research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 7| Part 2| March 2020| Pages 324-330
ISSN: 2052-2525

Disappeared supramolecular isomer reappears with perylene guest

aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, bDepartment of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and cDepartment of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: sslee@gnu.ac.kr, chmjjv@nus.edu.sg

Edited by L. R. MacGillivray, University of Iowa, USA (Received 5 December 2019; accepted 3 February 2020; online 27 February 2020)

Among different types of polymorphism, disappearing polymorphism deals with the metastable kinetic form which can not be reproduced after its first isolation. In the world of coordination polymers (CPs) and metal–organic frameworks (MOFs), despite the fact that many types of supramolecular isomerism exist, we are unaware of disappearing supramolecular isomerism akin to disappearing polymorphism. This work reports a MOF with dia topology that could not be reproduced, but subsequent synthesis yielded another supramolecular isomer, a double-pillared-layer MOF. When perylene was added in the same reaction, the disappeared dia MOF reappeared with perylene as a guest in the channels. Interestingly, the photoluminescence of the dia MOF with a perylene guest is dominated by the emission of the guest molecule. The influence of guest molecules on the stabilization of the supramolecular isomers of a MOF opens up a strategy to access MOFs with different structures.

1. Introduction

Polymorphism is a solid-state phenomenon in which the same chemical substance has more than one crystal structure (Brittain, 1999[Brittain, H. G. (1999). Polymorphism in Pharmaceutical Solids. New York: M. Dekker.]; Bernstein, 2008[Bernstein, J. (2008). Polymorphism in Molecular Crystals. Oxford University Press.]; Desiraju, 1997[Desiraju, G. R. (1997). Science, 278, 404-405.]). Controlled and reproducible conditions are necessary to crystallize a particular polymorph of a compound, especially the metastable kinetic form. In many cases the metastable form fails to crystallize in numerous attempts after initial isolation; this has been termed `disappearing polymorphism' (Dunitz & Bernstein, 1995[Dunitz, J. D. & Bernstein, J. (1995). Acc. Chem. Res. 28, 193-200.]). The subsequent isolation of these kinetics forms becomes elusive due to the crystallization of a more stable polymorph or poorly recorded crystallization conditions by the researchers (Dunitz & Bernstein, 1995[Dunitz, J. D. & Bernstein, J. (1995). Acc. Chem. Res. 28, 193-200.]; Bernstein & Henck, 1998[Bernstein, J. & Henck, J. O. (1998). Cryst. Eng. 1, 119-128.]; Lancaster et al., 2007[Lancaster, R. W., Karamertzanis, P. G., Hulme, A. T., Tocher, D. A., Lewis, T. C. & Price, S. L. (2007). J. Pharm. Sci. 96, 3419-3431.], 2011[Lancaster, R. W., Harris, L. D. & Pearson, D. (2011). CrystEngComm, 13, 1775-1777.]; Bučar et al., 2015[Bučar, D.-K., Lancaster, R. W. & Bernstein, J. (2015). Angew. Chem. Int. Ed. 54, 6972-6993.]).

On the other hand, supramolecular isomerism, a phenomenon which is quite distinct from polymorphism, exists in coordination polymers (CPs) and metal–organic frameworks (MOFs) (Hennigar et al., 1997[Hennigar, T. L., MacQuarrie, D. C., Losier, P., Rogers, R. D. & Zaworotko, M. J. (1997). Angew. Chem. Int. Ed. Engl. 36, 972-973.]; Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). Since described by Zaworotko in 1997, a number of examples for various types of supramolecular isomerism have been reported (Zhang et al., 2009[Zhang, J.-P., Huang, X.-C. & Chen, X.-M. (2009). Chem. Soc. Rev. 38, 2385-2396.]; Park et al., 2014c[Park, I.-H., Medishetty, R., Kim, J.-Y., Lee, S. S. & Vittal, J. J. (2014c). Angew. Chem. Int. Ed. 53, 5591-5595.], 2015[Park, I.-H., Medishetty, R., Lee, H.-H., Mulijanto, C. E., Quah, H. S., Lee, S. S. & Vittal, J. J. (2015). Angew. Chem. Int. Ed. 54, 7313-7317.], 2018[Park, I.-H., Ju, H., Kim, K., Lee, S. S. & Vittal, J. J. (2018). IUCrJ, 5, 182-189.], 2016[Park, I.-H., Mulijanto, C. E., Lee, H.-H., Kang, Y., Lee, E., Chanthapally, A., Lee, S. S. & Vittal, J. J. (2016). Cryst. Growth Des. 16, 2504-2508.], 2019[Park, I. H., Lee, E., Lee, S. S. & Vittal, J. J. (2019). Angew. Chem. Int. Ed. 58, 14860-14864.]; Karmakar et al., 2017[Karmakar, A., Paul, A. & Pombeiro, A. J. L. (2017). CrystEngComm, 19, 4666-4695.]; Barnett et al., 2002[Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. 1640-1641.]; Hu et al., 2012[Hu, J.-S., Qin, L., Zhang, M.-D., Yao, X.-Q., Li, Y.-Z., Guo, Z.-J., Zheng, H.-G. & Xue, Z.-L. (2012). Chem. Commun. 48, 681-683.]; Blake et al., 2001[Blake, A. J., Brooks, N. R., Champness, N. R., Crew, M., Gregory, D. H., Hubberstey, P., Schröder, M., Deveson, A., Fenske, D. & Hanton, L. R. (2001). Chem. Commun. 1432-1433.]; Manna et al., 2008[Manna, S. C., Zangrando, E., Ribas, J. & Ray Chaudhuri, N. (2008). Eur. J. Inorg. Chem. 2008, 1400-1405.]; Poplaukhin & Tiekink, 2010[Poplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302-1306.]; Panda et al., 2013[Panda, T., Kundu, T. & Banerjee, R. (2013). Chem. Commun. 49, 6197-6199.]; Ju et al., 2016[Ju, H., Park, I.-H., Lee, E., Kim, S., Jung, J. H., Ikeda, M., Habata, Y. & Lee, S. S. (2016). CrystEngComm, 18, 1600-1608.]). Interestingly, a `disappearing supramolecular isomer' in CPs and MOFs is not known, unlike disappearing polymorphs in organic solids.

We have recently encountered two supramolecular isomers in MOFs with the chemical formula [Zn(bpeb)(bdc)] {where bpeb = 1,4-bis[2-(4′-pyridyl)ethenyl]benzene and bdc = 1,4-benzenedicarboxylate; see Fig. 1[link]} (Park et al., 2016[Park, I.-H., Mulijanto, C. E., Lee, H.-H., Kang, Y., Lee, E., Chanthapally, A., Lee, S. S. & Vittal, J. J. (2016). Cryst. Growth Des. 16, 2504-2508.], 2014b[Park, I. H., Chanthapally, A., Zhang, Z., Lee, S. S., Zaworotko, M. J. & Vittal, J. J. (2014b). Angew. Chem. Int. Ed. 53, 414-419.], 2018[Park, I.-H., Ju, H., Kim, K., Lee, S. S. & Vittal, J. J. (2018). IUCrJ, 5, 182-189.]). They have diamondoid (dia) and double-pillared-layer structures [Figs. 1[link](a) and 1[link](b)]. Further, two more isomers are possible for the double-pillared-layer compounds arising from the bdc ligand coordination modes in the [Zn(bdc)] layers (Park et al., 2018[Park, I.-H., Ju, H., Kim, K., Lee, S. S. & Vittal, J. J. (2018). IUCrJ, 5, 182-189.]).

[Figure 1]
Figure 1
The two supramolecular isomers of [Zn(bpeb)(bdc)]. (a) Diamondoid structure. (b) Double-pillared-layer structure. Zn (green), bpeb (blue) and pink (bdc). (c) Ligand and guest structures.

2. Experimental

4.1. General

Powder X-ray diffraction (PXRD) data were recorded on a D5005 Siemens X-ray diffractometer with graphite monochromated Cu  Kα radiation (λ = 1.54056 Å) at room temperature (298 K). 1H-NMR spectra were recorded on a 300 MHz Bruker Advance 300 FT-NMR spectrometer by calibrating the residual solvent as the reference in DMSO-d6 solution. Solid-state diffuse reflectance UV–vis spectra were measured on a UV-2450 Shimadzu UV–vis spectrometer equipped with an integrating sphere and barium sulfate as the reflecting reference. The solid-state fluorescence measurements were made with a Horiba Fluorolog using a solid-state sample holder (excitation wavelength at 350 nm). Thermogravimetric analysis was performed using the Discovery TGA TA instrument under nitrogen gas flow with a heating rate of 5°C min−1 and the data were analysed using TRIOS (version 3.1, TA Instruments). The elemental analysis was performed using the ElementarVario Micro Cube instrument at the Elemental Analysis Lab, CMMAC, Department of Chemistry, National University of Singapore. Confocal microscopy imaging of two-photon-excited MOF crystals was achieved using the Leica TCS SP5 X at the Department of Biological Sciences, National University of Singapore.

Photoluminescence (PL) and two-photon photoluminescence (2PPL) measurements of MOF samples were conducted using a home-built optical setup under microscope (Nikon, Eclipse Ti) conditions. The excitation source is a titanium:sapphire oscillator generated laser with 140 fs pulses and 80 MHz repetition rate. A 10× objective lens (NA 0.3) was placed before the samples to focus the light beam. The MOF samples were placed on a piezo stage (PI P-545). The PL and 2PPL signals were accumulated by the same objective and reflected to the spectrometer by mirrors. The spectra were detected by a monochromator (Acton, Spectra Pro 2300i) assembled CCD (Princeton Instruments, Pixis 100B). For the PL measurement, the 800 nm incident laser light was tuned to 400 nm by a beta barium borate (BBO) crystal. The 400 nm beam was cleaned by a 400/10 nm band pass filter (Thorlabs, FB400-10) before illumination of the samples. The scattering of 400 nm light was blocked by a 450 long pass filter (Newport, 10LWF-450-B) before it entered the spectrometer. For the 2PPL measurement, the 800 nm incident laser light was purified by one 785 nm long pass filter (Semrock, LP02-785RU-25). The reflected incident light was cleared by a 785 short pass filter (Semrock, SP01-785RU-25).

4.2. Synthesis of [Zn(bpeb)(dhbdc)]·xDMA·yH2O (1)

A mixture of bpeb (20.0 mg, 0.070 mmol), 2,5-dihydroxy-1,4,-benzenedicarboxylic acid (H2dhbdc) (13.8 mg, 0.070 mmol) and Zn(NO3)2·4H2O (18.4 mg, 0.070 mmol) dissolved in DMA (3.0 ml), DMSO (0.5 ml) and H2O (1.0 ml) was placed in a 10 ml glass tube, and then 0.1 ml of 0.1M NaOH solution was added. The tube was sealed and kept at 120°C for 48 h, followed by cooling to room temperature over 8 h. The result was yellow block-like crystals of 1 which were suitable for single-crystal X-ray diffraction (SCXRD) analysis. However, under the same reaction conditions, subsequent synthesis yielded only single crystals of 2.

4.3. Synthesis of [Zn2(bpeb)2(dhbdc)2]·3DMA·H2O (2)

A mixture of bpeb (5.6 mg, 0.02 mmol), H2dhbdc (4.0 mg, 0.02 mmol) and Zn(NO3)2·6H2O (12 mg, 0.04 mmol) dissolved in DMA (3.0 ml) and H2O (1.0 ml) was placed in a 20 ml glass tube. The tube was sealed and kept at 90–120°C for 48 h, followed by cooling to room temperature over 8 h. The resulting yellow block-shaped crystals were suitable for SCXRD analysis. Yield = 75%. Anal. Calcd [C56H34N4O12Zn2]: C, 59.57; H, 5.07; N, 7.15. Found: C, 59.21; H, 4.97; N, 7.02%. IR (KBr pellet, cm−1) 3444, 3264, 3030, 2929, 2877, 2781, 2584, 2475, 2287, 2072, 1942, 1844, 1757, 1641, 1608, 1483, 1537, 1371, 1291, 1229, 1202, 1178, 1109, 1066, 1016, 959, 907, 868, 834, 815, 786, 739, 665, 609, 555 and 472. 1H-NMR (300 MHz, ppm): 9.12 (d, 4H, pyridyl protons of bpeb), 8.43 (d, 4H, pyridyl protons of bpeb), 8.10 (d, 2H, olefinic protons of bpeb), 7.90 (s, 4H, phenyl protons of bpeb), 7.71 (d, 2H, olefinic protons of bpeb), 7.32 (s, 2H, phenyl protons of H2dhbdc). Detailed 1H-NMR data are given in Fig. S9.

4.4. Synthesis of [Zn(bpeb)(dhbdc)]0.5perylene·H2O (3)

A mixture of bpeb (5.6 mg, 0.02 mmol), H2dhbdc (4.0 mg, 0.02 mmol), Zn(NO3)2·6H2O (12 mg, 0.04 mmol) and perylene (3.8 mg, 0.015 mmol) dissolved in DMA (3.0 ml) and H2O (1.0 ml) was placed in a 20 ml glass tube. The tube was sealed and kept at 90–120°C for 48 h, followed by cooling to room temperature over 8 h. The resulting orange block-shaped crystals were suitable for SCXRD analysis. Yield = 60%. Anal. Calcd [C38H26N2O6Zn]: C, 67.02; H, 4.00; N, 4.11. Found: C, 66.89; H, 4.13; N, 4.30%. IR (KBr pellet, cm−1) 3447, 3033, 2925, 2840, 2359, 2071, 1942, 1800, 1698, 1484, 1437, 1419, 1384, 1354, 1245, 1207, 1107, 1067, 1029, 962, 909, 866, 816, 788, 666, 601, 551 and 452. 1H NMR (300 MHz, ppm): 8.95 (d, 4H, pyridyl protons of bpeb), 8.43 (d, 4H, phenyl protons of perylene), 8.31 (d, 4H, pyridyl protons of bpeb), 8.12 (d, 2H, olefinic protons of bpeb), 7.95 (s, 4H, phenyl protons of bpeb), 7.86 (d, 4H, phenyl protons of perylene), 7.75 (d, 2H, olefinic protons of bpeb), 7.60 (t, 2H, phenyl protons of perylene), 7.34 (s, 2H, phenyl protons of H2dhbdc). Detailed 1H-NMR data are given in Fig. S10.

4.5. X-ray crystallographic analysis

Crystal data for 1 at 173 K were collected on a Bruker SMART APEX II LTRA diffractometer equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å) generated by a rotating anode. Crystal data for 2 and 3 at 100 K were collected on a four-circle goniometer Kappa geometry Bruker AXS D8 Venture single-crystal X-ray diffractometer equipped with a Photon 100 CMOS active pixel sensor detector with Cu Kα radiation (λ = 1.54178 Å). Data collection, data reduction and absorption correction were carried out using the software packages APEX2 (Bruker, 2009[Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) and APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]). All calculations for the structure determination were carried out using the SHELXTL package (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). Relevant crystal, collection and refinement data for the crystal structures of 13 are summarized in Table S1. The CCDC numbers are 1955177–1955179 for 13.

3. Results and discussion

When bdc is replaced with 2,5-dihydroxy-1,4-benzene dicarboxylate (dhbdc) in the synthesis, in our first attempt we isolated single crystals of [Zn(bpeb)(dhbdc)] (1) with dia topology. Unfortunately, we could not isolate this MOF again in the subsequent synthesis. Instead, we obtained its supramolecular isomer [Zn2(bpeb)2(dhbdc)2] (2), which has a double-pillared-layer structure. However, when perylene was used as an additive, the `disappeared supramolecular isomer' dia serendipitously reappeared with the inclusion of the perylene in the voids as [Zn(bpeb)(dhbdc)]·0.5perylene (3) (i.e. [{\bf 1} \supset {\rm perylene}]). Details of these results are given below.

Yellow block crystals of 1 suitable for SCXRD data collection were obtained under solvothermal conditions from Zn(NO3)2·6H2O, 2-5-dihydroxy-1,4-benzenedicarboxylicacid (H2dhbdc) and bpeb in a mixture of dimethylacetamide (DMA) and water at 90°C for 48 h followed by slow cooling. As mentioned previously, subsequent attempts to reproduce the synthesis of 1 under the same experimental conditions persistently resulted in yellow block crystals of 2. In one of our attempts, we added perylene to the synthesis of 2 and single crystals of 3 were obtained. The purity of the bulk of 2 and 3 was confirmed by comparing the simulated PXRD patterns from the SCXRD data with the bulk samples (Figs. S1 and S2 of the supporting information).

SCXRD experiments carried out at −100°C revealed that 1 crystallized in the monoclinic space group P2/n with Z = 2. The asymmetric unit contains half the formula unit, in which Zn1 sits on the crystallographic twofold axis. Zn1 with a highly distorted tetrahedral geometry [95.6 (1)–123.6 (1)°] is coordinated to two nitrogen atoms of the bpeb spacer ligands and two oxygen atoms of the dhbdc ligands which are disordered [Fig. 2[link](a) and S5]. The Zn1⋯O2 distance of 2.98 Å indicates that the carbonyl oxygen atom is non-bonded. The two hydrogen atoms of the hydroxyl groups are intramolecularly hydrogen-bonded to the non-bonded carbonyl oxygen atoms of the dhbdc ligand. The crystallographic inversion present in the middle of each spacer ligand generates a 3D CP with dia topology as shown in Figs. 2[link](b) and 2[link](c). The large void produced in this connectivity is filled by sixfold interpenetration [Fig. 2[link](d)]. Despite this sixfold interpenetration, 1 has porous channels parallel to the b axis with a solvent accessible void of 25.8% calculated using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), which is less than 30.8% observed for the corresponding MOF with the bdc ligand (Park et al., 2014b[Park, I. H., Chanthapally, A., Zhang, Z., Lee, S. S., Zaworotko, M. J. & Vittal, J. J. (2014b). Angew. Chem. Int. Ed. 53, 414-419.]). The solvents in these channels [Fig. 2[link](d)] were found to be severely disordered water and a small fraction of DMA molecules.

[Figure 2]
Figure 2
Structural details of 1. (a) Coordination environment of Zn1. Symmetry code for A: 1.5 − x, y, 1.5 − z. (b) Single dia unit. (c) View of the dia topology. (d) Packing structure of the sixfold interpenetration shown along the b axis.

The asymmetric unit of 2, which crystallizes in P2/c with Z = 8, contains a formula unit with disordered bpeb ligands (Fig. S6). Interestingly, a bpeb ligand containing N1 and N2 atoms has both trans,trans,trans and trans,cis,trans conformations in the ratio 60 (1):40 (1), respectively, whereas the other bpeb ligand has only trans,trans,trans conformation in 68 (1):32 (1). The dinuclear repeating unit consists of two Zn(II) atoms bridged by two carboxylate groups and each Zn(II) is chelated by a carboxylate group [Fig. 3[link](b)]. The bridging carboxylates display the syn-anti-μ2-η1:η1 bonding mode as seen from two sets of Zn—O—C angles. The [Zn2(O2C-C)2] is roughly in a plane. The exo-carboxylate groups in the para positions of the dhbdc ligands are connected to generate a (4,4) layer structure of [Zn2(dhbdc)2] in the bc plane. In fact, the Zn—bpeb—Zn distance and the diagonal distances between the centres of the Zn2 dimer in the Zn2(dhbdc)2 rhomboidal ring are the a , b and c axes of the unit cell. Further examination reveals that each dhbdc has carboxylate bonding, incorporating both chelating and bridging modes (Park et al., 2018[Park, I.-H., Ju, H., Kim, K., Lee, S. S. & Vittal, J. J. (2018). IUCrJ, 5, 182-189.]). Due to the symmetrical bonding, the (4,4) grid has a rhombus shape with the dimensions 12.71 × 12.71 Å and an angle of 85.1°. The axial positions of the distorted octahedral Zn(II) centres are occupied by the nitrogen atoms of the bpeb ligands. The bpeb ligands act as pillars and connect the [Zn2(dhbdc)2] layers through pyridyl groups to produce double-pillared-layer structures [Fig. 2[link](c)]. The overall structure of 2 has a twofold parallel interpenetration as displayed in Fig. 2[link](d). The total potential solvent area volume as calculated by PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) in 2 is 2135.6 Å3, which is 32.9% of the unit-cell volume 6494.2 Å3.

[Figure 3]
Figure 3
Structural details of 2. (a) Coordination environments of Zn1 and Zn2. Symmetry operations: A: 1 + x, y, z; B: x, −y, −0.5 + z; C: x, 1 −y, 0.5 + z. (b) (4,4) grid showing the rhombus shape formed by Zn2(bdc)2. (c) View of the bpeb orientation and pcu topology. (d) Packing structure showing the twofold interpenetration. For clarity, the disorder and the hydrogen atoms are not shown.

Interestingly, 3 (i.e. [{\bf 1} \supset {\rm perylene}]) crystallizes in C2/c with Z = 8 and one formula unit in the asymmetric unit [Fig. 4[link](a)]. The structure is very similar to that of 1, with sixfold interpenetrated dia network topology [Fig. 4[link](b)] and perylene is present in the channels along the b axis [Fig. 4[link](c)]. However, a detailed analysis by TOPOS (Blatov & Shevchenko, 2006[Blatov, V. A. & Shevchenko, A. P. (2006). TOPOS. Version 4.0. Samara State University, Samara, Russia.]) revealed that 1 belongs to Class Ia with Z = 6[6*1] and 3 belongs to Class IIIa with Z = 6[3*2] (where Z = Zt*Zn; Z is the total degree of interpenetration, Zt is the translational degree of interpenetration and Zn is the non-translational degree of interpenetration) (Blatov et al., 2004[Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). CrystEngComm, 6, 377-395.]). Further, a perylene guest also causes an increase in the crystallographic ordering of the bpeb ligands and a change in the unit cell. It is also noted that perylene interacts via C—H⋯π bonds with adjacent bpeb ligands [Figs. 4[link](a) and 4[link](d)]. We also tried the same synthesis with naphthalene, anthracene and pyrene, as substitutes for perylene, but these resulted in single crystals of only 2 without incorporation of these additives as confirmed by 1H-NMR spectra (Fig. S10). Perylene seems to be the best fit into the channel of 1. Furthermore, we were not able to remove perylene from 3 to obtain 1. Here, the kinetically unstable dia topology in 1 is stabilized by perylene in 3.

[Figure 4]
Figure 4
Structural details of 3. (a) Coordination environment of Zn1 and the weak interaction of perylene with bpeb. (b) Single dia unit with perylene. (c) View of the channels along the b axis occupied by perylene. (d) Infinite pseudo-1D chain showing the C—H⋯π interactions between bpeb and perylene molecules.

Encapsulation of polyacenes in MOF materials is a simple yet powerful way of controlling the assemblies (Noh et al., 2015[Noh, T. H., Lee, H., Jang, J. & Jung, O.-S. (2015). Angew. Chem. Int. Ed. 54, 9284-9288.]; Stone & Anderson, 2007[Stone, M. T. & Anderson, H. L. (2007). Chem. Commun. 2387-2389.]; Hashimoto et al., 1998[Hashimoto, S., Ikuta, S., Asahi, T. & Masuhara, H. (1998). Langmuir, 14, 4284-4291.]; Kitao et al., 2017[Kitao, T., Hongu, R., Kitagawa, S. & Uemura, T. (2017). Chem. Lett. 46, 1705-1707.]). The intermolecular ππ interactions with the hosts directly affect the optical and electronic properties of polyacenes. Hence, precise control of the assembly packing structures is also an effective strategy for tuning and enhancing their functions. Several approaches have been investigated to construct well controlled assemblies (Anthony et al., 2001[Anthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. (2001). J. Am. Chem. Soc. 123, 9482-9483.]; Kitamura et al., 2011[Kitamura, C., Takenaka, A., Kawase, T., Kobayashi, T. & Naito, H. (2011). Chem. Commun. 47, 6653-6655.]; Kobayashi et al., 2005[Kobayashi, K., Masu, H., Shuto, A. & Yamaguchi, K. (2005). Chem. Mater. 17, 6666-6673.]; Mizobe et al., 2009[Mizobe, Y., Hinoue, T., Yamamoto, A., Hisaki, I., Miyata, M., Hasegawa, Y. & Tohnai, N. (2009). Chem. Eur. J. 15, 8175-8184.]; Hinoue et al., 2012[Hinoue, T., Shigenoi, Y., Sugino, M., Mizobe, Y., Hisaki, I., Miyata, M. & Tohnai, N. (2012). Chem. Eur. J. 18, 4634-4643.]; Kishi et al., 2011[Kishi, N., Li, Z., Yoza, K., Akita, M. & Yoshizawa, M. (2011). J. Am. Chem. Soc. 133, 11438-11441.]; Prasad et al., 2018[Prasad, K., Samanta, D., Haldar, R. & Maji, T. K. (2018). Inorg. Chem. 57, 2953-2956.]).

The photoluminescence (PL) spectra of 2 and 3 are shown in Fig. 5[link](a). The solid-state PL emission of 2 at λmax = 539 nm (excitation at 400 nm) is similar to that of the double-pillared-layer MOF 2 [Fig. 1[link](b)] at λmax = 530 nm (excitation at 365 nm) (Park et al., 2018[Park, I.-H., Ju, H., Kim, K., Lee, S. S. & Vittal, J. J. (2018). IUCrJ, 5, 182-189.]). Hence the influence of hydroxyl groups on the PL emission is very minimal although the dhbdc conformation in the [Zn(dhbdc)] chain is different (Fig. S7). It may be assumed that the PL emission of 1, which cannot be measured, is also similar to that of the corresponding diamondoid MOF with the bdc ligand [Zn(bpeb)(bdc)] at λmax = 495 nm (excitation at 365 nm) (Park et al., 2014a[Park, I.-H., Chanthapally, A., Lee, H.-H., Quah, H. S., Lee, S. S. & Vittal, J. J. (2014a). Chem. Commun. 50, 3665-3667.]). Interestingly, the solid-state PL spectra of 3 has four peaks (455, 479, 514 and 550 nm) when excited at 400 nm. The three-finger pattern is that of perylene (at 455, 479 and 514 nm), with a broad peak around 550 nm that can be attributed to the overlap of 3 with the perylene emission. This can be understood from the poor host–guest interactions in 3 as shown in Fig. 4[link](d). Similar perylene-dominated emission has also been observed in other MOFs (Cui et al., 2015[Cui, Y., Song, R., Yu, J., Liu, M., Wang, Z., Wu, C., Yang, Y., Wang, Z., Chen, B. & Qian, G. (2015). Adv. Mater. 27, 1420-1425.]; Chaudhari & Tan, 2018[Chaudhari, A. K. & Tan, J.-C. (2018). Nanoscale, 10, 3953-3960.]). Such emission from guest molecules was not observed when energy transfer occured via the Förster resonance energy transfer mechanism between the host MOFs and the guest molecules due to ππ interactions (Liu et al., 2019[Liu, X.-T., Zhao, B., Zhang, Y.-H., Chen, S.-S., Zhu, J., Chang, Z. & Bu, X.-H. (2019). Cryst. Growth Des. 19, 1391-1398.], 2015[Liu, D., Liu, T.-F., Chen, Y.-P., Zou, L., Feng, D., Wang, K., Zhang, Q., Yuan, S., Zhong, C. & Zhou, H.-C. (2015). J. Am. Chem. Soc. 137, 7740-7746.]; Quah et al., 2015[Quah, H. S., Chen, W., Schreyer, M. K., Yang, H., Wong, M. W., Ji, W. & Vittal, J. J. (2015). Nat. Commun. 6, 7954.]).

[Figure 5]
Figure 5
Solid-state (a) PL spectra and (b) 2PPL spectra of 2 and 3. Confocal microscopic images of (c) 2 and (d) 3. The colours, arbitrarily representative of the intensities, are measured by a photo-multiplier tube counter.

The 2PPL spectra of 2 and 3 are shown in Fig. 5[link](b). Figs. 5[link](c) and 5[link](d) show the bright images captured in the confocal microscope as a two-photon-excited process of 2 and 3. The 2PPL emission of 2 at λmax = 572 nm (excitation at 800 nm) is 33 nm red-shifted compared with the PL emission of 2. The red-shift may be caused by the reabsorption effect (Yu et al., 2013[Yu, J., Cui, Y., Xu, H., Yang, Y., Wang, Z., Chen, B. & Qian, G. (2013). Nat. Commun. 4, 2719.]; Ren et al., 2000[Ren, Y., Fang, Q., Yu, W.-T., Lei, H., Tian, Y.-P., Jiang, M.-H., Yang, Q.-C. & Mak, T. C. W. (2000). J. Mater. Chem. 10, 2025-2030.]; He et al., 2008[He, G. S., Tan, L.-S., Zheng, Q. & Prasad, P. N. (2008). Chem. Rev. 108, 1245-1330.]). The 2PPL emission of 3 agrees well with the PL spectrum [Fig. 5[link](a)]. The first hump peak at 455 nm of perylene in 3 is very weak and thus is observed to overlap with the peak at 480 nm. In particular, the peak at 577 nm of 3 is 27 nm red-shifted similar to 2. As the sizes of the single crystals of 2 and 3 used in the measurements are different, the spectra are shown for the comparison of the peak positions rather than intensity.

4. Conclusions

In summary, similar to the irreproducible `disappearing polymorphism' which often frustrates organic solid-state scientists (Dunitz & Bernstein, 1995[Dunitz, J. D. & Bernstein, J. (1995). Acc. Chem. Res. 28, 193-200.]; Bernstein & Henck, 1998[Bernstein, J. & Henck, J. O. (1998). Cryst. Eng. 1, 119-128.]; Lancaster et al., 2007[Lancaster, R. W., Karamertzanis, P. G., Hulme, A. T., Tocher, D. A., Lewis, T. C. & Price, S. L. (2007). J. Pharm. Sci. 96, 3419-3431.], 2011[Lancaster, R. W., Harris, L. D. & Pearson, D. (2011). CrystEngComm, 13, 1775-1777.]; Bučar et al., 2015[Bučar, D.-K., Lancaster, R. W. & Bernstein, J. (2015). Angew. Chem. Int. Ed. 54, 6972-6993.]), disappearing supramolecular isomerism has now been encountered serendipitously in the rapidly evolving field of CPs and MOFs. The MOF with dia topology could not be reproduced after its first isolation and subsequent attempts resulted in a double-pillared layer which is a supramolecular isomer. To our surprise, this dia topology reappeared when perylene was inadvertently added to the synthesis and included as a guest, [{\bf 1} \supset {\rm perylene}]. On the contrary, it is not clear why bdc readily forms the dia MOF while dhbdc does not. This is probably a new beginning for the realization of such phenomena in CPs and MOFs. Although the irreproducibility of this isomer can be attributed to the lack of insight into subtle experimental conditions (kinetic factors), these results nevertheless provide a new approach that could be utilized to recover not only a `supramolecular isomer', but also polymorphs that have apparently `disappeared'.

Supporting information


Computing details top

For all structures, data collection: Bruker APEX2; cell refinement: Bruker SAINT; data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2014) for (1); SHELXL2014/7 (Sheldrick, 2014) for (2), (3). For all structures, molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

(1) top
Crystal data top
C28H20N2O6ZnF(000) = 560
Mr = 545.83Dx = 1.173 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 14.2399 (5) ÅCell parameters from 8423 reflections
b = 7.5126 (3) Åθ = 2.2–23.9°
c = 14.7479 (5) ŵ = 0.83 mm1
β = 101.6192 (19)°T = 173 K
V = 1545.38 (9) Å3Plate, orange
Z = 20.38 × 0.32 × 0.07 mm
Data collection top
Bruker APEX-II CCD
diffractometer
2543 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
SADABS (Sheldrick, 2015)
θmax = 26.0°, θmin = 1.8°
Tmin = 0.738, Tmax = 0.958h = 1717
18498 measured reflectionsk = 99
3038 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.096P)2 + 0.1602P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3038 reflectionsΔρmax = 0.61 e Å3
205 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.75000.59391 (5)0.75000.0399 (2)
N10.67698 (18)0.4115 (3)0.81157 (17)0.0422 (6)
C10.5818 (2)0.3893 (4)0.7874 (2)0.0454 (7)
H10.54540.47530.75070.054*
C20.5363 (2)0.2440 (4)0.81482 (19)0.0494 (7)
H20.47010.23390.79740.059*
C30.5886 (2)0.1121 (4)0.8684 (2)0.0453 (7)
C40.6877 (2)0.1370 (4)0.8942 (2)0.0549 (8)
H40.72590.05230.93010.066*
C50.7278 (2)0.2873 (4)0.8660 (2)0.0543 (8)
H50.79340.30450.88550.065*
C70.5845 (2)0.1866 (4)0.9391 (2)0.0555 (8)
H70.65120.18440.95210.067*
C60.5409 (2)0.0458 (5)0.8949 (2)0.0536 (8)
H60.47430.04820.87940.064*
C80.5392 (2)0.3455 (5)0.96995 (19)0.0490 (7)
C90.5967 (2)0.4727 (5)1.0208 (2)0.0520 (7)
H90.66260.45421.03550.062*
C100.4403 (2)0.3740 (4)0.9494 (2)0.0487 (7)
H10A0.39970.28970.91590.058*
C110.8748 (4)0.7371 (5)0.8971 (3)0.0896 (15)
C120.9408 (2)0.8721 (4)0.9494 (2)0.0469 (7)
O10.84355 (18)0.7542 (4)0.81757 (15)0.0726 (7)
O20.9000 (4)0.5686 (6)0.9135 (4)0.0744 (18)0.514 (4)
O31.0180 (4)0.6532 (7)1.0645 (3)0.0780 (18)0.514 (4)
H30.98520.58631.02700.117*0.514 (4)
C130.9431 (5)1.0429 (10)0.9165 (4)0.0457 (15)0.514 (4)
H130.91031.06890.85690.055*0.514 (4)
C141.0082 (5)0.8257 (8)1.0313 (4)0.0503 (16)0.514 (4)
O2A0.8065 (3)0.6717 (7)0.9518 (3)0.0664 (16)0.486 (4)
O3A0.8892 (4)0.8152 (9)1.1007 (3)0.089 (2)0.486 (4)
H3A0.85040.75131.06710.133*0.486 (4)
C13A0.9910 (5)0.9746 (11)0.9066 (4)0.0467 (16)0.486 (4)
H13A0.98180.96590.84250.056*0.486 (4)
C14A0.9429 (5)0.9042 (8)1.0489 (4)0.0462 (17)0.486 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0427 (3)0.0341 (3)0.0383 (3)0.0000.00293 (19)0.000
N10.0438 (13)0.0376 (14)0.0431 (13)0.0043 (10)0.0038 (10)0.0025 (10)
C10.0437 (16)0.0490 (18)0.0416 (15)0.0079 (13)0.0039 (12)0.0050 (12)
C20.0402 (15)0.060 (2)0.0452 (15)0.0022 (15)0.0017 (12)0.0028 (14)
C30.0459 (16)0.0420 (18)0.0454 (15)0.0028 (13)0.0026 (13)0.0018 (12)
C40.0461 (17)0.0437 (17)0.069 (2)0.0046 (14)0.0014 (15)0.0160 (15)
C50.0417 (15)0.0468 (19)0.0695 (19)0.0026 (14)0.0001 (14)0.0161 (15)
C70.0488 (17)0.053 (2)0.0648 (19)0.0096 (16)0.0123 (14)0.0002 (17)
C60.0493 (17)0.0575 (19)0.0521 (17)0.0098 (16)0.0059 (14)0.0025 (15)
C80.0514 (18)0.0446 (17)0.0494 (16)0.0126 (15)0.0061 (13)0.0026 (14)
C90.0433 (16)0.0530 (19)0.0575 (17)0.0122 (15)0.0052 (13)0.0016 (16)
C100.0489 (17)0.0436 (17)0.0511 (16)0.0042 (14)0.0041 (13)0.0022 (13)
C110.118 (4)0.056 (2)0.069 (2)0.018 (2)0.042 (2)0.008 (2)
C120.0458 (16)0.0433 (17)0.0441 (15)0.0027 (14)0.0090 (13)0.0034 (13)
O10.0802 (17)0.0816 (18)0.0496 (13)0.0257 (14)0.0022 (12)0.0147 (12)
O20.091 (4)0.046 (3)0.070 (3)0.005 (2)0.025 (3)0.006 (2)
O30.106 (4)0.044 (2)0.064 (3)0.003 (3)0.032 (3)0.005 (2)
C130.051 (4)0.048 (4)0.032 (3)0.004 (3)0.007 (3)0.003 (3)
C140.060 (4)0.041 (3)0.044 (3)0.010 (3)0.001 (3)0.001 (3)
O2A0.059 (3)0.072 (3)0.068 (3)0.031 (3)0.012 (2)0.002 (3)
O3A0.098 (4)0.117 (5)0.055 (3)0.059 (4)0.026 (3)0.004 (3)
C13A0.056 (4)0.056 (4)0.027 (3)0.004 (4)0.005 (3)0.006 (3)
C14A0.040 (3)0.053 (4)0.046 (3)0.010 (3)0.010 (3)0.011 (3)
Geometric parameters (Å, º) top
Zn1—O1i1.919 (2)C10—C9ii1.375 (4)
Zn1—O11.919 (2)C11—O11.174 (4)
Zn1—N12.041 (2)C11—O21.325 (6)
Zn1—N1i2.041 (2)C11—O2A1.468 (7)
N1—C11.340 (4)C11—C121.488 (5)
N1—C51.343 (4)C12—C13A1.297 (8)
C1—C21.371 (4)C12—C131.374 (7)
C2—C31.387 (4)C12—C141.427 (6)
C3—C41.398 (4)C12—C14A1.481 (7)
C3—C61.458 (4)O3—C141.382 (7)
C4—C51.367 (4)C13—C14iii1.354 (9)
C7—C61.329 (5)C14—C13iii1.354 (9)
C7—C81.472 (4)O3A—C14A1.361 (7)
C8—C91.379 (5)C13A—C14Aiii1.378 (9)
C8—C101.395 (4)C14A—C13Aiii1.378 (9)
C9—C10ii1.375 (4)
O1i—Zn1—O1102.28 (17)C9ii—C10—C8119.6 (3)
O1i—Zn1—N1106.85 (11)O1—C11—O2108.8 (4)
O1—Zn1—N1123.57 (10)O1—C11—O2A115.2 (4)
O1i—Zn1—N1i123.57 (10)O1—C11—C12121.0 (4)
O1—Zn1—N1i106.84 (11)O2—C11—C12115.9 (4)
N1—Zn1—N1i95.62 (13)O2A—C11—C12111.2 (4)
C1—N1—C5117.8 (2)C13—C12—C14117.8 (4)
C1—N1—Zn1122.92 (19)C13A—C12—C14A118.8 (4)
C5—N1—Zn1118.1 (2)C13A—C12—C11120.3 (4)
N1—C1—C2122.2 (3)C13—C12—C11120.8 (3)
C1—C2—C3120.4 (3)C14—C12—C11121.3 (4)
C2—C3—C4117.1 (3)C14A—C12—C11120.6 (4)
C2—C3—C6120.6 (3)C11—O1—Zn1122.3 (3)
C4—C3—C6122.3 (3)C14iii—C13—C12121.8 (5)
C5—C4—C3119.2 (3)C13iii—C14—O3118.6 (5)
N1—C5—C4123.2 (3)C13iii—C14—C12118.9 (5)
C6—C7—C8127.3 (3)O3—C14—C12122.1 (5)
C7—C6—C3125.6 (3)C12—C13A—C14Aiii123.4 (5)
C9—C8—C10118.3 (3)O3A—C14A—C13Aiii117.6 (5)
C9—C8—C7118.7 (3)O3A—C14A—C12125.1 (5)
C10—C8—C7122.9 (3)C13Aiii—C14A—C12117.1 (5)
C10ii—C9—C8122.0 (3)
Symmetry codes: (i) x+3/2, y, z+3/2; (ii) x+1, y1, z+2; (iii) x+2, y+2, z+2.
(2) top
Crystal data top
C56H40N4O12Zn2F(000) = 2240
Mr = 1091.66Dx = 1.117 Mg m3
Monoclinic, P2/cCu Kα radiation, λ = 1.54178 Å
a = 20.1826 (9) ÅCell parameters from 9672 reflections
b = 18.7307 (7) Åθ = 4.1–66.8°
c = 17.1854 (6) ŵ = 1.35 mm1
β = 91.583 (2)°T = 100 K
V = 6494.2 (4) Å3Block, orange
Z = 40.25 × 0.24 × 0.09 mm
Data collection top
Bruker d8 venture
diffractometer
7776 reflections with I > 2σ(I)
φ and ω scansRint = 0.067
Absorption correction: multi-scan
SADABS (Sheldrick, 2014)
θmax = 66.9°, θmin = 2.4°
Tmin = 0.503, Tmax = 0.753h = 2024
49531 measured reflectionsk = 2222
11297 independent reflectionsl = 2020
Refinement top
Refinement on F2587 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.240 w = 1/[σ2(Fo2) + (0.1336P)2 + 4.0887P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
11297 reflectionsΔρmax = 0.59 e Å3
648 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.67056 (3)0.17754 (2)0.41864 (3)0.0388 (2)
Zn20.66978 (3)0.32228 (2)0.58809 (3)0.0367 (2)
O10.66799 (18)0.14304 (14)0.53157 (15)0.0508 (8)
O20.67603 (18)0.22206 (14)0.62771 (17)0.0542 (8)
O30.67007 (18)0.04958 (19)0.90201 (16)0.0599 (9)
O40.67214 (17)0.12940 (16)0.80878 (18)0.0543 (8)
O50.66959 (19)0.00667 (14)0.56218 (15)0.0527 (8)
H50.66900.04240.53260.079*
O60.67456 (19)0.08606 (18)0.87205 (15)0.0594 (9)
H60.67430.04950.90040.089*
O70.67744 (19)0.27798 (14)0.38133 (17)0.0568 (9)
O80.66507 (17)0.35763 (14)0.47573 (15)0.0494 (8)
O90.67261 (18)0.62750 (17)0.19563 (19)0.0572 (8)
O100.67067 (19)0.5468 (2)0.10315 (17)0.0656 (10)
O110.66846 (18)0.49412 (14)0.44358 (15)0.0511 (8)
H110.66820.45900.47390.077*
O120.67509 (19)0.41149 (18)0.13521 (15)0.0604 (9)
H120.67510.44770.10640.091*
N10.5647 (2)0.18315 (17)0.41484 (19)0.0451 (9)
C10.5275 (3)0.1410 (3)0.4578 (3)0.0602 (12)
H10.54900.10630.48990.072*
C20.4595 (3)0.1448 (4)0.4584 (3)0.0759 (16)
H20.43550.11380.49090.091*
C30.4263 (3)0.1934 (4)0.4121 (4)0.0795 (19)
C40.4664 (4)0.2370 (3)0.3652 (4)0.0801 (18)
H40.44630.27160.33160.096*
C50.5320 (3)0.2297 (3)0.3680 (3)0.0627 (14)
H5A0.55740.25920.33500.075*
C60.3570 (5)0.2087 (7)0.3978 (8)0.105 (4)*0.683 (13)
H6A0.34430.24440.36110.126*0.683 (13)
C70.3116 (5)0.1741 (6)0.4347 (7)0.095 (4)*0.683 (13)
H70.32770.14040.47200.114*0.683 (13)
C80.2412 (5)0.1796 (6)0.4271 (6)0.091 (3)*0.683 (13)
C90.2116 (7)0.2289 (7)0.3797 (8)0.122 (5)*0.683 (13)
H90.23830.26070.35110.146*0.683 (13)
C100.1414 (7)0.2340 (9)0.3720 (10)0.147 (6)*0.683 (13)
H100.12060.26720.33750.176*0.683 (13)
C110.1045 (7)0.1876 (9)0.4179 (11)0.136 (5)*0.683 (13)
C120.1340 (9)0.1326 (12)0.4610 (13)0.186 (9)*0.683 (13)
H12A0.10800.09690.48480.224*0.683 (13)
C130.2043 (7)0.1319 (9)0.4683 (9)0.141 (6)*0.683 (13)
H130.22580.09820.50180.169*0.683 (13)
C140.0320 (7)0.1921 (17)0.4034 (17)0.211 (13)*0.683 (13)
H140.01670.21740.35850.253*0.683 (13)
C150.0112 (7)0.1646 (18)0.4467 (19)0.233 (17)*0.683 (13)
H150.00420.13710.49000.280*0.683 (13)
N20.2223 (2)0.1742 (2)0.4257 (2)0.0595 (11)
C160.1898 (4)0.1314 (5)0.4750 (4)0.105 (2)
H160.21470.10100.50750.126*
C170.1217 (5)0.1289 (6)0.4814 (6)0.143 (4)
H170.10070.09760.51780.171*
C180.0837 (4)0.1723 (6)0.4344 (7)0.131 (4)
C190.1176 (4)0.2160 (5)0.3840 (7)0.125 (3)
H190.09380.24770.35190.150*
C200.1863 (4)0.2149 (4)0.3789 (5)0.099 (2)
H200.20850.24390.34100.119*
N30.7763 (7)0.3266 (7)0.5819 (9)0.056 (6)0.601 (12)
C210.8156 (7)0.2810 (7)0.6199 (9)0.099 (5)*0.601 (12)
H210.79560.24590.65150.119*0.601 (12)
C220.8845 (8)0.2815 (8)0.6164 (10)0.119 (5)*0.601 (12)
H220.91080.24740.64420.143*0.601 (12)
C230.9137 (6)0.3338 (8)0.5707 (10)0.115 (5)*0.601 (12)
C240.8716 (6)0.3815 (9)0.5324 (8)0.108 (4)*0.601 (12)
H240.89000.41850.50200.129*0.601 (12)
C250.8035 (6)0.3765 (7)0.5375 (7)0.081 (3)*0.601 (12)
H250.77580.40890.50910.097*0.601 (12)
C260.9853 (6)0.3379 (10)0.5651 (11)0.136 (6)*0.601 (12)
H261.00010.37230.52890.163*0.601 (12)
C271.0310 (6)0.3041 (14)0.5996 (13)0.149 (8)*0.601 (12)
H271.02080.27130.63970.179*0.601 (12)
C281.1028 (6)0.3158 (10)0.5774 (11)0.119 (5)*0.601 (12)
C291.1312 (9)0.3653 (11)0.5301 (12)0.182 (9)*0.601 (12)
H291.10320.39680.50090.218*0.601 (12)
C301.2007 (8)0.3712 (10)0.5230 (11)0.151 (7)*0.601 (12)
H301.22010.40610.49050.182*0.601 (12)
C311.2392 (6)0.3229 (8)0.5664 (9)0.105 (4)*0.601 (12)
C321.2117 (9)0.2730 (11)0.6154 (12)0.148 (7)*0.601 (12)
H321.23890.24030.64400.178*0.601 (12)
C331.1419 (10)0.2721 (13)0.6219 (15)0.186 (10)*0.601 (12)
H331.12210.24050.65780.223*0.601 (12)
C341.3099 (5)0.3262 (6)0.5588 (7)0.087 (4)*0.601 (12)
H341.32520.35740.51960.105*0.601 (12)
C351.3550 (5)0.2926 (9)0.5980 (9)0.110 (5)*0.601 (12)
H351.34290.25800.63540.131*0.601 (12)
N41.5641 (2)0.31673 (17)0.58738 (18)0.0418 (8)
C361.5260 (3)0.3587 (3)0.5421 (3)0.0608 (13)
H361.54720.39270.51030.073*
C371.4583 (3)0.3556 (4)0.5388 (3)0.0760 (16)
H371.43380.38650.50490.091*
C381.4258 (3)0.3075 (3)0.5850 (4)0.0733 (16)
C391.4666 (3)0.2640 (3)0.6331 (4)0.0798 (18)
H391.44710.22990.66630.096*
C401.5324 (3)0.2705 (3)0.6324 (3)0.0570 (12)
H401.55820.24050.66590.068*
C6A0.3538 (6)0.1818 (9)0.4252 (10)0.066 (5)*0.317 (13)
H6B0.34020.14940.46430.079*0.317 (13)
C7A0.3099 (6)0.2157 (8)0.3835 (9)0.065 (5)*0.317 (13)
H7A0.32690.24750.34590.078*0.317 (13)
C8A0.2386 (7)0.2120 (10)0.3861 (11)0.095 (8)*0.317 (13)
C9A0.2035 (12)0.1703 (15)0.4354 (16)0.119 (10)*0.317 (13)
H9A0.22790.14180.47180.142*0.317 (13)
C10A0.1339 (13)0.167 (2)0.436 (2)0.150 (14)*0.317 (13)
H10A0.11230.13660.47230.179*0.317 (13)
C11A0.0971 (8)0.2082 (16)0.3826 (17)0.118 (10)*0.317 (13)
C12A0.1314 (11)0.2600 (17)0.341 (2)0.153 (14)*0.317 (13)
H12B0.10800.29700.31410.184*0.317 (13)
C13A0.2009 (11)0.2562 (15)0.3387 (17)0.131 (11)*0.317 (13)
H13A0.22300.28580.30270.157*0.317 (13)
C14A0.0235 (9)0.210 (2)0.383 (2)0.150 (15)*0.317 (13)
H14A0.00120.24220.34820.179*0.317 (13)
C15A0.0117 (7)0.1727 (16)0.4278 (19)0.099 (9)*0.317 (13)
H15A0.01200.14050.46100.119*0.317 (13)
N3A0.7750 (10)0.3219 (13)0.5890 (12)0.055 (9)*0.399 (12)
C21A0.8137 (9)0.3502 (11)0.5334 (10)0.088 (6)*0.399 (12)
H21A0.79280.37560.49150.105*0.399 (12)
C22A0.8833 (9)0.3438 (13)0.5347 (11)0.110 (7)*0.399 (12)
H22A0.90880.36410.49470.132*0.399 (12)
C23A0.9137 (7)0.3068 (15)0.5966 (12)0.110 (7)*0.399 (12)
C24A0.8750 (9)0.2771 (12)0.6539 (13)0.109 (7)*0.399 (12)
H24A0.89500.25210.69650.131*0.399 (12)
C25A0.8063 (8)0.2847 (10)0.6476 (11)0.080 (5)*0.399 (12)
H25A0.78000.26290.68590.096*0.399 (12)
C26A0.9833 (8)0.295 (3)0.620 (2)0.27 (3)*0.399 (12)
H26A0.99140.27280.66880.322*0.399 (12)
C27A1.0338 (9)0.312 (5)0.582 (4)0.40 (6)*0.399 (12)
H27A1.02720.33780.53470.481*0.399 (12)
C28A1.1026 (6)0.2942 (13)0.6069 (14)0.106 (7)*0.399 (12)
C29A1.1373 (11)0.2444 (14)0.6482 (15)0.155 (11)*0.399 (12)
H29A1.11380.20990.67710.186*0.399 (12)
C30A1.2071 (12)0.2420 (14)0.6497 (16)0.186 (15)*0.399 (12)
H30A1.23090.20580.67730.223*0.399 (12)
C31A1.2396 (7)0.2949 (13)0.6092 (13)0.105 (7)*0.399 (12)
C32A1.2058 (12)0.3417 (15)0.5592 (16)0.144 (10)*0.399 (12)
H32A1.22850.37110.52360.173*0.399 (12)
C33A1.1360 (12)0.3432 (19)0.564 (2)0.217 (19)*0.399 (12)
H33A1.11160.37930.53710.260*0.399 (12)
C34A1.3108 (6)0.2867 (10)0.6145 (10)0.094 (6)*0.399 (12)
H34A1.32800.25520.65340.113*0.399 (12)
C35A1.3532 (6)0.3182 (10)0.5712 (10)0.083 (5)*0.399 (12)
H35A1.33800.34860.53020.099*0.399 (12)
C410.6725 (2)0.1599 (2)0.6015 (2)0.0380 (9)
C420.6727 (2)0.10091 (19)0.6602 (2)0.0350 (8)
C430.6737 (2)0.1179 (2)0.7391 (2)0.0403 (9)
H430.67450.16670.75420.048*
C440.6736 (2)0.0660 (2)0.7958 (2)0.0450 (10)
C450.6730 (2)0.0065 (2)0.7730 (2)0.0394 (9)
C460.6720 (2)0.0236 (2)0.6941 (2)0.0396 (9)
H460.67160.07230.67880.047*
C470.6715 (2)0.0288 (2)0.6379 (2)0.0374 (9)
C480.6720 (2)0.0657 (3)0.8317 (3)0.0510 (11)
C490.6711 (2)0.3399 (2)0.4059 (2)0.0388 (9)
C500.6718 (2)0.39889 (19)0.3468 (2)0.0356 (8)
C510.6711 (2)0.4705 (2)0.36861 (19)0.0409 (9)
C520.6717 (2)0.5230 (2)0.3109 (2)0.0404 (9)
H520.67110.57200.32550.048*
C530.6733 (2)0.5052 (2)0.2331 (2)0.0403 (9)
C540.6741 (2)0.4324 (2)0.2114 (2)0.0440 (10)
C550.6738 (2)0.3811 (2)0.2688 (2)0.0394 (9)
H550.67500.33210.25440.047*
C560.6723 (2)0.5643 (3)0.1742 (3)0.0546 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0710 (4)0.0180 (3)0.0274 (3)0.0004 (2)0.0033 (2)0.00003 (16)
Zn20.0656 (4)0.0175 (3)0.0270 (3)0.0011 (2)0.0024 (2)0.00007 (16)
O10.094 (2)0.0269 (14)0.0313 (13)0.0022 (14)0.0034 (13)0.0029 (10)
O20.090 (2)0.0250 (14)0.0476 (15)0.0029 (14)0.0056 (15)0.0012 (12)
O30.077 (2)0.066 (2)0.0375 (14)0.0058 (17)0.0063 (14)0.0180 (14)
O40.071 (2)0.0381 (17)0.0537 (16)0.0007 (14)0.0048 (15)0.0199 (13)
O50.103 (3)0.0242 (14)0.0305 (13)0.0053 (14)0.0016 (14)0.0003 (10)
O60.098 (3)0.0525 (19)0.0283 (13)0.0035 (17)0.0034 (14)0.0031 (12)
O70.101 (3)0.0232 (14)0.0470 (16)0.0020 (15)0.0128 (16)0.0013 (12)
O80.089 (2)0.0283 (14)0.0311 (13)0.0067 (14)0.0060 (13)0.0042 (10)
O90.071 (2)0.0387 (18)0.0624 (18)0.0021 (15)0.0050 (15)0.0254 (14)
O100.083 (3)0.075 (2)0.0389 (15)0.0061 (19)0.0012 (15)0.0244 (16)
O110.100 (3)0.0240 (13)0.0298 (13)0.0002 (14)0.0073 (13)0.0006 (10)
O120.097 (3)0.0566 (19)0.0278 (13)0.0022 (18)0.0045 (14)0.0039 (12)
N10.073 (3)0.0304 (17)0.0322 (15)0.0036 (16)0.0023 (15)0.0043 (12)
C10.070 (4)0.058 (3)0.053 (2)0.000 (2)0.007 (2)0.003 (2)
C20.077 (4)0.085 (4)0.066 (3)0.009 (3)0.009 (3)0.021 (3)
C30.067 (4)0.071 (4)0.099 (4)0.020 (3)0.023 (3)0.040 (4)
C40.093 (5)0.053 (3)0.093 (4)0.004 (3)0.022 (4)0.015 (3)
C50.082 (4)0.046 (3)0.060 (3)0.014 (2)0.015 (2)0.010 (2)
N20.070 (3)0.048 (2)0.061 (2)0.0027 (19)0.004 (2)0.0060 (17)
C160.087 (5)0.137 (7)0.092 (5)0.016 (5)0.002 (4)0.028 (5)
C170.100 (7)0.187 (12)0.142 (8)0.027 (7)0.005 (6)0.027 (8)
C180.077 (6)0.148 (9)0.168 (10)0.005 (6)0.017 (6)0.009 (7)
C190.092 (6)0.096 (6)0.188 (10)0.014 (5)0.041 (6)0.003 (6)
C200.091 (5)0.092 (5)0.116 (6)0.010 (4)0.024 (4)0.013 (4)
N30.081 (10)0.035 (5)0.052 (6)0.001 (3)0.015 (4)0.003 (3)
N40.062 (2)0.0331 (17)0.0302 (15)0.0002 (15)0.0015 (14)0.0015 (12)
C360.067 (4)0.067 (3)0.048 (2)0.007 (3)0.004 (2)0.002 (2)
C370.074 (4)0.092 (4)0.061 (3)0.014 (3)0.006 (3)0.011 (3)
C380.062 (4)0.068 (4)0.091 (4)0.012 (3)0.011 (3)0.030 (3)
C390.089 (5)0.045 (3)0.108 (5)0.005 (3)0.036 (4)0.008 (3)
C400.066 (3)0.047 (3)0.058 (3)0.007 (2)0.016 (2)0.007 (2)
C410.051 (2)0.033 (2)0.0306 (17)0.0007 (17)0.0015 (15)0.0034 (15)
C420.047 (2)0.0247 (18)0.0334 (17)0.0014 (15)0.0001 (15)0.0014 (14)
C430.063 (3)0.0231 (17)0.0349 (17)0.0022 (17)0.0041 (17)0.0005 (14)
C440.072 (3)0.035 (2)0.0291 (17)0.0059 (19)0.0068 (17)0.0031 (15)
C450.048 (2)0.033 (2)0.0371 (19)0.0004 (16)0.0015 (16)0.0085 (15)
C460.056 (3)0.0226 (18)0.0398 (19)0.0005 (16)0.0030 (17)0.0061 (14)
C470.056 (3)0.0273 (19)0.0295 (16)0.0017 (16)0.0044 (15)0.0011 (14)
C480.052 (3)0.054 (3)0.047 (2)0.005 (2)0.0057 (19)0.019 (2)
C490.061 (3)0.0282 (19)0.0275 (16)0.0019 (17)0.0007 (16)0.0052 (14)
C500.052 (2)0.0238 (18)0.0312 (16)0.0010 (15)0.0019 (15)0.0018 (13)
C510.072 (3)0.0262 (19)0.0246 (16)0.0006 (17)0.0018 (16)0.0001 (13)
C520.065 (3)0.0213 (18)0.0345 (18)0.0035 (17)0.0027 (17)0.0070 (14)
C530.055 (3)0.035 (2)0.0315 (17)0.0014 (17)0.0044 (16)0.0087 (15)
C540.060 (3)0.042 (2)0.0306 (17)0.0013 (19)0.0039 (17)0.0002 (15)
C550.058 (3)0.0258 (18)0.0342 (17)0.0019 (17)0.0004 (16)0.0009 (14)
C560.058 (3)0.057 (3)0.049 (2)0.002 (2)0.001 (2)0.027 (2)
Geometric parameters (Å, º) top
Zn1—O71.994 (3)C26—C271.254 (15)
Zn1—O12.047 (3)C27—C281.525 (14)
Zn1—O4i2.093 (3)C28—C331.358 (15)
Zn1—N12.138 (4)C28—C291.370 (15)
Zn1—N2ii2.163 (5)C29—C301.416 (15)
Zn1—O3i2.414 (4)C30—C311.397 (15)
Zn1—C48i2.574 (4)C31—C321.385 (15)
Zn2—O22.000 (3)C31—C341.437 (12)
Zn2—O82.041 (3)C32—C331.417 (16)
Zn2—O9iii2.073 (3)C34—C351.282 (14)
Zn2—N3A2.12 (2)C35—C381.479 (12)
Zn2—N4iv2.134 (4)N4—C361.335 (6)
Zn2—N32.157 (15)N4—C401.337 (6)
Zn2—O10iii2.466 (4)N4—Zn2ii2.134 (4)
Zn2—C56iii2.588 (4)C36—C371.366 (8)
O1—C411.244 (4)C37—C381.380 (9)
O2—C411.249 (5)C38—C391.409 (10)
O3—C481.247 (5)C38—C35A1.492 (13)
O3—Zn1v2.414 (4)C39—C401.333 (9)
O4—C481.257 (6)C6A—C7A1.291 (15)
O4—Zn1v2.093 (3)C7A—C8A1.443 (13)
O5—C471.365 (4)C8A—C9A1.365 (15)
O6—C441.363 (5)C8A—C13A1.377 (16)
O7—C491.242 (5)C9A—C10A1.407 (17)
O8—C491.254 (4)C10A—C11A1.405 (16)
O9—C561.239 (6)C11A—C12A1.402 (16)
O9—Zn2vi2.073 (3)C11A—C14A1.487 (15)
O10—C561.264 (6)C12A—C13A1.405 (17)
O10—Zn2vi2.466 (4)C14A—C15A1.271 (17)
O11—C511.365 (4)N3A—C21A1.360 (15)
O12—C541.368 (5)N3A—C25A1.364 (15)
N1—C11.328 (6)C21A—C22A1.409 (16)
N1—C51.347 (6)C22A—C23A1.398 (16)
C1—C21.374 (8)C23A—C24A1.389 (16)
C2—C31.370 (10)C23A—C26A1.466 (15)
C3—C41.417 (10)C24A—C25A1.396 (15)
C3—C61.443 (11)C26A—C27A1.266 (18)
C3—C6A1.503 (13)C27A—C28A1.480 (16)
C4—C51.332 (9)C28A—C29A1.356 (16)
C6—C71.300 (13)C28A—C33A1.363 (16)
C7—C81.428 (11)C29A—C30A1.409 (17)
C8—C91.359 (13)C30A—C31A1.386 (16)
C8—C131.373 (13)C31A—C32A1.392 (16)
C9—C101.422 (15)C31A—C34A1.445 (13)
C10—C111.402 (14)C32A—C33A1.415 (17)
C11—C121.392 (15)C34A—C35A1.293 (15)
C11—C141.480 (14)C41—C421.497 (5)
C12—C131.420 (15)C42—C431.392 (5)
C14—C151.271 (16)C42—C471.404 (5)
C15—C181.480 (14)C43—C441.376 (5)
N2—C161.327 (8)C44—C451.414 (6)
N2—C201.337 (8)C45—C461.393 (5)
N2—Zn1iv2.163 (5)C45—C481.499 (5)
C16—C171.376 (11)C46—C471.377 (5)
C17—C181.390 (11)C48—Zn1v2.574 (4)
C18—C191.362 (11)C49—C501.502 (5)
C18—C15A1.462 (14)C50—C551.382 (5)
C19—C201.388 (10)C50—C511.393 (5)
N3—C211.324 (13)C51—C521.397 (5)
N3—C251.335 (13)C52—C531.380 (5)
C21—C221.395 (14)C53—C541.414 (6)
C22—C231.396 (14)C53—C561.501 (5)
C23—C241.386 (14)C54—C551.377 (5)
C23—C261.453 (13)C56—Zn2vi2.588 (4)
C24—C251.384 (13)
O7—Zn1—O1127.34 (12)C33—C28—C27108.3 (15)
O7—Zn1—O4i96.52 (13)C29—C28—C27131.5 (15)
O1—Zn1—O4i136.08 (12)C28—C29—C30122.4 (16)
O7—Zn1—N191.27 (14)C31—C30—C29116.2 (15)
O1—Zn1—N189.60 (13)C32—C31—C30122.4 (13)
O4i—Zn1—N191.93 (13)C32—C31—C34120.1 (13)
O7—Zn1—N2ii88.13 (15)C30—C31—C34117.5 (13)
O1—Zn1—N2ii89.37 (15)C31—C32—C33118.3 (15)
O4i—Zn1—N2ii89.88 (14)C28—C33—C32120.7 (16)
N1—Zn1—N2ii178.15 (13)C35—C34—C31128.5 (12)
O7—Zn1—O3i154.03 (11)C34—C35—C38120.3 (12)
O1—Zn1—O3i78.39 (10)C36—N4—C40116.1 (5)
O4i—Zn1—O3i57.69 (11)C36—N4—Zn2ii122.3 (3)
N1—Zn1—O3i92.54 (12)C40—N4—Zn2ii121.5 (3)
N2ii—Zn1—O3i88.76 (13)N4—C36—C37124.0 (5)
O7—Zn1—C48i125.41 (14)C36—C37—C38119.6 (6)
O1—Zn1—C48i107.11 (13)C37—C38—C39115.8 (5)
O4i—Zn1—C48i28.97 (14)C37—C38—C35133.3 (8)
N1—Zn1—C48i92.85 (14)C39—C38—C35110.8 (8)
N2ii—Zn1—C48i88.92 (15)C37—C38—C35A107.5 (8)
O3i—Zn1—C48i28.72 (13)C39—C38—C35A136.6 (8)
O2—Zn2—O8128.86 (11)C40—C39—C38120.5 (5)
O2—Zn2—O9iii97.04 (13)C39—C40—N4123.9 (5)
O8—Zn2—O9iii134.08 (13)C7A—C6A—C3120.1 (13)
O2—Zn2—N3A86.6 (6)C6A—C7A—C8A129.0 (15)
O8—Zn2—N3A91.7 (5)C9A—C8A—C13A115.1 (16)
O9iii—Zn2—N3A89.5 (7)C9A—C8A—C7A125.6 (17)
O2—Zn2—N4iv90.57 (14)C13A—C8A—C7A119.3 (18)
O8—Zn2—N4iv89.43 (13)C8A—C9A—C10A124.8 (18)
O9iii—Zn2—N4iv91.73 (13)C11A—C10A—C9A118.3 (18)
N3A—Zn2—N4iv177.0 (7)C12A—C11A—C10A117.5 (17)
O2—Zn2—N389.9 (4)C12A—C11A—C14A119 (2)
O8—Zn2—N387.8 (4)C10A—C11A—C14A121.4 (19)
O9iii—Zn2—N391.4 (4)C11A—C12A—C13A119.1 (18)
N4iv—Zn2—N3176.8 (4)C8A—C13A—C12A123.4 (18)
O2—Zn2—O10iii153.85 (11)C15A—C14A—C11A124 (2)
O8—Zn2—O10iii77.10 (10)C14A—C15A—C18128 (2)
O9iii—Zn2—O10iii56.99 (12)C21A—N3A—C25A117.0 (16)
N3A—Zn2—O10iii89.9 (7)C21A—N3A—Zn2126.0 (13)
N4iv—Zn2—O10iii93.06 (12)C25A—N3A—Zn2116.8 (13)
N3—Zn2—O10iii87.9 (4)N3A—C21A—C22A123.2 (16)
O2—Zn2—C56iii125.15 (14)C23A—C22A—C21A118.1 (15)
O8—Zn2—C56iii105.92 (14)C24A—C23A—C22A119.6 (15)
O9iii—Zn2—C56iii28.16 (15)C24A—C23A—C26A107.5 (17)
N3A—Zn2—C56iii89.7 (7)C22A—C23A—C26A132.8 (18)
N4iv—Zn2—C56iii92.71 (14)C23A—C24A—C25A118.7 (15)
N3—Zn2—C56iii89.6 (4)N3A—C25A—C24A123.3 (16)
O10iii—Zn2—C56iii28.83 (14)C27A—C26A—C23A127 (2)
C41—O1—Zn1146.4 (3)C26A—C27A—C28A124 (2)
C41—O2—Zn2138.6 (3)C29A—C28A—C33A119.2 (16)
C48—O3—Zn1v82.8 (3)C29A—C28A—C27A141 (3)
C48—O4—Zn1v97.3 (3)C33A—C28A—C27A99 (2)
C49—O7—Zn1139.7 (3)C28A—C29A—C30A122.3 (18)
C49—O8—Zn2144.7 (3)C31A—C30A—C29A117.0 (17)
C56—O9—Zn2vi99.7 (3)C30A—C31A—C32A121.9 (16)
C56—O10—Zn2vi80.9 (3)C30A—C31A—C34A112.0 (18)
C1—N1—C5116.3 (5)C32A—C31A—C34A125.1 (17)
C1—N1—Zn1122.2 (3)C31A—C32A—C33A116.6 (17)
C5—N1—Zn1121.5 (4)C28A—C33A—C32A121.8 (18)
N1—C1—C2123.5 (5)C35A—C34A—C31A126.0 (15)
C3—C2—C1120.2 (6)C34A—C35A—C38120.7 (14)
C2—C3—C4115.8 (6)O1—C41—O2125.9 (4)
C2—C3—C6133.4 (8)O1—C41—C42117.6 (3)
C4—C3—C6110.7 (7)O2—C41—C42116.5 (3)
C2—C3—C6A106.3 (8)C43—C42—C47119.1 (3)
C4—C3—C6A137.9 (8)C43—C42—C41119.2 (3)
C5—C4—C3120.2 (6)C47—C42—C41121.7 (3)
C4—C5—N1123.9 (6)C44—C43—C42121.9 (3)
C7—C6—C3120.7 (11)O6—C44—C43119.1 (4)
C6—C7—C8129.2 (11)O6—C44—C45122.1 (3)
C9—C8—C13121.1 (12)C43—C44—C45118.8 (3)
C9—C8—C7121.6 (10)C46—C45—C44119.4 (3)
C13—C8—C7117.4 (11)C46—C45—C48119.0 (4)
C8—C9—C10121.4 (13)C44—C45—C48121.6 (4)
C11—C10—C9116.7 (14)C47—C46—C45121.2 (4)
C12—C11—C10122.1 (14)O5—C47—C46116.8 (3)
C12—C11—C14122.6 (15)O5—C47—C42123.6 (3)
C10—C11—C14114.1 (15)C46—C47—C42119.6 (3)
C11—C12—C13117.8 (15)O3—C48—O4122.2 (4)
C8—C13—C12120.2 (14)O3—C48—C45118.4 (4)
C15—C14—C11124.7 (19)O4—C48—C45119.4 (4)
C14—C15—C18124.7 (19)O3—C48—Zn1v68.5 (2)
C16—N2—C20117.5 (6)O4—C48—Zn1v53.8 (2)
C16—N2—Zn1iv122.0 (4)C45—C48—Zn1v173.2 (3)
C20—N2—Zn1iv120.5 (5)O7—C49—O8125.9 (3)
N2—C16—C17123.1 (8)O7—C49—C50117.0 (3)
C16—C17—C18120.0 (9)O8—C49—C50117.1 (3)
C19—C18—C17116.4 (8)C55—C50—C51119.6 (3)
C19—C18—C15A115.5 (13)C55—C50—C49118.7 (3)
C17—C18—C15A127.9 (13)C51—C50—C49121.7 (3)
C19—C18—C15128.8 (12)O11—C51—C50124.5 (3)
C17—C18—C15114.8 (12)O11—C51—C52116.3 (3)
C18—C19—C20121.0 (8)C50—C51—C52119.1 (3)
N2—C20—C19121.9 (8)C53—C52—C51121.2 (4)
C21—N3—C25118.9 (14)C52—C53—C54119.4 (3)
C21—N3—Zn2122.4 (10)C52—C53—C56118.3 (4)
C25—N3—Zn2118.7 (10)C54—C53—C56122.3 (4)
N3—C21—C22124.0 (13)O12—C54—C55119.1 (4)
C21—C22—C23117.8 (13)O12—C54—C53122.0 (3)
C24—C23—C22117.2 (12)C55—C54—C53118.9 (3)
C24—C23—C26122.1 (13)C54—C55—C50121.8 (3)
C22—C23—C26120.7 (13)O9—C56—O10122.4 (4)
C25—C24—C23121.6 (12)O9—C56—C53120.3 (4)
N3—C25—C24120.5 (12)O10—C56—C53117.3 (4)
C27—C26—C23131.3 (16)O9—C56—Zn2vi52.2 (2)
C26—C27—C28120.0 (16)O10—C56—Zn2vi70.2 (2)
C33—C28—C29119.8 (14)C53—C56—Zn2vi172.4 (4)
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z; (iii) x, y+1, z+1/2; (iv) x1, y, z; (v) x, y, z+1/2; (vi) x, y+1, z1/2.
(3) top
Crystal data top
C38H26N2O6ZnF(000) = 2768
Mr = 671.98Dx = 1.421 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 28.180 (4) ÅCell parameters from 589 reflections
b = 14.880 (2) Åθ = 3.5–25.7°
c = 18.158 (3) ŵ = 1.52 mm1
β = 124.421 (6)°T = 100 K
V = 6280.7 (17) Å3Prism, yellow
Z = 80.17 × 0.15 × 0.10 mm
Data collection top
Bruker APEX-II CCD
diffractometer
4436 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
Sadabs (Sheldrick, 2014)
θmax = 75.0°, θmin = 4.9°
Tmin = 0.794, Tmax = 0.892h = 3235
24805 measured reflectionsk = 1817
6231 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0493P)2 + 23.1354P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6231 reflectionsΔρmax = 0.66 e Å3
427 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.24734 (2)0.45792 (3)0.74726 (3)0.02143 (13)
O10.26132 (11)0.39277 (17)0.84964 (16)0.0329 (6)
O20.17040 (12)0.39789 (17)0.80473 (16)0.0358 (6)
O30.13662 (12)0.3034 (2)0.88452 (18)0.0473 (8)
H30.13340.33910.84610.071*
O40.24735 (11)0.36602 (16)0.67286 (16)0.0325 (6)
O50.25546 (11)0.47145 (16)0.59406 (16)0.0307 (6)
O60.25514 (11)0.42657 (15)0.45691 (15)0.0277 (6)
H60.25530.46170.49330.042*
N10.18033 (12)0.54333 (19)0.67815 (18)0.0262 (6)
C10.17031 (16)0.6009 (2)0.7244 (2)0.0297 (8)
H10.18710.58950.78590.036*
C20.13640 (17)0.6763 (2)0.6858 (2)0.0338 (9)
H20.13060.71630.72080.041*
C30.11062 (16)0.6937 (3)0.5948 (2)0.0319 (9)
C40.11905 (17)0.6309 (3)0.5470 (2)0.0353 (9)
H40.10080.63840.48460.042*
C50.15377 (16)0.5581 (3)0.5900 (2)0.0331 (9)
H50.15940.51610.55620.040*
C60.07503 (17)0.7728 (3)0.5484 (3)0.0371 (10)
H6A0.05430.77350.48510.045*
C70.06937 (16)0.8425 (3)0.5867 (2)0.0314 (9)
H70.09000.84150.64990.038*
C80.03393 (16)0.9225 (2)0.5406 (2)0.0287 (8)
C90.03088 (16)0.9890 (3)0.5912 (2)0.0311 (9)
H90.05190.98190.65410.037*
C100.00215 (16)1.0656 (3)0.5522 (2)0.0310 (8)
H100.00321.11030.58850.037*
N20.31249 (12)0.54923 (18)0.81065 (17)0.0226 (6)
C110.34495 (14)0.5541 (2)0.9002 (2)0.0224 (7)
H110.34290.50650.93320.027*
C120.38128 (14)0.6256 (2)0.9462 (2)0.0231 (7)
H120.40360.62631.00960.028*
C130.38525 (15)0.6959 (2)0.9002 (2)0.0254 (8)
C140.35230 (16)0.6896 (2)0.8068 (2)0.0306 (9)
H140.35420.73560.77230.037*
C150.31742 (16)0.6165 (2)0.7660 (2)0.0284 (8)
H150.29560.61320.70270.034*
C160.42278 (15)0.7726 (2)0.9491 (2)0.0254 (8)
H160.44610.76911.01240.030*
C170.42693 (15)0.8471 (2)0.9120 (2)0.0246 (8)
H170.40300.85020.84870.030*
C180.46427 (14)0.9241 (2)0.9583 (2)0.0231 (7)
C190.46757 (15)0.9922 (2)0.9082 (2)0.0265 (8)
H190.44530.98730.84500.032*
C200.50250 (15)1.0661 (2)0.9487 (2)0.0262 (8)
H200.50401.11110.91300.031*
C210.22185 (17)0.3712 (2)0.8560 (2)0.0276 (8)
C220.23594 (16)0.3094 (2)0.9312 (2)0.0273 (8)
C230.19276 (16)0.2779 (2)0.9408 (2)0.0315 (9)
C240.20759 (17)0.2184 (2)1.0098 (2)0.0317 (9)
H240.17860.19651.01660.038*
C250.25164 (14)0.3894 (2)0.6132 (2)0.0220 (7)
C260.24960 (14)0.3186 (2)0.5521 (2)0.0228 (7)
C270.25281 (14)0.3398 (2)0.4793 (2)0.0220 (7)
C280.25338 (14)0.2709 (2)0.4284 (2)0.0228 (7)
H280.25580.28490.37960.027*
C290.05309 (17)1.0680 (3)0.7991 (3)0.0416 (10)
H290.05371.13180.79990.050*
C300.00001.0213 (5)0.75000.0413 (15)
C310.00000.9254 (4)0.75000.0335 (13)
C320.05332 (16)0.8784 (3)0.8013 (2)0.0364 (10)
C330.10380 (16)0.9269 (3)0.8463 (2)0.0390 (10)
H330.13950.89590.87860.047*
C340.10360 (18)1.0206 (3)0.8455 (3)0.0460 (11)
H340.13911.05220.87760.055*
C350.05324 (16)0.7782 (3)0.8042 (2)0.0353 (10)
C360.00000.7312 (4)0.75000.0357 (13)
C370.00000.6344 (4)0.75000.0375 (14)
C380.05218 (18)0.5875 (3)0.8052 (3)0.0468 (11)
H380.05240.52360.80490.056*
C390.10210 (17)0.6332 (3)0.8589 (3)0.0447 (11)
H390.13690.60110.89700.054*
C400.10274 (18)0.7288 (3)0.8586 (3)0.0457 (11)
H400.13820.75940.89680.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0251 (2)0.0174 (2)0.0202 (2)0.0002 (2)0.01187 (19)0.00132 (18)
O10.0404 (16)0.0292 (14)0.0269 (13)0.0032 (12)0.0177 (12)0.0022 (11)
O20.0425 (16)0.0339 (15)0.0257 (13)0.0012 (12)0.0161 (13)0.0046 (11)
O30.0384 (17)0.065 (2)0.0389 (16)0.0084 (15)0.0223 (14)0.0183 (14)
O40.0431 (16)0.0227 (13)0.0290 (13)0.0054 (11)0.0187 (12)0.0007 (10)
O50.0356 (14)0.0241 (13)0.0363 (14)0.0028 (11)0.0227 (12)0.0029 (10)
O60.0326 (14)0.0202 (12)0.0301 (13)0.0016 (11)0.0176 (12)0.0018 (10)
N10.0265 (16)0.0249 (15)0.0226 (14)0.0029 (13)0.0111 (13)0.0032 (12)
C10.033 (2)0.0266 (19)0.0237 (18)0.0014 (16)0.0123 (16)0.0005 (15)
C20.039 (2)0.027 (2)0.037 (2)0.0011 (17)0.0226 (19)0.0055 (16)
C30.031 (2)0.031 (2)0.0291 (19)0.0024 (16)0.0144 (17)0.0085 (16)
C40.034 (2)0.043 (2)0.0245 (19)0.0060 (18)0.0142 (17)0.0073 (17)
C50.033 (2)0.039 (2)0.0212 (18)0.0072 (17)0.0116 (16)0.0019 (15)
C60.040 (2)0.041 (2)0.028 (2)0.0070 (19)0.0182 (18)0.0065 (17)
C70.031 (2)0.033 (2)0.0297 (19)0.0021 (17)0.0167 (17)0.0068 (16)
C80.0283 (19)0.0285 (19)0.0336 (19)0.0052 (16)0.0201 (17)0.0089 (16)
C90.031 (2)0.038 (2)0.0260 (18)0.0039 (17)0.0166 (16)0.0098 (16)
C100.033 (2)0.029 (2)0.035 (2)0.0024 (16)0.0217 (18)0.0014 (16)
N20.0253 (15)0.0198 (14)0.0202 (14)0.0003 (12)0.0112 (12)0.0001 (11)
C110.0230 (17)0.0222 (18)0.0241 (17)0.0010 (14)0.0147 (15)0.0013 (13)
C120.0231 (18)0.0261 (18)0.0186 (16)0.0013 (14)0.0108 (14)0.0007 (13)
C130.0227 (18)0.0248 (18)0.0259 (18)0.0014 (14)0.0119 (15)0.0015 (14)
C140.041 (2)0.0252 (19)0.0221 (17)0.0096 (16)0.0155 (17)0.0019 (14)
C150.035 (2)0.0260 (19)0.0203 (17)0.0018 (16)0.0130 (16)0.0032 (14)
C160.0250 (18)0.0273 (19)0.0189 (16)0.0051 (15)0.0095 (15)0.0026 (14)
C170.0258 (19)0.0238 (18)0.0199 (17)0.0026 (15)0.0103 (15)0.0001 (14)
C180.0217 (17)0.0235 (17)0.0227 (17)0.0020 (14)0.0117 (15)0.0012 (14)
C190.029 (2)0.0267 (19)0.0176 (16)0.0008 (15)0.0092 (15)0.0014 (14)
C200.0298 (19)0.0260 (18)0.0207 (17)0.0050 (15)0.0131 (15)0.0008 (14)
C210.044 (2)0.0151 (17)0.0191 (17)0.0126 (16)0.0147 (17)0.0058 (13)
C220.039 (2)0.0212 (18)0.0233 (17)0.0049 (15)0.0182 (16)0.0007 (14)
C230.030 (2)0.032 (2)0.0259 (18)0.0016 (16)0.0126 (16)0.0003 (15)
C240.036 (2)0.032 (2)0.0315 (19)0.0073 (17)0.0220 (18)0.0007 (16)
C250.0164 (17)0.0223 (17)0.0316 (19)0.0049 (13)0.0161 (15)0.0132 (14)
C260.0161 (17)0.0233 (17)0.0243 (17)0.0015 (13)0.0086 (14)0.0015 (13)
C270.0169 (17)0.0186 (17)0.0247 (17)0.0005 (13)0.0081 (14)0.0003 (13)
C280.0191 (17)0.0277 (18)0.0207 (16)0.0000 (14)0.0107 (14)0.0007 (14)
C290.035 (2)0.060 (3)0.032 (2)0.002 (2)0.0204 (19)0.0000 (19)
C300.033 (3)0.066 (4)0.028 (3)0.0000.020 (3)0.000
C310.023 (3)0.068 (4)0.012 (2)0.0000.011 (2)0.000
C320.025 (2)0.069 (3)0.0179 (17)0.001 (2)0.0133 (16)0.0024 (18)
C330.0192 (19)0.072 (3)0.0222 (19)0.0014 (19)0.0097 (16)0.0011 (18)
C340.030 (2)0.071 (3)0.034 (2)0.007 (2)0.0161 (19)0.001 (2)
C350.0221 (19)0.068 (3)0.0195 (17)0.0008 (19)0.0142 (16)0.0006 (18)
C360.030 (3)0.060 (4)0.024 (3)0.0000.019 (2)0.000
C370.033 (3)0.063 (4)0.027 (3)0.0000.023 (2)0.000
C380.041 (3)0.067 (3)0.038 (2)0.005 (2)0.025 (2)0.003 (2)
C390.026 (2)0.071 (3)0.035 (2)0.009 (2)0.0157 (19)0.005 (2)
C400.028 (2)0.069 (3)0.034 (2)0.002 (2)0.0144 (19)0.001 (2)
Geometric parameters (Å, º) top
Zn1—O41.922 (2)C18—C191.400 (5)
Zn1—O11.930 (2)C18—C20ii1.400 (4)
Zn1—N12.019 (3)C19—C201.379 (5)
Zn1—N22.038 (3)C20—C18ii1.400 (4)
O1—C211.224 (4)C21—C221.502 (5)
O2—C211.265 (5)C22—C24iii1.387 (5)
O3—C231.365 (5)C22—C231.403 (5)
O4—C251.208 (4)C23—C241.392 (5)
O5—C251.291 (4)C24—C22iii1.387 (5)
O6—C271.367 (4)C25—C261.507 (4)
N1—C11.337 (5)C26—C28iv1.393 (5)
N1—C51.347 (4)C26—C271.410 (5)
C1—C21.381 (5)C27—C281.386 (5)
C2—C31.403 (5)C28—C26iv1.393 (5)
C3—C41.384 (5)C29—C341.370 (6)
C3—C61.466 (5)C29—C301.417 (5)
C4—C51.371 (5)C30—C29v1.417 (5)
C6—C71.308 (5)C30—C311.427 (9)
C7—C81.473 (5)C31—C32v1.426 (5)
C8—C91.385 (5)C31—C321.426 (5)
C8—C10i1.402 (5)C32—C331.377 (5)
C9—C101.387 (5)C32—C351.492 (6)
C10—C8i1.402 (5)C33—C341.395 (6)
N2—C111.343 (4)C35—C401.380 (6)
N2—C151.345 (4)C35—C361.428 (5)
C11—C121.382 (5)C36—C35v1.428 (5)
C12—C131.383 (5)C36—C371.441 (8)
C13—C141.402 (5)C37—C381.410 (5)
C13—C161.466 (5)C37—C38v1.410 (5)
C14—C151.369 (5)C38—C391.357 (6)
C16—C171.334 (5)C39—C401.422 (6)
C17—C181.459 (5)
O4—Zn1—O1103.81 (11)O1—C21—C22117.3 (3)
O4—Zn1—N1112.49 (11)O2—C21—C22117.7 (3)
O1—Zn1—N1121.66 (12)C24iii—C22—C23120.1 (3)
O4—Zn1—N2120.88 (12)C24iii—C22—C21118.9 (3)
O1—Zn1—N299.36 (11)C23—C22—C21121.0 (3)
N1—Zn1—N299.14 (11)O3—C23—C24118.8 (4)
C21—O1—Zn1121.4 (2)O3—C23—C22122.3 (3)
C25—O4—Zn1117.8 (2)C24—C23—C22118.9 (3)
C1—N1—C5118.0 (3)C22iii—C24—C23121.0 (4)
C1—N1—Zn1117.9 (2)O4—C25—O5125.4 (3)
C5—N1—Zn1122.5 (3)O4—C25—C26118.6 (3)
N1—C1—C2122.2 (3)O5—C25—C26116.0 (3)
C1—C2—C3119.8 (3)C28iv—C26—C27119.9 (3)
C4—C3—C2117.2 (3)C28iv—C26—C25117.6 (3)
C4—C3—C6119.0 (3)C27—C26—C25122.5 (3)
C2—C3—C6123.8 (4)O6—C27—C28118.6 (3)
C5—C4—C3119.7 (3)O6—C27—C26122.0 (3)
N1—C5—C4123.0 (4)C28—C27—C26119.4 (3)
C7—C6—C3125.5 (4)C27—C28—C26iv120.8 (3)
C6—C7—C8125.9 (3)C34—C29—C30119.7 (5)
C9—C8—C10i118.0 (3)C29—C30—C29v121.3 (6)
C9—C8—C7118.5 (3)C29—C30—C31119.3 (3)
C10i—C8—C7123.5 (3)C29v—C30—C31119.3 (3)
C8—C9—C10121.6 (3)C32v—C31—C32121.2 (6)
C9—C10—C8i120.4 (3)C32v—C31—C30119.4 (3)
C11—N2—C15117.3 (3)C32—C31—C30119.4 (3)
C11—N2—Zn1119.9 (2)C33—C32—C31119.0 (4)
C15—N2—Zn1121.5 (2)C33—C32—C35121.6 (4)
N2—C11—C12122.6 (3)C31—C32—C35119.4 (4)
C11—C12—C13120.2 (3)C32—C33—C34121.4 (4)
C12—C13—C14117.1 (3)C29—C34—C33121.2 (4)
C12—C13—C16120.1 (3)C40—C35—C36118.4 (4)
C14—C13—C16122.8 (3)C40—C35—C32122.5 (4)
C15—C14—C13119.4 (3)C36—C35—C32119.2 (4)
N2—C15—C14123.5 (3)C35—C36—C35v121.3 (6)
C17—C16—C13125.4 (3)C35—C36—C37119.3 (3)
C16—C17—C18127.0 (3)C35v—C36—C37119.3 (3)
C19—C18—C20ii117.6 (3)C38—C37—C38v120.7 (6)
C19—C18—C17119.0 (3)C38—C37—C36119.7 (3)
C20ii—C18—C17123.3 (3)C38v—C37—C36119.7 (3)
C20—C19—C18121.3 (3)C39—C38—C37120.2 (5)
C19—C20—C18ii121.0 (3)C38—C39—C40120.6 (4)
O1—C21—O2124.9 (3)C35—C40—C39121.7 (4)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+2; (iii) x+1/2, y+1/2, z+2; (iv) x+1/2, y+1/2, z+1; (v) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.841.822.558 (4)146
O6—H6···O50.841.832.574 (3)146
C1—H1···O6vi0.952.583.506 (4)166
C5—H5···O50.952.483.105 (5)124
C11—H11···O10.952.553.116 (4)118
Symmetry code: (vi) x, y+1, z+1/2.
 

Acknowledgements

We would like to thank Dr Hong Sheng Quah, Ziyu Zhu, Bibhuti Bhusan Rath, Dr Hwa Seob Choi and Professor Qing-Hua Xu for helping to record some of the measurements and Dr Huiyeong Ju for generating some of the figures. We thank Ms Geok Kheng Tan for X-ray data collection and reduction.

Funding information

This work was supported by the Ministry of Education, Singapore (National University of Singapore Tier 1 grant Nos. R-143-000-A12-114; R-143-000-B13-114 awarded to JJV) and the National Research Foundation (NRF) of South Korea (grant Nos. 2017R1A4A1014595; 2019R1A2C1002075 awarded to SSL).

References

First citationAnthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. (2001). J. Am. Chem. Soc. 123, 9482–9483.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBarnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. 1640–1641.  Google Scholar
First citationBernstein, J. (2008). Polymorphism in Molecular Crystals. Oxford University Press.  Google Scholar
First citationBernstein, J. & Henck, J. O. (1998). Cryst. Eng. 1, 119–128.  CrossRef CAS Google Scholar
First citationBlake, A. J., Brooks, N. R., Champness, N. R., Crew, M., Gregory, D. H., Hubberstey, P., Schröder, M., Deveson, A., Fenske, D. & Hanton, L. R. (2001). Chem. Commun. 1432–1433.  Google Scholar
First citationBlatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). CrystEngComm, 6, 377–395.  Web of Science CrossRef CAS Google Scholar
First citationBlatov, V. A. & Shevchenko, A. P. (2006). TOPOS. Version 4.0. Samara State University, Samara, Russia.  Google Scholar
First citationBrittain, H. G. (1999). Polymorphism in Pharmaceutical Solids. New York: M. Dekker.  Google Scholar
First citationBruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBučar, D.-K., Lancaster, R. W. & Bernstein, J. (2015). Angew. Chem. Int. Ed. 54, 6972–6993.  Google Scholar
First citationChaudhari, A. K. & Tan, J.-C. (2018). Nanoscale, 10, 3953–3960.  CrossRef CAS PubMed Google Scholar
First citationCui, Y., Song, R., Yu, J., Liu, M., Wang, Z., Wu, C., Yang, Y., Wang, Z., Chen, B. & Qian, G. (2015). Adv. Mater. 27, 1420–1425.  CSD CrossRef CAS PubMed Google Scholar
First citationDesiraju, G. R. (1997). Science, 278, 404–405.  CrossRef CAS Web of Science Google Scholar
First citationDunitz, J. D. & Bernstein, J. (1995). Acc. Chem. Res. 28, 193–200.  CrossRef CAS Web of Science Google Scholar
First citationHashimoto, S., Ikuta, S., Asahi, T. & Masuhara, H. (1998). Langmuir, 14, 4284–4291.  CrossRef CAS Google Scholar
First citationHe, G. S., Tan, L.-S., Zheng, Q. & Prasad, P. N. (2008). Chem. Rev. 108, 1245–1330.  CrossRef PubMed CAS Google Scholar
First citationHennigar, T. L., MacQuarrie, D. C., Losier, P., Rogers, R. D. & Zaworotko, M. J. (1997). Angew. Chem. Int. Ed. Engl. 36, 972–973.  CSD CrossRef CAS Web of Science Google Scholar
First citationHinoue, T., Shigenoi, Y., Sugino, M., Mizobe, Y., Hisaki, I., Miyata, M. & Tohnai, N. (2012). Chem. Eur. J. 18, 4634–4643.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHu, J.-S., Qin, L., Zhang, M.-D., Yao, X.-Q., Li, Y.-Z., Guo, Z.-J., Zheng, H.-G. & Xue, Z.-L. (2012). Chem. Commun. 48, 681–683.  Web of Science CSD CrossRef CAS Google Scholar
First citationJu, H., Park, I.-H., Lee, E., Kim, S., Jung, J. H., Ikeda, M., Habata, Y. & Lee, S. S. (2016). CrystEngComm, 18, 1600–1608.  CSD CrossRef CAS Google Scholar
First citationKarmakar, A., Paul, A. & Pombeiro, A. J. L. (2017). CrystEngComm, 19, 4666–4695.  Web of Science CrossRef CAS Google Scholar
First citationKishi, N., Li, Z., Yoza, K., Akita, M. & Yoshizawa, M. (2011). J. Am. Chem. Soc. 133, 11438–11441.  CSD CrossRef CAS PubMed Google Scholar
First citationKitamura, C., Takenaka, A., Kawase, T., Kobayashi, T. & Naito, H. (2011). Chem. Commun. 47, 6653–6655.  CSD CrossRef CAS Google Scholar
First citationKitao, T., Hongu, R., Kitagawa, S. & Uemura, T. (2017). Chem. Lett. 46, 1705–1707.  CrossRef CAS Google Scholar
First citationKobayashi, K., Masu, H., Shuto, A. & Yamaguchi, K. (2005). Chem. Mater. 17, 6666–6673.  Web of Science CSD CrossRef CAS Google Scholar
First citationLancaster, R. W., Harris, L. D. & Pearson, D. (2011). CrystEngComm, 13, 1775–1777.  Web of Science CrossRef CAS Google Scholar
First citationLancaster, R. W., Karamertzanis, P. G., Hulme, A. T., Tocher, D. A., Lewis, T. C. & Price, S. L. (2007). J. Pharm. Sci. 96, 3419–3431.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, D., Liu, T.-F., Chen, Y.-P., Zou, L., Feng, D., Wang, K., Zhang, Q., Yuan, S., Zhong, C. & Zhou, H.-C. (2015). J. Am. Chem. Soc. 137, 7740–7746.  CSD CrossRef CAS PubMed Google Scholar
First citationLiu, X.-T., Zhao, B., Zhang, Y.-H., Chen, S.-S., Zhu, J., Chang, Z. & Bu, X.-H. (2019). Cryst. Growth Des. 19, 1391–1398.  Web of Science CSD CrossRef CAS Google Scholar
First citationManna, S. C., Zangrando, E., Ribas, J. & Ray Chaudhuri, N. (2008). Eur. J. Inorg. Chem. 2008, 1400–1405.  CSD CrossRef Google Scholar
First citationMizobe, Y., Hinoue, T., Yamamoto, A., Hisaki, I., Miyata, M., Hasegawa, Y. & Tohnai, N. (2009). Chem. Eur. J. 15, 8175–8184.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNoh, T. H., Lee, H., Jang, J. & Jung, O.-S. (2015). Angew. Chem. Int. Ed. 54, 9284–9288.  CSD CrossRef CAS Google Scholar
First citationPanda, T., Kundu, T. & Banerjee, R. (2013). Chem. Commun. 49, 6197–6199.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Chanthapally, A., Lee, H.-H., Quah, H. S., Lee, S. S. & Vittal, J. J. (2014a). Chem. Commun. 50, 3665–3667.  CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Ju, H., Kim, K., Lee, S. S. & Vittal, J. J. (2018). IUCrJ, 5, 182–189.  CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationPark, I. H., Lee, E., Lee, S. S. & Vittal, J. J. (2019). Angew. Chem. Int. Ed. 58, 14860–14864.  CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Medishetty, R., Kim, J.-Y., Lee, S. S. & Vittal, J. J. (2014c). Angew. Chem. Int. Ed. 53, 5591–5595.  CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Medishetty, R., Lee, H.-H., Mulijanto, C. E., Quah, H. S., Lee, S. S. & Vittal, J. J. (2015). Angew. Chem. Int. Ed. 54, 7313–7317.  CSD CrossRef CAS Google Scholar
First citationPark, I.-H., Mulijanto, C. E., Lee, H.-H., Kang, Y., Lee, E., Chanthapally, A., Lee, S. S. & Vittal, J. J. (2016). Cryst. Growth Des. 16, 2504–2508.  CSD CrossRef CAS Google Scholar
First citationPark, I. H., Chanthapally, A., Zhang, Z., Lee, S. S., Zaworotko, M. J. & Vittal, J. J. (2014b). Angew. Chem. Int. Ed. 53, 414–419.  CSD CrossRef CAS Google Scholar
First citationPoplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302–1306.  Web of Science CSD CrossRef Google Scholar
First citationPrasad, K., Samanta, D., Haldar, R. & Maji, T. K. (2018). Inorg. Chem. 57, 2953–2956.  CSD CrossRef CAS PubMed Google Scholar
First citationQuah, H. S., Chen, W., Schreyer, M. K., Yang, H., Wong, M. W., Ji, W. & Vittal, J. J. (2015). Nat. Commun. 6, 7954.  CSD CrossRef PubMed Google Scholar
First citationRen, Y., Fang, Q., Yu, W.-T., Lei, H., Tian, Y.-P., Jiang, M.-H., Yang, Q.-C. & Mak, T. C. W. (2000). J. Mater. Chem. 10, 2025–2030.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStone, M. T. & Anderson, H. L. (2007). Chem. Commun. 2387–2389.  Google Scholar
First citationYu, J., Cui, Y., Xu, H., Yang, Y., Wang, Z., Chen, B. & Qian, G. (2013). Nat. Commun. 4, 2719.  CrossRef PubMed Google Scholar
First citationZhang, J.-P., Huang, X.-C. & Chen, X.-M. (2009). Chem. Soc. Rev. 38, 2385–2396.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 7| Part 2| March 2020| Pages 324-330
ISSN: 2052-2525