, S. (2010). Nat. Mater. 9, 661–666.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647–678.  CrossRef CAS Google Scholar
First citationSeo, J., Matsuda, R., Sakamoto, H., Bonneau, C. & Kitagawa, S. (2009). J. Am. Chem. Soc. 131, 12792–12800.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed. New York: John Wiley and Sons.  Google Scholar
First citationTakashima, Y., Furukawa, S. & Kitagawa, S. (2011). CrystEngComm, 13, 3360–3363.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaworotko, M. J. (2001). Chem. Commun. pp. 1–9.  Web of Science CrossRef Google Scholar
First citationZhang, J.-P., Huang, X.-C. & Chen, X.-M. (2008). Chem. Soc. Rev. 38, 2385–2396.  Web of Science CrossRef Google Scholar
First citationZhou, H.-C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673–674.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 5| Part 2| March 2018| Pages 182-189
ISSN: 2052-2525