research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
ISSN: 2052-2525

Extraordinary anisotropic thermal expansion in photosalient crystals

crossmark logo

aDepartment of Chemistry, National University of Singapore, S8-05-03, 3 Science Drive 3, 117543, Singapore, bMax Planck Institute for Solid State Research, Heisenbergstrasse 1, D70569 Stuttgart Germany, cDepartment of Chemistry and Biology `A. Zambelli', University of Salerno, Via Giovanni Paolo II, 132, Fisciano (SA) 84084, Italy, and dNew York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: r.dinnebier@fkf.mpg.de, chmjjv@nus.edu.sg

Edited by L. R. MacGillivray, University of Iowa, USA (Received 11 September 2019; accepted 27 October 2019)

Although a plethora of metal complexes have been characterized, those having multifunctional properties are very rare. This article reports three isotypical complexes, namely [Cu(benzoate)L2], where L = 4-styryl­pyridine (4spy) (1), 2′-fluoro-4-styryl­pyridine (2F-4spy) (2) and 3′-fluoro-4-styryl­pyridine (3F-4spy) (3), which show photosalient behavior (photoinduced crystal mobility) while they undergo [2+2] cyclo­addition. These crystals also exhibit anisotropic thermal expansion when heated from room temperature to 200°C. The overall thermal expansion of the crystals is impressive, with the largest volumetric thermal expansion coefficients for 1, 2 and 3 of 241.8, 233.1 and 285.7 × 10−6 K−1, respectively, values that are comparable to only a handful of other reported materials known to undergo colossal thermal expansion. As a result of the expansion, their single crystals occasionally move by rolling. Altogether, these materials exhibit unusual and hitherto untapped solid-state properties.

1. Introduction

Multifunctional smart materials can perform multiple functions through tailored chiral, electronic, magnetic, optical, thermal and/or mechanical properties that can be used for energy storage and conversion, drug delivery, catalysis, etc. It is relatively easy to design composite materials combining two or more solids with different properties into hybrid materials for specific applications (Ferreira et al., 2016[Ferreira, A. D. B. L., Nóvoa, P. R. O. & Marques, A. T. (2016). Compos. Struct. 151, 3-35.]; Lu & Lieber, 2007[Lu, W. & Lieber, C. M. (2007). Nat. Mater. 6, 841-850.]; Abouraddy et al., 2007[Abouraddy, A. F., Bayindir, M., Benoit, G., Hart, S. D., Kuriki, K., Orf, N., Shapira, O., Sorin, F., Temelkuran, B. & Fink, Y. (2007). Nat. Mater. 6, 336-347.]; Wang et al., 2018[Wang, H., Bisoyi, H. K., Wang, L., Urbas, A. M., Bunning, T. J. & Li, Q. (2018). Angew. Chem. Int. Ed. 57, 1627-1631.]; Zhu & Xu, 2014[Zhu, Q.-L. & Xu, Q. (2014). Chem. Soc. Rev. 43, 5468-5512.]; Gibson, 2010[Gibson, R. F. (2010). Compos. Struct. 92, 2793-2810.]). It is, however, somewhat challenging to design a single (molecular or non-molecular) material that is capable of performing multiple functions. Nevertheless, multifunctional properties have been realized, for example, in mixed-metal oxides (Robertson et al., 2015[Robertson, L., Penin, N., Blanco-Gutierrez, V., Sheptyakov, D., Demourgues, A. & Gaudon, M. (2015). J. Mater. Chem. C. 3, 2918-2924.]), metal–organic framework (MOFs) structures (Li et al., 2016[Li, B., Wen, H. -M., Cui, Y., Zhou, W., Qian, G. & Chen, B. (2016). Adv. Mater. 28, 8819-8860.]; Qiu & Zhu, 2009[Qiu, S. & Zhu, G. (2009). Coord. Chem. Rev. 253, 2891-2911.]; Maspoch et al., 2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]; Cui et al., 2012[Cui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126-1162.]) and nanoparticles (Cheng et al., 2012[Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. (2012). Science, 338, 903-910.]; Rolison et al., 2009[Rolison, D. R., Long, J. W., Lytle, J. C., Fischer, A. E., Rhodes, C. P., McEvoy, T. M., Bourg, M. E. & Lubers, A. M. (2009). Chem. Soc. Rev. 38, 226-252.]). Multiferroic properties have been accomplished with MOFs and metal complexes (Wu et al., 2010[Wu, S. M., Cybart, S. A., Yu, P., Rossell, M. D., Zhang, J. X., Ramesh, R. & Dynes, R. C. (2010). Nat. Mater. 9, 756-761.]; Ramesh & Spaldin, 2007[Ramesh, R. & Spaldin, N. A. (2007). Nat. Mater. 6, 21-29.]; Spaldin et al., 2005[Spaldin, N. A. & Fiebig, M. (2005). Science, 309, 391-392.]; Cheong & Mostovoy, 2007[Cheong, S.-W. & Mostovoy, M. (2007). Nat. Mater. 6, 13-20.]). Multifunctional properties are generally less common for discrete metal complexes or clusters. Mechanically responsive materials change their shape and size and/or move in space when activated by light, heat, pressure or chemicals (Naumov et al., 2015[Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. (2015). Chem. Rev. 115, 12440-12490.]; Sato, 2016[Sato, O. (2016). Nat. Chem. 8, 644-656.]). Among them, some dynamic molecular crystals undergo various movements such as curling, crawling, jumping, leaping, hopping, popping, splitting, wiggling and explosion when exposed to heat or light, phenomena known as thermosalient (TS) or photosalient (PS) effects (Nath et al., 2014[Nath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. (2014). CrystEngComm, 16, 1850-1858.]; Commins et al., 2016[Commins, P., Desta, I. T., Karothu, D. P., Panda, M. K. & Naumov, P. (2016). Chem. Commun. 52, 13941-13954.]). These photodynamic and thermodynamic crystals set new avenues for materials that can be used to convert light or heat into mechanical work. Anisotropic changes in their lattice parameters, accompanied by a sudden release of the accumulated strain energy, are usually considered responsible and can contribute to many of the salient effects (Naumov et al., 2015[Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. (2015). Chem. Rev. 115, 12440-12490.]; Nath et al., 2014[Nath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. (2014). CrystEngComm, 16, 1850-1858.]).

Recently, a great number of organic, inorganic and organometallic crystals showing these properties have been discovered (Commins et al., 2016[Commins, P., Desta, I. T., Karothu, D. P., Panda, M. K. & Naumov, P. (2016). Chem. Commun. 52, 13941-13954.], 2015[Commins, P., Natarajan, A., Tsai, C.-K., Khan, S. I., Nath, N. K., Naumov, P. & Garcia-Garibay, M. A. (2015). Cryst. Growth Des. 15, 1983-1990.]; Naumov et al., 2013[Naumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. (2013). Angew. Chem. Int. Ed. 52, 9990-9995.]; Vicente et al., 2016[Vicente, A. I., Joseph, A., Ferreira, L. P., de Deus Carvalho, M., Rodrigues, V. H. N., Duttine, M., Diogo, H. P., Minas da Piedade, M. E., Calhorda, M. J. & Martinho, P. N. (2016). Chem. Sci. 7, 4251-4258.]; Wang et al., 2017[Wang, H., Chen, P., Wu, Z., Zhao, J., Sun, J. & Lu, R. (2017). Angew. Chem. Int. Ed. 56, 9463-9467.]; Hatano et al., 2017[Hatano, E., Morimoto, M., Imai, T., Hyodo, K., Fujimoto, A., Nishimura, R., Sekine, A., Yasuda, N., Yokojima, S., Nakamura, S. & Uchida, K. (2017). Angew. Chem. Int. Ed. 56, 12576-12580.]; Shibuya et al., 2017[Shibuya, Y., Itoh, Y. & Aida, T. (2017). Chem. Asian J. 12, 811-815.]; Takeda & Akutagawa, 2016[Takeda, T. & Akutagawa, T. (2016). Chem. Eur. J. 22, 7763-7770.]; Seki et al., 2015[Seki, T., Sakurada, K., Muromoto, M. & Ito, H. (2015). Chem. Sci. 6, 1491-1497.]; Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.], 2015[Medishetty, R., Sahoo, S. C., Mulijanto, C. E., Naumov, P. & Vittal, J. J. (2015). Chem. Mater. 27, 1821-1829.]; Mulijanto et al., 2017[Mulijanto, C. E., Quah, H. S., Tan, G. K., Donnadieu, B. & Vittal, J. J. (2017). IUCrJ, 4, 65-71.]; Yadava & Vittal, 2019[Yadava, K. & Vittal, J. J. (2019). Cryst. Growth Des. 19, 2542-2547.]). However, the number of metal complexes showing PS or TS behavior compared with organic crystals is still rather small and limited to only a few examples (Naumov et al., 2013[Naumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. (2013). Angew. Chem. Int. Ed. 52, 9990-9995.]; Sato, 2016[Sato, O. (2016). Nat. Chem. 8, 644-656.]; Nath et al., 2014[Nath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. (2014). CrystEngComm, 16, 1850-1858.]; Commins et al., 2016[Commins, P., Desta, I. T., Karothu, D. P., Panda, M. K. & Naumov, P. (2016). Chem. Commun. 52, 13941-13954.]). As an example of one of the prominent cases: crystals of a cobalt­(III) complex [Co(NH3)5(NO2)](Cl)(NO3) were shown to bend as well as to jump violently under UV light (Naumov et al., 2013[Naumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. (2013). Angew. Chem. Int. Ed. 52, 9990-9995.]; Chizhik et al., 2018[Chizhik, S., Sidelnikov, A., Zakharov, B., Naumov, P. & Boldyreva, E. (2018). Chem. Sci. 9, 2319-2335.]). On the other hand, a thermosalient palladium(II) organometallic solid was reported to show an impressive positive and negative thermal expansion, which indicates that similar anomalous expansion could be observed in other similar materials (Panda et al., 2014[Panda, M. K., Runčevski, T., Chandra Sahoo, S., Belik, A. A., Nath, N. K., Dinnebier, R. E. & Naumov, P. (2014). Nat. Commun. 5, 1-8.]). A smart hybrid material was prepared by incorporating this complex into thin films of sodium caseinate which exhibits dual mechanical response (to heat and light), showing potential for preparation of hybrid materials by using salient crystals (Sahoo et al., 2014[Sahoo, S. C., Nath, N. K., Zhang, L., Semreem, M. H., Al-Tel, T. H. & Naumov, P. (2014). RSC Adv. 4, 7640-7647]). In another example, a cocrystal of probenecid and 4,4′-azo­pyridine was shown to be thermally twistable, photobendable, elastically deformable and self-healable, and thus this material can be considered a multifunctional, smart, soft crystalline solid (Gupta et al., 2018[Gupta, P., Karothu, D. P., Ahmed, E., Naumov, P. & Nath, N. K. (2018). Angew. Chem. Int. Ed. 57, 8498-8502.]). Although the discovery of such multifunctional properties in a single molecular material is very important, identification of other materials with similar properties is a rather challenging task. Here, we report that the crystals of [Cu2(benzoate)4(L)2], where L = 4-styryl­pyridine (4spy) (1), 2′-fluoro-4-styryl­pyridine (2F-4spy) (2) and 3′-fluoro-4-styryl­pyridine (3F-4spy) (3) also pop violently under UV light, and thus they are photosalient. Furthermore, crystals of these materials exhibit very large anisotropic thermal expansion when heated from room temperature to about 200°C.

2. Results and discussion

2.1. Synthesis, single-crystal structures and photosalient behavior of 13

Green needle-like single crystals of 13 were obtained by slow evaporation of methanol solution of Cu(NO3)2·3H2O, sodium benzoate and the respective pyridyl ligand (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.]) in the molar ratio 1:2:1. Single-crystal X-ray diffraction (SXRD) analysis showed that they are isomorphous and isostructural to each other (see Table S1 of the supporting information) (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.]). All three crystals are in the monoclinic space group C2/c with Z = 4, and their asymmetric unit contains half of the formula unit. A center of inversion is present in the middle of the paddlewheel structure (Fig. 1[link]). The adjacent pyridyl ligands are stacked in a head-to-tail manner approximately normal to the (110) plane with strong ππ interactions between the neighboring pyridyl and phenyl groups (3.666 Å in 1, 3.690 Å in 2 and 3.656 Å in 3), as shown in Fig. 1[link]. As a consequence, the centers of the C=C bonds are separated by 3.787 Å in 1, 3.765 Å in 2 and 3.810 Å in 3, and thus they are at distances suitable for [2+2] cyclo­addition reactions (Schmidt, 1971[Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647-678.]).

[Figure 1]
Figure 1
View of the one-dimensional arrangement of [Cu2(benzoate)4(4-spy)2] 1 via ππ interactions. Hydrogen atoms have been omitted for clarity.

As discussed earlier, the intermolecular olefin pairs on both sides of the paddlewheel structures in 13 are juxtaposed in a head-to-tail manner and can undergo a photochemical reaction quantitatively. This arrangement is expected to yield a one-dimensional coordination polymer (CP) as the photoproduct in which the [Cu2(benzoate)4] paddlewheels are joined by the product cyclo­butane ligands (Fig. 2[link]). The course of photoreactivity of the compound with time was followed under UV light using 1H NMR spectroscopy. For this purpose irradiated powder samples were taken out at different time intervals and dissolved in DMSO-d6 to record the 1H NMR spectra (see Figs. S15 and S18 of the supporting information). The disappearance of the olefinic protons at 8.13 p.p.m., the appearance of cyclo­butane protons at 4.82 p.p.m., and a shift in the pyridyl protons from 7.65 and 7.93 p.p.m. to 8.38 and 8.65 p.p.m., confirmed the formation of the expected cyclo­butane ring photoproduct. The other two compounds 2 and 3 also showed quantitative photoconversion of their C=C bonds to cyclo­butane rings (see Figs. S16, S17, S19 and S20). After the photoreaction of 13, the respective one-dimensional CPs (hereafter, 4, 5 and 6) were semi-crystalline, as confirmed using powder X-ray diffraction (PXRD) (see Fig. S4). Crystal structure determination of a recrystallized sample of 5 provided further evidence of the formation of the one-dimensional CP [Cu2(benzoate)4(rctt-2F-ppcb)], where rctt-2F-ppcb = rctt-1,3-bis­(4-pyridyl)-2,4-bis­(2′-fluoro­phenyl)­cyclo­butane, (5A; see Fig. 2[link]). The recrystallized photoproduct 5A crystallizes in the space group [P \bar 1] and contains the centrosymmetric binuclear paddlewheel unit connecting the cyclo­butane spacer ligand rctt-2F-ppcb. This result corroborated the conclusion based on the 1H NMR spectra (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.], 2015[Medishetty, R., Sahoo, S. C., Mulijanto, C. E., Naumov, P. & Vittal, J. J. (2015). Chem. Mater. 27, 1821-1829.]) that the photodimer is the only product and there are no other chemical intermediates.

[Figure 2]
Figure 2
Perspective view of the photoproduct 5A showing the formation of the one-dimensional coordination polymer. Hydrogen atoms have been omitted for clarity.

Interestingly, the crystals and powders of 13 started popping violently and exploded under UV light in a similar way to popping corn on hot surfaces, which is clear evidence of the PS effect (see Movies S1–S6 of the supporting information). The single crystals, depending upon their size and shape, display different types of movements under UV light, similar to isotypical Zn(II) complexes (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.]). Given the structural similarity, we conclude that the mechanism of the PS behavior of 13 is analogous to that of the respective Zn(II) complexes, which posits the existence of both reactants and photoproducts in the single crystals and rapid buildup of stress in the crystal, until they pop out or fragment into smaller pieces.

The densities of 16 were measured by the flotation method. A comparison of the densities of 5 [after complete photoreaction, 1.28 (2) g cm−3] and 5A (after recrystallization, 1.489 g cm−3) shows that the molecules in 5A (in the space group [P\bar 1]) packed more tightly than in the structure of 5 after recrystallization. From other examples of photoreactive complexes, it is known that the unit cell volumes decrease upon photodimerization and formation of cyclo­butane rings. Importantly, only in the materials showing the PS effect were the unit cell volumes found to increase during the [2+2] cyclo­addition reaction (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.], 2015[Medishetty, R., Sahoo, S. C., Mulijanto, C. E., Naumov, P. & Vittal, J. J. (2015). Chem. Mater. 27, 1821-1829.]; Yadava & Vittal, 2019[Yadava, K. & Vittal, J. J. (2019). Cryst. Growth Des. 19, 2542-2547.]). Overall, the densities were found to decrease after photoreaction (14.7% for 1 to 4, 15.6% for 2 to 5 and 12.2% for 3 to 6) and these correspond to the increase in unit cell volumes of 15.4, 17.5 and 13.1% on going from 13 to 46, respectively (Table S2). The mobility of dynamic single crystals is usually triggered by the sudden release of stress in the form of a very fast phase transition or a chemical reaction accompanied a rapid structural change that drives these phenomena (Nath et al., 2014[Nath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. (2014). CrystEngComm, 16, 1850-1858.]; Chizhik et al., 2018[Chizhik, S., Sidelnikov, A., Zakharov, B., Naumov, P. & Boldyreva, E. (2018). Chem. Sci. 9, 2319-2335.]; Ghosh et al., 2015[Ghosh, S., Mishra, M. K., Ganguly, S. & Desiraju, G. R. (2015). J. Am. Chem. Soc. 137, 9912-9921.]; Sahoo et al., 2014[Sahoo, S. C., Nath, N. K., Zhang, L., Semreem, M. H., Al-Tel, T. H. & Naumov, P. (2014). RSC Adv. 4, 7640-7647], 2013a[Sahoo, S. C., Panda, M. K., Nath, N. K. & Naumov, P. (2013a). J. Am. Chem. Soc. 135, 12241-12251.],b[Sahoo, S. C., Sinha, S. B., Kiran, M. S. R. N., Ramamurty, U., Dericioglu, A. F., Reddy, C. M. & Naumov, P. (2013b). J. Am. Chem. Soc. 135, 13843-13850.]; Skoko et al., 2010[Skoko, Ž., Zamir, S., Naumov, P. & Bernstein, J. (2010). J. Am. Chem. Soc. 132, 14191-14202.]; Rawat et al., 2018[Rawat, H., Samanta, R., Bhattacharya, B., Deolka, S., Dutta, A., Dey, S., Raju, K. B. & Reddy, C. M. (2018). Cryst. Growth Des. 18, 2918-2923.]; Panda et al., 2015[Panda, M. K., Runčevski, T., Husain, A., Dinnebier, R. E. & Naumov, P. (2015). J. Am. Chem. Soc. 137, 1895-1902.], 2016[Panda, M. K., Centore, R., Causà, M., Tuzi, A., Borbone, F. & Naumov, P. (2016). Sci. Rep. 6, 1-11.]; Boldyreva, 1994[Boldyreva, E. (1994). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 242, 17-52.]; Mittapalli et al., 2017[Mittapalli, S., Perumalla, D. S., Nanubolu, J. B. & Nangia, A. (2017). IUCrJ, 4, 812-823.]). Here, the stress created by the phase heterometry due to the difference in the unit cell volumes and the release of that stress manifests as motion or explosive fragmentation of the crystals.

The TS and PS effects, resulting in crystals flying over distances several times their own size, are usually associated with a very fast phase transitions, analogous to the martensitic transitions in inorganic materials (Naumov et al., 2013[Naumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. (2013). Angew. Chem. Int. Ed. 52, 9990-9995.]; Nath et al., 2014[Nath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. (2014). CrystEngComm, 16, 1850-1858.]; Yadava & Vittal, 2019[Yadava, K. & Vittal, J. J. (2019). Cryst. Growth Des. 19, 2542-2547.]; Panda et al., 2014[Panda, M. K., Runčevski, T., Chandra Sahoo, S., Belik, A. A., Nath, N. K., Dinnebier, R. E. & Naumov, P. (2014). Nat. Commun. 5, 1-8.]; Ghosh et al., 2015[Ghosh, S., Mishra, M. K., Ganguly, S. & Desiraju, G. R. (2015). J. Am. Chem. Soc. 137, 9912-9921.]; Skoko et al., 2010[Skoko, Ž., Zamir, S., Naumov, P. & Bernstein, J. (2010). J. Am. Chem. Soc. 132, 14191-14202.]; Boldyreva, 1994[Boldyreva, E. (1994). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 242, 17-52.]). We observed that when heated from room temperature to 210°C, the pristine crystals of 13 occasionally rolled or jumped off the hot stage (Movies S7–S12). However, this behavior was not consistent and was not reproducible with all batches of crystals. Hence, we concluded that the motion is not a result of TS effects. Instead, it could be due to non-uniform or sudden heating. A recent report of a TS behavior of the organic compound methscopolamine bromide observed motion that was not accompanied by a detectable phase transition, and this effect was attributed to unusually large anisotropic thermal expansion with coefficients of 135 (1) × 10−6 K−1 and 114 (1) × 10−6 K−1 along the a and c axes, respectively (Klaser et al., 2018[Klaser, T., Popović, J., Fernandes, J. A., Tarantino, S. C., Zema, M. & Skoko, Ž. (2018). Crystals, 8, 301.]). Although such behavior cannot be attributed to a TS effect (which is strictly related to a phase transition), it could nevertheless account for the observed motion of the crystals.

To obtain a better insight into the thermal behavior of the compounds reported here, we performed thermogravimetry (TG), differential scanning calorimetry (DSC) and variable temperature powder X-ray diffraction (VT-PXRD) measurements. The TG results show that 13 are thermally stable up to 210°C, and start to melt around that temperature, accompanied by decomposition to a black-colored product, probably due to formation of copper oxide along with some carbonaceous residues (Figs. S6–S8). The DSC of 13, recorded from either single crystals or powder, did not show a phase transition from room temperature to their decomposition temperature (Figs. S12–S14). The VT-PXRD results corroborate the conclusion obtained from the DSC experiments (Figs. S29–S31).

2.2. Thermal expansion

The thermal behavior of crystals 13 was investigated by VT-PXRD measurements in the temperature range from room temperature to 200°C, just below their decomposition temperature (Figs. S29–S31). Since these compounds crystallize in a monoclinic space group, the coefficients of thermal expansion were calculated using the program PASCal (Table 1[link]) (Cliffe & Goodwin, 2012[Cliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321-1329.]). A typical PXRD pattern of 3 showing shifts in selected peaks related to the thermal expansion is shown in Fig. 3[link].

Table 1
Volume expansion coefficients and all axes expansion coefficients for 13 using the program PASCal

α is the linear coefficient of thermal expansion, σα is the error in the linear coefficient of thermal expansion, a, b and c are the projections of Xn on the unit cell axes.

1 Direction
Axes α, 10−6 K−1 σα, 10−6 K−1 a b c
X1 13.9159 0.8233 0.5338 0.0000 0.8456
X2 56.0233 1.0415 0.0000 1.0000 0.0000
X3 166.3843 5.5537 0.5291 0.0000 0.8486
V 241.8234 6.4930      
2 Direction
Axes α, 10−6 K−1 σα, 10−6 K−1 a b c
X1 21.8943 0.4764 −0.3870 0.0000 −0.9221
X2 38.3804 0.5909 0.0000 −1.0000 0.0000
X3 167.7776 5.2979 0.8072 −0.0000 −0.5902
V 233.1210 6.2627      
3 Direction
Axes α, 10−6 K−1 σα, 10−6 K−1 a b c
X1 −13.8283 3.7014 0.6377 −0.0000 0.7703
X2 64.5518 1.3444 0.0000 −1.0000 0.0000
X3 228.3639 9.0008 −0.3302 0.0000 0.9439
V 285.6904 7.1723      
[Figure 3]
Figure 3
Typical PXRD pattern of 3 recorded at three different temperatures showing the shifts in selected peaks related to the thermal expansion.

The thermal expansion coefficients are reported along the principal X2 axis parallel to the crystallographic b axis, and along the principal X1 axis which is almost parallel to the direction [102] for 1 and 2 and to [101] for 3, and along the principal X3 axis which is nearly parallel to the direction [[{\overline 1}02]] for 1 and 3 and [[10{\overline 1}]] for 2. All solids exhibit strong anisotropic thermal expansion with outstanding positive thermal expansion (PTE) along the principal X3 axis [(α3 = 166.38, 156.75 and 228.36) × 10−6 K−1]. Although compounds 1 and 2 show a relatively small PTE (α1 = 13.9159 × 10−6 K−1, α2 = 56.0233 × 10−6 K−1 for 1, α1 = 21.8943 × 10−6 K−1, α2 = 38.3804 × 10−6 K−1 for 2), compound 3 exhibits a small negative thermal expansion (α1 = −13.8283 × 10−6 K−1) along the principal X1 axis. The details are displayed for 3 in Fig. 4[link] and for 1 and 2 in Figs. S32 and S33, respectively. Furthermore, no hysteresis was observed on cooling for any of the crystals, and all expansions are rather linear in the measured temperature range [see Figs. S22–S24, (b) and (c)].

[Figure 4]
Figure 4
(a) Plot showing the variation of α with the direction, expansivity indicatrix (units: MK−1) in two different angles for 3. (b) Overall thermal expansion of volume in 3. (c) Anisotropic thermal expansion of volume in 3.

The similarities and the small differences observed in the anisotropic thermal expansion behavior of compounds 13 can be explained through a detailed analysis of the fundamental structural motifs. In all compounds the [Cu2(benzoate)2L4] paddlewheel complexes are connected by ππ interactions between the C=C bonds of the styryl­pyridine ligands, resulting in one-dimensional chain-like motifs running in the [[2{\overline 2}1]] direction (Fig. 5[link]). This direction corresponds to a combination of the principal X1 and X2 axes, in contrast to the cases reported in literature (Saha et al., 2017[Saha, B. K., Rather, S. A. & Saha, A. (2017). Eur. J. Inorg. Chem. 2017, 3390-3394.]; Saraswatula et al., 2018[Saraswatula, V. G., Sharada, D. & Saha, B. K. (2018). Cryst. Growth Des. 18, 52-56.]; Crawford et al., 2019[Crawford, A. W., Groeneman, R. H., Unruh, D. K. & Hutchins, K. M. (2019). Chem. Commun. 55, 3258-3261.]), where the major expansion occurs along the ππ stacking direction; the combination of ππ interactions between the paddlewheel complexes and the strong coordination bonds in the distinct complexes strengthen the chain-like motifs inhibiting any expansion along the X1 and X2 axes.

[Figure 5]
Figure 5
Representation of the crystal structures of compounds 13, (a) along the crystallographic b axis and (b) in the [[{\overline 1}0{\overline 1}]] direction. The principal axes (X1, X2 and X3) for the thermal expansion are also shown. Chain-like one-dimensional structural motifs formed by ππ interactions (indicated by red circles) of the C=C double bonds of the styryl­pyridine ligands are represented in green and yellow. The inset in (b) highlights the interchain interactions in compound 2.

The directive role of the ππ interactions for the thermal expansion is also confirmed by the fact that [2+2] cyclo­addition photoreactivity was observed also at higher temperatures (120–200°C). This indicates that the olefin pairs remain intact even at higher temperature, satisfying the Schmidt criteria for a [2+2] cyclo­addition reaction, i.e. the head-to-tail alignment of the styryl­pyridine ligands is retained when the crystals are heated. Compound 3 exhibits intra-chain F⋯H—C interactions between the fluoride-functionalized styryl­pyridine and the benzoate ligand, leading to further stiffening of the chain and could explain the slightly negative thermal expansion along the principal axis. Instead, the expansion along X3 is promoted by mechanics, which is reflected in the fact that 3 has the largest α3 coefficient. In 2, F⋯H—C interactions connect neighboring chains, which additionally inhibit the thermal expansion along the principal X2 axis. Hence, 2 exhibits the smallest α2 coefficient of all investigated compounds. As 1 is composed only of non-substituted styryl­pyridine ligands, there are no F⋯H—C interactions, and the thermal expansion is only borne by the ππ interaction. Therefore, the determined α1, α2 and α3 coefficients are in the intermediate range of the investigated compounds (Table 1[link]). Most of the few known photosalient reactions are accompanied by chemical reactions such as [2+2] cyclo­addition or isomerization (Naumov et al., 2013[Naumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. (2013). Angew. Chem. Int. Ed. 52, 9990-9995.]; Wang et al., 2017[Wang, H., Chen, P., Wu, Z., Zhao, J., Sun, J. & Lu, R. (2017). Angew. Chem. Int. Ed. 56, 9463-9467.]; Takeda & Akutagawa, 2016[Takeda, T. & Akutagawa, T. (2016). Chem. Eur. J. 22, 7763-7770.]; Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.], 2015[Medishetty, R., Sahoo, S. C., Mulijanto, C. E., Naumov, P. & Vittal, J. J. (2015). Chem. Mater. 27, 1821-1829.]; Mulijanto et al., 2017[Mulijanto, C. E., Quah, H. S., Tan, G. K., Donnadieu, B. & Vittal, J. J. (2017). IUCrJ, 4, 65-71.]; Yadava & Vittal, 2019[Yadava, K. & Vittal, J. J. (2019). Cryst. Growth Des. 19, 2542-2547.]). There is also a report on the shortening of intermolecular aurophilic interactions responsible for the PS effect (Seki et al., 2015[Seki, T., Sakurada, K., Muromoto, M. & Ito, H. (2015). Chem. Sci. 6, 1491-1497.]). Usually the PS effect that is based on the [2+2] cyclo­addition reaction requires not only alignment of the olefin bond pairs in the solid state, but also a sudden anisotropic cell expansion during the photoreaction (Medishetty et al., 2014[Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907-5911.], 2015[Medishetty, R., Sahoo, S. C., Mulijanto, C. E., Naumov, P. & Vittal, J. J. (2015). Chem. Mater. 27, 1821-1829.]; Mulijanto et al., 2017[Mulijanto, C. E., Quah, H. S., Tan, G. K., Donnadieu, B. & Vittal, J. J. (2017). IUCrJ, 4, 65-71.]; Yadava & Vittal, 2019[Yadava, K. & Vittal, J. J. (2019). Cryst. Growth Des. 19, 2542-2547.]). The paddlewheel metal complexes are very convenient materials to study the effects of these factors.

Complementary ππ interactions in head-to-tail alignment of the 4spy ligands are congenial to make photoreactive crystals and this alignment results in one-dimensional aggregates of the Cu(II) complexes. Furthermore , all these ππ aggregates are packed parallel to each other. Hence, the formation of the cyclo­butane rings from olefin pairs promotes anisotropic volume expansion during the photoreaction. This is further supported by the increase of the unit cell volumes of 15.4, 17.5 and 13.1% on going from 13 to 46, respectively, as determined from the densities by the flotation method. This is corroborated by the unit cell volume measurements of 46 from XRPD experiments (Figs. S34 and S35, Tables S4 and S5). The stress generated by the phase heterometry is released suddenly in the form of a very fast chemical reaction accompanied a rapid structural change that appears to drive this PS effect.

3. Conclusions

Molecular solids in general are expected to have moderate positive thermal expansion (PTE) due to increasing anharmonic vibrational amplitudes of their molecules. In many cases, structural peculiarities may give rise to very large PTE (Goodwin et al., 2008[Goodwin, A. L., Calleja, M., Conterio, M. J., Dove, M. T., Evans, J. S. O., Keen, D. A., Peters, L. & Tucker, M. G. (2008). Science, 319, 794-797.]; Das et al., 2010[Das, D., Jacobs, T. & Barbour, L. J. (2010). Nat. Mater. 9, 36-39.], 2015[Das, R. K., Aggarwal, H. & Barbour, L. J. (2015). Inorg. Chem. 54, 8171-8173.]; Engel et al., 2014[Engel, E. R., Smith, V. J., Bezuidenhout, C. X. & Barbour, L. J. (2014). Chem. Commun. 50, 4238-4241.]; Alimi et al., 2018[Alimi, L. O., Lama, P., Smith, V. J. & Barbour, L. J. (2018). CrystEngComm, 20, 631-635.]; Janiak et al., 2018[Janiak, A., Esterhuysen, C. & Barbour, L. J. (2018). Chem. Commun. 54, 3727-3730.]; Zhou et al., 2015[Zhou, H.-L., Zhang, Y.-B., Zhang, J.-P. & Chen, X.-M. (2015). Nat. Commun. 6, 6917.]; Yang et al., 2009[Yang, C., Wang, X. & Omary, M. A. (2009). Angew. Chem. Int. Ed. 48, 2500-2505.]) or even NTE (Chapman et al., 2006[Chapman, K. W., Chupas, P. J. & Kepert, C. J. (2006). J. Am. Chem. Soc. 128, 7009-7014.]; Goodwin et al., 2005[Goodwin, A. L., Chapman, K. W. & Kepert, C. J. (2005). J. Am. Chem. Soc. 127, 17980-17981.]; Margadonna et al., 2004[Margadonna, S., Prassides, K. & Fitch, A. N. (2004). J. Am. Chem. Soc. 126, 15390-15391.]; Pan et al., 2019[Pan, Z., Chen, J., Yu, R., Patra, L., Ravindran, P., Sanson, A., Milazzo, R., Carnera, A., Hu, L., Wang, L., Yamamoto, H., Ren, Y., Huang, Q., Sakai, Y., Nishikubo, T., Ogata, T., Fan, X., Li, Y., Li, G., Hojo, H., Azuma, M. & Xing, X. (2019). Chem. Mater. 31, 1296-1303.]; Phillips et al., 2008[Phillips, A. E., Goodwin, A. L., Halder, G. J., Southon, P. D. & Kepert, C. J. (2008). Angew. Chem. Int. Ed. 47, 1396-1399.]; Wu et al., 2008[Wu, Y., Kobayashi, A., Halder, G. J., Peterson, V. K., Chapman, K. W., Lock, N., Southon, P. D. & Kepert, C. J. (2008). Angew. Chem. Int. Ed. 47, 8929-8932.]) upon heating (Table S3). It is interesting to note that the parallel alignment of the one-dimensional assemblies in 13 promotes large thermal expansion from room temperature to 200°C in addition to photoreactivity and the PS effect. The volumetric thermal expansions (VTE) observed for 1, 2 and 3 are 241.8, 233.1 and 285.7 × 10−6 K−1, respectively. Of these, the value observed for 3 is the largest for metal complexes, based on comparison with the previously reported value of 255.5 × 10−6 K−1 for the palladium(II) complex (Panda et al., 2014[Panda, M. K., Runčevski, T., Chandra Sahoo, S., Belik, A. A., Nath, N. K., Dinnebier, R. E. & Naumov, P. (2014). Nat. Commun. 5, 1-8.]). However, this is not the largest VTE reported thus far, and the difference in using different expressions to calculate thermal expansion used in the literature and the occasional non-linearity of the expansion with temperature should be considered (Table S3) (Engel et al., 2014[Engel, E. R., Smith, V. J., Bezuidenhout, C. X. & Barbour, L. J. (2014). Chem. Commun. 50, 4238-4241.]; Zhou et al., 2015[Zhou, H.-L., Zhang, Y.-B., Zhang, J.-P. & Chen, X.-M. (2015). Nat. Commun. 6, 6917.]; Yang et al., 2009[Yang, C., Wang, X. & Omary, M. A. (2009). Angew. Chem. Int. Ed. 48, 2500-2505.]). The α3 coefficients of the investigated compounds exceed the other thermal expansion coefficients at least by a factor of three, which leads to a progressive anisotropic expansion on heating. This creates interfacial strain in the crystals which accumulates until it is suddenly released as elastic energy and propels the crystal of its debris. When crystals of 13 were heated in the temperature range 120–200°C and illuminated under UV light they started jumping violently (similar to popcorn) while undergoing [2+2] cyclo­addition. This observation provides strong evidence that the olefin pairs are intact even at higher temperatures, thus satisfying the Schimidt criteria for a [2+2] cyclo­addition. Therefore, anisotropic expansion occurs roughly normal to the one-dimensional aggregates. We conclude that the robustness of the ππ interactions in this crystal packing is ultimately the key structural feature for all three properties observed with these materials. This work therefore provides new insights towards the engineering of multifunctional properties in crystals, and favors these and similar compounds as candidates for in-depth studies into the factors that determine the salient effects.

CCDC codes 1845040–1845043 for 13 and 5A contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/data_request/cif.

4. Related literature

The following references are cited in the supporting information: Enfange et al. (1990[Efange, S. N., Michelson, R. H., Remmel, R. P., Boudreau, R. J., Dutta, A. K. & Freshler, A. (1990). J. Med. Chem. 33, 3133-3138.]); Sheldrick (1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.], 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); Müller et al. (2006[Müller, P., Herbst-Irmer, R., Spek, A., Schneider, T. & Sawaya, M. (2006). Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Oxford University Press.]); Yadava (2019[Yadava, K. (2019). PhD dissertation, National University of Singapore.]); Bhattacharya & Saha (20143[Bhattacharya, S. & Saha, B. K. (2013). Cryst. Growth Des. 13, 3299-3302.]); Hutchins et al. (2016[Hutchins, K. M., Groeneman, R. H., Reinheimer, E. W., Swenson, D. C. & MacGillivray, L. R. (2015). Chem. Sci. 6, 4717-4722.], 2019[Hutchins, K. M., Kummer, K. A., Groeneman, R. H., Reinheimer, E. W., Sinnwell, M. A., Swenson, D. C. & MacGillivray, L. R. (2016). CrystEngComm, 18, 8354-8357.]); Brock et al. (2019[Brock, A. J., Whittaker, J. J., Powell, J. A., Pfrunder, M. C., Grosjean, A., Parsons, S., McMurtrie, J. C. & Clegg, J. K. (2019). Angew. Chem. Int. Ed. 57, 11325-11328.]); Pawley (1981[Pawley, G. (1981). J. Appl. Cryst. 14, 357-361.]).

Supporting information


Computing details top

(1) top
Crystal data top
C54H42Cu2N2O8F(000) = 2008
Mr = 973.97Dx = 1.477 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.633 (11) ÅCell parameters from 986 reflections
b = 12.093 (4) Åθ = 2.5–27.5°
c = 15.509 (6) ŵ = 1.03 mm1
β = 108.480 (12)°T = 100 K
V = 4381 (3) Å3BLOCK, green
Z = 40.40 × 0.18 × 0.10 mm
Data collection top
Bruker APEX-II CCD
diffractometer
4531 reflections with I > 2σ(I)
φ and ω scansRint = 0.045
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
θmax = 27.5°, θmin = 1.7°
Tmin = 0.664, Tmax = 0.746h = 3232
28192 measured reflectionsk = 1515
5043 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0385P)2 + 7.0332P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
5043 reflectionsΔρmax = 0.47 e Å3
298 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54074 (2)0.50316 (2)0.08078 (2)0.01025 (7)
O10.56615 (5)0.35721 (10)0.04928 (8)0.0162 (3)
O20.49655 (5)0.35268 (10)0.08577 (8)0.0179 (3)
O30.48237 (5)0.42404 (10)0.11946 (8)0.0156 (2)
O40.41285 (5)0.42191 (11)0.01575 (8)0.0178 (3)
N10.60368 (6)0.52400 (12)0.21246 (9)0.0121 (3)
C10.59215 (7)0.58179 (14)0.27851 (11)0.0143 (3)
H10.55480.61180.26660.017*
C20.63185 (7)0.59975 (14)0.36290 (11)0.0143 (3)
H20.62160.64160.40730.017*
C30.68698 (7)0.55656 (14)0.38309 (11)0.0134 (3)
C40.69869 (8)0.49569 (14)0.31437 (13)0.0177 (4)
H40.73540.46380.32450.021*
C50.65644 (8)0.48227 (14)0.23147 (12)0.0165 (3)
H50.66540.44120.18560.020*
C60.73159 (7)0.57305 (15)0.47083 (11)0.0158 (3)
H60.76820.54180.47800.019*
C70.72512 (7)0.62829 (15)0.54143 (12)0.0168 (3)
H70.68810.65700.53430.020*
C80.76931 (7)0.64936 (14)0.62908 (11)0.0152 (3)
C90.82490 (8)0.60707 (15)0.65109 (12)0.0192 (4)
H90.83520.56250.60820.023*
C100.86511 (8)0.62933 (16)0.73453 (13)0.0227 (4)
H100.90250.59900.74870.027*
C110.85135 (8)0.69565 (15)0.79780 (12)0.0203 (4)
H110.87920.71150.85470.024*
C120.79685 (8)0.73816 (16)0.77716 (12)0.0197 (4)
H120.78710.78350.82000.024*
C130.75609 (8)0.71507 (15)0.69405 (12)0.0190 (4)
H130.71860.74440.68100.023*
C140.53705 (7)0.30980 (13)0.02322 (11)0.0121 (3)
C150.55052 (7)0.19072 (14)0.03516 (12)0.0140 (3)
C160.59578 (8)0.13749 (15)0.02872 (12)0.0176 (4)
H160.62080.17820.07760.021*
C170.60436 (9)0.02459 (16)0.02097 (14)0.0232 (4)
H170.63510.01170.06480.028*
C180.56807 (9)0.03473 (16)0.05046 (16)0.0286 (5)
H180.57350.11200.05500.034*
C190.52382 (9)0.01815 (17)0.11537 (16)0.0299 (5)
H190.49940.02260.16500.036*
C200.51504 (8)0.13082 (16)0.10797 (14)0.0222 (4)
H200.48470.16710.15270.027*
C210.43367 (7)0.39606 (13)0.06703 (11)0.0120 (3)
C220.39839 (7)0.32184 (13)0.10553 (11)0.0132 (3)
C230.34622 (7)0.28012 (15)0.04997 (12)0.0169 (3)
H230.33160.30270.01180.020*
C240.31570 (8)0.20579 (16)0.08477 (14)0.0223 (4)
H240.28020.17740.04670.027*
C250.33673 (8)0.17267 (15)0.17504 (14)0.0232 (4)
H250.31600.12100.19860.028*
C260.38813 (9)0.21524 (17)0.23067 (13)0.0239 (4)
H260.40240.19300.29250.029*
C270.41880 (8)0.29001 (15)0.19657 (12)0.0178 (4)
H270.45380.31960.23530.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01067 (11)0.01025 (11)0.00846 (11)0.00045 (7)0.00109 (8)0.00048 (7)
O10.0172 (6)0.0151 (6)0.0139 (6)0.0032 (5)0.0017 (5)0.0031 (5)
O20.0188 (6)0.0139 (6)0.0168 (6)0.0031 (5)0.0002 (5)0.0028 (5)
O30.0136 (6)0.0198 (6)0.0129 (6)0.0032 (5)0.0035 (5)0.0010 (5)
O40.0164 (6)0.0234 (7)0.0121 (6)0.0048 (5)0.0025 (5)0.0033 (5)
N10.0120 (7)0.0122 (7)0.0101 (6)0.0010 (5)0.0007 (5)0.0004 (5)
C10.0138 (8)0.0151 (8)0.0132 (8)0.0020 (6)0.0029 (6)0.0003 (6)
C20.0166 (8)0.0159 (8)0.0107 (8)0.0009 (6)0.0050 (6)0.0022 (6)
C30.0137 (8)0.0132 (8)0.0116 (8)0.0028 (6)0.0017 (6)0.0000 (6)
C40.0138 (8)0.0201 (9)0.0176 (9)0.0025 (7)0.0026 (7)0.0024 (7)
C50.0183 (9)0.0157 (8)0.0139 (8)0.0010 (7)0.0029 (7)0.0034 (6)
C60.0130 (8)0.0184 (8)0.0135 (8)0.0001 (6)0.0008 (6)0.0002 (6)
C70.0141 (8)0.0202 (9)0.0136 (8)0.0002 (7)0.0006 (7)0.0003 (7)
C80.0169 (8)0.0150 (8)0.0125 (8)0.0036 (6)0.0028 (7)0.0011 (6)
C90.0192 (9)0.0191 (9)0.0162 (9)0.0001 (7)0.0014 (7)0.0031 (7)
C100.0175 (9)0.0249 (10)0.0210 (9)0.0009 (7)0.0007 (7)0.0022 (7)
C110.0225 (9)0.0216 (9)0.0124 (8)0.0047 (7)0.0010 (7)0.0002 (7)
C120.0244 (9)0.0221 (9)0.0125 (8)0.0038 (7)0.0060 (7)0.0026 (7)
C130.0168 (8)0.0238 (9)0.0151 (8)0.0001 (7)0.0030 (7)0.0006 (7)
C140.0120 (8)0.0125 (8)0.0132 (8)0.0006 (6)0.0062 (6)0.0001 (6)
C150.0141 (8)0.0127 (8)0.0177 (8)0.0003 (6)0.0085 (7)0.0004 (6)
C160.0190 (9)0.0178 (9)0.0171 (8)0.0022 (7)0.0074 (7)0.0010 (7)
C170.0253 (10)0.0179 (9)0.0304 (11)0.0078 (7)0.0148 (8)0.0071 (8)
C180.0334 (11)0.0128 (9)0.0465 (13)0.0021 (8)0.0223 (10)0.0032 (9)
C190.0282 (11)0.0201 (10)0.0397 (13)0.0046 (8)0.0084 (9)0.0128 (9)
C200.0183 (9)0.0174 (9)0.0279 (10)0.0005 (7)0.0030 (8)0.0058 (7)
C210.0144 (8)0.0092 (7)0.0131 (8)0.0019 (6)0.0053 (6)0.0020 (6)
C220.0155 (8)0.0104 (7)0.0154 (8)0.0010 (6)0.0072 (7)0.0013 (6)
C230.0165 (8)0.0170 (8)0.0174 (8)0.0002 (7)0.0058 (7)0.0012 (7)
C240.0183 (9)0.0198 (9)0.0300 (10)0.0040 (7)0.0091 (8)0.0040 (8)
C250.0282 (10)0.0145 (9)0.0340 (11)0.0023 (7)0.0202 (9)0.0012 (8)
C260.0312 (10)0.0250 (10)0.0186 (9)0.0012 (8)0.0124 (8)0.0043 (7)
C270.0198 (9)0.0187 (9)0.0155 (8)0.0003 (7)0.0064 (7)0.0007 (7)
Geometric parameters (Å, º) top
Cu1—O4i1.9688 (13)C8—C91.399 (3)
Cu1—O31.9722 (13)C8—C131.400 (2)
Cu1—O2i1.9833 (13)C9—C101.384 (3)
Cu1—O11.9848 (13)C10—C111.390 (3)
Cu1—N12.1518 (15)C11—C121.377 (3)
Cu1—Cu1i2.6693 (9)C12—C131.388 (2)
O1—C141.263 (2)C14—C151.502 (2)
O2—C141.262 (2)C15—C201.392 (2)
O2—Cu1i1.9833 (13)C15—C161.392 (2)
O3—C211.263 (2)C16—C171.393 (3)
O4—C211.262 (2)C17—C181.383 (3)
O4—Cu1i1.9688 (13)C18—C191.384 (3)
N1—C51.337 (2)C19—C201.390 (3)
N1—C11.343 (2)C21—C221.499 (2)
C1—C21.380 (2)C22—C271.394 (2)
C2—C31.395 (2)C22—C231.395 (2)
C3—C41.399 (2)C23—C241.386 (3)
C3—C61.467 (2)C24—C251.389 (3)
C4—C51.383 (2)C25—C261.386 (3)
C6—C71.335 (2)C26—C271.386 (3)
C7—C81.469 (2)
O4i—Cu1—O3167.63 (5)C9—C8—C13117.70 (16)
O4i—Cu1—O2i88.10 (6)C9—C8—C7122.89 (16)
O3—Cu1—O2i91.33 (6)C13—C8—C7119.41 (16)
O4i—Cu1—O190.20 (6)C10—C9—C8120.80 (17)
O3—Cu1—O187.74 (6)C9—C10—C11120.66 (18)
O2i—Cu1—O1167.76 (5)C12—C11—C10119.29 (17)
O4i—Cu1—N194.11 (6)C11—C12—C13120.38 (17)
O3—Cu1—N198.26 (6)C12—C13—C8121.16 (17)
O2i—Cu1—N193.63 (5)O2—C14—O1125.81 (15)
O1—Cu1—N198.58 (5)O2—C14—C15116.81 (14)
O4i—Cu1—Cu1i85.31 (5)O1—C14—C15117.36 (14)
O3—Cu1—Cu1i82.40 (4)C20—C15—C16119.46 (16)
O2i—Cu1—Cu1i80.91 (4)C20—C15—C14119.49 (16)
O1—Cu1—Cu1i86.87 (4)C16—C15—C14120.91 (15)
N1—Cu1—Cu1i174.53 (4)C15—C16—C17120.07 (18)
C14—O1—Cu1119.24 (11)C18—C17—C16120.02 (19)
C14—O2—Cu1i126.48 (11)C17—C18—C19120.20 (19)
C21—O3—Cu1124.70 (11)C18—C19—C20120.01 (19)
C21—O4—Cu1i121.37 (11)C19—C20—C15120.19 (19)
C5—N1—C1117.00 (15)O4—C21—O3125.83 (16)
C5—N1—Cu1121.51 (12)O4—C21—C22116.99 (15)
C1—N1—Cu1121.46 (12)O3—C21—C22117.13 (15)
N1—C1—C2123.21 (16)C27—C22—C23119.44 (16)
C1—C2—C3120.05 (15)C27—C22—C21120.02 (15)
C2—C3—C4116.57 (15)C23—C22—C21120.49 (15)
C2—C3—C6123.18 (15)C24—C23—C22120.07 (17)
C4—C3—C6120.25 (16)C23—C24—C25120.29 (18)
C5—C4—C3119.60 (17)C26—C25—C24119.72 (17)
N1—C5—C4123.56 (16)C25—C26—C27120.38 (18)
C7—C6—C3125.45 (16)C26—C27—C22120.08 (17)
C6—C7—C8126.85 (17)
Symmetry code: (i) x+1, y+1, z.
(2) top
Crystal data top
C54H40Cu2F2N2O8F(000) = 2072
Mr = 1009.96Dx = 1.516 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.9699 (8) ÅCell parameters from 8450 reflections
b = 12.1074 (4) Åθ = 3.0–28.3°
c = 15.4675 (4) ŵ = 1.03 mm1
β = 108.809 (1)°T = 100 K
V = 4426.4 (2) Å3Block, green
Z = 40.17 × 0.16 × 0.11 mm
Data collection top
Bruker D8 Venture
diffractometer
4396 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
SADABS (Shelcrick, 2010)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.693, Tmax = 0.746h = 3232
19385 measured reflectionsk = 1316
5481 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0375P)2 + 5.134P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5481 reflectionsΔρmax = 0.38 e Å3
307 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54016 (2)0.49779 (2)0.08146 (2)0.00966 (7)
F10.71401 (4)0.22252 (10)0.66940 (7)0.0279 (3)
N10.60412 (6)0.48086 (11)0.21431 (9)0.0116 (3)
O10.50421 (5)0.35404 (10)0.08982 (8)0.0178 (3)
O20.43571 (5)0.35812 (10)0.04639 (7)0.0159 (3)
O30.58593 (5)0.42082 (10)0.01770 (8)0.0186 (3)
O40.51764 (5)0.42292 (10)0.11894 (7)0.0160 (3)
C10.59368 (7)0.42103 (14)0.28027 (11)0.0137 (3)
H10.55720.38950.26820.016*
C20.63351 (7)0.40326 (14)0.36457 (10)0.0136 (3)
H20.62420.36050.40920.016*
C30.68776 (7)0.44833 (13)0.38440 (10)0.0130 (3)
C40.69797 (7)0.51103 (14)0.31542 (11)0.0155 (3)
H40.73400.54400.32520.019*
C50.65545 (7)0.52482 (14)0.23286 (11)0.0150 (3)
H50.66330.56790.18700.018*
C60.73294 (7)0.43102 (14)0.47159 (11)0.0155 (3)
H60.76800.46740.48000.019*
C70.72862 (7)0.36803 (14)0.54005 (11)0.0153 (3)
H70.69330.33280.53140.018*
C80.77343 (7)0.34830 (14)0.62731 (11)0.0145 (3)
C90.82676 (8)0.39856 (14)0.65236 (12)0.0183 (4)
H90.83550.44750.61080.022*
C100.86706 (8)0.37847 (15)0.73649 (12)0.0217 (4)
H100.90270.41440.75200.026*
C110.85584 (8)0.30621 (15)0.79845 (11)0.0193 (4)
H110.88370.29260.85590.023*
C120.80373 (8)0.25442 (15)0.77553 (11)0.0183 (4)
H120.79520.20490.81690.022*
C130.76447 (7)0.27626 (15)0.69139 (11)0.0165 (3)
C140.46433 (7)0.31111 (13)0.02665 (10)0.0119 (3)
C150.45079 (7)0.19230 (14)0.03857 (11)0.0135 (3)
C160.48550 (8)0.13218 (15)0.11172 (12)0.0208 (4)
H160.51530.16800.15730.025*
C170.47659 (9)0.01944 (16)0.11824 (15)0.0280 (5)
H170.50070.02180.16780.034*
C180.43272 (9)0.03244 (16)0.05253 (14)0.0275 (4)
H180.42700.10960.05660.033*
C190.39704 (8)0.02751 (15)0.01927 (13)0.0218 (4)
H190.36650.00810.06370.026*
C200.40603 (7)0.13995 (14)0.02627 (11)0.0161 (3)
H200.38150.18120.07550.019*
C210.56556 (7)0.39479 (13)0.06557 (10)0.0119 (3)
C220.60095 (7)0.32096 (13)0.10322 (11)0.0130 (3)
C230.65249 (7)0.28057 (14)0.04689 (12)0.0165 (3)
H230.66650.30310.01520.020*
C240.68353 (8)0.20735 (15)0.08111 (13)0.0212 (4)
H240.71860.17950.04230.025*
C250.66330 (8)0.17484 (15)0.17186 (13)0.0228 (4)
H250.68460.12490.19530.027*
C260.61208 (9)0.21529 (16)0.22829 (12)0.0230 (4)
H260.59820.19260.29030.028*
C270.58095 (8)0.28870 (15)0.19479 (11)0.0175 (4)
H270.54610.31700.23400.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01035 (11)0.00916 (10)0.00825 (10)0.00065 (7)0.00129 (7)0.00042 (7)
F10.0168 (6)0.0453 (7)0.0189 (5)0.0084 (5)0.0022 (4)0.0106 (5)
N10.0128 (7)0.0105 (7)0.0107 (6)0.0010 (5)0.0027 (5)0.0005 (5)
O10.0185 (6)0.0139 (6)0.0159 (6)0.0037 (5)0.0014 (5)0.0029 (5)
O20.0161 (6)0.0148 (6)0.0145 (6)0.0025 (5)0.0015 (5)0.0034 (5)
O30.0178 (6)0.0232 (7)0.0137 (6)0.0065 (5)0.0036 (5)0.0034 (5)
O40.0151 (6)0.0199 (6)0.0128 (5)0.0033 (5)0.0041 (5)0.0010 (5)
C10.0114 (8)0.0147 (8)0.0137 (7)0.0006 (6)0.0025 (6)0.0001 (6)
C20.0157 (8)0.0146 (8)0.0104 (7)0.0009 (7)0.0040 (6)0.0016 (6)
C30.0137 (8)0.0121 (8)0.0108 (7)0.0027 (6)0.0008 (6)0.0005 (6)
C40.0124 (8)0.0163 (8)0.0160 (8)0.0033 (7)0.0021 (6)0.0017 (7)
C50.0172 (9)0.0145 (8)0.0121 (7)0.0013 (7)0.0030 (7)0.0028 (6)
C60.0129 (8)0.0167 (8)0.0138 (8)0.0014 (7)0.0001 (6)0.0002 (6)
C70.0119 (8)0.0183 (8)0.0129 (8)0.0002 (7)0.0002 (6)0.0004 (7)
C80.0152 (8)0.0149 (8)0.0117 (7)0.0029 (7)0.0019 (6)0.0010 (6)
C90.0205 (9)0.0148 (8)0.0164 (8)0.0008 (7)0.0014 (7)0.0023 (7)
C100.0180 (9)0.0194 (9)0.0199 (9)0.0017 (7)0.0047 (7)0.0013 (7)
C110.0209 (9)0.0197 (9)0.0110 (7)0.0043 (7)0.0034 (7)0.0012 (7)
C120.0221 (9)0.0208 (9)0.0107 (7)0.0034 (7)0.0038 (7)0.0019 (7)
C130.0127 (8)0.0219 (9)0.0143 (8)0.0013 (7)0.0036 (7)0.0019 (7)
C140.0109 (8)0.0119 (8)0.0135 (7)0.0009 (6)0.0048 (6)0.0005 (6)
C150.0135 (8)0.0123 (8)0.0166 (8)0.0007 (6)0.0076 (7)0.0009 (6)
C160.0164 (9)0.0170 (9)0.0244 (9)0.0007 (7)0.0002 (7)0.0051 (7)
C170.0250 (11)0.0177 (10)0.0369 (11)0.0011 (8)0.0040 (9)0.0109 (8)
C180.0311 (11)0.0131 (8)0.0423 (12)0.0032 (8)0.0174 (10)0.0026 (8)
C190.0228 (10)0.0188 (9)0.0256 (9)0.0091 (7)0.0101 (8)0.0062 (7)
C200.0173 (9)0.0166 (9)0.0154 (8)0.0007 (7)0.0065 (7)0.0004 (7)
C210.0142 (8)0.0101 (7)0.0121 (7)0.0026 (6)0.0050 (6)0.0008 (6)
C220.0160 (8)0.0100 (7)0.0152 (8)0.0005 (6)0.0081 (7)0.0019 (6)
C230.0172 (9)0.0149 (8)0.0177 (8)0.0002 (7)0.0062 (7)0.0006 (7)
C240.0187 (9)0.0167 (9)0.0300 (9)0.0036 (7)0.0104 (8)0.0049 (8)
C250.0306 (11)0.0137 (8)0.0336 (10)0.0013 (8)0.0238 (9)0.0013 (8)
C260.0347 (11)0.0207 (9)0.0181 (8)0.0002 (8)0.0146 (8)0.0030 (7)
C270.0207 (9)0.0182 (9)0.0149 (8)0.0009 (7)0.0074 (7)0.0015 (7)
Geometric parameters (Å, º) top
Cu1—O31.9682 (12)C7—C81.469 (2)
Cu1—O4i1.9700 (12)C8—C131.392 (2)
Cu1—O2i1.9777 (11)C8—C91.400 (2)
Cu1—O11.9816 (12)C9—C101.386 (2)
Cu1—N12.1677 (14)C10—C111.391 (3)
Cu1—Cu1i2.6677 (4)C11—C121.384 (3)
F1—C131.3604 (19)C12—C131.379 (2)
N1—C51.331 (2)C14—C151.503 (2)
N1—C11.344 (2)C15—C161.389 (2)
O1—C141.2606 (19)C15—C201.391 (2)
O2—C141.2611 (19)C16—C171.392 (3)
O2—Cu1i1.9777 (11)C17—C181.382 (3)
O3—C211.2627 (19)C18—C191.384 (3)
O4—C211.262 (2)C19—C201.390 (2)
O4—Cu1i1.9698 (12)C21—C221.500 (2)
C1—C21.378 (2)C22—C231.390 (2)
C2—C31.400 (2)C22—C271.397 (2)
C3—C41.398 (2)C23—C241.390 (2)
C3—C61.468 (2)C24—C251.387 (3)
C4—C51.383 (2)C25—C261.385 (3)
C6—C71.337 (2)C26—C271.387 (2)
O3—Cu1—O4i167.72 (5)C13—C8—C7120.44 (15)
O3—Cu1—O2i90.16 (5)C9—C8—C7123.95 (15)
O4i—Cu1—O2i88.15 (5)C10—C9—C8121.42 (16)
O3—Cu1—O188.01 (5)C9—C10—C11120.71 (17)
O4i—Cu1—O191.06 (5)C12—C11—C10119.35 (16)
O2i—Cu1—O1167.72 (5)C13—C12—C11118.59 (16)
O3—Cu1—N193.49 (5)F1—C13—C12117.62 (15)
O4i—Cu1—N198.79 (5)F1—C13—C8118.06 (14)
O2i—Cu1—N198.45 (5)C12—C13—C8124.31 (16)
O1—Cu1—N193.78 (5)O1—C14—O2125.88 (15)
O3—Cu1—Cu1i85.26 (3)O1—C14—C15116.90 (14)
O4i—Cu1—Cu1i82.48 (3)O2—C14—C15117.20 (14)
O2i—Cu1—Cu1i85.75 (3)C16—C15—C20119.60 (16)
O1—Cu1—Cu1i82.00 (3)C16—C15—C14119.71 (15)
N1—Cu1—Cu1i175.63 (4)C20—C15—C14120.55 (15)
C5—N1—C1117.46 (14)C15—C16—C17120.04 (18)
C5—N1—Cu1122.04 (11)C18—C17—C16119.99 (18)
C1—N1—Cu1120.45 (11)C17—C18—C19120.29 (18)
C14—O1—Cu1124.94 (10)C18—C19—C20119.85 (18)
C14—O2—Cu1i120.61 (10)C19—C20—C15120.19 (16)
C21—O3—Cu1121.41 (11)O4—C21—O3125.82 (15)
C21—O4—Cu1i124.69 (10)O4—C21—C22117.37 (14)
N1—C1—C2123.03 (16)O3—C21—C22116.78 (14)
C1—C2—C3119.91 (15)C23—C22—C27119.56 (15)
C4—C3—C2116.50 (14)C23—C22—C21120.57 (14)
C4—C3—C6120.22 (15)C27—C22—C21119.82 (15)
C2—C3—C6123.27 (15)C24—C23—C22120.21 (16)
C5—C4—C3119.72 (16)C25—C24—C23120.05 (17)
N1—C5—C4123.38 (15)C26—C25—C24119.90 (17)
C7—C6—C3125.07 (16)C25—C26—C27120.42 (17)
C6—C7—C8126.04 (16)C26—C27—C22119.86 (17)
C13—C8—C9115.61 (15)
Symmetry code: (i) x+1, y+1, z.
(3) top
Crystal data top
C54H40Cu2F2N2O8F(000) = 2072
Mr = 1009.96Dx = 1.504 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.1802 (18) ÅCell parameters from 9807 reflections
b = 12.0004 (9) Åθ = 3.0–28.3°
c = 15.5976 (10) ŵ = 1.02 mm1
β = 108.802 (2)°T = 100 K
V = 4461.7 (5) Å3Block, green
Z = 40.41 × 0.29 × 0.22 mm
Data collection top
Bruker D8 Venture
diffractometer
4589 reflections with I > 2σ(I)
φ and ω scansRint = 0.027
Absorption correction: multi-scan
SADABS (Sheldrick, 2010)
θmax = 27.5°, θmin = 2.2°
Tmin = 0.686, Tmax = 0.746h = 3232
57847 measured reflectionsk = 1515
5121 independent reflectionsl = 2019
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0376P)2 + 5.4768P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5121 reflectionsΔρmax = 0.67 e Å3
311 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.53967 (2)0.49521 (2)0.08042 (2)0.01227 (6)
O10.56493 (4)0.64218 (8)0.05037 (7)0.0192 (2)
O20.49670 (5)0.65040 (9)0.08412 (7)0.0221 (2)
O30.48247 (4)0.57360 (9)0.11929 (7)0.0187 (2)
O40.41466 (4)0.57893 (9)0.01572 (7)0.0210 (2)
N10.60167 (5)0.47377 (10)0.21191 (8)0.0148 (2)
C10.65347 (6)0.51425 (12)0.22955 (10)0.0198 (3)
H10.66210.55400.18310.024*
C20.69516 (6)0.50117 (12)0.31216 (10)0.0207 (3)
H20.73130.53210.32170.025*
C30.68376 (6)0.44236 (12)0.38140 (9)0.0161 (3)
C40.62954 (6)0.40019 (12)0.36259 (9)0.0173 (3)
H40.61970.35960.40750.021*
C50.59037 (6)0.41777 (12)0.27853 (9)0.0168 (3)
H50.55360.38890.26720.020*
C60.72822 (6)0.42625 (13)0.46859 (10)0.0192 (3)
H60.76410.45670.47480.023*
C70.72234 (6)0.37242 (13)0.53965 (10)0.0202 (3)
H70.68600.34500.53380.024*
C80.76665 (6)0.35130 (12)0.62620 (9)0.0194 (3)
C90.82134 (7)0.39178 (14)0.64575 (11)0.0248 (3)
H90.83110.43560.60240.030*
C100.86117 (7)0.36803 (15)0.72809 (12)0.0309 (4)
H10A0.89790.39750.74080.037*0.668 (2)
C110.84926 (7)0.30266 (14)0.79272 (10)0.0264 (3)
H110.87710.28610.84880.032*
C120.79559 (7)0.26281 (14)0.77244 (10)0.0273 (3)
H12A0.78650.21750.81570.033*0.332 (2)
C130.75414 (7)0.28619 (14)0.69129 (10)0.0254 (3)
H130.71730.25800.68000.030*
C140.53670 (6)0.69162 (11)0.02117 (9)0.0154 (3)
C150.55120 (6)0.81131 (12)0.03162 (10)0.0183 (3)
C160.59687 (7)0.86170 (13)0.03175 (11)0.0233 (3)
H160.62120.81890.07970.028*
C170.60697 (8)0.97495 (15)0.02500 (14)0.0330 (4)
H170.63811.00940.06850.040*
C180.57184 (9)1.03716 (15)0.04464 (15)0.0400 (5)
H180.57861.11460.04860.048*
C190.52692 (9)0.98736 (15)0.10866 (16)0.0403 (5)
H190.50301.03040.15680.048*
C200.51670 (7)0.87400 (14)0.10272 (13)0.0294 (4)
H200.48610.83960.14730.035*
C210.43482 (6)0.60285 (11)0.06713 (9)0.0145 (3)
C220.40008 (6)0.67586 (11)0.10635 (9)0.0155 (3)
C230.42088 (7)0.70900 (13)0.19656 (10)0.0213 (3)
H230.45560.68030.23470.026*
C240.39086 (7)0.78396 (14)0.23081 (11)0.0271 (3)
H240.40560.80760.29210.033*
C250.33971 (7)0.82451 (13)0.17646 (11)0.0257 (3)
H250.31950.87620.20010.031*
C260.31803 (7)0.78935 (13)0.08712 (11)0.0248 (3)
H260.28250.81600.05000.030*
C270.34805 (6)0.71527 (13)0.05186 (10)0.0198 (3)
H270.33310.69150.00930.024*
F10.78536 (7)0.19488 (17)0.83139 (10)0.0440 (4)0.668 (2)
F1A0.90973 (13)0.4023 (3)0.7451 (2)0.0440 (4)0.332 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01351 (10)0.01166 (9)0.00985 (9)0.00046 (6)0.00126 (6)0.00074 (6)
O10.0215 (5)0.0165 (5)0.0178 (5)0.0033 (4)0.0036 (4)0.0022 (4)
O20.0236 (5)0.0163 (5)0.0211 (5)0.0045 (4)0.0002 (4)0.0040 (4)
O30.0177 (5)0.0237 (5)0.0139 (5)0.0036 (4)0.0041 (4)0.0003 (4)
O40.0200 (5)0.0263 (6)0.0143 (5)0.0057 (4)0.0024 (4)0.0038 (4)
N10.0162 (6)0.0141 (5)0.0122 (5)0.0021 (4)0.0021 (4)0.0012 (4)
C10.0197 (7)0.0221 (7)0.0152 (7)0.0019 (6)0.0022 (6)0.0060 (5)
C20.0159 (7)0.0249 (8)0.0185 (7)0.0029 (5)0.0015 (6)0.0044 (6)
C30.0176 (7)0.0155 (6)0.0129 (6)0.0036 (5)0.0015 (5)0.0007 (5)
C40.0197 (7)0.0192 (7)0.0130 (6)0.0014 (5)0.0052 (5)0.0027 (5)
C50.0154 (6)0.0189 (7)0.0146 (6)0.0003 (5)0.0028 (5)0.0001 (5)
C60.0167 (7)0.0218 (7)0.0155 (6)0.0014 (5)0.0003 (5)0.0007 (5)
C70.0199 (7)0.0222 (7)0.0149 (7)0.0012 (6)0.0005 (6)0.0001 (5)
C80.0242 (7)0.0177 (7)0.0126 (6)0.0046 (6)0.0009 (6)0.0011 (5)
C90.0260 (8)0.0240 (8)0.0196 (7)0.0011 (6)0.0007 (6)0.0045 (6)
C100.0261 (9)0.0317 (9)0.0257 (8)0.0011 (7)0.0044 (7)0.0028 (7)
C110.0304 (8)0.0271 (8)0.0139 (7)0.0082 (7)0.0039 (6)0.0013 (6)
C120.0354 (9)0.0305 (8)0.0129 (7)0.0056 (7)0.0032 (6)0.0043 (6)
C130.0253 (8)0.0319 (8)0.0160 (7)0.0008 (7)0.0026 (6)0.0023 (6)
C140.0171 (6)0.0136 (6)0.0179 (7)0.0000 (5)0.0089 (5)0.0002 (5)
C150.0214 (7)0.0137 (6)0.0237 (7)0.0010 (5)0.0125 (6)0.0001 (5)
C160.0272 (8)0.0197 (7)0.0272 (8)0.0055 (6)0.0147 (7)0.0046 (6)
C170.0388 (10)0.0233 (8)0.0451 (11)0.0128 (7)0.0252 (9)0.0111 (7)
C180.0513 (12)0.0143 (8)0.0662 (14)0.0054 (8)0.0353 (11)0.0014 (8)
C190.0455 (12)0.0222 (9)0.0566 (13)0.0047 (8)0.0212 (10)0.0170 (8)
C200.0295 (9)0.0201 (8)0.0379 (9)0.0002 (6)0.0097 (7)0.0087 (7)
C210.0171 (6)0.0114 (6)0.0153 (6)0.0014 (5)0.0056 (5)0.0018 (5)
C220.0184 (7)0.0129 (6)0.0169 (6)0.0010 (5)0.0082 (5)0.0013 (5)
C230.0234 (7)0.0230 (7)0.0179 (7)0.0015 (6)0.0072 (6)0.0004 (6)
C240.0350 (9)0.0281 (8)0.0210 (7)0.0012 (7)0.0129 (7)0.0057 (6)
C250.0306 (8)0.0197 (7)0.0333 (9)0.0018 (6)0.0194 (7)0.0036 (6)
C260.0208 (7)0.0227 (8)0.0316 (8)0.0032 (6)0.0095 (7)0.0016 (6)
C270.0193 (7)0.0195 (7)0.0202 (7)0.0005 (5)0.0057 (6)0.0004 (6)
F10.0274 (7)0.0776 (12)0.0237 (7)0.0003 (7)0.0039 (6)0.0221 (7)
F1A0.0274 (7)0.0776 (12)0.0237 (7)0.0003 (7)0.0039 (6)0.0221 (7)
Geometric parameters (Å, º) top
Cu1—O4i1.9699 (10)C8—C91.398 (2)
Cu1—O31.9723 (10)C9—C101.381 (2)
Cu1—O11.9817 (10)C10—F1A1.235 (4)
Cu1—O2i1.9822 (10)C10—C111.384 (3)
Cu1—N12.1554 (12)C11—C121.371 (2)
Cu1—Cu1i2.6586 (3)C12—F11.315 (2)
O1—C141.2613 (17)C12—C131.385 (2)
O2—C141.2593 (17)C14—C151.5038 (19)
O2—Cu1i1.9823 (10)C15—C201.389 (2)
O3—C211.2631 (17)C15—C161.390 (2)
O4—C211.2599 (17)C16—C171.393 (2)
O4—Cu1i1.9699 (10)C17—C181.378 (3)
N1—C11.335 (2)C18—C191.380 (3)
N1—C51.3428 (18)C19—C201.393 (2)
C1—C21.384 (2)C21—C221.5006 (19)
C2—C31.395 (2)C22—C231.392 (2)
C3—C41.396 (2)C22—C271.394 (2)
C3—C61.4692 (19)C23—C241.388 (2)
C4—C51.3795 (19)C24—C251.382 (2)
C6—C71.332 (2)C25—C261.388 (2)
C7—C81.4698 (19)C26—C271.390 (2)
C8—C131.395 (2)
O4i—Cu1—O3167.86 (4)C9—C8—C7122.90 (14)
O4i—Cu1—O189.77 (5)C10—C9—C8120.02 (15)
O3—Cu1—O188.28 (4)F1A—C10—C9120.2 (2)
O4i—Cu1—O2i88.18 (5)F1A—C10—C11117.6 (2)
O3—Cu1—O2i91.23 (5)C9—C10—C11122.11 (16)
O1—Cu1—O2i167.94 (4)C12—C11—C10117.28 (14)
O4i—Cu1—N194.02 (4)F1—C12—C11117.10 (15)
O3—Cu1—N198.12 (4)F1—C12—C13120.33 (17)
O1—Cu1—N198.17 (4)C11—C12—C13122.45 (15)
O2i—Cu1—N193.83 (4)C12—C13—C8119.87 (16)
O4i—Cu1—Cu1i85.49 (3)O2—C14—O1125.88 (13)
O3—Cu1—Cu1i82.43 (3)O2—C14—C15116.86 (12)
O1—Cu1—Cu1i86.51 (3)O1—C14—C15117.25 (12)
O2i—Cu1—Cu1i81.48 (3)C20—C15—C16119.56 (14)
N1—Cu1—Cu1i175.30 (3)C20—C15—C14119.51 (14)
C14—O1—Cu1119.71 (9)C16—C15—C14120.83 (13)
C14—O2—Cu1i125.77 (9)C15—C16—C17120.00 (17)
C21—O3—Cu1124.81 (9)C18—C17—C16120.11 (18)
C21—O4—Cu1i121.31 (9)C17—C18—C19120.24 (16)
C1—N1—C5117.35 (12)C18—C19—C20120.03 (19)
C1—N1—Cu1120.85 (10)C15—C20—C19120.03 (18)
C5—N1—Cu1121.79 (10)O4—C21—O3125.62 (13)
N1—C1—C2123.25 (14)O4—C21—C22117.13 (12)
C1—C2—C3119.63 (14)O3—C21—C22117.21 (12)
C2—C3—C4116.88 (13)C23—C22—C27119.52 (13)
C2—C3—C6119.83 (13)C23—C22—C21120.01 (13)
C4—C3—C6123.29 (13)C27—C22—C21120.41 (12)
C5—C4—C3119.72 (13)C24—C23—C22120.02 (14)
N1—C5—C4123.16 (13)C25—C24—C23120.50 (15)
C7—C6—C3125.33 (14)C24—C25—C26119.73 (14)
C6—C7—C8126.37 (14)C25—C26—C27120.23 (15)
C13—C8—C9118.26 (14)C26—C27—C22119.98 (14)
C13—C8—C7118.84 (14)
Symmetry code: (i) x+1, y+1, z.
(5a) top
Crystal data top
C54H40Cu2F2N2O8Z = 1
Mr = 1009.96F(000) = 518
Triclinic, P1Dx = 1.489 Mg m3
a = 10.3725 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0398 (5) ÅCell parameters from 9903 reflections
c = 12.0294 (5) Åθ = 2.4–32.1°
α = 71.354 (1)°µ = 1.01 mm1
β = 66.229 (1)°T = 100 K
γ = 65.356 (1)°Prism frag, green
V = 1126.61 (9) Å30.40 × 0.30 × 0.13 mm
Data collection top
Bruker APEX-II CCD
diffractometer
4010 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
Sadabs (Sheldrick, 2010)
θmax = 26.0°, θmin = 2.3°
Tmin = 0.687, Tmax = 0.878h = 1212
22753 measured reflectionsk = 1313
4416 independent reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.027P)2 + 1.0045P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4416 reflectionsΔρmax = 0.41 e Å3
307 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
ZN10.08988 (2)0.05300 (2)0.40088 (2)0.01478 (8)
F10.18010 (13)0.56593 (13)0.08486 (11)0.0289 (3)
O10.18687 (15)0.03153 (14)0.52085 (12)0.0233 (3)
O20.02998 (15)0.05251 (14)0.69044 (12)0.0220 (3)
O30.06425 (15)0.21979 (13)0.54004 (12)0.0231 (3)
O40.22112 (15)0.13244 (13)0.37401 (12)0.0235 (3)
N10.21722 (16)0.17022 (15)0.25257 (14)0.0157 (3)
C10.2570 (2)0.17327 (19)0.13173 (17)0.0178 (4)
H10.22640.11970.10580.021*
C20.3409 (2)0.25100 (19)0.04187 (17)0.0175 (4)
H20.36610.25030.04320.021*
C30.38766 (19)0.32971 (18)0.07753 (16)0.0156 (4)
C40.3429 (2)0.32870 (19)0.20327 (17)0.0177 (4)
H40.36990.38280.23190.021*
C50.2590 (2)0.24876 (18)0.28676 (17)0.0175 (4)
H50.22970.24960.37230.021*
C60.47785 (19)0.41686 (18)0.01563 (16)0.0153 (4)
H60.51860.39280.09950.018*
C70.3989 (2)0.57580 (18)0.02147 (16)0.0159 (4)
H70.40740.62230.10910.019*
C80.2379 (2)0.62179 (18)0.05842 (16)0.0162 (4)
C90.1857 (2)0.66779 (19)0.16866 (18)0.0205 (4)
H90.25390.67790.19630.025*
C100.0358 (2)0.6993 (2)0.23929 (19)0.0241 (4)
H100.00250.73030.31450.029*
C110.0647 (2)0.6855 (2)0.19994 (19)0.0255 (4)
H110.16700.70650.24840.031*
C120.0164 (2)0.6411 (2)0.08982 (19)0.0239 (4)
H120.08440.63170.06140.029*
C130.1324 (2)0.61124 (19)0.02310 (17)0.0195 (4)
C140.1409 (2)0.01207 (18)0.63548 (17)0.0164 (4)
C150.2255 (2)0.01303 (18)0.71210 (17)0.0166 (4)
C160.1773 (2)0.05066 (19)0.84019 (18)0.0211 (4)
H160.09410.08180.87970.025*
C170.2513 (2)0.0425 (2)0.90986 (19)0.0249 (4)
H170.21810.06730.99730.030*
C180.3739 (2)0.0021 (2)0.8520 (2)0.0255 (4)
H180.42330.00860.90020.031*
C190.4245 (2)0.03696 (19)0.72424 (19)0.0226 (4)
H190.50960.06560.68480.027*
C200.3499 (2)0.02971 (18)0.65434 (18)0.0186 (4)
H200.38380.05400.56690.022*
C210.1828 (2)0.23008 (19)0.45004 (16)0.0170 (4)
C220.2869 (2)0.37116 (19)0.43376 (17)0.0191 (4)
C230.4344 (2)0.3933 (2)0.35702 (17)0.0229 (4)
H230.46840.31850.31200.027*
C240.5314 (2)0.5246 (2)0.34648 (19)0.0297 (5)
H240.63230.53960.29520.036*
C250.4813 (3)0.6338 (2)0.4107 (2)0.0328 (5)
H250.54790.72360.40340.039*
C260.3343 (3)0.6123 (2)0.4857 (2)0.0307 (5)
H260.29980.68720.52860.037*
C270.2374 (2)0.4816 (2)0.49824 (18)0.0238 (4)
H270.13720.46720.55080.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
ZN10.01564 (12)0.01484 (12)0.01394 (12)0.00945 (9)0.00212 (8)0.00005 (8)
F10.0240 (6)0.0444 (8)0.0257 (6)0.0157 (6)0.0057 (5)0.0123 (5)
O10.0242 (7)0.0329 (8)0.0167 (7)0.0181 (6)0.0065 (6)0.0022 (6)
O20.0250 (7)0.0275 (8)0.0183 (7)0.0179 (6)0.0063 (6)0.0017 (6)
O30.0207 (7)0.0177 (7)0.0253 (7)0.0088 (6)0.0018 (6)0.0051 (6)
O40.0226 (7)0.0184 (7)0.0217 (7)0.0084 (6)0.0015 (6)0.0025 (6)
N10.0152 (7)0.0154 (8)0.0178 (8)0.0087 (6)0.0052 (6)0.0004 (6)
C10.0166 (9)0.0173 (9)0.0210 (9)0.0088 (7)0.0048 (7)0.0026 (7)
C20.0180 (9)0.0205 (10)0.0142 (9)0.0088 (8)0.0041 (7)0.0016 (7)
C30.0123 (8)0.0152 (9)0.0166 (9)0.0053 (7)0.0042 (7)0.0010 (7)
C40.0175 (9)0.0163 (9)0.0223 (9)0.0088 (8)0.0067 (7)0.0023 (7)
C50.0191 (9)0.0174 (9)0.0154 (9)0.0081 (8)0.0045 (7)0.0008 (7)
C60.0155 (9)0.0190 (9)0.0127 (8)0.0100 (7)0.0026 (7)0.0011 (7)
C70.0174 (9)0.0180 (9)0.0137 (9)0.0103 (7)0.0048 (7)0.0015 (7)
C80.0158 (9)0.0112 (9)0.0189 (9)0.0070 (7)0.0051 (7)0.0035 (7)
C90.0191 (9)0.0188 (10)0.0246 (10)0.0077 (8)0.0085 (8)0.0012 (8)
C100.0237 (10)0.0217 (10)0.0232 (10)0.0040 (8)0.0053 (8)0.0069 (8)
C110.0128 (9)0.0223 (10)0.0326 (11)0.0022 (8)0.0022 (8)0.0052 (9)
C120.0173 (9)0.0240 (10)0.0324 (11)0.0080 (8)0.0100 (8)0.0033 (9)
C130.0215 (10)0.0168 (9)0.0193 (9)0.0079 (8)0.0058 (8)0.0009 (7)
C140.0176 (9)0.0103 (8)0.0201 (9)0.0039 (7)0.0057 (7)0.0024 (7)
C150.0179 (9)0.0094 (8)0.0227 (9)0.0030 (7)0.0084 (7)0.0025 (7)
C160.0252 (10)0.0156 (9)0.0227 (10)0.0092 (8)0.0090 (8)0.0013 (8)
C170.0343 (11)0.0181 (10)0.0238 (10)0.0071 (9)0.0155 (9)0.0003 (8)
C180.0284 (11)0.0172 (10)0.0372 (12)0.0015 (8)0.0214 (9)0.0067 (9)
C190.0150 (9)0.0160 (9)0.0360 (11)0.0014 (7)0.0090 (8)0.0073 (8)
C200.0166 (9)0.0132 (9)0.0229 (10)0.0023 (7)0.0049 (7)0.0046 (7)
C210.0190 (9)0.0197 (10)0.0162 (9)0.0086 (8)0.0069 (7)0.0033 (7)
C220.0233 (10)0.0205 (10)0.0151 (9)0.0053 (8)0.0085 (8)0.0046 (7)
C230.0255 (10)0.0288 (11)0.0145 (9)0.0068 (9)0.0084 (8)0.0045 (8)
C240.0255 (11)0.0404 (13)0.0184 (10)0.0022 (9)0.0091 (8)0.0143 (9)
C250.0431 (13)0.0246 (11)0.0270 (11)0.0068 (10)0.0198 (10)0.0128 (9)
C260.0470 (14)0.0196 (11)0.0267 (11)0.0071 (10)0.0173 (10)0.0038 (9)
C270.0285 (11)0.0211 (10)0.0223 (10)0.0065 (8)0.0096 (8)0.0049 (8)
Geometric parameters (Å, º) top
ZN1—O2i1.9655 (13)C7—C81.510 (2)
ZN1—O41.9730 (14)C7—C6ii1.552 (2)
ZN1—O11.9758 (13)C8—C131.381 (3)
ZN1—O3i1.9793 (13)C8—C91.390 (3)
ZN1—N12.1568 (15)C9—C101.390 (3)
ZN1—ZN1i2.6426 (4)C10—C111.382 (3)
F1—C131.368 (2)C11—C121.386 (3)
O1—C141.264 (2)C12—C131.371 (3)
O2—C141.260 (2)C14—C151.502 (3)
O2—ZN1i1.9655 (13)C15—C161.393 (3)
O3—C211.260 (2)C15—C201.395 (3)
O3—ZN1i1.9792 (13)C16—C171.387 (3)
O4—C211.261 (2)C17—C181.390 (3)
N1—C11.335 (2)C18—C191.388 (3)
N1—C51.340 (2)C19—C201.390 (3)
C1—C21.391 (3)C21—C221.501 (3)
C2—C31.389 (3)C22—C231.395 (3)
C3—C41.390 (3)C22—C271.396 (3)
C3—C61.508 (2)C23—C241.388 (3)
C4—C51.384 (3)C24—C251.387 (3)
C6—C7ii1.552 (2)C25—C261.387 (3)
C6—C71.589 (3)C26—C271.386 (3)
O2i—ZN1—O489.84 (6)C6ii—C7—C690.85 (13)
O2i—ZN1—O1168.26 (5)C13—C8—C9116.17 (17)
O4—ZN1—O188.01 (6)C13—C8—C7117.63 (16)
O2i—ZN1—O3i90.74 (6)C9—C8—C7126.11 (16)
O4—ZN1—O3i168.22 (5)C8—C9—C10121.38 (18)
O1—ZN1—O3i89.04 (6)C11—C10—C9119.93 (19)
O2i—ZN1—N196.84 (5)C10—C11—C12120.11 (18)
O4—ZN1—N1100.62 (6)C13—C12—C11118.00 (18)
O1—ZN1—N194.89 (5)F1—C13—C12117.93 (17)
O3i—ZN1—N190.99 (6)F1—C13—C8117.65 (16)
O2i—ZN1—ZN1i86.10 (4)C12—C13—C8124.41 (18)
O4—ZN1—ZN1i88.62 (4)O2—C14—O1125.70 (17)
O1—ZN1—ZN1i82.32 (4)O2—C14—C15117.74 (16)
O3i—ZN1—ZN1i79.69 (4)O1—C14—C15116.56 (16)
N1—ZN1—ZN1i170.28 (4)C16—C15—C20119.83 (17)
C14—O1—ZN1124.82 (12)C16—C15—C14120.72 (16)
C14—O2—ZN1i120.99 (12)C20—C15—C14119.39 (16)
C21—O3—ZN1i128.09 (12)C17—C16—C15119.80 (18)
C21—O4—ZN1117.90 (12)C16—C17—C18120.14 (19)
C1—N1—C5117.25 (15)C19—C18—C17120.42 (18)
C1—N1—ZN1126.99 (12)C18—C19—C20119.51 (18)
C5—N1—ZN1115.75 (12)C19—C20—C15120.28 (18)
N1—C1—C2123.29 (17)O3—C21—O4125.55 (17)
C3—C2—C1119.43 (17)O3—C21—C22116.54 (16)
C2—C3—C4117.04 (16)O4—C21—C22117.90 (16)
C2—C3—C6121.85 (16)C23—C22—C27119.53 (18)
C4—C3—C6121.07 (16)C23—C22—C21120.48 (17)
C5—C4—C3119.91 (17)C27—C22—C21119.97 (17)
N1—C5—C4123.03 (17)C24—C23—C22120.0 (2)
C3—C6—C7ii115.77 (15)C25—C24—C23120.1 (2)
C3—C6—C7116.00 (14)C26—C25—C24120.1 (2)
C7ii—C6—C789.15 (13)C27—C26—C25120.1 (2)
C8—C7—C6ii119.60 (15)C26—C27—C22120.1 (2)
C8—C7—C6116.05 (14)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

We thank Ms Geok Kheng Tan for the X-ray data collection. We would like to thank Dr Geetha Bolla and Vijayakumar S. Vishnu of NUS for their assistance in some of the experiments.

Funding information

JJV would like to thank the Ministry of Education Singapore for their generous support through Tier 1 grant (FRC WBS R-143–000-A12-114 and WBS R-143–000-B13-114).

References

First citationAbouraddy, A. F., Bayindir, M., Benoit, G., Hart, S. D., Kuriki, K., Orf, N., Shapira, O., Sorin, F., Temelkuran, B. & Fink, Y. (2007). Nat. Mater. 6, 336–347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlimi, L. O., Lama, P., Smith, V. J. & Barbour, L. J. (2018). CrystEngComm, 20, 631–635.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhattacharya, S. & Saha, B. K. (2013). Cryst. Growth Des. 13, 3299–3302.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoldyreva, E. (1994). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 242, 17–52.  CrossRef Web of Science Google Scholar
First citationBrock, A. J., Whittaker, J. J., Powell, J. A., Pfrunder, M. C., Grosjean, A., Parsons, S., McMurtrie, J. C. & Clegg, J. K. (2019). Angew. Chem. Int. Ed. 57, 11325–11328.  Web of Science CSD CrossRef Google Scholar
First citationChapman, K. W., Chupas, P. J. & Kepert, C. J. (2006). J. Am. Chem. Soc. 128, 7009–7014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. (2012). Science, 338, 903–910.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCheong, S.-W. & Mostovoy, M. (2007). Nat. Mater. 6, 13–20.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChizhik, S., Sidelnikov, A., Zakharov, B., Naumov, P. & Boldyreva, E. (2018). Chem. Sci. 9, 2319–2335.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321–1329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCommins, P., Desta, I. T., Karothu, D. P., Panda, M. K. & Naumov, P. (2016). Chem. Commun. 52, 13941–13954.  Web of Science CrossRef CAS Google Scholar
First citationCommins, P., Natarajan, A., Tsai, C.-K., Khan, S. I., Nath, N. K., Naumov, P. & Garcia-Garibay, M. A. (2015). Cryst. Growth Des. 15, 1983–1990.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrawford, A. W., Groeneman, R. H., Unruh, D. K. & Hutchins, K. M. (2019). Chem. Commun. 55, 3258–3261.  Web of Science CSD CrossRef CAS Google Scholar
First citationCui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126–1162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDas, D., Jacobs, T. & Barbour, L. J. (2010). Nat. Mater. 9, 36–39.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDas, R. K., Aggarwal, H. & Barbour, L. J. (2015). Inorg. Chem. 54, 8171–8173.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEfange, S. N., Michelson, R. H., Remmel, R. P., Boudreau, R. J., Dutta, A. K. & Freshler, A. (1990). J. Med. Chem. 33, 3133–3138.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEngel, E. R., Smith, V. J., Bezuidenhout, C. X. & Barbour, L. J. (2014). Chem. Commun. 50, 4238–4241.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerreira, A. D. B. L., Nóvoa, P. R. O. & Marques, A. T. (2016). Compos. Struct. 151, 3–35.  Web of Science CrossRef Google Scholar
First citationGhosh, S., Mishra, M. K., Ganguly, S. & Desiraju, G. R. (2015). J. Am. Chem. Soc. 137, 9912–9921.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGibson, R. F. (2010). Compos. Struct. 92, 2793–2810.  Web of Science CrossRef Google Scholar
First citationGoodwin, A. L., Calleja, M., Conterio, M. J., Dove, M. T., Evans, J. S. O., Keen, D. A., Peters, L. & Tucker, M. G. (2008). Science, 319, 794–797.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoodwin, A. L., Chapman, K. W. & Kepert, C. J. (2005). J. Am. Chem. Soc. 127, 17980–17981.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGupta, P., Karothu, D. P., Ahmed, E., Naumov, P. & Nath, N. K. (2018). Angew. Chem. Int. Ed. 57, 8498–8502.  Web of Science CSD CrossRef CAS Google Scholar
First citationHatano, E., Morimoto, M., Imai, T., Hyodo, K., Fujimoto, A., Nishimura, R., Sekine, A., Yasuda, N., Yokojima, S., Nakamura, S. & Uchida, K. (2017). Angew. Chem. Int. Ed. 56, 12576–12580.  Web of Science CSD CrossRef CAS Google Scholar
First citationHutchins, K. M., Groeneman, R. H., Reinheimer, E. W., Swenson, D. C. & MacGillivray, L. R. (2015). Chem. Sci. 6, 4717–4722.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHutchins, K. M., Kummer, K. A., Groeneman, R. H., Reinheimer, E. W., Sinnwell, M. A., Swenson, D. C. & MacGillivray, L. R. (2016). CrystEngComm, 18, 8354–8357.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaniak, A., Esterhuysen, C. & Barbour, L. J. (2018). Chem. Commun. 54, 3727–3730.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlaser, T., Popović, J., Fernandes, J. A., Tarantino, S. C., Zema, M. & Skoko, Ž. (2018). Crystals, 8, 301.  Web of Science CrossRef Google Scholar
First citationLi, B., Wen, H. -M., Cui, Y., Zhou, W., Qian, G. & Chen, B. (2016). Adv. Mater. 28, 8819–8860.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLu, W. & Lieber, C. M. (2007). Nat. Mater. 6, 841–850.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMargadonna, S., Prassides, K. & Fitch, A. N. (2004). J. Am. Chem. Soc. 126, 15390–15391.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMedishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907–5911.  Web of Science CSD CrossRef CAS Google Scholar
First citationMedishetty, R., Sahoo, S. C., Mulijanto, C. E., Naumov, P. & Vittal, J. J. (2015). Chem. Mater. 27, 1821–1829.  Web of Science CSD CrossRef CAS Google Scholar
First citationMittapalli, S., Perumalla, D. S., Nanubolu, J. B. & Nangia, A. (2017). IUCrJ, 4, 812–823.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMulijanto, C. E., Quah, H. S., Tan, G. K., Donnadieu, B. & Vittal, J. J. (2017). IUCrJ, 4, 65–71.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A., Schneider, T. & Sawaya, M. (2006). Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Oxford University Press.  Google Scholar
First citationNath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. (2014). CrystEngComm, 16, 1850–1858.  Web of Science CrossRef CAS Google Scholar
First citationNaumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. (2015). Chem. Rev. 115, 12440–12490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNaumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. (2013). Angew. Chem. Int. Ed. 52, 9990–9995.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Z., Chen, J., Yu, R., Patra, L., Ravindran, P., Sanson, A., Milazzo, R., Carnera, A., Hu, L., Wang, L., Yamamoto, H., Ren, Y., Huang, Q., Sakai, Y., Nishikubo, T., Ogata, T., Fan, X., Li, Y., Li, G., Hojo, H., Azuma, M. & Xing, X. (2019). Chem. Mater. 31, 1296–1303.  Web of Science CrossRef ICSD CAS Google Scholar
First citationPanda, M. K., Centore, R., Causà, M., Tuzi, A., Borbone, F. & Naumov, P. (2016). Sci. Rep. 6, 1–11.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPanda, M. K., Runčevski, T., Chandra Sahoo, S., Belik, A. A., Nath, N. K., Dinnebier, R. E. & Naumov, P. (2014). Nat. Commun. 5, 1–8.  Web of Science CSD CrossRef Google Scholar
First citationPanda, M. K., Runčevski, T., Husain, A., Dinnebier, R. E. & Naumov, P. (2015). J. Am. Chem. Soc. 137, 1895–1902.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPawley, G. (1981). J. Appl. Cryst. 14, 357–361.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPhillips, A. E., Goodwin, A. L., Halder, G. J., Southon, P. D. & Kepert, C. J. (2008). Angew. Chem. Int. Ed. 47, 1396–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, S. & Zhu, G. (2009). Coord. Chem. Rev. 253, 2891–2911.  Web of Science CrossRef CAS Google Scholar
First citationRamesh, R. & Spaldin, N. A. (2007). Nat. Mater. 6, 21–29.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRawat, H., Samanta, R., Bhattacharya, B., Deolka, S., Dutta, A., Dey, S., Raju, K. B. & Reddy, C. M. (2018). Cryst. Growth Des. 18, 2918–2923.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobertson, L., Penin, N., Blanco-Gutierrez, V., Sheptyakov, D., Demourgues, A. & Gaudon, M. (2015). J. Mater. Chem. C. 3, 2918–2924.  Web of Science CrossRef CAS Google Scholar
First citationRolison, D. R., Long, J. W., Lytle, J. C., Fischer, A. E., Rhodes, C. P., McEvoy, T. M., Bourg, M. E. & Lubers, A. M. (2009). Chem. Soc. Rev. 38, 226–252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaha, B. K., Rather, S. A. & Saha, A. (2017). Eur. J. Inorg. Chem. 2017, 3390–3394.  Web of Science CSD CrossRef CAS Google Scholar
First citationSahoo, S. C., Nath, N. K., Zhang, L., Semreem, M. H., Al-Tel, T. H. & Naumov, P. (2014). RSC Adv. 4, 7640–7647  Google Scholar
First citationSahoo, S. C., Panda, M. K., Nath, N. K. & Naumov, P. (2013a). J. Am. Chem. Soc. 135, 12241–12251.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSahoo, S. C., Sinha, S. B., Kiran, M. S. R. N., Ramamurty, U., Dericioglu, A. F., Reddy, C. M. & Naumov, P. (2013b). J. Am. Chem. Soc. 135, 13843–13850.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSaraswatula, V. G., Sharada, D. & Saha, B. K. (2018). Cryst. Growth Des. 18, 52–56.  Web of Science CSD CrossRef CAS Google Scholar
First citationSato, O. (2016). Nat. Chem. 8, 644–656.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647–678.  CrossRef CAS Google Scholar
First citationSeki, T., Sakurada, K., Muromoto, M. & Ito, H. (2015). Chem. Sci. 6, 1491–1497.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibuya, Y., Itoh, Y. & Aida, T. (2017). Chem. Asian J. 12, 811–815.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSkoko, Ž., Zamir, S., Naumov, P. & Bernstein, J. (2010). J. Am. Chem. Soc. 132, 14191–14202.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpaldin, N. A. & Fiebig, M. (2005). Science, 309, 391–392.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTakeda, T. & Akutagawa, T. (2016). Chem. Eur. J. 22, 7763–7770.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVicente, A. I., Joseph, A., Ferreira, L. P., de Deus Carvalho, M., Rodrigues, V. H. N., Duttine, M., Diogo, H. P., Minas da Piedade, M. E., Calhorda, M. J. & Martinho, P. N. (2016). Chem. Sci. 7, 4251–4258.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, H., Bisoyi, H. K., Wang, L., Urbas, A. M., Bunning, T. J. & Li, Q. (2018). Angew. Chem. Int. Ed. 57, 1627–1631.  Web of Science CrossRef CAS Google Scholar
First citationWang, H., Chen, P., Wu, Z., Zhao, J., Sun, J. & Lu, R. (2017). Angew. Chem. Int. Ed. 56, 9463–9467.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, S. M., Cybart, S. A., Yu, P., Rossell, M. D., Zhang, J. X., Ramesh, R. & Dynes, R. C. (2010). Nat. Mater. 9, 756–761.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWu, Y., Kobayashi, A., Halder, G. J., Peterson, V. K., Chapman, K. W., Lock, N., Southon, P. D. & Kepert, C. J. (2008). Angew. Chem. Int. Ed. 47, 8929–8932.  Web of Science CSD CrossRef CAS Google Scholar
First citationYadava, K. (2019). PhD dissertation, National University of Singapore.  Google Scholar
First citationYadava, K. & Vittal, J. J. (2019). Cryst. Growth Des. 19, 2542–2547.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, C., Wang, X. & Omary, M. A. (2009). Angew. Chem. Int. Ed. 48, 2500–2505.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, H.-L., Zhang, Y.-B., Zhang, J.-P. & Chen, X.-M. (2015). Nat. Commun. 6, 6917.  Web of Science CSD CrossRef PubMed Google Scholar
First citationZhu, Q.-L. & Xu, Q. (2014). Chem. Soc. Rev. 43, 5468–5512.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
ISSN: 2052-2525