research papers
Extraordinary anisotropic
in photosalient crystalsaDepartment of Chemistry, National University of Singapore, S8-05-03, 3 Science Drive 3, 117543, Singapore, bMax Planck Institute for Solid State Research, Heisenbergstrasse 1, D70569 Stuttgart Germany, cDepartment of Chemistry and Biology `A. Zambelli', University of Salerno, Via Giovanni Paolo II, 132, Fisciano (SA) 84084, Italy, and dNew York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: r.dinnebier@fkf.mpg.de, chmjjv@nus.edu.sg
Although a plethora of metal complexes have been characterized, those having multifunctional properties are very rare. This article reports three isotypical complexes, namely [Cu(benzoate)L2], where L = 4-styrylpyridine (4spy) (1), 2′-fluoro-4-styrylpyridine (2F-4spy) (2) and 3′-fluoro-4-styrylpyridine (3F-4spy) (3), which show photosalient behavior (photoinduced crystal mobility) while they undergo [2+2] cycloaddition. These crystals also exhibit anisotropic when heated from room temperature to 200°C. The overall of the crystals is impressive, with the largest volumetric coefficients for 1, 2 and 3 of 241.8, 233.1 and 285.7 × 10−6 K−1, respectively, values that are comparable to only a handful of other reported materials known to undergo colossal As a result of the expansion, their single crystals occasionally move by rolling. Altogether, these materials exhibit unusual and hitherto untapped solid-state properties.
1. Introduction
Multifunctional smart materials can perform multiple functions through tailored chiral, electronic, magnetic, optical, thermal and/or mechanical properties that can be used for energy storage and conversion, drug delivery, catalysis, etc. It is relatively easy to design composite materials combining two or more solids with different properties into hybrid materials for specific applications (Ferreira et al., 2016; Lu & Lieber, 2007; Abouraddy et al., 2007; Wang et al., 2018; Zhu & Xu, 2014; Gibson, 2010). It is, however, somewhat challenging to design a single (molecular or non-molecular) material that is capable of performing multiple functions. Nevertheless, multifunctional properties have been realized, for example, in mixed-metal oxides (Robertson et al., 2015), metal–organic framework (MOFs) structures (Li et al., 2016; Qiu & Zhu, 2009; Maspoch et al., 2007; Cui et al., 2012) and nanoparticles (Cheng et al., 2012; Rolison et al., 2009). Multiferroic properties have been accomplished with MOFs and metal complexes (Wu et al., 2010; Ramesh & Spaldin, 2007; Spaldin et al., 2005; Cheong & Mostovoy, 2007). Multifunctional properties are generally less common for discrete metal complexes or clusters. Mechanically responsive materials change their shape and size and/or move in space when activated by light, heat, pressure or chemicals (Naumov et al., 2015; Sato, 2016). Among them, some dynamic molecular crystals undergo various movements such as curling, crawling, jumping, leaping, hopping, popping, splitting, wiggling and explosion when exposed to heat or light, phenomena known as thermosalient (TS) or photosalient (PS) effects (Nath et al., 2014; Commins et al., 2016). These photodynamic and thermodynamic crystals set new avenues for materials that can be used to convert light or heat into mechanical work. Anisotropic changes in their lattice parameters, accompanied by a sudden release of the accumulated strain energy, are usually considered responsible and can contribute to many of the salient effects (Naumov et al., 2015; Nath et al., 2014).
Recently, a great number of organic, inorganic and organometallic crystals showing these properties have been discovered (Commins et al., 2016, 2015; Naumov et al., 2013; Vicente et al., 2016; Wang et al., 2017; Hatano et al., 2017; Shibuya et al., 2017; Takeda & Akutagawa, 2016; Seki et al., 2015; Medishetty et al., 2014, 2015; Mulijanto et al., 2017; Yadava & Vittal, 2019). However, the number of metal complexes showing PS or TS behavior compared with organic crystals is still rather small and limited to only a few examples (Naumov et al., 2013; Sato, 2016; Nath et al., 2014; Commins et al., 2016). As an example of one of the prominent cases: crystals of a cobalt(III) complex [Co(NH3)5(NO2)](Cl)(NO3) were shown to bend as well as to jump violently under UV light (Naumov et al., 2013; Chizhik et al., 2018). On the other hand, a thermosalient palladium(II) organometallic solid was reported to show an impressive positive and negative which indicates that similar anomalous expansion could be observed in other similar materials (Panda et al., 2014). A smart hybrid material was prepared by incorporating this complex into thin films of sodium caseinate which exhibits dual mechanical response (to heat and light), showing potential for preparation of hybrid materials by using salient crystals (Sahoo et al., 2014). In another example, a cocrystal of probenecid and 4,4′-azopyridine was shown to be thermally twistable, photobendable, elastically deformable and self-healable, and thus this material can be considered a multifunctional, smart, soft crystalline solid (Gupta et al., 2018). Although the discovery of such multifunctional properties in a single molecular material is very important, identification of other materials with similar properties is a rather challenging task. Here, we report that the crystals of [Cu2(benzoate)4(L)2], where L = 4-styrylpyridine (4spy) (1), 2′-fluoro-4-styrylpyridine (2F-4spy) (2) and 3′-fluoro-4-styrylpyridine (3F-4spy) (3) also pop violently under UV light, and thus they are photosalient. Furthermore, crystals of these materials exhibit very large anisotropic when heated from room temperature to about 200°C.
2. Results and discussion
2.1. Synthesis, single-crystal structures and photosalient behavior of 1–3
Green needle-like single crystals of 1–3 were obtained by slow evaporation of methanol solution of Cu(NO3)2·3H2O, sodium benzoate and the respective pyridyl ligand (Medishetty et al., 2014) in the molar ratio 1:2:1. Single-crystal X-ray diffraction (SXRD) analysis showed that they are isomorphous and isostructural to each other (see Table S1 of the supporting information) (Medishetty et al., 2014). All three crystals are in the monoclinic C2/c with Z = 4, and their contains half of the formula unit. A center of inversion is present in the middle of the paddlewheel structure (Fig. 1). The adjacent pyridyl ligands are stacked in a head-to-tail manner approximately normal to the (110) plane with strong π–π interactions between the neighboring pyridyl and phenyl groups (3.666 Å in 1, 3.690 Å in 2 and 3.656 Å in 3), as shown in Fig. 1. As a consequence, the centers of the C=C bonds are separated by 3.787 Å in 1, 3.765 Å in 2 and 3.810 Å in 3, and thus they are at distances suitable for [2+2] cycloaddition reactions (Schmidt, 1971).
As discussed earlier, the intermolecular olefin pairs on both sides of the paddlewheel structures in 1–3 are juxtaposed in a head-to-tail manner and can undergo a quantitatively. This arrangement is expected to yield a one-dimensional coordination polymer (CP) as the photoproduct in which the [Cu2(benzoate)4] paddlewheels are joined by the product cyclobutane ligands (Fig. 2). The course of photoreactivity of the compound with time was followed under UV light using 1H NMR spectroscopy. For this purpose irradiated powder samples were taken out at different time intervals and dissolved in DMSO-d6 to record the 1H NMR spectra (see Figs. S15 and S18 of the supporting information). The disappearance of the olefinic protons at 8.13 p.p.m., the appearance of cyclobutane protons at 4.82 p.p.m., and a shift in the pyridyl protons from 7.65 and 7.93 p.p.m. to 8.38 and 8.65 p.p.m., confirmed the formation of the expected cyclobutane ring photoproduct. The other two compounds 2 and 3 also showed quantitative photoconversion of their C=C bonds to cyclobutane rings (see Figs. S16, S17, S19 and S20). After the photoreaction of 1–3, the respective one-dimensional CPs (hereafter, 4, 5 and 6) were semi-crystalline, as confirmed using powder X-ray diffraction (PXRD) (see Fig. S4). determination of a recrystallized sample of 5 provided further evidence of the formation of the one-dimensional CP [Cu2(benzoate)4(rctt-2F-ppcb)], where rctt-2F-ppcb = rctt-1,3-bis(4-pyridyl)-2,4-bis(2′-fluorophenyl)cyclobutane, (5A; see Fig. 2). The recrystallized photoproduct 5A crystallizes in the and contains the centrosymmetric binuclear paddlewheel unit connecting the cyclobutane spacer ligand rctt-2F-ppcb. This result corroborated the conclusion based on the 1H NMR spectra (Medishetty et al., 2014, 2015) that the photodimer is the only product and there are no other chemical intermediates.
Interestingly, the crystals and powders of 1–3 started popping violently and exploded under UV light in a similar way to popping corn on hot surfaces, which is clear evidence of the PS effect (see Movies S1–S6 of the supporting information). The single crystals, depending upon their size and shape, display different types of movements under UV light, similar to isotypical Zn(II) complexes (Medishetty et al., 2014). Given the structural similarity, we conclude that the mechanism of the PS behavior of 1–3 is analogous to that of the respective Zn(II) complexes, which posits the existence of both reactants and photoproducts in the single crystals and rapid buildup of stress in the crystal, until they pop out or fragment into smaller pieces.
The densities of 1–6 were measured by the flotation method. A comparison of the densities of 5 [after complete photoreaction, 1.28 (2) g cm−3] and 5A (after recrystallization, 1.489 g cm−3) shows that the molecules in 5A (in the ) packed more tightly than in the structure of 5 after recrystallization. From other examples of photoreactive complexes, it is known that the volumes decrease upon photodimerization and formation of cyclobutane rings. Importantly, only in the materials showing the PS effect were the volumes found to increase during the [2+2] cycloaddition reaction (Medishetty et al., 2014, 2015; Yadava & Vittal, 2019). Overall, the densities were found to decrease after photoreaction (14.7% for 1 to 4, 15.6% for 2 to 5 and 12.2% for 3 to 6) and these correspond to the increase in volumes of 15.4, 17.5 and 13.1% on going from 1–3 to 4–6, respectively (Table S2). The mobility of dynamic single crystals is usually triggered by the sudden release of stress in the form of a very fast or a chemical reaction accompanied a rapid structural change that drives these phenomena (Nath et al., 2014; Chizhik et al., 2018; Ghosh et al., 2015; Sahoo et al., 2014, 2013a,b; Skoko et al., 2010; Rawat et al., 2018; Panda et al., 2015, 2016; Boldyreva, 1994; Mittapalli et al., 2017). Here, the stress created by the phase heterometry due to the difference in the volumes and the release of that stress manifests as motion or explosive fragmentation of the crystals.
The TS and PS effects, resulting in crystals flying over distances several times their own size, are usually associated with a very fast phase transitions, analogous to the martensitic transitions in inorganic materials (Naumov et al., 2013; Nath et al., 2014; Yadava & Vittal, 2019; Panda et al., 2014; Ghosh et al., 2015; Skoko et al., 2010; Boldyreva, 1994). We observed that when heated from room temperature to 210°C, the pristine crystals of 1–3 occasionally rolled or jumped off the hot stage (Movies S7–S12). However, this behavior was not consistent and was not reproducible with all batches of crystals. Hence, we concluded that the motion is not a result of TS effects. Instead, it could be due to non-uniform or sudden heating. A recent report of a TS behavior of the organic compound methscopolamine bromide observed motion that was not accompanied by a detectable and this effect was attributed to unusually large anisotropic with coefficients of 135 (1) × 10−6 K−1 and 114 (1) × 10−6 K−1 along the a and c axes, respectively (Klaser et al., 2018). Although such behavior cannot be attributed to a TS effect (which is strictly related to a phase transition), it could nevertheless account for the observed motion of the crystals.
To obtain a better insight into the thermal behavior of the compounds reported here, we performed thermogravimetry (TG), 1–3 are thermally stable up to 210°C, and start to melt around that temperature, accompanied by decomposition to a black-colored product, probably due to formation of copper oxide along with some carbonaceous residues (Figs. S6–S8). The DSC of 1–3, recorded from either single crystals or powder, did not show a from room temperature to their decomposition temperature (Figs. S12–S14). The VT-PXRD results corroborate the conclusion obtained from the DSC experiments (Figs. S29–S31).
(DSC) and variable temperature powder X-ray diffraction (VT-PXRD) measurements. The TG results show that2.2. Thermal expansion
The thermal behavior of crystals 1–3 was investigated by VT-PXRD measurements in the temperature range from room temperature to 200°C, just below their decomposition temperature (Figs. S29–S31). Since these compounds crystallize in a monoclinic the coefficients of were calculated using the program PASCal (Table 1) (Cliffe & Goodwin, 2012). A typical PXRD pattern of 3 showing shifts in selected peaks related to the is shown in Fig. 3.
|
The X2 axis parallel to the crystallographic b axis, and along the principal X1 axis which is almost parallel to the direction [102] for 1 and 2 and to [101] for 3, and along the principal X3 axis which is nearly parallel to the direction for 1 and 3 and [ for 2. All solids exhibit strong anisotropic with outstanding positive (PTE) along the principal X3 axis [(α3 = 166.38, 156.75 and 228.36) × 10−6 K−1]. Although compounds 1 and 2 show a relatively small PTE (α1 = 13.9159 × 10−6 K−1, α2 = 56.0233 × 10−6 K−1 for 1, α1 = 21.8943 × 10−6 K−1, α2 = 38.3804 × 10−6 K−1 for 2), compound 3 exhibits a small negative (α1 = −13.8283 × 10−6 K−1) along the principal X1 axis. The details are displayed for 3 in Fig. 4 and for 1 and 2 in Figs. S32 and S33, respectively. Furthermore, no hysteresis was observed on cooling for any of the crystals, and all expansions are rather linear in the measured temperature range [see Figs. S22–S24, (b) and (c)].
coefficients are reported along the principalThe similarities and the small differences observed in the anisotropic 1–3 can be explained through a detailed analysis of the fundamental structural motifs. In all compounds the [Cu2(benzoate)2L4] paddlewheel complexes are connected by π—π interactions between the C=C bonds of the styrylpyridine ligands, resulting in one-dimensional chain-like motifs running in the [] direction (Fig. 5). This direction corresponds to a combination of the principal X1 and X2 axes, in contrast to the cases reported in literature (Saha et al., 2017; Saraswatula et al., 2018; Crawford et al., 2019), where the major expansion occurs along the π—π stacking direction; the combination of π—π interactions between the paddlewheel complexes and the strong coordination bonds in the distinct complexes strengthen the chain-like motifs inhibiting any expansion along the X1 and X2 axes.
behavior of compoundsThe directive role of the π–π interactions for the is also confirmed by the fact that [2+2] cycloaddition photoreactivity was observed also at higher temperatures (120–200°C). This indicates that the olefin pairs remain intact even at higher temperature, satisfying the Schmidt criteria for a [2+2] cycloaddition reaction, i.e. the head-to-tail alignment of the styrylpyridine ligands is retained when the crystals are heated. Compound 3 exhibits intra-chain F⋯H—C interactions between the fluoride-functionalized styrylpyridine and the benzoate ligand, leading to further stiffening of the chain and could explain the slightly negative along the principal axis. Instead, the expansion along X3 is promoted by mechanics, which is reflected in the fact that 3 has the largest α3 coefficient. In 2, F⋯H—C interactions connect neighboring chains, which additionally inhibit the along the principal X2 axis. Hence, 2 exhibits the smallest α2 coefficient of all investigated compounds. As 1 is composed only of non-substituted styrylpyridine ligands, there are no F⋯H—C interactions, and the is only borne by the π–π interaction. Therefore, the determined α1, α2 and α3 coefficients are in the intermediate range of the investigated compounds (Table 1). Most of the few known photosalient reactions are accompanied by chemical reactions such as [2+2] cycloaddition or isomerization (Naumov et al., 2013; Wang et al., 2017; Takeda & Akutagawa, 2016; Medishetty et al., 2014, 2015; Mulijanto et al., 2017; Yadava & Vittal, 2019). There is also a report on the shortening of intermolecular aurophilic interactions responsible for the PS effect (Seki et al., 2015). Usually the PS effect that is based on the [2+2] cycloaddition reaction requires not only alignment of the olefin bond pairs in the solid state, but also a sudden anisotropic cell expansion during the photoreaction (Medishetty et al., 2014, 2015; Mulijanto et al., 2017; Yadava & Vittal, 2019). The paddlewheel metal complexes are very convenient materials to study the effects of these factors.
Complementary π–π interactions in head-to-tail alignment of the 4spy ligands are congenial to make photoreactive crystals and this alignment results in one-dimensional aggregates of the Cu(II) complexes. Furthermore , all these π–π aggregates are packed parallel to each other. Hence, the formation of the cyclobutane rings from olefin pairs promotes anisotropic volume expansion during the photoreaction. This is further supported by the increase of the volumes of 15.4, 17.5 and 13.1% on going from 1–3 to 4–6, respectively, as determined from the densities by the flotation method. This is corroborated by the volume measurements of 4–6 from XRPD experiments (Figs. S34 and S35, Tables S4 and S5). The stress generated by the phase heterometry is released suddenly in the form of a very fast chemical reaction accompanied a rapid structural change that appears to drive this PS effect.
3. Conclusions
Molecular solids in general are expected to have moderate positive et al., 2008; Das et al., 2010, 2015; Engel et al., 2014; Alimi et al., 2018; Janiak et al., 2018; Zhou et al., 2015; Yang et al., 2009) or even NTE (Chapman et al., 2006; Goodwin et al., 2005; Margadonna et al., 2004; Pan et al., 2019; Phillips et al., 2008; Wu et al., 2008) upon heating (Table S3). It is interesting to note that the parallel alignment of the one-dimensional assemblies in 1–3 promotes large from room temperature to 200°C in addition to photoreactivity and the PS effect. The volumetric thermal expansions (VTE) observed for 1, 2 and 3 are 241.8, 233.1 and 285.7 × 10−6 K−1, respectively. Of these, the value observed for 3 is the largest for metal complexes, based on comparison with the previously reported value of 255.5 × 10−6 K−1 for the palladium(II) complex (Panda et al., 2014). However, this is not the largest VTE reported thus far, and the difference in using different expressions to calculate used in the literature and the occasional non-linearity of the expansion with temperature should be considered (Table S3) (Engel et al., 2014; Zhou et al., 2015; Yang et al., 2009). The α3 coefficients of the investigated compounds exceed the other coefficients at least by a factor of three, which leads to a progressive anisotropic expansion on heating. This creates interfacial strain in the crystals which accumulates until it is suddenly released as elastic energy and propels the crystal of its debris. When crystals of 1–3 were heated in the temperature range 120–200°C and illuminated under UV light they started jumping violently (similar to popcorn) while undergoing [2+2] cycloaddition. This observation provides strong evidence that the olefin pairs are intact even at higher temperatures, thus satisfying the Schimidt criteria for a [2+2] cycloaddition. Therefore, anisotropic expansion occurs roughly normal to the one-dimensional aggregates. We conclude that the robustness of the π–π interactions in this crystal packing is ultimately the key structural feature for all three properties observed with these materials. This work therefore provides new insights towards the engineering of multifunctional properties in crystals, and favors these and similar compounds as candidates for in-depth studies into the factors that determine the salient effects.
(PTE) due to increasing anharmonic vibrational amplitudes of their molecules. In many cases, structural peculiarities may give rise to very large PTE (GoodwinCCDC codes 1845040–1845043 for 1–3 and 5A contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/data_request/cif.
4. Related literature
The following references are cited in the supporting information: Enfange et al. (1990); Sheldrick (1996, 2008); Müller et al. (2006); Yadava (2019); Bhattacharya & Saha (20143); Hutchins et al. (2016, 2019); Brock et al. (2019); Pawley (1981).
Supporting information
https://doi.org/10.1107/S2052252519014581/lq5028sup1.cif
contains datablocks 1, 2, 3, 5a. DOI:Supporting data. DOI: https://doi.org/10.1107/S2052252519014581/lq5028sup2.pdf
Video S1: photosalient effect of a single crystal of 1 showing rolling, hopping, breaking and disintegration of a single crystal during [2+2] https://doi.org/10.1107/S2052252519014581/lq5028sup3.mp4
reaction under UV light (Max 150 instrument, Xenon light source 150 W and wavelength of 360 nm). DOI:Video S2: photoalient behavior of crystal clusters of 1 under UV light. Different types of movements including hopping, breaking and disintegration of clusters of crystals are shown under UV light (Max 150 instrument, Xenon light source 150 W and wavelength of 360 nm). DOI: https://doi.org/10.1107/S2052252519014581/lq5028sup4.mp4
Video S3: occasional thermosalient effect exhibited by small single crystals of 1. The crystals were heated on a hot stage from room temperature to 210 degC showing wiggling, hopping and jumping movements. The video shown is four times faster than the normal speed to highlight the effect. DOI: https://doi.org/10.1107/S2052252519014581/lq5028sup5.mp4
Video S4: occasional thermosalient effect displayed by big crystals of 1. Small movements, rolling, hopping and sudden jumping of crystals leading to the disappearance of crystals from the sight are shown. The video shown is four times faster than the normal speed to dramatize the effect. DOI: https://doi.org/10.1107/S2052252519014581/lq5028sup6.mp4
Video S5: photosalient effect of 1 during [2+2] https://doi.org/10.1107/S2052252519014581/lq5028sup7.mp4
reaction under UV light showing the breaking and disintegration of single crystals (Max 150 instrument, Xenon light source 150 W and wavelength of 360 nm). DOI:Video S6: photosalient effect showing the breaking of a single crystal of 1 under UV light (Max 150 instrument, Xenon light source 150 W and wavelength of 360 nm). DOI: https://doi.org/10.1107/S2052252519014581/lq5028sup8.mp4
Video S7: photosalient effect showing the hopping and breaking of a single crystal of 1 under UV light (Max 150 instrument, Xenon light source 150 W and wavelength of 360 nm). DOI: https://doi.org/10.1107/S2052252519014581/lq5028sup9.mp4
Video S8: occasional thermosalient effect on big crystals of 1 showing chipping, rolling and hopping of crystals. DOI: https://doi.org/10.1107/S2052252519014581/lq5028sup10.mp4
Video S9: photosalient effect of a single crystal of 2 showing complete disintegration single crystals during [2+2] https://doi.org/10.1107/S2052252519014581/lq5028sup11.mp4
reaction under UV light (Max 150 instrument, Xenon light source 150 W and wavelength of 360 nm). DOI:Video S10: occasional thermosalient effect on big crystals of 2. Wiggling, rolling and hopping of crystals are demonstrated. DOI: https://doi.org/10.1107/S2052252519014581/lq5028sup12.mp4
Video S11: photosalient behavior showing breaking, rolling, hopping and jumping out of sight of single crystals of 3 during [2+2] https://doi.org/10.1107/S2052252519014581/lq5028sup13.mp4
reaction under UV light (Max 150 instrument, Xenon light source 150 W and wavelength of 360 nm). DOI:Video S12: occasional thermosalient effect on big crystals of 3 showing wiggling, rolling and hopping of crystals. DOI: https://doi.org/10.1107/S2052252519014581/lq5028sup14.mp4
C54H42Cu2N2O8 | F(000) = 2008 |
Mr = 973.97 | Dx = 1.477 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 24.633 (11) Å | Cell parameters from 986 reflections |
b = 12.093 (4) Å | θ = 2.5–27.5° |
c = 15.509 (6) Å | µ = 1.03 mm−1 |
β = 108.480 (12)° | T = 100 K |
V = 4381 (3) Å3 | BLOCK, green |
Z = 4 | 0.40 × 0.18 × 0.10 mm |
Bruker APEX-II CCD diffractometer | 4531 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.045 |
Absorption correction: multi-scan SADABS (Sheldrick, 2010) | θmax = 27.5°, θmin = 1.7° |
Tmin = 0.664, Tmax = 0.746 | h = −32→32 |
28192 measured reflections | k = −15→15 |
5043 independent reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0385P)2 + 7.0332P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.003 |
5043 reflections | Δρmax = 0.47 e Å−3 |
298 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.54074 (2) | 0.50316 (2) | 0.08078 (2) | 0.01025 (7) | |
O1 | 0.56615 (5) | 0.35721 (10) | 0.04928 (8) | 0.0162 (3) | |
O2 | 0.49655 (5) | 0.35268 (10) | −0.08577 (8) | 0.0179 (3) | |
O3 | 0.48237 (5) | 0.42404 (10) | 0.11946 (8) | 0.0156 (2) | |
O4 | 0.41285 (5) | 0.42191 (11) | −0.01575 (8) | 0.0178 (3) | |
N1 | 0.60368 (6) | 0.52400 (12) | 0.21246 (9) | 0.0121 (3) | |
C1 | 0.59215 (7) | 0.58179 (14) | 0.27851 (11) | 0.0143 (3) | |
H1 | 0.5548 | 0.6118 | 0.2666 | 0.017* | |
C2 | 0.63185 (7) | 0.59975 (14) | 0.36290 (11) | 0.0143 (3) | |
H2 | 0.6216 | 0.6416 | 0.4073 | 0.017* | |
C3 | 0.68698 (7) | 0.55656 (14) | 0.38309 (11) | 0.0134 (3) | |
C4 | 0.69869 (8) | 0.49569 (14) | 0.31437 (13) | 0.0177 (4) | |
H4 | 0.7354 | 0.4638 | 0.3245 | 0.021* | |
C5 | 0.65644 (8) | 0.48227 (14) | 0.23147 (12) | 0.0165 (3) | |
H5 | 0.6654 | 0.4412 | 0.1856 | 0.020* | |
C6 | 0.73159 (7) | 0.57305 (15) | 0.47083 (11) | 0.0158 (3) | |
H6 | 0.7682 | 0.5418 | 0.4780 | 0.019* | |
C7 | 0.72512 (7) | 0.62829 (15) | 0.54143 (12) | 0.0168 (3) | |
H7 | 0.6881 | 0.6570 | 0.5343 | 0.020* | |
C8 | 0.76931 (7) | 0.64936 (14) | 0.62908 (11) | 0.0152 (3) | |
C9 | 0.82490 (8) | 0.60707 (15) | 0.65109 (12) | 0.0192 (4) | |
H9 | 0.8352 | 0.5625 | 0.6082 | 0.023* | |
C10 | 0.86511 (8) | 0.62933 (16) | 0.73453 (13) | 0.0227 (4) | |
H10 | 0.9025 | 0.5990 | 0.7487 | 0.027* | |
C11 | 0.85135 (8) | 0.69565 (15) | 0.79780 (12) | 0.0203 (4) | |
H11 | 0.8792 | 0.7115 | 0.8547 | 0.024* | |
C12 | 0.79685 (8) | 0.73816 (16) | 0.77716 (12) | 0.0197 (4) | |
H12 | 0.7871 | 0.7835 | 0.8200 | 0.024* | |
C13 | 0.75609 (8) | 0.71507 (15) | 0.69405 (12) | 0.0190 (4) | |
H13 | 0.7186 | 0.7444 | 0.6810 | 0.023* | |
C14 | 0.53705 (7) | 0.30980 (13) | −0.02322 (11) | 0.0121 (3) | |
C15 | 0.55052 (7) | 0.19072 (14) | −0.03516 (12) | 0.0140 (3) | |
C16 | 0.59578 (8) | 0.13749 (15) | 0.02872 (12) | 0.0176 (4) | |
H16 | 0.6208 | 0.1782 | 0.0776 | 0.021* | |
C17 | 0.60436 (9) | 0.02459 (16) | 0.02097 (14) | 0.0232 (4) | |
H17 | 0.6351 | −0.0117 | 0.0648 | 0.028* | |
C18 | 0.56807 (9) | −0.03473 (16) | −0.05046 (16) | 0.0286 (5) | |
H18 | 0.5735 | −0.1120 | −0.0550 | 0.034* | |
C19 | 0.52382 (9) | 0.01815 (17) | −0.11537 (16) | 0.0299 (5) | |
H19 | 0.4994 | −0.0226 | −0.1650 | 0.036* | |
C20 | 0.51504 (8) | 0.13082 (16) | −0.10797 (14) | 0.0222 (4) | |
H20 | 0.4847 | 0.1671 | −0.1527 | 0.027* | |
C21 | 0.43367 (7) | 0.39606 (13) | 0.06703 (11) | 0.0120 (3) | |
C22 | 0.39839 (7) | 0.32184 (13) | 0.10553 (11) | 0.0132 (3) | |
C23 | 0.34622 (7) | 0.28012 (15) | 0.04997 (12) | 0.0169 (3) | |
H23 | 0.3316 | 0.3027 | −0.0118 | 0.020* | |
C24 | 0.31570 (8) | 0.20579 (16) | 0.08477 (14) | 0.0223 (4) | |
H24 | 0.2802 | 0.1774 | 0.0467 | 0.027* | |
C25 | 0.33673 (8) | 0.17267 (15) | 0.17504 (14) | 0.0232 (4) | |
H25 | 0.3160 | 0.1210 | 0.1986 | 0.028* | |
C26 | 0.38813 (9) | 0.21524 (17) | 0.23067 (13) | 0.0239 (4) | |
H26 | 0.4024 | 0.1930 | 0.2925 | 0.029* | |
C27 | 0.41880 (8) | 0.29001 (15) | 0.19657 (12) | 0.0178 (4) | |
H27 | 0.4538 | 0.3196 | 0.2353 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01067 (11) | 0.01025 (11) | 0.00846 (11) | −0.00045 (7) | 0.00109 (8) | −0.00048 (7) |
O1 | 0.0172 (6) | 0.0151 (6) | 0.0139 (6) | 0.0032 (5) | 0.0017 (5) | −0.0031 (5) |
O2 | 0.0188 (6) | 0.0139 (6) | 0.0168 (6) | 0.0031 (5) | −0.0002 (5) | −0.0028 (5) |
O3 | 0.0136 (6) | 0.0198 (6) | 0.0129 (6) | −0.0032 (5) | 0.0035 (5) | 0.0010 (5) |
O4 | 0.0164 (6) | 0.0234 (7) | 0.0121 (6) | −0.0048 (5) | 0.0025 (5) | 0.0033 (5) |
N1 | 0.0120 (7) | 0.0122 (7) | 0.0101 (6) | −0.0010 (5) | 0.0007 (5) | −0.0004 (5) |
C1 | 0.0138 (8) | 0.0151 (8) | 0.0132 (8) | 0.0020 (6) | 0.0029 (6) | −0.0003 (6) |
C2 | 0.0166 (8) | 0.0159 (8) | 0.0107 (8) | −0.0009 (6) | 0.0050 (6) | −0.0022 (6) |
C3 | 0.0137 (8) | 0.0132 (8) | 0.0116 (8) | −0.0028 (6) | 0.0017 (6) | 0.0000 (6) |
C4 | 0.0138 (8) | 0.0201 (9) | 0.0176 (9) | 0.0025 (7) | 0.0026 (7) | −0.0024 (7) |
C5 | 0.0183 (9) | 0.0157 (8) | 0.0139 (8) | 0.0010 (7) | 0.0029 (7) | −0.0034 (6) |
C6 | 0.0130 (8) | 0.0184 (8) | 0.0135 (8) | 0.0001 (6) | 0.0008 (6) | −0.0002 (6) |
C7 | 0.0141 (8) | 0.0202 (9) | 0.0136 (8) | 0.0002 (7) | 0.0006 (7) | 0.0003 (7) |
C8 | 0.0169 (8) | 0.0150 (8) | 0.0125 (8) | −0.0036 (6) | 0.0028 (7) | 0.0011 (6) |
C9 | 0.0192 (9) | 0.0191 (9) | 0.0162 (9) | 0.0001 (7) | 0.0014 (7) | −0.0031 (7) |
C10 | 0.0175 (9) | 0.0249 (10) | 0.0210 (9) | 0.0009 (7) | −0.0007 (7) | −0.0022 (7) |
C11 | 0.0225 (9) | 0.0216 (9) | 0.0124 (8) | −0.0047 (7) | −0.0010 (7) | 0.0002 (7) |
C12 | 0.0244 (9) | 0.0221 (9) | 0.0125 (8) | −0.0038 (7) | 0.0060 (7) | −0.0026 (7) |
C13 | 0.0168 (8) | 0.0238 (9) | 0.0151 (8) | −0.0001 (7) | 0.0030 (7) | −0.0006 (7) |
C14 | 0.0120 (8) | 0.0125 (8) | 0.0132 (8) | −0.0006 (6) | 0.0062 (6) | 0.0001 (6) |
C15 | 0.0141 (8) | 0.0127 (8) | 0.0177 (8) | 0.0003 (6) | 0.0085 (7) | −0.0004 (6) |
C16 | 0.0190 (9) | 0.0178 (9) | 0.0171 (8) | 0.0022 (7) | 0.0074 (7) | 0.0010 (7) |
C17 | 0.0253 (10) | 0.0179 (9) | 0.0304 (11) | 0.0078 (7) | 0.0148 (8) | 0.0071 (8) |
C18 | 0.0334 (11) | 0.0128 (9) | 0.0465 (13) | 0.0021 (8) | 0.0223 (10) | −0.0032 (9) |
C19 | 0.0282 (11) | 0.0201 (10) | 0.0397 (13) | −0.0046 (8) | 0.0084 (9) | −0.0128 (9) |
C20 | 0.0183 (9) | 0.0174 (9) | 0.0279 (10) | 0.0005 (7) | 0.0030 (8) | −0.0058 (7) |
C21 | 0.0144 (8) | 0.0092 (7) | 0.0131 (8) | 0.0019 (6) | 0.0053 (6) | −0.0020 (6) |
C22 | 0.0155 (8) | 0.0104 (7) | 0.0154 (8) | 0.0010 (6) | 0.0072 (7) | −0.0013 (6) |
C23 | 0.0165 (8) | 0.0170 (8) | 0.0174 (8) | 0.0002 (7) | 0.0058 (7) | −0.0012 (7) |
C24 | 0.0183 (9) | 0.0198 (9) | 0.0300 (10) | −0.0040 (7) | 0.0091 (8) | −0.0040 (8) |
C25 | 0.0282 (10) | 0.0145 (9) | 0.0340 (11) | −0.0023 (7) | 0.0202 (9) | 0.0012 (8) |
C26 | 0.0312 (10) | 0.0250 (10) | 0.0186 (9) | 0.0012 (8) | 0.0124 (8) | 0.0043 (7) |
C27 | 0.0198 (9) | 0.0187 (9) | 0.0155 (8) | 0.0003 (7) | 0.0064 (7) | −0.0007 (7) |
Cu1—O4i | 1.9688 (13) | C8—C9 | 1.399 (3) |
Cu1—O3 | 1.9722 (13) | C8—C13 | 1.400 (2) |
Cu1—O2i | 1.9833 (13) | C9—C10 | 1.384 (3) |
Cu1—O1 | 1.9848 (13) | C10—C11 | 1.390 (3) |
Cu1—N1 | 2.1518 (15) | C11—C12 | 1.377 (3) |
Cu1—Cu1i | 2.6693 (9) | C12—C13 | 1.388 (2) |
O1—C14 | 1.263 (2) | C14—C15 | 1.502 (2) |
O2—C14 | 1.262 (2) | C15—C20 | 1.392 (2) |
O2—Cu1i | 1.9833 (13) | C15—C16 | 1.392 (2) |
O3—C21 | 1.263 (2) | C16—C17 | 1.393 (3) |
O4—C21 | 1.262 (2) | C17—C18 | 1.383 (3) |
O4—Cu1i | 1.9688 (13) | C18—C19 | 1.384 (3) |
N1—C5 | 1.337 (2) | C19—C20 | 1.390 (3) |
N1—C1 | 1.343 (2) | C21—C22 | 1.499 (2) |
C1—C2 | 1.380 (2) | C22—C27 | 1.394 (2) |
C2—C3 | 1.395 (2) | C22—C23 | 1.395 (2) |
C3—C4 | 1.399 (2) | C23—C24 | 1.386 (3) |
C3—C6 | 1.467 (2) | C24—C25 | 1.389 (3) |
C4—C5 | 1.383 (2) | C25—C26 | 1.386 (3) |
C6—C7 | 1.335 (2) | C26—C27 | 1.386 (3) |
C7—C8 | 1.469 (2) | ||
O4i—Cu1—O3 | 167.63 (5) | C9—C8—C13 | 117.70 (16) |
O4i—Cu1—O2i | 88.10 (6) | C9—C8—C7 | 122.89 (16) |
O3—Cu1—O2i | 91.33 (6) | C13—C8—C7 | 119.41 (16) |
O4i—Cu1—O1 | 90.20 (6) | C10—C9—C8 | 120.80 (17) |
O3—Cu1—O1 | 87.74 (6) | C9—C10—C11 | 120.66 (18) |
O2i—Cu1—O1 | 167.76 (5) | C12—C11—C10 | 119.29 (17) |
O4i—Cu1—N1 | 94.11 (6) | C11—C12—C13 | 120.38 (17) |
O3—Cu1—N1 | 98.26 (6) | C12—C13—C8 | 121.16 (17) |
O2i—Cu1—N1 | 93.63 (5) | O2—C14—O1 | 125.81 (15) |
O1—Cu1—N1 | 98.58 (5) | O2—C14—C15 | 116.81 (14) |
O4i—Cu1—Cu1i | 85.31 (5) | O1—C14—C15 | 117.36 (14) |
O3—Cu1—Cu1i | 82.40 (4) | C20—C15—C16 | 119.46 (16) |
O2i—Cu1—Cu1i | 80.91 (4) | C20—C15—C14 | 119.49 (16) |
O1—Cu1—Cu1i | 86.87 (4) | C16—C15—C14 | 120.91 (15) |
N1—Cu1—Cu1i | 174.53 (4) | C15—C16—C17 | 120.07 (18) |
C14—O1—Cu1 | 119.24 (11) | C18—C17—C16 | 120.02 (19) |
C14—O2—Cu1i | 126.48 (11) | C17—C18—C19 | 120.20 (19) |
C21—O3—Cu1 | 124.70 (11) | C18—C19—C20 | 120.01 (19) |
C21—O4—Cu1i | 121.37 (11) | C19—C20—C15 | 120.19 (19) |
C5—N1—C1 | 117.00 (15) | O4—C21—O3 | 125.83 (16) |
C5—N1—Cu1 | 121.51 (12) | O4—C21—C22 | 116.99 (15) |
C1—N1—Cu1 | 121.46 (12) | O3—C21—C22 | 117.13 (15) |
N1—C1—C2 | 123.21 (16) | C27—C22—C23 | 119.44 (16) |
C1—C2—C3 | 120.05 (15) | C27—C22—C21 | 120.02 (15) |
C2—C3—C4 | 116.57 (15) | C23—C22—C21 | 120.49 (15) |
C2—C3—C6 | 123.18 (15) | C24—C23—C22 | 120.07 (17) |
C4—C3—C6 | 120.25 (16) | C23—C24—C25 | 120.29 (18) |
C5—C4—C3 | 119.60 (17) | C26—C25—C24 | 119.72 (17) |
N1—C5—C4 | 123.56 (16) | C25—C26—C27 | 120.38 (18) |
C7—C6—C3 | 125.45 (16) | C26—C27—C22 | 120.08 (17) |
C6—C7—C8 | 126.85 (17) |
Symmetry code: (i) −x+1, −y+1, −z. |
C54H40Cu2F2N2O8 | F(000) = 2072 |
Mr = 1009.96 | Dx = 1.516 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 24.9699 (8) Å | Cell parameters from 8450 reflections |
b = 12.1074 (4) Å | θ = 3.0–28.3° |
c = 15.4675 (4) Å | µ = 1.03 mm−1 |
β = 108.809 (1)° | T = 100 K |
V = 4426.4 (2) Å3 | Block, green |
Z = 4 | 0.17 × 0.16 × 0.11 mm |
Bruker D8 Venture diffractometer | 4396 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.029 |
Absorption correction: multi-scan SADABS (Shelcrick, 2010) | θmax = 28.3°, θmin = 2.5° |
Tmin = 0.693, Tmax = 0.746 | h = −32→32 |
19385 measured reflections | k = −13→16 |
5481 independent reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0375P)2 + 5.134P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
5481 reflections | Δρmax = 0.38 e Å−3 |
307 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.54016 (2) | 0.49779 (2) | 0.08146 (2) | 0.00966 (7) | |
F1 | 0.71401 (4) | 0.22252 (10) | 0.66940 (7) | 0.0279 (3) | |
N1 | 0.60412 (6) | 0.48086 (11) | 0.21431 (9) | 0.0116 (3) | |
O1 | 0.50421 (5) | 0.35404 (10) | 0.08982 (8) | 0.0178 (3) | |
O2 | 0.43571 (5) | 0.35812 (10) | −0.04639 (7) | 0.0159 (3) | |
O3 | 0.58593 (5) | 0.42082 (10) | 0.01770 (8) | 0.0186 (3) | |
O4 | 0.51764 (5) | 0.42292 (10) | −0.11894 (7) | 0.0160 (3) | |
C1 | 0.59368 (7) | 0.42103 (14) | 0.28027 (11) | 0.0137 (3) | |
H1 | 0.5572 | 0.3895 | 0.2682 | 0.016* | |
C2 | 0.63351 (7) | 0.40326 (14) | 0.36457 (10) | 0.0136 (3) | |
H2 | 0.6242 | 0.3605 | 0.4092 | 0.016* | |
C3 | 0.68776 (7) | 0.44833 (13) | 0.38440 (10) | 0.0130 (3) | |
C4 | 0.69797 (7) | 0.51103 (14) | 0.31542 (11) | 0.0155 (3) | |
H4 | 0.7340 | 0.5440 | 0.3252 | 0.019* | |
C5 | 0.65545 (7) | 0.52482 (14) | 0.23286 (11) | 0.0150 (3) | |
H5 | 0.6633 | 0.5679 | 0.1870 | 0.018* | |
C6 | 0.73294 (7) | 0.43102 (14) | 0.47159 (11) | 0.0155 (3) | |
H6 | 0.7680 | 0.4674 | 0.4800 | 0.019* | |
C7 | 0.72862 (7) | 0.36803 (14) | 0.54005 (11) | 0.0153 (3) | |
H7 | 0.6933 | 0.3328 | 0.5314 | 0.018* | |
C8 | 0.77343 (7) | 0.34830 (14) | 0.62731 (11) | 0.0145 (3) | |
C9 | 0.82676 (8) | 0.39856 (14) | 0.65236 (12) | 0.0183 (4) | |
H9 | 0.8355 | 0.4475 | 0.6108 | 0.022* | |
C10 | 0.86706 (8) | 0.37847 (15) | 0.73649 (12) | 0.0217 (4) | |
H10 | 0.9027 | 0.4144 | 0.7520 | 0.026* | |
C11 | 0.85584 (8) | 0.30621 (15) | 0.79845 (11) | 0.0193 (4) | |
H11 | 0.8837 | 0.2926 | 0.8559 | 0.023* | |
C12 | 0.80373 (8) | 0.25442 (15) | 0.77553 (11) | 0.0183 (4) | |
H12 | 0.7952 | 0.2049 | 0.8169 | 0.022* | |
C13 | 0.76447 (7) | 0.27626 (15) | 0.69139 (11) | 0.0165 (3) | |
C14 | 0.46433 (7) | 0.31111 (13) | 0.02665 (10) | 0.0119 (3) | |
C15 | 0.45079 (7) | 0.19230 (14) | 0.03857 (11) | 0.0135 (3) | |
C16 | 0.48550 (8) | 0.13218 (15) | 0.11172 (12) | 0.0208 (4) | |
H16 | 0.5153 | 0.1680 | 0.1573 | 0.025* | |
C17 | 0.47659 (9) | 0.01944 (16) | 0.11824 (15) | 0.0280 (5) | |
H17 | 0.5007 | −0.0218 | 0.1678 | 0.034* | |
C18 | 0.43272 (9) | −0.03244 (16) | 0.05253 (14) | 0.0275 (4) | |
H18 | 0.4270 | −0.1096 | 0.0566 | 0.033* | |
C19 | 0.39704 (8) | 0.02751 (15) | −0.01927 (13) | 0.0218 (4) | |
H19 | 0.3665 | −0.0081 | −0.0637 | 0.026* | |
C20 | 0.40603 (7) | 0.13995 (14) | −0.02627 (11) | 0.0161 (3) | |
H20 | 0.3815 | 0.1812 | −0.0755 | 0.019* | |
C21 | 0.56556 (7) | 0.39479 (13) | −0.06557 (10) | 0.0119 (3) | |
C22 | 0.60095 (7) | 0.32096 (13) | −0.10322 (11) | 0.0130 (3) | |
C23 | 0.65249 (7) | 0.28057 (14) | −0.04689 (12) | 0.0165 (3) | |
H23 | 0.6665 | 0.3031 | 0.0152 | 0.020* | |
C24 | 0.68353 (8) | 0.20735 (15) | −0.08111 (13) | 0.0212 (4) | |
H24 | 0.7186 | 0.1795 | −0.0423 | 0.025* | |
C25 | 0.66330 (8) | 0.17484 (15) | −0.17186 (13) | 0.0228 (4) | |
H25 | 0.6846 | 0.1249 | −0.1953 | 0.027* | |
C26 | 0.61208 (9) | 0.21529 (16) | −0.22829 (12) | 0.0230 (4) | |
H26 | 0.5982 | 0.1926 | −0.2903 | 0.028* | |
C27 | 0.58095 (8) | 0.28870 (15) | −0.19479 (11) | 0.0175 (4) | |
H27 | 0.5461 | 0.3170 | −0.2340 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01035 (11) | 0.00916 (10) | 0.00825 (10) | 0.00065 (7) | 0.00129 (7) | 0.00042 (7) |
F1 | 0.0168 (6) | 0.0453 (7) | 0.0189 (5) | −0.0084 (5) | 0.0022 (4) | 0.0106 (5) |
N1 | 0.0128 (7) | 0.0105 (7) | 0.0107 (6) | 0.0010 (5) | 0.0027 (5) | 0.0005 (5) |
O1 | 0.0185 (6) | 0.0139 (6) | 0.0159 (6) | −0.0037 (5) | −0.0014 (5) | 0.0029 (5) |
O2 | 0.0161 (6) | 0.0148 (6) | 0.0145 (6) | −0.0025 (5) | 0.0015 (5) | 0.0034 (5) |
O3 | 0.0178 (6) | 0.0232 (7) | 0.0137 (6) | 0.0065 (5) | 0.0036 (5) | −0.0034 (5) |
O4 | 0.0151 (6) | 0.0199 (6) | 0.0128 (5) | 0.0033 (5) | 0.0041 (5) | −0.0010 (5) |
C1 | 0.0114 (8) | 0.0147 (8) | 0.0137 (7) | 0.0006 (6) | 0.0025 (6) | −0.0001 (6) |
C2 | 0.0157 (8) | 0.0146 (8) | 0.0104 (7) | 0.0009 (7) | 0.0040 (6) | 0.0016 (6) |
C3 | 0.0137 (8) | 0.0121 (8) | 0.0108 (7) | 0.0027 (6) | 0.0008 (6) | −0.0005 (6) |
C4 | 0.0124 (8) | 0.0163 (8) | 0.0160 (8) | −0.0033 (7) | 0.0021 (6) | 0.0017 (7) |
C5 | 0.0172 (9) | 0.0145 (8) | 0.0121 (7) | −0.0013 (7) | 0.0030 (7) | 0.0028 (6) |
C6 | 0.0129 (8) | 0.0167 (8) | 0.0138 (8) | −0.0014 (7) | −0.0001 (6) | −0.0002 (6) |
C7 | 0.0119 (8) | 0.0183 (8) | 0.0129 (8) | −0.0002 (7) | 0.0002 (6) | −0.0004 (7) |
C8 | 0.0152 (8) | 0.0149 (8) | 0.0117 (7) | 0.0029 (7) | 0.0019 (6) | −0.0010 (6) |
C9 | 0.0205 (9) | 0.0148 (8) | 0.0164 (8) | −0.0008 (7) | 0.0014 (7) | 0.0023 (7) |
C10 | 0.0180 (9) | 0.0194 (9) | 0.0199 (9) | −0.0017 (7) | −0.0047 (7) | 0.0013 (7) |
C11 | 0.0209 (9) | 0.0197 (9) | 0.0110 (7) | 0.0043 (7) | −0.0034 (7) | −0.0012 (7) |
C12 | 0.0221 (9) | 0.0208 (9) | 0.0107 (7) | 0.0034 (7) | 0.0038 (7) | 0.0019 (7) |
C13 | 0.0127 (8) | 0.0219 (9) | 0.0143 (8) | −0.0013 (7) | 0.0036 (7) | −0.0019 (7) |
C14 | 0.0109 (8) | 0.0119 (8) | 0.0135 (7) | 0.0009 (6) | 0.0048 (6) | −0.0005 (6) |
C15 | 0.0135 (8) | 0.0123 (8) | 0.0166 (8) | 0.0007 (6) | 0.0076 (7) | 0.0009 (6) |
C16 | 0.0164 (9) | 0.0170 (9) | 0.0244 (9) | −0.0007 (7) | 0.0002 (7) | 0.0051 (7) |
C17 | 0.0250 (11) | 0.0177 (10) | 0.0369 (11) | 0.0011 (8) | 0.0040 (9) | 0.0109 (8) |
C18 | 0.0311 (11) | 0.0131 (8) | 0.0423 (12) | −0.0032 (8) | 0.0174 (10) | 0.0026 (8) |
C19 | 0.0228 (10) | 0.0188 (9) | 0.0256 (9) | −0.0091 (7) | 0.0101 (8) | −0.0062 (7) |
C20 | 0.0173 (9) | 0.0166 (9) | 0.0154 (8) | −0.0007 (7) | 0.0065 (7) | −0.0004 (7) |
C21 | 0.0142 (8) | 0.0101 (7) | 0.0121 (7) | −0.0026 (6) | 0.0050 (6) | 0.0008 (6) |
C22 | 0.0160 (8) | 0.0100 (7) | 0.0152 (8) | −0.0005 (6) | 0.0081 (7) | 0.0019 (6) |
C23 | 0.0172 (9) | 0.0149 (8) | 0.0177 (8) | 0.0002 (7) | 0.0062 (7) | 0.0006 (7) |
C24 | 0.0187 (9) | 0.0167 (9) | 0.0300 (9) | 0.0036 (7) | 0.0104 (8) | 0.0049 (8) |
C25 | 0.0306 (11) | 0.0137 (8) | 0.0336 (10) | 0.0013 (8) | 0.0238 (9) | −0.0013 (8) |
C26 | 0.0347 (11) | 0.0207 (9) | 0.0181 (8) | 0.0002 (8) | 0.0146 (8) | −0.0030 (7) |
C27 | 0.0207 (9) | 0.0182 (9) | 0.0149 (8) | 0.0009 (7) | 0.0074 (7) | 0.0015 (7) |
Cu1—O3 | 1.9682 (12) | C7—C8 | 1.469 (2) |
Cu1—O4i | 1.9700 (12) | C8—C13 | 1.392 (2) |
Cu1—O2i | 1.9777 (11) | C8—C9 | 1.400 (2) |
Cu1—O1 | 1.9816 (12) | C9—C10 | 1.386 (2) |
Cu1—N1 | 2.1677 (14) | C10—C11 | 1.391 (3) |
Cu1—Cu1i | 2.6677 (4) | C11—C12 | 1.384 (3) |
F1—C13 | 1.3604 (19) | C12—C13 | 1.379 (2) |
N1—C5 | 1.331 (2) | C14—C15 | 1.503 (2) |
N1—C1 | 1.344 (2) | C15—C16 | 1.389 (2) |
O1—C14 | 1.2606 (19) | C15—C20 | 1.391 (2) |
O2—C14 | 1.2611 (19) | C16—C17 | 1.392 (3) |
O2—Cu1i | 1.9777 (11) | C17—C18 | 1.382 (3) |
O3—C21 | 1.2627 (19) | C18—C19 | 1.384 (3) |
O4—C21 | 1.262 (2) | C19—C20 | 1.390 (2) |
O4—Cu1i | 1.9698 (12) | C21—C22 | 1.500 (2) |
C1—C2 | 1.378 (2) | C22—C23 | 1.390 (2) |
C2—C3 | 1.400 (2) | C22—C27 | 1.397 (2) |
C3—C4 | 1.398 (2) | C23—C24 | 1.390 (2) |
C3—C6 | 1.468 (2) | C24—C25 | 1.387 (3) |
C4—C5 | 1.383 (2) | C25—C26 | 1.385 (3) |
C6—C7 | 1.337 (2) | C26—C27 | 1.387 (2) |
O3—Cu1—O4i | 167.72 (5) | C13—C8—C7 | 120.44 (15) |
O3—Cu1—O2i | 90.16 (5) | C9—C8—C7 | 123.95 (15) |
O4i—Cu1—O2i | 88.15 (5) | C10—C9—C8 | 121.42 (16) |
O3—Cu1—O1 | 88.01 (5) | C9—C10—C11 | 120.71 (17) |
O4i—Cu1—O1 | 91.06 (5) | C12—C11—C10 | 119.35 (16) |
O2i—Cu1—O1 | 167.72 (5) | C13—C12—C11 | 118.59 (16) |
O3—Cu1—N1 | 93.49 (5) | F1—C13—C12 | 117.62 (15) |
O4i—Cu1—N1 | 98.79 (5) | F1—C13—C8 | 118.06 (14) |
O2i—Cu1—N1 | 98.45 (5) | C12—C13—C8 | 124.31 (16) |
O1—Cu1—N1 | 93.78 (5) | O1—C14—O2 | 125.88 (15) |
O3—Cu1—Cu1i | 85.26 (3) | O1—C14—C15 | 116.90 (14) |
O4i—Cu1—Cu1i | 82.48 (3) | O2—C14—C15 | 117.20 (14) |
O2i—Cu1—Cu1i | 85.75 (3) | C16—C15—C20 | 119.60 (16) |
O1—Cu1—Cu1i | 82.00 (3) | C16—C15—C14 | 119.71 (15) |
N1—Cu1—Cu1i | 175.63 (4) | C20—C15—C14 | 120.55 (15) |
C5—N1—C1 | 117.46 (14) | C15—C16—C17 | 120.04 (18) |
C5—N1—Cu1 | 122.04 (11) | C18—C17—C16 | 119.99 (18) |
C1—N1—Cu1 | 120.45 (11) | C17—C18—C19 | 120.29 (18) |
C14—O1—Cu1 | 124.94 (10) | C18—C19—C20 | 119.85 (18) |
C14—O2—Cu1i | 120.61 (10) | C19—C20—C15 | 120.19 (16) |
C21—O3—Cu1 | 121.41 (11) | O4—C21—O3 | 125.82 (15) |
C21—O4—Cu1i | 124.69 (10) | O4—C21—C22 | 117.37 (14) |
N1—C1—C2 | 123.03 (16) | O3—C21—C22 | 116.78 (14) |
C1—C2—C3 | 119.91 (15) | C23—C22—C27 | 119.56 (15) |
C4—C3—C2 | 116.50 (14) | C23—C22—C21 | 120.57 (14) |
C4—C3—C6 | 120.22 (15) | C27—C22—C21 | 119.82 (15) |
C2—C3—C6 | 123.27 (15) | C24—C23—C22 | 120.21 (16) |
C5—C4—C3 | 119.72 (16) | C25—C24—C23 | 120.05 (17) |
N1—C5—C4 | 123.38 (15) | C26—C25—C24 | 119.90 (17) |
C7—C6—C3 | 125.07 (16) | C25—C26—C27 | 120.42 (17) |
C6—C7—C8 | 126.04 (16) | C26—C27—C22 | 119.86 (17) |
C13—C8—C9 | 115.61 (15) |
Symmetry code: (i) −x+1, −y+1, −z. |
C54H40Cu2F2N2O8 | F(000) = 2072 |
Mr = 1009.96 | Dx = 1.504 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 25.1802 (18) Å | Cell parameters from 9807 reflections |
b = 12.0004 (9) Å | θ = 3.0–28.3° |
c = 15.5976 (10) Å | µ = 1.02 mm−1 |
β = 108.802 (2)° | T = 100 K |
V = 4461.7 (5) Å3 | Block, green |
Z = 4 | 0.41 × 0.29 × 0.22 mm |
Bruker D8 Venture diffractometer | 4589 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.027 |
Absorption correction: multi-scan SADABS (Sheldrick, 2010) | θmax = 27.5°, θmin = 2.2° |
Tmin = 0.686, Tmax = 0.746 | h = −32→32 |
57847 measured reflections | k = −15→15 |
5121 independent reflections | l = −20→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0376P)2 + 5.4768P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
5121 reflections | Δρmax = 0.67 e Å−3 |
311 parameters | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.53967 (2) | 0.49521 (2) | 0.08042 (2) | 0.01227 (6) | |
O1 | 0.56493 (4) | 0.64218 (8) | 0.05037 (7) | 0.0192 (2) | |
O2 | 0.49670 (5) | 0.65040 (9) | −0.08412 (7) | 0.0221 (2) | |
O3 | 0.48247 (4) | 0.57360 (9) | 0.11929 (7) | 0.0187 (2) | |
O4 | 0.41466 (4) | 0.57893 (9) | −0.01572 (7) | 0.0210 (2) | |
N1 | 0.60167 (5) | 0.47377 (10) | 0.21191 (8) | 0.0148 (2) | |
C1 | 0.65347 (6) | 0.51425 (12) | 0.22955 (10) | 0.0198 (3) | |
H1 | 0.6621 | 0.5540 | 0.1831 | 0.024* | |
C2 | 0.69516 (6) | 0.50117 (12) | 0.31216 (10) | 0.0207 (3) | |
H2 | 0.7313 | 0.5321 | 0.3217 | 0.025* | |
C3 | 0.68376 (6) | 0.44236 (12) | 0.38140 (9) | 0.0161 (3) | |
C4 | 0.62954 (6) | 0.40019 (12) | 0.36259 (9) | 0.0173 (3) | |
H4 | 0.6197 | 0.3596 | 0.4075 | 0.021* | |
C5 | 0.59037 (6) | 0.41777 (12) | 0.27853 (9) | 0.0168 (3) | |
H5 | 0.5536 | 0.3889 | 0.2672 | 0.020* | |
C6 | 0.72822 (6) | 0.42625 (13) | 0.46859 (10) | 0.0192 (3) | |
H6 | 0.7641 | 0.4567 | 0.4748 | 0.023* | |
C7 | 0.72234 (6) | 0.37242 (13) | 0.53965 (10) | 0.0202 (3) | |
H7 | 0.6860 | 0.3450 | 0.5338 | 0.024* | |
C8 | 0.76665 (6) | 0.35130 (12) | 0.62620 (9) | 0.0194 (3) | |
C9 | 0.82134 (7) | 0.39178 (14) | 0.64575 (11) | 0.0248 (3) | |
H9 | 0.8311 | 0.4356 | 0.6024 | 0.030* | |
C10 | 0.86117 (7) | 0.36803 (15) | 0.72809 (12) | 0.0309 (4) | |
H10A | 0.8979 | 0.3975 | 0.7408 | 0.037* | 0.668 (2) |
C11 | 0.84926 (7) | 0.30266 (14) | 0.79272 (10) | 0.0264 (3) | |
H11 | 0.8771 | 0.2861 | 0.8488 | 0.032* | |
C12 | 0.79559 (7) | 0.26281 (14) | 0.77244 (10) | 0.0273 (3) | |
H12A | 0.7865 | 0.2175 | 0.8157 | 0.033* | 0.332 (2) |
C13 | 0.75414 (7) | 0.28619 (14) | 0.69129 (10) | 0.0254 (3) | |
H13 | 0.7173 | 0.2580 | 0.6800 | 0.030* | |
C14 | 0.53670 (6) | 0.69162 (11) | −0.02117 (9) | 0.0154 (3) | |
C15 | 0.55120 (6) | 0.81131 (12) | −0.03162 (10) | 0.0183 (3) | |
C16 | 0.59687 (7) | 0.86170 (13) | 0.03175 (11) | 0.0233 (3) | |
H16 | 0.6212 | 0.8189 | 0.0797 | 0.028* | |
C17 | 0.60697 (8) | 0.97495 (15) | 0.02500 (14) | 0.0330 (4) | |
H17 | 0.6381 | 1.0094 | 0.0685 | 0.040* | |
C18 | 0.57184 (9) | 1.03716 (15) | −0.04464 (15) | 0.0400 (5) | |
H18 | 0.5786 | 1.1146 | −0.0486 | 0.048* | |
C19 | 0.52692 (9) | 0.98736 (15) | −0.10866 (16) | 0.0403 (5) | |
H19 | 0.5030 | 1.0304 | −0.1568 | 0.048* | |
C20 | 0.51670 (7) | 0.87400 (14) | −0.10272 (13) | 0.0294 (4) | |
H20 | 0.4861 | 0.8396 | −0.1473 | 0.035* | |
C21 | 0.43482 (6) | 0.60285 (11) | 0.06713 (9) | 0.0145 (3) | |
C22 | 0.40008 (6) | 0.67586 (11) | 0.10635 (9) | 0.0155 (3) | |
C23 | 0.42088 (7) | 0.70900 (13) | 0.19656 (10) | 0.0213 (3) | |
H23 | 0.4556 | 0.6803 | 0.2347 | 0.026* | |
C24 | 0.39086 (7) | 0.78396 (14) | 0.23081 (11) | 0.0271 (3) | |
H24 | 0.4056 | 0.8076 | 0.2921 | 0.033* | |
C25 | 0.33971 (7) | 0.82451 (13) | 0.17646 (11) | 0.0257 (3) | |
H25 | 0.3195 | 0.8762 | 0.2001 | 0.031* | |
C26 | 0.31803 (7) | 0.78935 (13) | 0.08712 (11) | 0.0248 (3) | |
H26 | 0.2825 | 0.8160 | 0.0500 | 0.030* | |
C27 | 0.34805 (6) | 0.71527 (13) | 0.05186 (10) | 0.0198 (3) | |
H27 | 0.3331 | 0.6915 | −0.0093 | 0.024* | |
F1 | 0.78536 (7) | 0.19488 (17) | 0.83139 (10) | 0.0440 (4) | 0.668 (2) |
F1A | 0.90973 (13) | 0.4023 (3) | 0.7451 (2) | 0.0440 (4) | 0.332 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01351 (10) | 0.01166 (9) | 0.00985 (9) | 0.00046 (6) | 0.00126 (6) | 0.00074 (6) |
O1 | 0.0215 (5) | 0.0165 (5) | 0.0178 (5) | −0.0033 (4) | 0.0036 (4) | 0.0022 (4) |
O2 | 0.0236 (5) | 0.0163 (5) | 0.0211 (5) | −0.0045 (4) | −0.0002 (4) | 0.0040 (4) |
O3 | 0.0177 (5) | 0.0237 (5) | 0.0139 (5) | 0.0036 (4) | 0.0041 (4) | −0.0003 (4) |
O4 | 0.0200 (5) | 0.0263 (6) | 0.0143 (5) | 0.0057 (4) | 0.0024 (4) | −0.0038 (4) |
N1 | 0.0162 (6) | 0.0141 (5) | 0.0122 (5) | 0.0021 (4) | 0.0021 (4) | 0.0012 (4) |
C1 | 0.0197 (7) | 0.0221 (7) | 0.0152 (7) | −0.0019 (6) | 0.0022 (6) | 0.0060 (5) |
C2 | 0.0159 (7) | 0.0249 (8) | 0.0185 (7) | −0.0029 (5) | 0.0015 (6) | 0.0044 (6) |
C3 | 0.0176 (7) | 0.0155 (6) | 0.0129 (6) | 0.0036 (5) | 0.0015 (5) | 0.0007 (5) |
C4 | 0.0197 (7) | 0.0192 (7) | 0.0130 (6) | 0.0014 (5) | 0.0052 (5) | 0.0027 (5) |
C5 | 0.0154 (6) | 0.0189 (7) | 0.0146 (6) | −0.0003 (5) | 0.0028 (5) | 0.0001 (5) |
C6 | 0.0167 (7) | 0.0218 (7) | 0.0155 (6) | 0.0014 (5) | 0.0003 (5) | 0.0007 (5) |
C7 | 0.0199 (7) | 0.0222 (7) | 0.0149 (7) | 0.0012 (6) | 0.0005 (6) | 0.0001 (5) |
C8 | 0.0242 (7) | 0.0177 (7) | 0.0126 (6) | 0.0046 (6) | 0.0009 (6) | −0.0011 (5) |
C9 | 0.0260 (8) | 0.0240 (8) | 0.0196 (7) | 0.0011 (6) | 0.0007 (6) | 0.0045 (6) |
C10 | 0.0261 (9) | 0.0317 (9) | 0.0257 (8) | 0.0011 (7) | −0.0044 (7) | 0.0028 (7) |
C11 | 0.0304 (8) | 0.0271 (8) | 0.0139 (7) | 0.0082 (7) | −0.0039 (6) | −0.0013 (6) |
C12 | 0.0354 (9) | 0.0305 (8) | 0.0129 (7) | 0.0056 (7) | 0.0032 (6) | 0.0043 (6) |
C13 | 0.0253 (8) | 0.0319 (8) | 0.0160 (7) | 0.0008 (7) | 0.0026 (6) | 0.0023 (6) |
C14 | 0.0171 (6) | 0.0136 (6) | 0.0179 (7) | 0.0000 (5) | 0.0089 (5) | −0.0002 (5) |
C15 | 0.0214 (7) | 0.0137 (6) | 0.0237 (7) | −0.0010 (5) | 0.0125 (6) | 0.0001 (5) |
C16 | 0.0272 (8) | 0.0197 (7) | 0.0272 (8) | −0.0055 (6) | 0.0147 (7) | −0.0046 (6) |
C17 | 0.0388 (10) | 0.0233 (8) | 0.0451 (11) | −0.0128 (7) | 0.0252 (9) | −0.0111 (7) |
C18 | 0.0513 (12) | 0.0143 (8) | 0.0662 (14) | −0.0054 (8) | 0.0353 (11) | 0.0014 (8) |
C19 | 0.0455 (12) | 0.0222 (9) | 0.0566 (13) | 0.0047 (8) | 0.0212 (10) | 0.0170 (8) |
C20 | 0.0295 (9) | 0.0201 (8) | 0.0379 (9) | −0.0002 (6) | 0.0097 (7) | 0.0087 (7) |
C21 | 0.0171 (6) | 0.0114 (6) | 0.0153 (6) | −0.0014 (5) | 0.0056 (5) | 0.0018 (5) |
C22 | 0.0184 (7) | 0.0129 (6) | 0.0169 (6) | −0.0010 (5) | 0.0082 (5) | 0.0013 (5) |
C23 | 0.0234 (7) | 0.0230 (7) | 0.0179 (7) | 0.0015 (6) | 0.0072 (6) | 0.0004 (6) |
C24 | 0.0350 (9) | 0.0281 (8) | 0.0210 (7) | −0.0012 (7) | 0.0129 (7) | −0.0057 (6) |
C25 | 0.0306 (8) | 0.0197 (7) | 0.0333 (9) | 0.0018 (6) | 0.0194 (7) | −0.0036 (6) |
C26 | 0.0208 (7) | 0.0227 (8) | 0.0316 (8) | 0.0032 (6) | 0.0095 (7) | 0.0016 (6) |
C27 | 0.0193 (7) | 0.0195 (7) | 0.0202 (7) | −0.0005 (5) | 0.0057 (6) | −0.0004 (6) |
F1 | 0.0274 (7) | 0.0776 (12) | 0.0237 (7) | −0.0003 (7) | 0.0039 (6) | 0.0221 (7) |
F1A | 0.0274 (7) | 0.0776 (12) | 0.0237 (7) | −0.0003 (7) | 0.0039 (6) | 0.0221 (7) |
Cu1—O4i | 1.9699 (10) | C8—C9 | 1.398 (2) |
Cu1—O3 | 1.9723 (10) | C9—C10 | 1.381 (2) |
Cu1—O1 | 1.9817 (10) | C10—F1A | 1.235 (4) |
Cu1—O2i | 1.9822 (10) | C10—C11 | 1.384 (3) |
Cu1—N1 | 2.1554 (12) | C11—C12 | 1.371 (2) |
Cu1—Cu1i | 2.6586 (3) | C12—F1 | 1.315 (2) |
O1—C14 | 1.2613 (17) | C12—C13 | 1.385 (2) |
O2—C14 | 1.2593 (17) | C14—C15 | 1.5038 (19) |
O2—Cu1i | 1.9823 (10) | C15—C20 | 1.389 (2) |
O3—C21 | 1.2631 (17) | C15—C16 | 1.390 (2) |
O4—C21 | 1.2599 (17) | C16—C17 | 1.393 (2) |
O4—Cu1i | 1.9699 (10) | C17—C18 | 1.378 (3) |
N1—C1 | 1.335 (2) | C18—C19 | 1.380 (3) |
N1—C5 | 1.3428 (18) | C19—C20 | 1.393 (2) |
C1—C2 | 1.384 (2) | C21—C22 | 1.5006 (19) |
C2—C3 | 1.395 (2) | C22—C23 | 1.392 (2) |
C3—C4 | 1.396 (2) | C22—C27 | 1.394 (2) |
C3—C6 | 1.4692 (19) | C23—C24 | 1.388 (2) |
C4—C5 | 1.3795 (19) | C24—C25 | 1.382 (2) |
C6—C7 | 1.332 (2) | C25—C26 | 1.388 (2) |
C7—C8 | 1.4698 (19) | C26—C27 | 1.390 (2) |
C8—C13 | 1.395 (2) | ||
O4i—Cu1—O3 | 167.86 (4) | C9—C8—C7 | 122.90 (14) |
O4i—Cu1—O1 | 89.77 (5) | C10—C9—C8 | 120.02 (15) |
O3—Cu1—O1 | 88.28 (4) | F1A—C10—C9 | 120.2 (2) |
O4i—Cu1—O2i | 88.18 (5) | F1A—C10—C11 | 117.6 (2) |
O3—Cu1—O2i | 91.23 (5) | C9—C10—C11 | 122.11 (16) |
O1—Cu1—O2i | 167.94 (4) | C12—C11—C10 | 117.28 (14) |
O4i—Cu1—N1 | 94.02 (4) | F1—C12—C11 | 117.10 (15) |
O3—Cu1—N1 | 98.12 (4) | F1—C12—C13 | 120.33 (17) |
O1—Cu1—N1 | 98.17 (4) | C11—C12—C13 | 122.45 (15) |
O2i—Cu1—N1 | 93.83 (4) | C12—C13—C8 | 119.87 (16) |
O4i—Cu1—Cu1i | 85.49 (3) | O2—C14—O1 | 125.88 (13) |
O3—Cu1—Cu1i | 82.43 (3) | O2—C14—C15 | 116.86 (12) |
O1—Cu1—Cu1i | 86.51 (3) | O1—C14—C15 | 117.25 (12) |
O2i—Cu1—Cu1i | 81.48 (3) | C20—C15—C16 | 119.56 (14) |
N1—Cu1—Cu1i | 175.30 (3) | C20—C15—C14 | 119.51 (14) |
C14—O1—Cu1 | 119.71 (9) | C16—C15—C14 | 120.83 (13) |
C14—O2—Cu1i | 125.77 (9) | C15—C16—C17 | 120.00 (17) |
C21—O3—Cu1 | 124.81 (9) | C18—C17—C16 | 120.11 (18) |
C21—O4—Cu1i | 121.31 (9) | C17—C18—C19 | 120.24 (16) |
C1—N1—C5 | 117.35 (12) | C18—C19—C20 | 120.03 (19) |
C1—N1—Cu1 | 120.85 (10) | C15—C20—C19 | 120.03 (18) |
C5—N1—Cu1 | 121.79 (10) | O4—C21—O3 | 125.62 (13) |
N1—C1—C2 | 123.25 (14) | O4—C21—C22 | 117.13 (12) |
C1—C2—C3 | 119.63 (14) | O3—C21—C22 | 117.21 (12) |
C2—C3—C4 | 116.88 (13) | C23—C22—C27 | 119.52 (13) |
C2—C3—C6 | 119.83 (13) | C23—C22—C21 | 120.01 (13) |
C4—C3—C6 | 123.29 (13) | C27—C22—C21 | 120.41 (12) |
C5—C4—C3 | 119.72 (13) | C24—C23—C22 | 120.02 (14) |
N1—C5—C4 | 123.16 (13) | C25—C24—C23 | 120.50 (15) |
C7—C6—C3 | 125.33 (14) | C24—C25—C26 | 119.73 (14) |
C6—C7—C8 | 126.37 (14) | C25—C26—C27 | 120.23 (15) |
C13—C8—C9 | 118.26 (14) | C26—C27—C22 | 119.98 (14) |
C13—C8—C7 | 118.84 (14) |
Symmetry code: (i) −x+1, −y+1, −z. |
C54H40Cu2F2N2O8 | Z = 1 |
Mr = 1009.96 | F(000) = 518 |
Triclinic, P1 | Dx = 1.489 Mg m−3 |
a = 10.3725 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.0398 (5) Å | Cell parameters from 9903 reflections |
c = 12.0294 (5) Å | θ = 2.4–32.1° |
α = 71.354 (1)° | µ = 1.01 mm−1 |
β = 66.229 (1)° | T = 100 K |
γ = 65.356 (1)° | Prism frag, green |
V = 1126.61 (9) Å3 | 0.40 × 0.30 × 0.13 mm |
Bruker APEX-II CCD diffractometer | 4010 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.030 |
Absorption correction: multi-scan Sadabs (Sheldrick, 2010) | θmax = 26.0°, θmin = 2.3° |
Tmin = 0.687, Tmax = 0.878 | h = −12→12 |
22753 measured reflections | k = −13→13 |
4416 independent reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.027P)2 + 1.0045P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
4416 reflections | Δρmax = 0.41 e Å−3 |
307 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
ZN1 | 0.08988 (2) | 0.05300 (2) | 0.40088 (2) | 0.01478 (8) | |
F1 | 0.18010 (13) | 0.56593 (13) | −0.08486 (11) | 0.0289 (3) | |
O1 | 0.18687 (15) | 0.03153 (14) | 0.52085 (12) | 0.0233 (3) | |
O2 | 0.02998 (15) | −0.05251 (14) | 0.69044 (12) | 0.0220 (3) | |
O3 | 0.06425 (15) | −0.21979 (13) | 0.54004 (12) | 0.0231 (3) | |
O4 | 0.22112 (15) | −0.13244 (13) | 0.37401 (12) | 0.0235 (3) | |
N1 | 0.21722 (16) | 0.17022 (15) | 0.25257 (14) | 0.0157 (3) | |
C1 | 0.2570 (2) | 0.17327 (19) | 0.13173 (17) | 0.0178 (4) | |
H1 | 0.2264 | 0.1197 | 0.1058 | 0.021* | |
C2 | 0.3409 (2) | 0.25100 (19) | 0.04187 (17) | 0.0175 (4) | |
H2 | 0.3661 | 0.2503 | −0.0432 | 0.021* | |
C3 | 0.38766 (19) | 0.32971 (18) | 0.07753 (16) | 0.0156 (4) | |
C4 | 0.3429 (2) | 0.32870 (19) | 0.20327 (17) | 0.0177 (4) | |
H4 | 0.3699 | 0.3828 | 0.2319 | 0.021* | |
C5 | 0.2590 (2) | 0.24876 (18) | 0.28676 (17) | 0.0175 (4) | |
H5 | 0.2297 | 0.2496 | 0.3723 | 0.021* | |
C6 | 0.47785 (19) | 0.41686 (18) | −0.01563 (16) | 0.0153 (4) | |
H6 | 0.5186 | 0.3928 | −0.0995 | 0.018* | |
C7 | 0.3989 (2) | 0.57580 (18) | −0.02147 (16) | 0.0159 (4) | |
H7 | 0.4074 | 0.6223 | −0.1091 | 0.019* | |
C8 | 0.2379 (2) | 0.62179 (18) | 0.05842 (16) | 0.0162 (4) | |
C9 | 0.1857 (2) | 0.66779 (19) | 0.16866 (18) | 0.0205 (4) | |
H9 | 0.2539 | 0.6779 | 0.1963 | 0.025* | |
C10 | 0.0358 (2) | 0.6993 (2) | 0.23929 (19) | 0.0241 (4) | |
H10 | 0.0025 | 0.7303 | 0.3145 | 0.029* | |
C11 | −0.0647 (2) | 0.6855 (2) | 0.19994 (19) | 0.0255 (4) | |
H11 | −0.1670 | 0.7065 | 0.2484 | 0.031* | |
C12 | −0.0164 (2) | 0.6411 (2) | 0.08982 (19) | 0.0239 (4) | |
H12 | −0.0844 | 0.6317 | 0.0614 | 0.029* | |
C13 | 0.1324 (2) | 0.61124 (19) | 0.02310 (17) | 0.0195 (4) | |
C14 | 0.1409 (2) | −0.01207 (18) | 0.63548 (17) | 0.0164 (4) | |
C15 | 0.2255 (2) | −0.01303 (18) | 0.71210 (17) | 0.0166 (4) | |
C16 | 0.1773 (2) | −0.05066 (19) | 0.84019 (18) | 0.0211 (4) | |
H16 | 0.0941 | −0.0818 | 0.8797 | 0.025* | |
C17 | 0.2513 (2) | −0.0425 (2) | 0.90986 (19) | 0.0249 (4) | |
H17 | 0.2181 | −0.0673 | 0.9973 | 0.030* | |
C18 | 0.3739 (2) | 0.0021 (2) | 0.8520 (2) | 0.0255 (4) | |
H18 | 0.4233 | 0.0086 | 0.9002 | 0.031* | |
C19 | 0.4245 (2) | 0.03696 (19) | 0.72424 (19) | 0.0226 (4) | |
H19 | 0.5096 | 0.0656 | 0.6848 | 0.027* | |
C20 | 0.3499 (2) | 0.02971 (18) | 0.65434 (18) | 0.0186 (4) | |
H20 | 0.3838 | 0.0540 | 0.5669 | 0.022* | |
C21 | 0.1828 (2) | −0.23008 (19) | 0.45004 (16) | 0.0170 (4) | |
C22 | 0.2869 (2) | −0.37116 (19) | 0.43376 (17) | 0.0191 (4) | |
C23 | 0.4344 (2) | −0.3933 (2) | 0.35702 (17) | 0.0229 (4) | |
H23 | 0.4684 | −0.3185 | 0.3120 | 0.027* | |
C24 | 0.5314 (2) | −0.5246 (2) | 0.34648 (19) | 0.0297 (5) | |
H24 | 0.6323 | −0.5396 | 0.2952 | 0.036* | |
C25 | 0.4813 (3) | −0.6338 (2) | 0.4107 (2) | 0.0328 (5) | |
H25 | 0.5479 | −0.7236 | 0.4034 | 0.039* | |
C26 | 0.3343 (3) | −0.6123 (2) | 0.4857 (2) | 0.0307 (5) | |
H26 | 0.2998 | −0.6872 | 0.5286 | 0.037* | |
C27 | 0.2374 (2) | −0.4816 (2) | 0.49824 (18) | 0.0238 (4) | |
H27 | 0.1372 | −0.4672 | 0.5508 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
ZN1 | 0.01564 (12) | 0.01484 (12) | 0.01394 (12) | −0.00945 (9) | −0.00212 (8) | −0.00005 (8) |
F1 | 0.0240 (6) | 0.0444 (8) | 0.0257 (6) | −0.0157 (6) | −0.0057 (5) | −0.0123 (5) |
O1 | 0.0242 (7) | 0.0329 (8) | 0.0167 (7) | −0.0181 (6) | −0.0065 (6) | 0.0022 (6) |
O2 | 0.0250 (7) | 0.0275 (8) | 0.0183 (7) | −0.0179 (6) | −0.0063 (6) | 0.0017 (6) |
O3 | 0.0207 (7) | 0.0177 (7) | 0.0253 (7) | −0.0088 (6) | 0.0018 (6) | −0.0051 (6) |
O4 | 0.0226 (7) | 0.0184 (7) | 0.0217 (7) | −0.0084 (6) | 0.0015 (6) | −0.0025 (6) |
N1 | 0.0152 (7) | 0.0154 (8) | 0.0178 (8) | −0.0087 (6) | −0.0052 (6) | 0.0004 (6) |
C1 | 0.0166 (9) | 0.0173 (9) | 0.0210 (9) | −0.0088 (7) | −0.0048 (7) | −0.0026 (7) |
C2 | 0.0180 (9) | 0.0205 (10) | 0.0142 (9) | −0.0088 (8) | −0.0041 (7) | −0.0016 (7) |
C3 | 0.0123 (8) | 0.0152 (9) | 0.0166 (9) | −0.0053 (7) | −0.0042 (7) | 0.0010 (7) |
C4 | 0.0175 (9) | 0.0163 (9) | 0.0223 (9) | −0.0088 (8) | −0.0067 (7) | −0.0023 (7) |
C5 | 0.0191 (9) | 0.0174 (9) | 0.0154 (9) | −0.0081 (8) | −0.0045 (7) | −0.0008 (7) |
C6 | 0.0155 (9) | 0.0190 (9) | 0.0127 (8) | −0.0100 (7) | −0.0026 (7) | −0.0011 (7) |
C7 | 0.0174 (9) | 0.0180 (9) | 0.0137 (9) | −0.0103 (7) | −0.0048 (7) | 0.0015 (7) |
C8 | 0.0158 (9) | 0.0112 (9) | 0.0189 (9) | −0.0070 (7) | −0.0051 (7) | 0.0035 (7) |
C9 | 0.0191 (9) | 0.0188 (10) | 0.0246 (10) | −0.0077 (8) | −0.0085 (8) | −0.0012 (8) |
C10 | 0.0237 (10) | 0.0217 (10) | 0.0232 (10) | −0.0040 (8) | −0.0053 (8) | −0.0069 (8) |
C11 | 0.0128 (9) | 0.0223 (10) | 0.0326 (11) | −0.0022 (8) | −0.0022 (8) | −0.0052 (9) |
C12 | 0.0173 (9) | 0.0240 (10) | 0.0324 (11) | −0.0080 (8) | −0.0100 (8) | −0.0033 (9) |
C13 | 0.0215 (10) | 0.0168 (9) | 0.0193 (9) | −0.0079 (8) | −0.0058 (8) | −0.0009 (7) |
C14 | 0.0176 (9) | 0.0103 (8) | 0.0201 (9) | −0.0039 (7) | −0.0057 (7) | −0.0024 (7) |
C15 | 0.0179 (9) | 0.0094 (8) | 0.0227 (9) | −0.0030 (7) | −0.0084 (7) | −0.0025 (7) |
C16 | 0.0252 (10) | 0.0156 (9) | 0.0227 (10) | −0.0092 (8) | −0.0090 (8) | 0.0013 (8) |
C17 | 0.0343 (11) | 0.0181 (10) | 0.0238 (10) | −0.0071 (9) | −0.0155 (9) | 0.0003 (8) |
C18 | 0.0284 (11) | 0.0172 (10) | 0.0372 (12) | −0.0015 (8) | −0.0214 (9) | −0.0067 (9) |
C19 | 0.0150 (9) | 0.0160 (9) | 0.0360 (11) | −0.0014 (7) | −0.0090 (8) | −0.0073 (8) |
C20 | 0.0166 (9) | 0.0132 (9) | 0.0229 (10) | −0.0023 (7) | −0.0049 (7) | −0.0046 (7) |
C21 | 0.0190 (9) | 0.0197 (10) | 0.0162 (9) | −0.0086 (8) | −0.0069 (7) | −0.0033 (7) |
C22 | 0.0233 (10) | 0.0205 (10) | 0.0151 (9) | −0.0053 (8) | −0.0085 (8) | −0.0046 (7) |
C23 | 0.0255 (10) | 0.0288 (11) | 0.0145 (9) | −0.0068 (9) | −0.0084 (8) | −0.0045 (8) |
C24 | 0.0255 (11) | 0.0404 (13) | 0.0184 (10) | 0.0022 (9) | −0.0091 (8) | −0.0143 (9) |
C25 | 0.0431 (13) | 0.0246 (11) | 0.0270 (11) | 0.0068 (10) | −0.0198 (10) | −0.0128 (9) |
C26 | 0.0470 (14) | 0.0196 (11) | 0.0267 (11) | −0.0071 (10) | −0.0173 (10) | −0.0038 (9) |
C27 | 0.0285 (11) | 0.0211 (10) | 0.0223 (10) | −0.0065 (8) | −0.0096 (8) | −0.0049 (8) |
ZN1—O2i | 1.9655 (13) | C7—C8 | 1.510 (2) |
ZN1—O4 | 1.9730 (14) | C7—C6ii | 1.552 (2) |
ZN1—O1 | 1.9758 (13) | C8—C13 | 1.381 (3) |
ZN1—O3i | 1.9793 (13) | C8—C9 | 1.390 (3) |
ZN1—N1 | 2.1568 (15) | C9—C10 | 1.390 (3) |
ZN1—ZN1i | 2.6426 (4) | C10—C11 | 1.382 (3) |
F1—C13 | 1.368 (2) | C11—C12 | 1.386 (3) |
O1—C14 | 1.264 (2) | C12—C13 | 1.371 (3) |
O2—C14 | 1.260 (2) | C14—C15 | 1.502 (3) |
O2—ZN1i | 1.9655 (13) | C15—C16 | 1.393 (3) |
O3—C21 | 1.260 (2) | C15—C20 | 1.395 (3) |
O3—ZN1i | 1.9792 (13) | C16—C17 | 1.387 (3) |
O4—C21 | 1.261 (2) | C17—C18 | 1.390 (3) |
N1—C1 | 1.335 (2) | C18—C19 | 1.388 (3) |
N1—C5 | 1.340 (2) | C19—C20 | 1.390 (3) |
C1—C2 | 1.391 (3) | C21—C22 | 1.501 (3) |
C2—C3 | 1.389 (3) | C22—C23 | 1.395 (3) |
C3—C4 | 1.390 (3) | C22—C27 | 1.396 (3) |
C3—C6 | 1.508 (2) | C23—C24 | 1.388 (3) |
C4—C5 | 1.384 (3) | C24—C25 | 1.387 (3) |
C6—C7ii | 1.552 (2) | C25—C26 | 1.387 (3) |
C6—C7 | 1.589 (3) | C26—C27 | 1.386 (3) |
O2i—ZN1—O4 | 89.84 (6) | C6ii—C7—C6 | 90.85 (13) |
O2i—ZN1—O1 | 168.26 (5) | C13—C8—C9 | 116.17 (17) |
O4—ZN1—O1 | 88.01 (6) | C13—C8—C7 | 117.63 (16) |
O2i—ZN1—O3i | 90.74 (6) | C9—C8—C7 | 126.11 (16) |
O4—ZN1—O3i | 168.22 (5) | C8—C9—C10 | 121.38 (18) |
O1—ZN1—O3i | 89.04 (6) | C11—C10—C9 | 119.93 (19) |
O2i—ZN1—N1 | 96.84 (5) | C10—C11—C12 | 120.11 (18) |
O4—ZN1—N1 | 100.62 (6) | C13—C12—C11 | 118.00 (18) |
O1—ZN1—N1 | 94.89 (5) | F1—C13—C12 | 117.93 (17) |
O3i—ZN1—N1 | 90.99 (6) | F1—C13—C8 | 117.65 (16) |
O2i—ZN1—ZN1i | 86.10 (4) | C12—C13—C8 | 124.41 (18) |
O4—ZN1—ZN1i | 88.62 (4) | O2—C14—O1 | 125.70 (17) |
O1—ZN1—ZN1i | 82.32 (4) | O2—C14—C15 | 117.74 (16) |
O3i—ZN1—ZN1i | 79.69 (4) | O1—C14—C15 | 116.56 (16) |
N1—ZN1—ZN1i | 170.28 (4) | C16—C15—C20 | 119.83 (17) |
C14—O1—ZN1 | 124.82 (12) | C16—C15—C14 | 120.72 (16) |
C14—O2—ZN1i | 120.99 (12) | C20—C15—C14 | 119.39 (16) |
C21—O3—ZN1i | 128.09 (12) | C17—C16—C15 | 119.80 (18) |
C21—O4—ZN1 | 117.90 (12) | C16—C17—C18 | 120.14 (19) |
C1—N1—C5 | 117.25 (15) | C19—C18—C17 | 120.42 (18) |
C1—N1—ZN1 | 126.99 (12) | C18—C19—C20 | 119.51 (18) |
C5—N1—ZN1 | 115.75 (12) | C19—C20—C15 | 120.28 (18) |
N1—C1—C2 | 123.29 (17) | O3—C21—O4 | 125.55 (17) |
C3—C2—C1 | 119.43 (17) | O3—C21—C22 | 116.54 (16) |
C2—C3—C4 | 117.04 (16) | O4—C21—C22 | 117.90 (16) |
C2—C3—C6 | 121.85 (16) | C23—C22—C27 | 119.53 (18) |
C4—C3—C6 | 121.07 (16) | C23—C22—C21 | 120.48 (17) |
C5—C4—C3 | 119.91 (17) | C27—C22—C21 | 119.97 (17) |
N1—C5—C4 | 123.03 (17) | C24—C23—C22 | 120.0 (2) |
C3—C6—C7ii | 115.77 (15) | C25—C24—C23 | 120.1 (2) |
C3—C6—C7 | 116.00 (14) | C26—C25—C24 | 120.1 (2) |
C7ii—C6—C7 | 89.15 (13) | C27—C26—C25 | 120.1 (2) |
C8—C7—C6ii | 119.60 (15) | C26—C27—C22 | 120.1 (2) |
C8—C7—C6 | 116.05 (14) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z. |
Acknowledgements
We thank Ms Geok Kheng Tan for the X-ray data collection. We would like to thank Dr Geetha Bolla and Vijayakumar S. Vishnu of NUS for their assistance in some of the experiments.
Funding information
JJV would like to thank the Ministry of Education Singapore for their generous support through Tier 1 grant (FRC WBS R-143–000-A12-114 and WBS R-143–000-B13-114).
References
Abouraddy, A. F., Bayindir, M., Benoit, G., Hart, S. D., Kuriki, K., Orf, N., Shapira, O., Sorin, F., Temelkuran, B. & Fink, Y. (2007). Nat. Mater. 6, 336–347. Web of Science CrossRef PubMed CAS Google Scholar
Alimi, L. O., Lama, P., Smith, V. J. & Barbour, L. J. (2018). CrystEngComm, 20, 631–635. Web of Science CSD CrossRef CAS Google Scholar
Bhattacharya, S. & Saha, B. K. (2013). Cryst. Growth Des. 13, 3299–3302. Web of Science CSD CrossRef CAS Google Scholar
Boldyreva, E. (1994). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 242, 17–52. CrossRef Web of Science Google Scholar
Brock, A. J., Whittaker, J. J., Powell, J. A., Pfrunder, M. C., Grosjean, A., Parsons, S., McMurtrie, J. C. & Clegg, J. K. (2019). Angew. Chem. Int. Ed. 57, 11325–11328. Web of Science CSD CrossRef Google Scholar
Chapman, K. W., Chupas, P. J. & Kepert, C. J. (2006). J. Am. Chem. Soc. 128, 7009–7014. Web of Science CrossRef PubMed CAS Google Scholar
Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. (2012). Science, 338, 903–910. Web of Science CrossRef CAS PubMed Google Scholar
Cheong, S.-W. & Mostovoy, M. (2007). Nat. Mater. 6, 13–20. Web of Science CrossRef PubMed CAS Google Scholar
Chizhik, S., Sidelnikov, A., Zakharov, B., Naumov, P. & Boldyreva, E. (2018). Chem. Sci. 9, 2319–2335. Web of Science CrossRef CAS PubMed Google Scholar
Cliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321–1329. Web of Science CrossRef CAS IUCr Journals Google Scholar
Commins, P., Desta, I. T., Karothu, D. P., Panda, M. K. & Naumov, P. (2016). Chem. Commun. 52, 13941–13954. Web of Science CrossRef CAS Google Scholar
Commins, P., Natarajan, A., Tsai, C.-K., Khan, S. I., Nath, N. K., Naumov, P. & Garcia-Garibay, M. A. (2015). Cryst. Growth Des. 15, 1983–1990. Web of Science CSD CrossRef CAS Google Scholar
Crawford, A. W., Groeneman, R. H., Unruh, D. K. & Hutchins, K. M. (2019). Chem. Commun. 55, 3258–3261. Web of Science CSD CrossRef CAS Google Scholar
Cui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126–1162. Web of Science CrossRef CAS PubMed Google Scholar
Das, D., Jacobs, T. & Barbour, L. J. (2010). Nat. Mater. 9, 36–39. Web of Science CSD CrossRef PubMed CAS Google Scholar
Das, R. K., Aggarwal, H. & Barbour, L. J. (2015). Inorg. Chem. 54, 8171–8173. Web of Science CSD CrossRef CAS PubMed Google Scholar
Efange, S. N., Michelson, R. H., Remmel, R. P., Boudreau, R. J., Dutta, A. K. & Freshler, A. (1990). J. Med. Chem. 33, 3133–3138. CrossRef CAS PubMed Web of Science Google Scholar
Engel, E. R., Smith, V. J., Bezuidenhout, C. X. & Barbour, L. J. (2014). Chem. Commun. 50, 4238–4241. Web of Science CSD CrossRef CAS Google Scholar
Ferreira, A. D. B. L., Nóvoa, P. R. O. & Marques, A. T. (2016). Compos. Struct. 151, 3–35. Web of Science CrossRef Google Scholar
Ghosh, S., Mishra, M. K., Ganguly, S. & Desiraju, G. R. (2015). J. Am. Chem. Soc. 137, 9912–9921. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gibson, R. F. (2010). Compos. Struct. 92, 2793–2810. Web of Science CrossRef Google Scholar
Goodwin, A. L., Calleja, M., Conterio, M. J., Dove, M. T., Evans, J. S. O., Keen, D. A., Peters, L. & Tucker, M. G. (2008). Science, 319, 794–797. Web of Science CrossRef PubMed CAS Google Scholar
Goodwin, A. L., Chapman, K. W. & Kepert, C. J. (2005). J. Am. Chem. Soc. 127, 17980–17981. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gupta, P., Karothu, D. P., Ahmed, E., Naumov, P. & Nath, N. K. (2018). Angew. Chem. Int. Ed. 57, 8498–8502. Web of Science CSD CrossRef CAS Google Scholar
Hatano, E., Morimoto, M., Imai, T., Hyodo, K., Fujimoto, A., Nishimura, R., Sekine, A., Yasuda, N., Yokojima, S., Nakamura, S. & Uchida, K. (2017). Angew. Chem. Int. Ed. 56, 12576–12580. Web of Science CSD CrossRef CAS Google Scholar
Hutchins, K. M., Groeneman, R. H., Reinheimer, E. W., Swenson, D. C. & MacGillivray, L. R. (2015). Chem. Sci. 6, 4717–4722. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hutchins, K. M., Kummer, K. A., Groeneman, R. H., Reinheimer, E. W., Sinnwell, M. A., Swenson, D. C. & MacGillivray, L. R. (2016). CrystEngComm, 18, 8354–8357. Web of Science CSD CrossRef CAS Google Scholar
Janiak, A., Esterhuysen, C. & Barbour, L. J. (2018). Chem. Commun. 54, 3727–3730. Web of Science CSD CrossRef CAS Google Scholar
Klaser, T., Popović, J., Fernandes, J. A., Tarantino, S. C., Zema, M. & Skoko, Ž. (2018). Crystals, 8, 301. Web of Science CrossRef Google Scholar
Li, B., Wen, H. -M., Cui, Y., Zhou, W., Qian, G. & Chen, B. (2016). Adv. Mater. 28, 8819–8860. Web of Science CrossRef CAS PubMed Google Scholar
Lu, W. & Lieber, C. M. (2007). Nat. Mater. 6, 841–850. Web of Science CrossRef PubMed CAS Google Scholar
Margadonna, S., Prassides, K. & Fitch, A. N. (2004). J. Am. Chem. Soc. 126, 15390–15391. Web of Science CrossRef PubMed CAS Google Scholar
Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818. Web of Science CrossRef PubMed CAS Google Scholar
Medishetty, R., Husain, A., Bai, Z., Runčevski, T., Dinnebier, R. E., Naumov, P. & Vittal, J. J. (2014). Angew. Chem. Int. Ed. 53, 5907–5911. Web of Science CSD CrossRef CAS Google Scholar
Medishetty, R., Sahoo, S. C., Mulijanto, C. E., Naumov, P. & Vittal, J. J. (2015). Chem. Mater. 27, 1821–1829. Web of Science CSD CrossRef CAS Google Scholar
Mittapalli, S., Perumalla, D. S., Nanubolu, J. B. & Nangia, A. (2017). IUCrJ, 4, 812–823. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Mulijanto, C. E., Quah, H. S., Tan, G. K., Donnadieu, B. & Vittal, J. J. (2017). IUCrJ, 4, 65–71. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Müller, P., Herbst-Irmer, R., Spek, A., Schneider, T. & Sawaya, M. (2006). Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Oxford University Press. Google Scholar
Nath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. (2014). CrystEngComm, 16, 1850–1858. Web of Science CrossRef CAS Google Scholar
Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. (2015). Chem. Rev. 115, 12440–12490. Web of Science CrossRef CAS PubMed Google Scholar
Naumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. (2013). Angew. Chem. Int. Ed. 52, 9990–9995. Web of Science CSD CrossRef CAS Google Scholar
Pan, Z., Chen, J., Yu, R., Patra, L., Ravindran, P., Sanson, A., Milazzo, R., Carnera, A., Hu, L., Wang, L., Yamamoto, H., Ren, Y., Huang, Q., Sakai, Y., Nishikubo, T., Ogata, T., Fan, X., Li, Y., Li, G., Hojo, H., Azuma, M. & Xing, X. (2019). Chem. Mater. 31, 1296–1303. Web of Science CrossRef ICSD CAS Google Scholar
Panda, M. K., Centore, R., Causà, M., Tuzi, A., Borbone, F. & Naumov, P. (2016). Sci. Rep. 6, 1–11. Web of Science CSD CrossRef CAS PubMed Google Scholar
Panda, M. K., Runčevski, T., Chandra Sahoo, S., Belik, A. A., Nath, N. K., Dinnebier, R. E. & Naumov, P. (2014). Nat. Commun. 5, 1–8. Web of Science CSD CrossRef Google Scholar
Panda, M. K., Runčevski, T., Husain, A., Dinnebier, R. E. & Naumov, P. (2015). J. Am. Chem. Soc. 137, 1895–1902. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pawley, G. (1981). J. Appl. Cryst. 14, 357–361. CrossRef CAS Web of Science IUCr Journals Google Scholar
Phillips, A. E., Goodwin, A. L., Halder, G. J., Southon, P. D. & Kepert, C. J. (2008). Angew. Chem. Int. Ed. 47, 1396–1399. Web of Science CSD CrossRef CAS Google Scholar
Qiu, S. & Zhu, G. (2009). Coord. Chem. Rev. 253, 2891–2911. Web of Science CrossRef CAS Google Scholar
Ramesh, R. & Spaldin, N. A. (2007). Nat. Mater. 6, 21–29. Web of Science CrossRef PubMed CAS Google Scholar
Rawat, H., Samanta, R., Bhattacharya, B., Deolka, S., Dutta, A., Dey, S., Raju, K. B. & Reddy, C. M. (2018). Cryst. Growth Des. 18, 2918–2923. Web of Science CSD CrossRef CAS Google Scholar
Robertson, L., Penin, N., Blanco-Gutierrez, V., Sheptyakov, D., Demourgues, A. & Gaudon, M. (2015). J. Mater. Chem. C. 3, 2918–2924. Web of Science CrossRef CAS Google Scholar
Rolison, D. R., Long, J. W., Lytle, J. C., Fischer, A. E., Rhodes, C. P., McEvoy, T. M., Bourg, M. E. & Lubers, A. M. (2009). Chem. Soc. Rev. 38, 226–252. Web of Science CrossRef PubMed CAS Google Scholar
Saha, B. K., Rather, S. A. & Saha, A. (2017). Eur. J. Inorg. Chem. 2017, 3390–3394. Web of Science CSD CrossRef CAS Google Scholar
Sahoo, S. C., Nath, N. K., Zhang, L., Semreem, M. H., Al-Tel, T. H. & Naumov, P. (2014). RSC Adv. 4, 7640–7647 Google Scholar
Sahoo, S. C., Panda, M. K., Nath, N. K. & Naumov, P. (2013a). J. Am. Chem. Soc. 135, 12241–12251. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sahoo, S. C., Sinha, S. B., Kiran, M. S. R. N., Ramamurty, U., Dericioglu, A. F., Reddy, C. M. & Naumov, P. (2013b). J. Am. Chem. Soc. 135, 13843–13850. Web of Science CrossRef CAS PubMed Google Scholar
Saraswatula, V. G., Sharada, D. & Saha, B. K. (2018). Cryst. Growth Des. 18, 52–56. Web of Science CSD CrossRef CAS Google Scholar
Sato, O. (2016). Nat. Chem. 8, 644–656. Web of Science CrossRef CAS PubMed Google Scholar
Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647–678. CrossRef CAS Google Scholar
Seki, T., Sakurada, K., Muromoto, M. & Ito, H. (2015). Chem. Sci. 6, 1491–1497. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shibuya, Y., Itoh, Y. & Aida, T. (2017). Chem. Asian J. 12, 811–815. Web of Science CSD CrossRef CAS PubMed Google Scholar
Skoko, Ž., Zamir, S., Naumov, P. & Bernstein, J. (2010). J. Am. Chem. Soc. 132, 14191–14202. Web of Science CSD CrossRef CAS PubMed Google Scholar
Spaldin, N. A. & Fiebig, M. (2005). Science, 309, 391–392. Web of Science CrossRef PubMed CAS Google Scholar
Takeda, T. & Akutagawa, T. (2016). Chem. Eur. J. 22, 7763–7770. Web of Science CSD CrossRef CAS PubMed Google Scholar
Vicente, A. I., Joseph, A., Ferreira, L. P., de Deus Carvalho, M., Rodrigues, V. H. N., Duttine, M., Diogo, H. P., Minas da Piedade, M. E., Calhorda, M. J. & Martinho, P. N. (2016). Chem. Sci. 7, 4251–4258. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wang, H., Bisoyi, H. K., Wang, L., Urbas, A. M., Bunning, T. J. & Li, Q. (2018). Angew. Chem. Int. Ed. 57, 1627–1631. Web of Science CrossRef CAS Google Scholar
Wang, H., Chen, P., Wu, Z., Zhao, J., Sun, J. & Lu, R. (2017). Angew. Chem. Int. Ed. 56, 9463–9467. Web of Science CSD CrossRef CAS Google Scholar
Wu, S. M., Cybart, S. A., Yu, P., Rossell, M. D., Zhang, J. X., Ramesh, R. & Dynes, R. C. (2010). Nat. Mater. 9, 756–761. Web of Science CrossRef CAS PubMed Google Scholar
Wu, Y., Kobayashi, A., Halder, G. J., Peterson, V. K., Chapman, K. W., Lock, N., Southon, P. D. & Kepert, C. J. (2008). Angew. Chem. Int. Ed. 47, 8929–8932. Web of Science CSD CrossRef CAS Google Scholar
Yadava, K. (2019). PhD dissertation, National University of Singapore. Google Scholar
Yadava, K. & Vittal, J. J. (2019). Cryst. Growth Des. 19, 2542–2547. Web of Science CSD CrossRef CAS Google Scholar
Yang, C., Wang, X. & Omary, M. A. (2009). Angew. Chem. Int. Ed. 48, 2500–2505. Web of Science CSD CrossRef CAS Google Scholar
Zhou, H.-L., Zhang, Y.-B., Zhang, J.-P. & Chen, X.-M. (2015). Nat. Commun. 6, 6917. Web of Science CSD CrossRef PubMed Google Scholar
Zhu, Q.-L. & Xu, Q. (2014). Chem. Soc. Rev. 43, 5468–5512. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.