research papers
Exploring the simultaneous σ-hole/π-hole bonding characteristics of a Br⋯π interaction in an ebselen derivative via experimental and theoretical electron-density analysis
aDepartment of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India, and bCristallographie, Résonance Magnétique et Modélisations, CRM2, UMR 7036, Institut Jean Barriol, CNRS and Université de Lorraine, BP 239, Vandoeuvre-les-Nancy CEDEX F54506, France
*Correspondence e-mail: claude.lecomte@univ-lorraine.fr, dchopra@iiserb.ac.in
In this study, the nature and characteristics of a short Br⋯π interaction observed in an ebselen derivative, 2-(2-bromophenyl)benzo[d][1,2]selenazol-3(2H)-one, has been explored. The electronic nature of this Br⋯π interaction was investigated via high-resolution X-ray diffraction and periodic density functional theory calculations using atoms-in-molecules (AIM) analysis. This study unravels the simultaneous presence of σ-hole and π-hole bonding characteristics in the same interaction. The dual characteristics of this unique Br⋯π interaction are further established via molecular electrostatic potentials (MESPs) and natural bond orbitals (NBOs).
Keywords: σ-hole bonding; π-hole bonding; ebselen; electron density; molecular electrostatic potentials; crystal engineering; charge, spin and momentum densities; computational modelling; molecular crystals.
CCDC reference: 1816272
1. Introduction
Halogen–π interactions (Montoro et al., 2015; Wang et al., 2016) represent an important class of interaction due to their significant role in crystal engineering (Reddy et al., 1996; Hay & Custelcean, 2009), drug design (Matter et al., 2012), molecular recognition (Shah et al., 2017) and protein–ligand interactions (Imai et al., 2008). The most important aspect of a halogen–π interaction is that it can be classified into two different categories of interaction. Initially, it lies in the category of a σ-hole interaction (Politzer et al., 2013; Clark et al., 2007; Murray et al., 2009), wherein the region of low electron density (σ-hole), localized close to the halogen atom and often characterized by the presence of a positive electrostatic potential (Politzer & Murray, 2017), interacts with the electron-rich region of a π-system, resulting in the formation of a halogen bond (Cavallo et al., 2016). The second category is the π-hole interaction (Bauzá et al., 2015), where the lone pair (l.p.) electrons present on the halogen atom can interact with the electron-deficient region of the π-system (π-hole), giving rise to the formation of an l.p.⋯π interaction (Mooibroek et al., 2008; Egli & Sarkhel, 2007).
Given that both halogens and π-systems have the capability of acting as both and depending on the electronic environment during the formation of the halogen–π interaction, geometric parameters are the primary indicators of the interaction category being a σ-hole or π-hole interaction. Since σ-holes are present along the covalent bonds (Fig. 1a), the C—X⋯π interaction will prefer a linear geometry towards the formation of a σ-hole interaction (Fig. 1b). The l.p.s on halogens are located nearly perpendicular to the C—X bond (Fig. 1a), so an ideal case of a π-hole directed halogen–π interaction will have a directionality of 90° (Fig. 1c). While in most cases it is relatively easy to designate the nature of the interaction based on the geometric parameters, an in-depth investigation is needed for the halogen–π interactions wherein the observed directionality has an intermittent value (in the current case the value is 142° and lies between the two extremes). While there are studies investigating the interplay of σ-hole or π-hole interactions (Zhuo et al., 2014; Politzer & Murray, 2018; Pal et al., 2015), experimental validation of the electronic features associated with the dual characteristics of the halogen–π interaction has not been reported in detail to the best of our knowledge. The dual nature of halogens in halogen bonds (as both bond acceptor and bond donor) has been well established since the experimental charge-density analysis of hexachlorobenzene (Bui et al., 2009) and our paper describes the first experimental charge density of a halogen–π interaction where the simultaneous observations of σ-hole and π-hole bonding are associated with the same interaction.
In this study, we performed an experimental charge-density analysis of the C—Br⋯π interaction present in an ebselen derivative, namely 2-(2-bromophenyl)benzol[d][1,2]selenazol-3(2H)-one (α-Se) (Fig. 2), in order to establish the simultaneous presence of σ-hole and π-hole interactions. The experimental results are in line with different theoretical calculations, confirming the dual character of the interaction. Given the importance of both halogen–π interactions (Shah et al., 2017; Imai et al., 2008) and ebselen derivatives (Lieberman et al., 2014; Mugesh et al., 2001; Zade et al., 2004; Balkrishna et al., 2014) in biological systems, this study also provides a new perspective on the concept of bond donor and bond acceptor during the formation of an intermolecular interaction.
2. Experimental and computational methods
2.1. Synthesis and crystallization
2-(2-Bromophenyl)benzo[d][1,2]selenazol-3(2H)-one (α-Se) was synthesized by the previously reported method (Balkrishna et al., 2010). The pure compound was crystallized from a in dichloromethane:hexane (1:1) at 4°C. Good quality crystals of block morphology were obtained, and one of them was used for the charge-density experiment.
2.2. Data collection and details of structure refinement
The X-ray data for α-Se were collected using Ag Kα radiation (λ = 0.56086 Å) on a Bruker D8 Venture equipped with a CMOS Photon100 detector at 100 (2) K (Oxford Cryosystem N2 cooling system). The data were collected using ω scans with a width of 0.5° per frame up to a resolution of (sinθ/λ)max = 1.123 Å−1 with a completeness of 97%. Cell data integration and data reduction were carried out using the APEX3 (Bruker, 2015) software package. Face indexing was performed for numerical absorption correction (Busing & Levy, 1957; Coppens et al., 1965). The SORTAV (Blessing, 1997) program present in the WinGX (Farrugia, 2012) software package was utilized for sorting, scaling and merging of the data. The was solved by (Harker & Kasper, 1948; Karle & Hauptman, 1950) and first refined on the basis of a spherical-atom approximation based on F2 using SHELXL2014 (Sheldrick, 2008, 2014).
2.3. Multipole modelling
The multipolar charge-density F2 using the Hansen–Coppens multipolar model (Hansen & Coppens, 1978) implemented in the MoPro/MoProviewer software package (Jelsch et al., 2005; Guillot et al., 2014). The was performed up to a resolution of (sinθ/λ)max = 1.08 Å−1 for 9660 reflections with I > 3σ(I). In the first step of the the scale factor was refined against all these diffraction data using the SHELX refined parameters. Reflections and 012 were affected by the beam stop and had unrealistically large differences between Fobs and Fcalc which resulted in high residual density, so they were removed from the final Reflections 002 and 101 were also slightly affected by the beam stop, causing a skewed Fobs/Fcalc ratio at sinθ/λ < 0.1 Å−1 (Fig. S1a in the supporting information). However, these two reflections do not affect the overall multipolar model and were kept in the process.
was performed againstIn the next step, the position and anisotropic displacement parameters (ADPs) for all the non-hydrogen atoms were refined up to sinθ/λ > 0.7 Å−1. Then Pval (monopole population), Plm (multipole population), κ and κ′ (contraction–expansion parameters) were refined in a stepwise manner with all 9660 reflections. Pval and Plm were also refined for the hydrogen atom, for which κ and κ′ were fixed to 1.2. Also, a single κ and κ′ set of parameters was used for the chemically equivalent carbon atoms (a total of five sets of values) present in the molecule.
The C—H distances were constrained to the values obtained from neutron diffraction experiments (Allen & Bruno, 2010). The ADP values for the hydrogen atoms were estimated using the SHADE3 server (Madsen, 2006; Munshi et al., 2008) and were kept constant throughout the The multipolar expansion was truncated up to the hexadecapole level (lmax = 4) for the Se and Br atoms, up to the octapole level (lmax = 3) for the O, N and C atoms, and up to the dipole level for H atoms. The (nl, ζ) parameters of the Slater-type radial functions for Se are (4, 8.8), (4, 8.8), (4, 8.8), (4, 8.8) for l = 1, 2, 3, 4, respectively. For the Br atom, the (nl, ζ) parameters of the Slater-type radial functions are (5, 9.732), (5, 9.732), (5, 9.732), (5, 9.732) for l = 1, 2, 3, 4, respectively. The values were chosen after trying different radial functions for the Se and Br atoms during the For the remaining atoms, the default value given in MoPro was utilized.
An isotropic extinction correction was applied during the MoPro/MoProViewer.
and this significantly improved the residual density around the Se and Br atoms. The topological analysis of the electron density was also performed and visualized usingMore information concerning the data reduction and multipolar modelling are given in Table 1. To judge the quality of the modelled electron density, the variations in |Fobs|/|Fcalc| with sinθ/λ and of Fobs with Fcalc are presented in Fig. S1. These maps confirm the very good quality of the diffraction data, despite a few very low- and very high-resolution data.
|
2.4. Computational details
2.4.1. Theoretical modelling
Single-point periodic quantum mechanical calculations were performed with the TZVP (Schäfer et al., 1992; Peintinger et al., 2013) basis set using the CRYSTAL09 (Dovesi et al., 2009) package. The positional parameters obtained from the experimental charge density were utilized for the calculations. The shrinking factors (IS1, IS2 and IS3) and the reciprocal-lattice vectors were set to 4 (with 30 k-points in the irreducible Brillouin zone). The bielectronic Coulomb and exchange series values for the truncation parameter were set as ITOL1_ITOL4 = 8 and ITOL5 = 17, respectively, for the calculations. The level shifter was set to 0.7 Hartree per cycle. An SCF convergence limit of the order of 10−7 Hartree was used. From the calculation, a total of 12 444 reflections were obtained up to (sinθ/λ)max = 1.08 Å−1. For the theoretical charge-density the ADPs for all atoms were set to zero. During the the was assigned unit weight. Multipolar of the theoretical data was carried out up to the same levels as those used for the experimental charge-density The final R(F) and R(F2) were 0.003 and 0.005, respectively, for the theoretical model.
2.4.2. Electrostatic potential maps
Experimental and theoretical three-dimensional molecular electrostatic potential maps (MESPs) of α-Se were plotted on a Hirshfeld isosurface using the CrystalExplorer17 software (Turner et al., 2017) at the MP2/6-311G** level, and also using the Mopro viewer (Guillot et al., 2014).
2.4.3. Natural bond orbital analysis
The natural bond orbital analysis (Reed et al., 1986, 1988) was performed at the B3LYP/6-311G** level using the NBO6.0 (Glendening et al., 2013) package integrated with GAUSSIAN09 (Frisch, 2009). The ChemCraft visualization software (https://www.chemcraftprog.com) was utilized for plotting the bond orbitals between interacting atoms.
3. Results and discussion
3.1. Crystal packing
The compound α-Se crystallizes in the P21/n with Z = 4 (Fig. 3a and Table 1). It is interesting to note that the two Cg1 and Cg2 rings present in the molecule (Fig. 2) are almost perpendicular to each other, with an angle between their planes of 83.8° (Fig. S7a). No other ebselen derivative present in the Cambridge Structural Database (CSD, Version 5.39; Groom et al., 2016) has such a pronounced deviation from planarity (Fig. S7).
The salient feature in the crystal packing of α-Se is the presence of a short and directional Se⋯O chalcogen bond (Se⋯O = 2.667 Å, N—Se⋯O = 174°) and a C—H⋯O hydrogen bond (H⋯O = 2.37 Å, C—H⋯O = 122°) which form a molecular chain (Fig. 3c). In a previous charge-density study of ebselen derivatives (Thomas et al., 2015), the Se⋯O chalcogen-bond-directed dimer was observed to be acting as a supramolecular synthon in the crystal. In their study, the Se⋯O distance ranged from 2.522 to 2.852 Å, while the N—Se⋯O angle ranged from 169 to 175°. Hence, the Se⋯O interaction observed in our study is among the shortest and most directional chalcogen bonds observed in this class of compound.
The molecular chain formed by the chalcogen bond is connected to another similar chain along the a axis (Fig. 3c) via a Br⋯π interaction involving the Cg2 ring (Fig. 3b) and utilizes the translation operation (−1 + x, y, z). The Br atom is in close proximity to atom C12 (part of the π-ring), having an intermolecular distance of 3.3042 (8) Å which is ∼0.25 Å less than the sum of the van der Waals radii (Bondi, 1964). The C1—Br1⋯C12(π) angle of 142.26 (3)° shows that it has an intermediate geometry between that of an ideal σ-hole and a π-hole-directed halogen–π interaction. A search of the CSD for similar C—Br⋯π(C) interactions reveals only one interaction having a Br⋯C(π) distance shorter than 3.30 Å in the angularity range of 120–150° (Table S4). In addition to this, there are 22 unique C—Br⋯π interactions having 120° < C—Br⋯π(C) < 150°, which could also potentially depict simultaneous σ-hole/π-hole bonding characteristics (Table S4), indicating that this type of bonding may be fairly prevalent in structures containing halogens and aromatic groups. Apart from this, the molecular packing of α-Se is also strengthened by the presence of centrosymmetric C—H⋯O=C interactions (Table S1).
3.2. Multipole refinement
The electronic features of the α-Se have been explored quantitatively via inputs from experimental electron-density analyses performed on crystals of α-Se and based on high-resolution X-ray data (d = 0.45 Å) at 100 K, which were later compared with the multipole model obtained from theoretically generated entities. The good quality of the multipole model after the final cycle of was validated by applying the Hirshfeld rigid-bond test to all the covalent bonds involving non-hydrogen atoms.
ofThe largest difference in mean-square displacement was observed for the Se1—C13 single bond, 8 × 10−4 Å2. The fractional dimensional plots were symmetric and parabolic in nature for both the experimental data (Fig. S2) and the theoretical model (Fig. S4). The minimum and maximum residual densities were calculated to be −0.23 and 0.31 e Å−3, respectively, for a resolution up to 0.8 Å−1, for the experimental model (Table 1, Fig. 4). The corresponding values for the theoretical model in the same plane were calculated to be −0.15 and 0.15 e Å−3. The residual density is very clean around the Br and Se heavy atoms. The final values of R(F2) and wR2(F2) for the experimental model were calculated to be 0.0162 and 0.0343, respectively. The final R(F) and R(F2) were 0.003 and 0.005, respectively, for the theoretical model, thus confirming the good quality of the multipolar model and of the core and valence wavefunctions used.
The static deformation density and Laplacian maps for both the experimental model (Fig. S3) and the theoretical model (Fig. S5) show essential chemical features such as the anisotropic electron-density distribution around the Br atom. Furthermore, in accordance with previous reports of related experimental charge-density studies (Pavan et al., 2015), the presence of a charge-depleted region on the Br atom along the extension of the C—Br bond was clearly evident.
3.3. Topological analysis
The multipole models, from both experiment and theory, were used to obtain the topological parameters for the covalent and non-covalent bonds in the solid state. The magnitudes of the ρ and ∇2ρ values obtained from the experimental model (Table S2) for covalent Se—C (1.05 e Å−3 and −0.30 e Å−5, respectively), Se—N (0.99 e Å−3 and 4.86 e Å−5) and C—N (2.26 e Å−3 and −27.50 e Å−5) bonds are comparable with the previously reported values for ebselen derivatives (Thomas et al., 2015). The presence of the Br⋯π interaction is also confirmed by the presence of a (3, −1) bond (b.c.p.) between Br1 and C12 with Rij = 3.3764 Å (Fig. 5). In addition to this, a (3, −1) b.c.p. was also observed for the dimer between H2 and Se1 (Fig. 5). However, the topological parameters at the b.c.p. obtained for Br⋯π are much larger than those observed for the H⋯Se b.c.p. in both the experimental and theoretical models, indicating the dominant nature of the Br⋯π interaction (Table 2). The higher magnitude of Rij compared with the Br⋯C bond length shows that the electron density between the interacting atoms follows a curved path. The calculated interaction energy of this molecular pair is −6.5 kJ mol−1 from the PIXEL method (Gavezzotti, 2011), which further establishes the stabilizing role of this interaction. For other interactions also, the magnitudes of the topological parameters from the experimental and theoretical models were observed to be similar (Table S3). Topological analysis of the Se⋯O chalcogen bond revealed that the magnitudes of the topological parameters at the (3, −1) b.c.p. (ρ = 0.18 e Å−3, ∇2ρ = 2.14 e Å−5; Table S3) are significantly higher than those observed for the Br⋯π interaction. This shows that the chalcogen bond has a more prominent role than the Br⋯π interaction in the of α-Se.
|
The dual character of the Br⋯π interaction is clearly shown by the two- and three-dimensional experimental deformation density maps (Figs. 6a and 6b). The valence-shell charge concentration (VSCC) region (in blue) on the Br atom points towards the charge-depleted region (VSCD, in red) around atom C12, indicating the presence of π-hole bonding characteristics. Also, the charge-concentrated region on the C12—C11 bond of the phenyl ring is appropriately orientated towards the charge-depleted (σ-hole) region of the Br atom, establishing the presence of σ-hole bonding characteristics (Figs. 6a and 6b). This dual nature of the Br⋯π interaction is further confirmed by the two-dimensional Laplacian plot, where the VSCC and VSCD regions present on both the halogen bond and the π-bond involved in the interaction are suitably oriented to facilitate the formation of this unique interaction (Fig. 6c).
3.4. Electrostatic potential maps
Three-dimensional molecular electrostatic potential maps (MESPs) of α-Se plotted using the experimental density (Figs. 7a and 7b) and on a Hirshfeld isosurface using the experimental density with CrystalExplorer17 (Figs. 7c and 7d) corroborate the observations made from the electron-density analyses. The σ-hole present on the Br atom along the C—Br bond is clearly evident (in blue), along with the surrounding negative electrostatic region due to the presence of Br lone pairs (in red) (Figs. 7a and 7c). This σ-hole is oriented towards the negative electrostatic region present on atom C11, indicating the σ-hole bonding characteristics. On the other hand, the l.p. of Br is oriented towards atom C12, which has a positive electrostatic character (Figs. 7b and 7d), hence confirming the π-hole bonding characteristics.
3.5. Natural bond orbital analysis
The observation made from the experimental electron-density analysis and MESP analysis is further confirmed by the natural bond orbital (NBO) analysis performed on the dimer comprising the interactions of interest. This theoretical analysis clearly establishes the occurrence of two different types of interorbital interaction (Table 3, Fig. 8). Firstly, corresponding to the π-hole bonding, there is an occurrence of charge transfer from the three lone pairs of the Br atom, i.e. l.p.(1), l.p.(2) and l.p.(3), to the π*(C12—C11) orbital, with the second-order perturbation energies E(2) corresponding to the transfer being 0.38, 1.09 and 0.79 kJ mol−1, respectively. Thus, the total magnitude of E(2) for the Br(l.p.) → π*(C11—C12) inter-orbital interaction stands at 2.26 kJ mol−1. In comparison, the E(2) value corresponding to the π(C11—C12) → σ*(Br1—C1) inter-orbital interaction was calculated to be 2.92 kJ mol−1, which is due to the presence of σ-hole bonding. Hence, the NBO analysis quantitatively supports the simultaneous presence of σ-hole and π-hole bonding characteristics in a single Br⋯π interaction.
|
4. Conclusions
In conclusion, we have established for the first time experimental evidence for the simultaneous presence of σ-hole and π-hole bonding characteristics in a halogen–π interaction. This study shows that the classification of non-covalent interactions into different categories, such as σ-hole or π-hole interactions, cannot always be done in an absolute manner, as there is always the possibility that the two different regions of the atom participating in the formation of a non-covalent interaction are simultaneously acting as bond acceptor and bond donor.
Supporting information
CCDC reference: 1816272
https://doi.org/10.1107/S2052252518011041/lq5015sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2052252518011041/lq5015Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2052252518011041/lq5015sup3.pdf
Data collection: Bruker APEX3; cell
Bruker SAINT; data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013), MoPro (J. Appl. Cryst. 2005, 38, 38-54).C13H8BrNOSe | F(000) = 680 |
Mr = 353.06 | Dx = 1.991 Mg m−3 |
Monoclinic, P21/n | Ag Kα radiation, λ = 0.56086 Å |
Hall symbol: -P 2yn | Cell parameters from 9182 reflections |
a = 7.6043 (7) Å | θ = 2.5–35.4° |
b = 13.4161 (13) Å | µ = 3.50 mm−1 |
c = 11.8847 (11) Å | T = 100 K |
β = 103.676 (3)° | Block, yellow |
V = 1178.10 (19) Å3 | 0.39 × 0.24 × 0.15 mm |
Z = 4 |
Bruker D8 Venture diffractometer | 11835 independent reflections |
Radiation source: fine-focus sealed tube | 9660 reflections with > 3.0σ(I) |
Graphite monochromator | Rint = 0.038 |
ω scans | θmax = 37.3°, θmin = 0.00° |
Absorption correction: numerical Bruker D8 Venture, APEX III (v.2016.5-0) | h = −16→15 |
Tmin = 0.275, Tmax = 0.390 | k = 0→28 |
323211 measured reflections | l = 0→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.034 | H-atom parameters constrained |
S = 1.01 | Weighting scheme based on measured s.u.'s w2 = 1/[s2(Fo2)] |
9660 reflections | (Δ/σ)max = −0.005 |
495 parameters | Extinction correction: Isotropic Gaussian |
0 restraints | Extinction coefficient: 0.49510 |
Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
SE1 | 0.600656 (5) | 0.282297 (3) | 0.720245 (3) | 0.009136 (3) | |
BR1 | 0.069855 (7) | 0.251010 (4) | 0.598446 (5) | 0.017423 (4) | |
O1 | 0.32670 (4) | 0.31101 (3) | 0.39409 (3) | 0.01222 (3) | |
N1 | 0.44324 (5) | 0.33584 (3) | 0.58768 (3) | 0.00982 (2) | |
C8 | 0.54797 (5) | 0.19727 (3) | 0.50579 (3) | 0.00986 (3) | |
C6 | 0.31946 (5) | 0.41042 (3) | 0.60359 (3) | 0.00971 (3) | |
C2 | 0.02765 (6) | 0.45732 (4) | 0.63544 (4) | 0.01544 (4) | |
C12 | 0.75647 (6) | 0.09840 (3) | 0.64929 (4) | 0.01276 (3) | |
C7 | 0.42795 (5) | 0.28451 (3) | 0.48704 (3) | 0.00927 (3) | |
C10 | 0.68622 (7) | 0.05194 (4) | 0.44555 (4) | 0.01649 (4) | |
C4 | 0.25541 (7) | 0.58288 (4) | 0.63672 (4) | 0.01722 (4) | |
C11 | 0.77697 (6) | 0.03471 (4) | 0.56104 (4) | 0.01557 (4) | |
C13 | 0.64216 (5) | 0.18043 (3) | 0.62014 (3) | 0.00973 (3) | |
C5 | 0.37302 (6) | 0.50998 (3) | 0.61467 (4) | 0.01313 (3) | |
C1 | 0.14622 (6) | 0.38495 (3) | 0.61406 (4) | 0.01163 (3) | |
C3 | 0.08301 (7) | 0.55628 (4) | 0.64715 (4) | 0.01795 (4) | |
C9 | 0.57078 (6) | 0.13293 (3) | 0.41794 (4) | 0.01363 (3) | |
H11 | 0.87241 | −0.02653 | 0.57686 | 0.03438 | |
H5 | 0.50735 | 0.53105 | 0.60740 | 0.02827 | |
H10 | 0.71724 | 0.00896 | 0.37554 | 0.03690 | |
H3 | −0.00911 | 0.61372 | 0.66158 | 0.03536 | |
H12 | 0.82676 | 0.08047 | 0.73719 | 0.02923 | |
H9 | 0.50444 | 0.14719 | 0.32838 | 0.03190 | |
H2 | −0.10729 | 0.43270 | 0.63652 | 0.03359 | |
H4 | 0.31296 | 0.65702 | 0.64943 | 0.03483 |
U11 | U22 | U33 | U12 | U13 | U23 | |
SE1 | 0.009883 (13) | 0.010143 (14) | 0.006320 (12) | −0.000132 (11) | −0.000203 (10) | −0.000328 (10) |
BR1 | 0.015219 (18) | 0.015439 (19) | 0.02176 (2) | −0.004878 (14) | 0.004672 (15) | 0.003502 (14) |
O1 | 0.01368 (11) | 0.01333 (12) | 0.00767 (10) | 0.00061 (10) | −0.00141 (8) | 0.00051 (9) |
N1 | 0.01055 (11) | 0.01087 (12) | 0.00699 (10) | 0.00127 (9) | −0.00004 (8) | −0.00027 (9) |
C8 | 0.01067 (12) | 0.01075 (13) | 0.00747 (11) | 0.00038 (10) | 0.00077 (10) | −0.00075 (10) |
C6 | 0.01020 (12) | 0.00931 (13) | 0.00900 (12) | −0.00016 (10) | 0.00100 (9) | −0.00007 (10) |
C2 | 0.01409 (15) | 0.02020 (18) | 0.01279 (14) | 0.00544 (14) | 0.00468 (12) | 0.00239 (13) |
C12 | 0.01386 (14) | 0.01207 (14) | 0.01078 (13) | 0.00279 (12) | −0.00019 (11) | 0.00025 (11) |
C7 | 0.00974 (12) | 0.01018 (13) | 0.00674 (11) | −0.00013 (10) | −0.00035 (9) | 0.00039 (9) |
C10 | 0.02004 (17) | 0.01599 (17) | 0.01229 (15) | 0.00498 (14) | 0.00153 (13) | −0.00362 (13) |
C4 | 0.0251 (2) | 0.01106 (15) | 0.01448 (15) | 0.00205 (14) | 0.00272 (14) | −0.00246 (12) |
C11 | 0.01783 (16) | 0.01372 (15) | 0.01389 (15) | 0.00497 (13) | 0.00126 (13) | −0.00106 (12) |
C13 | 0.00993 (12) | 0.01020 (13) | 0.00829 (12) | 0.00014 (10) | 0.00064 (9) | 0.00005 (10) |
C5 | 0.01612 (15) | 0.01013 (14) | 0.01219 (14) | −0.00181 (12) | 0.00143 (12) | −0.00156 (11) |
C1 | 0.01145 (13) | 0.01236 (14) | 0.01107 (13) | 0.00053 (11) | 0.00266 (10) | 0.00189 (11) |
C3 | 0.0233 (2) | 0.01758 (18) | 0.01301 (15) | 0.00887 (16) | 0.00440 (14) | −0.00045 (13) |
C9 | 0.01619 (15) | 0.01476 (15) | 0.00884 (13) | 0.00262 (13) | 0.00077 (11) | −0.00222 (11) |
H11 | 0.04230 | 0.02856 | 0.02998 | 0.01845 | 0.00399 | −0.00094 |
H5 | 0.02423 | 0.02167 | 0.03975 | −0.00594 | 0.00926 | −0.00169 |
H10 | 0.04931 | 0.03605 | 0.02324 | 0.01487 | 0.00436 | −0.01156 |
H3 | 0.03683 | 0.03112 | 0.03920 | 0.01662 | 0.01114 | −0.00066 |
H12 | 0.03637 | 0.03180 | 0.01640 | 0.01107 | 0.00005 | 0.00337 |
H9 | 0.04053 | 0.03547 | 0.01474 | 0.00932 | −0.00335 | −0.00395 |
H2 | 0.02016 | 0.03967 | 0.04278 | 0.00263 | 0.01113 | 0.00398 |
H4 | 0.04242 | 0.01623 | 0.04488 | −0.00101 | 0.00842 | −0.00513 |
SE1—N1 | 1.8813 (4) | C12—C13 | 1.3944 (6) |
SE1—C13 | 1.8869 (4) | C12—C11 | 1.3899 (6) |
BR1—C1 | 1.8841 (5) | C12—H12 | 1.0821 |
O1—C7 | 1.2399 (5) | C10—C9 | 1.3867 (7) |
N1—C7 | 1.3612 (5) | C10—C11 | 1.4020 (7) |
N1—C6 | 1.4167 (5) | C10—H10 | 1.0831 |
C8—C13 | 1.3967 (5) | C4—C5 | 1.3914 (7) |
C8—C7 | 1.4684 (6) | C4—C3 | 1.3923 (8) |
C8—C9 | 1.3967 (6) | C4—H4 | 1.0828 |
C6—C1 | 1.3947 (6) | C11—H11 | 1.0828 |
C6—C5 | 1.3935 (6) | C5—H5 | 1.0828 |
C2—C1 | 1.3887 (6) | C3—H3 | 1.0820 |
C2—C3 | 1.3898 (8) | C9—H9 | 1.0817 |
C2—H2 | 1.0809 | ||
N1—SE1—C13 | 85.222 (17) | C5—C4—C3 | 119.82 (4) |
SE1—N1—C7 | 116.61 (2) | C5—C4—H4 | 114.546 |
SE1—N1—C6 | 117.98 (2) | C3—C4—H4 | 125.530 |
C7—N1—C6 | 123.59 (3) | C12—C11—C10 | 121.36 (4) |
C13—C8—C7 | 115.72 (3) | C12—C11—H11 | 121.707 |
C13—C8—C9 | 120.11 (3) | C10—C11—H11 | 116.719 |
C7—C8—C9 | 124.17 (3) | SE1—C13—C8 | 111.88 (3) |
N1—C6—C1 | 120.68 (3) | SE1—C13—C12 | 127.04 (3) |
N1—C6—C5 | 120.07 (3) | C8—C13—C12 | 121.03 (3) |
C1—C6—C5 | 119.18 (3) | C6—C5—C4 | 120.33 (4) |
C1—C2—C3 | 119.45 (4) | C6—C5—H5 | 120.188 |
C1—C2—H2 | 116.604 | C4—C5—H5 | 119.473 |
C3—C2—H2 | 123.824 | BR1—C1—C6 | 120.04 (3) |
C13—C12—C11 | 118.18 (4) | BR1—C1—C2 | 119.11 (3) |
C13—C12—H12 | 123.504 | C6—C1—C2 | 120.86 (4) |
C11—C12—H12 | 118.286 | C2—C3—C4 | 120.35 (4) |
O1—C7—N1 | 122.95 (3) | C2—C3—H3 | 120.274 |
O1—C7—C8 | 126.62 (3) | C4—C3—H3 | 119.340 |
N1—C7—C8 | 110.43 (3) | C8—C9—C10 | 119.40 (4) |
C9—C10—C11 | 119.89 (4) | C8—C9—H9 | 120.985 |
C9—C10—H10 | 118.430 | C10—C9—H9 | 119.555 |
C11—C10—H10 | 121.202 | ||
SE1—N1—C7—O1 | 178.831 (16) | C2—C1—C6—C5 | −0.11 (7) |
SE1—N1—C7—C8 | −1.96 (4) | C2—C3—C4—C5 | −0.11 (7) |
SE1—N1—C6—C1 | −91.49 (5) | C2—C3—C4—H4 | −176.19 |
SE1—N1—C6—C5 | 85.34 (5) | C12—C13—C8—C7 | 178.25 (6) |
SE1—C13—C8—C7 | −4.12 (4) | C12—C13—C8—C9 | −1.61 (6) |
SE1—C13—C8—C9 | 176.03 (3) | C12—C11—C10—C9 | −1.16 (6) |
SE1—C13—C12—C11 | −176.05 (3) | C12—C11—C10—H10 | 170.79 |
SE1—C13—C12—H12 | 5.90 | C7—N1—SE1—C13 | −0.16 (4) |
BR1—C1—C6—N1 | −3.55 (5) | C7—N1—C6—C1 | 72.61 (6) |
BR1—C1—C6—C5 | 179.59 (3) | C7—N1—C6—C5 | −110.55 (8) |
BR1—C1—C2—C3 | 179.9557 (14) | C7—C8—C9—C10 | −179.24 (5) |
BR1—C1—C2—H2 | −3.83 | C7—C8—C9—H9 | 3.50 |
O1—C7—N1—C6 | 14.53 (7) | C10—C9—C8—C13 | 0.60 (6) |
O1—C7—C8—C13 | −176.87 (6) | C10—C11—C12—C13 | 0.17 (6) |
O1—C7—C8—C9 | 2.98 (6) | C10—C11—C12—H12 | 178.33 |
N1—SE1—C13—C8 | 2.37 (4) | C4—C5—C6—C1 | 0.46 (7) |
N1—SE1—C13—C12 | 179.83 (5) | C4—C3—C2—C1 | 0.46 (7) |
N1—C7—C8—C13 | 3.96 (6) | C4—C3—C2—H2 | −175.47 |
N1—C7—C8—C9 | −176.20 (6) | C11—C10—C9—H9 | 178.06 |
N1—C6—C1—C2 | 176.75 (6) | C13—C8—C9—H9 | −176.66 |
N1—C6—C5—C4 | −176.42 (6) | C13—C12—C11—H11 | 174.62 |
N1—C6—C5—H5 | 2.68 | C5—C4—C3—H3 | −178.06 |
C8—C13—C12—C11 | 1.20 (6) | C1—C6—C5—H5 | 179.56 |
C8—C13—C12—H12 | −176.85 | C1—C2—C3—H3 | 178.39 |
C8—C7—N1—C6 | −166.26 (4) | C3—C4—C5—H5 | −179.46 |
C8—C9—C10—C11 | 0.76 (6) | C9—C10—C11—H11 | −175.87 |
C8—C9—C10—H10 | −171.42 | H11—C11—C12—H12 | −7.22 |
C6—N1—SE1—C13 | 165.05 (8) | H11—C11—C10—H10 | −3.92 |
C6—C1—C2—C3 | −0.35 (6) | H5—C5—C4—H4 | −2.97 |
C6—C1—C2—H2 | 175.87 | H10—C10—C9—H9 | 5.88 |
C6—C5—C4—C3 | −0.35 (7) | H3—C3—C2—H2 | 2.46 |
C6—C5—C4—H4 | 176.14 | H3—C3—C4—H4 | 5.87 |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···C2i | 1.08 | 2.73 | 3.5107 (7) | 129 |
C12—H12···O1ii | 1.08 | 2.37 | 3.0809 (6) | 122 |
C3—H3···O1iii | 1.08 | 2.56 | 3.5206 (7) | 148 |
C5—H5···O1iv | 1.08 | 2.47 | 3.3324 (6) | 136 |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
D. Chopra thanks the IISER Bhopal for infrastructural and research facilities.
Funding information
R. Shukla thanks the DST for an INSPIRE PhD Fellowship and CEFIPRA for a Raman–Charpak Fellowship. N. Claiser acknowledges an award from Université Lorraine d'excellence (award No. ANR-15-IDEX-04-LUE).
References
Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Balkrishna, S. J., Bhakuni, B., Chopra, D. & Kumar, S. (2010). Org. Lett. 12, 5394–5397. CrossRef Google Scholar
Balkrishna, S. J., Kumar, S., Azad, G. K., Bhakuni, B. S., Panini, P., Ahalawat, A., Tomar, R. S., Detty, M. R. & Kumar, S. (2014). Org. Biomol. Chem. 12, 1215–1219. CrossRef Google Scholar
Bauzá, A., Mooibroek, T. J. & Frontera, A. (2015). ChemPhysChem, 16, 2496–2517. Web of Science PubMed Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. R. & Espinosa, E. (2009). Angew. Chem. Int. Ed. 48, 3838–3841. Web of Science CSD CrossRef CAS Google Scholar
Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180–182. CrossRef CAS IUCr Journals Web of Science Google Scholar
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. Web of Science CrossRef CAS PubMed Google Scholar
Clark, T., Hennemann, M., Murray, J. S. & Politzer, P. (2007). J. Mol. Model. 13, 291–296. Web of Science CrossRef PubMed CAS Google Scholar
Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038. CrossRef CAS IUCr Journals Web of Science Google Scholar
Dovesi, R., Saunders, V. R., Roetti, C., Orlando, R., Zicovich-Wilson, C. M., Pascale, F., Civalleri, B., Doll, K., Harrison, N. M., Bush, I. J., D'Arco, P. & Llunell, M. (2009). CRYSTAL09 User's Manual. University of Torino, Italy. Google Scholar
Egli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197–205. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J. et al. (2009). GAUSSIAN09, Revision D. 01. Gaussian Inc., Wallingford, Connecticut, USA. Google Scholar
Gavezzotti, A. (2011). New J. Chem. 35, 1360–1368. Web of Science CrossRef CAS Google Scholar
Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., Landis, C. R. & Weinhold, F. (2013). NBO6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). J. Appl. Cryst. 70, 279. Google Scholar
Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909–921. CrossRef CAS IUCr Journals Web of Science Google Scholar
Harker, D. & Kasper, J. S. (1948). Acta Cryst. 1, 70–75. CrossRef CAS IUCr Journals Web of Science Google Scholar
Hay, B. P. & Custelcean, R. (2009). Cryst. Growth Des. 9, 2539–2545. Web of Science CrossRef CAS Google Scholar
Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137. Web of Science CrossRef PubMed CAS Google Scholar
Jelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl. Cryst. 38, 38–54. Web of Science CrossRef IUCr Journals Google Scholar
Karle, J. & Hauptman, H. (1950). Acta Cryst. 3, 180–187. CrossRef Google Scholar
Lieberman, O. J., Orr, M. W., Wang, Y. & Lee, V. T. (2014). ACS Chem. Biol. 9, 183–192. CrossRef Google Scholar
Madsen, A. Ø. (2006). J. Appl. Cryst. 39, 757–758. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matter, H., Nazaré, M. & Güssregen, S. (2012). Crystal Engineering: Frontiers in Crystal Engineering, edited by E. R. T. Tiekink and J. Zukerman-Schpector, ch. 8. Chichester: John Wiley and Sons Ltd. Google Scholar
Montoro, T., Tardajos, G., Guerrero, A., Torres, M. del R., Salgado, C., Fernández, I. & Osío Barcina, J. (2015). Org. Biomol. Chem. 13, 6194–6202. CrossRef Google Scholar
Mooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501–1515. Web of Science CrossRef CAS Google Scholar
Mugesh, G., Panda, A., Singh, H. B., Punekar, N. S. & Butcher, R. J. (2001). J. Am. Chem. Soc. 123, 839–850. Web of Science CSD CrossRef PubMed CAS Google Scholar
Munshi, P., Madsen, A. Ø., Spackman, M. A., Larsen, S. & Destro, R. (2008). Acta Cryst. A64, 465–475. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murray, J. S., Lane, P. & Politzer, P. (2009). J. Mol. Model. 15, 723–729. Web of Science CrossRef PubMed CAS Google Scholar
Pal, P., Nagendra, G., Samarasimhareddy, M., Sureshbabu, V. V. & Guru Row, T. N. (2015). Chem. Commun. 51, 933–936. CrossRef Google Scholar
Pavan, M. S., Jana, A. K., Natarajan, S. & Guru Row, T. N. (2015). J. Phys. Chem. B, 119, 11382–11390. CrossRef Google Scholar
Peintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451–459. Web of Science CrossRef CAS PubMed Google Scholar
Politzer, P. & Murray, J. S. (2017). Crystals, 7, 212. Google Scholar
Politzer, P. & Murray, J. S. (2018). J. Comput. Chem. 39, 464–471. CrossRef Google Scholar
Politzer, P., Murray, J. S. & Clark, T. (2013). Phys. Chem. Chem. Phys. 15, 11178–11189. Web of Science CrossRef CAS PubMed Google Scholar
Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090–4093. CSD CrossRef CAS Web of Science Google Scholar
Reed, A. E., Curtiss, L. A. & Weinhold, F. (1988). Chem. Rev. 88, 899–926. CrossRef CAS Web of Science Google Scholar
Reed, A. E., Weinhold, F., Curtiss, L. A. & Pochatko, D. J. (1986). J. Chem. Phys. 84, 5687–5705. CrossRef Google Scholar
Schäfer, A., Horn, H. & Ahlrichs, R. (1992). J. Chem. Phys. 97, 2571–2577. CrossRef Web of Science Google Scholar
Shah, M. B., Liu, J., Zhang, Q., Stout, C. D. & Halpert, J. R. (2017). ACS Chem. Biol. 12, 1204–1210. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Thomas, S. P., Satheeshkumar, K., Mugesh, G. & Guru Row, T. N. (2015). Chem. Eur. J. 21, 6793–6800. Web of Science CSD CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Wang, H., Wang, W. & Jin, W. J. (2016). Chem. Rev. 116, 5072–5104. Web of Science CrossRef CAS PubMed Google Scholar
Zade, S. S., Panda, S., Tripathi, S. K., Singh, H. B. & Wolmershäuser, G. (2004). Eur. J. Org. Chem. 2004, 3857–3864. CrossRef Google Scholar
Zhuo, H., Li, Q., Li, W. & Cheng, J. (2014). Phys. Chem. Chem. Phys. 16, 159–165. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.