research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 6| Part 1| January 2019| Pages 145-151
ISSN: 2052-2525

Microbatch under-oil salt screening of organic cations: single-crystal growth of active pharmaceutical ingredients

CROSSMARK_Color_square_no_text.svg

aDepartment of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, Prague 6 166 28, Czech Republic, bDepartment of Chemistry, University of Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland, cZentiva k.s., U kabelovny 130, Prague 10 10237, Czech Republic, and dDepartment of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, Prague 6 166 28, Czech Republic
*Correspondence e-mail: spingler@chem.uzh.ch

Edited by P. Lightfoot, University of St Andrews, Scotland (Received 8 November 2018; accepted 18 December 2018)

Multicomponent solid forms of active pharmaceutical ingredients represent a modern method of tuning their physicochemical properties. Typically, salts are the most commonly used multicomponent solid form in the pharmaceutical industry. More than 38% are formulated as organic cations. Salt screening is an essential but demanding step when identifying the most appropriate formulation. The microbatch under-oil crystallization technique of proteins has been combined with the previously developed high-throughput vapour-diffusion screening for use as a novel method of primary salt screening of organic cations. The procedure allows the set up of about 100 crystallization experiments per 30 min. This requires between 17 and 564 mg of screened cationic active pharmaceutical ingredients, which were of moderate to very high water solublity. Five distinct organic salts, three of them diverse active pharmaceutical compounds or the other enantiomer thereof, in the form of chloride salts were tested. The screening was extremely successful; at least two new single-crystal structures could be obtained for each particular compound and many more salts as single crystals were formed compared with our previous vapour-diffusion method.

1. Introduction

Control over the multicomponent solid form of an active pharmaceutical ingredient (API) is a modern way of improving physicochemical properties of the API without changing its core chemical structure (Schultheiss & Newman, 2009[Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950-2967.]). Nowadays, pharmaceutical salts are the most frequently used in multicomponent form in a final drug formulation, corresponding to about 50% of all solid APIs. Positively charged APIs occur in 38% of those FDA approved drugs (prior to the end of 2006), in which the drug has a molecular weight less than 1000 Da (Paulekuhn et al., 2007[Paulekuhn, G. S., Dressman, J. B. & Saal, C. (2007). J. Med. Chem. 50, 6665-6672.]). The widely used chloride is increasingly replaced with other anions (Paulekuhn et al., 2007[Paulekuhn, G. S., Dressman, J. B. & Saal, C. (2007). J. Med. Chem. 50, 6665-6672.]). The motivation for this development is based on, for example, lower hygroscopicity or targeting that part of the gastrointestinal tract where the salt will be the most soluble (Berge et al., 1977[Berge, S. M., Bighley, L. D. & Monkhouse, D. C. (1977). J. Pharm. Sci. 66, 1-19.]). The choice of salt is a standard part of any preformulation study (Morissette et al., 2004[Morissette, S. L., Almarsson, O., Peterson, M. L., Remenar, J. F., Read, M. J., Lemmo, A. V., Ellis, S., Cima, M. J. & Gardner, C. R. (2004). Adv. Drug Deliv. Rev. 56, 275-300.]). Furthermore, salts other than chlorides can be helpful during the purification of a product.

The standard salt screenings are time, material and labour intensive. New forms are normally generated by direct ionization of the APIs (Morissette et al., 2004[Morissette, S. L., Almarsson, O., Peterson, M. L., Remenar, J. F., Read, M. J., Lemmo, A. V., Ellis, S., Cima, M. J. & Gardner, C. R. (2004). Adv. Drug Deliv. Rev. 56, 275-300.]; Tamura et al., 2018[Tamura, Y., Takezawa, H., Domoto, Y. & Fujita, M. (2018). Chem. Lett. 47, 617-619.]). Surprisingly, to the best of our knowledge, only one method of high-throughput salt screening using ion exchange has been published (Nievergelt et al., 2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]). It is a modification of the vapour-diffusion crystallization method (VDHT) originally developed and optimized for macromolecules (McPherson & Gavira, 2014[McPherson, A. & Gavira, J. A. (2014). Acta Cryst. F70, 2-20.]). In the method developed by us (Nievergelt et al., 2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]), a water-soluble organic cationic salt (normally in chloride form) is mixed with a water-soluble sodium or potassium salt to generate a new, less water-soluble salt of the organic cation with a new anion. Another feasible modification of the crystallization procedure is microbatch under-oil crystallization (Chayen et al., 1992[Chayen, N. E., Shaw Stewart, P. D. & Blow, D. M. (1992). J. Cryst. Growth, 122, 176-180.]). The biggest advantage of under-oil crystallization compared with the vapour-diffusion method is the higher level of concentration that can be achieved (see Fig. S1 of the supporting information). The vapour-diffusion method achieves supersaturation by equalization of the water vapour pressure between two different solutions. The first solution (the drop in which the crystallization shall take place) is normally a 1:1 mixture of the stock solution of the screened cationic API and the stock solution of the anion. The second one is a pure stock solution of the anion. The water activity in the drop is approximately twice that of the anion stock solution, as this solution has been one-time diluted by addition of the aqueous solution of the organic cation. Having a small drop and a huge reservoir with the stock solution of the anion, which both share the same vapour phase, the final concentration of the organic cation within the drop will reach approximately twice the starting concentration. In contrast, under-oil screening achieves supersaturation by slow penetration of water through the silicone oil (Fig. S1 of the supporting information). Hence, the screened drop is slowly concentrated until an almost dry residue is obtained. Moreover, microbatch under-oil crystallization can be performed with standard laboratory equipment such as multichannel pipettes and crystallization plates without the need for pipetting robots. On the other hand, one could use a robot for setting up the crystallization plates as has already been done in the field of protein crystallization (Chayen et al., 1990[Chayen, N. E., Shaw Stewart, P. D., Maeder, D. L. & Blow, D. M. (1990). J. Appl. Cryst. 23, 297-302.]; McPherson & Gavira, 2014[McPherson, A. & Gavira, J. A. (2014). Acta Cryst. F70, 2-20.]). Furthermore, using different vessels, this method might also be upscalable. Note that the probability of crystallizing one of the starting materials during under-oil crystallization is higher, rendering the evaluation more difficult (Baldock et al., 1996[Baldock, P., Mills, V. & Stewart, P. S. (1996). J. Cryst. Growth, 168, 170-174.]).

In this work, we investigated the crystallization of five organic cations (Fig. 1[link]), two of which are APIs. R,S-carnitine­nitrile chloride and R-carnitine­nitrile chloride {[(±)-Car]Cl and [(−)-Car]Cl} are precursors in the synthesis of carnitine or its derivatives. Carnitine is used in the treatment of different diseases from neurological problems to diabetes mellitus. Only the crystal structure of the tetra­phenyl­borate salts of [(±)-Car]+ and [(−)-Car]+ have been reported previously (Nievergelt et al., 2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]). (1S,2R)-(+)-Ephedrine hydro­chloride ([(+)-EphH]Cl) is the other enantiomer of the naturally occurring (1R,2S)-(−)-ephedrine, which is employed for the treatment of bronchial asthma and emphysema. (1S,2R)-(+)-Ephedrine is, in general, pharmacologically inactive compared with its other enantiomer (Lee, 2011[Lee, M. R. (2011). J. R. Coll. Physicians Edinb. 41, 78-84.]). There are many structures of salts of the various diastereomers of ephedrine (Collier et al., 2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]; Wu et al., 2012[Wu, H., West, A. R., Vickers, M., Apperley, D. C. & Jones, A. G. (2012). Chem. Eng. Sci. 77, 47-56.]) described in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Diltiazem hydro­chloride ([DilH]Cl) is a well known calcium channel blocking agent, which is used for the treatment of stable angina pectoris and hypertension. Five crystal structures containing diltiazem have been reported and four of them are salts (Kojić-Prodić et al., 1984[Kojić-Prodić, B., Ružić-Toroš, Z., Šunjić, V., Decorte, E. & Moimas, F. (1984). Helv. Chim. Acta, 67, 916-926.]; Tanaka et al., 1992[Tanaka, T., Inoue, H., Date, T., Okamura, K., Aoe, K., Takeda, M., Kugita, H., Murata, S., Yamaguchi, T., Kikkawa, K., Nakajima, S. & Nagao, T. (1992). Chem. Pharm. Bull. 40, 1476-1480.]; Stepanovs et al., 2016[Stepanovs, D., Jure, M., Gosteva, M., Popelis, J., Kiselovs, G. & Mishnev, A. (2016). CrystEngComm, 18, 1235-1241.]). Trazodone hydro­chloride ([TrH]Cl) is being used pharmaceutically as an antidepressant (Davidoff et al., 1987[Davidoff, G., Guarracini, M., Roth, E., Sliwa, J. & Yarkony, G. (1987). Pain, 29, 151-161.]). The crystal structures of the protonated trazodone chloride (Fillers & Hawkinson, 1979[Fillers, J. P. & Hawkinson, S. W. (1979). Acta Cryst. B35, 498-500.]), iodide and oxalate (Nievergelt et al., 2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]) salts have been reported previously.

[Figure 1]
Figure 1
Chemical structures of the screened organic cations in the form of chlorides or hydro­chlorides.

2. Experimental

(1S,2R)-(+)-Ephedrine hydro­chloride and trazodone hydro­chloride were obtained from Sigma–Aldrich. R-Carnitine­nitrile chloride was obtained from Angene Chemical, Hong Kong, HK. R,S-Carnitine­nitrile chloride was obtained from Frontier Scientific, Logan, UT, USA. Diltiazem hydro­chloride was provided by Zentiva k.s., Prague, CZ. The used silicone oil (unless otherwise noted) was article number 146153 from Sigma–Aldrich; it has a viscosity of 50 cSt (1 cSt = 1 mm2 s−1) and is normally used for melting-point and boiling-point apparatus. This oil was previously used in under-oil screenings of proteins (Vetting et al., 2009[Vetting, M. W., Hegde, S. S. & Blanchard, J. S. (2009). Acta Cryst. D65, 462-469.]). For a few experiments, a silicone oil with a much lower viscosity of 5 cSt was employed (article number: 317667 from Sigma–Aldrich). Sodium or potassium salts of suitable counterions were obtained from various commercial suppliers. The reason for choosing either a sodium or potassium salt was based on the accessibility of one versus the other (e.g. sodium hydrogen phthalate is not commercially available, however, its potassium salt is). In cases when the sodium or potassium salts were not commercially available, the sodium salts were prepared by titration of the corresponding acids with a sodium hydroxide solution (2M) until a pH of 7 was reached. The solutions of the newly prepared salts were concentrated with the help of a rotary evaporator and dried by lyophilization. The water content was determined by elemental analysis (carbon, hydrogen and nitro­gen) of each new salt. The concentrations of the anion solutions were chosen such that they were about half saturated. In the case of high concentrations, lower concentrations of the same anion were also employed in order to test the influence of the concentration of the anions.

The screening technique described in this publication combines the primary salt screening of APIs and growing single crystals of hits. Silicone oil (100 µl) was added to each well in a 96 round bottom well costar 3795 plate (Corning Incorporated, USA). Stock solutions of four organic cations including two APIs [diltiazem hydro­chloride, (R,S)-carnitine­nitrile chloride, (R)-carnitine­nitrile chloride, (1S,2R)-(+)-ephedrine hydro­chloride, 5 µl each; 90% maximal saturation in water] were pipetted with the help of an eight-channel pipette directly into the silicone oil within the wells. The drops of these aqueous solutions sank to the bottom of the well. Afterwards, individual stock solutions of the counterions (5 µl) were added to each well with silicone oil and the to-be-crystallized organic cation. When trying different volumes of solutions, volumes smaller than 5 µl of the concentrated anion solutions were difficult to pipette due to their high viscosity, yet volumes larger than 5 µl of the analyte were actually superfluous and wasted stock solutions. In some cases, it was necessary to combine two separate aqueous drops with a pipette tip under oil in order to have one common drop. In every well, there must be just one drop of the mixture, which is crucial for the under-oil experiment. Initial screenings were carried out for 147 different conditions with 86 different counterions (Table S1).

In a second series of experiments, we concentrated on ephedrine and trazodone as well as on 96 promising anion solutions (see Table S2). Ephedrine is known to form many salts (Collier et al., 2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]), some of which we did not obtain with our first series of experiments. Secondly, all studied cations of the first series were highly soluble or even extremely soluble in water. In order to have a compound that also displays moderate but not too high solubility in water, we selected trazodone hydro­chloride, which we had studied in our previous vapour-diffusion investigation (Nievergelt et al., 2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]). Compared with the 147 conditions used previously, we eliminated anions that were only soluble at millimolar concentrations (e.g. sodium do­decyl­sulfate) or whose solution became black because of lack of chemical stability (sodium 4-amino­salicylate). Furthermore, the chosen maximum concentration of the anion salt should approximately correspond to a half-saturated solution of the salt of that very anion. Therefore, some of the initial concentrations of the sodium or potassium salts were increased as we discovered that these concentrations had been well below half-saturation in our first series of experiments. Additionally, we used smaller volumes of the organic cation solution compared with the volumes of the anion solutions in order to promote anion exchange. For ephedrine, we mixed 2 µl of 90% saturated ephedrine solution and 20 µl of counterion solution. For trazodone, we mixed 4 µl of 90% saturated trazodone solution and 10 µl of counterion solution. We monitored all wells essentially every day for 30 days and marked the outcome of the crystallizations. Promising looking crystals were isolated and placed in Infineum V8512 oil as soon as possible as the solutions continued to become more concentrated. In some cases, it was necessary to induce crystal growth by scratching the wells with a dissecting needle.

Single-crystal X-ray diffraction patterns were measured on a Rigaku-Oxford Diffraction XtaLAB Synergy-S dual source diffractometer: Kappa-axis four-circle goniometer with a Dectris Pilatus3 R 200 K hybrid pixel area detector and Cu and Mo PhotonJet microfocus X-ray sources. The data collection strategy and data reduction were performed using CrysAlisPRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlisPRO. Version 1.171.38.41. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]). Crystals were fished out using a micro-spoon spatula from Bochem (35781 Weilburg, Germany, article number 3344) also available at VWR (article number 231–1355). The crystals were prepared on a glass slide under Infineum V8512 oil and the single crystals were mounted on top of a 18 mm Mounted CryoLoop in a CrystalCap Magnetic (Hampton Research). The structures were solved using SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]) or SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), and were refined in CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) or SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Graphical output was made with the help of Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

3. Results and discussion

Protein micro-batch crystallization (Chayen et al., 1992[Chayen, N. E., Shaw Stewart, P. D. & Blow, D. M. (1992). J. Cryst. Growth, 122, 176-180.]) was modified to be used for the salt screening of organic cations. Initially, we chose four different organic cations for the screening, two permanent cations [(R,S)-carnitine­nitrile chloride and (R)-carnitine­nitrile chloride] and two bases as their hydro­chloride salts [diltiazem hydro­chloride and (1S,2R)-(+)-ephedrine hydro­chloride]. Their approximate solubilities are given in Table 1[link]. Initial screenings were carried out for 147 different conditions with 86 different counterions (Table S1). The chosen anions were selected to include many diverse inorganic and organic anions, many of them fulfilling the GRAS condition (Select Committee on GRAS Substances, 2017[Select Committee on GRAS Substances (2017). https://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS.]), some of them were selected because of their propensity to form crystalline salts. As we have found previously (Nievergelt et al., 2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]) that half-saturated anion solutions work well, we also employed them here. The concentration of some selected anion solutions with concentrations higher than 2M were halved once or twice in order to promote crystal growth rather than a powdery precipitate. As the initially chosen compounds (carnitine­nitrile chloride, diltiazem and ephedrine hydro­chloride) all exhibited rather high solubility and only formed new crystal salts in the presence of highly concentrated anions, we set up a second round of optimization. First, we changed the volume ratio of cation solution to anion solution in the case of ephedrine from 1:1 to 1:10 in order to promote the anion exchange. Secondly, we selected an additional API, trazodone, that we had already tested in the vapour-diffusion nano-crystallization technique (Nievergelt et al., 2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]) and that has a 10× lower aqueous solubility than ephedrine, the organic salt with the lowest solubility in the current study so far (Table 1[link]). For trazodone, we chose an API to anion solution volume ratio of 1:2.5. Finally, we reduced the number of crystallization trials per analyte in order to efficiently use 96 well plates (for details, see the Experimental[link]).

Table 1
Screened cations and their aqueous solubility at 22°C

  Approximate solubility (mg ml−1) Amount needed (mg) Solution molarity [M]
Diltiazem hydro­chloride 720 ± 70§ 312 1.44
(R,S)-Carnitine­nitrile chloride 1120 ± 106 486 5.64
(R)-Carnitine­nitrile chloride 1300 ± 200 564 6.54
(1S,2R)-(+)-Ephedrine hydro­chloride 257± 1 111 1.15
Trazodone hydro­chloride 38.5 ± 0.2 17 0.085
†For screening 97 conditions.
‡At 90% saturation.
§Determined as described by Nievergelt et al. (2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]).
¶Value taken from the work by Nievergelt et al. (2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]).

The formation of single crystals of the organic cation together with an anion other than chloride (if present) was selected as the desired endpoint of the crystallization trials. The positive results of the crystallization experiments, including the concentration of the counterion solution used, are summarized in Table 2[link]. Additionally, the number of the day on which crystals were first observed is given (e.g. D0: crystals observed on the day of setting up the experiment). We have succeeded in the crystallization of at least two salts for each screened cation. In three cases, we observed crystallization of a supersaturated solution directly after having touched the drop with a spatula or scratched the well with a dissecting needle. The resulting crystals were the new bromide (see Fig. 2[link]), tetra­fluoro­borate and iodide salts of [(−)-Car]+ as well as the iodide salt of [(±)-Car]+. Furthermore, there were three positive hits with too low-quality crystals for structural analysis of [(±)-Car] bromide, [(±)-Car] tetra­phenyl­borate and [(−)-Car] tetra­phenyl­borate. Moreover, we succeeded in the crystallization of four new salt forms of diltiazem (see Fig. 2[link]). The diltiazem crystal structures of the bromide, the iodide and the nitrate salts are essentially isostructural with the published data on the chloride salt (Kojić-Prodić et al., 1984[Kojić-Prodić, B., Ružić-Toroš, Z., Šunjić, V., Decorte, E. & Moimas, F. (1984). Helv. Chim. Acta, 67, 916-926.]). Additionally, we tried to crystallize the pure solution of the screened cations in the forms of chlorides or hydro­chlorides using the under-oil technique. In this way, the unit cells of the crystals of the [DilH]Cl and [(+)-EphH]Cl salts were found to correspond to the known forms of the hydro­chlorides. [(−)-Car]Cl crystallized as high-quality single crystals. Surprisingly, R,S-carnitine­nitrile chloride crystallized with two S-carnitine­nitrile and one R-carnitine­nitrile cations in the asymmetric unit of the chiral space group P21. Such a rare system has been described in the literature either as a pseudo unbalanced crystallization, co-crystals of a racemate or unbalanced chiral packing (Fábián & Brock, 2010[Fábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94-103.]; Albrecht et al., 2010[Albrecht, M., Borba, A., Le Barbu-Debus, K., Dittrich, B., Fausto, R., Grimme, S., Mahjoub, A., Nedić, M., Schmitt, U., Schrader, L., Suhm, M. A., Zehnacker-Rentien, A. & Zischang, J. (2010). New J. Chem. 34, 1266-1285.]; Wachter et al., 2016[Wachter, E., Glazer, E. C., Parkin, S. & Brock, C. P. (2016). Acta Cryst. B72, 223-231.]; Kotelnikova et al., 2017[Kotelnikova, E. N., Isakov, A. I. & Lorenz, H. (2017). CrystEngComm, 19, 1851-1869.]; Grothe et al., 2017[Grothe, E., Meekes, H. & de Gelder, R. (2017). Acta Cryst. B73, 453-465.]). The remaining observed negative crystallization results were either mixtures of NaCl (Fig. S2) and amorphous residue, amorphous residue only or pure chlorides (or hydro­chlorides) of the tested anions.

Table 2
Obtained single crystals

Crystals were grown by mixing 5 µl of the organic cation solution and 5 µl of the anion solution unless otherwise noted. DX: crystals were observed after X days.

Salt providing the new anion Molarity [(+)-EphH]Cl [(−)-Car]Cl [(±)-Car]Cl [DilH]Cl [TrazH]Cl
Sodium bromide 4.08 D0 D14   D5  
Sodium iodide 5.34 D5 D8 D11 D6 D1, §
Sodium tetra­fluoro­borate 2.00   D10     D3§
Potassium thio­cyanate 7.34 D2       D1§
Sodium nitrate 4.61 D30, ††, ‡‡     D6 D1§
Sodium di­hydrogen phosphate 3.40       D5  
Sodium pyrrolidone carboxyl­ate 4.96 D1††        
Sodium benzene­sulfonate 1.10 D16, ††        
Disodium oxalate 0.138 D6, ††       D1, §
Disodium malonate 2.97 D16, ††        
Sodium L-malate 2.92 D30††        
Potassium sodium L-tartrate 1.40 D30††        
No additional salt added   D15 D14 D7 D6  
†Published structure, sometimes of the other enantiomer (Hearn & Bugg, 1972[Hearn, R. A. & Bugg, C. E. (1972). Acta Cryst. B28, 3662-3667.]; Kojić-Prodić et al., 1984[Kojić-Prodić, B., Ružić-Toroš, Z., Šunjić, V., Decorte, E. & Moimas, F. (1984). Helv. Chim. Acta, 67, 916-926.]; Collier et al., 2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]; Wu et al., 2012[Wu, H., West, A. R., Vickers, M., Apperley, D. C. & Jones, A. G. (2012). Chem. Eng. Sci. 77, 47-56.]; Nievergelt et al., 2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]).
‡Crystallized after touching the drop with a spatula or scratching the well with a dissecting needle.
§Obtained by mixing 4 µl of the trazodone solution and 10 µl of the anion solution.
¶Concentration of sodium tetra­fluoro­borate was 4.0M.
††Obtained by mixing 2 µl of the ephedrine solution and 20 µl of the anion solution.
‡‡Two polymorphs (I† and II) observed.
[Figure 2]
Figure 2
Left: displacement ellipsoid representation of [DilH][NO3]. Right: displacement ellipsoid representation of [(−)-Car]Br. Ellipsoids are depicted at 50% probability.

As a next step for improving the under-oil method, we employed a larger volume of anion solution compared with the analyte solution. This increases the anion to organic cation ratio and therefore was predicted to favour the formation of the new salt. Finally, we reduced the number of anion solutions to just 96 selected conditions (ignoring the salt free condition), allowing one series of screening experiments to be carried out in just one 96 well plate. We eliminated anions with a low millimolar solubility that would not promote a quantitative anion exchange and anions that were determined to be unstable in an aqueous, aerated solution [such as sodium 4-amino­salicylate (The Merck Index, 1976[The Merck Index (1976). 9th ed., p. 66. Rahway, New Jersey: Merck & Co.])]. Indeed, the improved method yielded five salts of trazodone, of which three were novel. The second round of crystallization of ephedrine with a 1:10 volumetric ratio of analyte solution versus anion solution gave seven additional salts, of which four were new. One of the novel structures was a new polymorph of ephedrinium nitrate, which crystallized in the chiral space group P21 with two formula units in the asymmetric unit and unit-cell dimensions of a = 6.0401 (3), b = 29.3553 (8), c = 7.3828 (3) Å, β = 112.806 (5)° and V = 1206.70 (9) Å3. Later, three-dimensional crystals (Fig. S15) were produced that were identified as the known nitrate salt polymorph I (Collier et al., 2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]), which also crystallized in the monoclinic space group P21, but with just one formula unit in the asymmetric unit and with unit-cell dimensions of a = 5.536 (5) Å, b = 6.839 (9) Å, c = 15.669 (12) Å, β = 97.28 (7)° and V = 588 (1) Å3. In polymorph I, the ephedrine cation adopts a folded conformation, while in polymorph II it is in an extended conformation. Further anions that formed novel crystal structures with ephedrine, are L-tartrate, which crystallizes as a monohydrate in the chiral space group P21. The trihydrate has previously been reported by Collier et al. (2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]). Additionally, we succeeded in crystallizing the monohydrate of L-malate; its anhydrate form has been described again by Collier. For trazodone, three novel crystal structures of its protonated form with either nitrate, tetra­fluoro­borate or thio­cyanate could be determined. For all wells in which no crystallization could be observed, the drops were punctured with a spatula or the wells below the drops scratched with a preparation needle. Since in a few cases, crystal growth in some over-saturated drops could be observed after this procedure, we recommend performing this easy step for all wells in which no crystals have formed after a few weeks.

In order to study the influence of the ratio of anion to organic cation, the cation of the salt that provides the final anion and the used oil, we performed detailed design experiments for two selected anions, iodide and oxalate (Tables S3 and S4). For the crystallization of ephedrinium iodide, the ratio of ephedrinium to iodide was varied between 1 and 200. Additionally, lithium, sodium and potassium iodide at the same concentration were compared in order to assess their influence on the crystallization of ephedrinium iodide. And thirdly, the whole series was repeated with a silicone oil possessing a 10× lower viscosity (5 cSt) than the one previously used, as d'Arcy and co-workers have shown that the viscosity of the silicone oil more or less linearly correlates with the time it takes for the protein crystals to appear (D'Arcy et al., 1996[D'Arcy, A., Elmore, C., Stihle, M. & Johnston, J. E. (1996). J. Cryst. Growth, 168, 175-180.]). The summary of our results of the crystallization of ephedrinium iodide (Table S3) is as follows. Crystals were observed within a 5- to 50-fold ratio of iodide to ephedrinium. At a ratio smaller than 5, there seems to be insufficient excess iodide present. At a ratio higher than 50, there was not enough ephedrinium in the drops. While small differences could be noticed, no clear effects of the cation of the iodide salt nor the used silicone oil could be established. For the crystallization of bis-ephedrinium oxalate (Table S4), the influence of the ratio of oxalate to ephedrinium and the used silicone oil was studied. The growth of ephedrinium oxalate crystals could be observed over a wide ratio between 0.01 and 3.3 up to 33.3 (depending on the oil used). If the ratio of oxalate to ephedrinium was 0.1 or lower, after a number of days the remaining ephedrinium chloride formed large crystals in both oils.

As a final step, we compared the results of the under-oil microbatch screening with the VDHT technique (Nievergelt et al., 2018[Nievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716-3722.]). The chosen cations for the comparison were [(−)-Car]+, [(±)-Car]+, [(+)-EphH]+ and [TrazH]+ with decreasing solubilities in this order (see Tables 1[link] and 3[link]). The under-oil microbatch screening was able to produce many more crystalline salts with an exchanged anion than with the VDHT screening for any of the four compared cations (see Table 3[link]). The reason for the superior performance of the under-oil method most likely lies in the higher supersaturation that can be achieved with the under-oil method compared with vapour diffusion.

Table 3
Comparison of the results obtained by under-oil and vapour-diffusion (VDHT) methods

(×): no salt crystal was obtained during the screening. Abbreviations: tetra­phenyl­borate: [TPB]; thio­cyanate: [SCN]; oxalate: [OXA]2−; benzene­sulfonate [BS]; pyrrolidone carboxyl­ate: [Pyrcarb].

Cation to be crystallized [(+)-EphH]+ [(−)-Car]+ [(±)-Car]+ [TrazH]Cl
Method Under oil VDHT Under oil VDHT Under oil VDHT Under oil VDHT
Anions Cl Cl [TPB] [TPB] [TPB] [TPB] I I
  Br Br Cl × Cl × [OXA]2− [OXA]2−
  I I Br × Br × NO3 ×
  [SCN] [SCN] I × I × [BF4] ×
  [OXA]2− [OXA]2− [BF4]:Cl ×     [SCN] ×
  NO3 ×            
  [BS] ×            
  [Malonate]2− ×            
  [L-Malate]2− ×            
  [L-Tartrate]2− ×            
  [Pyrcarb] ×            
†Two polymorphs obtained.

When analysing the results of our crystallizations, it became clear that mainly anions that were present in equally high or higher concentrations than the organic cations, crystallized together with them. The only anion that does not follow this rule is oxalate. This is in accordance with a report by Stepanovs and co-workers, who described a system also containing a methyl­ammonium ethanol unit. The oxalate salt of propranolol had a 28-fold lower aqueous solubility of the organic cation when compared with the chloride salt (Stepanovs et al., 2015[Stepanovs, D., Jure, M., Yanichev, A., Belyakov, S. & Mishnev, A. (2015). CrystEngComm, 17, 9023-9028.]). Additionally, we compared the success rate of the under-oil technique with the classical titration method. Davey and co-workers (Collier et al., 2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]) report the synthesis and crystallization of 16 salt forms starting from the free base ephedrine and adding one or half of an equivalent of acid or diacid. Three different solvents were employed for the synthesis and subsequent crystal growth. Our direct approach with the optimized procedure starting from one single solution of ephedrinium chloride directly yielded single crystals of eleven salt forms apart from the starting chloride salt. Four of them had novel crystal structures, including one new polymorph of ephedrinium nitrate.

4. Conclusions

The under-oil crystallization technique for proteins was successfully adapted for use in salt screening of APIs. After an optimization procedure, the ideal screening involves 96 crystallization batches that consume less than 200 µl of a 90% saturated solution for each screened API and the experiment can be set up within ca 30 min. For each screened cation, we could determine the single-crystal structure of at least two new salts, each one with a different anion. Five salts of [DilH]+ and twelve salts of [(+)-EphH]+ were observed and their crystals grew in sufficient quality for single-crystal X-ray determination (SCXRD). Two of the four observed crystals of salts of [(±)-Car]+ and four of the five of [(−)-Car]+ crystallized in sufficient quality for SCXRD. To the best of our knowledge, this is the first application of the microbatch under-oil crystallization technique for the crystal growth of small molecules. Finally, the under-oil screening was compared to the vapour-diffusion method. The under-oil method was found to be much more effective in generating single crystals for all five compounds, which were crystallized by both methods (Table 3[link]). Additionally, the under-oil technique does not require the use of an expensive pipetting robot. In total, 17 new salts of the studied five cations were prepared. On the other hand, the under-oil technique consumes a little more material because the individual experiment requires a higher volume of analyte solution of between 2 and 5 µl rather than 100 nl in the vapour-diffusion experiment performed by the liquid handling robot. As a final remark, we note that the under-oil technique favours the crystallization of any kind of water-soluble substance from aqueous solutions.

5. Related literature

The following references are cited in the supporting information: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

Supporting information


Computing details top

Data collection: SuperNova, (Oxford Diffraction, 2010) for RScarnitinenitrilechloride, RScarnitinenitrileiodide, Rcarnitinenitrilechloride, Rcarnitinenitrilebromide, Rcarnitinenitrileiodide, Rcarnitinenitrile2tetrafluoroborate1chloride1, Diltiazembromide, Diltiazemiodide, Diltiazemnitrate, Diltiazemphosphatesesquihydrate; CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for pn180815_uo_eph_1_180814_pyrolidcarbox, pn180815_uo_traz_1_180814_c6_nitrate_mo, pn180815_uo_traz_1_180814_scn, pn180817_uo_trh_1_180814_b1_bf4, pn180830_uo_eph_1_180814_b12_benzsulf, pn180914_uo_eph_1_180814_g5_tart, pn180914_uo_eph_2_180814_c6_scr2; CrysAlis PRO 1.171.40.16c (Rigaku OD, 2018) for pn180914_uo_eph_1_180814_g4_2. Cell refinement: CrysAlis PRO, (Agilent, 2011) for RScarnitinenitrilechloride, Rcarnitinenitrilechloride, Rcarnitinenitrilebromide, Rcarnitinenitrileiodide, Rcarnitinenitrile2tetrafluoroborate1chloride1, Diltiazembromide, Diltiazemiodide, Diltiazemnitrate, Diltiazemphosphatesesquihydrate; CrysAlis PRO (Rigaku Oxford Diffraction, 2017) for RScarnitinenitrileiodide; CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for pn180815_uo_eph_1_180814_pyrolidcarbox, pn180815_uo_traz_1_180814_c6_nitrate_mo, pn180815_uo_traz_1_180814_scn, pn180817_uo_trh_1_180814_b1_bf4, pn180830_uo_eph_1_180814_b12_benzsulf, pn180914_uo_eph_1_180814_g5_tart, pn180914_uo_eph_2_180814_c6_scr2; CrysAlis PRO 1.171.40.16c (Rigaku OD, 2018) for pn180914_uo_eph_1_180814_g4_2. Data reduction: CrysAlis PRO, (Agilent, 2011) for RScarnitinenitrilechloride, Rcarnitinenitrilechloride, Rcarnitinenitrilebromide, Rcarnitinenitrileiodide, Rcarnitinenitrile2tetrafluoroborate1chloride1, Diltiazembromide, Diltiazemiodide, Diltiazemnitrate, Diltiazemphosphatesesquihydrate; CrysAlis PRO (Rigaku Oxford Diffraction, 2017) for RScarnitinenitrileiodide; CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for pn180815_uo_eph_1_180814_pyrolidcarbox, pn180815_uo_traz_1_180814_c6_nitrate_mo, pn180815_uo_traz_1_180814_scn, pn180817_uo_trh_1_180814_b1_bf4, pn180830_uo_eph_1_180814_b12_benzsulf, pn180914_uo_eph_1_180814_g5_tart, pn180914_uo_eph_2_180814_c6_scr2; CrysAlis PRO 1.171.40.16c (Rigaku OD, 2018) for pn180914_uo_eph_1_180814_g4_2. Program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007) for RScarnitinenitrilechloride, RScarnitinenitrileiodide, Rcarnitinenitrileiodide, Rcarnitinenitrile2tetrafluoroborate1chloride1, Diltiazembromide, Diltiazemnitrate, Diltiazemphosphatesesquihydrate; SIR92 (Altomare et al., 1994) for Rcarnitinenitrilechloride, Rcarnitinenitrilebromide, Diltiazemiodide; ShelXT (Sheldrick, 2015) for pn180815_uo_traz_1_180814_c6_nitrate_mo, pn180815_uo_traz_1_180814_scn, pn180817_uo_trh_1_180814_b1_bf4, pn180830_uo_eph_1_180814_b12_benzsulf. Program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003) for RScarnitinenitrilechloride, RScarnitinenitrileiodide, Rcarnitinenitrilechloride, Rcarnitinenitrilebromide, Rcarnitinenitrileiodide, Rcarnitinenitrile2tetrafluoroborate1chloride1, Diltiazembromide, Diltiazemiodide, Diltiazemnitrate, Diltiazemphosphatesesquihydrate; SHELXL (Sheldrick, 2015) for pn180815_uo_eph_1_180814_pyrolidcarbox, pn180815_uo_traz_1_180814_c6_nitrate_mo, pn180815_uo_traz_1_180814_scn, pn180817_uo_trh_1_180814_b1_bf4, pn180830_uo_eph_1_180814_b12_benzsulf, pn180914_uo_eph_1_180814_g4_2, pn180914_uo_eph_1_180814_g5_tart, pn180914_uo_eph_2_180814_c6_scr2. Molecular graphics: CAMERON (Watkin et al., 1996) for RScarnitinenitrilechloride, RScarnitinenitrileiodide, Rcarnitinenitrilechloride, Rcarnitinenitrilebromide, Rcarnitinenitrileiodide, Rcarnitinenitrile2tetrafluoroborate1chloride1, Diltiazembromide, Diltiazemiodide, Diltiazemnitrate, Diltiazemphosphatesesquihydrate; Olex2 (Dolomanov et al., 2009) for pn180815_uo_eph_1_180814_pyrolidcarbox, pn180815_uo_traz_1_180814_c6_nitrate_mo, pn180815_uo_traz_1_180814_scn, pn180817_uo_trh_1_180814_b1_bf4, pn180830_uo_eph_1_180814_b12_benzsulf, pn180914_uo_eph_1_180814_g4_2, pn180914_uo_eph_1_180814_g5_tart, pn180914_uo_eph_2_180814_c6_scr2. Software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) for RScarnitinenitrilechloride, RScarnitinenitrileiodide, Rcarnitinenitrilechloride, Rcarnitinenitrilebromide, Rcarnitinenitrileiodide, Rcarnitinenitrile2tetrafluoroborate1chloride1, Diltiazembromide, Diltiazemiodide, Diltiazemnitrate, Diltiazemphosphatesesquihydrate; Olex2 (Dolomanov et al., 2009) for pn180815_uo_eph_1_180814_pyrolidcarbox, pn180815_uo_traz_1_180814_c6_nitrate_mo, pn180815_uo_traz_1_180814_scn, pn180817_uo_trh_1_180814_b1_bf4, pn180830_uo_eph_1_180814_b12_benzsulf, pn180914_uo_eph_1_180814_g4_2, pn180914_uo_eph_1_180814_g5_tart, pn180914_uo_eph_2_180814_c6_scr2.

(RScarnitinenitrilechloride) top
Crystal data top
C7H15N2O·ClF(000) = 576
Mr = 178.66Dx = 1.210 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7637 reflections
a = 7.2588 (3) Åθ = 3–33°
b = 8.9399 (4) ŵ = 0.34 mm1
c = 22.7927 (9) ÅT = 183 K
β = 95.818 (4)°Block, yellow
V = 1471.47 (11) Å30.13 × 0.08 × 0.06 mm
Z = 6
Data collection top
Oxford Diffraction SuperNova
diffractometer
7769 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 1010
Tmin = 0.77, Tmax = 0.98k = 1313
23769 measured reflectionsl = 3430
10401 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.07P)2 + 0.23P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max = 0.0004
S = 1.00Δρmax = 0.75 e Å3
10401 reflectionsΔρmin = 0.43 e Å3
299 parametersAbsolute structure: Flack (1983), 4756 Friedel-pairs
1 restraintAbsolute structure parameter: 0.03 (4)
Primary atom site location: Other
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2393 (4)0.4065 (3)0.12418 (11)0.0559
C20.2157 (3)0.2895 (3)0.10570 (9)0.0342
C30.1838 (3)0.1392 (3)0.08215 (8)0.0296
C40.1255 (3)0.1376 (2)0.01532 (8)0.0257
O50.03223 (19)0.2299 (2)0.00070 (6)0.0340
C60.2840 (3)0.1967 (2)0.01686 (8)0.0252
N70.2810 (2)0.1497 (2)0.08098 (7)0.0241
C80.4525 (3)0.2129 (3)0.10372 (10)0.0325
C90.1145 (3)0.2128 (3)0.11692 (8)0.0305
C100.2841 (4)0.0149 (3)0.08814 (13)0.0402
N111.2671 (3)0.9068 (3)0.20806 (11)0.0549
C121.2555 (3)0.7904 (3)0.22713 (9)0.0343
C131.2383 (3)0.6400 (3)0.25102 (8)0.0303
C141.2224 (3)0.6390 (2)0.31816 (8)0.0255
O151.07428 (19)0.73225 (19)0.33227 (6)0.0322
C161.4029 (3)0.6991 (2)0.35002 (8)0.0238
N171.4408 (2)0.6523 (2)0.41398 (7)0.0245
C181.6277 (3)0.7165 (3)0.43570 (10)0.0323
C191.2992 (3)0.7148 (3)0.45062 (8)0.0279
C201.4500 (4)0.4874 (3)0.42137 (13)0.0394
N210.9535 (3)0.4159 (3)0.45514 (11)0.0531
C220.9660 (3)0.2977 (3)0.43772 (10)0.0338
C230.9810 (3)0.1461 (3)0.41538 (9)0.0306
C240.9950 (3)0.1403 (2)0.34836 (8)0.0253
O251.14212 (19)0.23254 (19)0.33271 (6)0.0326
C260.8145 (3)0.1984 (2)0.31640 (8)0.0247
N270.7760 (2)0.1497 (2)0.25248 (7)0.0245
C280.9175 (3)0.2127 (3)0.21587 (8)0.0304
C290.5882 (3)0.2126 (3)0.23068 (10)0.0326
C300.7678 (4)0.0158 (3)0.24591 (13)0.0417
Cl310.68275 (6)0.08879 (8)0.073991 (18)0.0267
Cl320.74341 (6)0.58876 (8)0.259692 (19)0.0267
Cl330.46947 (6)0.09158 (9)0.407349 (19)0.0277
H2930.55660.19060.18900.0481*
H2920.59510.31960.23700.0484*
H2910.49590.16950.25440.0492*
H2810.88190.19260.17690.0451*
H2831.03830.16660.22930.0450*
H2820.92060.31470.22160.0451*
H3020.73090.04440.20600.0649*
H3030.88900.06000.25610.0647*
H3010.67520.06170.26930.0648*
H2620.81590.30740.31930.0312*
H2610.71050.16630.33720.0307*
H2321.09230.09530.43110.0367*
H2310.86390.09160.42040.0354*
H2411.01010.03450.33690.0327*
H2511.23530.19870.35110.0485*
H1931.33190.68900.48980.0429*
H1921.29470.82050.44650.0420*
H1911.17890.66720.43540.0422*
H1811.65290.69040.47550.0467*
H1831.62630.82040.43180.0468*
H1821.72040.67420.41350.0473*
H2021.49010.46170.46090.0606*
H2031.53720.44380.39630.0602*
H2011.33170.43980.41230.0603*
H1621.40060.80510.34630.0294*
H1611.51000.66440.33090.0282*
H1321.34390.57940.24180.0365*
H1311.11400.59170.23920.0315*
H1411.20510.53240.32880.0317*
H1510.97250.70150.31390.0483*
H930.12220.19040.15580.0451*
H920.11390.31610.11200.0453*
H910.00020.16580.10180.0441*
H810.45680.18510.14450.0478*
H830.45070.31950.10050.0483*
H820.55920.17450.08000.0489*
H1020.30880.04330.12730.0618*
H1030.39180.05550.06340.0618*
H1010.17010.06340.07750.0618*
H620.28460.30430.01460.0306*
H610.40100.17280.00280.0289*
H320.29060.07440.09220.0365*
H310.06270.09300.09230.0311*
H410.09790.03230.00380.0318*
H510.12900.19870.01800.0509*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0578 (15)0.0637 (16)0.0464 (13)0.0085 (12)0.0065 (11)0.0177 (12)
C20.0269 (10)0.0507 (14)0.0255 (10)0.0002 (9)0.0055 (8)0.0002 (9)
C30.0281 (10)0.0406 (11)0.0205 (8)0.0037 (8)0.0044 (7)0.0044 (8)
C40.0259 (9)0.0288 (9)0.0226 (8)0.0016 (7)0.0026 (7)0.0014 (7)
O50.0223 (7)0.0475 (9)0.0325 (7)0.0070 (6)0.0043 (5)0.0093 (7)
C60.0259 (9)0.0298 (10)0.0195 (8)0.0006 (7)0.0010 (6)0.0007 (7)
N70.0263 (8)0.0263 (8)0.0202 (7)0.0017 (7)0.0040 (6)0.0006 (6)
C80.0271 (10)0.0351 (11)0.0368 (11)0.0006 (9)0.0104 (8)0.0008 (9)
C90.0300 (10)0.0415 (12)0.0195 (8)0.0005 (9)0.0008 (7)0.0020 (8)
C100.0523 (16)0.0245 (11)0.0467 (14)0.0042 (10)0.0191 (12)0.0066 (10)
N110.0514 (14)0.0638 (16)0.0486 (13)0.0051 (12)0.0008 (10)0.0177 (12)
C120.0268 (10)0.0511 (14)0.0244 (9)0.0003 (9)0.0003 (8)0.0016 (9)
C130.0271 (10)0.0442 (11)0.0192 (8)0.0036 (8)0.0002 (7)0.0064 (8)
C140.0230 (9)0.0288 (9)0.0244 (8)0.0012 (7)0.0008 (6)0.0021 (7)
O150.0220 (7)0.0446 (9)0.0299 (7)0.0063 (6)0.0016 (5)0.0074 (7)
C160.0212 (8)0.0275 (9)0.0221 (8)0.0006 (7)0.0001 (6)0.0016 (7)
N170.0214 (8)0.0287 (8)0.0225 (7)0.0048 (7)0.0023 (6)0.0004 (6)
C180.0229 (9)0.0354 (11)0.0372 (11)0.0003 (8)0.0035 (8)0.0014 (9)
C190.0278 (9)0.0381 (11)0.0183 (8)0.0013 (8)0.0055 (7)0.0012 (8)
C200.0461 (15)0.0217 (10)0.0483 (14)0.0037 (9)0.0057 (11)0.0011 (10)
N210.0530 (14)0.0560 (15)0.0518 (13)0.0055 (12)0.0135 (11)0.0167 (12)
C220.0271 (10)0.0469 (14)0.0277 (10)0.0019 (9)0.0045 (8)0.0005 (9)
C230.0289 (10)0.0392 (11)0.0234 (8)0.0036 (8)0.0010 (7)0.0056 (8)
C240.0242 (9)0.0291 (9)0.0224 (8)0.0012 (7)0.0015 (6)0.0008 (7)
O250.0209 (7)0.0479 (9)0.0286 (7)0.0038 (6)0.0006 (5)0.0086 (7)
C260.0232 (9)0.0296 (10)0.0213 (8)0.0020 (7)0.0028 (6)0.0007 (7)
N270.0238 (8)0.0279 (8)0.0212 (7)0.0015 (7)0.0007 (6)0.0027 (7)
C280.0290 (10)0.0415 (12)0.0213 (8)0.0012 (9)0.0048 (7)0.0025 (8)
C290.0234 (9)0.0359 (12)0.0377 (11)0.0016 (8)0.0009 (8)0.0022 (9)
C300.0455 (15)0.0235 (11)0.0530 (15)0.0020 (9)0.0106 (11)0.0051 (10)
Cl310.02254 (18)0.0283 (2)0.0287 (2)0.0005 (2)0.00047 (14)0.0018 (2)
Cl320.02404 (19)0.0278 (2)0.02883 (19)0.0006 (2)0.00502 (14)0.0023 (2)
Cl330.02406 (18)0.0287 (2)0.03004 (19)0.0012 (2)0.00127 (14)0.0019 (2)
Geometric parameters (Å, º) top
N1—C21.134 (3)N17—C181.509 (3)
C2—C31.456 (3)N17—C191.497 (3)
C3—C41.539 (3)N17—C201.485 (3)
C3—H320.977C18—H1810.937
C3—H311.019C18—H1830.933
C4—O51.423 (2)C18—H1820.959
C4—C61.521 (3)C19—H1930.930
C4—H410.992C19—H1920.950
O5—H510.884C19—H1911.001
C6—N71.518 (2)C20—H2020.947
C6—H620.963C20—H2030.976
C6—H610.943C20—H2010.962
N7—C81.506 (3)N21—C221.136 (3)
N7—C91.499 (3)C22—C231.456 (4)
N7—C101.481 (3)C23—C241.542 (3)
C8—H810.966C23—H2320.964
C8—H830.956C23—H2310.996
C8—H820.962C24—O251.423 (2)
C9—H930.914C24—C261.524 (3)
C9—H920.931C24—H2410.990
C9—H911.020O25—H2510.817
C10—H1020.962C26—N271.519 (2)
C10—H1030.986C26—H2620.977
C10—H1010.986C26—H2610.975
N11—C121.134 (3)N27—C281.498 (3)
C12—C131.461 (3)N27—C291.511 (3)
C13—C141.546 (3)N27—C301.488 (3)
C13—H1320.979C28—H2810.917
C13—H1311.012C28—H2830.989
C14—O151.423 (2)C28—H2820.921
C14—C161.530 (3)C29—H2930.975
C14—H1410.994C29—H2920.968
O15—H1510.856C29—H2910.982
C16—N171.515 (2)C30—H3020.957
C16—H1620.952C30—H3030.971
C16—H1610.980C30—H3010.989
N1—C2—C3179.5 (2)C18—N17—C19108.69 (17)
C2—C3—C4113.03 (18)C16—N17—C20112.63 (18)
C2—C3—H32111.6C18—N17—C20108.16 (19)
C4—C3—H32111.0C19—N17—C20109.4 (2)
C2—C3—H31113.5N17—C18—H181107.7
C4—C3—H3193.7N17—C18—H183110.3
H32—C3—H31112.8H181—C18—H183109.9
C3—C4—O5111.10 (16)N17—C18—H182109.4
C3—C4—C6109.16 (16)H181—C18—H182109.5
O5—C4—C6108.40 (16)H183—C18—H182110.0
C3—C4—H41107.4N17—C19—H193108.7
O5—C4—H41110.7N17—C19—H192109.6
C6—C4—H41110.1H193—C19—H192110.1
C4—O5—H51111.6N17—C19—H191105.8
C4—C6—N7115.48 (16)H193—C19—H191110.9
C4—C6—H62108.7H192—C19—H191111.7
N7—C6—H62109.1N17—C20—H202110.8
C4—C6—H61112.4N17—C20—H203110.8
N7—C6—H61108.6H202—C20—H203107.8
H62—C6—H61101.6N17—C20—H201112.7
C6—N7—C8107.20 (16)H202—C20—H201106.2
C6—N7—C9110.76 (15)H203—C20—H201108.4
C8—N7—C9108.65 (16)N21—C22—C23179.7 (3)
C6—N7—C10112.44 (17)C22—C23—C24113.12 (18)
C8—N7—C10108.18 (19)C22—C23—H232113.5
C9—N7—C10109.5 (2)C24—C23—H232102.4
N7—C8—H81110.1C22—C23—H231108.7
N7—C8—H83109.2C24—C23—H231103.9
H81—C8—H83109.4H232—C23—H231114.9
N7—C8—H82108.6C23—C24—O25110.82 (16)
H81—C8—H82110.3C23—C24—C26108.79 (17)
H83—C8—H82109.2O25—C24—C26108.26 (16)
N7—C9—H93108.8C23—C24—H241108.3
N7—C9—H92108.7O25—C24—H241112.4
H93—C9—H92109.6C26—C24—H241108.2
N7—C9—H91107.4C24—O25—H251105.1
H93—C9—H91111.6C24—C26—N27115.26 (16)
H92—C9—H91110.7C24—C26—H262107.8
N7—C10—H102111.7N27—C26—H262110.5
N7—C10—H103108.8C24—C26—H261109.8
H102—C10—H103102.9N27—C26—H261107.8
N7—C10—H101112.8H262—C26—H261105.3
H102—C10—H101110.7C26—N27—C28110.88 (15)
H103—C10—H101109.5C26—N27—C29106.33 (16)
N11—C12—C13179.2 (2)C28—N27—C29108.88 (16)
C12—C13—C14113.09 (18)C26—N27—C30112.52 (18)
C12—C13—H132109.4C28—N27—C30109.9 (2)
C14—C13—H132110.4C29—N27—C30108.16 (19)
C12—C13—H131113.6N27—C28—H281108.9
C14—C13—H13196.1N27—C28—H283107.9
H132—C13—H131113.8H281—C28—H283111.8
C13—C14—O15110.75 (16)N27—C28—H282107.5
C13—C14—C16108.73 (17)H281—C28—H282109.5
O15—C14—C16108.50 (16)H283—C28—H282111.2
C13—C14—H141105.8N27—C29—H293111.1
O15—C14—H141112.9N27—C29—H292106.7
C16—C14—H141110.1H293—C29—H292110.4
C14—O15—H151109.6N27—C29—H291108.4
C14—C16—N17115.06 (16)H293—C29—H291110.6
C14—C16—H162107.5H292—C29—H291109.5
N17—C16—H162111.1N27—C30—H302111.5
C14—C16—H161111.0N27—C30—H303110.8
N17—C16—H161105.4H302—C30—H303106.1
H162—C16—H161106.5N27—C30—H301112.4
C16—N17—C18106.30 (17)H302—C30—H301105.1
C16—N17—C19111.46 (15)H303—C30—H301110.6
(RScarnitinenitrileiodide) top
Crystal data top
C7H15N2O·IF(000) = 2112
Mr = 270.11Dx = 1.652 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2abCell parameters from 9526 reflections
a = 13.4725 (2) Åθ = 5–79°
b = 9.8551 (1) ŵ = 22.83 mm1
c = 32.7259 (4) ÅT = 160 K
V = 4345.11 (9) Å3Plate, colorless
Z = 160.12 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
4082 reflections with I > 2.0σ(I)
Focussing mirrors monochromatorRint = 0.032
ω scansθmax = 74.5°, θmin = 4.3°
Absorption correction: multi-scan
CrysAlisPro (Rigaku Oxford Diffraction, 2017)
h = 1614
Tmin = 0.12, Tmax = 0.34k = 1112
17435 measured reflectionsl = 3940
4437 independent reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.113 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.03P)2 + 31.74P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
4437 reflectionsΔρmax = 1.97 e Å3
209 parametersΔρmin = 1.61 e Å3
2 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7558 (6)0.4679 (8)0.54891 (18)0.0775
C20.7749 (5)0.3800 (8)0.56924 (18)0.0528
C30.7980 (5)0.2617 (7)0.59428 (19)0.0499
C40.8279 (4)0.3040 (6)0.63764 (17)0.0403
O50.7493 (3)0.3766 (4)0.65652 (12)0.0477
C60.8555 (4)0.1739 (6)0.65983 (17)0.0417
N70.9104 (4)0.1897 (5)0.70008 (13)0.0369
C80.8546 (5)0.2769 (6)0.73039 (18)0.0457
C91.0121 (4)0.2486 (7)0.69398 (18)0.0457
C100.9205 (5)0.0500 (7)0.7174 (2)0.0527
N110.2629 (5)0.5423 (7)0.70320 (18)0.0660
C120.2715 (5)0.4543 (8)0.68075 (17)0.0485
C130.2856 (5)0.3405 (7)0.65267 (18)0.0501
C140.3472 (4)0.3832 (6)0.61548 (17)0.0478
C160.3621 (5)0.2517 (6)0.59102 (16)0.0396
N170.4157 (3)0.2668 (4)0.55040 (13)0.0343
C180.3600 (5)0.3542 (7)0.52138 (17)0.0484
C190.5179 (5)0.3217 (8)0.5561 (2)0.0543
C200.4229 (6)0.1255 (6)0.5330 (2)0.0554
I210.07520 (3)0.24189 (4)0.567724 (13)0.0539
I220.55599 (3)0.15399 (4)0.677831 (12)0.0495
H310.85200.21280.58170.0599*
H320.74030.20380.59570.0599*
H410.88660.36410.63600.0480*
H610.79530.12260.66500.0497*
H620.89930.12220.64250.0499*
H820.88900.27460.75610.0677*
H810.78820.24140.73320.0680*
H830.85210.36820.72040.0680*
H921.04800.24730.71920.0677*
H931.04760.19880.67370.0679*
H911.00650.33990.68480.0681*
H1020.95530.05560.74290.0789*
H1010.85560.01210.72200.0792*
H1030.95720.00650.69890.0788*
H1320.32150.26970.66680.0602*
H1310.22170.30650.64420.0600*
H1610.40150.19090.60760.0479*
H1620.29810.21060.58520.0480*
H1820.39030.34940.49480.0727*
H1830.36110.44710.53100.0729*
H1810.29180.32270.51940.0728*
H1910.55300.31460.53080.0819*
H1930.55100.26810.57660.0818*
H1920.51410.41540.56490.0818*
H510.70610.31770.65920.0721*
H2030.45840.12860.50770.0839*
H2020.45810.06930.55230.0840*
H2010.35730.09090.52870.0839*
O1510.4397 (5)0.4364 (10)0.6315 (3)0.08000.647 (11)
O1520.2671 (9)0.4530 (15)0.5946 (4)0.07820.353 (11)
H1410.31400.45340.59930.0582*0.647 (11)
H1420.40630.43900.62060.0581*0.353 (11)
H15110.46630.37050.64220.0918*0.647 (11)
H15210.22210.40100.58830.0812*0.353 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.107 (6)0.079 (5)0.046 (3)0.032 (4)0.006 (4)0.002 (3)
C20.059 (4)0.064 (4)0.035 (3)0.014 (3)0.009 (3)0.006 (3)
C30.056 (4)0.051 (4)0.043 (3)0.008 (3)0.011 (3)0.007 (3)
C40.043 (3)0.040 (3)0.037 (3)0.004 (3)0.001 (2)0.003 (2)
O50.048 (2)0.044 (2)0.051 (2)0.0083 (19)0.004 (2)0.0053 (19)
C60.044 (3)0.043 (3)0.038 (3)0.002 (3)0.001 (2)0.003 (2)
N70.042 (2)0.040 (3)0.028 (2)0.004 (2)0.0054 (19)0.0022 (19)
C80.054 (3)0.046 (3)0.037 (3)0.012 (3)0.010 (3)0.005 (3)
C90.039 (3)0.054 (4)0.044 (3)0.005 (3)0.002 (2)0.003 (3)
C100.071 (4)0.042 (3)0.045 (3)0.006 (3)0.004 (3)0.003 (3)
N110.085 (4)0.067 (4)0.047 (3)0.019 (4)0.016 (3)0.001 (3)
C120.046 (3)0.068 (4)0.032 (3)0.006 (3)0.009 (2)0.004 (3)
C130.052 (3)0.063 (4)0.035 (3)0.013 (3)0.005 (3)0.001 (3)
C140.070 (4)0.039 (3)0.034 (3)0.007 (3)0.011 (3)0.004 (2)
C160.052 (3)0.034 (3)0.032 (3)0.002 (3)0.002 (2)0.007 (2)
N170.045 (2)0.028 (2)0.031 (2)0.0002 (19)0.0007 (19)0.0010 (18)
C180.060 (4)0.052 (4)0.032 (3)0.003 (3)0.001 (3)0.009 (3)
C190.050 (4)0.066 (4)0.047 (4)0.008 (3)0.002 (3)0.007 (3)
C200.079 (5)0.036 (3)0.051 (4)0.001 (3)0.011 (3)0.010 (3)
I210.0656 (3)0.0482 (2)0.0478 (2)0.0117 (2)0.01535 (19)0.00067 (18)
I220.0469 (2)0.0507 (2)0.0510 (2)0.00453 (18)0.00861 (17)0.00087 (18)
O1510.061 (5)0.092 (7)0.087 (6)0.041 (5)0.021 (4)0.055 (5)
O1520.135 (15)0.054 (9)0.045 (7)0.038 (10)0.007 (8)0.008 (6)
Geometric parameters (Å, º) top
N1—C21.123 (9)C13—C141.532 (8)
C2—C31.459 (9)C13—H1320.967
C3—C41.532 (8)C13—H1310.965
C3—H310.964C14—C161.537 (8)
C3—H320.965C14—O1511.4508 (10)
C4—O51.420 (7)C14—H1410.979
C4—C61.519 (8)C14—C161.537 (8)
C4—H410.989C14—O1521.4506 (10)
O5—H510.827C14—H1420.982
C6—N71.518 (7)C16—N171.520 (7)
C6—H610.972C16—H1610.967
C6—H620.965C16—H1620.971
N7—C81.511 (7)N17—C181.486 (7)
N7—C91.502 (7)N17—C191.491 (8)
N7—C101.496 (8)N17—C201.508 (7)
C8—H820.961C18—H1820.961
C8—H810.966C18—H1830.968
C8—H830.958C18—H1810.971
C9—H920.956C19—H1910.958
C9—H930.954C19—H1930.963
C9—H910.952C19—H1920.968
C10—H1020.959C20—H2030.958
C10—H1010.962C20—H2020.964
C10—H1030.960C20—H2010.959
N11—C121.143 (9)O151—H15110.820
C12—C131.462 (9)O152—H15210.820
N1—C2—C3177.5 (7)C12—C13—H131109.3
C2—C3—C4111.0 (5)C14—C13—H131110.4
C2—C3—H31108.6H132—C13—H131109.5
C4—C3—H31109.5C13—C14—C16104.7 (5)
C2—C3—H32109.1C13—C14—O151106.1 (5)
C4—C3—H32109.2C16—C14—O151112.3 (5)
H31—C3—H32109.4C13—C14—H141112.2
C3—C4—O5110.1 (5)C16—C14—H141112.0
C3—C4—C6106.1 (5)O151—C14—H141109.4
O5—C4—C6113.6 (5)C13—C14—C16104.7 (5)
C3—C4—H41108.8C13—C14—O15295.9 (7)
O5—C4—H41108.5C16—C14—O152104.6 (7)
C6—C4—H41109.6C13—C14—H142117.3
C4—O5—H51102.5C16—C14—H142117.0
C4—C6—N7116.6 (5)O152—C14—H142114.6
C4—C6—H61108.5C14—C16—N17115.8 (4)
N7—C6—H61107.9C14—C16—H161107.5
C4—C6—H62108.3N17—C16—H161107.0
N7—C6—H62105.6C14—C16—H162109.6
H61—C6—H62109.8N17—C16—H162107.0
C6—N7—C8112.7 (5)H161—C16—H162109.8
C6—N7—C9111.6 (4)C16—N17—C18112.1 (4)
C8—N7—C9108.7 (5)C16—N17—C19111.3 (4)
C6—N7—C10106.2 (5)C18—N17—C19109.7 (5)
C8—N7—C10108.6 (4)C16—N17—C20105.6 (4)
C9—N7—C10108.8 (5)C18—N17—C20109.1 (5)
N7—C8—H82108.8C19—N17—C20108.9 (5)
N7—C8—H81108.6N17—C18—H182109.5
H82—C8—H81110.7N17—C18—H183109.4
N7—C8—H83109.1H182—C18—H183109.5
H82—C8—H83109.8N17—C18—H181109.5
H81—C8—H83109.8H182—C18—H181109.0
N7—C9—H92110.0H183—C18—H181109.8
N7—C9—H93110.6N17—C19—H191108.7
H92—C9—H93109.8N17—C19—H193108.4
N7—C9—H91109.6H191—C19—H193109.5
H92—C9—H91108.9N17—C19—H192109.6
H93—C9—H91107.9H191—C19—H192110.7
N7—C10—H102108.7H193—C19—H192110.0
N7—C10—H101109.4N17—C20—H203109.2
H102—C10—H101109.4N17—C20—H202108.4
N7—C10—H103109.9H203—C20—H202109.9
H102—C10—H103109.4N17—C20—H201109.0
H101—C10—H103110.0H203—C20—H201110.0
N11—C12—C13178.0 (7)H202—C20—H201110.3
C12—C13—C14111.1 (5)C14—O151—H1511104.1
C12—C13—H132108.5C14—O152—H1521111.7
C14—C13—H132107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H61···O5i0.972.513.254 (9)133
Symmetry code: (i) x+3/2, y1/2, z.
(Rcarnitinenitrilechloride) top
Crystal data top
C7H15N2O·ClF(000) = 191.998
Mr = 178.66Dx = 1.212 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 10124 reflections
a = 7.2902 (2) Åθ = 3–34°
b = 8.9099 (3) ŵ = 0.34 mm1
c = 7.8789 (3) ÅT = 160 K
β = 107.024 (3)°Plate, colorless
V = 489.35 (3) Å30.30 × 0.20 × 0.07 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova
diffractometer
3428 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 33.1°, θmin = 2.7°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 1111
Tmin = 0.59, Tmax = 0.98k = 1313
15361 measured reflectionsl = 1211
3726 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.032 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.02P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max = 0.003
S = 0.95Δρmax = 0.39 e Å3
3726 reflectionsΔρmin = 0.29 e Å3
101 parametersAbsolute structure: Flack (1983), 1757 Friedel-pairs
1 restraintAbsolute structure parameter: 0.01 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4227 (2)0.29988 (19)0.86539 (19)0.0439
C20.42518 (18)0.4188 (2)0.81389 (17)0.0298
C30.42895 (18)0.57227 (19)0.74730 (15)0.0264
C40.39881 (15)0.57640 (17)0.54599 (14)0.0216
O50.53528 (11)0.48579 (16)0.49785 (11)0.0269
C60.19831 (15)0.51844 (17)0.45120 (14)0.0204
N70.11690 (14)0.56477 (17)0.25902 (13)0.0210
C80.1055 (2)0.73162 (19)0.2394 (2)0.0339
C90.08373 (15)0.50281 (19)0.19391 (17)0.0278
C100.23296 (17)0.50150 (19)0.14668 (15)0.0262
Cl110.09007 (3)0.62594 (13)0.72235 (3)0.0245
H410.40690.68260.51460.0286*
H610.20120.41420.45600.0265*
H620.10840.55340.51320.0239*
H930.13910.53010.06900.0411*
H910.07870.39850.20560.0429*
H920.15760.54560.26670.0421*
H820.03670.75480.11450.0544*
H830.03500.76840.32090.0555*
H810.23400.77160.27090.0551*
H1010.16720.52600.02280.0388*
H1030.24110.39690.16210.0421*
H1020.36160.54370.18640.0402*
H320.33040.62720.78010.0334*
H310.56020.60570.80650.0319*
H510.63620.51880.55840.0422*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0468 (7)0.0446 (7)0.0429 (7)0.0060 (6)0.0173 (6)0.0121 (6)
C20.0267 (5)0.0396 (7)0.0232 (5)0.0039 (5)0.0073 (4)0.0027 (5)
C30.0271 (5)0.0281 (5)0.0231 (4)0.0001 (4)0.0060 (4)0.0046 (4)
C40.0209 (4)0.0206 (4)0.0224 (4)0.0012 (4)0.0050 (3)0.0019 (4)
O50.0197 (3)0.0333 (4)0.0270 (4)0.0001 (3)0.0058 (3)0.0073 (3)
C60.0204 (4)0.0197 (4)0.0211 (4)0.0009 (4)0.0059 (3)0.0004 (3)
N70.0200 (4)0.0179 (4)0.0234 (4)0.0009 (3)0.0037 (3)0.0019 (3)
C80.0352 (7)0.0171 (5)0.0429 (7)0.0010 (5)0.0013 (5)0.0038 (5)
C90.0191 (5)0.0253 (6)0.0347 (6)0.0004 (4)0.0012 (4)0.0003 (4)
C100.0265 (5)0.0305 (6)0.0216 (5)0.0010 (4)0.0071 (4)0.0012 (4)
Cl110.02216 (10)0.02147 (11)0.02860 (11)0.00025 (10)0.00535 (8)0.00162 (10)
Geometric parameters (Å, º) top
N1—C21.1370 (19)N7—C81.4944 (18)
C2—C31.467 (2)N7—C91.5060 (15)
C3—C41.5366 (16)N7—C101.5019 (17)
C3—H320.965C8—H820.987
C3—H310.980C8—H830.988
C4—O51.4165 (14)C8—H810.964
C4—C61.5237 (15)C9—H930.979
C4—H410.984C9—H910.934
O5—H510.806C9—H920.972
C6—N71.5130 (14)C10—H1010.978
C6—H610.929C10—H1030.940
C6—H620.976C10—H1020.973
N1—C2—C3179.82 (14)C8—N7—C9108.08 (10)
C2—C3—C4112.30 (10)C6—N7—C10111.33 (9)
C2—C3—H32106.4C8—N7—C10109.66 (12)
C4—C3—H32111.8C9—N7—C10108.67 (9)
C2—C3—H31103.4N7—C8—H82107.9
C4—C3—H31108.0N7—C8—H83106.6
H32—C3—H31114.7H82—C8—H83111.7
C3—C4—O5111.31 (9)N7—C8—H81108.7
C3—C4—C6108.94 (10)H82—C8—H81110.6
O5—C4—C6108.89 (9)H83—C8—H81111.2
C3—C4—H41106.3N7—C9—H93109.0
O5—C4—H41112.5N7—C9—H91109.0
C6—C4—H41108.8H93—C9—H91109.8
C4—O5—H51102.9N7—C9—H92107.8
C4—C6—N7115.92 (9)H93—C9—H92111.1
C4—C6—H61108.2H91—C9—H92110.2
N7—C6—H61108.1N7—C10—H101108.0
C4—C6—H62109.6N7—C10—H103108.8
N7—C6—H62106.8H101—C10—H103110.2
H61—C6—H62108.0N7—C10—H102108.7
C6—N7—C8111.62 (10)H101—C10—H102112.3
C6—N7—C9107.35 (9)H103—C10—H102108.9
(Rcarnitinenitrilebromide) top
Crystal data top
C7H15N2O·BrF(000) = 228
Mr = 223.11Dx = 1.427 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9220 reflections
a = 7.5269 (2) Åθ = 3–30°
b = 9.1017 (3) ŵ = 3.92 mm1
c = 7.9300 (3) ÅT = 160 K
β = 107.161 (4)°Plate, colorless
V = 519.08 (3) Å30.12 × 0.10 × 0.03 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova
diffractometer
3118 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 31.5°, θmin = 2.7°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 1011
Tmin = 0.64, Tmax = 0.90k = 1313
16508 measured reflectionsl = 1111
3402 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.27P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.47 e Å3
3402 reflectionsΔρmin = 0.53 e Å3
101 parametersAbsolute structure: Flack (1983), 1581 Friedel-pairs
1 restraintAbsolute structure parameter: 0.043 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9125 (4)0.2003 (3)1.3586 (4)0.0451
C20.9201 (4)0.3168 (3)1.3109 (3)0.0296
C30.9332 (4)0.4668 (3)1.2495 (3)0.0262
C40.9026 (3)0.4744 (3)1.0483 (3)0.0202
O51.0304 (2)0.3826 (2)0.9981 (2)0.0255
C60.7066 (3)0.4236 (3)0.9531 (3)0.0193
N70.6291 (3)0.4722 (3)0.7627 (3)0.0192
C80.6234 (5)0.6354 (3)0.7463 (5)0.0339
C90.4325 (3)0.4158 (3)0.6981 (3)0.0270
C100.7395 (3)0.4081 (3)0.6498 (3)0.0255
Br110.41054 (3)0.53206 (11)1.21779 (3)0.0266
H1030.67660.43330.53700.0387*
H1020.85630.45090.67820.0382*
H1010.74810.30600.66550.0373*
H830.56010.67270.82570.0512*
H820.74590.66820.77370.0506*
H810.55240.66000.62800.0496*
H930.36310.45400.77000.0388*
H920.43810.30960.70570.0385*
H910.38050.44500.58210.0407*
H321.05220.50411.30780.0319*
H310.84610.52711.28160.0331*
H410.91920.57511.02310.0230*
H620.62600.46201.01220.0230*
H610.70160.31990.95440.0218*
H511.10980.42791.04030.0381*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0471 (16)0.0515 (16)0.0373 (14)0.0049 (13)0.0136 (12)0.0120 (12)
C20.0242 (11)0.0437 (16)0.0213 (11)0.0044 (10)0.0075 (9)0.0024 (10)
C30.0256 (12)0.0331 (12)0.0192 (10)0.0006 (9)0.0052 (9)0.0051 (9)
C40.0202 (10)0.0214 (9)0.0189 (9)0.0009 (8)0.0059 (8)0.0029 (8)
O50.0176 (8)0.0341 (9)0.0244 (8)0.0010 (7)0.0054 (6)0.0071 (7)
C60.0181 (9)0.0230 (10)0.0167 (9)0.0004 (8)0.0051 (8)0.0002 (8)
N70.0185 (9)0.0167 (10)0.0214 (9)0.0021 (8)0.0045 (7)0.0008 (8)
C80.0377 (16)0.0136 (13)0.0454 (16)0.0017 (11)0.0047 (13)0.0051 (12)
C90.0176 (10)0.0302 (13)0.0297 (12)0.0007 (9)0.0015 (9)0.0001 (10)
C100.0237 (11)0.0365 (13)0.0183 (10)0.0029 (10)0.0091 (8)0.0018 (9)
Br110.02418 (10)0.02568 (10)0.02912 (10)0.00152 (14)0.00641 (7)0.00089 (14)
Geometric parameters (Å, º) top
N1—C21.133 (4)N7—C81.491 (4)
C2—C31.463 (4)N7—C91.506 (3)
C3—C41.545 (3)N7—C101.507 (3)
C3—H320.942C8—H830.957
C3—H310.946C8—H820.932
C4—O51.417 (3)C8—H810.959
C4—C61.518 (3)C9—H930.946
C4—H410.954C9—H920.968
O5—H510.722C9—H910.926
C6—N71.515 (3)C10—H1030.909
C6—H620.937C10—H1020.926
C6—H610.944C10—H1010.938
N1—C2—C3179.0 (3)C8—N7—C9108.0 (3)
C2—C3—C4112.4 (2)C6—N7—C10111.21 (19)
C2—C3—H32108.7C8—N7—C10109.9 (3)
C4—C3—H32108.7C9—N7—C10108.9 (2)
C2—C3—H31109.4N7—C8—H83107.7
C4—C3—H31110.4N7—C8—H82107.3
H32—C3—H31107.0H83—C8—H82112.6
C3—C4—O5110.93 (19)N7—C8—H81108.1
C3—C4—C6109.06 (19)H83—C8—H81108.6
O5—C4—C6108.75 (19)H82—C8—H81112.3
C3—C4—H41105.7N7—C9—H93109.4
O5—C4—H41111.5N7—C9—H92107.4
C6—C4—H41110.9H93—C9—H92110.6
C4—O5—H5194.0N7—C9—H91109.0
C4—C6—N7115.99 (19)H93—C9—H91110.2
C4—C6—H62108.4H92—C9—H91110.3
N7—C6—H62105.9N7—C10—H103105.6
C4—C6—H61109.6N7—C10—H102110.0
N7—C6—H61107.3H103—C10—H102108.4
H62—C6—H61109.5N7—C10—H101109.4
C6—N7—C8111.7 (2)H103—C10—H101112.1
C6—N7—C9106.8 (2)H102—C10—H101111.2
(Rcarnitinenitrileiodide) top
Crystal data top
CC7H15N2O·IF(000) = 528
Mr = 270.11Dx = 1.675 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 14266 reflections
a = 7.5850 (1) Åθ = 2–33°
b = 10.8242 (2) ŵ = 2.95 mm1
c = 13.0468 (3) ÅT = 160 K
V = 1071.16 (3) Å3Prism, colorless
Z = 40.25 × 0.12 × 0.10 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
3544 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 32.9°, θmin = 2.4°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 119
Tmin = 0.47, Tmax = 0.75k = 1516
17375 measured reflectionsl = 1919
3606 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.01P)2 + 0.25P] ,
where P = (max(Fo2,0) + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013(Δ/σ)max = 0.002
wR(F2) = 0.030Δρmax = 0.39 e Å3
S = 0.99Δρmin = 0.41 e Å3
3606 reflectionsExtinction correction: Larson (1970), Equation 22
101 parametersExtinction coefficient: 31.271
0 restraintsAbsolute structure: Flack (1983), 1481 Friedel-pairs
Primary atom site location: OtherAbsolute structure parameter: 0.018 (12)
Hydrogen site location: difference Fourier map
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.09118 (19)0.85547 (11)0.76082 (10)0.0321
C20.03026 (17)0.76975 (13)0.72543 (11)0.0231
C30.04857 (17)0.65622 (13)0.68432 (12)0.0256
C40.24273 (15)0.64097 (11)0.71711 (9)0.0177
O50.34704 (13)0.73213 (9)0.66875 (8)0.0245
C60.25703 (16)0.65378 (11)0.83324 (10)0.0182
N70.42553 (14)0.60624 (9)0.88085 (8)0.0172
C80.58628 (19)0.67126 (13)0.84080 (10)0.0250
C90.4143 (2)0.63029 (12)0.99430 (9)0.0243
C100.44722 (19)0.46984 (12)0.86448 (12)0.0296
I110.591822 (11)0.514611 (8)0.538035 (7)0.0274
H410.28080.56080.69700.0205*
H610.25420.74040.84970.0208*
H620.16190.61230.86600.0208*
H910.51740.59661.02550.0358*
H920.40640.71831.00360.0359*
H930.30860.59181.01920.0363*
H1010.55340.44500.90100.0438*
H1030.46340.45290.79110.0438*
H1020.34580.42800.89210.0449*
H830.68950.64150.87790.0385*
H820.59730.64860.76980.0380*
H810.57070.75850.84970.0399*
H320.04360.65900.61160.0329*
H310.02200.58830.70470.0328*
H510.40460.69680.62610.0374*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0290 (6)0.0308 (6)0.0366 (6)0.0099 (6)0.0039 (6)0.0007 (5)
C20.0185 (6)0.0252 (6)0.0257 (6)0.0028 (5)0.0038 (5)0.0017 (5)
C30.0205 (6)0.0238 (6)0.0326 (7)0.0041 (4)0.0084 (5)0.0072 (5)
C40.0168 (5)0.0139 (5)0.0223 (5)0.0009 (4)0.0013 (5)0.0011 (4)
O50.0290 (5)0.0190 (4)0.0255 (5)0.0002 (4)0.0042 (4)0.0039 (3)
C60.0137 (5)0.0184 (5)0.0224 (6)0.0028 (4)0.0012 (4)0.0006 (4)
N70.0157 (4)0.0160 (4)0.0198 (4)0.0019 (4)0.0012 (4)0.0016 (3)
C80.0153 (5)0.0344 (6)0.0253 (6)0.0036 (6)0.0007 (5)0.0018 (5)
C90.0251 (6)0.0295 (6)0.0184 (5)0.0017 (6)0.0008 (5)0.0000 (4)
C100.0339 (7)0.0153 (5)0.0396 (7)0.0063 (5)0.0150 (6)0.0037 (5)
I110.02249 (4)0.02995 (4)0.02973 (4)0.00090 (3)0.00702 (3)0.00501 (3)
Geometric parameters (Å, º) top
N1—C21.1348 (18)N7—C81.5017 (17)
C2—C31.4681 (18)N7—C91.5053 (16)
C3—C41.5424 (17)N7—C101.5008 (16)
C3—H320.950C8—H830.975
C3—H310.948C8—H820.961
C4—O51.4134 (15)C8—H810.959
C4—C61.5253 (18)C9—H910.954
C4—H410.951C9—H920.963
O5—H510.804C9—H930.960
C6—N71.5114 (15)C10—H1010.974
C6—H610.962C10—H1030.982
C6—H620.952C10—H1020.962
N1—C2—C3177.37 (15)C8—N7—C9107.89 (10)
C2—C3—C4112.16 (11)C6—N7—C10111.66 (9)
C2—C3—H32108.8C8—N7—C10108.82 (10)
C4—C3—H32108.6C9—N7—C10108.44 (10)
C2—C3—H31108.5N7—C8—H83108.9
C4—C3—H31112.2N7—C8—H82106.6
H32—C3—H31106.4H83—C8—H82108.9
C3—C4—O5109.63 (10)N7—C8—H81108.6
C3—C4—C6109.49 (10)H83—C8—H81111.4
O5—C4—C6109.89 (10)H82—C8—H81112.2
C3—C4—H41108.1N7—C9—H91107.9
O5—C4—H41110.1N7—C9—H92107.4
C6—C4—H41109.6H91—C9—H92112.0
C4—O5—H51106.3N7—C9—H93107.8
C4—C6—N7115.94 (10)H91—C9—H93112.0
C4—C6—H61107.9H92—C9—H93109.6
N7—C6—H61105.0N7—C10—H101107.0
C4—C6—H62110.5N7—C10—H103109.6
N7—C6—H62107.2H101—C10—H103108.8
H61—C6—H62110.0N7—C10—H102108.8
C6—N7—C8112.58 (9)H101—C10—H102110.4
C6—N7—C9107.30 (10)H103—C10—H102112.2
(Rcarnitinenitrile2tetrafluoroborate1chloride1) top
Crystal data top
2(C7H15N2O)·BF4·ClF(000) = 864.000
Mr = 408.67Dx = 1.307 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 13634 reflections
a = 9.4006 (1) Åθ = 4–79°
b = 13.2619 (2) ŵ = 2.09 mm1
c = 16.6581 (2) ÅT = 160 K
V = 2076.76 (5) Å3Block, colorless
Z = 40.13 × 0.07 × 0.05 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
3958 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 74.5°, θmin = 4.3°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 1110
Tmin = 0.75, Tmax = 0.90k = 1616
22105 measured reflectionsl = 2020
4175 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.47P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.0003
S = 1.00Δρmax = 0.34 e Å3
4175 reflectionsΔρmin = 0.19 e Å3
264 parametersAbsolute structure: Flack (1983), 1797 Friedel-pairs
19 restraintsAbsolute structure parameter: 0.015 (13)
Primary atom site location: Other
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.06770 (15)0.67840 (12)0.47040 (8)0.0544
F20.0796 (3)0.75743 (13)0.38243 (17)0.08130.853 (3)
F30.0505 (2)0.62500 (17)0.34243 (10)0.06470.853 (3)
F40.1322 (2)0.60123 (17)0.42603 (15)0.06090.853 (3)
N10.2576 (2)0.47251 (18)0.66214 (12)0.0550
C20.1678 (2)0.45723 (15)0.61760 (11)0.0369
C30.0521 (2)0.43916 (14)0.56122 (10)0.0328
C40.10122 (19)0.37465 (13)0.48955 (10)0.0262
O50.15963 (15)0.28203 (10)0.51708 (8)0.0350
C60.02928 (18)0.36130 (13)0.43668 (9)0.0259
N70.00343 (14)0.32273 (11)0.35235 (8)0.0242
C80.0882 (2)0.39228 (15)0.30472 (11)0.0340
C90.0626 (3)0.21973 (14)0.35305 (12)0.0422
C100.1463 (2)0.31701 (19)0.31252 (12)0.0416
N110.7337 (2)0.50357 (16)0.64934 (12)0.0511
C120.6470 (2)0.51886 (15)0.60329 (11)0.0376
C130.5363 (2)0.54103 (14)0.54405 (11)0.0332
C140.60284 (19)0.57765 (12)0.46486 (10)0.0252
O150.67869 (14)0.49861 (10)0.42738 (8)0.0333
C160.48206 (18)0.61990 (13)0.41427 (10)0.0243
N170.52589 (15)0.67854 (11)0.34012 (8)0.0249
C180.6206 (2)0.76546 (15)0.36065 (12)0.0362
C190.3921 (2)0.71857 (19)0.30362 (13)0.0432
C200.5990 (2)0.61400 (16)0.27927 (11)0.0365
Cl210.45198 (5)0.33936 (3)0.37601 (3)0.0355
B220.0246 (2)0.66776 (16)0.40679 (12)0.0324
H410.17420.40900.46110.0315*
H610.07280.42920.43300.0312*
H620.09520.31680.46580.0317*
H820.09110.36730.24910.0503*
H810.04350.45870.30620.0504*
H830.18460.39460.32700.0496*
H1010.13460.29290.25640.0628*
H1030.19110.38340.31030.0625*
H1020.20730.27250.34230.0629*
H930.07080.19540.29730.0631*
H910.00380.17680.38100.0634*
H920.15700.22010.37860.0637*
H320.02510.40590.58980.0406*
H310.02100.50000.53940.0405*
H1410.67140.63210.47760.0323*
H1610.41940.56140.39650.0304*
H1620.42530.66550.44950.0293*
H1810.63370.80630.31430.0520*
H1820.71470.74070.37490.0532*
H1830.58510.80200.40460.0529*
H2020.61170.65110.22910.0541*
H2010.54230.55430.26820.0546*
H2030.69050.58970.29830.0545*
H1930.41840.75450.25480.0657*
H1920.32600.66410.29270.0656*
H1910.34710.76380.34130.0655*
H1310.47610.48220.53240.0404*
H1320.47960.59550.56940.0402*
H1510.61300.46040.40990.0541*
H510.09430.25630.54660.0556*
F50.1456 (10)0.7275 (8)0.4392 (7)0.05420.147 (3)
F60.069 (2)0.5855 (10)0.3898 (10)0.08410.147 (3)
F70.0210 (18)0.7259 (12)0.3509 (8)0.08480.147 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0428 (7)0.0784 (9)0.0419 (6)0.0138 (7)0.0102 (5)0.0156 (6)
F20.1003 (19)0.0321 (8)0.111 (2)0.0077 (10)0.0503 (18)0.0077 (10)
F30.0564 (10)0.0951 (15)0.0425 (8)0.0105 (10)0.0081 (7)0.0237 (8)
F40.0402 (10)0.0664 (12)0.0761 (13)0.0114 (8)0.0053 (8)0.0189 (10)
N10.0565 (12)0.0704 (14)0.0379 (10)0.0164 (10)0.0041 (9)0.0102 (10)
C20.0461 (11)0.0384 (10)0.0261 (8)0.0072 (8)0.0042 (8)0.0029 (8)
C30.0364 (10)0.0365 (9)0.0255 (8)0.0003 (8)0.0005 (8)0.0020 (7)
C40.0255 (8)0.0293 (8)0.0237 (7)0.0011 (7)0.0010 (6)0.0008 (6)
O50.0318 (7)0.0373 (7)0.0358 (7)0.0078 (5)0.0024 (5)0.0049 (6)
C60.0237 (9)0.0296 (8)0.0243 (7)0.0009 (6)0.0017 (6)0.0013 (6)
N70.0222 (7)0.0256 (7)0.0248 (6)0.0014 (5)0.0017 (5)0.0009 (5)
C80.0356 (10)0.0393 (10)0.0272 (8)0.0070 (8)0.0040 (7)0.0024 (7)
C90.0604 (14)0.0263 (8)0.0398 (10)0.0072 (9)0.0028 (9)0.0046 (8)
C100.0250 (9)0.0663 (14)0.0336 (9)0.0063 (9)0.0064 (7)0.0050 (9)
N110.0621 (13)0.0528 (11)0.0386 (9)0.0115 (10)0.0110 (9)0.0094 (9)
C120.0503 (12)0.0331 (9)0.0293 (9)0.0029 (8)0.0004 (8)0.0065 (7)
C130.0365 (11)0.0344 (8)0.0286 (8)0.0004 (8)0.0004 (8)0.0055 (7)
C140.0249 (8)0.0236 (7)0.0269 (8)0.0006 (6)0.0014 (7)0.0019 (6)
O150.0264 (7)0.0323 (7)0.0413 (7)0.0070 (5)0.0003 (5)0.0015 (5)
C160.0204 (8)0.0271 (7)0.0254 (7)0.0007 (6)0.0021 (6)0.0030 (6)
N170.0228 (7)0.0290 (7)0.0228 (6)0.0041 (6)0.0004 (5)0.0014 (5)
C180.0432 (11)0.0322 (9)0.0331 (9)0.0076 (8)0.0023 (8)0.0037 (7)
C190.0288 (10)0.0609 (13)0.0400 (10)0.0135 (9)0.0017 (8)0.0190 (10)
C200.0418 (11)0.0429 (10)0.0247 (8)0.0078 (9)0.0028 (7)0.0048 (8)
Cl210.0320 (2)0.0345 (2)0.0401 (2)0.00079 (17)0.00299 (17)0.00389 (18)
B220.0340 (11)0.031 (1)0.0319 (9)0.0033 (9)0.0033 (8)0.0036 (8)
F50.032 (5)0.060 (5)0.070 (6)0.013 (4)0.008 (4)0.006 (5)
F60.111 (8)0.057 (6)0.084 (7)0.009 (6)0.013 (7)0.014 (6)
F70.104 (8)0.086 (7)0.065 (6)0.013 (6)0.008 (6)0.048 (5)
Geometric parameters (Å, º) top
F1—B221.377 (2)N11—C121.137 (3)
F2—B221.359 (3)C12—C131.464 (3)
F3—B221.403 (3)C13—C141.539 (2)
F4—B221.380 (3)C13—H1310.983
N1—C21.142 (3)C13—H1320.992
C2—C31.457 (3)C14—O151.413 (2)
C3—C41.540 (2)C14—C161.521 (2)
C3—H320.974C14—H1410.991
C3—H310.931O15—H1510.851
C4—O51.421 (2)C16—N171.517 (2)
C4—C61.520 (2)C16—H1611.018
C4—H410.949C16—H1620.997
O5—H510.857N17—C181.496 (2)
C6—N71.515 (2)N17—C191.494 (2)
C6—H610.991N17—C201.494 (2)
C6—H620.984C18—H1810.951
N7—C81.491 (2)C18—H1820.973
N7—C91.501 (2)C18—H1830.939
N7—C101.500 (2)C19—H1930.974
C8—H820.984C19—H1920.970
C8—H810.976C19—H1910.966
C8—H830.980C20—H2020.977
C9—H930.986C20—H2010.972
C9—H910.920C20—H2030.972
C9—H920.984B22—F51.488 (10)
C10—H1010.995B22—F61.201 (13)
C10—H1030.977B22—F71.282 (11)
C10—H1020.961
N1—C2—C3179.1 (2)H131—C13—H132110.7
C2—C3—C4111.56 (17)C13—C14—O15110.48 (14)
C2—C3—H32108.4C13—C14—C16106.72 (14)
C4—C3—H32110.5O15—C14—C16113.89 (14)
C2—C3—H31110.1C13—C14—H141108.1
C4—C3—H31105.9O15—C14—H141107.9
H32—C3—H31110.4C16—C14—H141109.6
C3—C4—O5110.22 (14)C14—O15—H151103.1
C3—C4—C6105.78 (14)C14—C16—N17115.94 (14)
O5—C4—C6113.45 (14)C14—C16—H161108.2
C3—C4—H41109.7N17—C16—H161108.2
O5—C4—H41107.2C14—C16—H162107.2
C6—C4—H41110.5N17—C16—H162108.3
C4—O5—H51104.6H161—C16—H162108.8
C4—C6—N7116.55 (14)C16—N17—C18111.75 (13)
C4—C6—H61105.2C16—N17—C19106.56 (13)
N7—C6—H61108.4C18—N17—C19108.66 (16)
C4—C6—H62107.0C16—N17—C20112.57 (14)
N7—C6—H62110.8C18—N17—C20108.82 (14)
H61—C6—H62108.5C19—N17—C20108.34 (15)
C6—N7—C8112.17 (13)N17—C18—H181109.3
C6—N7—C9111.51 (13)N17—C18—H182109.7
C8—N7—C9109.16 (15)H181—C18—H182105.8
C6—N7—C10106.48 (13)N17—C18—H183111.4
C8—N7—C10108.26 (14)H181—C18—H183112.6
C9—N7—C10109.15 (16)H182—C18—H183107.9
N7—C8—H82108.0N17—C19—H193107.4
N7—C8—H81107.2N17—C19—H192110.6
H82—C8—H81109.8H193—C19—H192111.7
N7—C8—H83110.7N17—C19—H191109.0
H82—C8—H83110.0H193—C19—H191110.4
H81—C8—H83111.1H192—C19—H191107.7
N7—C9—H93108.9N17—C20—H202110.4
N7—C9—H91108.6N17—C20—H201110.1
H93—C9—H91108.7H202—C20—H201108.3
N7—C9—H92111.9N17—C20—H203112.1
H93—C9—H92109.8H202—C20—H203109.7
H91—C9—H92108.9H201—C20—H203106.1
N7—C10—H101109.4F1—B22—F598.5 (4)
N7—C10—H103110.9F1—B22—F6119.5 (7)
H101—C10—H103107.5F5—B22—F6107.8 (11)
N7—C10—H102109.7F1—B22—F7106.6 (7)
H101—C10—H102110.8F5—B22—F7101.5 (10)
H103—C10—H102108.5F6—B22—F7119.4 (11)
N11—C12—C13178.7 (2)F3—B22—F4106.7 (2)
C12—C13—C14110.59 (16)F3—B22—F1108.21 (17)
C12—C13—H131112.5F4—B22—F1110.41 (18)
C14—C13—H131108.4F3—B22—F2108.5 (2)
C12—C13—H132104.0F4—B22—F2110.5 (2)
C14—C13—H132110.7F1—B22—F2112.34 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H61···O15i0.992.513.298 (3)136
Symmetry code: (i) x1, y, z.
(Diltiazembromide) top
Crystal data top
C22H27N2O4S·BrF(000) = 1024
Mr = 495.44Dx = 1.410 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 5919 reflections
a = 6.1060 (3) Åθ = 5–78°
b = 9.0317 (6) ŵ = 3.48 mm1
c = 42.330 (4) ÅT = 160 K
V = 2334.4 (3) Å3Plate, colorless
Z = 40.07 × 0.04 × 0.01 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
4199 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.102
ω scansθmax = 74.5°, θmin = 4.2°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 77
Tmin = 0.69, Tmax = 0.95k = 1110
24363 measured reflectionsl = 5252
4772 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.067 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 29.0 23.1 9.35
wR(F2) = 0.092(Δ/σ)max = 0.002
S = 1.09Δρmax = 0.93 e Å3
4772 reflectionsΔρmin = 0.72 e Å3
272 parametersAbsolute structure: Flack (1983), 1977 Friedel-pairs
0 restraintsAbsolute structure parameter: 0.04 (3)
Primary atom site location: Other
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.0196 (3)0.16071 (18)0.58505 (4)0.0428
C20.1067 (9)0.1066 (8)0.62127 (14)0.0374
C30.1757 (11)0.0332 (8)0.62539 (18)0.0442
C40.2736 (12)0.0799 (8)0.65363 (16)0.0483
C50.2981 (12)0.0226 (8)0.67763 (18)0.0478
C60.2283 (11)0.1644 (8)0.67375 (17)0.0394
C70.1299 (10)0.2103 (7)0.64579 (15)0.0321
N80.0507 (7)0.3563 (5)0.64275 (10)0.0290
C90.0934 (9)0.4188 (7)0.66718 (13)0.0294
C100.0286 (10)0.5280 (6)0.68756 (13)0.0312
N110.1185 (7)0.6150 (6)0.70871 (10)0.0275
C120.2436 (11)0.7306 (7)0.69168 (16)0.0385
C130.0065 (12)0.6818 (6)0.73561 (14)0.0452
C140.0917 (9)0.4459 (7)0.61721 (14)0.0306
O150.0096 (8)0.5654 (4)0.61337 (8)0.0353
C160.2702 (9)0.3849 (8)0.59466 (14)0.0321
O170.3822 (6)0.5117 (5)0.58050 (10)0.0374
C180.4840 (10)0.6029 (8)0.60184 (13)0.0365
O190.4773 (8)0.5760 (5)0.62998 (9)0.0408
C200.5967 (10)0.7309 (7)0.58725 (15)0.0403
C210.1802 (10)0.2881 (7)0.56829 (15)0.0374
C220.0745 (10)0.3688 (8)0.54052 (15)0.0367
C230.1281 (10)0.4362 (7)0.54301 (15)0.0347
C240.2245 (10)0.5101 (8)0.51794 (15)0.0347
C250.1192 (10)0.5144 (6)0.48912 (14)0.0246
C260.0829 (9)0.4457 (6)0.48617 (15)0.0270
C270.1755 (9)0.3733 (7)0.51119 (15)0.0324
O280.1984 (6)0.5869 (6)0.46312 (9)0.0388
C290.3813 (11)0.6810 (7)0.46722 (16)0.0426
Br300.52050 (10)0.39795 (8)0.736573 (16)0.0398
H2930.40590.73620.44820.0628*
H2920.50790.62240.47200.0628*
H2910.35380.74860.48400.0629*
H2310.20240.43070.56230.0398*
H2410.36010.55650.52050.0408*
H2610.15320.44860.46690.0372*
H2710.31000.32520.50870.0413*
H2110.30220.22910.56010.0421*
H2030.57950.81660.60030.0632*
H2020.74870.70940.58480.0631*
H2010.53360.74940.56700.0631*
H1610.37750.32850.60690.0409*
H1330.09170.73310.74930.0719*
H1320.11240.75050.72760.0718*
H1310.07900.60580.74720.0718*
H1230.35010.77370.70580.0591*
H1220.31670.68870.67380.0590*
H1210.14390.80670.68480.0588*
H1110.21510.55240.71700.0421*
H1020.10350.59800.67390.0370*
H1010.13290.47520.70020.0371*
H920.21620.46690.65720.0360*
H910.14420.33710.68020.0360*
H310.15770.10110.60900.0510*
H410.32020.17670.65610.0571*
H510.36460.00470.69660.0598*
H610.24720.23290.69000.0501*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0438 (10)0.0469 (10)0.0376 (8)0.0019 (10)0.0078 (10)0.0077 (7)
C20.033 (3)0.037 (4)0.043 (4)0.008 (3)0.001 (3)0.001 (4)
C30.046 (4)0.032 (4)0.055 (5)0.004 (3)0.002 (4)0.006 (4)
C40.058 (5)0.034 (5)0.052 (5)0.012 (4)0.002 (4)0.006 (4)
C50.053 (5)0.046 (5)0.044 (4)0.025 (4)0.005 (4)0.004 (4)
C60.043 (4)0.037 (4)0.038 (4)0.001 (3)0.001 (3)0.007 (3)
C70.032 (3)0.034 (4)0.031 (4)0.006 (3)0.002 (3)0.002 (3)
N80.025 (3)0.035 (3)0.026 (2)0.010 (2)0.003 (2)0.005 (2)
C90.026 (3)0.028 (4)0.035 (3)0.009 (3)0.002 (2)0.004 (3)
C100.024 (3)0.029 (3)0.041 (3)0.007 (3)0.005 (3)0.005 (3)
N110.026 (2)0.025 (3)0.032 (3)0.003 (2)0.000 (2)0.005 (3)
C120.043 (4)0.026 (4)0.047 (4)0.015 (3)0.001 (3)0.003 (3)
C130.035 (3)0.061 (4)0.040 (3)0.014 (4)0.009 (4)0.023 (3)
C140.018 (3)0.041 (4)0.032 (3)0.006 (3)0.004 (2)0.012 (3)
O150.030 (2)0.039 (3)0.037 (2)0.016 (3)0.003 (2)0.0013 (18)
C160.029 (3)0.030 (4)0.037 (3)0.010 (3)0.000 (3)0.005 (3)
O170.027 (2)0.045 (3)0.041 (3)0.009 (2)0.000 (2)0.008 (2)
C180.020 (3)0.045 (3)0.044 (3)0.014 (4)0.002 (3)0.012 (3)
O190.032 (2)0.050 (3)0.040 (2)0.004 (3)0.003 (2)0.000 (2)
C200.030 (4)0.042 (4)0.049 (4)0.008 (3)0.002 (3)0.007 (4)
C210.035 (4)0.041 (4)0.036 (4)0.016 (3)0.001 (3)0.009 (3)
C220.032 (4)0.049 (5)0.029 (3)0.011 (3)0.005 (3)0.009 (3)
C230.034 (3)0.041 (4)0.029 (4)0.009 (3)0.002 (3)0.006 (3)
C240.025 (3)0.039 (4)0.041 (4)0.005 (3)0.002 (3)0.000 (3)
C250.030 (3)0.012 (3)0.031 (3)0.001 (2)0.003 (3)0.001 (3)
C260.027 (3)0.015 (3)0.038 (4)0.003 (2)0.007 (3)0.003 (3)
C270.023 (3)0.030 (4)0.044 (4)0.006 (3)0.002 (3)0.006 (3)
O280.037 (2)0.047 (3)0.033 (2)0.008 (2)0.0041 (19)0.009 (2)
C290.038 (4)0.046 (5)0.044 (4)0.009 (4)0.004 (3)0.007 (4)
Br300.0287 (3)0.0486 (4)0.0422 (3)0.0043 (4)0.0020 (3)0.0052 (4)
Geometric parameters (Å, º) top
S1—C21.785 (6)C13—H1310.954
S1—C211.820 (7)C14—O151.202 (7)
C2—C31.342 (9)C14—C161.550 (7)
C2—C71.405 (9)C16—O171.462 (7)
C3—C41.402 (9)C16—C211.521 (8)
C3—H310.933C16—H1610.979
C4—C51.382 (9)O17—C181.372 (7)
C4—H410.925C18—O191.216 (6)
C5—C61.360 (9)C18—C201.480 (9)
C5—H510.932C20—H2030.956
C6—C71.390 (9)C20—H2020.954
C6—H610.933C20—H2010.953
C7—N81.411 (7)C21—C221.527 (9)
N8—C91.470 (6)C21—H2110.980
N8—C141.373 (7)C22—C231.382 (8)
C9—C101.507 (7)C22—C271.387 (8)
C9—H920.964C23—C241.385 (9)
C9—H910.972C23—H2310.936
C10—N111.492 (6)C24—C251.380 (8)
C10—H1020.970C24—H2410.934
C10—H1010.958C25—C261.387 (7)
N11—C121.481 (7)C25—O281.369 (7)
N11—C131.497 (7)C26—C271.367 (8)
N11—H1110.889C26—H2610.924
C12—H1230.966C27—H2710.935
C12—H1220.956O28—C291.414 (7)
C12—H1210.963C29—H2930.958
C13—H1330.953C29—H2920.958
C13—H1320.958C29—H2910.952
C2—S1—C21102.6 (3)H132—C13—H131109.6
S1—C2—C3120.3 (6)N8—C14—O15124.0 (5)
S1—C2—C7119.7 (5)N8—C14—C16113.8 (5)
C3—C2—C7120.0 (6)O15—C14—C16122.0 (6)
C2—C3—C4121.8 (7)C14—C16—O17107.7 (5)
C2—C3—H31119.0C14—C16—C21113.7 (5)
C4—C3—H31119.2O17—C16—C21108.6 (5)
C3—C4—C5118.1 (7)C14—C16—H161109.2
C3—C4—H41120.8O17—C16—H161108.1
C5—C4—H41121.1C21—C16—H161109.4
C4—C5—C6120.6 (7)C16—O17—C18114.3 (5)
C4—C5—H51120.1O17—C18—O19120.6 (6)
C6—C5—H51119.3O17—C18—C20113.9 (5)
C5—C6—C7121.2 (7)O19—C18—C20125.5 (6)
C5—C6—H61119.8C18—C20—H203109.9
C7—C6—H61119.0C18—C20—H202109.8
C2—C7—C6118.3 (6)H203—C20—H202109.5
C2—C7—N8121.4 (6)C18—C20—H201108.9
C6—C7—N8120.3 (6)H203—C20—H201109.4
C7—N8—C9120.0 (5)H202—C20—H201109.4
C7—N8—C14124.0 (5)C16—C21—S1108.6 (4)
C9—N8—C14115.9 (5)C16—C21—C22116.3 (6)
N8—C9—C10111.0 (4)S1—C21—C22108.6 (4)
N8—C9—H92109.2C16—C21—H211107.4
C10—C9—H92109.9S1—C21—H211107.8
N8—C9—H91107.4C22—C21—H211107.9
C10—C9—H91109.3C21—C22—C23122.0 (6)
H92—C9—H91110.0C21—C22—C27121.0 (5)
C9—C10—N11113.0 (5)C23—C22—C27117.0 (6)
C9—C10—H102108.6C22—C23—C24122.3 (7)
N11—C10—H102107.3C22—C23—H231118.5
C9—C10—H101108.8C24—C23—H231119.2
N11—C10—H101109.1C23—C24—C25119.5 (6)
H102—C10—H101110.0C23—C24—H241120.2
C10—N11—C12112.9 (4)C25—C24—H241120.2
C10—N11—C13111.2 (4)C24—C25—C26118.8 (6)
C12—N11—C13110.4 (5)C24—C25—O28124.0 (5)
C10—N11—H111107.5C26—C25—O28117.1 (6)
C12—N11—H111107.3C25—C26—C27120.8 (6)
C13—N11—H111107.1C25—C26—H261118.7
N11—C12—H123109.2C27—C26—H261120.4
N11—C12—H122110.3C22—C27—C26121.6 (6)
H123—C12—H122109.5C22—C27—H271118.6
N11—C12—H121108.9C26—C27—H271119.9
H123—C12—H121109.1C25—O28—C29117.9 (5)
H122—C12—H121109.7O28—C29—H293109.5
N11—C13—H133109.7O28—C29—H292109.3
N11—C13—H132109.6H293—C29—H292109.8
H133—C13—H132108.9O28—C29—H291109.8
N11—C13—H131109.9H293—C29—H291108.7
H133—C13—H131109.2H292—C29—H291109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H202···O15i0.952.383.132 (9)135
C20—H201···O28ii0.952.413.241 (9)145
C12—H122···O19iii0.962.463.417 (9)177
C9—H92···O19iii0.962.413.372 (9)177
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1; (iii) x1, y, z.
(Diltiazemiodide) top
Crystal data top
C22H27N2O4S·IF(000) = 1096
Mr = 542.44Dx = 1.490 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 13159 reflections
a = 6.2219 (1) Åθ = 4–79°
b = 9.0228 (1) ŵ = 11.46 mm1
c = 43.0569 (5) ÅT = 160 K
V = 2417.17 (5) Å3Prism, colorless
Z = 40.39 × 0.05 × 0.03 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
4860 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 74.5°, θmin = 4.1°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 77
Tmin = 0.47, Tmax = 0.70k = 911
15587 measured reflectionsl = 5352
4935 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.03P)2 + 1.04P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.002
S = 0.99Δρmax = 0.36 e Å3
4935 reflectionsΔρmin = 0.37 e Å3
272 parametersAbsolute structure: Flack (1983), 2050 Friedel-pairs
0 restraintsAbsolute structure parameter: 0.013 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.02427 (11)0.15951 (6)0.417600 (13)0.0276
C20.8985 (4)0.1108 (3)0.38217 (5)0.0254
C30.8229 (5)0.0332 (3)0.37791 (6)0.0303
C40.7301 (5)0.0752 (3)0.34987 (6)0.0343
C50.7125 (5)0.0256 (3)0.32594 (6)0.0337
C60.7876 (4)0.1698 (3)0.32967 (6)0.0289
C70.8805 (4)0.2134 (3)0.35759 (6)0.0237
N80.9596 (3)0.3606 (2)0.36116 (4)0.0214
C91.1007 (4)0.4238 (3)0.33715 (5)0.0221
C100.9747 (4)0.5365 (3)0.31811 (5)0.0243
N111.1161 (3)0.6262 (2)0.29716 (4)0.0218
C120.9878 (5)0.6990 (3)0.27228 (6)0.0353
C131.2474 (5)0.7371 (3)0.31425 (6)0.0321
C140.9148 (4)0.4476 (3)0.38623 (5)0.0207
O150.9969 (3)0.56815 (16)0.39033 (3)0.0245
C160.7398 (4)0.3879 (3)0.40823 (5)0.0220
O170.6276 (3)0.51100 (19)0.42194 (4)0.0234
C180.5268 (3)0.5996 (3)0.40072 (5)0.0236
O190.5332 (3)0.57361 (18)0.37324 (4)0.0276
C200.4120 (4)0.7260 (3)0.41545 (6)0.0289
C210.8276 (4)0.2897 (3)0.43445 (5)0.0240
C220.9387 (4)0.3693 (3)0.46107 (5)0.0226
C230.8368 (4)0.3766 (3)0.49003 (5)0.0225
C240.9325 (4)0.4498 (3)0.51471 (5)0.0223
C251.1323 (4)0.5170 (3)0.51102 (5)0.0207
C261.2378 (4)0.5077 (3)0.48268 (6)0.0230
C271.1405 (4)0.4332 (3)0.45812 (5)0.0242
O281.2105 (3)0.5890 (2)0.53656 (4)0.0271
C291.3943 (4)0.6818 (3)0.53234 (6)0.0312
I301.48132 (2)0.394832 (17)0.264191 (3)0.0283
H310.82930.10140.39460.0364*
H410.67920.17160.34750.0405*
H510.65190.00150.30670.0405*
H610.77020.23750.31350.0339*
H921.22710.47040.34670.0270*
H911.14860.34360.32370.0273*
H1010.90030.60340.33210.0296*
H1020.87180.48690.30500.0292*
H1211.08200.75580.25970.0529*
H1220.88280.76120.28200.0533*
H1230.92290.62440.26020.0531*
H1311.33910.78600.29950.0488*
H1321.33160.68820.33000.0487*
H1331.15360.80870.32340.0492*
H1610.63790.33090.39600.0259*
H2010.39100.80330.40070.0463*
H2020.48690.76380.43310.0467*
H2030.27620.69050.42180.0457*
H2110.70950.23100.44280.0290*
H2310.70140.33180.49260.0267*
H2410.86510.45600.53390.0265*
H2611.37000.55090.47960.0276*
H2711.21690.42500.43910.0286*
H2921.41710.73290.55140.0459*
H2911.51690.61950.52790.0458*
H2931.36910.74920.51540.0458*
H1111.20890.56550.28830.0328*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0344 (3)0.0262 (2)0.0222 (2)0.0002 (3)0.0066 (3)0.00463 (19)
C20.0295 (11)0.0249 (11)0.0219 (11)0.0026 (10)0.0027 (9)0.0038 (10)
C30.0368 (14)0.0221 (12)0.0322 (13)0.0049 (10)0.0018 (11)0.0060 (10)
C40.0432 (15)0.0249 (13)0.0347 (14)0.0076 (11)0.0001 (11)0.0033 (11)
C50.0391 (15)0.0319 (14)0.0300 (13)0.0075 (12)0.0050 (12)0.0065 (11)
C60.0374 (14)0.0292 (13)0.0201 (11)0.0036 (11)0.0038 (10)0.0015 (10)
C70.0289 (12)0.0214 (11)0.0207 (11)0.0032 (9)0.0011 (9)0.0011 (9)
N80.0264 (9)0.0210 (8)0.0167 (8)0.0051 (7)0.0009 (7)0.0042 (6)
C90.0225 (10)0.0245 (11)0.0193 (10)0.0016 (9)0.0021 (8)0.0045 (9)
C100.0200 (11)0.0300 (11)0.0230 (10)0.0055 (10)0.0012 (9)0.0080 (8)
N110.0209 (9)0.0260 (10)0.0185 (9)0.0017 (8)0.0004 (7)0.0046 (8)
C120.0323 (13)0.0429 (14)0.0307 (12)0.0072 (12)0.0088 (11)0.0174 (10)
C130.0352 (14)0.0305 (13)0.0304 (13)0.0111 (11)0.0038 (11)0.0052 (11)
C140.0187 (10)0.0254 (11)0.0181 (10)0.0019 (8)0.0037 (8)0.0049 (8)
O150.0246 (8)0.0255 (7)0.0234 (7)0.0090 (7)0.0005 (7)0.0009 (6)
C160.0223 (10)0.0253 (11)0.0183 (10)0.0046 (10)0.0009 (8)0.0025 (9)
O170.0235 (8)0.0291 (8)0.0176 (7)0.0023 (7)0.0012 (6)0.0029 (6)
C180.0185 (10)0.0284 (10)0.0240 (10)0.0075 (11)0.0014 (8)0.0043 (8)
O190.0277 (8)0.0336 (8)0.0213 (7)0.0007 (7)0.0038 (7)0.0017 (6)
C200.0251 (12)0.0295 (12)0.0320 (13)0.0043 (10)0.0010 (10)0.0001 (10)
C210.0245 (11)0.0271 (12)0.0204 (11)0.0067 (9)0.0024 (9)0.0054 (9)
C220.0248 (11)0.0253 (11)0.0178 (10)0.0038 (9)0.0025 (8)0.0052 (9)
C230.0197 (10)0.0249 (11)0.0229 (11)0.0004 (9)0.0011 (8)0.0066 (9)
C240.0229 (11)0.0244 (10)0.0195 (10)0.0029 (9)0.0045 (8)0.0036 (8)
C250.0238 (11)0.0189 (10)0.0195 (10)0.0034 (9)0.0023 (9)0.0022 (9)
C260.0179 (10)0.0284 (12)0.0227 (11)0.0028 (8)0.0007 (9)0.0045 (9)
C270.0261 (11)0.0302 (12)0.0162 (10)0.0041 (9)0.0022 (9)0.0035 (9)
O280.0286 (8)0.0312 (9)0.0214 (8)0.0043 (8)0.0001 (6)0.0034 (7)
C290.0296 (13)0.0334 (13)0.0306 (13)0.0068 (11)0.0025 (10)0.0011 (11)
I300.02538 (7)0.03403 (8)0.02551 (7)0.00332 (6)0.00250 (6)0.00578 (6)
Geometric parameters (Å, º) top
S1—C21.770 (2)C13—H1330.957
S1—C211.845 (3)C14—O151.214 (3)
C2—C31.394 (4)C14—C161.540 (3)
C2—C71.411 (3)C16—O171.439 (3)
C3—C41.391 (4)C16—C211.535 (3)
C3—H310.947C16—H1610.971
C4—C51.379 (4)O17—C181.367 (3)
C4—H410.931C18—O191.207 (3)
C5—C61.392 (4)C18—C201.488 (3)
C5—H510.943C20—H2010.953
C6—C71.391 (3)C20—H2020.953
C6—H610.933C20—H2030.944
C7—N81.425 (3)C21—C221.519 (3)
N8—C91.471 (3)C21—H2110.975
N8—C141.364 (3)C22—C231.400 (3)
C9—C101.524 (3)C22—C271.387 (3)
C9—H920.981C23—C241.385 (3)
C9—H910.974C23—H2310.941
C10—N111.497 (3)C24—C251.392 (3)
C10—H1010.970C24—H2410.928
C10—H1020.965C25—C261.388 (3)
N11—C121.489 (3)C25—O281.367 (3)
N11—C131.487 (3)C26—C271.391 (3)
N11—H1110.884C26—H2610.920
C12—H1210.948C27—H2710.949
C12—H1220.958O28—C291.429 (3)
C12—H1230.942C29—H2920.953
C13—H1310.959C29—H2910.966
C13—H1320.964C29—H2930.963
C2—S1—C21101.76 (11)H132—C13—H133110.5
S1—C2—C3119.62 (19)N8—C14—O15123.0 (2)
S1—C2—C7121.22 (19)N8—C14—C16115.46 (19)
C3—C2—C7119.1 (2)O15—C14—C16121.4 (2)
C2—C3—C4120.5 (2)C14—C16—O17108.97 (19)
C2—C3—H31119.4C14—C16—C21113.77 (19)
C4—C3—H31120.0O17—C16—C21108.44 (17)
C3—C4—C5120.1 (2)C14—C16—H161108.3
C3—C4—H41119.3O17—C16—H161108.3
C5—C4—H41120.5C21—C16—H161109.0
C4—C5—C6120.3 (2)C16—O17—C18113.60 (17)
C4—C5—H51121.2O17—C18—O19121.8 (2)
C6—C5—H51118.5O17—C18—C20112.58 (19)
C5—C6—C7120.2 (2)O19—C18—C20125.7 (2)
C5—C6—H61119.1C18—C20—H201110.0
C7—C6—H61120.6C18—C20—H202112.2
C2—C7—C6119.7 (2)H201—C20—H202109.7
C2—C7—N8120.3 (2)C18—C20—H203107.0
C6—C7—N8120.0 (2)H201—C20—H203108.6
C7—N8—C9119.45 (18)H202—C20—H203109.2
C7—N8—C14123.46 (19)C16—C21—S1108.29 (16)
C9—N8—C14117.08 (18)C16—C21—C22116.4 (2)
N8—C9—C10109.24 (18)S1—C21—C22107.21 (16)
N8—C9—H92110.5C16—C21—H211108.5
C10—C9—H92110.6S1—C21—H211107.4
N8—C9—H91108.2C22—C21—H211108.7
C10—C9—H91109.5C21—C22—C23119.2 (2)
H92—C9—H91108.8C21—C22—C27122.6 (2)
C9—C10—N11112.48 (19)C23—C22—C27118.1 (2)
C9—C10—H101109.0C22—C23—C24120.7 (2)
N11—C10—H101108.6C22—C23—H231119.2
C9—C10—H102110.3C24—C23—H231120.0
N11—C10—H102106.7C23—C24—C25120.3 (2)
H101—C10—H102109.7C23—C24—H241121.1
C10—N11—C12110.91 (18)C25—C24—H241118.6
C10—N11—C13112.86 (18)C24—C25—C26119.7 (2)
C12—N11—C13110.7 (2)C24—C25—O28115.7 (2)
C10—N11—H111108.1C26—C25—O28124.6 (2)
C12—N11—H111108.2C25—C26—C27119.4 (2)
C13—N11—H111105.8C25—C26—H261121.5
N11—C12—H121108.5C27—C26—H261119.0
N11—C12—H122108.1C26—C27—C22121.7 (2)
H121—C12—H122110.7C26—C27—H271118.4
N11—C12—H123108.3C22—C27—H271120.0
H121—C12—H123109.6C25—O28—C29117.46 (19)
H122—C12—H123111.6O28—C29—H292107.0
N11—C13—H131108.0O28—C29—H291108.4
N11—C13—H132109.8H292—C29—H291109.5
H131—C13—H132110.6O28—C29—H293109.7
N11—C13—H133108.9H292—C29—H293111.9
H131—C13—H133109.0H291—C29—H293110.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H92···O19i0.982.413.388 (4)176
C13—H132···O19i0.962.473.434 (4)176
C20—H202···O28ii0.952.333.241 (4)161
C20—H203···O15iii0.942.463.142 (4)129
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z+1; (iii) x1, y, z.
(Diltiazemnitrate) top
Crystal data top
C22H27N2O4S·NO3F(000) = 1008
Mr = 477.54Dx = 1.314 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 11950 reflections
a = 6.3765 (1) Åθ = 4–78°
b = 8.8174 (1) ŵ = 1.59 mm1
c = 42.9420 (7) ÅT = 160 K
V = 2414.38 (6) Å3Prism, colorless
Z = 40.62 × 0.05 × 0.03 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
4641 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 74.5°, θmin = 4.1°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 77
Tmin = 0.58, Tmax = 0.96k = 1110
25295 measured reflectionsl = 5353
4925 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 1.44P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max = 0.001
S = 0.99Δρmax = 0.35 e Å3
4925 reflectionsΔρmin = 0.26 e Å3
299 parametersAbsolute structure: Flack (1983), 2051 Friedel-pairs
0 restraintsAbsolute structure parameter: 0.030 (18)
Primary atom site location: Other
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48622 (9)0.15743 (6)0.416803 (12)0.0304
C20.3603 (4)0.1099 (2)0.38127 (5)0.0281
C30.2838 (4)0.0364 (3)0.37682 (6)0.0346
C40.1900 (4)0.0764 (3)0.34889 (6)0.0393
C50.1767 (4)0.0277 (3)0.32499 (6)0.0396
C60.2524 (4)0.1741 (3)0.32892 (5)0.0341
C70.3456 (4)0.2158 (2)0.35687 (5)0.0276
N80.4237 (3)0.3662 (2)0.36097 (4)0.0253
C90.5657 (3)0.4309 (3)0.33734 (5)0.0276
C100.4450 (4)0.5452 (3)0.31781 (5)0.0332
N110.5822 (3)0.6363 (2)0.29678 (4)0.0337
C120.7080 (5)0.7493 (3)0.31383 (6)0.0481
C130.4533 (5)0.7108 (4)0.27208 (6)0.0563
C140.3762 (3)0.4539 (2)0.38598 (5)0.0234
O150.4559 (2)0.57880 (16)0.39037 (3)0.0283
C160.2076 (3)0.3910 (2)0.40798 (4)0.0235
O170.0944 (2)0.51510 (16)0.42200 (3)0.0262
C180.0094 (3)0.6025 (2)0.40093 (5)0.0260
O190.0057 (3)0.57586 (17)0.37345 (3)0.0304
C200.1245 (4)0.7306 (2)0.41584 (6)0.0319
C210.2958 (3)0.2901 (2)0.43394 (5)0.0261
C220.4057 (3)0.3708 (2)0.46073 (5)0.0245
C230.3056 (3)0.3782 (2)0.48979 (5)0.0244
C240.4019 (3)0.4500 (2)0.51469 (5)0.0240
C250.5970 (4)0.5166 (2)0.51106 (5)0.0245
C260.7005 (3)0.5077 (2)0.48265 (5)0.0248
C270.6027 (3)0.4344 (2)0.45783 (5)0.0264
O280.6775 (2)0.58701 (18)0.53679 (3)0.0293
C290.8593 (4)0.6789 (3)0.53296 (5)0.0331
N300.0230 (3)0.4375 (3)0.26675 (5)0.0438
O310.1894 (4)0.4705 (4)0.25294 (6)0.0814
O320.0229 (4)0.4637 (3)0.29506 (5)0.0755
O330.1335 (5)0.3915 (4)0.25447 (7)0.0942
H2110.17610.23100.44220.0326*
H1610.10710.33140.39570.0278*
H2020.11280.82010.40360.0489*
H2010.06760.75150.43600.0485*
H2030.26880.70640.41770.0481*
H910.68280.47800.34840.0340*
H920.61810.34990.32420.0343*
H1010.37180.61550.33150.0419*
H1020.34310.49280.30510.0424*
H1210.79610.80430.29940.0734*
H1230.79460.70040.32980.0728*
H1220.61130.81880.32390.0741*
H1310.54040.77010.25870.0849*
H1320.35040.77620.28220.0856*
H1330.38100.63370.25990.0847*
H310.29610.10640.39300.0425*
H410.13380.17440.34630.0483*
H510.11600.00090.30560.0471*
H610.24070.24350.31280.0418*
H2310.16990.33250.49200.0285*
H2410.33220.45350.53430.0290*
H2910.88260.73150.55240.0489*
H2930.97870.61820.52750.0491*
H2920.83420.75170.51680.0492*
H2610.83570.54810.48000.0293*
H2710.67140.42780.43860.0325*
H1110.67390.57380.28730.0518*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0338 (3)0.0269 (2)0.0306 (2)0.0001 (2)0.0047 (2)0.0043 (2)
C20.0292 (11)0.0244 (10)0.0308 (10)0.0051 (9)0.0003 (9)0.0016 (8)
C30.0408 (14)0.0255 (11)0.0374 (12)0.0042 (10)0.0028 (10)0.0032 (9)
C40.0438 (14)0.0283 (12)0.0459 (13)0.0102 (11)0.0007 (11)0.0042 (10)
C50.0426 (15)0.0385 (13)0.0377 (12)0.0097 (11)0.0054 (11)0.0090 (10)
C60.0406 (14)0.0326 (12)0.0291 (11)0.0072 (10)0.0027 (9)0.0017 (9)
C70.0300 (12)0.0248 (10)0.0280 (10)0.0047 (9)0.0013 (9)0.0013 (8)
N80.0274 (9)0.0244 (8)0.0243 (8)0.0059 (7)0.0021 (7)0.0033 (7)
C90.0250 (11)0.0318 (11)0.0261 (10)0.0048 (9)0.0031 (8)0.0047 (8)
C100.0289 (12)0.0392 (12)0.0317 (11)0.0059 (10)0.0011 (9)0.0115 (9)
N110.0324 (10)0.0390 (10)0.0296 (9)0.0081 (9)0.0006 (8)0.0107 (8)
C120.0537 (17)0.0428 (15)0.0479 (15)0.0214 (13)0.0097 (13)0.0117 (12)
C130.060 (2)0.0667 (18)0.0421 (14)0.0164 (16)0.0138 (13)0.0302 (14)
C140.0208 (10)0.0258 (10)0.0235 (9)0.0024 (8)0.0033 (8)0.0068 (8)
O150.0288 (8)0.0264 (7)0.0298 (7)0.0088 (6)0.0015 (6)0.0015 (6)
C160.0212 (10)0.0254 (10)0.0239 (9)0.0050 (8)0.0003 (8)0.0026 (8)
O170.0261 (7)0.0288 (7)0.0237 (7)0.0028 (6)0.0011 (6)0.0027 (6)
C180.0178 (9)0.0294 (10)0.0307 (10)0.0080 (9)0.0012 (8)0.0051 (8)
O190.0285 (8)0.0363 (8)0.0263 (7)0.0016 (7)0.0046 (6)0.0026 (6)
C200.0283 (11)0.0303 (11)0.0370 (11)0.0036 (9)0.0003 (10)0.0001 (10)
C210.0249 (10)0.0274 (10)0.0260 (10)0.0074 (9)0.0018 (8)0.0056 (8)
C220.0252 (10)0.0231 (10)0.0252 (9)0.0013 (8)0.0011 (8)0.0069 (8)
C230.0194 (10)0.0242 (10)0.0297 (10)0.0014 (8)0.0008 (8)0.0059 (8)
C240.0217 (10)0.0253 (10)0.0250 (9)0.0014 (8)0.0029 (8)0.0037 (8)
C250.0278 (11)0.0201 (9)0.0257 (10)0.0041 (8)0.0023 (8)0.0034 (8)
C260.0191 (10)0.0272 (10)0.0282 (10)0.0037 (8)0.0024 (8)0.0047 (8)
C270.0244 (10)0.0311 (11)0.0238 (9)0.0049 (9)0.0018 (8)0.0048 (8)
O280.0277 (8)0.0322 (8)0.0280 (7)0.0050 (6)0.0014 (6)0.0019 (6)
C290.0328 (12)0.0318 (12)0.0346 (11)0.0069 (10)0.0039 (9)0.0007 (9)
N300.0283 (11)0.0607 (14)0.0424 (11)0.0010 (11)0.0009 (9)0.0088 (10)
O310.0785 (18)0.100 (2)0.0661 (15)0.0124 (17)0.0266 (14)0.0233 (15)
O320.0463 (13)0.129 (2)0.0510 (12)0.0218 (15)0.0041 (10)0.0063 (13)
O330.0730 (18)0.115 (2)0.095 (2)0.0024 (18)0.0305 (16)0.0492 (18)
Geometric parameters (Å, º) top
S1—C21.774 (2)C14—C161.534 (3)
S1—C211.840 (2)C16—O171.442 (2)
C2—C31.393 (3)C16—C211.533 (3)
C2—C71.406 (3)C16—H1610.981
C3—C41.386 (4)O17—C181.361 (2)
C3—H310.934C18—O191.203 (2)
C4—C51.379 (4)C18—C201.491 (3)
C4—H410.943C20—H2020.951
C5—C61.388 (3)C20—H2010.958
C5—H510.950C20—H2030.948
C6—C71.388 (3)C21—C221.523 (3)
C6—H610.927C21—H2110.989
C7—N81.428 (3)C22—C231.403 (3)
N8—C91.475 (3)C22—C271.382 (3)
N8—C141.358 (3)C23—C241.386 (3)
C9—C101.521 (3)C23—H2310.959
C9—H910.979C24—C251.385 (3)
C9—H920.969C24—H2410.954
C10—N111.492 (3)C25—C261.389 (3)
C10—H1010.972C25—O281.367 (2)
C10—H1020.966C26—C271.394 (3)
N11—C121.474 (3)C26—H2610.940
N11—C131.495 (3)C27—H2710.937
N11—H1110.900O28—C291.424 (3)
C12—H1210.966C29—H2910.968
C12—H1230.981C29—H2930.959
C12—H1220.971C29—H2920.958
C13—H1310.955N30—O311.250 (3)
C13—H1320.975N30—O321.238 (3)
C13—H1330.972N30—O331.200 (3)
C14—O151.228 (2)
C2—S1—C21101.27 (10)N8—C14—C16115.97 (17)
S1—C2—C3119.67 (17)O15—C14—C16121.30 (19)
S1—C2—C7120.97 (16)C14—C16—O17109.48 (16)
C3—C2—C7119.3 (2)C14—C16—C21113.60 (17)
C2—C3—C4120.3 (2)O17—C16—C21108.68 (16)
C2—C3—H31118.7C14—C16—H161108.7
C4—C3—H31120.9O17—C16—H161107.6
C3—C4—C5120.1 (2)C21—C16—H161108.6
C3—C4—H41119.9C16—O17—C18113.32 (15)
C5—C4—H41120.0O17—C18—O19122.1 (2)
C4—C5—C6120.4 (2)O17—C18—C20112.52 (17)
C4—C5—H51120.9O19—C18—C20125.4 (2)
C6—C5—H51118.7C18—C20—H202110.6
C5—C6—C7120.0 (2)C18—C20—H201110.4
C5—C6—H61119.7H202—C20—H201108.1
C7—C6—H61120.3C18—C20—H203110.1
C2—C7—C6119.8 (2)H202—C20—H203108.0
C2—C7—N8120.07 (19)H201—C20—H203109.5
C6—C7—N8120.13 (19)C16—C21—S1108.67 (14)
C7—N8—C9119.24 (17)C16—C21—C22116.55 (17)
C7—N8—C14123.26 (17)S1—C21—C22107.18 (15)
C9—N8—C14117.49 (17)C16—C21—H211106.4
N8—C9—C10108.98 (17)S1—C21—H211108.5
N8—C9—H91107.3C22—C21—H211109.3
C10—C9—H91111.9C21—C22—C23118.97 (18)
N8—C9—H92109.1C21—C22—C27122.67 (19)
C10—C9—H92110.0C23—C22—C27118.34 (19)
H91—C9—H92109.5C22—C23—C24120.41 (19)
C9—C10—N11113.19 (18)C22—C23—H231118.6
C9—C10—H101109.5C24—C23—H231121.0
N11—C10—H101107.7C23—C24—C25120.32 (19)
C9—C10—H102109.5C23—C24—H241119.4
N11—C10—H102108.1C25—C24—H241120.3
H101—C10—H102108.8C24—C25—C26120.12 (19)
C10—N11—C12112.47 (19)C24—C25—O28116.06 (18)
C10—N11—C13110.10 (18)C26—C25—O28123.8 (2)
C12—N11—C13110.8 (2)C25—C26—C27119.0 (2)
C10—N11—H111109.0C25—C26—H261121.3
C12—N11—H111106.5C27—C26—H261119.7
C13—N11—H111107.9C26—C27—C22121.75 (19)
N11—C12—H121109.7C26—C27—H271119.6
N11—C12—H123110.9C22—C27—H271118.6
H121—C12—H123110.0C25—O28—C29118.11 (17)
N11—C12—H122107.6O28—C29—H291107.3
H121—C12—H122109.7O28—C29—H293110.9
H123—C12—H122108.8H291—C29—H293110.8
N11—C13—H131110.3O28—C29—H292109.2
N11—C13—H132108.3H291—C29—H292109.3
H131—C13—H132109.6H293—C29—H292109.4
N11—C13—H133109.5O31—N30—O32115.0 (2)
H131—C13—H133109.7O31—N30—O33125.2 (3)
H132—C13—H133109.5O32—N30—O33119.6 (3)
N8—C14—O15122.67 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H201···O28i0.962.423.230 (3)143
C20—H203···O15ii0.952.393.186 (3)141
C9—H91···O19iii0.982.423.392 (3)174
C10—H102···O320.972.393.221 (3)144
C12—H121···O33iv0.972.483.346 (3)149
C12—H123···O19iii0.982.523.496 (3)176
C13—H131···O33iv0.952.413.283 (3)153
C5—H51···O31v0.952.573.386 (3)144
N11—H111···N30iii0.902.443.327 (3)168
N11—H111···O31iii0.901.942.793 (3)157
N11—H111···O32iii0.902.192.943 (3)141
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x, y1/2, z+1/2.
(Diltiazemphosphatesesquihydrate) top
Crystal data top
2(C22H27N2O4S)·2(H2O4P)·3(H2O)Z = 2
Mr = 1079.05F(000) = 1140
Triclinic, P1Dx = 1.381 Mg m3
a = 8.7929 (1) ÅCu Kα radiation, λ = 1.54180 Å
b = 12.6645 (1) ÅCell parameters from 109761 reflections
c = 23.7867 (2) Åθ = 4–79°
α = 82.3345 (7)°µ = 2.17 mm1
β = 81.4117 (7)°T = 160 K
γ = 89.9824 (7)°Lath, colorless
V = 2595.21 (4) Å30.17 × 0.07 × 0.02 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
18568 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 72.1°, θmin = 3.5°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 1010
Tmin = 0.62, Tmax = 0.96k = 1515
264132 measured reflectionsl = 2929
19821 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.09P)2 + 1.4P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max = 0.001
S = 1.00Δρmax = 1.49 e Å3
19783 reflectionsΔρmin = 0.46 e Å3
1376 parametersAbsolute structure: Flack (1983), 9652 Friedel-pairs
66 restraintsAbsolute structure parameter: 0.020 (11)
Primary atom site location: Other
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49980 (10)0.49990 (8)0.49983 (4)0.0335
C20.4695 (4)0.5780 (3)0.43488 (13)0.0298
C30.3219 (4)0.6122 (3)0.42825 (16)0.0366
C40.2944 (4)0.6692 (3)0.37685 (16)0.0405
C50.4141 (5)0.6922 (3)0.33212 (16)0.0430
C60.5620 (4)0.6596 (3)0.33822 (14)0.0389
C70.5901 (4)0.6012 (3)0.38948 (13)0.0299
N80.7419 (3)0.5642 (2)0.39478 (10)0.0284
C90.8195 (4)0.5022 (3)0.35076 (13)0.0282
C100.9399 (4)0.5719 (3)0.31008 (14)0.0327
N111.0375 (3)0.5082 (2)0.27060 (11)0.0288
C121.1492 (4)0.4417 (3)0.29985 (15)0.0385
C131.1160 (5)0.5789 (3)0.21937 (15)0.0452
C140.8136 (4)0.5761 (2)0.44022 (12)0.0270
O150.9372 (3)0.53625 (19)0.44662 (9)0.0312
C160.7350 (4)0.6492 (3)0.48176 (13)0.0264
O170.8502 (3)0.69849 (18)0.50760 (9)0.0297
C180.9524 (4)0.7624 (3)0.46931 (14)0.0312
O190.9422 (3)0.7761 (2)0.41857 (10)0.0370
C201.0742 (4)0.8102 (3)0.49525 (16)0.0370
C210.6172 (4)0.5912 (3)0.53066 (13)0.0299
C220.6825 (4)0.5279 (3)0.57968 (12)0.0270
C230.7528 (4)0.4317 (3)0.57471 (13)0.0299
C240.8115 (4)0.3732 (3)0.62055 (13)0.0268
C250.7985 (3)0.4129 (3)0.67268 (12)0.0238
C260.7256 (3)0.5095 (3)0.67884 (13)0.0258
C270.6682 (4)0.5660 (3)0.63299 (13)0.0279
O280.8527 (3)0.36327 (19)0.72006 (9)0.0311
C290.9507 (4)0.2737 (3)0.71292 (15)0.0349
S310.51570 (10)0.01691 (8)0.49890 (4)0.0333
H310.24280.59740.45850.0448*
C320.4951 (4)0.0977 (3)0.43376 (13)0.0297
C330.3519 (4)0.1387 (3)0.42525 (15)0.0357
C340.3330 (4)0.1986 (3)0.37349 (16)0.0381
C350.4569 (4)0.2191 (3)0.32994 (15)0.0404
C360.5996 (4)0.1783 (3)0.33793 (14)0.0347
C370.6192 (4)0.1181 (3)0.38908 (13)0.0282
N380.7674 (3)0.0758 (2)0.39640 (10)0.0261
C390.8448 (4)0.0119 (3)0.35335 (12)0.0265
C400.9846 (4)0.0743 (3)0.31856 (13)0.0272
N411.0839 (3)0.0063 (2)0.28162 (10)0.0238
H410.19580.69230.37170.0481*
C421.1884 (4)0.0737 (3)0.23586 (14)0.0313
C431.1757 (4)0.0696 (3)0.31507 (16)0.0370
C440.8358 (4)0.0855 (2)0.44275 (12)0.0252
O450.9556 (3)0.04144 (18)0.45129 (9)0.0273
C460.7571 (3)0.1601 (3)0.48327 (12)0.0254
O470.8721 (3)0.20964 (18)0.50916 (9)0.0284
C480.9762 (4)0.2725 (3)0.47017 (14)0.0286
O490.9688 (3)0.28204 (19)0.41945 (10)0.0330
C501.0920 (4)0.3242 (3)0.49663 (16)0.0370
C510.6356 (4)0.1040 (3)0.53149 (13)0.0288
H510.39770.73050.29660.0512*
C520.6953 (4)0.0364 (3)0.58077 (13)0.0259
C530.7597 (4)0.0619 (3)0.57533 (13)0.0289
C540.8120 (4)0.1244 (3)0.62147 (13)0.0289
C550.7982 (3)0.0861 (2)0.67425 (12)0.0231
C560.7290 (3)0.0112 (3)0.68077 (12)0.0243
C570.6785 (3)0.0717 (3)0.63430 (13)0.0259
O580.8458 (3)0.13943 (19)0.72219 (9)0.0300
C590.9404 (4)0.2308 (3)0.71554 (14)0.0346
S610.56384 (10)0.68940 (8)0.80859 (4)0.0335
H610.64350.67740.30760.0467*
C620.5851 (4)0.7379 (3)0.87385 (13)0.0303
C630.7268 (4)0.7751 (3)0.88228 (15)0.0355
C640.7458 (4)0.8094 (3)0.93379 (16)0.0388
C650.6221 (5)0.8078 (3)0.97703 (15)0.0416
C660.4790 (4)0.7714 (3)0.96931 (14)0.0352
C670.4587 (4)0.7362 (3)0.91831 (13)0.0274
N680.3120 (3)0.6979 (2)0.91108 (10)0.0257
C690.2343 (4)0.6124 (3)0.95382 (13)0.0263
C700.0933 (4)0.6574 (3)0.98865 (13)0.0278
N710.0052 (3)0.5704 (2)1.02538 (10)0.0246
C720.1095 (4)0.6149 (3)1.07134 (14)0.0317
C730.0968 (4)0.5117 (3)0.99206 (16)0.0380
C740.2436 (4)0.7303 (2)0.86420 (12)0.0243
O750.1245 (3)0.69089 (18)0.85576 (9)0.0269
C760.3226 (4)0.8252 (3)0.82381 (12)0.0265
O770.2081 (3)0.88790 (19)0.79774 (9)0.0298
C780.1035 (4)0.9306 (3)0.83677 (14)0.0292
O790.1100 (3)0.9154 (2)0.88740 (10)0.0334
C800.0125 (4)0.9965 (3)0.80975 (16)0.0381
C810.4446 (4)0.7931 (3)0.77574 (12)0.0279
C820.3852 (4)0.7494 (3)0.72657 (13)0.0263
C830.3196 (4)0.6494 (3)0.73214 (13)0.0310
C840.2658 (4)0.6107 (3)0.68638 (13)0.0277
C850.2801 (3)0.6747 (3)0.63348 (12)0.0241
C860.3498 (3)0.7748 (3)0.62667 (12)0.0240
C870.4025 (4)0.8118 (3)0.67277 (13)0.0261
O880.2302 (3)0.64499 (19)0.58598 (9)0.0311
C890.1310 (4)0.5522 (3)0.59371 (15)0.0360
S910.57882 (10)0.17322 (8)0.80724 (4)0.0335
H920.86630.44080.36980.0338*
C920.6101 (4)0.2185 (3)0.87220 (13)0.0307
H910.74270.47830.33000.0339*
C930.7570 (4)0.2496 (3)0.87864 (15)0.0364
C940.7837 (4)0.2807 (3)0.93031 (16)0.0397
C950.6649 (5)0.2812 (3)0.97501 (16)0.0425
C960.5173 (4)0.2515 (3)0.96875 (15)0.0392
C970.4883 (4)0.2194 (3)0.91787 (13)0.0292
N980.3373 (3)0.1847 (2)0.91256 (10)0.0277
C990.2601 (4)0.1010 (3)0.95650 (13)0.0289
C1000.1378 (4)0.1499 (3)0.99720 (14)0.0319
N1010.0413 (3)0.0664 (2)1.03647 (11)0.0284
H1020.89170.62800.28730.0387*
C1020.0696 (4)0.0147 (3)1.00745 (16)0.0392
H1011.00500.60620.33130.0389*
C1030.0379 (5)0.1117 (3)1.08771 (15)0.0438
C1040.2655 (4)0.2190 (3)0.86705 (13)0.0267
O1050.1414 (3)0.18280 (19)0.86051 (10)0.0307
C1060.3430 (4)0.3133 (3)0.82545 (13)0.0269
O1070.2274 (3)0.37559 (18)0.79966 (9)0.0298
C1080.1266 (4)0.4204 (3)0.83847 (14)0.0301
O1090.1370 (3)0.4084 (2)0.88870 (10)0.0356
C1100.0041 (4)0.4813 (3)0.81227 (15)0.0360
C1110.4607 (4)0.2797 (3)0.77640 (13)0.0286
H1110.974 (2)0.4636 (17)0.2588 (9)0.043 (2)*
C1120.3959 (4)0.2409 (3)0.72739 (13)0.0274
C1130.3269 (4)0.1415 (3)0.73213 (13)0.0294
C1140.2700 (4)0.1063 (3)0.68610 (13)0.0267
C1150.2827 (3)0.1726 (2)0.63374 (12)0.0228
C1160.3526 (4)0.2717 (3)0.62799 (13)0.0254
C1170.4091 (3)0.3059 (3)0.67411 (13)0.0263
O1180.2302 (3)0.14595 (19)0.58626 (9)0.0306
C1190.1360 (4)0.0515 (3)0.59215 (14)0.0336
P1210.57908 (10)0.74840 (7)0.15508 (4)0.0255
H1221.09800.40260.33430.0573*
O1220.7028 (3)0.8273 (2)0.11679 (11)0.0404
H1231.19800.39420.27480.0576*
O1230.6775 (3)0.6687 (2)0.18990 (11)0.0371
H1211.22500.48760.30860.0584*
O1240.4776 (3)0.8105 (2)0.19493 (11)0.0379
O1250.4924 (3)0.6933 (2)0.11721 (10)0.0324
P1260.49998 (10)1.24910 (7)0.15205 (4)0.0250
O1270.6010 (3)1.3315 (2)0.11205 (11)0.0385
O1280.5864 (3)1.17454 (19)0.19009 (10)0.0316
O1290.3768 (3)1.3090 (2)0.19039 (11)0.0391
O1300.4013 (3)1.1870 (2)0.11736 (11)0.0347
P1311.15434 (9)0.83729 (7)0.12313 (4)0.0249
H1331.04290.62330.20190.0678*
O1321.2107 (3)0.72581 (19)0.10658 (10)0.0292
H1311.17140.53750.19190.0677*
O1331.2047 (3)0.8473 (2)0.18246 (10)0.0353
H1321.18990.62330.23160.0674*
O1341.2289 (3)0.9241 (2)0.07731 (11)0.0362
O1350.9819 (3)0.8368 (2)0.13180 (10)0.0335
P1360.92475 (9)0.32205 (7)0.18405 (4)0.0249
O1371.0973 (3)0.3262 (2)0.17521 (10)0.0336
O1380.8682 (3)0.20264 (19)0.20065 (10)0.0296
O1390.8495 (3)0.3856 (2)0.23003 (11)0.0357
O1400.8738 (3)0.3621 (2)0.12440 (10)0.0351
O1410.8803 (3)0.8830 (2)0.24438 (11)0.0408
O1421.1990 (3)1.4289 (2)0.06287 (11)0.0412
O1430.5719 (3)0.4767 (2)0.22903 (13)0.0382
O1440.5911 (3)0.0327 (2)0.24859 (12)0.0356
O1450.5065 (3)1.0144 (2)0.07821 (13)0.0372
O1460.4879 (3)0.5150 (2)0.05834 (12)0.0365
H1610.68340.70450.45920.0318*
H2031.05820.88390.49650.0570*
H2011.07440.77750.53360.0567*
H2021.17270.80460.47370.0558*
H2110.55320.64620.54560.0364*
H2310.76070.40440.53940.0353*
H2410.85570.30750.61670.0315*
H2610.71540.53550.71400.0310*
H2710.61940.63010.63750.0340*
H2930.98900.25390.74780.0518*
H2911.03420.29390.68210.0514*
H2920.89350.21680.70370.0525*
H3310.26900.12430.45530.0436*
H3410.23610.22630.36850.0459*
H3510.44560.25980.29470.0486*
H3610.68230.19110.30870.0414*
H3910.87510.05450.37170.0313*
H3920.77110.00350.32900.0319*
H4010.94980.13230.29370.0325*
H4021.04640.10100.34480.0330*
H4111.021 (2)0.0294 (17)0.2648 (9)0.035 (2)*
H4231.12390.11580.21190.0459*
H4211.25190.02560.21400.0463*
H4221.25470.11920.25230.0476*
H4311.10920.11300.34560.0557*
H4331.22800.11480.28950.0559*
H4321.25050.02980.33020.0567*
H4610.70790.21560.46140.0306*
H5011.05810.39160.50620.0566*
H5031.18510.33380.47090.0563*
H5021.10820.28050.53060.0567*
H5110.57150.16170.54580.0341*
H5310.76870.08840.54020.0342*
H5410.85260.19110.61740.0348*
H5610.71880.03630.71640.0288*
H5710.63280.13660.63920.0310*
H5910.88290.28630.70360.0517*
H5930.96990.25530.75160.0513*
H5921.02940.21180.68760.0517*
H6310.80950.77650.85320.0436*
H6410.84320.83240.93830.0470*
H6510.63360.83141.01200.0494*
H6610.39660.76970.99840.0423*
H6920.30780.58560.97830.0319*
H6910.20540.55560.93490.0309*
H7020.03300.69740.96140.0337*
H7010.12880.70351.01350.0329*
H7110.058 (2)0.5266 (16)1.0421 (9)0.036 (2)*
H7210.04460.64921.09340.0473*
H7230.18160.66481.05540.0482*
H7220.16670.55611.09610.0477*
H7320.14860.45201.01760.0566*
H7310.02920.48490.96110.0566*
H7330.17270.55830.97760.0576*
H7610.37270.87070.84550.0329*
H8020.10160.99690.83710.0570*
H8010.03680.96770.77730.0577*
H8030.02601.06790.79800.0574*
H8110.50760.85650.76120.0340*
H8310.31220.60510.76720.0364*
H8410.22230.54290.69120.0328*
H8610.36260.81680.59100.0298*
H8710.44920.87930.66750.0309*
H8920.09680.54670.55820.0536*
H8910.04400.55930.62260.0538*
H8930.18690.48980.60510.0544*
H9310.83780.25050.84790.0446*
H9410.88190.30220.93580.0475*
H9510.68240.30271.01040.0503*
H9610.43670.25280.99990.0465*
H9910.33850.06680.97720.0348*
H9920.21200.04850.93820.0348*
H10010.07020.19330.97590.0382*
H10020.18590.19591.01980.0375*
H10110.105 (2)0.0168 (16)1.0485 (9)0.043 (2)*
H10220.12000.04431.03250.0584*
H10210.14510.06560.99850.0594*
H10230.01800.00900.97320.0587*
H10320.10020.05881.11310.0659*
H10330.10300.16781.07530.0653*
H10310.03630.14011.10730.0659*
H10610.39540.35800.84750.0318*
H11020.00440.45930.77670.0544*
H11030.09350.47380.83550.0538*
H11010.03100.55450.80500.0552*
H11110.52440.34300.76130.0337*
H11310.31940.09630.76710.0349*
H11410.22680.03940.68920.0318*
H11610.36190.31590.59280.0307*
H11710.45690.37250.66950.0322*
H11920.19560.00900.60110.0509*
H11930.09980.04720.55740.0506*
H11910.05230.05320.62270.0505*
H12210.796 (3)0.828 (4)0.122 (2)0.060 (2)*
H12310.627 (5)0.613 (2)0.201 (2)0.056 (2)*
H12910.287 (3)1.312 (4)0.183 (2)0.059 (2)*
H13010.452 (5)1.139 (3)0.1040 (19)0.053 (2)*
H13211.305 (2)0.714 (4)0.1081 (18)0.044 (2)*
H13311.293 (3)0.820 (4)0.187 (2)0.053 (2)*
H13810.776 (2)0.192 (4)0.1981 (18)0.044 (2)*
H14010.780 (3)0.342 (4)0.121 (2)0.053 (2)*
H14120.790 (3)0.900 (4)0.2454 (17)0.062 (2)*
H14110.904 (5)0.856 (4)0.2112 (13)0.061 (2)*
H14221.172 (5)1.391 (4)0.0971 (12)0.062 (2)*
H14211.290 (3)1.445 (4)0.0616 (17)0.062 (2)*
H14320.645 (4)0.445 (4)0.238 (2)0.057 (2)*
H14310.519 (5)0.446 (4)0.211 (2)0.057 (2)*
H14420.589 (6)0.020 (3)0.2244 (17)0.054 (2)*
H14410.559 (6)0.070 (3)0.2285 (18)0.054 (2)*
H14520.441 (4)0.993 (4)0.062 (2)0.056 (2)*
H14510.565 (5)0.973 (3)0.0928 (19)0.056 (2)*
H14620.492 (6)0.560 (3)0.0800 (18)0.055 (2)*
H14610.525 (6)0.478 (4)0.0817 (17)0.055 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0310 (4)0.0384 (5)0.0281 (4)0.0009 (4)0.0019 (3)0.0033 (3)
C20.0313 (17)0.0310 (17)0.0262 (15)0.0049 (14)0.0036 (12)0.0022 (12)
C30.0273 (17)0.042 (2)0.0406 (18)0.0082 (15)0.0030 (14)0.0078 (15)
C40.0356 (18)0.045 (2)0.0441 (19)0.0173 (17)0.0112 (15)0.0118 (16)
C50.048 (2)0.049 (2)0.0339 (18)0.0208 (19)0.0132 (15)0.0046 (16)
C60.0408 (19)0.047 (2)0.0269 (16)0.0140 (17)0.0023 (14)0.0020 (14)
C70.0312 (16)0.0354 (18)0.0227 (14)0.0131 (14)0.0014 (12)0.0054 (12)
N80.0294 (14)0.0317 (15)0.0218 (12)0.0115 (12)0.0020 (10)0.0024 (10)
C90.0299 (16)0.0269 (16)0.0267 (14)0.0063 (13)0.0016 (12)0.0064 (12)
C100.0387 (18)0.0271 (17)0.0289 (16)0.0070 (15)0.0061 (13)0.0040 (13)
N110.0352 (14)0.0225 (13)0.0256 (13)0.0001 (12)0.0048 (11)0.0030 (10)
C120.0330 (18)0.043 (2)0.0380 (18)0.0087 (16)0.0001 (14)0.0083 (15)
C130.058 (2)0.038 (2)0.0319 (18)0.0097 (18)0.0141 (17)0.0009 (15)
C140.0331 (16)0.0226 (15)0.0218 (14)0.0038 (13)0.0024 (12)0.0020 (11)
O150.0303 (12)0.0294 (12)0.0313 (11)0.0108 (10)0.0003 (9)0.0000 (9)
C160.0282 (15)0.0264 (16)0.0238 (14)0.0085 (13)0.0012 (11)0.0030 (12)
O170.0340 (12)0.0264 (12)0.0261 (10)0.0031 (10)0.0000 (9)0.0007 (9)
C180.0339 (17)0.0249 (16)0.0322 (17)0.0099 (14)0.0002 (13)0.0005 (13)
O190.0444 (14)0.0339 (13)0.0285 (12)0.0032 (11)0.0006 (10)0.0035 (10)
C200.0378 (19)0.0311 (18)0.0405 (18)0.0051 (15)0.0040 (15)0.0005 (14)
C210.0313 (16)0.0290 (17)0.0260 (15)0.0070 (14)0.0032 (12)0.0003 (12)
C220.0255 (15)0.0304 (17)0.0215 (14)0.0022 (13)0.0034 (11)0.0017 (12)
C230.0322 (17)0.0321 (18)0.0229 (14)0.0039 (14)0.0029 (12)0.0032 (12)
C240.0274 (15)0.0256 (16)0.0260 (14)0.0036 (13)0.0000 (12)0.0026 (12)
C250.0184 (13)0.0280 (16)0.0231 (14)0.0034 (12)0.0007 (11)0.0015 (11)
C260.0224 (15)0.0283 (16)0.0260 (14)0.0027 (13)0.0013 (11)0.0061 (12)
C270.0232 (15)0.0271 (16)0.0319 (15)0.0052 (13)0.0018 (12)0.0049 (12)
O280.0347 (12)0.0327 (13)0.0269 (11)0.0085 (10)0.0075 (9)0.0050 (9)
C290.0376 (18)0.0312 (18)0.0358 (17)0.0100 (15)0.0082 (14)0.0011 (14)
S310.0281 (4)0.0412 (5)0.0275 (4)0.0013 (4)0.0004 (3)0.0023 (3)
C320.0247 (15)0.0351 (18)0.0282 (15)0.0060 (14)0.0025 (12)0.0021 (13)
C330.0268 (16)0.046 (2)0.0344 (17)0.0096 (15)0.0031 (13)0.0093 (15)
C340.0268 (17)0.047 (2)0.0422 (19)0.0137 (16)0.0088 (14)0.0095 (16)
C350.0404 (19)0.051 (2)0.0307 (17)0.0159 (18)0.0094 (14)0.0028 (15)
C360.0324 (17)0.043 (2)0.0270 (15)0.0094 (15)0.0009 (13)0.0035 (14)
C370.0268 (16)0.0337 (17)0.0234 (14)0.0103 (14)0.0012 (11)0.0046 (12)
N380.0237 (12)0.0345 (15)0.0189 (12)0.0121 (11)0.0016 (9)0.0046 (10)
C390.0248 (15)0.0307 (17)0.0224 (14)0.0063 (13)0.0039 (11)0.0061 (12)
C400.0294 (16)0.0257 (16)0.0240 (14)0.0057 (13)0.0044 (12)0.0042 (12)
N410.0224 (12)0.0229 (13)0.0242 (12)0.0036 (10)0.0029 (9)0.0033 (10)
C420.0287 (16)0.0297 (17)0.0313 (16)0.0036 (14)0.0072 (12)0.0016 (13)
C430.0299 (16)0.0345 (19)0.0414 (18)0.0086 (15)0.0014 (14)0.0064 (14)
C440.0293 (16)0.0236 (15)0.0197 (13)0.0036 (13)0.0032 (11)0.0001 (11)
O450.0270 (11)0.0275 (11)0.0260 (10)0.0095 (9)0.0013 (8)0.0021 (8)
C460.0262 (15)0.0275 (16)0.0215 (13)0.0084 (13)0.0009 (11)0.0031 (11)
O470.0329 (12)0.0286 (12)0.0230 (10)0.0060 (10)0.0029 (8)0.0024 (9)
C480.0301 (16)0.0218 (15)0.0324 (16)0.0113 (13)0.0030 (12)0.0000 (12)
O490.0403 (13)0.0300 (12)0.0260 (11)0.0041 (10)0.0009 (9)0.0017 (9)
C500.0363 (18)0.0329 (19)0.0419 (19)0.0055 (15)0.0082 (15)0.0028 (14)
C510.0303 (16)0.0311 (17)0.0233 (14)0.0082 (14)0.0019 (12)0.0042 (12)
C520.0228 (15)0.0289 (16)0.0230 (14)0.0025 (12)0.0041 (11)0.0011 (12)
C530.0334 (17)0.0311 (17)0.0205 (14)0.0045 (14)0.0024 (12)0.0048 (12)
C540.0308 (16)0.0287 (17)0.0258 (15)0.0085 (14)0.0004 (12)0.0036 (12)
C550.0200 (14)0.0253 (15)0.0221 (13)0.0035 (12)0.0001 (11)0.0004 (11)
C560.0228 (15)0.0263 (16)0.0231 (14)0.0005 (12)0.0015 (11)0.0065 (11)
C570.0220 (14)0.0242 (16)0.0297 (15)0.0025 (12)0.0026 (11)0.0046 (12)
O580.0353 (12)0.0313 (12)0.0241 (10)0.0078 (10)0.0069 (9)0.0038 (9)
C590.0379 (18)0.0318 (18)0.0326 (17)0.0094 (15)0.0039 (14)0.0006 (13)
S610.0295 (4)0.0440 (5)0.0273 (4)0.0006 (4)0.0008 (3)0.0093 (3)
C620.0278 (16)0.0350 (18)0.0269 (15)0.0065 (14)0.0014 (12)0.0029 (13)
C630.0273 (16)0.040 (2)0.0376 (18)0.0055 (15)0.0019 (13)0.0009 (14)
C640.0278 (17)0.048 (2)0.0406 (19)0.0120 (16)0.0080 (14)0.0030 (16)
C650.044 (2)0.055 (2)0.0276 (16)0.0156 (18)0.0101 (14)0.0070 (15)
C660.0308 (17)0.044 (2)0.0290 (16)0.0090 (15)0.0002 (13)0.0028 (14)
C670.0282 (16)0.0300 (17)0.0224 (14)0.0089 (13)0.0020 (11)0.0001 (12)
N680.0232 (12)0.0324 (15)0.0197 (12)0.0095 (11)0.0002 (9)0.0007 (10)
C690.0239 (15)0.0276 (16)0.0250 (14)0.0054 (13)0.0022 (11)0.0015 (12)
C700.0266 (15)0.0285 (17)0.0261 (14)0.0063 (13)0.0035 (12)0.0039 (12)
N710.0237 (12)0.0241 (13)0.0244 (12)0.0035 (11)0.0029 (10)0.0043 (10)
C720.0295 (16)0.0342 (18)0.0294 (16)0.0024 (14)0.0060 (12)0.0087 (13)
C730.0325 (17)0.043 (2)0.0390 (18)0.0069 (16)0.0014 (14)0.0163 (15)
C740.0288 (16)0.0241 (15)0.0192 (13)0.0055 (13)0.0022 (11)0.0069 (11)
O750.0275 (11)0.0269 (12)0.0262 (10)0.0078 (9)0.0016 (8)0.0053 (8)
C760.0293 (16)0.0278 (16)0.0215 (14)0.0068 (13)0.0015 (11)0.0028 (12)
O770.0347 (12)0.0286 (12)0.0254 (10)0.0044 (10)0.0018 (9)0.0042 (9)
C780.0310 (16)0.0250 (16)0.0318 (17)0.0084 (13)0.0015 (13)0.0082 (13)
O790.0406 (14)0.0345 (13)0.0249 (11)0.0025 (11)0.0005 (9)0.0079 (9)
C800.0358 (19)0.039 (2)0.0411 (19)0.0015 (16)0.0101 (15)0.0067 (15)
C810.0322 (16)0.0294 (16)0.0201 (13)0.0056 (13)0.0010 (12)0.0017 (12)
C820.0223 (15)0.0335 (17)0.0224 (14)0.0033 (13)0.0010 (11)0.0057 (12)
C830.0333 (17)0.0365 (19)0.0205 (14)0.0048 (14)0.0032 (12)0.0016 (12)
C840.0327 (16)0.0237 (16)0.0259 (14)0.0044 (13)0.0003 (12)0.0046 (12)
C850.0218 (14)0.0312 (17)0.0201 (13)0.0043 (12)0.0021 (11)0.0075 (11)
C860.0232 (14)0.0260 (16)0.0209 (13)0.0004 (12)0.0005 (11)0.0005 (11)
C870.0238 (14)0.0246 (16)0.0278 (15)0.0036 (12)0.0025 (11)0.0029 (12)
O880.0347 (12)0.0345 (13)0.0245 (10)0.0060 (10)0.0058 (9)0.0034 (9)
C890.0384 (19)0.039 (2)0.0322 (17)0.0078 (16)0.0043 (14)0.0109 (14)
S910.0315 (4)0.0417 (5)0.0279 (4)0.0014 (4)0.0019 (3)0.0096 (3)
C920.0306 (16)0.0356 (18)0.0254 (15)0.0038 (14)0.0029 (12)0.0038 (13)
C930.0321 (17)0.040 (2)0.0349 (17)0.0060 (15)0.0021 (14)0.0014 (15)
C940.0363 (19)0.042 (2)0.0417 (19)0.0148 (16)0.0124 (15)0.0000 (16)
C950.046 (2)0.047 (2)0.0364 (18)0.0137 (18)0.0133 (15)0.0049 (16)
C960.041 (2)0.047 (2)0.0282 (16)0.0151 (17)0.0016 (14)0.0072 (15)
C970.0302 (16)0.0314 (17)0.0252 (15)0.0098 (13)0.0041 (12)0.0016 (12)
N980.0305 (14)0.0293 (15)0.0212 (12)0.0110 (11)0.0020 (10)0.0024 (10)
C990.0317 (16)0.0257 (16)0.0267 (15)0.0069 (13)0.0017 (12)0.0013 (12)
C1000.0384 (18)0.0258 (17)0.0286 (15)0.0060 (14)0.0056 (13)0.0047 (13)
N1010.0330 (14)0.0241 (13)0.0249 (12)0.0006 (11)0.0049 (10)0.0023 (10)
C1020.0314 (18)0.043 (2)0.0401 (19)0.0038 (16)0.0022 (14)0.0017 (16)
C1030.056 (2)0.037 (2)0.0329 (18)0.0028 (18)0.0154 (16)0.0100 (15)
C1040.0302 (17)0.0274 (16)0.0227 (14)0.0049 (13)0.0003 (12)0.0085 (12)
O1050.0311 (12)0.0303 (12)0.0304 (11)0.0085 (10)0.0017 (9)0.0062 (9)
C1060.0285 (15)0.0266 (16)0.0248 (14)0.0060 (13)0.0002 (12)0.0053 (12)
O1070.0333 (12)0.0295 (12)0.0258 (11)0.0018 (10)0.0007 (9)0.0054 (9)
C1080.0309 (17)0.0254 (17)0.0333 (17)0.0101 (14)0.0016 (13)0.0091 (13)
O1090.0424 (14)0.0355 (13)0.0293 (12)0.0001 (11)0.0008 (10)0.0109 (10)
C1100.0356 (18)0.0332 (19)0.0401 (18)0.0025 (15)0.0044 (14)0.0093 (15)
C1110.0284 (16)0.0307 (17)0.0247 (14)0.0054 (13)0.0031 (12)0.0040 (12)
C1120.0259 (15)0.0327 (17)0.0224 (14)0.0015 (13)0.0029 (11)0.0069 (12)
C1130.0319 (17)0.0326 (18)0.0208 (14)0.0044 (14)0.0036 (12)0.0012 (12)
C1140.0280 (15)0.0239 (15)0.0267 (14)0.0042 (13)0.0009 (12)0.0036 (12)
C1150.0181 (13)0.0268 (16)0.0233 (13)0.0031 (12)0.0004 (10)0.0058 (11)
C1160.0235 (15)0.0257 (16)0.0241 (14)0.0012 (12)0.0008 (11)0.0021 (11)
C1170.0234 (14)0.0228 (15)0.0296 (15)0.0042 (12)0.0036 (11)0.0013 (12)
O1180.0350 (12)0.0320 (13)0.0248 (10)0.0053 (10)0.0065 (9)0.0013 (9)
C1190.0377 (18)0.0340 (18)0.0305 (16)0.0048 (15)0.0053 (13)0.0088 (13)
P1210.0226 (4)0.0249 (4)0.0299 (4)0.0009 (3)0.0059 (3)0.0047 (3)
O1220.0252 (12)0.0476 (16)0.0461 (14)0.0067 (11)0.0116 (11)0.0091 (12)
O1230.0331 (13)0.0343 (14)0.0436 (13)0.0002 (11)0.0120 (10)0.0028 (11)
O1240.0296 (12)0.0452 (15)0.0452 (14)0.0080 (11)0.0118 (10)0.0218 (11)
O1250.0263 (11)0.0355 (13)0.0387 (12)0.0034 (10)0.0078 (9)0.0136 (10)
P1260.0215 (4)0.0241 (4)0.0300 (4)0.0011 (3)0.0056 (3)0.0039 (3)
O1270.0326 (12)0.0374 (14)0.0443 (14)0.0021 (11)0.0133 (10)0.0079 (11)
O1280.0247 (11)0.0293 (12)0.0398 (12)0.0008 (9)0.0076 (9)0.0019 (10)
O1290.0252 (12)0.0513 (16)0.0464 (14)0.0106 (12)0.0106 (10)0.0214 (12)
O1300.0307 (12)0.0368 (14)0.0412 (13)0.0057 (11)0.0134 (10)0.0136 (10)
P1310.0168 (3)0.0268 (4)0.0312 (4)0.0004 (3)0.0027 (3)0.0053 (3)
O1320.0221 (10)0.0306 (12)0.0372 (12)0.0005 (9)0.0061 (9)0.0111 (9)
O1330.0268 (12)0.0453 (15)0.0373 (12)0.0074 (11)0.0055 (9)0.0171 (11)
O1340.0247 (11)0.0309 (13)0.0499 (14)0.0036 (10)0.0026 (10)0.0019 (10)
O1350.0200 (11)0.0376 (14)0.0435 (13)0.0010 (10)0.0029 (9)0.0090 (10)
P1360.0167 (3)0.0267 (4)0.0313 (4)0.0027 (3)0.0034 (3)0.0034 (3)
O1370.0183 (11)0.0380 (14)0.0422 (13)0.0020 (10)0.0013 (9)0.0016 (10)
O1380.0222 (10)0.0309 (12)0.0342 (11)0.0035 (10)0.0051 (9)0.0017 (9)
O1390.0237 (11)0.0346 (13)0.0503 (14)0.0052 (10)0.0025 (10)0.0146 (11)
O1400.0265 (11)0.0387 (14)0.0366 (12)0.0037 (10)0.0060 (9)0.0089 (10)
O1410.0256 (12)0.0546 (17)0.0449 (14)0.0021 (12)0.0001 (10)0.0227 (12)
O1420.0256 (12)0.0474 (16)0.0443 (14)0.0009 (11)0.0007 (10)0.0107 (12)
O1430.0293 (13)0.0278 (13)0.0592 (16)0.0069 (11)0.0071 (11)0.0119 (11)
O1440.0352 (13)0.0260 (13)0.0479 (14)0.0015 (11)0.0107 (11)0.0078 (10)
O1450.0288 (12)0.0239 (12)0.0595 (16)0.0019 (10)0.0084 (11)0.0062 (11)
O1460.0356 (13)0.0285 (13)0.0477 (14)0.0054 (11)0.0114 (11)0.0069 (10)
Geometric parameters (Å, º) top
S1—C21.776 (3)C70—N711.498 (4)
S1—C211.842 (4)C70—H7020.986
C2—C31.392 (4)C70—H7010.967
C2—C71.397 (4)N71—C721.490 (4)
C3—C41.389 (5)N71—C731.476 (5)
C3—H310.922N71—H7110.887 (18)
C4—C51.381 (6)C72—H7210.969
C4—H410.935C72—H7230.976
C5—C61.387 (5)C72—H7220.975
C5—H510.947C73—H7320.971
C6—C71.395 (5)C73—H7310.973
C6—H610.946C73—H7330.962
C7—N81.432 (4)C74—O751.215 (4)
N8—C91.478 (4)C74—C761.530 (4)
N8—C141.355 (4)C76—O771.443 (4)
C9—C101.518 (5)C76—C811.543 (4)
C9—H920.970C76—H7610.970
C9—H910.964O77—C781.371 (4)
C10—N111.494 (4)C78—O791.204 (4)
C10—H1020.972C78—C801.483 (5)
C10—H1010.958C80—H8020.940
N11—C121.485 (4)C80—H8010.948
N11—C131.490 (4)C80—H8030.957
N11—H1110.892 (18)C81—C821.517 (4)
C12—H1220.950C81—H8110.969
C12—H1230.959C82—C831.374 (5)
C12—H1210.948C82—C871.399 (4)
C13—H1330.960C83—C841.395 (5)
C13—H1310.968C83—H8310.935
C13—H1320.962C84—C851.392 (4)
C14—O151.220 (4)C84—H8410.925
C14—C161.533 (4)C85—C861.387 (5)
C16—O171.444 (4)C85—O881.368 (4)
C16—C211.542 (4)C86—C871.388 (4)
C16—H1610.978C86—H8610.930
O17—C181.361 (4)C87—H8710.933
C18—O191.213 (4)O88—C891.439 (5)
C18—C201.480 (5)C89—H8920.948
C20—H2030.947C89—H8910.961
C20—H2010.949C89—H8930.961
C20—H2020.947S91—C921.776 (3)
C21—C221.511 (4)S91—C1111.844 (3)
C21—H2110.966C92—C931.387 (5)
C22—C231.377 (4)C92—C971.408 (4)
C22—C271.405 (4)C93—C941.392 (5)
C23—C241.399 (4)C93—H9310.939
C23—H2310.944C94—C951.375 (6)
C24—C251.389 (4)C94—H9410.939
C24—H2410.928C95—C961.386 (6)
C25—C261.395 (4)C95—H9510.953
C25—O281.365 (4)C96—C971.385 (5)
C26—C271.383 (4)C96—H9610.947
C26—H2610.930C97—N981.428 (4)
C27—H2710.929N98—C991.473 (4)
O28—C291.438 (4)N98—C1041.356 (4)
C29—H2930.945C99—C1001.525 (4)
C29—H2910.964C99—H9910.973
C29—H2920.946C99—H9920.971
S31—C321.772 (3)C100—N1011.487 (4)
S31—C511.844 (4)C100—H10010.963
C32—C331.395 (4)C100—H10020.980
C32—C371.402 (4)N101—C1021.476 (5)
C33—C341.390 (5)N101—C1031.494 (4)
C33—H3310.941N101—H10110.889 (18)
C34—C351.385 (5)C102—H10220.955
C34—H3410.939C102—H10210.952
C35—C361.387 (5)C102—H10230.956
C35—H3510.943C103—H10320.952
C36—C371.381 (4)C103—H10330.956
C36—H3610.925C103—H10310.953
C37—N381.435 (4)C104—O1051.223 (4)
N38—C391.477 (3)C104—C1061.533 (4)
N38—C441.351 (4)C106—O1071.445 (4)
C39—C401.531 (4)C106—C1111.544 (4)
C39—H3910.951C106—H10610.981
C39—H3920.968O107—C1081.362 (4)
C40—N411.500 (3)C108—O1091.201 (4)
C40—H4010.961C108—C1101.488 (5)
C40—H4020.978C110—H11020.939
N41—C421.487 (4)C110—H11030.946
N41—C431.482 (4)C110—H11010.944
N41—H4110.885 (18)C111—C1121.509 (4)
C42—H4230.972C111—H11110.975
C42—H4210.976C112—C1131.380 (5)
C42—H4220.976C112—C1171.406 (4)
C43—H4310.968C113—C1141.394 (5)
C43—H4330.959C113—H11310.939
C43—H4320.968C114—C1151.396 (4)
C44—O451.223 (4)C114—H11410.917
C44—C461.530 (4)C115—C1161.379 (5)
C46—O471.444 (4)C115—O1181.364 (4)
C46—C511.542 (4)C116—C1171.388 (5)
C46—H4610.959C116—H11610.936
O47—C481.372 (4)C117—H11710.928
C48—O491.208 (4)O118—C1191.434 (4)
C48—C501.470 (5)C119—H11920.947
C50—H5010.949C119—H11930.938
C50—H5030.943C119—H11910.956
C50—H5020.947P121—O1221.573 (3)
C51—C521.516 (4)P121—O1231.563 (2)
C51—H5110.988P121—O1241.503 (2)
C52—C531.381 (4)P121—O1251.501 (2)
C52—C571.392 (4)O122—H12210.849 (19)
C53—C541.400 (4)O123—H12310.824 (19)
C53—H5310.934P126—O1271.505 (3)
C54—C551.394 (4)P126—O1281.505 (2)
C54—H5410.928P126—O1291.571 (2)
C55—C561.392 (4)P126—O1301.562 (3)
C55—O581.367 (4)O129—H12910.837 (19)
C56—C571.388 (4)O130—H13010.822 (19)
C56—H5610.935P131—O1321.576 (2)
C57—H5710.928P131—O1331.561 (2)
O58—C591.437 (4)P131—O1341.515 (3)
C59—H5910.963P131—O1351.499 (2)
C59—H5930.945O132—H13210.845 (18)
C59—H5920.956O133—H13310.864 (19)
S61—C621.779 (3)P136—O1371.500 (2)
S61—C811.845 (3)P136—O1381.572 (3)
C62—C631.384 (5)P136—O1391.516 (2)
C62—C671.413 (4)P136—O1401.571 (2)
C63—C641.386 (5)O138—H13810.830 (18)
C63—H6310.924O140—H14010.883 (19)
C64—C651.379 (5)O141—H14120.822 (18)
C64—H6410.930O141—H14110.896 (19)
C65—C661.386 (5)O142—H14220.889 (19)
C65—H6510.940O142—H14210.816 (19)
C66—C671.382 (5)O143—H14320.796 (19)
C66—H6610.923O143—H14310.812 (19)
C67—N681.420 (4)O144—H14420.821 (19)
N68—C691.474 (4)O144—H14410.794 (19)
N68—C741.361 (4)O145—H14520.806 (19)
C69—C701.538 (4)O145—H14510.814 (19)
C69—H6920.966O146—H14620.818 (19)
C69—H6910.952O146—H14610.789 (19)
C2—S1—C21101.87 (16)C67—N68—C69119.0 (2)
S1—C2—C3119.4 (3)C67—N68—C74123.3 (3)
S1—C2—C7120.8 (2)C69—N68—C74117.6 (3)
C3—C2—C7119.7 (3)N68—C69—C70109.6 (3)
C2—C3—C4120.3 (3)N68—C69—H692107.4
C2—C3—H31119.4C70—C69—H692111.0
C4—C3—H31120.3N68—C69—H691109.5
C3—C4—C5119.8 (3)C70—C69—H691111.3
C3—C4—H41121.3H692—C69—H691108.0
C5—C4—H41118.9C69—C70—N71111.6 (3)
C4—C5—C6120.6 (3)C69—C70—H702108.0
C4—C5—H51121.2N71—C70—H702109.6
C6—C5—H51118.2C69—C70—H701108.6
C5—C6—C7119.9 (3)N71—C70—H701108.2
C5—C6—H61119.8H702—C70—H701110.8
C7—C6—H61120.3C70—N71—C72110.3 (2)
C2—C7—C6119.7 (3)C70—N71—C73112.7 (3)
C2—C7—N8120.6 (3)C72—N71—C73109.6 (3)
C6—C7—N8119.7 (3)C70—N71—H711106.3 (14)
C7—N8—C9118.3 (3)C72—N71—H711107.8 (14)
C7—N8—C14123.5 (2)C73—N71—H711110.0 (14)
C9—N8—C14118.1 (2)N71—C72—H721106.8
N8—C9—C10109.7 (3)N71—C72—H723111.5
N8—C9—H92108.7H721—C72—H723111.5
C10—C9—H92110.8N71—C72—H722108.5
N8—C9—H91108.1H721—C72—H722109.0
C10—C9—H91110.2H723—C72—H722109.4
H92—C9—H91109.2N71—C73—H732108.3
C9—C10—N11111.4 (3)N71—C73—H731109.7
C9—C10—H102110.7H732—C73—H731109.2
N11—C10—H102108.9N71—C73—H733109.1
C9—C10—H101110.1H732—C73—H733109.0
N11—C10—H101108.7H731—C73—H733111.5
H102—C10—H101106.9N68—C74—O75123.1 (3)
C10—N11—C12112.5 (3)N68—C74—C76115.2 (3)
C10—N11—C13110.5 (3)O75—C74—C76121.6 (3)
C12—N11—C13111.5 (3)C74—C76—O77109.3 (2)
C10—N11—H111106.8 (14)C74—C76—C81113.8 (3)
C12—N11—H111107.0 (14)O77—C76—C81108.5 (2)
C13—N11—H111108.3 (14)C74—C76—H761109.7
N11—C12—H122109.9O77—C76—H761107.3
N11—C12—H123109.8C81—C76—H761108.0
H122—C12—H123110.4C76—O77—C78113.2 (2)
N11—C12—H121108.2O77—C78—O79121.6 (3)
H122—C12—H121109.5O77—C78—C80113.1 (3)
H123—C12—H121109.0O79—C78—C80125.3 (3)
N11—C13—H133110.4C78—C80—H802108.1
N11—C13—H131110.9C78—C80—H801110.5
H133—C13—H131110.4H802—C80—H801109.5
N11—C13—H132108.4C78—C80—H803110.2
H133—C13—H132108.9H802—C80—H803109.4
H131—C13—H132107.6H801—C80—H803109.1
N8—C14—O15122.7 (3)C76—C81—S61107.8 (2)
N8—C14—C16115.8 (3)C76—C81—C82116.7 (3)
O15—C14—C16121.3 (3)S61—C81—C82107.3 (2)
C14—C16—O17109.2 (2)C76—C81—H811106.0
C14—C16—C21114.0 (3)S61—C81—H811109.2
O17—C16—C21107.7 (2)C82—C81—H811109.8
C14—C16—H161107.4C81—C82—C83122.7 (3)
O17—C16—H161109.0C81—C82—C87118.8 (3)
C21—C16—H161109.5C83—C82—C87118.4 (3)
C16—O17—C18113.8 (2)C82—C83—C84121.8 (3)
O17—C18—O19121.3 (3)C82—C83—H831119.7
O17—C18—C20114.0 (3)C84—C83—H831118.5
O19—C18—C20124.6 (3)C83—C84—C85119.1 (3)
C18—C20—H203111.1C83—C84—H841120.2
C18—C20—H201110.8C85—C84—H841120.7
H203—C20—H201107.3C84—C85—C86119.9 (3)
C18—C20—H202111.7C84—C85—O88123.9 (3)
H203—C20—H202106.4C86—C85—O88116.2 (3)
H201—C20—H202109.5C85—C86—C87120.1 (3)
C16—C21—S1108.3 (2)C85—C86—H861120.0
C16—C21—C22116.3 (3)C87—C86—H861119.9
S1—C21—C22108.1 (2)C82—C87—C86120.6 (3)
C16—C21—H211105.8C82—C87—H871120.3
S1—C21—H211109.7C86—C87—H871119.1
C22—C21—H211108.5C85—O88—C89117.9 (2)
C21—C22—C23122.4 (3)O88—C89—H892107.9
C21—C22—C27119.5 (3)O88—C89—H891109.9
C23—C22—C27118.1 (3)H892—C89—H891109.7
C22—C23—C24121.9 (3)O88—C89—H893109.7
C22—C23—H231118.8H892—C89—H893109.9
C24—C23—H231119.2H891—C89—H893109.7
C23—C24—C25119.2 (3)C92—S91—C111102.24 (15)
C23—C24—H241120.6S91—C92—C93119.6 (3)
C25—C24—H241120.2S91—C92—C97120.6 (3)
C24—C25—C26119.8 (3)C93—C92—C97119.8 (3)
C24—C25—O28124.2 (3)C92—C93—C94119.9 (3)
C26—C25—O28116.0 (3)C92—C93—H931119.9
C25—C26—C27120.1 (3)C94—C93—H931120.2
C25—C26—H261119.7C93—C94—C95120.3 (3)
C27—C26—H261120.2C93—C94—H941121.7
C22—C27—C26120.9 (3)C95—C94—H941118.0
C22—C27—H271119.5C94—C95—C96120.2 (3)
C26—C27—H271119.6C94—C95—H951120.7
C25—O28—C29117.6 (2)C96—C95—H951119.1
O28—C29—H293107.6C95—C96—C97120.5 (3)
O28—C29—H291109.3C95—C96—H961119.1
H293—C29—H291110.4C97—C96—H961120.4
O28—C29—H292109.5C92—C97—C96119.3 (3)
H293—C29—H292110.7C92—C97—N98120.5 (3)
H291—C29—H292109.2C96—C97—N98120.2 (3)
C32—S31—C51101.47 (16)C97—N98—C99118.3 (3)
S31—C32—C33120.0 (3)C97—N98—C104123.4 (3)
S31—C32—C37121.3 (2)C99—N98—C104118.1 (3)
C33—C32—C37118.7 (3)N98—C99—C100110.0 (3)
C32—C33—C34120.5 (3)N98—C99—H991107.6
C32—C33—H331118.2C100—C99—H991110.8
C34—C33—H331121.3N98—C99—H992109.8
C33—C34—C35120.2 (3)C100—C99—H992109.3
C33—C34—H341119.6H991—C99—H992109.3
C35—C34—H341120.2C99—C100—N101111.5 (3)
C34—C35—C36119.7 (3)C99—C100—H1001110.5
C34—C35—H351121.0N101—C100—H1001107.5
C36—C35—H351119.3C99—C100—H1002110.4
C35—C36—C37120.4 (3)N101—C100—H1002109.5
C35—C36—H361119.9H1001—C100—H1002107.4
C37—C36—H361119.7C100—N101—C102112.6 (3)
C32—C37—C36120.5 (3)C100—N101—C103110.3 (3)
C32—C37—N38119.9 (3)C102—N101—C103111.3 (3)
C36—C37—N38119.7 (3)C100—N101—H1011106.7 (14)
C37—N38—C39118.6 (3)C102—N101—H1011107.7 (14)
C37—N38—C44123.3 (2)C103—N101—H1011108.0 (14)
C39—N38—C44118.0 (2)N101—C102—H1022110.2
N38—C39—C40109.4 (3)N101—C102—H1021107.9
N38—C39—H391110.2H1022—C102—H1021108.5
C40—C39—H391110.6N101—C102—H1023110.2
N38—C39—H392108.0H1022—C102—H1023109.7
C40—C39—H392111.2H1021—C102—H1023110.4
H391—C39—H392107.3N101—C103—H1032110.9
C39—C40—N41111.8 (3)N101—C103—H1033109.1
C39—C40—H401109.1H1032—C103—H1033108.2
N41—C40—H401107.5N101—C103—H1031109.9
C39—C40—H402109.3H1032—C103—H1031110.0
N41—C40—H402108.5H1033—C103—H1031108.7
H401—C40—H402110.6N98—C104—O105123.1 (3)
C40—N41—C42110.6 (2)N98—C104—C106116.1 (3)
C40—N41—C43112.5 (2)O105—C104—C106120.7 (3)
C42—N41—C43109.5 (2)C104—C106—O107109.6 (3)
C40—N41—H411106.6 (14)C104—C106—C111113.7 (3)
C42—N41—H411107.8 (14)O107—C106—C111107.7 (2)
C43—N41—H411109.6 (14)C104—C106—H1061108.0
N41—C42—H423107.1O107—C106—H1061108.8
N41—C42—H421107.1C111—C106—H1061109.1
H423—C42—H421111.0C106—O107—C108113.2 (2)
N41—C42—H422111.0O107—C108—O109121.8 (3)
H423—C42—H422111.4O107—C108—C110113.2 (3)
H421—C42—H422109.2O109—C108—C110125.0 (3)
N41—C43—H431110.4C108—C110—H1102109.7
N41—C43—H433107.9C108—C110—H1103113.5
H431—C43—H433109.1H1102—C110—H1103108.7
N41—C43—H432108.8C108—C110—H1101110.0
H431—C43—H432111.1H1102—C110—H1101106.8
H433—C43—H432109.5H1103—C110—H1101108.0
N38—C44—O45123.1 (3)C106—C111—S91108.3 (2)
N38—C44—C46115.5 (2)C106—C111—C112116.6 (3)
O45—C44—C46121.4 (3)S91—C111—C112108.1 (2)
C44—C46—O47109.2 (2)C106—C111—H1111105.4
C44—C46—C51113.9 (3)S91—C111—H1111110.0
O47—C46—C51108.5 (2)C112—C111—H1111108.4
C44—C46—H461109.0C111—C112—C113122.4 (3)
O47—C46—H461107.6C111—C112—C117119.6 (3)
C51—C46—H461108.4C113—C112—C117117.9 (3)
C46—O47—C48113.4 (2)C112—C113—C114121.7 (3)
O47—C48—O49121.1 (3)C112—C113—H1131119.1
O47—C48—C50113.4 (3)C114—C113—H1131119.2
O49—C48—C50125.5 (3)C113—C114—C115119.5 (3)
C48—C50—H501110.8C113—C114—H1141121.2
C48—C50—H503109.8C115—C114—H1141119.3
H501—C50—H503108.9C114—C115—C116119.7 (3)
C48—C50—H502109.0C114—C115—O118124.1 (3)
H501—C50—H502108.6C116—C115—O118116.2 (3)
H503—C50—H502109.7C115—C116—C117120.3 (3)
C46—C51—S31107.8 (2)C115—C116—H1161119.6
C46—C51—C52116.8 (3)C117—C116—H1161120.1
S31—C51—C52107.6 (2)C112—C117—C116120.9 (3)
C46—C51—H511105.3C112—C117—H1171119.7
S31—C51—H511108.8C116—C117—H1171119.4
C52—C51—H511110.3C115—O118—C119118.5 (2)
C51—C52—C53122.3 (3)O118—C119—H1192109.3
C51—C52—C57119.2 (3)O118—C119—H1193109.1
C53—C52—C57118.3 (3)H1192—C119—H1193109.2
C52—C53—C54121.8 (3)O118—C119—H1191109.8
C52—C53—H531119.9H1192—C119—H1191108.5
C54—C53—H531118.3H1193—C119—H1191110.8
C53—C54—C55118.9 (3)O122—P121—O123103.48 (14)
C53—C54—H541120.7O122—P121—O124108.27 (16)
C55—C54—H541120.4O123—P121—O124110.15 (14)
C54—C55—C56119.9 (3)O122—P121—O125109.41 (15)
C54—C55—O58124.2 (3)O123—P121—O125111.67 (14)
C56—C55—O58115.9 (3)O124—P121—O125113.34 (13)
C55—C56—C57120.0 (3)P121—O122—H1221122 (4)
C55—C56—H561119.7P121—O123—H1231109 (4)
C57—C56—H561120.3O127—P126—O128113.77 (13)
C52—C57—C56121.0 (3)O127—P126—O129108.07 (16)
C52—C57—H571119.8O128—P126—O129109.25 (14)
C56—C57—H571119.2O127—P126—O130110.09 (15)
C55—O58—C59117.9 (2)O128—P126—O130111.59 (14)
O58—C59—H591110.0O129—P126—O130103.50 (13)
O58—C59—H593107.7P126—O129—H1291119 (4)
H591—C59—H593109.4P126—O130—H1301110 (3)
O58—C59—H592110.2O132—P131—O133106.74 (13)
H591—C59—H592109.4O132—P131—O134108.84 (13)
H593—C59—H592110.1O133—P131—O134111.17 (15)
C62—S61—C81101.58 (15)O132—P131—O135108.69 (14)
S61—C62—C63120.3 (3)O133—P131—O135107.00 (13)
S61—C62—C67120.5 (3)O134—P131—O135114.12 (14)
C63—C62—C67119.2 (3)P131—O132—H1321115 (3)
C62—C63—C64120.7 (3)P131—O133—H1331114 (3)
C62—C63—H631119.3O137—P136—O138108.98 (13)
C64—C63—H631120.0O137—P136—O139114.35 (15)
C63—C64—C65119.9 (3)O138—P136—O139108.43 (14)
C63—C64—H641118.4O137—P136—O140106.93 (13)
C65—C64—H641121.7O138—P136—O140106.76 (14)
C64—C65—C66120.3 (3)O139—P136—O140111.12 (14)
C64—C65—H651120.5P136—O138—H1381115 (3)
C66—C65—H651119.2P136—O140—H1401114 (3)
C65—C66—C67120.5 (3)H1412—O141—H1411104.8 (10)
C65—C66—H661120.2H1422—O142—H1421105.1 (10)
C67—C66—H661119.4H1432—O143—H1431115 (5)
C62—C67—C66119.4 (3)H1442—O144—H144191 (5)
C62—C67—N68120.5 (3)H1452—O145—H1451120 (5)
C66—C67—N68120.0 (3)H1462—O146—H146184 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H51···O1240.952.493.370 (5)154
C9—H92···O490.972.443.405 (5)177
N11—H111···O1390.891.752.637 (5)175 (2)
C12—H122···O490.952.493.438 (5)174
C20—H203···O45i0.952.383.204 (5)145
C20—H201···O88ii0.952.493.255 (5)138
C39—H391···O19iii0.952.403.349 (5)178
C40—H401···O1380.962.483.346 (5)150
N41—H411···O141iii0.891.822.696 (5)169 (2)
C42—H423···O1380.972.543.410 (5)149
C42—H421···O133iii0.982.533.283 (5)134
C43—H431···O19iii0.972.393.362 (5)178
C50—H501···O150.952.503.179 (5)129
C50—H502···O118ii0.952.373.257 (5)155
C69—H691···O1090.952.413.357 (5)178
C70—H701···O132iv0.972.483.346 (5)149
N71—H711···O142v0.891.822.698 (5)169 (2)
C72—H721···O132iv0.972.523.409 (5)152
C72—H722···O140iv0.972.503.276 (5)137
C73—H731···O1090.972.393.366 (5)176
C80—H801···O58vi0.952.353.254 (5)160
C80—H803···O105i0.962.533.179 (5)126
C95—H951···O127vii0.952.493.370 (5)153
C99—H992···O79iii0.972.443.413 (5)176
N101—H1011···O134v0.891.742.630 (5)175 (2)
C102—H1023···O79iii0.962.493.441 (5)176
C110—H1102···O28viii0.942.413.251 (5)149
C110—H1101···O750.942.443.209 (5)138
O122—H1221···O1350.851.692.538 (5)177 (6)
O123—H1231···O1430.821.802.603 (5)163 (5)
O129—H1291···O137vi0.841.712.542 (5)173 (5)
O130—H1301···O1450.821.812.605 (5)163 (5)
O132—H1321···O125ii0.851.712.555 (5)175 (4)
O133—H1331···O124ii0.861.672.498 (5)160 (5)
O138—H1381···O128iii0.831.732.557 (5)177 (5)
O140—H1401···O127iii0.881.632.496 (5)167 (5)
O141—H1412···O144i0.821.942.750 (5)169 (5)
O141—H1411···O1350.901.962.831 (5)164 (5)
O142—H1422···O137i0.891.952.827 (5)171 (5)
O142—H1421···O146ix0.821.952.747 (5)167 (5)
O143—H1432···O1390.801.942.702 (5)159 (5)
O143—H1431···O129iii0.812.293.049 (5)156 (5)
O144—H1442···O128iii0.822.022.805 (5)160 (5)
O144—H1441···O124iii0.791.992.762 (5)166 (5)
O145—H1452···O134viii0.812.032.700 (5)141 (5)
O145—H1451···O1220.812.263.054 (5)164 (5)
O146—H1462···O1250.822.012.814 (5)167 (5)
O146—H1461···O127iii0.792.042.759 (5)150 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x1, y, z+1; (v) x1, y1, z+1; (vi) x1, y+1, z; (vii) x, y1, z+1; (viii) x1, y, z; (ix) x+1, y+1, z.
(pn180815_uo_eph_1_180814_pyrolidcarbox) top
Crystal data top
C10H16NO·C5H6NO3·H2OF(000) = 336
Mr = 312.36Dx = 1.354 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 11.47377 (11) ÅCell parameters from 12100 reflections
b = 6.14747 (5) Åθ = 4.1–78.6°
c = 11.71348 (12) ŵ = 0.84 mm1
β = 111.9780 (11)°T = 160 K
V = 766.16 (1) Å3Needle, colourless
Z = 20.38 × 0.04 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
3268 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3223 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
ω scansθmax = 78.9°, θmin = 4.1°
Absorption correction: gaussian
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1414
Tmin = 0.708, Tmax = 1.000k = 77
13893 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.1159P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.20 e Å3
3268 reflectionsΔρmin = 0.14 e Å3
205 parametersAbsolute structure: Flack x determined using 1425 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
1 restraintAbsolute structure parameter: 0.03 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36233 (10)0.63183 (19)0.82268 (10)0.0217 (2)
H10.39390.54430.78720.033*
O20.45666 (11)0.3683 (2)0.70244 (10)0.0306 (3)
O30.57405 (10)0.21348 (19)0.88122 (9)0.0196 (2)
O40.86010 (11)0.2218 (2)0.83263 (11)0.0256 (3)
O51.02189 (12)0.1350 (2)1.07667 (11)0.0293 (3)
H5A1.05010.00851.10110.044*
H5B0.97270.12951.00160.044*
N10.36998 (11)1.0452 (2)0.93810 (11)0.0156 (2)
H1A0.39500.92830.98910.019*
H1B0.43711.09100.92100.019*
N20.76034 (11)0.1063 (2)0.79509 (12)0.0187 (3)
H2A0.81780.17610.85580.022*
C10.32586 (13)0.8239 (2)0.75197 (13)0.0164 (3)
H1C0.40320.89570.74980.020*
C20.26721 (13)0.9748 (2)0.81993 (13)0.0158 (3)
H20.23341.10650.76790.019*
C30.16114 (13)0.8683 (3)0.84745 (14)0.0214 (3)
H3A0.19550.75390.90920.032*
H3B0.10060.80450.77180.032*
H3C0.11880.97790.87900.032*
C40.33182 (15)1.2229 (3)1.00359 (15)0.0235 (3)
H4A0.30771.35170.95060.035*
H4B0.40241.25931.07970.035*
H4C0.26031.17441.02350.035*
C50.23581 (13)0.7874 (2)0.62021 (13)0.0164 (3)
C60.21765 (14)0.9537 (2)0.53407 (14)0.0190 (3)
H60.26171.08720.55840.023*
C70.13549 (15)0.9251 (3)0.41288 (14)0.0216 (3)
H70.12301.03930.35490.026*
C80.07161 (14)0.7291 (3)0.37662 (14)0.0229 (3)
H80.01640.70870.29360.027*
C90.08861 (14)0.5641 (3)0.46157 (14)0.0235 (3)
H90.04440.43080.43700.028*
C100.17063 (14)0.5929 (3)0.58338 (14)0.0203 (3)
H100.18200.47910.64140.024*
C110.55185 (13)0.2692 (2)0.77137 (13)0.0168 (3)
C120.64694 (13)0.2113 (3)0.71199 (13)0.0176 (3)
H120.67060.34670.67850.021*
C130.59343 (14)0.0436 (3)0.60660 (14)0.0222 (3)
H13A0.50080.03390.57910.027*
H13B0.61570.08350.53540.027*
C140.65528 (14)0.1711 (3)0.66342 (15)0.0231 (3)
H14A0.59810.25920.69040.028*
H14B0.67900.25660.60380.028*
C150.77080 (14)0.1031 (3)0.77253 (13)0.0179 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0274 (5)0.0199 (5)0.0175 (5)0.0087 (4)0.0082 (4)0.0016 (4)
O20.0307 (6)0.0397 (7)0.0218 (5)0.0189 (5)0.0101 (5)0.0037 (5)
O30.0226 (5)0.0205 (5)0.0175 (5)0.0002 (4)0.0096 (4)0.0005 (4)
O40.0234 (5)0.0267 (6)0.0241 (5)0.0091 (4)0.0059 (4)0.0031 (5)
O50.0337 (6)0.0237 (6)0.0238 (6)0.0028 (5)0.0031 (5)0.0033 (5)
N10.0167 (5)0.0161 (6)0.0147 (5)0.0007 (4)0.0067 (4)0.0001 (4)
N20.0157 (5)0.0194 (7)0.0200 (6)0.0001 (5)0.0055 (5)0.0034 (5)
C10.0166 (6)0.0176 (7)0.0159 (6)0.0010 (5)0.0070 (5)0.0002 (5)
C20.0163 (6)0.0166 (7)0.0140 (6)0.0017 (5)0.0050 (5)0.0000 (5)
C30.0166 (6)0.0279 (8)0.0210 (7)0.0002 (6)0.0086 (5)0.0006 (6)
C40.0267 (7)0.0229 (8)0.0223 (7)0.0011 (6)0.0109 (6)0.0065 (6)
C50.0154 (6)0.0199 (7)0.0153 (6)0.0006 (5)0.0073 (5)0.0011 (5)
C60.0203 (7)0.0201 (7)0.0187 (7)0.0020 (6)0.0099 (6)0.0000 (6)
C70.0215 (7)0.0266 (8)0.0179 (7)0.0018 (6)0.0088 (6)0.0039 (6)
C80.0184 (7)0.0333 (9)0.0160 (7)0.0010 (6)0.0055 (5)0.0038 (6)
C90.0218 (7)0.0250 (8)0.0232 (7)0.0042 (6)0.0080 (6)0.0058 (6)
C100.0222 (7)0.0193 (8)0.0198 (7)0.0021 (5)0.0082 (6)0.0006 (6)
C110.0196 (6)0.0152 (7)0.0167 (6)0.0007 (5)0.0081 (5)0.0020 (5)
C120.0192 (6)0.0174 (6)0.0179 (6)0.0022 (5)0.0089 (5)0.0019 (5)
C130.0231 (7)0.0271 (8)0.0151 (7)0.0076 (6)0.0057 (5)0.0009 (6)
C140.0213 (7)0.0211 (8)0.0241 (7)0.0023 (6)0.0052 (6)0.0051 (6)
C150.0188 (7)0.0201 (7)0.0169 (6)0.0020 (5)0.0091 (5)0.0012 (5)
Geometric parameters (Å, º) top
O1—H10.8400C4—H4B0.9800
O1—C11.4127 (18)C4—H4C0.9800
O2—C111.2471 (19)C5—C61.396 (2)
O3—C111.2621 (18)C5—C101.390 (2)
O4—C151.2401 (19)C6—H60.9500
O5—H5A0.8503C6—C71.390 (2)
O5—H5B0.8496C7—H70.9500
N1—H1A0.9100C7—C81.392 (2)
N1—H1B0.9100C8—H80.9500
N1—C21.5073 (18)C8—C91.383 (2)
N1—C41.4914 (19)C9—H90.9500
N2—H2A0.8800C9—C101.396 (2)
N2—C121.4522 (19)C10—H100.9500
N2—C151.329 (2)C11—C121.5391 (19)
C1—H1C1.0000C12—H121.0000
C1—C21.5324 (19)C12—C131.548 (2)
C1—C51.5187 (19)C13—H13A0.9900
C2—H21.0000C13—H13B0.9900
C2—C31.519 (2)C13—C141.528 (2)
C3—H3A0.9800C14—H14A0.9900
C3—H3B0.9800C14—H14B0.9900
C3—H3C0.9800C14—C151.515 (2)
C4—H4A0.9800
C1—O1—H1109.5C7—C6—C5120.40 (14)
H5A—O5—H5B109.5C7—C6—H6119.8
H1A—N1—H1B107.7C6—C7—H7120.0
C2—N1—H1A108.8C6—C7—C8119.96 (14)
C2—N1—H1B108.8C8—C7—H7120.0
C4—N1—H1A108.8C7—C8—H8120.0
C4—N1—H1B108.8C9—C8—C7119.95 (14)
C4—N1—C2113.79 (11)C9—C8—H8120.0
C12—N2—H2A122.5C8—C9—H9119.9
C15—N2—H2A122.5C8—C9—C10120.13 (15)
C15—N2—C12114.99 (13)C10—C9—H9119.9
O1—C1—H1C108.2C5—C10—C9120.34 (14)
O1—C1—C2107.02 (11)C5—C10—H10119.8
O1—C1—C5114.32 (12)C9—C10—H10119.8
C2—C1—H1C108.2O2—C11—O3125.89 (13)
C5—C1—H1C108.2O2—C11—C12114.68 (13)
C5—C1—C2110.69 (11)O3—C11—C12119.42 (13)
N1—C2—C1107.83 (11)N2—C12—C11114.13 (12)
N1—C2—H2108.6N2—C12—H12109.1
N1—C2—C3110.03 (11)N2—C12—C13103.12 (12)
C1—C2—H2108.6C11—C12—H12109.1
C3—C2—C1113.07 (12)C11—C12—C13112.20 (12)
C3—C2—H2108.6C13—C12—H12109.1
C2—C3—H3A109.5C12—C13—H13A110.9
C2—C3—H3B109.5C12—C13—H13B110.9
C2—C3—H3C109.5H13A—C13—H13B108.9
H3A—C3—H3B109.5C14—C13—C12104.29 (12)
H3A—C3—H3C109.5C14—C13—H13A110.9
H3B—C3—H3C109.5C14—C13—H13B110.9
N1—C4—H4A109.5C13—C14—H14A110.9
N1—C4—H4B109.5C13—C14—H14B110.9
N1—C4—H4C109.5H14A—C14—H14B108.9
H4A—C4—H4B109.5C15—C14—C13104.26 (13)
H4A—C4—H4C109.5C15—C14—H14A110.9
H4B—C4—H4C109.5C15—C14—H14B110.9
C6—C5—C1119.14 (14)O4—C15—N2125.04 (15)
C10—C5—C1121.65 (13)O4—C15—C14126.35 (15)
C10—C5—C6119.20 (13)N2—C15—C14108.61 (13)
C5—C6—H6119.8
O1—C1—C2—N167.64 (14)C5—C1—C2—C370.95 (15)
O1—C1—C2—C354.23 (15)C5—C6—C7—C80.6 (2)
O1—C1—C5—C6164.37 (12)C6—C5—C10—C90.4 (2)
O1—C1—C5—C1015.91 (19)C6—C7—C8—C90.9 (2)
O2—C11—C12—N2176.92 (14)C7—C8—C9—C100.6 (2)
O2—C11—C12—C1366.24 (18)C8—C9—C10—C50.0 (2)
O3—C11—C12—N23.8 (2)C10—C5—C6—C70.1 (2)
O3—C11—C12—C13113.00 (15)C11—C12—C13—C14103.01 (14)
N2—C12—C13—C1420.25 (15)C12—N2—C15—O4179.94 (14)
C1—C5—C6—C7179.80 (13)C12—N2—C15—C140.81 (17)
C1—C5—C10—C9179.92 (13)C12—C13—C14—C1520.88 (15)
C2—C1—C5—C674.69 (16)C13—C14—C15—O4166.74 (15)
C2—C1—C5—C10105.03 (15)C13—C14—C15—N214.15 (16)
C4—N1—C2—C1169.88 (12)C15—N2—C12—C11109.32 (15)
C4—N1—C2—C366.38 (16)C15—N2—C12—C1312.66 (16)
C5—C1—C2—N1167.18 (11)
(pn180815_uo_traz_1_180814_c6_nitrate_mo) top
Crystal data top
C19H23ClN5O·NO3F(000) = 912
Mr = 434.88Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6065 (3) ÅCell parameters from 14972 reflections
b = 13.0726 (3) Åθ = 2.6–33.0°
c = 12.6694 (3) ŵ = 0.23 mm1
β = 106.397 (3)°T = 160 K
V = 2003.00 (8) Å3Block, colourless
Z = 40.53 × 0.20 × 0.17 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
6532 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source5530 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
ω scansθmax = 33.2°, θmin = 2.3°
Absorption correction: gaussian
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1619
Tmin = 0.560, Tmax = 1.000k = 1820
21495 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.3895P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6532 reflectionsΔρmax = 0.40 e Å3
274 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl260.82838 (3)1.05094 (2)0.83765 (2)0.03897 (8)
O100.09502 (7)0.67054 (7)0.12314 (7)0.03800 (18)
O280.43563 (8)0.51734 (7)0.27552 (7)0.0426 (2)
O290.53436 (7)0.39815 (5)0.37420 (6)0.03386 (17)
O300.55841 (8)0.55663 (6)0.42729 (8)0.0445 (2)
N20.03849 (7)0.65742 (6)0.28322 (7)0.02562 (16)
N30.04645 (7)0.69337 (7)0.32215 (6)0.02694 (16)
N80.06210 (6)0.74893 (6)0.15201 (6)0.02094 (14)
N140.39661 (6)0.72816 (6)0.41840 (6)0.02118 (14)
H140.4366 (10)0.6718 (10)0.4492 (10)0.025*
N170.56757 (6)0.88233 (6)0.49464 (6)0.02097 (14)
N270.51008 (7)0.49074 (6)0.35862 (7)0.02418 (15)
C10.03291 (8)0.68863 (7)0.17939 (7)0.02428 (17)
C40.20601 (9)0.80342 (8)0.22989 (9)0.0313 (2)
H40.23920.80510.28850.038*
C50.25250 (9)0.85343 (8)0.13448 (10)0.0338 (2)
H50.31930.89020.12630.041*
C60.20331 (9)0.85218 (8)0.04575 (9)0.0312 (2)
H60.23750.88820.02020.037*
C70.10896 (8)0.80034 (8)0.05485 (7)0.02650 (18)
H70.07570.79920.00370.032*
C90.10625 (8)0.74827 (7)0.24034 (7)0.02249 (16)
C110.11892 (9)0.58567 (8)0.34778 (10)0.0339 (2)
H11A0.14240.53880.29730.041*
H11B0.08330.54400.39350.041*
C120.22069 (8)0.63785 (8)0.42241 (9)0.0301 (2)
H12A0.19780.68770.47060.036*
H12B0.26900.58620.46970.036*
C130.28392 (8)0.69255 (7)0.35340 (7)0.02533 (17)
H13A0.29190.64580.29460.030*
H13B0.24030.75240.31750.030*
C150.39353 (8)0.80252 (7)0.50691 (7)0.02247 (16)
H15A0.35910.76950.55940.027*
H15B0.34730.86190.47390.027*
C160.50821 (8)0.83947 (7)0.56830 (7)0.02320 (17)
H16A0.50210.89230.62230.028*
H16B0.55120.78150.60950.028*
C180.56703 (8)0.81464 (7)0.40203 (7)0.02380 (17)
H18A0.61450.75460.42980.029*
H18B0.59870.85160.34980.029*
C190.45226 (8)0.77845 (7)0.34223 (7)0.02467 (17)
H19A0.40740.83750.30620.030*
H19B0.45670.72930.28410.030*
C200.66838 (7)0.93099 (6)0.54464 (7)0.02075 (16)
C210.69872 (8)0.95883 (7)0.65659 (7)0.02364 (17)
H210.65260.94130.70150.028*
C220.79649 (8)1.01202 (7)0.70079 (8)0.02620 (18)
C230.86837 (9)1.03794 (8)0.64059 (9)0.0299 (2)
H230.93521.07370.67310.036*
C240.83867 (9)1.00945 (8)0.53037 (9)0.0305 (2)
H240.88651.02580.48670.037*
C250.74116 (8)0.95790 (7)0.48290 (8)0.02630 (18)
H250.72290.94030.40710.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl260.04455 (17)0.04064 (15)0.02811 (12)0.00862 (11)0.00436 (10)0.00800 (9)
O100.0306 (4)0.0492 (5)0.0372 (4)0.0088 (3)0.0144 (3)0.0083 (3)
O280.0528 (5)0.0350 (4)0.0297 (4)0.0083 (4)0.0052 (3)0.0042 (3)
O290.0411 (4)0.0230 (3)0.0345 (4)0.0092 (3)0.0059 (3)0.0015 (3)
O300.0398 (5)0.0305 (4)0.0524 (5)0.0073 (3)0.0043 (4)0.0118 (3)
N20.0215 (4)0.0264 (4)0.0261 (3)0.0021 (3)0.0021 (3)0.0030 (3)
N30.0254 (4)0.0323 (4)0.0233 (3)0.0012 (3)0.0072 (3)0.0022 (3)
N80.0197 (4)0.0242 (3)0.0187 (3)0.0018 (3)0.0049 (3)0.0010 (3)
N140.0211 (4)0.0176 (3)0.0228 (3)0.0021 (3)0.0029 (3)0.0009 (2)
N170.0249 (4)0.0190 (3)0.0206 (3)0.0019 (3)0.0090 (3)0.0010 (2)
N270.0233 (4)0.0220 (3)0.0268 (3)0.0006 (3)0.0063 (3)0.0000 (3)
C10.0207 (4)0.0269 (4)0.0240 (4)0.0020 (3)0.0044 (3)0.0036 (3)
C40.0259 (5)0.0313 (5)0.0408 (5)0.0014 (4)0.0158 (4)0.0051 (4)
C50.0218 (5)0.0252 (4)0.0516 (6)0.0032 (3)0.0060 (4)0.0011 (4)
C60.0276 (5)0.0240 (4)0.0346 (5)0.0021 (3)0.0033 (4)0.0043 (4)
C70.0277 (5)0.0285 (4)0.0202 (4)0.0035 (3)0.0018 (3)0.0013 (3)
C90.0219 (4)0.0240 (4)0.0228 (4)0.0014 (3)0.0083 (3)0.0021 (3)
C110.0249 (5)0.0246 (4)0.0434 (5)0.0016 (4)0.0046 (4)0.0098 (4)
C120.0238 (5)0.0297 (4)0.0313 (4)0.0029 (3)0.0012 (4)0.0093 (4)
C130.0209 (4)0.0264 (4)0.0251 (4)0.0003 (3)0.0007 (3)0.0002 (3)
C150.0247 (4)0.0208 (4)0.0230 (4)0.0007 (3)0.0085 (3)0.0004 (3)
C160.0261 (4)0.0240 (4)0.0206 (3)0.0041 (3)0.0084 (3)0.0005 (3)
C180.0245 (4)0.0244 (4)0.0234 (4)0.0004 (3)0.0084 (3)0.0036 (3)
C190.0256 (4)0.0276 (4)0.0210 (4)0.0001 (3)0.0068 (3)0.0015 (3)
C200.0239 (4)0.0157 (3)0.0234 (4)0.0013 (3)0.0080 (3)0.0015 (3)
C210.0280 (4)0.0202 (4)0.0233 (4)0.0009 (3)0.0082 (3)0.0014 (3)
C220.0295 (5)0.0209 (4)0.0260 (4)0.0003 (3)0.0043 (3)0.0000 (3)
C230.0253 (5)0.0262 (4)0.0366 (5)0.0025 (3)0.0063 (4)0.0011 (4)
C240.0288 (5)0.0298 (5)0.0363 (5)0.0029 (4)0.0144 (4)0.0019 (4)
C250.0298 (5)0.0253 (4)0.0264 (4)0.0020 (3)0.0122 (4)0.0001 (3)
Geometric parameters (Å, º) top
Cl26—C221.7417 (10)N17—C181.4680 (11)
O10—C11.2215 (11)N17—C201.4023 (12)
O28—N271.2459 (11)C4—C51.3535 (16)
O29—N271.2505 (10)C4—C91.4230 (13)
O30—N271.2533 (11)C5—C61.4290 (17)
N2—N31.3818 (12)C6—C71.3453 (15)
N2—C11.3600 (12)C11—C121.5234 (14)
N2—C111.4521 (12)C12—C131.5180 (14)
N3—C91.3101 (12)C15—C161.5145 (13)
N8—C11.3934 (12)C18—C191.5074 (13)
N8—C71.3804 (11)C20—C211.4086 (12)
N8—C91.3835 (11)C20—C251.4081 (12)
N14—C131.5009 (12)C21—C221.3880 (14)
N14—C151.4928 (11)C22—C231.3812 (14)
N14—C191.4959 (12)C23—C241.3906 (15)
N17—C161.4626 (11)C24—C251.3819 (15)
N3—N2—C11120.46 (8)C6—C7—N8117.85 (9)
C1—N2—N3114.18 (8)N3—C9—N8111.74 (8)
C1—N2—C11125.16 (9)N3—C9—C4130.33 (9)
C9—N3—N2103.57 (7)N8—C9—C4117.93 (8)
C7—N8—C1128.23 (8)N2—C11—C12113.09 (8)
C7—N8—C9123.76 (8)C13—C12—C11109.91 (8)
C9—N8—C1107.99 (7)N14—C13—C12113.56 (7)
C15—N14—C13113.13 (7)N14—C15—C16111.71 (7)
C15—N14—C19108.36 (7)N17—C16—C15112.38 (7)
C19—N14—C13109.02 (7)N17—C18—C19112.22 (7)
C16—N17—C18113.04 (7)N14—C19—C18111.84 (7)
C20—N17—C16116.56 (7)N17—C20—C21121.73 (8)
C20—N17—C18115.70 (7)N17—C20—C25120.79 (8)
O28—N27—O29119.74 (8)C25—C20—C21117.42 (9)
O28—N27—O30119.83 (9)C22—C21—C20119.57 (8)
O29—N27—O30120.41 (8)C21—C22—Cl26118.50 (7)
O10—C1—N2129.76 (9)C23—C22—Cl26118.36 (8)
O10—C1—N8127.72 (9)C23—C22—C21123.12 (9)
N2—C1—N8102.51 (7)C22—C23—C24117.14 (9)
C5—C4—C9118.44 (9)C25—C24—C23121.46 (9)
C4—C5—C6121.49 (9)C24—C25—C20121.27 (9)
C7—C6—C5120.52 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O29i0.92 (1)2.35 (1)3.0162 (11)130 (1)
N14—H14···O300.92 (1)2.22 (1)3.0120 (12)144 (1)
Symmetry code: (i) x+1, y+1, z+1.
(pn180815_uo_traz_1_180814_scn) top
Crystal data top
1(C19H23ClN5O)·CNSZ = 4
Mr = 430.95F(000) = 904
Triclinic, P1Dx = 1.359 Mg m3
a = 12.1482 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.1848 (2) ÅCell parameters from 34827 reflections
c = 13.82510 (17) Åθ = 3.5–78.7°
α = 90.2630 (12)°µ = 2.73 mm1
β = 90.2180 (12)°T = 160 K
γ = 108.0045 (15)°Plate, colourless
V = 2105.89 (6) Å30.23 × 0.19 × 0.07 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
8412 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source7824 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
ω scansθmax = 78.9°, θmin = 3.2°
Absorption correction: gaussian
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1515
Tmin = 0.532, Tmax = 1.000k = 1616
52525 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0411P)2 + 2.3014P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
8412 reflectionsΔρmax = 0.51 e Å3
723 parametersΔρmin = 0.55 e Å3
45 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl260.84874 (7)0.82750 (5)0.05159 (5)0.0598 (2)
Cl560.15284 (16)0.32691 (14)0.45633 (11)0.0505 (4)0.492 (3)
Cl570.12284 (11)0.28589 (15)0.43681 (12)0.0468 (4)0.508 (3)
S290.54688 (11)0.31572 (9)0.58920 (9)0.0439 (4)0.502 (2)
S29B0.45272 (17)0.28178 (13)0.46543 (12)0.0682 (6)0.498 (2)
S590.4566 (6)0.2109 (5)1.0373 (4)0.0703 (13)0.492 (3)
S59B0.4379 (5)0.2233 (4)1.0463 (3)0.0476 (6)0.508 (3)
O100.07854 (17)0.1159 (2)0.3335 (2)0.0916 (9)
O400.93035 (19)0.3870 (2)0.8324 (2)0.1078 (11)
N20.01486 (17)0.2651 (2)0.31321 (17)0.0541 (6)
N30.06980 (17)0.29125 (18)0.26031 (16)0.0466 (5)
N80.07820 (17)0.12207 (17)0.23658 (17)0.0519 (6)
N140.38422 (14)0.41764 (14)0.24813 (13)0.0335 (4)
H140.42570.44400.31030.040*
N170.57940 (15)0.50147 (14)0.12163 (13)0.0327 (4)
N270.4571 (4)0.3732 (4)0.4197 (3)0.0527 (11)0.502 (2)
N27B0.5511 (4)0.4393 (4)0.6014 (3)0.0497 (11)0.498 (2)
N320.99770 (19)0.2395 (2)0.81158 (18)0.0628 (7)
N331.08098 (18)0.21322 (18)0.75689 (17)0.0504 (5)
N381.08185 (16)0.38075 (17)0.73186 (17)0.0507 (6)
N440.6218 (10)0.0916 (10)0.7514 (6)0.0269 (19)0.492 (3)
H440.58320.05860.81240.032*0.492 (3)
N44B0.6613 (3)0.0089 (3)0.7380 (3)0.0304 (8)0.508 (3)
H44B0.62150.03340.79480.036*0.508 (3)
N470.4273 (5)0.0075 (5)0.6210 (5)0.0306 (12)0.492 (3)
N47B0.4527 (5)0.0205 (5)0.6257 (4)0.0272 (11)0.508 (3)
N570.5556 (4)0.0582 (4)0.8993 (3)0.0451 (10)0.492 (3)
N57B0.5660 (4)0.1156 (4)0.8926 (3)0.0488 (11)0.508 (3)
C10.0143 (2)0.1625 (3)0.3000 (2)0.0632 (9)
C40.2187 (2)0.1784 (2)0.1482 (2)0.0518 (6)
H40.25300.23140.13040.062*
C50.2587 (3)0.0792 (2)0.1108 (2)0.0609 (7)
H50.32100.06320.06580.073*
C60.2106 (3)0.0020 (3)0.1365 (3)0.0682 (9)
H60.24160.07160.10980.082*
C70.1215 (3)0.0197 (2)0.1985 (3)0.0693 (10)
H70.08830.03410.21620.083*
C90.1242 (2)0.2027 (2)0.21484 (18)0.0423 (6)
C110.0930 (2)0.3432 (3)0.3758 (2)0.0692 (9)
H11A0.12290.30570.42640.083*
H11B0.04960.38590.40830.083*
C120.1945 (2)0.4178 (3)0.3217 (2)0.0569 (7)
H12A0.16580.45860.27320.068*
H12B0.24560.46910.36770.068*
C130.2622 (2)0.3538 (2)0.27163 (19)0.0518 (7)
H13A0.26370.29370.31370.062*
H13B0.22160.32330.21100.062*
C150.3948 (2)0.5113 (2)0.18572 (18)0.0467 (6)
H15A0.35820.55980.21790.056*
H15B0.35380.48730.12370.056*
C160.5206 (2)0.57030 (19)0.1662 (2)0.0476 (6)
H16A0.52560.63120.12300.057*
H16B0.55980.59910.22780.057*
C180.5688 (2)0.40778 (18)0.18042 (18)0.0401 (5)
H18A0.61010.43000.24260.048*
H18B0.60530.36030.14650.048*
C190.4437 (2)0.34787 (19)0.1999 (2)0.0488 (6)
H19A0.40390.32060.13810.059*
H19B0.43910.28590.24170.059*
C200.68396 (17)0.54862 (17)0.07376 (15)0.0314 (4)
C210.71671 (19)0.65540 (17)0.04478 (15)0.0346 (4)
H210.67170.69980.06280.041*
C220.8155 (2)0.69575 (18)0.01057 (16)0.0406 (5)
C230.8853 (2)0.6363 (2)0.03819 (18)0.0462 (6)
H230.95220.66610.07640.055*
C240.85426 (19)0.5316 (2)0.00830 (18)0.0450 (6)
H240.90100.48860.02590.054*
C250.75637 (19)0.48817 (19)0.04681 (17)0.0389 (5)
H250.73760.41600.06690.047*
C280.4950 (4)0.3500 (3)0.4913 (4)0.0313 (10)0.502 (2)
C28B0.5126 (4)0.3751 (4)0.5448 (4)0.0352 (10)0.498 (2)
C310.9939 (2)0.3411 (3)0.7979 (2)0.0676 (10)
C341.2208 (2)0.3262 (2)0.6408 (2)0.0522 (7)
H341.25680.27440.62320.063*
C351.2559 (3)0.4243 (3)0.6008 (2)0.0621 (7)
H351.31650.44030.55460.075*
C361.2056 (3)0.5027 (3)0.6256 (3)0.0700 (9)
H361.23210.57110.59650.084*
C371.1204 (3)0.4818 (2)0.6901 (3)0.0675 (10)
H371.08630.53500.70750.081*
C391.12930 (19)0.3012 (2)0.70968 (19)0.0427 (6)
C410.9147 (8)0.1780 (8)0.8740 (7)0.067 (3)0.492 (3)
H41A0.88100.22490.91210.080*0.492 (3)
H41B0.95150.14060.91970.080*0.492 (3)
C41B0.9333 (6)0.1492 (7)0.8816 (6)0.0546 (14)0.508 (3)
H41C0.97140.09280.87980.066*0.508 (3)
H41D0.94120.17850.94820.066*0.508 (3)
C420.8179 (5)0.0957 (5)0.8176 (5)0.0403 (15)0.492 (3)
H42A0.77220.03890.86100.048*0.492 (3)
H42B0.85050.06270.76500.048*0.492 (3)
C42B0.8069 (6)0.0997 (7)0.8588 (5)0.0558 (19)0.508 (3)
H42C0.76790.15540.86120.067*0.508 (3)
H42D0.77130.04570.90840.067*0.508 (3)
C430.7425 (3)0.1600 (3)0.7760 (3)0.0315 (9)0.492 (3)
H43A0.73860.21480.82390.038*0.492 (3)
H43B0.77960.19720.71700.038*0.492 (3)
C43B0.7889 (4)0.0476 (4)0.7603 (3)0.0366 (10)0.508 (3)
H43C0.82980.09960.71080.044*0.508 (3)
H43D0.82060.01310.75930.044*0.508 (3)
C450.6173 (4)0.0041 (3)0.6805 (4)0.0305 (10)0.492 (3)
H45A0.65750.04410.70820.037*0.492 (3)
H45B0.65790.03510.62050.037*0.492 (3)
C45B0.6346 (3)0.0631 (3)0.6516 (3)0.0296 (9)0.508 (3)
H45C0.66540.12350.66190.035*0.508 (3)
H45D0.67310.02330.59410.035*0.508 (3)
C460.4928 (4)0.0593 (5)0.6566 (4)0.0335 (10)0.492 (3)
H46A0.49210.11410.60720.040*0.492 (3)
H46B0.45510.09660.71540.040*0.492 (3)
C46B0.5048 (4)0.1058 (4)0.6333 (4)0.0308 (10)0.508 (3)
H46C0.49020.14810.57260.037*0.508 (3)
H46D0.46790.15370.68680.037*0.508 (3)
C480.4317 (4)0.0940 (4)0.6890 (4)0.0382 (11)0.492 (3)
H48A0.39310.06370.75000.046*0.492 (3)
H48B0.38920.14030.66130.046*0.492 (3)
C48B0.4813 (4)0.0520 (3)0.7087 (3)0.0333 (10)0.508 (3)
H48C0.44600.01330.76770.040*0.508 (3)
H48D0.44860.11120.69860.040*0.508 (3)
C490.5549 (4)0.1598 (3)0.7104 (3)0.0348 (10)0.492 (3)
H49A0.59220.19370.65010.042*0.492 (3)
H49B0.55560.21710.75710.042*0.492 (3)
C49B0.6102 (12)0.0966 (12)0.7226 (8)0.033 (2)0.508 (3)
H49C0.64530.13800.66480.040*0.508 (3)
H49D0.62750.14540.77910.040*0.508 (3)
C500.3260 (15)0.0381 (12)0.5756 (14)0.025 (2)0.492 (3)
C50B0.3353 (18)0.0522 (14)0.5885 (15)0.036 (3)0.508 (3)
C510.2921 (14)0.1535 (14)0.5456 (14)0.023 (2)0.492 (3)
H510.34040.19650.55820.027*0.492 (3)
C51B0.2830 (16)0.1418 (16)0.5448 (17)0.037 (4)0.508 (3)
H51B0.31830.19680.54830.044*0.508 (3)
C520.1847 (15)0.1943 (8)0.4976 (13)0.034 (2)0.492 (3)
C52B0.1822 (14)0.1631 (8)0.4944 (12)0.036 (2)0.508 (3)
C530.1174 (6)0.1358 (7)0.4657 (5)0.0413 (15)0.492 (3)
H530.05090.16690.42650.050*0.492 (3)
C53B0.1194 (6)0.0927 (8)0.4991 (6)0.0437 (16)0.508 (3)
H53B0.04470.10890.47040.052*0.508 (3)
C540.1492 (6)0.0291 (7)0.4922 (5)0.0429 (14)0.492 (3)
H540.10190.01300.47330.051*0.492 (3)
C54B0.1689 (5)0.0025 (5)0.5469 (5)0.0442 (12)0.508 (3)
H54B0.12830.05360.54980.053*0.508 (3)
C550.2485 (6)0.0171 (5)0.5458 (5)0.0383 (14)0.492 (3)
H550.26580.09010.56360.046*0.492 (3)
C55B0.2766 (5)0.0255 (4)0.5911 (5)0.0381 (13)0.508 (3)
H55B0.31060.09210.62250.046*0.508 (3)
C580.5140 (7)0.1210 (4)0.9552 (4)0.0325 (13)0.492 (3)
C58B0.5161 (5)0.1566 (4)0.9574 (4)0.0268 (10)0.508 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl260.0730 (4)0.0428 (3)0.0479 (4)0.0052 (3)0.0060 (3)0.0007 (3)
Cl560.0509 (8)0.0406 (8)0.0477 (8)0.0037 (6)0.0125 (6)0.0064 (6)
Cl570.0331 (6)0.0522 (9)0.0459 (8)0.0001 (5)0.0052 (5)0.0013 (6)
S290.0567 (7)0.0456 (7)0.0346 (7)0.0237 (5)0.0122 (5)0.0005 (5)
S29B0.1058 (13)0.0485 (9)0.0581 (10)0.0360 (9)0.0349 (9)0.0269 (7)
S590.082 (3)0.0468 (14)0.088 (2)0.0278 (15)0.0446 (14)0.0378 (12)
S59B0.0570 (13)0.0381 (12)0.0496 (12)0.0170 (9)0.0206 (10)0.0112 (10)
O100.0431 (11)0.1097 (19)0.134 (2)0.0395 (12)0.0188 (12)0.0811 (17)
O400.0476 (12)0.133 (2)0.144 (2)0.0311 (13)0.0014 (14)0.098 (2)
N20.0322 (10)0.0763 (15)0.0563 (14)0.0201 (10)0.0113 (10)0.0293 (12)
N30.0393 (10)0.0593 (13)0.0496 (13)0.0273 (10)0.0106 (9)0.0151 (10)
N80.0368 (10)0.0548 (12)0.0734 (15)0.0271 (9)0.0256 (10)0.0357 (11)
N140.0282 (8)0.0439 (10)0.0260 (9)0.0079 (7)0.0014 (7)0.0053 (7)
N170.0327 (9)0.0399 (9)0.0307 (10)0.0185 (7)0.0042 (7)0.0034 (7)
N270.067 (3)0.057 (3)0.039 (3)0.027 (2)0.005 (2)0.008 (2)
N27B0.051 (2)0.052 (2)0.044 (3)0.013 (2)0.012 (2)0.014 (2)
N320.0369 (11)0.0803 (16)0.0573 (15)0.0016 (10)0.0008 (10)0.0322 (12)
N330.0392 (10)0.0568 (13)0.0549 (14)0.0147 (10)0.0060 (10)0.0183 (10)
N380.0323 (10)0.0548 (12)0.0694 (15)0.0204 (9)0.0163 (10)0.0339 (11)
N440.025 (2)0.034 (2)0.021 (5)0.0085 (18)0.000 (3)0.002 (3)
N44B0.0293 (17)0.0371 (18)0.022 (2)0.0060 (14)0.0009 (16)0.0016 (13)
N470.026 (3)0.036 (3)0.034 (2)0.016 (2)0.004 (2)0.003 (2)
N47B0.029 (3)0.031 (3)0.027 (2)0.0167 (18)0.002 (2)0.001 (2)
N570.049 (2)0.038 (2)0.047 (2)0.0117 (18)0.0106 (17)0.0098 (17)
N57B0.052 (2)0.050 (3)0.0418 (19)0.012 (2)0.0110 (17)0.0127 (18)
C10.0345 (12)0.080 (2)0.082 (2)0.0278 (13)0.0226 (13)0.0530 (17)
C40.0549 (15)0.0631 (16)0.0479 (16)0.0336 (13)0.0075 (12)0.0127 (12)
C50.0731 (19)0.0684 (18)0.0457 (16)0.0283 (15)0.0160 (14)0.0033 (13)
C60.075 (2)0.0597 (17)0.075 (2)0.0276 (16)0.0414 (18)0.0047 (15)
C70.0629 (18)0.0538 (16)0.104 (3)0.0359 (14)0.0516 (19)0.0368 (17)
C90.0403 (12)0.0511 (13)0.0451 (14)0.0276 (11)0.0171 (10)0.0189 (11)
C110.0432 (14)0.120 (3)0.0437 (17)0.0235 (17)0.0135 (13)0.0132 (16)
C120.0341 (12)0.094 (2)0.0396 (15)0.0152 (13)0.0051 (11)0.0028 (13)
C130.0299 (11)0.0734 (17)0.0399 (15)0.0016 (11)0.0029 (10)0.0149 (12)
C150.0415 (12)0.0768 (17)0.0337 (13)0.0354 (12)0.0079 (10)0.0140 (11)
C160.0526 (14)0.0439 (12)0.0566 (16)0.0292 (11)0.0262 (12)0.0165 (11)
C180.0408 (12)0.0402 (12)0.0442 (14)0.0197 (10)0.0076 (10)0.0056 (9)
C190.0499 (14)0.0390 (12)0.0536 (16)0.0080 (10)0.0172 (12)0.0075 (10)
C200.0314 (10)0.0408 (11)0.0235 (11)0.0134 (8)0.0021 (8)0.0044 (8)
C210.0371 (11)0.0382 (11)0.0275 (11)0.0103 (9)0.0006 (9)0.0079 (8)
C220.0433 (12)0.0423 (12)0.0275 (12)0.0004 (10)0.0006 (9)0.0076 (9)
C230.0333 (11)0.0616 (15)0.0355 (13)0.0029 (10)0.0055 (10)0.0113 (11)
C240.0330 (11)0.0609 (15)0.0441 (14)0.0191 (10)0.0028 (10)0.0118 (11)
C250.0355 (11)0.0436 (12)0.0417 (13)0.0183 (9)0.0020 (9)0.0011 (9)
C280.030 (2)0.025 (3)0.035 (3)0.0031 (17)0.001 (2)0.004 (2)
C28B0.045 (3)0.033 (2)0.030 (3)0.015 (2)0.004 (2)0.003 (2)
C310.0350 (13)0.083 (2)0.082 (2)0.0158 (13)0.0099 (13)0.0582 (18)
C340.0447 (13)0.0664 (17)0.0542 (17)0.0303 (13)0.0108 (12)0.0177 (13)
C350.0564 (16)0.074 (2)0.0541 (19)0.0182 (15)0.0136 (14)0.0052 (14)
C360.0606 (19)0.0644 (19)0.085 (3)0.0195 (15)0.0322 (18)0.0043 (16)
C370.0611 (18)0.0494 (15)0.100 (3)0.0303 (14)0.0482 (18)0.0329 (16)
C390.0346 (11)0.0495 (13)0.0490 (15)0.0209 (10)0.0150 (10)0.0226 (11)
C410.072 (6)0.067 (5)0.055 (5)0.012 (4)0.014 (4)0.008 (4)
C41B0.027 (2)0.080 (3)0.048 (3)0.0038 (19)0.0023 (18)0.036 (2)
C420.033 (3)0.042 (3)0.044 (5)0.008 (2)0.007 (3)0.000 (3)
C42B0.031 (2)0.081 (4)0.045 (4)0.0029 (19)0.001 (2)0.021 (3)
C430.0278 (19)0.034 (2)0.030 (2)0.0056 (16)0.0005 (16)0.0015 (16)
C43B0.031 (2)0.044 (2)0.029 (3)0.0035 (18)0.0014 (18)0.000 (2)
C450.030 (2)0.035 (2)0.028 (3)0.0129 (17)0.0006 (19)0.0013 (17)
C45B0.033 (2)0.032 (2)0.027 (2)0.0150 (16)0.0041 (16)0.0013 (15)
C460.032 (2)0.029 (3)0.041 (3)0.012 (2)0.005 (2)0.006 (2)
C46B0.031 (2)0.027 (2)0.036 (3)0.0113 (18)0.0097 (18)0.0028 (19)
C480.036 (2)0.043 (2)0.041 (3)0.019 (2)0.0021 (19)0.0090 (19)
C48B0.036 (2)0.038 (2)0.028 (2)0.0153 (19)0.0014 (17)0.0049 (16)
C490.038 (2)0.037 (2)0.034 (3)0.0173 (18)0.0028 (18)0.0022 (17)
C49B0.038 (4)0.034 (3)0.026 (6)0.010 (2)0.000 (4)0.005 (4)
C500.027 (3)0.026 (4)0.021 (5)0.005 (3)0.004 (3)0.006 (3)
C50B0.048 (5)0.038 (5)0.030 (6)0.026 (3)0.015 (4)0.016 (3)
C510.018 (3)0.026 (3)0.021 (4)0.003 (4)0.000 (3)0.005 (3)
C51B0.037 (5)0.042 (6)0.040 (5)0.025 (4)0.002 (3)0.007 (4)
C520.029 (3)0.034 (5)0.030 (3)0.005 (4)0.002 (2)0.020 (4)
C52B0.034 (3)0.035 (5)0.030 (3)0.003 (5)0.002 (2)0.016 (5)
C530.028 (3)0.066 (5)0.028 (4)0.012 (3)0.002 (3)0.005 (3)
C53B0.023 (3)0.070 (6)0.040 (4)0.017 (3)0.004 (3)0.009 (4)
C540.032 (3)0.066 (4)0.037 (4)0.027 (3)0.002 (3)0.000 (4)
C54B0.034 (3)0.061 (3)0.047 (4)0.027 (2)0.005 (3)0.004 (3)
C550.036 (3)0.049 (3)0.036 (4)0.022 (2)0.006 (3)0.003 (3)
C55B0.035 (3)0.049 (3)0.036 (4)0.022 (2)0.002 (2)0.000 (2)
C580.041 (3)0.021 (2)0.0343 (19)0.009 (2)0.0059 (17)0.0052 (18)
C58B0.0316 (19)0.019 (2)0.0296 (17)0.008 (2)0.0013 (13)0.0029 (17)
Geometric parameters (Å, º) top
Cl26—C221.755 (2)N47B—C48B1.460 (7)
Cl56—C521.761 (13)N47B—C50B1.45 (2)
Cl57—C52B1.743 (13)N57—C581.134 (6)
S29—C281.615 (6)N57B—C58B1.127 (5)
S29B—C28B1.636 (6)C4—C51.347 (4)
S59—C581.6396 (10)C4—C91.425 (4)
S59B—C58B1.6388 (10)C5—C61.414 (4)
O10—C11.223 (3)C6—C71.338 (5)
O40—C311.216 (3)C11—C121.520 (4)
N2—N31.388 (3)C12—C131.515 (4)
N2—C11.362 (4)C15—C161.510 (3)
N2—C111.445 (4)C18—C191.506 (3)
N3—C91.307 (3)C20—C211.400 (3)
N8—C11.391 (4)C20—C251.408 (3)
N8—C71.389 (4)C21—C221.388 (3)
N8—C91.379 (3)C22—C231.374 (3)
N14—C131.498 (3)C23—C241.379 (4)
N14—C151.482 (3)C24—C251.383 (3)
N14—C191.491 (3)C34—C351.352 (4)
N17—C161.454 (3)C34—C391.426 (4)
N17—C181.454 (3)C35—C361.396 (5)
N17—C201.400 (3)C36—C371.332 (5)
N27—C281.171 (7)C41—C421.538 (12)
N27B—C28B1.137 (7)C41B—C42B1.503 (10)
N32—N331.391 (3)C42—C431.538 (8)
N32—C311.368 (4)C42B—C43B1.507 (7)
N32—C411.389 (9)C45—C461.520 (6)
N32—C41B1.551 (8)C45B—C46B1.521 (6)
N33—C391.306 (4)C48—C491.508 (6)
N38—C311.384 (4)C48B—C49B1.505 (15)
N38—C371.397 (4)C50—C511.50 (3)
N38—C391.378 (3)C50—C551.419 (16)
N44—C431.502 (12)C50B—C51B1.30 (3)
N44—C451.499 (13)C50B—C55B1.416 (16)
N44—C491.497 (11)C51—C521.41 (2)
N44B—C43B1.504 (6)C51B—C52B1.36 (2)
N44B—C45B1.493 (5)C52—C531.360 (14)
N44B—C49B1.488 (14)C52B—C53B1.374 (15)
N47—C461.444 (7)C53—C541.387 (10)
N47—C481.464 (7)C53B—C54B1.377 (10)
N47—C501.343 (18)C54—C551.381 (9)
N47B—C46B1.455 (6)C54B—C55B1.388 (8)
N3—N2—C11120.6 (2)C21—C22—Cl26117.98 (19)
C1—N2—N3113.7 (2)C23—C22—Cl26118.68 (18)
C1—N2—C11125.8 (2)C23—C22—C21123.3 (2)
C9—N3—N2103.7 (2)C22—C23—C24117.4 (2)
C7—N8—C1128.7 (2)C23—C24—C25121.2 (2)
C9—N8—C1108.3 (2)C24—C25—C20121.4 (2)
C9—N8—C7123.0 (3)N27—C28—S29178.9 (5)
C15—N14—C13114.51 (19)N27B—C28B—S29B177.9 (5)
C15—N14—C19108.55 (18)O40—C31—N32130.5 (4)
C19—N14—C13109.71 (18)O40—C31—N38127.4 (4)
C16—N17—C18111.13 (17)N32—C31—N38102.0 (2)
C20—N17—C16118.60 (18)C35—C34—C39119.5 (2)
C20—N17—C18118.46 (17)C34—C35—C36121.8 (3)
N33—N32—C41B112.6 (4)C37—C36—C35120.0 (3)
C31—N32—N33114.4 (2)C36—C37—N38119.3 (3)
C31—N32—C41115.0 (5)N33—C39—N38112.7 (2)
C31—N32—C41B132.8 (4)N33—C39—C34130.5 (2)
C41—N32—N33130.5 (5)N38—C39—C34116.8 (2)
C39—N33—N32102.5 (2)N32—C41—C42110.9 (7)
C31—N38—C37129.1 (2)C42B—C41B—N32114.2 (6)
C39—N38—C31108.4 (2)C41—C42—C43104.7 (5)
C39—N38—C37122.5 (3)C41B—C42B—C43B111.5 (6)
C45—N44—C43113.6 (8)N44—C43—C42112.9 (5)
C49—N44—C43109.5 (8)N44B—C43B—C42B108.9 (4)
C49—N44—C45108.6 (6)N44—C45—C46110.7 (6)
C45B—N44B—C43B111.9 (3)N44B—C45B—C46B111.1 (4)
C49B—N44B—C43B113.5 (6)N47—C46—C45112.3 (5)
C49B—N44B—C45B108.5 (6)N47B—C46B—C45B112.0 (4)
C46—N47—C48111.3 (6)N47—C48—C49111.1 (4)
C50—N47—C46119.1 (8)N47B—C48B—C49B111.1 (7)
C50—N47—C48116.8 (9)N44—C49—C48110.7 (6)
C46B—N47B—C48B112.1 (4)N44B—C49B—C48B110.4 (10)
C50B—N47B—C46B115.4 (8)N47—C50—C51120.3 (13)
C50B—N47B—C48B118.4 (10)N47—C50—C55124.5 (12)
O10—C1—N2129.9 (3)C55—C50—C51115.0 (13)
O10—C1—N8127.5 (3)C51B—C50B—N47B125.6 (16)
N2—C1—N8102.5 (2)C51B—C50B—C55B117.0 (17)
C5—C4—C9119.0 (3)C55B—C50B—N47B117.0 (14)
C4—C5—C6122.0 (3)C52—C51—C50116.3 (16)
C7—C6—C5119.7 (3)C50B—C51B—C52B125.2 (18)
C6—C7—N8118.9 (3)C51—C52—Cl56114.9 (11)
N3—C9—N8111.7 (2)C53—C52—Cl56118.3 (11)
N3—C9—C4131.0 (2)C53—C52—C51125.6 (12)
N8—C9—C4117.3 (2)C51B—C52B—Cl57120.6 (12)
N2—C11—C12112.9 (2)C51B—C52B—C53B119.4 (14)
C13—C12—C11109.8 (3)C53B—C52B—Cl57119.5 (11)
N14—C13—C12113.7 (2)C52—C53—C54117.6 (8)
N14—C15—C16110.57 (18)C52B—C53B—C54B117.4 (8)
N17—C16—C15111.7 (2)C55—C54—C53121.1 (6)
N17—C18—C19111.09 (19)C53B—C54B—C55B121.5 (5)
N14—C19—C18111.22 (19)C54—C55—C50123.7 (8)
N17—C20—C21121.52 (18)C54B—C55B—C50B118.9 (10)
N17—C20—C25121.00 (19)N57—C58—S59178.7 (8)
C21—C20—C25117.32 (19)N57B—C58B—S59B175.7 (6)
C22—C21—C20119.4 (2)
(pn180817_uo_trh_1_180814_b1_bf4) top
Crystal data top
C19H23ClN5O·BF4F(000) = 952
Mr = 459.68Dx = 1.468 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.46473 (13) ÅCell parameters from 36021 reflections
b = 12.98315 (16) Åθ = 3.7–78.6°
c = 13.42014 (13) ŵ = 2.15 mm1
β = 106.7648 (11)°T = 160 K
V = 2079.49 (4) Å3Plate, colourless
Z = 40.19 × 0.17 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
4315 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4165 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
ω scansθmax = 78.8°, θmin = 3.7°
Absorption correction: gaussian
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1515
Tmin = 0.531, Tmax = 1.000k = 1413
48534 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0247P)2 + 2.2045P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
4315 reflectionsΔρmax = 0.33 e Å3
293 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl250.85574 (4)1.05286 (4)0.81194 (4)0.03444 (14)
F310.56726 (12)0.46652 (11)0.61432 (13)0.0505 (4)
O260.09252 (12)0.63897 (13)0.16171 (11)0.0375 (4)
N30.06166 (12)0.74773 (12)0.14934 (11)0.0225 (3)
N90.06722 (13)0.74091 (13)0.31384 (12)0.0250 (3)
N130.57458 (12)0.87012 (12)0.50597 (11)0.0234 (3)
N160.38170 (12)0.73589 (12)0.43954 (11)0.0212 (3)
H160.41800.67120.47360.025*
F290.4050 (2)0.44050 (16)0.6531 (3)0.0541 (6)0.910 (8)
N10.01837 (12)0.68007 (13)0.29821 (12)0.0248 (3)
F270.4500 (3)0.6010 (2)0.6109 (2)0.0604 (8)0.910 (8)
F300.54252 (18)0.5304 (2)0.76267 (15)0.0631 (8)0.910 (8)
C80.11390 (15)0.78077 (15)0.22159 (13)0.0231 (4)
C200.71654 (15)0.95133 (14)0.65045 (14)0.0235 (4)
H200.67550.93440.69780.028*
C20.02605 (15)0.68205 (15)0.19910 (14)0.0253 (4)
C190.67851 (14)0.91925 (14)0.54624 (14)0.0222 (4)
C120.26288 (15)0.71104 (15)0.37971 (14)0.0257 (4)
H12A0.26340.65710.32770.031*
H12B0.22770.77330.34140.031*
C140.56598 (15)0.79118 (15)0.42613 (14)0.0248 (4)
H14A0.60000.72630.45940.030*
H14B0.60770.81370.37740.030*
C180.51288 (15)0.83978 (16)0.57890 (14)0.0268 (4)
H18A0.51590.89630.62910.032*
H18B0.54880.77840.61850.032*
C40.09293 (16)0.77886 (16)0.04663 (14)0.0277 (4)
H40.05520.75360.00060.033*
C170.39154 (15)0.81541 (15)0.52239 (14)0.0247 (4)
H17A0.35370.79020.57320.030*
H17B0.35310.87920.49050.030*
C240.74436 (16)0.94448 (15)0.48051 (15)0.0272 (4)
H240.72070.92330.40980.033*
C150.44479 (15)0.77242 (15)0.36659 (14)0.0249 (4)
H15A0.41090.83690.33230.030*
H15B0.44020.72000.31200.030*
C230.84282 (16)0.99947 (16)0.51686 (16)0.0296 (4)
H230.88601.01470.47080.035*
C220.88003 (16)1.03293 (15)0.61944 (16)0.0288 (4)
H220.94741.07120.64440.035*
C70.20488 (16)0.85090 (16)0.18771 (15)0.0286 (4)
H70.24360.87520.23450.034*
C50.17808 (17)0.84582 (17)0.01533 (15)0.0313 (4)
H50.20060.86920.05470.038*
C210.81480 (15)1.00811 (15)0.68340 (14)0.0252 (4)
B280.49146 (18)0.51001 (17)0.65970 (16)0.0249 (4)
C60.23499 (16)0.88219 (16)0.08699 (16)0.0311 (4)
H60.29530.92940.06350.037*
C100.08810 (16)0.61766 (16)0.38200 (15)0.0297 (4)
H10A0.11210.55520.35180.036*
H10B0.04280.59510.42770.036*
C110.19198 (16)0.67406 (16)0.44786 (15)0.0281 (4)
H11A0.16890.73380.48280.034*
H11B0.23680.62720.50230.034*
F10.5521 (17)0.579 (2)0.733 (2)0.058 (7)*0.090 (8)
F20.4382 (16)0.4421 (14)0.6877 (13)0.022 (4)*0.090 (8)
F30.4257 (19)0.568 (2)0.579 (2)0.051 (6)*0.090 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl250.0346 (3)0.0345 (3)0.0281 (2)0.00614 (19)0.00078 (18)0.00437 (19)
F310.0529 (8)0.0334 (8)0.0773 (10)0.0060 (6)0.0379 (8)0.0002 (7)
O260.0270 (7)0.0496 (10)0.0363 (8)0.0050 (6)0.0094 (6)0.0129 (7)
N30.0193 (7)0.0281 (9)0.0195 (7)0.0040 (6)0.0045 (5)0.0039 (6)
N90.0225 (7)0.0295 (9)0.0230 (7)0.0004 (6)0.0063 (6)0.0019 (6)
N130.0233 (7)0.0243 (8)0.0229 (7)0.0023 (6)0.0072 (6)0.0040 (6)
N160.0201 (7)0.0181 (8)0.0221 (7)0.0014 (6)0.0012 (6)0.0010 (6)
F290.0432 (12)0.0540 (11)0.0698 (16)0.0224 (9)0.0237 (12)0.0255 (10)
N10.0212 (7)0.0275 (9)0.0235 (7)0.0008 (6)0.0031 (6)0.0007 (6)
F270.0923 (16)0.0408 (14)0.0503 (13)0.0342 (12)0.0242 (12)0.0217 (10)
F300.0824 (14)0.0664 (17)0.0260 (9)0.0103 (11)0.0072 (8)0.0087 (9)
C80.0231 (8)0.0254 (10)0.0210 (8)0.0051 (7)0.0070 (7)0.0054 (7)
C200.0235 (8)0.0218 (10)0.0245 (9)0.0005 (7)0.0056 (7)0.0019 (7)
C20.0204 (8)0.0283 (10)0.0257 (9)0.0031 (7)0.0043 (7)0.0064 (7)
C190.0217 (8)0.0178 (9)0.0258 (9)0.0031 (7)0.0048 (7)0.0016 (7)
C120.0208 (8)0.0274 (10)0.0239 (9)0.0011 (7)0.0017 (7)0.0012 (7)
C140.0241 (9)0.0243 (10)0.0253 (9)0.0007 (7)0.0057 (7)0.0045 (7)
C180.0255 (9)0.0312 (11)0.0232 (9)0.0059 (7)0.0064 (7)0.0041 (7)
C40.0269 (9)0.0364 (11)0.0193 (8)0.0104 (8)0.0058 (7)0.0038 (7)
C170.0242 (9)0.0233 (10)0.0263 (9)0.0005 (7)0.0070 (7)0.0035 (7)
C240.0284 (9)0.0263 (10)0.0269 (9)0.0002 (7)0.0081 (7)0.0005 (7)
C150.0266 (9)0.0260 (10)0.0208 (8)0.0003 (7)0.0045 (7)0.0003 (7)
C230.0285 (9)0.0275 (11)0.0354 (10)0.0016 (8)0.0136 (8)0.0033 (8)
C220.0227 (9)0.0239 (10)0.0377 (10)0.0014 (7)0.0053 (8)0.0020 (8)
C70.0273 (9)0.0285 (11)0.0297 (9)0.0006 (8)0.0077 (7)0.0052 (8)
C50.0321 (10)0.0342 (12)0.0229 (9)0.0108 (8)0.0003 (7)0.0040 (8)
C210.0252 (9)0.0194 (10)0.0271 (9)0.0022 (7)0.0013 (7)0.0009 (7)
B280.0296 (10)0.0216 (11)0.0208 (9)0.0013 (8)0.0033 (8)0.0010 (8)
C60.0271 (9)0.0250 (11)0.0355 (10)0.0020 (8)0.0000 (8)0.0011 (8)
C100.0255 (9)0.0275 (11)0.0316 (10)0.0010 (8)0.0011 (7)0.0044 (8)
C110.0253 (9)0.0290 (11)0.0263 (9)0.0013 (7)0.0015 (7)0.0038 (7)
Geometric parameters (Å, º) top
Cl25—C211.7510 (19)C14—C151.511 (2)
F31—B281.384 (3)C18—H18A0.9900
O26—C21.221 (2)C18—H18B0.9900
N3—C81.383 (2)C18—C171.517 (2)
N3—C21.395 (2)C4—H40.9500
N3—C41.380 (2)C4—C51.342 (3)
N9—N11.391 (2)C17—H17A0.9900
N9—C81.313 (2)C17—H17B0.9900
N13—C191.405 (2)C24—H240.9500
N13—C141.464 (2)C24—C231.382 (3)
N13—C181.462 (2)C15—H15A0.9900
N16—H161.0000C15—H15B0.9900
N16—C121.502 (2)C23—H230.9500
N16—C171.496 (2)C23—C221.389 (3)
N16—C151.499 (2)C22—H220.9500
F29—B281.389 (3)C22—C211.380 (3)
N1—C21.361 (2)C7—H70.9500
N1—C101.453 (2)C7—C61.356 (3)
F27—B281.377 (3)C5—H50.9500
F30—B281.370 (3)C5—C61.430 (3)
C8—C71.423 (3)B28—F11.38 (2)
C20—H200.9500B28—F21.226 (19)
C20—C191.404 (3)B28—F31.38 (2)
C20—C211.388 (3)C6—H60.9500
C19—C241.406 (3)C10—H10A0.9900
C12—H12A0.9900C10—H10B0.9900
C12—H12B0.9900C10—C111.528 (3)
C12—C111.521 (3)C11—H11A0.9900
C14—H14A0.9900C11—H11B0.9900
C14—H14B0.9900
C8—N3—C2108.44 (15)C18—C17—H17B109.3
C4—N3—C8123.70 (16)H17A—C17—H17B107.9
C4—N3—C2127.84 (16)C19—C24—H24119.4
C8—N9—N1103.43 (14)C23—C24—C19121.26 (18)
C19—N13—C14117.66 (14)C23—C24—H24119.4
C19—N13—C18118.00 (14)N16—C15—C14109.78 (14)
C18—N13—C14111.07 (15)N16—C15—H15A109.7
C12—N16—H16108.1N16—C15—H15B109.7
C17—N16—H16108.1C14—C15—H15A109.7
C17—N16—C12113.72 (14)C14—C15—H15B109.7
C17—N16—C15108.73 (14)H15A—C15—H15B108.2
C15—N16—H16108.1C24—C23—H23119.3
C15—N16—C12109.94 (13)C24—C23—C22121.33 (18)
N9—N1—C10120.88 (15)C22—C23—H23119.3
C2—N1—N9114.19 (15)C23—C22—H22121.5
C2—N1—C10124.87 (16)C21—C22—C23117.07 (18)
N3—C8—C7117.87 (16)C21—C22—H22121.5
N9—C8—N3111.63 (16)C8—C7—H7120.8
N9—C8—C7130.48 (17)C6—C7—C8118.43 (18)
C19—C20—H20120.4C6—C7—H7120.8
C21—C20—H20120.4C4—C5—H5119.9
C21—C20—C19119.22 (17)C4—C5—C6120.29 (18)
O26—C2—N3127.89 (18)C6—C5—H5119.9
O26—C2—N1129.81 (19)C20—C21—Cl25118.01 (15)
N1—C2—N3102.30 (15)C22—C21—Cl25118.60 (15)
N13—C19—C24120.33 (16)C22—C21—C20123.37 (18)
C20—C19—N13121.79 (16)F31—B28—F29108.84 (18)
C20—C19—C24117.73 (17)F27—B28—F31110.54 (18)
N16—C12—H12A108.8F27—B28—F29110.5 (2)
N16—C12—H12B108.8F30—B28—F31110.19 (19)
N16—C12—C11113.62 (14)F30—B28—F29108.4 (2)
H12A—C12—H12B107.7F30—B28—F27108.4 (2)
C11—C12—H12A108.8F1—B28—F31105.9 (9)
C11—C12—H12B108.8F2—B28—F31109.9 (8)
N13—C14—H14A109.5F2—B28—F1118.8 (12)
N13—C14—H14B109.5F2—B28—F3112.4 (12)
N13—C14—C15110.54 (15)F3—B28—F31101.6 (11)
H14A—C14—H14B108.1F3—B28—F1106.7 (13)
C15—C14—H14A109.5C7—C6—C5121.53 (19)
C15—C14—H14B109.5C7—C6—H6119.2
N13—C18—H18A109.4C5—C6—H6119.2
N13—C18—H18B109.4N1—C10—H10A108.9
N13—C18—C17111.26 (15)N1—C10—H10B108.9
H18A—C18—H18B108.0N1—C10—C11113.47 (16)
C17—C18—H18A109.4H10A—C10—H10B107.7
C17—C18—H18B109.4C11—C10—H10A108.9
N3—C4—H4120.9C11—C10—H10B108.9
C5—C4—N3118.17 (18)C12—C11—C10110.24 (16)
C5—C4—H4120.9C12—C11—H11A109.6
N16—C17—C18111.81 (15)C12—C11—H11B109.6
N16—C17—H17A109.3C10—C11—H11A109.6
N16—C17—H17B109.3C10—C11—H11B109.6
C18—C17—H17A109.3H11A—C11—H11B108.1
N3—C8—C7—C60.5 (3)C19—C20—C21—C221.8 (3)
N3—C4—C5—C60.8 (3)C19—C24—C23—C220.7 (3)
N9—N1—C2—O26178.61 (19)C12—N16—C17—C18178.65 (15)
N9—N1—C2—N30.7 (2)C12—N16—C15—C14176.59 (15)
N9—N1—C10—C1189.6 (2)C14—N13—C19—C20146.04 (17)
N9—C8—C7—C6178.4 (2)C14—N13—C19—C2438.6 (2)
N13—C19—C24—C23175.19 (18)C14—N13—C18—C1755.4 (2)
N13—C14—C15—N1660.5 (2)C18—N13—C19—C208.4 (3)
N13—C18—C17—N1654.7 (2)C18—N13—C19—C24176.19 (17)
N16—C12—C11—C10161.26 (16)C18—N13—C14—C1558.7 (2)
N1—N9—C8—N30.0 (2)C4—N3—C8—N9179.13 (16)
N1—N9—C8—C7178.86 (19)C4—N3—C8—C70.1 (3)
N1—C10—C11—C1257.9 (2)C4—N3—C2—O260.1 (3)
C8—N3—C2—O26178.66 (19)C4—N3—C2—N1179.26 (17)
C8—N3—C2—N10.67 (19)C4—C5—C6—C70.3 (3)
C8—N3—C4—C50.7 (3)C17—N16—C12—C1157.3 (2)
C8—N9—N1—C20.4 (2)C17—N16—C15—C1458.32 (19)
C8—N9—N1—C10177.00 (16)C24—C23—C22—C210.5 (3)
C8—C7—C6—C50.4 (3)C15—N16—C12—C11179.50 (16)
C20—C19—C24—C230.4 (3)C15—N16—C17—C1855.81 (19)
C2—N3—C8—N90.5 (2)C23—C22—C21—Cl25177.63 (15)
C2—N3—C8—C7178.58 (16)C23—C22—C21—C200.8 (3)
C2—N3—C4—C5177.66 (18)C21—C20—C19—N13173.91 (17)
C2—N1—C10—C1193.2 (2)C21—C20—C19—C241.6 (3)
C19—N13—C14—C15160.97 (16)C10—N1—C2—O264.1 (3)
C19—N13—C18—C17164.44 (16)C10—N1—C2—N3176.63 (16)
C19—C20—C21—Cl25176.58 (14)
(pn180830_uo_eph_1_180814_b12_benzsulf) top
Crystal data top
C6H5O3S·C10H16NOF(000) = 344
Mr = 323.40Dx = 1.315 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 5.72587 (4) ÅCell parameters from 12545 reflections
b = 20.83882 (10) Åθ = 6.4–78.6°
c = 6.92054 (4) ŵ = 1.91 mm1
β = 98.3547 (5)°T = 160 K
V = 817.00 (1) Å3Needle, colourless
Z = 20.70 × 0.22 × 0.17 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
3292 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3290 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.014
ω scansθmax = 78.8°, θmin = 6.5°
Absorption correction: gaussian
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 65
Tmin = 0.488, Tmax = 1.000k = 2626
13481 measured reflectionsl = 88
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.1072P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.18 e Å3
3292 reflectionsΔρmin = 0.32 e Å3
202 parametersAbsolute structure: Flack x determined using 1579 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
1 restraintAbsolute structure parameter: 0.006 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98062 (7)0.55478 (2)0.02897 (5)0.02115 (11)
O131.2326 (2)0.54075 (6)0.04684 (18)0.0282 (3)
O10.7315 (2)0.46320 (7)0.46627 (19)0.0284 (3)
H10.77670.47850.36570.043*
O120.8782 (2)0.57115 (7)0.16981 (18)0.0295 (3)
O110.8462 (3)0.50525 (6)0.1117 (2)0.0322 (3)
N10.4367 (3)0.51588 (7)0.7098 (2)0.0219 (3)
H1A0.38990.51590.82990.026*
H1B0.59500.52320.72710.026*
C50.4383 (3)0.38366 (8)0.3261 (2)0.0228 (4)
C160.7700 (4)0.63162 (9)0.2733 (3)0.0297 (4)
H160.65300.59910.26750.036*
C110.9585 (3)0.62489 (8)0.1710 (2)0.0219 (3)
C100.6113 (4)0.33659 (9)0.3316 (3)0.0281 (4)
H100.76480.34450.40000.034*
C90.5615 (4)0.27811 (10)0.2379 (3)0.0333 (4)
H90.68070.24620.24300.040*
C121.1285 (3)0.67263 (9)0.1762 (3)0.0284 (4)
H121.25660.66800.10420.034*
C60.2151 (4)0.37151 (10)0.2228 (3)0.0286 (4)
H60.09590.40350.21610.034*
C10.4880 (3)0.44825 (8)0.4260 (2)0.0222 (3)
H1C0.40740.48240.33910.027*
C40.3172 (4)0.56994 (9)0.5946 (3)0.0302 (4)
H4A0.38170.57430.47160.045*
H4B0.34390.60980.66980.045*
H4C0.14740.56130.56660.045*
C80.3384 (4)0.26632 (10)0.1370 (3)0.0344 (4)
H80.30400.22630.07310.041*
C20.3919 (3)0.45042 (8)0.6221 (2)0.0235 (4)
H20.21780.44250.59810.028*
C150.7531 (4)0.68627 (11)0.3844 (3)0.0377 (5)
H150.62470.69100.45620.045*
C131.1093 (4)0.72702 (10)0.2872 (3)0.0348 (4)
H131.22530.75980.29180.042*
C70.1659 (4)0.31316 (10)0.1298 (3)0.0339 (4)
H70.01270.30520.06080.041*
C30.5071 (5)0.40138 (9)0.7698 (3)0.0352 (5)
H3A0.67890.40680.78700.053*
H3B0.46620.35800.72200.053*
H3C0.45030.40790.89520.053*
C140.9221 (4)0.73407 (10)0.3916 (3)0.0368 (5)
H140.90970.77150.46770.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0202 (2)0.02540 (18)0.01909 (18)0.00053 (15)0.00718 (13)0.00015 (15)
O130.0232 (7)0.0386 (8)0.0239 (6)0.0071 (5)0.0071 (5)0.0025 (5)
O10.0279 (7)0.0344 (7)0.0248 (6)0.0089 (5)0.0103 (5)0.0041 (5)
O120.0267 (7)0.0402 (8)0.0211 (6)0.0055 (5)0.0019 (5)0.0005 (5)
O110.0403 (9)0.0258 (6)0.0351 (7)0.0036 (6)0.0204 (6)0.0003 (5)
N10.0201 (8)0.0280 (7)0.0187 (6)0.0006 (5)0.0057 (5)0.0015 (5)
C50.0266 (10)0.0271 (8)0.0158 (7)0.0028 (7)0.0064 (6)0.0010 (6)
C160.0255 (10)0.0313 (9)0.0340 (9)0.0005 (7)0.0106 (8)0.0032 (8)
C110.0198 (9)0.0252 (8)0.0200 (7)0.0018 (6)0.0012 (6)0.0024 (6)
C100.0264 (10)0.0298 (9)0.0275 (8)0.0008 (7)0.0017 (7)0.0002 (7)
C90.0363 (12)0.0296 (9)0.0346 (10)0.0035 (8)0.0070 (8)0.0027 (8)
C120.0243 (10)0.0323 (9)0.0284 (9)0.0025 (7)0.0030 (7)0.0023 (7)
C60.0247 (10)0.0350 (9)0.0267 (8)0.0005 (7)0.0058 (7)0.0047 (7)
C10.0230 (9)0.0269 (8)0.0174 (7)0.0011 (6)0.0057 (6)0.0006 (6)
C40.0335 (11)0.0321 (10)0.0268 (9)0.0083 (7)0.0106 (8)0.0027 (6)
C80.0405 (13)0.0324 (9)0.0316 (9)0.0075 (8)0.0097 (8)0.0089 (8)
C20.0229 (9)0.0283 (8)0.0205 (8)0.0046 (6)0.0074 (6)0.0015 (6)
C150.0331 (12)0.0424 (11)0.0402 (11)0.0029 (9)0.0142 (9)0.0106 (9)
C130.0337 (12)0.0296 (9)0.0382 (10)0.0065 (8)0.0049 (8)0.0018 (8)
C70.0284 (11)0.0415 (11)0.0319 (10)0.0077 (8)0.0050 (8)0.0096 (8)
C30.0574 (14)0.0300 (10)0.0202 (9)0.0010 (9)0.0120 (8)0.0032 (7)
C140.0389 (12)0.0325 (10)0.0372 (10)0.0031 (8)0.0005 (9)0.0108 (8)
Geometric parameters (Å, º) top
S1—O131.4596 (14)C12—C131.383 (3)
S1—O121.4555 (13)C6—H60.9500
S1—O111.4536 (14)C6—C71.385 (3)
S1—C111.7757 (18)C1—H1C1.0000
O1—H10.8400C1—C21.538 (2)
O1—C11.416 (2)C4—H4A0.9800
N1—H1A0.9100C4—H4B0.9800
N1—H1B0.9100C4—H4C0.9800
N1—C41.488 (2)C8—H80.9500
N1—C21.500 (2)C8—C71.385 (3)
C5—C101.391 (3)C2—H21.0000
C5—C61.394 (3)C2—C31.526 (3)
C5—C11.521 (2)C15—H150.9500
C16—H160.9500C15—C141.385 (3)
C16—C111.381 (3)C13—H130.9500
C16—C151.385 (3)C13—C141.385 (4)
C11—C121.389 (3)C7—H70.9500
C10—H100.9500C3—H3A0.9800
C10—C91.390 (3)C3—H3B0.9800
C9—H90.9500C3—H3C0.9800
C9—C81.386 (3)C14—H140.9500
C12—H120.9500
O13—S1—C11105.49 (8)C5—C1—H1C108.5
O12—S1—O13112.63 (8)C5—C1—C2111.10 (14)
O12—S1—C11106.20 (8)C2—C1—H1C108.5
O11—S1—O13113.43 (9)N1—C4—H4A109.5
O11—S1—O12112.02 (8)N1—C4—H4B109.5
O11—S1—C11106.37 (8)N1—C4—H4C109.5
C1—O1—H1109.5H4A—C4—H4B109.5
H1A—N1—H1B107.4H4A—C4—H4C109.5
C4—N1—H1A108.4H4B—C4—H4C109.5
C4—N1—H1B108.4C9—C8—H8120.2
C4—N1—C2115.71 (14)C7—C8—C9119.58 (18)
C2—N1—H1A108.4C7—C8—H8120.2
C2—N1—H1B108.4N1—C2—C1108.76 (13)
C10—C5—C6118.84 (17)N1—C2—H2108.9
C10—C5—C1121.76 (17)N1—C2—C3107.84 (14)
C6—C5—C1119.39 (17)C1—C2—H2108.9
C11—C16—H16120.3C3—C2—C1113.34 (16)
C11—C16—C15119.41 (19)C3—C2—H2108.9
C15—C16—H16120.3C16—C15—H15119.8
C16—C11—S1119.42 (14)C14—C15—C16120.4 (2)
C16—C11—C12120.73 (17)C14—C15—H15119.8
C12—C11—S1119.84 (15)C12—C13—H13119.8
C5—C10—H10119.7C12—C13—C14120.45 (19)
C9—C10—C5120.57 (18)C14—C13—H13119.8
C9—C10—H10119.7C6—C7—H7119.8
C10—C9—H9119.9C8—C7—C6120.42 (19)
C8—C9—C10120.11 (19)C8—C7—H7119.8
C8—C9—H9119.9C2—C3—H3A109.5
C11—C12—H12120.3C2—C3—H3B109.5
C13—C12—C11119.32 (19)C2—C3—H3C109.5
C13—C12—H12120.3H3A—C3—H3B109.5
C5—C6—H6119.8H3A—C3—H3C109.5
C7—C6—C5120.47 (19)H3B—C3—H3C109.5
C7—C6—H6119.8C15—C14—C13119.67 (19)
O1—C1—C5113.45 (15)C15—C14—H14120.2
O1—C1—H1C108.5C13—C14—H14120.2
O1—C1—C2106.74 (14)
S1—C11—C12—C13179.95 (14)C11—C12—C13—C140.3 (3)
O13—S1—C11—C16144.36 (15)C10—C5—C6—C71.0 (3)
O13—S1—C11—C1236.48 (16)C10—C5—C1—O119.2 (2)
O1—C1—C2—N158.18 (17)C10—C5—C1—C2101.0 (2)
O1—C1—C2—C361.74 (19)C10—C9—C8—C70.1 (3)
O12—S1—C11—C1695.89 (15)C9—C8—C7—C60.0 (3)
O12—S1—C11—C1283.27 (15)C12—C13—C14—C150.0 (3)
O11—S1—C11—C1623.60 (17)C6—C5—C10—C90.8 (3)
O11—S1—C11—C12157.24 (14)C6—C5—C1—O1159.50 (16)
C5—C10—C9—C80.3 (3)C6—C5—C1—C280.2 (2)
C5—C6—C7—C80.5 (3)C1—C5—C10—C9179.56 (18)
C5—C1—C2—N1177.66 (15)C1—C5—C6—C7179.72 (17)
C5—C1—C2—C362.4 (2)C4—N1—C2—C162.5 (2)
C16—C11—C12—C130.8 (3)C4—N1—C2—C3174.24 (16)
C16—C15—C14—C130.1 (3)C15—C16—C11—S1179.86 (16)
C11—C16—C15—C140.7 (3)C15—C16—C11—C121.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O110.841.942.7730 (19)171
N1—H1A···O13i0.911.932.8052 (19)161
N1—H1B···O12ii0.911.952.792 (2)153
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z+1.
(pn180914_uo_eph_1_180814_g4_2) top
Crystal data top
2(C10H16NO)·C4H4O5·H2OZ = 1
Mr = 482.56F(000) = 260
Triclinic, P1Dx = 1.283 Mg m3
a = 5.82130 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.27088 (8) ÅCell parameters from 16192 reflections
c = 15.90214 (13) Åθ = 5.6–78.6°
α = 94.7215 (8)°µ = 0.79 mm1
β = 96.6693 (8)°T = 160 K
γ = 109.5246 (11)°Plate, colourless
V = 624.78 (1) Å30.3 × 0.21 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
4803 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4709 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
ω scansθmax = 78.9°, θmin = 2.8°
Absorption correction: gaussian
CrysAlisPro 1.171.40.16c (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 77
Tmin = 0.463, Tmax = 1.000k = 99
19924 measured reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.047P)2 + 0.058P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.16 e Å3
4803 reflectionsΔρmin = 0.18 e Å3
322 parametersAbsolute structure: Flack x determined using 2188 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
3 restraintsAbsolute structure parameter: 0.00 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3528 (3)0.7437 (2)0.71174 (9)0.0280 (3)
H10.38280.64290.69460.042*
O110.0273 (3)0.2787 (2)0.31283 (9)0.0279 (3)
H110.03220.19100.34350.042*
O210.4190 (3)0.4004 (2)0.66616 (8)0.0297 (3)
O220.3495 (3)0.13593 (19)0.57188 (8)0.0266 (3)
O230.5910 (3)0.65204 (18)0.55313 (8)0.0219 (3)
H230.46070.67860.54770.033*
O241.1434 (3)0.6384 (2)0.47409 (9)0.0298 (3)
O250.8005 (3)0.6055 (2)0.38907 (8)0.0253 (3)
O260.0579 (4)0.0217 (3)0.41762 (12)0.0467 (5)
H26A0.163 (7)0.053 (5)0.467 (2)0.050 (8)*
H26B0.008 (7)0.090 (6)0.408 (2)0.052 (9)*
N10.0068 (3)0.9289 (2)0.66287 (9)0.0219 (3)
H1A0.13860.98120.64290.026*
H1B0.10030.81930.62640.026*
N110.3851 (3)0.6649 (2)0.33349 (10)0.0232 (3)
H11A0.26250.63840.36620.028*
H11B0.50930.63150.36040.028*
C10.1194 (4)0.6869 (3)0.73851 (11)0.0211 (4)
H1C0.00180.59070.69190.025*
C20.0450 (4)0.8697 (3)0.74950 (11)0.0222 (4)
H20.11050.83390.77510.027*
C30.2385 (5)1.0414 (3)0.80709 (13)0.0301 (4)
H3A0.38641.08850.77980.045*
H3B0.28100.99870.86180.045*
H3C0.17331.14810.81690.045*
C40.1364 (4)1.0741 (3)0.66229 (15)0.0332 (5)
H4A0.18331.09270.60320.050*
H4B0.02651.20010.69410.050*
H4C0.28471.02520.68920.050*
C50.1096 (4)0.5891 (2)0.81996 (11)0.0194 (4)
C60.1179 (4)0.4745 (3)0.83863 (12)0.0252 (4)
H60.26430.46000.80130.030*
C70.1322 (4)0.3808 (3)0.91181 (13)0.0300 (5)
H70.28830.30310.92440.036*
C80.0811 (5)0.4008 (3)0.96636 (12)0.0299 (5)
H80.07150.33711.01630.036*
C90.3070 (4)0.5135 (3)0.94768 (12)0.0298 (5)
H90.45320.52640.98480.036*
C100.3228 (4)0.6089 (3)0.87479 (12)0.0250 (4)
H100.47920.68730.86270.030*
C110.2283 (4)0.3227 (3)0.26709 (11)0.0226 (4)
H11C0.37370.31290.30410.027*
C120.2881 (4)0.5375 (3)0.24936 (11)0.0234 (4)
H120.42100.56910.21270.028*
C130.0666 (4)0.5759 (3)0.20437 (13)0.0291 (4)
H13A0.05730.56090.24250.044*
H13B0.00450.48160.15250.044*
H13C0.11900.71010.18910.044*
C140.4785 (5)0.8794 (3)0.32894 (16)0.0371 (5)
H14A0.60540.90970.29170.056*
H14B0.54970.95020.38630.056*
H14C0.34220.92040.30590.056*
C150.1768 (4)0.1836 (3)0.18465 (12)0.0232 (4)
C160.3703 (4)0.1792 (3)0.14115 (13)0.0306 (4)
H160.53380.26410.16290.037*
C170.3256 (5)0.0516 (4)0.06610 (14)0.0361 (5)
H170.45860.05100.03680.043*
C180.0899 (5)0.0741 (3)0.03400 (13)0.0349 (5)
H180.06010.16220.01680.042*
C190.1021 (5)0.0702 (3)0.07664 (13)0.0330 (5)
H190.26520.15580.05480.040*
C200.0590 (4)0.0581 (3)0.15145 (13)0.0275 (4)
H200.19320.05940.18000.033*
C210.4244 (4)0.3198 (3)0.59479 (11)0.0200 (4)
C220.5342 (4)0.4477 (2)0.52644 (11)0.0194 (4)
H220.41220.40770.47270.023*
C230.7722 (4)0.4180 (3)0.50804 (11)0.0213 (4)
H23A0.87900.42990.56290.026*
H23B0.73120.28310.47860.026*
C240.9147 (4)0.5647 (3)0.45332 (11)0.0201 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0328 (9)0.0230 (6)0.0352 (7)0.0131 (7)0.0184 (6)0.0089 (5)
O110.0340 (10)0.0255 (7)0.0297 (6)0.0129 (7)0.0135 (6)0.0110 (5)
O210.0395 (10)0.0278 (7)0.0247 (6)0.0131 (7)0.0100 (6)0.0060 (5)
O220.0314 (9)0.0185 (6)0.0293 (6)0.0059 (6)0.0081 (6)0.0064 (5)
O230.0188 (7)0.0163 (6)0.0316 (6)0.0074 (5)0.0042 (5)0.0024 (5)
O240.0200 (9)0.0329 (7)0.0364 (7)0.0081 (7)0.0030 (6)0.0100 (6)
O250.0251 (8)0.0292 (7)0.0245 (6)0.0114 (6)0.0050 (5)0.0087 (5)
O260.0580 (13)0.0214 (8)0.0461 (9)0.0009 (8)0.0162 (9)0.0114 (7)
N10.0210 (9)0.0184 (7)0.0260 (7)0.0058 (7)0.0028 (6)0.0057 (5)
N110.0208 (9)0.0210 (7)0.0284 (7)0.0065 (7)0.0054 (6)0.0076 (6)
C10.0236 (11)0.0169 (8)0.0220 (8)0.0055 (8)0.0048 (7)0.0035 (6)
C20.0280 (12)0.0186 (8)0.0223 (8)0.0093 (8)0.0073 (7)0.0050 (6)
C30.0418 (14)0.0197 (9)0.0257 (8)0.0083 (9)0.0020 (8)0.0004 (7)
C40.0288 (14)0.0253 (10)0.0506 (12)0.0129 (10)0.0085 (9)0.0151 (8)
C50.0211 (11)0.0157 (8)0.0217 (8)0.0062 (8)0.0052 (7)0.0019 (6)
C60.0236 (12)0.0244 (9)0.0281 (9)0.0082 (9)0.0052 (7)0.0057 (7)
C70.0318 (14)0.0270 (10)0.0321 (10)0.0072 (10)0.0127 (8)0.0099 (8)
C80.0468 (15)0.0239 (9)0.0230 (8)0.0158 (10)0.0082 (8)0.0066 (7)
C90.0366 (14)0.0268 (9)0.0274 (9)0.0159 (10)0.0024 (8)0.0012 (7)
C100.0229 (11)0.0211 (8)0.0294 (9)0.0063 (8)0.0026 (7)0.0022 (7)
C110.0233 (11)0.0242 (9)0.0230 (8)0.0108 (8)0.0034 (7)0.0072 (6)
C120.0262 (12)0.0230 (9)0.0235 (8)0.0099 (9)0.0064 (7)0.0076 (7)
C130.0354 (13)0.0278 (10)0.0269 (8)0.0148 (10)0.0006 (8)0.0085 (7)
C140.0386 (15)0.0201 (9)0.0481 (12)0.0050 (10)0.0023 (10)0.0086 (8)
C150.0249 (11)0.0233 (9)0.0247 (8)0.0119 (9)0.0032 (7)0.0070 (7)
C160.0250 (12)0.0344 (10)0.0338 (10)0.0128 (10)0.0040 (8)0.0019 (8)
C170.0409 (15)0.0432 (13)0.0343 (10)0.0256 (12)0.0117 (9)0.0055 (9)
C180.0511 (16)0.0286 (10)0.0289 (10)0.0209 (11)0.0015 (9)0.0024 (8)
C190.0363 (14)0.0233 (9)0.0344 (10)0.0072 (10)0.0030 (9)0.0018 (8)
C200.0265 (13)0.0249 (9)0.0320 (9)0.0096 (10)0.0046 (8)0.0068 (7)
C210.0189 (10)0.0202 (8)0.0227 (8)0.0079 (8)0.0045 (7)0.0051 (6)
C220.0200 (10)0.0152 (8)0.0220 (7)0.0050 (7)0.0025 (6)0.0032 (6)
C230.0239 (11)0.0201 (8)0.0229 (8)0.0099 (8)0.0065 (7)0.0055 (6)
C240.0202 (12)0.0191 (8)0.0231 (8)0.0090 (8)0.0051 (7)0.0025 (6)
Geometric parameters (Å, º) top
O1—C11.409 (2)C6—C71.393 (3)
O11—C111.410 (2)C7—C81.387 (3)
O21—C211.242 (2)C8—C91.378 (3)
O22—C211.266 (2)C9—C101.396 (3)
O23—C221.426 (2)C11—C121.540 (2)
O24—C241.249 (3)C11—C151.523 (2)
O25—C241.264 (2)C12—C131.520 (3)
N1—C21.504 (2)C15—C161.396 (3)
N1—C41.489 (2)C15—C201.382 (3)
N11—C121.496 (2)C16—C171.392 (3)
N11—C141.481 (3)C17—C181.378 (4)
C1—C21.533 (2)C18—C191.380 (4)
C1—C51.526 (2)C19—C201.393 (3)
C2—C31.516 (3)C21—C221.544 (2)
C5—C61.389 (3)C22—C231.528 (3)
C5—C101.389 (3)C23—C241.520 (3)
C4—N1—C2113.94 (15)N11—C12—C13110.83 (15)
C14—N11—C12115.28 (15)C13—C12—C11112.99 (17)
O1—C1—C2107.95 (15)C16—C15—C11120.06 (19)
O1—C1—C5113.82 (15)C20—C15—C11121.55 (18)
C5—C1—C2110.96 (13)C20—C15—C16118.39 (18)
N1—C2—C1108.71 (13)C17—C16—C15120.5 (2)
N1—C2—C3109.97 (15)C18—C17—C16120.5 (2)
C3—C2—C1113.25 (17)C17—C18—C19119.19 (19)
C6—C5—C1119.05 (17)C18—C19—C20120.6 (2)
C6—C5—C10119.42 (17)C15—C20—C19120.8 (2)
C10—C5—C1121.52 (18)O21—C21—O22125.48 (17)
C5—C6—C7120.33 (19)O21—C21—C22119.58 (16)
C8—C7—C6120.1 (2)O22—C21—C22114.93 (14)
C9—C8—C7119.65 (17)O23—C22—C21111.93 (13)
C8—C9—C10120.6 (2)O23—C22—C23107.75 (15)
C5—C10—C9119.9 (2)C23—C22—C21110.30 (13)
O11—C11—C12106.96 (14)C24—C23—C22113.30 (14)
O11—C11—C15112.85 (17)O24—C24—O25122.83 (18)
C15—C11—C12111.30 (14)O24—C24—C23117.53 (16)
N11—C12—C11107.10 (13)O25—C24—C23119.64 (18)
(pn180914_uo_eph_1_180814_g5_tart) top
Crystal data top
2(C10H16NO)·C4H4O6·H2OF(000) = 536
Mr = 498.56Dx = 1.271 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 6.07189 (12) ÅCell parameters from 17545 reflections
b = 32.9414 (4) Åθ = 5.3–78.6°
c = 7.1383 (1) ŵ = 0.81 mm1
β = 114.168 (2)°T = 160 K
V = 1302.63 (4) Å3Plate, colourless
Z = 20.48 × 0.35 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
5216 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5091 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
ω scansθmax = 78.8°, θmin = 5.4°
Absorption correction: gaussian
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 66
Tmin = 0.370, Tmax = 1.000k = 4141
31569 measured reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.7643P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.34 e Å3
5216 reflectionsΔρmin = 0.29 e Å3
329 parametersAbsolute structure: Flack x determined using 2347 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
2 restraintsAbsolute structure parameter: 0.00 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7143 (4)0.26054 (8)0.5007 (3)0.0275 (5)
H10.65330.27080.57640.041*
O110.6304 (5)0.48531 (7)0.7625 (4)0.0318 (6)
H110.62690.46510.68970.048*
O210.5965 (5)0.29635 (7)0.7859 (4)0.0302 (5)
O220.7161 (4)0.34984 (7)0.6605 (3)0.0264 (5)
O230.5695 (5)0.33470 (7)1.0911 (3)0.0284 (5)
O240.1861 (4)0.36478 (7)0.7098 (3)0.0267 (5)
H240.06970.36960.74130.040*
O250.4980 (4)0.43635 (7)1.1083 (3)0.0265 (5)
O260.1307 (4)0.40866 (7)0.9929 (3)0.0258 (5)
O270.6413 (6)0.42735 (8)0.5191 (4)0.0424 (7)
H27A0.59460.43040.39030.064*
H27B0.66210.40230.54870.064*
N11.0461 (5)0.30687 (8)0.3902 (4)0.0226 (5)
H1A0.88530.31150.31990.027*
H1B1.09900.32290.50400.027*
N110.9458 (5)0.46709 (8)1.1555 (4)0.0211 (5)
H11A0.79000.45871.11330.025*
H11B1.02100.44961.10220.025*
C10.9679 (6)0.25797 (9)0.6105 (4)0.0213 (6)
H1C1.02000.28150.70740.026*
C21.0815 (6)0.26317 (9)0.4576 (4)0.0230 (6)
H21.25870.25790.53040.028*
C30.9789 (8)0.23456 (11)0.2750 (5)0.0333 (8)
H3A0.80870.24120.19360.050*
H3B0.99210.20650.32400.050*
H3C1.06960.23760.18950.050*
C41.1722 (7)0.31931 (11)0.2586 (5)0.0315 (7)
H4A1.09640.30590.12460.047*
H4B1.34250.31140.32500.047*
H4C1.16080.34880.23970.047*
C51.0473 (6)0.21934 (9)0.7380 (5)0.0238 (6)
C60.8791 (7)0.19152 (10)0.7459 (5)0.0313 (7)
H60.71240.19520.66160.038*
C70.9543 (8)0.15818 (11)0.8773 (6)0.0364 (8)
H70.83820.13950.88290.044*
C81.1954 (8)0.15214 (11)0.9988 (5)0.0358 (8)
H81.24530.12941.08840.043*
C91.3644 (7)0.17927 (12)0.9899 (6)0.0374 (8)
H91.53120.17511.07220.045*
C101.2897 (7)0.21284 (11)0.8599 (5)0.0330 (8)
H101.40650.23150.85490.040*
C110.8614 (6)0.50329 (10)0.8363 (4)0.0234 (6)
H11C0.97380.48410.81090.028*
C120.9472 (7)0.50860 (9)1.0698 (5)0.0263 (7)
H121.11600.51931.12850.032*
C130.7881 (9)0.53674 (11)1.1285 (6)0.0417 (10)
H13A0.62350.52591.07530.062*
H13B0.78610.56371.06970.062*
H13C0.85190.53881.27840.062*
C141.0652 (7)0.46457 (11)1.3838 (5)0.0324 (8)
H14A1.06710.43631.42680.049*
H14B0.97570.48121.44300.049*
H14C1.23120.47461.43180.049*
C150.8609 (7)0.54322 (10)0.7289 (5)0.0260 (7)
C161.0744 (8)0.56193 (12)0.7525 (6)0.0364 (8)
H161.22370.54980.83860.044*
C171.0747 (9)0.59814 (12)0.6524 (7)0.0439 (10)
H171.22320.61060.67050.053*
H230.537 (11)0.3092 (9)1.054 (9)0.066*
C180.8589 (9)0.61598 (11)0.5268 (6)0.0439 (10)
H180.85800.64080.45840.053*
C190.6459 (9)0.59768 (12)0.5015 (6)0.0427 (10)
H190.49710.60980.41470.051*
C200.6454 (8)0.56152 (11)0.6015 (5)0.0333 (8)
H200.49630.54920.58250.040*
C210.6422 (5)0.33331 (10)0.7830 (4)0.0204 (6)
C220.6050 (6)0.35999 (9)0.9434 (4)0.0220 (6)
H220.75260.37691.01470.026*
C230.3888 (5)0.38800 (9)0.8364 (4)0.0197 (6)
H23A0.42990.40720.74700.024*
C240.3341 (5)0.41289 (9)0.9931 (4)0.0188 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0196 (12)0.0377 (12)0.0258 (11)0.0030 (9)0.0099 (9)0.0013 (9)
O110.0359 (15)0.0346 (13)0.0242 (12)0.0093 (10)0.0114 (10)0.0035 (9)
O210.0334 (14)0.0268 (12)0.0369 (12)0.0003 (9)0.0208 (11)0.0016 (9)
O220.0267 (13)0.0320 (11)0.0251 (11)0.0004 (9)0.0154 (9)0.0004 (8)
O230.0318 (14)0.0350 (13)0.0215 (11)0.0025 (10)0.0139 (9)0.0076 (9)
O240.0139 (11)0.0417 (13)0.0233 (10)0.0008 (9)0.0065 (8)0.0119 (9)
O250.0273 (13)0.0335 (12)0.0198 (10)0.0077 (9)0.0105 (9)0.0053 (8)
O260.0227 (13)0.0320 (11)0.0252 (10)0.0012 (9)0.0122 (9)0.0047 (9)
O270.068 (2)0.0351 (13)0.0234 (11)0.0025 (13)0.0184 (12)0.0004 (10)
N10.0207 (14)0.0256 (13)0.0189 (11)0.0000 (10)0.0056 (10)0.0001 (9)
N110.0204 (14)0.0272 (13)0.0157 (11)0.0015 (10)0.0072 (10)0.0013 (9)
C10.0199 (16)0.0256 (14)0.0183 (13)0.0011 (11)0.0077 (11)0.0019 (11)
C20.0235 (16)0.0262 (15)0.0188 (13)0.0017 (12)0.0083 (11)0.0001 (11)
C30.048 (2)0.0313 (17)0.0243 (16)0.0000 (14)0.0187 (15)0.0047 (13)
C40.030 (2)0.0414 (19)0.0245 (15)0.0008 (14)0.0124 (14)0.0082 (13)
C50.0283 (18)0.0245 (15)0.0200 (14)0.0004 (12)0.0113 (12)0.0016 (11)
C60.036 (2)0.0316 (17)0.0290 (16)0.0041 (14)0.0160 (15)0.0009 (13)
C70.049 (2)0.0306 (18)0.0343 (19)0.0120 (15)0.0218 (17)0.0003 (14)
C80.054 (2)0.0277 (17)0.0269 (17)0.0009 (15)0.0174 (16)0.0042 (13)
C90.032 (2)0.039 (2)0.0327 (18)0.0029 (15)0.0045 (15)0.0117 (15)
C100.033 (2)0.0317 (17)0.0319 (17)0.0022 (14)0.0108 (15)0.0065 (14)
C110.0226 (17)0.0294 (15)0.0184 (14)0.0020 (12)0.0087 (12)0.0027 (11)
C120.0323 (19)0.0250 (15)0.0200 (14)0.0038 (12)0.0092 (13)0.0029 (11)
C130.070 (3)0.0296 (18)0.0279 (17)0.0131 (17)0.0229 (18)0.0001 (14)
C140.033 (2)0.043 (2)0.0163 (14)0.0020 (14)0.0055 (13)0.0018 (13)
C150.031 (2)0.0284 (16)0.0203 (14)0.0006 (12)0.0123 (13)0.0020 (11)
C160.036 (2)0.042 (2)0.0340 (18)0.0058 (15)0.0168 (16)0.0006 (15)
C170.058 (3)0.042 (2)0.043 (2)0.0143 (19)0.032 (2)0.0046 (17)
C180.082 (3)0.0283 (18)0.0337 (19)0.0006 (18)0.036 (2)0.0013 (14)
C190.063 (3)0.0350 (19)0.0312 (18)0.0132 (18)0.0204 (19)0.0059 (15)
C200.042 (2)0.0340 (18)0.0258 (16)0.0035 (15)0.0154 (15)0.0005 (13)
C210.0101 (15)0.0292 (15)0.0204 (13)0.0018 (11)0.0046 (11)0.0004 (11)
C220.0231 (16)0.0255 (14)0.0199 (13)0.0020 (11)0.0112 (12)0.0015 (11)
C230.0156 (15)0.0261 (14)0.0169 (12)0.0002 (11)0.0061 (10)0.0018 (11)
C240.0194 (16)0.0216 (13)0.0171 (12)0.0002 (11)0.0094 (11)0.0018 (10)
Geometric parameters (Å, º) top
O1—H10.8400C6—C71.394 (5)
O1—C11.416 (4)C7—H70.9500
O11—H110.8400C7—C81.377 (6)
O11—C111.411 (4)C8—H80.9500
O21—C211.251 (4)C8—C91.382 (6)
O22—C211.258 (4)C9—H90.9500
O23—H230.88 (3)C9—C101.395 (5)
O23—C221.428 (4)C10—H100.9500
O24—H240.8400C11—H11C1.0000
O24—C231.416 (4)C11—C121.539 (4)
O25—C241.263 (4)C11—C151.522 (4)
O26—C241.242 (4)C12—H121.0000
O27—H27A0.8498C12—C131.516 (5)
O27—H27B0.8497C13—H13A0.9800
N1—H1A0.9100C13—H13B0.9800
N1—H1B0.9100C13—H13C0.9800
N1—C21.505 (4)C14—H14A0.9800
N1—C41.492 (4)C14—H14B0.9800
N11—H11A0.9100C14—H14C0.9800
N11—H11B0.9100C15—C161.382 (5)
N11—C121.499 (4)C15—C201.388 (5)
N11—C141.491 (4)C16—H160.9500
C1—H1C1.0000C16—C171.391 (6)
C1—C21.522 (4)C17—H170.9500
C1—C51.523 (4)C17—C181.380 (7)
C2—H21.0000C18—H180.9500
C2—C31.520 (4)C18—C191.370 (7)
C3—H3A0.9800C19—H190.9500
C3—H3B0.9800C19—C201.389 (5)
C3—H3C0.9800C20—H200.9500
C4—H4A0.9800C21—C221.532 (4)
C4—H4B0.9800C22—H221.0000
C4—H4C0.9800C22—C231.529 (4)
C5—C61.391 (5)C23—H23A1.0000
C5—C101.386 (5)C23—C241.529 (4)
C6—H60.9500
C1—O1—H1109.5O11—C11—C12107.2 (3)
C11—O11—H11109.5O11—C11—C15112.2 (3)
C22—O23—H23115 (4)C12—C11—H11C108.4
C23—O24—H24109.5C15—C11—H11C108.4
H27A—O27—H27B109.5C15—C11—C12112.2 (2)
H1A—N1—H1B107.5N11—C12—C11106.4 (2)
C2—N1—H1A108.5N11—C12—H12109.2
C2—N1—H1B108.5N11—C12—C13109.5 (3)
C4—N1—H1A108.5C11—C12—H12109.2
C4—N1—H1B108.5C13—C12—C11113.4 (3)
C4—N1—C2114.9 (3)C13—C12—H12109.2
H11A—N11—H11B107.6C12—C13—H13A109.5
C12—N11—H11A108.6C12—C13—H13B109.5
C12—N11—H11B108.6C12—C13—H13C109.5
C14—N11—H11A108.6H13A—C13—H13B109.5
C14—N11—H11B108.6H13A—C13—H13C109.5
C14—N11—C12114.5 (2)H13B—C13—H13C109.5
O1—C1—H1C107.5N11—C14—H14A109.5
O1—C1—C2107.8 (2)N11—C14—H14B109.5
O1—C1—C5112.8 (3)N11—C14—H14C109.5
C2—C1—H1C107.5H14A—C14—H14B109.5
C2—C1—C5113.4 (3)H14A—C14—H14C109.5
C5—C1—H1C107.5H14B—C14—H14C109.5
N1—C2—C1106.8 (2)C16—C15—C11121.1 (3)
N1—C2—H2108.3C16—C15—C20118.1 (3)
N1—C2—C3111.4 (2)C20—C15—C11120.8 (3)
C1—C2—H2108.3C15—C16—H16119.4
C3—C2—C1113.5 (3)C15—C16—C17121.2 (4)
C3—C2—H2108.3C17—C16—H16119.4
C2—C3—H3A109.5C16—C17—H17120.1
C2—C3—H3B109.5C18—C17—C16119.9 (4)
C2—C3—H3C109.5C18—C17—H17120.1
H3A—C3—H3B109.5C17—C18—H18120.3
H3A—C3—H3C109.5C19—C18—C17119.5 (4)
H3B—C3—H3C109.5C19—C18—H18120.3
N1—C4—H4A109.5C18—C19—H19119.7
N1—C4—H4B109.5C18—C19—C20120.7 (4)
N1—C4—H4C109.5C20—C19—H19119.7
H4A—C4—H4B109.5C15—C20—C19120.6 (4)
H4A—C4—H4C109.5C15—C20—H20119.7
H4B—C4—H4C109.5C19—C20—H20119.7
C6—C5—C1121.1 (3)O21—C21—O22125.3 (3)
C10—C5—C1120.0 (3)O21—C21—C22116.4 (3)
C10—C5—C6118.8 (3)O22—C21—C22118.4 (3)
C5—C6—H6119.9O23—C22—C21109.3 (2)
C5—C6—C7120.2 (3)O23—C22—H22108.9
C7—C6—H6119.9O23—C22—C23111.3 (3)
C6—C7—H7119.7C21—C22—H22108.9
C8—C7—C6120.6 (3)C23—C22—C21109.4 (2)
C8—C7—H7119.7C23—C22—H22108.9
C7—C8—H8120.1O24—C23—C22109.7 (2)
C7—C8—C9119.7 (3)O24—C23—H23A108.3
C9—C8—H8120.1O24—C23—C24111.3 (2)
C8—C9—H9120.1C22—C23—H23A108.3
C8—C9—C10119.9 (4)C22—C23—C24111.0 (2)
C10—C9—H9120.1C24—C23—H23A108.3
C5—C10—C9120.9 (3)O25—C24—C23117.1 (3)
C5—C10—H10119.6O26—C24—O25126.0 (3)
C9—C10—H10119.6O26—C24—C23116.9 (3)
O11—C11—H11C108.4
O1—C1—C2—N170.6 (3)C5—C6—C7—C80.7 (5)
O1—C1—C2—C352.6 (3)C6—C5—C10—C90.6 (5)
O1—C1—C5—C62.5 (4)C6—C7—C8—C90.3 (6)
O1—C1—C5—C10177.9 (3)C7—C8—C9—C100.8 (6)
O11—C11—C12—N1158.1 (3)C8—C9—C10—C50.4 (6)
O11—C11—C12—C1362.4 (4)C10—C5—C6—C71.1 (5)
O11—C11—C15—C16168.5 (3)C11—C15—C16—C17179.1 (3)
O11—C11—C15—C2010.4 (4)C11—C15—C20—C19179.1 (3)
O21—C21—C22—O2311.4 (4)C12—C11—C15—C1670.7 (4)
O21—C21—C22—C23110.6 (3)C12—C11—C15—C20110.4 (3)
O22—C21—C22—O23168.3 (3)C14—N11—C12—C11169.5 (3)
O22—C21—C22—C2369.7 (4)C14—N11—C12—C1367.6 (4)
O23—C22—C23—O2468.6 (3)C15—C11—C12—N11178.3 (3)
O23—C22—C23—C2454.9 (3)C15—C11—C12—C1361.2 (4)
O24—C23—C24—O25176.7 (2)C15—C16—C17—C180.0 (6)
O24—C23—C24—O262.1 (4)C16—C15—C20—C190.2 (5)
C1—C5—C6—C7174.4 (3)C16—C17—C18—C190.2 (6)
C1—C5—C10—C9175.0 (3)C17—C18—C19—C200.2 (6)
C2—C1—C5—C6125.4 (3)C18—C19—C20—C150.1 (6)
C2—C1—C5—C1059.2 (4)C20—C15—C16—C170.2 (5)
C4—N1—C2—C1172.8 (3)C21—C22—C23—O2452.3 (3)
C4—N1—C2—C362.7 (4)C21—C22—C23—C24175.7 (2)
C5—C1—C2—N1163.8 (2)C22—C23—C24—O2560.8 (3)
C5—C1—C2—C373.0 (3)C22—C23—C24—O26120.4 (3)
(pn180914_uo_eph_2_180814_c6_scr2) top
Crystal data top
C10H16NO·NO3F(000) = 488
Mr = 228.25Dx = 1.256 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 6.0401 (3) ÅCell parameters from 5146 reflections
b = 29.3553 (8) Åθ = 6.0–76.8°
c = 7.3828 (3) ŵ = 0.82 mm1
β = 112.806 (5)°T = 160 K
V = 1206.70 (9) Å3Plate, colourless
Z = 40.40 × 0.07 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
3727 reflections with I > 2σ(I)
ω scansRint = 0.046
Absorption correction: gaussian
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 77.1°, θmin = 6.0°
Tmin = 0.811, Tmax = 1.000h = 46
12312 measured reflectionsk = 3636
4637 independent reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.1253P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.190(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.63 e Å3
4637 reflectionsΔρmin = 0.30 e Å3
295 parametersAbsolute structure: Flack x determined using 1465 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
1 restraintAbsolute structure parameter: 0.1 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4645 (8)0.40974 (12)0.6330 (6)0.0511 (9)
H10.44370.43750.60350.077*
O111.0541 (7)0.58742 (12)0.8206 (6)0.0512 (9)
H111.05700.55910.83840.077*
O120.4335 (7)0.49914 (13)0.5078 (6)0.0562 (9)
O130.2075 (8)0.55884 (13)0.4450 (7)0.0603 (11)
O140.0677 (8)0.49420 (15)0.4881 (7)0.0653 (11)
O150.9936 (8)0.43770 (13)1.0100 (7)0.0601 (10)
O161.1647 (7)0.49810 (13)0.9579 (6)0.0568 (9)
O170.8092 (8)0.50216 (15)0.9638 (7)0.0652 (11)
N10.5062 (9)0.42691 (14)1.0175 (6)0.0449 (10)
H1A0.62380.43580.97690.054*
H1B0.39040.44880.97950.054*
N110.7159 (8)0.56996 (14)0.4439 (6)0.0443 (9)
H11A0.87170.56120.47990.053*
H11B0.64100.54820.48760.053*
N120.2327 (8)0.51762 (14)0.4790 (6)0.0453 (10)
N130.9878 (8)0.47920 (16)0.9788 (6)0.0477 (10)
C10.2821 (9)0.39444 (16)0.6945 (7)0.0436 (10)
H1C0.16260.41950.67410.052*
C20.3988 (10)0.38326 (15)0.9147 (7)0.0422 (10)
H20.27140.37300.96050.051*
C30.5913 (12)0.34674 (19)0.9634 (8)0.0558 (13)
H3A0.72350.35770.92930.084*
H3B0.52260.31910.88810.084*
H3C0.65190.33991.10420.084*
C40.6098 (12)0.4246 (2)1.2361 (8)0.0574 (14)
H4A0.66550.45491.29020.086*
H4B0.74530.40331.28000.086*
H4C0.48660.41401.28210.086*
C50.1536 (10)0.35281 (17)0.5795 (7)0.0460 (11)
C60.0518 (11)0.33614 (19)0.5996 (9)0.0543 (13)
H60.11900.35230.67740.065*
C70.1583 (12)0.2963 (2)0.5073 (11)0.0687 (19)
H70.29800.28510.52210.082*
C80.0633 (14)0.2730 (2)0.3954 (12)0.079 (2)
H80.13470.24520.33510.095*
C90.1337 (16)0.2892 (2)0.3686 (11)0.078 (2)
H90.19640.27310.28740.094*
C100.2426 (12)0.3295 (2)0.4605 (9)0.0620 (15)
H100.37880.34090.44090.074*
C110.8185 (9)0.60368 (16)0.7704 (7)0.0428 (10)
H11C0.72010.57950.79950.051*
C120.7115 (9)0.61383 (15)0.5468 (7)0.0435 (10)
H120.54130.62410.50690.052*
C130.8514 (12)0.64980 (19)0.4892 (8)0.0560 (14)
H13A1.01590.63910.52120.084*
H13B0.85490.67800.56140.084*
H13C0.77390.65560.34770.084*
C140.6027 (11)0.5710 (2)0.2270 (8)0.0548 (13)
H14A0.59760.54010.17550.082*
H14B0.69670.59070.17630.082*
H14C0.43890.58290.18540.082*
C150.8124 (9)0.64633 (17)0.8827 (7)0.0428 (10)
C161.0234 (10)0.66778 (19)1.0012 (8)0.0497 (12)
H161.17360.65491.01580.060*
C171.0174 (11)0.7081 (2)1.0993 (9)0.0560 (13)
H171.16360.72261.17840.067*
C180.8039 (12)0.7269 (2)1.0831 (8)0.0550 (14)
H180.80130.75441.15040.066*
C190.5898 (11)0.7055 (2)0.9671 (8)0.0537 (13)
H190.44040.71830.95530.064*
C200.5953 (9)0.6654 (2)0.8686 (7)0.0509 (12)
H200.44890.65080.79060.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.062 (2)0.0494 (19)0.049 (2)0.0034 (16)0.0298 (17)0.0092 (15)
O110.045 (2)0.0510 (19)0.0492 (19)0.0044 (14)0.0092 (15)0.0040 (15)
O120.055 (2)0.051 (2)0.068 (2)0.0043 (18)0.0293 (19)0.0066 (18)
O130.053 (2)0.044 (2)0.086 (3)0.0021 (16)0.030 (2)0.0010 (18)
O140.055 (3)0.062 (2)0.079 (3)0.0058 (19)0.027 (2)0.010 (2)
O150.061 (3)0.043 (2)0.084 (3)0.0021 (16)0.036 (2)0.0001 (17)
O160.049 (2)0.050 (2)0.074 (3)0.0041 (17)0.0259 (18)0.0049 (18)
O170.059 (3)0.062 (2)0.077 (3)0.013 (2)0.030 (2)0.011 (2)
N10.049 (3)0.046 (2)0.044 (2)0.0018 (17)0.0216 (18)0.0004 (17)
N110.040 (2)0.045 (2)0.045 (2)0.0024 (17)0.0137 (17)0.0004 (17)
N120.042 (3)0.051 (2)0.041 (2)0.0036 (18)0.0147 (17)0.0026 (17)
N130.046 (3)0.056 (3)0.040 (2)0.0014 (19)0.0149 (18)0.0043 (17)
C10.045 (3)0.044 (2)0.044 (2)0.0048 (19)0.021 (2)0.0024 (19)
C20.051 (3)0.038 (2)0.042 (2)0.0017 (19)0.022 (2)0.0018 (18)
C30.068 (4)0.048 (3)0.044 (3)0.006 (2)0.015 (2)0.003 (2)
C40.067 (4)0.064 (3)0.039 (3)0.001 (3)0.019 (3)0.005 (2)
C50.047 (3)0.046 (2)0.038 (2)0.009 (2)0.008 (2)0.0027 (19)
C60.050 (3)0.053 (3)0.055 (3)0.007 (2)0.015 (2)0.010 (2)
C70.053 (4)0.056 (3)0.077 (4)0.002 (3)0.003 (3)0.017 (3)
C80.066 (5)0.054 (3)0.075 (5)0.010 (3)0.020 (4)0.009 (3)
C90.080 (5)0.074 (4)0.064 (4)0.018 (4)0.010 (4)0.022 (3)
C100.061 (4)0.068 (4)0.053 (3)0.007 (3)0.018 (3)0.010 (3)
C110.038 (3)0.044 (2)0.043 (2)0.0037 (18)0.0115 (19)0.0048 (19)
C120.045 (3)0.037 (2)0.044 (2)0.0003 (18)0.012 (2)0.0021 (18)
C130.069 (4)0.049 (3)0.047 (3)0.013 (3)0.019 (2)0.002 (2)
C140.066 (4)0.053 (3)0.040 (3)0.004 (2)0.015 (2)0.004 (2)
C150.042 (3)0.051 (3)0.034 (2)0.0027 (19)0.0135 (18)0.0067 (18)
C160.041 (3)0.057 (3)0.049 (3)0.002 (2)0.015 (2)0.004 (2)
C170.049 (3)0.065 (3)0.053 (3)0.011 (2)0.019 (2)0.010 (2)
C180.069 (4)0.053 (3)0.042 (3)0.002 (2)0.020 (2)0.002 (2)
C190.053 (3)0.062 (3)0.045 (3)0.008 (2)0.017 (2)0.004 (2)
C200.037 (3)0.071 (3)0.039 (2)0.001 (2)0.0079 (19)0.000 (2)
Geometric parameters (Å, º) top
O1—H10.8400C6—H60.9500
O1—C11.417 (6)C6—C71.381 (9)
O11—H110.8400C7—H70.9500
O11—C111.408 (7)C7—C81.358 (12)
O12—N121.269 (6)C8—H80.9500
O13—N121.233 (6)C8—C91.365 (13)
O14—N121.234 (6)C9—H90.9500
O15—N131.238 (6)C9—C101.394 (10)
O16—N131.265 (6)C10—H100.9500
O17—N131.240 (6)C11—H11C1.0000
N1—H1A0.9100C11—C121.551 (7)
N1—H1B0.9100C11—C151.510 (7)
N1—C21.502 (6)C12—H121.0000
N1—C41.489 (7)C12—C131.513 (8)
N11—H11A0.9100C13—H13A0.9800
N11—H11B0.9100C13—H13B0.9800
N11—C121.500 (7)C13—H13C0.9800
N11—C141.478 (7)C14—H14A0.9800
C1—H1C1.0000C14—H14B0.9800
C1—C21.536 (7)C14—H14C0.9800
C1—C51.518 (7)C15—C161.386 (7)
C2—H21.0000C15—C201.392 (8)
C2—C31.518 (8)C16—H160.9500
C3—H3A0.9800C16—C171.394 (8)
C3—H3B0.9800C17—H170.9500
C3—H3C0.9800C17—C181.365 (9)
C4—H4A0.9800C18—H180.9500
C4—H4B0.9800C18—C191.393 (9)
C4—H4C0.9800C19—H190.9500
C5—C61.393 (8)C19—C201.392 (8)
C5—C101.377 (8)C20—H200.9500
C1—O1—H1109.5C8—C7—H7120.0
C11—O11—H11109.5C7—C8—H8119.6
H1A—N1—H1B107.5C7—C8—C9120.7 (6)
C2—N1—H1A108.5C9—C8—H8119.6
C2—N1—H1B108.5C8—C9—H9120.1
C4—N1—H1A108.5C8—C9—C10119.9 (7)
C4—N1—H1B108.5C10—C9—H9120.1
C4—N1—C2115.2 (4)C5—C10—C9120.3 (7)
H11A—N11—H11B107.4C5—C10—H10119.8
C12—N11—H11A108.3C9—C10—H10119.8
C12—N11—H11B108.3O11—C11—H11C109.1
C14—N11—H11A108.3O11—C11—C12107.9 (4)
C14—N11—H11B108.3O11—C11—C15112.0 (4)
C14—N11—C12116.1 (4)C12—C11—H11C109.1
O13—N12—O12119.2 (4)C15—C11—H11C109.1
O13—N12—O14121.3 (4)C15—C11—C12109.7 (4)
O14—N12—O12119.5 (4)N11—C12—C11107.0 (4)
O15—N13—O16119.4 (4)N11—C12—H12109.2
O15—N13—O17120.8 (4)N11—C12—C13109.6 (5)
O17—N13—O16119.8 (5)C11—C12—H12109.2
O1—C1—H1C108.9C13—C12—C11112.7 (4)
O1—C1—C2108.2 (4)C13—C12—H12109.2
O1—C1—C5111.6 (4)C12—C13—H13A109.5
C2—C1—H1C108.9C12—C13—H13B109.5
C5—C1—H1C108.9C12—C13—H13C109.5
C5—C1—C2110.2 (4)H13A—C13—H13B109.5
N1—C2—C1106.5 (4)H13A—C13—H13C109.5
N1—C2—H2109.0H13B—C13—H13C109.5
N1—C2—C3110.0 (5)N11—C14—H14A109.5
C1—C2—H2109.0N11—C14—H14B109.5
C3—C2—C1113.4 (4)N11—C14—H14C109.5
C3—C2—H2109.0H14A—C14—H14B109.5
C2—C3—H3A109.5H14A—C14—H14C109.5
C2—C3—H3B109.5H14B—C14—H14C109.5
C2—C3—H3C109.5C16—C15—C11120.8 (5)
H3A—C3—H3B109.5C16—C15—C20118.3 (5)
H3A—C3—H3C109.5C20—C15—C11121.0 (4)
H3B—C3—H3C109.5C15—C16—H16119.7
N1—C4—H4A109.5C15—C16—C17120.7 (5)
N1—C4—H4B109.5C17—C16—H16119.7
N1—C4—H4C109.5C16—C17—H17119.6
H4A—C4—H4B109.5C18—C17—C16120.8 (5)
H4A—C4—H4C109.5C18—C17—H17119.6
H4B—C4—H4C109.5C17—C18—H18120.3
C6—C5—C1120.4 (5)C17—C18—C19119.5 (5)
C10—C5—C1121.0 (5)C19—C18—H18120.3
C10—C5—C6118.5 (5)C18—C19—H19120.1
C5—C6—H6119.7C20—C19—C18119.9 (5)
C7—C6—C5120.6 (6)C20—C19—H19120.1
C7—C6—H6119.7C15—C20—C19120.9 (5)
C6—C7—H7120.0C15—C20—H20119.5
C8—C7—C6120.0 (7)C19—C20—H20119.5
O1—C1—C2—N161.6 (5)C6—C7—C8—C91.7 (10)
O1—C1—C2—C359.5 (5)C7—C8—C9—C101.5 (11)
O1—C1—C5—C6171.6 (4)C8—C9—C10—C50.5 (10)
O1—C1—C5—C1011.4 (7)C10—C5—C6—C72.2 (8)
O11—C11—C12—N1159.5 (5)C11—C15—C16—C17177.7 (5)
O11—C11—C12—C1361.0 (5)C11—C15—C20—C19177.9 (5)
O11—C11—C15—C166.8 (6)C12—C11—C15—C16112.9 (5)
O11—C11—C15—C20173.8 (4)C12—C11—C15—C2066.5 (6)
C1—C5—C6—C7174.9 (5)C14—N11—C12—C11175.1 (4)
C1—C5—C10—C9174.7 (6)C14—N11—C12—C1362.4 (6)
C2—C1—C5—C668.2 (6)C15—C11—C12—N11178.3 (4)
C2—C1—C5—C10108.8 (6)C15—C11—C12—C1361.2 (6)
C4—N1—C2—C1174.6 (5)C15—C16—C17—C181.0 (9)
C4—N1—C2—C362.2 (6)C16—C15—C20—C191.5 (8)
C5—C1—C2—N1176.2 (4)C16—C17—C18—C190.0 (9)
C5—C1—C2—C362.8 (6)C17—C18—C19—C200.2 (8)
C5—C6—C7—C80.2 (9)C18—C19—C20—C150.6 (8)
C6—C5—C10—C92.3 (8)C20—C15—C16—C171.7 (8)
 

Acknowledgements

We thank Zentiva k.s. for providing the diltiazem hydro­chloride, and Jeremy Michel for setting up part of the screening during his lab course. We thank Professor Anthony Linden and Dr Günther Steinfeld for a critical reading of the manuscript.

Funding information

We thank the University of Zürich, the R'Equip programme of the Swiss National Science Foundation (project No. 206021_164018 to BS), the Czech Science Foundation (grant No. 16-10035S) and the Specific University Research (MSMT No. 21-SVV/2018) for financial support.

References

First citationAlbrecht, M., Borba, A., Le Barbu-Debus, K., Dittrich, B., Fausto, R., Grimme, S., Mahjoub, A., Nedić, M., Schmitt, U., Schrader, L., Suhm, M. A., Zehnacker-Rentien, A. & Zischang, J. (2010). New J. Chem. 34, 1266–1285.  CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaldock, P., Mills, V. & Stewart, P. S. (1996). J. Cryst. Growth, 168, 170–174.  CrossRef CAS Web of Science Google Scholar
First citationBerge, S. M., Bighley, L. D. & Monkhouse, D. C. (1977). J. Pharm. Sci. 66, 1–19.  CrossRef CAS PubMed Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChayen, N. E., Shaw Stewart, P. D. & Blow, D. M. (1992). J. Cryst. Growth, 122, 176–180.  CrossRef CAS Web of Science Google Scholar
First citationChayen, N. E., Shaw Stewart, P. D., Maeder, D. L. & Blow, D. M. (1990). J. Appl. Cryst. 23, 297–302.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCollier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498–505.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationD'Arcy, A., Elmore, C., Stihle, M. & Johnston, J. E. (1996). J. Cryst. Growth, 168, 175–180.  CrossRef CAS Web of Science Google Scholar
First citationDavidoff, G., Guarracini, M., Roth, E., Sliwa, J. & Yarkony, G. (1987). Pain, 29, 151–161.  CrossRef CAS Google Scholar
First citationFábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94–103.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFillers, J. P. & Hawkinson, S. W. (1979). Acta Cryst. B35, 498–500.  CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrothe, E., Meekes, H. & de Gelder, R. (2017). Acta Cryst. B73, 453–465.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHearn, R. A. & Bugg, C. E. (1972). Acta Cryst. B28, 3662–3667.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKojić-Prodić, B., Ružić-Toroš, Z., Šunjić, V., Decorte, E. & Moimas, F. (1984). Helv. Chim. Acta, 67, 916–926.  Google Scholar
First citationKotelnikova, E. N., Isakov, A. I. & Lorenz, H. (2017). CrystEngComm, 19, 1851–1869.  CrossRef CAS Google Scholar
First citationLee, M. R. (2011). J. R. Coll. Physicians Edinb. 41, 78–84.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcPherson, A. & Gavira, J. A. (2014). Acta Cryst. F70, 2–20.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThe Merck Index (1976). 9th ed., p. 66. Rahway, New Jersey: Merck & Co.  Google Scholar
First citationMorissette, S. L., Almarsson, O., Peterson, M. L., Remenar, J. F., Read, M. J., Lemmo, A. V., Ellis, S., Cima, M. J. & Gardner, C. R. (2004). Adv. Drug Deliv. Rev. 56, 275–300.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNievergelt, P. P., Babor, M., Čejka, J. & Spingler, B. (2018). Chem. Sci. 9, 3716–3722.  CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaulekuhn, G. S., Dressman, J. B. & Saal, C. (2007). J. Med. Chem. 50, 6665–6672.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer.  Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlisPRO. Version 1.171.38.41. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSelect Committee on GRAS Substances (2017). https://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGSGoogle Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStepanovs, D., Jure, M., Gosteva, M., Popelis, J., Kiselovs, G. & Mishnev, A. (2016). CrystEngComm, 18, 1235–1241.  CrossRef CAS Google Scholar
First citationStepanovs, D., Jure, M., Yanichev, A., Belyakov, S. & Mishnev, A. (2015). CrystEngComm, 17, 9023–9028.  CrossRef CAS Google Scholar
First citationTamura, Y., Takezawa, H., Domoto, Y. & Fujita, M. (2018). Chem. Lett. 47, 617–619.  CrossRef CAS Google Scholar
First citationTanaka, T., Inoue, H., Date, T., Okamura, K., Aoe, K., Takeda, M., Kugita, H., Murata, S., Yamaguchi, T., Kikkawa, K., Nakajima, S. & Nagao, T. (1992). Chem. Pharm. Bull. 40, 1476–1480.  CrossRef CAS Google Scholar
First citationVetting, M. W., Hegde, S. S. & Blanchard, J. S. (2009). Acta Cryst. D65, 462–469.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWachter, E., Glazer, E. C., Parkin, S. & Brock, C. P. (2016). Acta Cryst. B72, 223–231.  CrossRef IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWu, H., West, A. R., Vickers, M., Apperley, D. C. & Jones, A. G. (2012). Chem. Eng. Sci. 77, 47–56.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 6| Part 1| January 2019| Pages 145-151
ISSN: 2052-2525