research papers
Supramolecular structures of NiII and CuII with the sterically demanding Schiff base dyes driven by cooperative action of preagostic and other non-covalent interactions
aUniversity of Tyumen, Volodarskogo Street 6, Tyumen, 625003, Russian Federation, bInnovation Center for Chemical and Pharmaceutical Technologies, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira Street 19, Ekaterinburg, 620002, Russian Federation, cKurgan State University, Sovetskaya Street 63/4, 640020, Russian Federation, dDepartment of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland, eDepartment of Chemistry, Faculty of Science, University of Maragheh, PO Box 55181-83111, Maragheh, Iran, fInstitute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place L. Pasteur 1, Louvain-la-Neuve, 1348, Belgium, and gInstitut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Germany
*Correspondence e-mail: ghodratmahmoudi@gmail.com, damir.a.safin@gmail.com
This work reports on synthesis and extensive experimental and theoretical investigations on photophysical, structural and thermal properties of the NiII and CuII discrete mononuclear homoleptic complexes [Ni(LI,II)2] and [Cu(LI,II)2] fabricated from the Schiff base dyes o-HOC6H4—CH=N—cyclo-C6H11 (HLI) and o-HOC10H6—CH=N—cyclo-C6H11 (HLII), containing the sterically crowding cyclohexyl units. The six-membered metallocycles adopt a clearly defined in [Ni(LII)2], while they are much more planar in the structures of [Ni(LI)2] and [Cu(LI,II)2]. It has been demonstrated by in-depth bonding analyses based on the ETS-NOCV and Interacting Quantum Atoms energy-decomposition schemes that application of the bulky substituents, containing several C—H groups, has led to the formation of a set of classical and unintuitive intra- and inter-molecular interactions. All together they are responsible for the high stability of [Ni(LI,II)2] and [Cu(LI,II)2]. More specifically, London dispersion dominated intramolecular C—H⋯O, C—H⋯N and C—H⋯H—C hydrogen bonds are recognized and, importantly, the attractive, chiefly the Coulomb driven, preagostic (not repulsive anagostic) C—H⋯Ni/Cu interactions have been discovered despite their relatively long distances (∼2.8–3.1 Å). All the complexes are further stabilized by the extremely efficient intermolecular C—H⋯π(benzene) and C—H⋯π(chelate) interactions, where both the charge-delocalization and London dispersion constituents appear to be crucial for the crystal packing of the obtained complexes. All the complexes were found to be photoluminescent in CH2Cl2, with [Cu(LII)2] exhibiting the most pronounced emission – the time-dependent density-functional-theory computations revealed that it is mostly caused by metal-to-ligand charge-transfer transitions.
1. Introduction
About one and a half centuries ago in his prominent doctoral dissertation, J. D. van der Waals was the first who recognized non-covalent interactions (van der Waals, 1873). Non-covalent interactions can tentatively be defined as interactions produced during the formation of a molecular cluster upon interaction of atoms or molecules where covalent bonds are neither formed nor broken. Since their first recognition, non-covalent interactions have become greatly important in many areas such as materials, catalysis, synthesis, biomolecules, etc. To highlight a pivotal role of this type of interaction it is sufficient to mention that the double-helix structure of DNA is dictated by a bench of non-covalent interactions (Riley & Hobza, 2013; Watson & Crick, 1953). Moreover, the importance of non-covalent interactions was further proven by establishing a general/regular series of International Conferences on Non-covalent Interactions (ICNI), with the first one held on 2–6 September 2019 in Lisbon (https://icni2019.eventos.chemistry.pt/). The conference aimed `to highlight the role of non-covalent interactions in synthesis, catalysis, crystal engineering, molecular recognition, medicinal chemistry, biology, materials science, electrochemical immobilization, etc., including also theoretical aspects.'
By their physical nature, non-covalent interactions are often classified into main categories, namely dispersion dominated and electrostatic dominated. A third category of non-covalent interactions, where dispersion and electrostatic contributions are comparable, is also often highlighted. Nowadays, non-covalent interactions, depending on the involved atoms or units within molecules, are classified into hydrogen bonding, π⋯π interaction, halogen bonding, chalcogen bonding, tetrel bonding, (an)agostic bonding, cation/anion⋯π interaction and many others (Biedermann & Schneider, 2016; Hobza & Zahradník, 1988; Hobza et al., 2006; Mahadevi & Sastry, 2016; Müller-Dethlefs & Hobza, 2000; Řezáč & Hobza, 2016; Riley & Hobza, 2013; Riley et al., 2010). Among the electrostatic and dispersion-dominated non-covalent interactions, the hydrogen bond and the π⋯π interaction, respectively, are the most prominent ones (Biedermann & Schneider, 2016; Hobza & Zahradník, 1988; Hobza et al., 2006; Mahadevi & Sastry, 2016; Müller-Dethlefs & Hobza, 2000; Řezáč & Hobza, 2016; Riley & Hobza, 2013; Riley et al., 2010). Notably, non-covalent interactions incorporating aromatic systems are of particular interest owing to their practical applications (Salonen et al., 2011; Thakuria et al., 2019; Wheeler, 2013). The energy of the π⋯π stacking in benzene dimer was calculated to be −2.758 kcal mol−1, while the most energetically favourable tilted T-shape interaction gives rise to −2.843 kcal mol−1 (Řezáč & Hobza, 2016). Although the term `stacking interaction' is mainly addressed to aromatic systems, aliphatic systems can also be involved in stacking interactions (Řezáč & Hobza, 2016). Interestingly, interaction between cyclohexane and benzene is more efficient (−3.01 kcal mol−1) (Ran & Wong, 2006) than those in benzene (−2.758 kcal mol−1) (Řezáč & Hobza, 2016) and cyclohexane (−2.62 kcal mol−1) (Kim et al., 2011) dimers.
Another peculiar type of non-covalent interaction, namely anagostic interaction (Brookhart et al., 2007; Sundquist et al., 1990), is of ever-growing interest owing to its presence in many catalytic processes. This type of interaction is inherent to square-planar d8-metal complexes, and sometimes anagostic interactions are speculatively claimed as agostic interactions (Castro et al., 2005; Thakur & Desiraju, 2006). However, agostic and anagostic interactions differ significantly from the structural point of view. In particular, the former interactions are characterized by the M⋯H distance of ∼1.8–2.2 Å and C—H⋯M bond angles of ∼90–140°, while the latter interactions exhibit long M⋯H distances of ∼2.3–3.0 Å and C—H⋯M bond angles of ∼110–170° (Brookhart et al., 2007). While agostic bonds are attractive, it is still under debate as to whether anagostic bonds are attractive or repulsive.
Non-covalent interactions were also found to be a powerful tool for crystal engineering of supramolecular structures of coordination compounds (Mahmudov et al., 2017). Our groups have also extensively been involved in studying non-covalent interactions in the systems of N-(thio)phosphorylated thioureas (Babashkina et al., 2016, 2011, 2012, 2013; Mitoraj et al., 2018, 2019b,d; Safin et al., 2015a,b, 2014, 2013a,b, 2016a) and poly N-donor compounds (Brunet et al., 2017a,b; Mahmoudi et al., 2017a,b,c, 2018; Mitoraj et al., 2019a,c; Safin et al., 2015c, 2017a,b, 2016b), as well as their coordination compounds with metal cations. In particular, we have previously established the crucial influence of non-covalent interactions in crystal engineering of the NiII complexes with N-thiophosphorylated thioureas RNHC(S)NHP(S)(OiPr)2 [R = (HOCH2)(Me)2C (Safin et al., 2015b), m-F3CC6H4 (Mitoraj et al., 2019b)]. Notably, we were able to demonstrate for the first time, based on quantum chemical computations, that, depending on the M⋯H distance, anagostic interactions can be either repulsive or attractive (Mitoraj et al., 2019b). We were also able to demonstrate for the first time, based on quantum chemical computations, that C—H⋯M anagostic interactions, despite their long distances (∼3 Å), can be attractive, contrary to the intuitive wisdom (Mitoraj et al., 2019b).
With all this in mind and in continuation of our investigations in the field of non-covalent interactions, as well as studying their influence on the structure stabilization, we have directed our attention to molecules containing several synthons that can produce non-covalent interactions. Thus, we have addressed Schiff base dyes. The main advantage being the ease of synthesis by condensation of corresponding cyclohexylamine and salicyaldehyde/2-hydroxy-1-naphthaldehyde. The resulting o-HOC6H4—CH=N—cyclo-C6H11 (HLI) and o-HOC10H6—CH=N—cyclo-C6H11 (HLII) (Fig. 1) were involved in complexation with NiII and CuII, yielding discrete mononuclear homoleptic complexes [Ni(LI,II)2] and [Cu(LI,II)2], respectively. The obtained complexes seem to be excellent platforms to generate a bunch of non-covalent interactions owing to the presence of aromatic benzene rings, aliphatic cyclohexane rings and metal-containing chelate rings. Theoretical studies are then applied to shed light on the origin of their photophysical properties. Although the crystal structures of [Ni(LI)2] (Bhatia et al., 1983), [Cu(LI)2] (Jain & Syal, 1988; Kashyap et al., 1975; Tamura et al., 1977) and [Cu(LII)2] (Fernández-G et al., 1997) were reported recently, we have decided to redefine the structures with a higher precision as well as identify classic and unintuitive non-covalent interactions responsible for the formation of their supramolecular structures.
with primary under mild conditions. In particular, we have selected bulky2. Results and discussion
A reaction of an equimolar amount of cyclohexylamine and salicyaldehyde or 2-hydroxy-1-naphthaldehyde in ethanol under reflux yielded the LI,II as yellow viscous oil. HLI,II were involved in the reaction with a half molar amount of M(CH3COO)2 (M = Ni, Cu) in ethanol. As a result, discrete mononuclear homoleptic complexes [Ni(LI,II)2] and [Cu(LI,II)2], respectively, were isolated with high yields.
HComplexes [Ni(LI)2] and [Cu(LI)2] were found to be isostructural, as shown by the single-crystal X-ray diffraction data (see the Experimental Section). Their crystal structures were best solved in the triclinic P-1 (No. 2), while the crystal structures of [Ni(LII)2] and [Cu(LII)2] were solved in the monoclinic P21/n with a half of the complex molecule in the for all the complexes. In complexes, the metal cation is coordinated by two molecules of the deprotonated ligand LI,II via imine nitrogen atom and phenoxy oxygen atom affording a tetracoordinate environment with the formation of a perfect square-planar coordination geometry as shown by the τ4 descriptor (Fig. 2, Table 1) (Yang et al., 2007). The ligands are linked in a trans-configuration with the six-membered chelate rings adopting an in the structures of [Ni(LI,II)2] and [Cu(LI)2], while they are much more planar in the structure of [Cu(LII)2] (Fig. 2, Table 1). The cyclohexyl fragments are in a typical chair conformation (Fig. 2). The M—N bond lengths are ∼1.9–2.0 Å, while the M—O bonds are ∼0.1 Å shorter (Table 1). The C=N and C—O bonds in the structures of the complexes are very similar and are ∼1.3 Å (Table 1). Notably, the C=N and C—O bonds are partially double bonds. Both the endo- and exo-cyclic N—M—O bond angles are close to 90°, while the N—M—N and O—M—O angles are 180°. The M—N=C and M—O—C bond angles are in the range from ∼122 to 131° (Table 1).
|
The angles between planes formed by the benzene or naphthyl and cyclohexyl rings corresponding to the same ligand in the structures of [Ni(LI,II)2] and [Cu(LI)2] are ∼35°, while the same angles in the structure of [Cu(LII)2] are ∼45°. The same angles between the planes formed by the benzene or naphthalene and chelate rings, and cyclohexyl and chelate rings are ∼7–11 and 45°, respectively (Table 1).
The crystal structures of the complexes are stabilized by a set of intramolecular interactions (Fig. 2, Table 2). In particular, the hydrogen atom of the cyclohexyl tertiary carbon is involved in the C—H⋯O interaction with the oxygen atom of a second ligand (Fig. 2, Table 2). In the structures of [Ni(LI)2] and [Cu(LI,II)2] the same oxygen also forms the second C—H⋯O bond with one of the hydrogen atoms from one of the secondary carbons linked to the tertiary carbon (Fig. 2, Table 2). However, the latter non-covalent bond is significantly longer than the former one because of the formation of an anagostic bond by the same hydrogen atom (Fig. 2, Table 2). The same anagostic bond was found in the structure of [Ni(LII)2], which formation, together with a coordination geometry of chelate cycles, prevents the formation of the second intramolecular C—H⋯O bond. Notably, all crystal structures are further stabilized by intermolecular non-covalent interactions of the C—H⋯π(benzene/naphthalene) and C—H⋯π(chelate) nature (Fig. 3, Table 2).
|
The bulk samples of all the complexes are free from phase impurities as shown by comparison of the experimental X-ray powder patterns with calculated powder patterns generated from the single-crystal X-ray data (see Fig. S1 in the Supporting information), as well as from the elemental analysis data (see the Experimental Section).
We further applied a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) to study intermolecular interactions in the crystal structures of both complexes. As a result, a set of 2D fingerprint plots (Spackman & McKinnon, 2002) were generated using CrystalExplorer 3.1 (Wolff et al., 2012). In order to estimate the propensity of two chemical species to be in contact, we calculated the enrichment ratios (E) (Jelsch et al., 2014) of the intermolecular contacts.
It was found that the intermolecular H⋯H and H⋯C contacts occupy an overwhelming majority of the molecular surfaces of all the complexes (Table 3). There is a clear splitting of the H⋯H fingerprint of [Ni(LI,II)2] and [Cu(LI)2], which is caused by the shortest contact being between three atoms, rather than being a direct two-atom contact (Figs. S2–S4) (Spackman & McKinnon, 2002). The H⋯C contacts are shown in the form of `wings' (Figs. S2–S4), with the shortest de + di ≃ 2.7 Å, and are recognized as characteristic of C—H⋯π nature (Spackman & Jayatilaka, 2009). The structures of [Ni(LI,II)2] and [Cu(LI)2] are also characterized by significantly smaller proportions of the H⋯N and H⋯O contacts (Table 3). Furthermore, the proportions of these contacts are even smaller in the structure of [Cu(LII)2], while the proportions of the C⋯C, C⋯N, C⋯O and C⋯Cu contacts are quite distinct (Table 3, Fig. S5). This is explained by the formation of π(chelate)⋯π(naphthalene) intermolecular interactions (Table 2). Notably, the molecular surface of all the structures is also described by H⋯M intermolecular contacts (Table 3, Figs. S2–S5), which are assigned to the abovementioned intermolecular C—H⋯M and C—H⋯π(chelate) interactions (Table 2). All the H⋯X contacts are favoured in the structures of [Ni(LI,II)2] and [Cu(LI)2], since the corresponding enrichment ratios EHX are close to or even higher than unity (Table 3). However, only H⋯H and H⋯C intermolecular contacts are favoured in the structure of [Cu(LII)2], while remaining contacts are impoverished (Table 3).
‡The enrichment ratios were not computed when the random contacts were lower than 0.9%, as they are not meaningful (Jelsch et al., 2014). |
In order to complement the above structural and Hirshfeld surface analyses, and to determine which contacts stabilize/destabilize the obtained crystals, we performed in-depth bonding studies based on the two complementary approaches, namely the charge- and energy-decomposition scheme ETS-NOCV (Mitoraj et al., 2009) as well as the Interacting Quantum Atoms (IQA) scheme (Blanco et al., 2005). The former approach is well suited for the description of intermolecular interactions, whereas the latter approach is more convenient for analyses of various intramolecular contacts and is particularly useful since it can determine whether still-controversial long-distance intramolecular C—H⋯M contacts could be repulsive (anagostic) or attractive (agostic). We have recently discovered (Mitoraj et al., 2019b), contrary to intuition and the recent state of knowledge (Scherer et al., 2015), that longer C—H⋯Ni distances (∼3 Å) can stabilize the complex structure. However, the shortening of C—H⋯Ni contacts up to ∼2.8 Å, despite amplification of charge delocalizations [Ni(dz2) → σ*(C—H)/σ(C—H) → Ni(dz2)] and London dispersion terms (Lu et al., 2018), overall might bring the repulsive C—H⋯Ni interactions owing to overwhelming positive (destabilizing) Coulomb constituent (Mitoraj et al., 2019b).
The selected IQA/MP2/6-311 + G(d,p) diatomic interaction energies ΔEint for the discussed structures are gathered in Fig. 4 and Table 4. Notably, despite a long Ni⋯H distance of 2.885 Å in [Ni(LI)2], a very efficient intramolecular instantaneous stabilization is gained with ΔEint(Ni⋯H) = −11.36 kcal mol−1. It is mainly owing to the attractive Coulomb contribution ΔECoulomb = −10.00 kcal mol−1 and slightly stabilizing exchange-correlation term ΔEXC = −1.36 kcal mol−1 (Fig. 4, Table 4). It is important to note that for the NiII square-planar complex previously studied by us based on N-thiophosphorylated thiourea ligands, where exactly the same Ni⋯H distance was noticed (formed by a hydrogen atom of the methyl unit with nickel), the Coulomb term appeared to be positive, which led to the overall repulsive (anagostic) C—H⋯Ni interactions (Mitoraj et al., 2019b). This clearly demonstrates different electron-density distribution within the methyl and methylene groups, which in turn is reflected in the opposite values of the Coulomb terms. The origin of such intriguing behaviour will be more carefully studied in the future in order to obtain a more general overview of the nature of long-distance intramolecular C—H⋯M interactions.
|
It was further found that there are two less important stabilizing intramolecular interactions than Ni⋯H: ΔEint(C⋯H) = −6.99 kcal mol−1 and ΔEint(O⋯H) = −5.89 kcal mol−1 (Fig. 4, Table 4). The former interaction, belonging to the family of C—H⋯π contacts, is electrostatically dominated with the major attractive ΔECoulomb = −6.41 kcal mol−1, whereas, interestingly, in the latter case, the Coulomb term appears to be repulsive and the sole prevailing attractive constituent is the exchange-correlation energy ΔEXC = −7.23 kcal mol−1 (Fig. 4, Table 4). Notably, the second longer O⋯H contact leads to the overall complex destabilization owing to the strongly unfavourable Coulomb contribution, ΔECoulomb = 11.59 kcal mol−1, and the weaker exchange-correlation constituent (Fig. 4, Table 4). It is a very intriguing physical outcome since C—H⋯O contacts are considered in the literature as rather purely stabilizing interactions (Grabowski, 2011; Grabowski & Lipkowski, 2011; Tsuzuki, 2012). We have shown here that intramolecular C—H⋯O interactions might be both attractive and repulsive depending on distance variation (Fig. 4, Table 4). The existence of a stabilizing charge-delocalization channel (XC) for such ultra long distance O⋯H is also an important observation. It has been additionally supported by the ETS-NOCV results where the mentioned intramolecular charge-delocalization channels in addition to C—H⋯H—C (Cukrowski et al., 2016; Liptrot & Power, 2017; Mitoraj et al., 2020; Sagan & Mitoraj, 2019; Wagner & Schreiner, 2015) have been discovered (Fig. S6). Recently, the latter has been of particular attention in terms of reconsidering the real nature of steric crowding in bulky species (Cukrowski et al., 2016; Liptrot & Power, 2017; Mitoraj et al., 2020; Sagan & Mitoraj, 2019; Wagner & Schreiner, 2015). Notably, substitution of LI by LII leads to a similar picture of the already discussed intramolecular non-covalent interactions (Fig. 4, Table 4). Interestingly, in complex [Ni(LII)2] the second Ni⋯H contact, with quite similar length to the first, was revealed, which, however, destabilizes the overall structure, although quite insignificantly owing to an unfavourable Coulomb term and negligible stemming from the exchange-correlation constituent (Fig. 4, Table 4).
As far as the copper-containing complex [Cu(LI)2] is concerned, quite similar stabilizing intramolecular interactions C⋯H and O⋯H were obtained (Fig. 4, Table 4). It is particularly interesting that the Cu⋯H contact is associated with the significant stabilization ΔEint(Cu⋯H) = −14.16 kcal mol−1 despite a very long distance of 3.065 Å (Fig. 4, Table 4). Furthermore, the same close contact in [Cu(LII)2] results in even more efficient preagostic attraction ΔEint(Cu⋯H) = −14.67 kcal mol−1 owing to a shorter distance of 3.015 Å (Fig. 4, Table 4). Interestingly, the stabilization in the same complex is further augmented by the second preagostic contact with the corresponding ΔEint(Cu⋯H) = −8.81 kcal mol−1 (Fig. 4, Table 4).
Finally, we briefly analyzed the intermolecular interactions in the example dimeric model of [Ni(LII)2] using the ETS-NOCV scheme (Fig. 5). It was found that the monomers are extremely strongly bonded to each other, with the overall binding energy ΔEtotal = −61.80 kcal mol−1 mostly owing to C—H⋯π, C—H⋯O, C—H⋯N and C—H⋯Ni contacts. In line with the literature (Grabowski, 2011; Grabowski & Lipkowski, 2011; Tsuzuki, 2012), the London dispersion constituent is indeed the major contributor with ∼45% of the overall stabilization (Fig. 5). We have complemented herein that the charge-delocalization contribution ΔEorb = −28.76 kcal mol−1 is also a crucial cofactor (36% of the overall stabilization) as opposed to the literature claims on insignificance of this constituent (Grabowski, 2011; Grabowski & Lipkowski, 2011; Tsuzuki, 2012). The electrostatic term ΔEelstat = −15.52 kcal mol−1 appears to be the least important (Fig. 5). Quite similar sets of intermolecular non-covalent interactions, but significantly weaker, are valid in the counterpart [Ni(LI)2] (Fig. S7).
The Fourier transform infrared (FTIR) spectra of the complexes are pairwise very similar and each contain characteristic bands for the C=C and C=N bonds at 1500–1650 cm−1 (Fig. 6). The C—H groups of the cyclohexyl fragments are shown as bands at 1325–1340 and 1450 cm−1, and a set of bands at 2800–3000 cm−1. The aromatic and imine C—H functions are shown as a set of weak bands at 3000–3100 cm−1. Notably, the IR spectra of the complexes do not exhibit a characteristic band for the OH group in the range 3200–3400 cm−1 (Fig. 6). This testifies to the deprotonated form of the parent ligands in the structures of the complexes.
Dissolving crystals of [Ni(LI,II)2] and [Cu(LI,II)2] in CH2Cl2 yields yellow and reddish yellow solutions, respectively. In the UV–Vis absorption spectra of the complexes, three regions can be clearly defined. The first region, ranging from 200 to ∼300 nm, contains a set of high intense bands corresponding to intraligand π → π* and n → π* transitions (Fig. 7). The second range at ∼300–440 nm exhibits significantly less intense bands for the (MLCT) transitions (Fig. 7). Finally, the weak shoulder in the longer-wavelength region of the spectra is caused by (d–d) transitions (Fig. 7).
In order to shed light on the electronic transitions, we reoptimized all four complexes followed by modelling of the absorption spectra with the TDDFT/B3LYP/TZVPP/PCM(CH2Cl2) calculations. Since the qualitative picture of the electronic transitions is similar for all the complexes, we briefly discuss the data for [Ni(LI)2]. All the complexes remain a square-planar geometry in CH2Cl2 and, in line with the experimental data, the analogous three absorption regions were obtained for all species (Fig. 7). The absorption bands at 300–400 nm are indeed predominantly characterized as MLCT, dxz(M) → π*, as indicated by the dominant transition #13 with the oscillator strength f = 0.208 a.u. (Fig. 8). However, the latter two less intense transitions, #12 (f = 0.106 a.u.) and #5 (f = 0.088 a.u.), are additionally described by both the ligand-to-ligand and ligand-to-metal charge transfers (Fig. 8).
Importantly, it was found that all the complexes are emissive in CH2Cl2; however, complex [Cu(LII)2] is remarkably more emissive (Fig. 9). The emission spectra of [Ni(LI,II)2] and [Cu(LII)2] exhibit a broad intense band centred at ∼435–450 nm, while the spectrum of [Cu(LI)2] exhibits a broad band with two maxima at ∼375 and 430 nm (Fig. 9). Assignment of these bands was made based on the excitation spectra (Fig. 9). As evident from comparison of the excitation and UV–Vis spectra of the complexes, the emission bands arise from the MLCT emission.
3. Conclusions
In summary, we studied structural and photophysical properties of the NiII and CuII discrete mononuclear homoleptic complexes [Ni(LI,II)2] and [Cu(LI,II)2], fabricated from the Schiff base dyes o-HOC6H4—CH=N—cyclo-C6H11 (HLI) and o-HOC10H6—CH=N—cyclo-C6H11 (HLII), respectively, each containing a bulky aliphatic fragment, namely cyclohexyl.
Single-crystal X-ray diffraction revealed that all the structures exhibit a trans-square-planar geometry. Remarkably, the six-membered metallocycles adopt a clearly defined in [Ni(LI,II)2] and [Cu(LI)2], while they are much more planar in the structure of [Cu(LII)2]. This was found to be clearly associated with the formation of different intra- and inter-molecular contacts, which were deeply characterized by the charge- and energy-decomposition scheme ETS-NOCV as well as the IQA approach. In particular, London dispersion dominated intramolecular C—H⋯O, C—H⋯N and C—H⋯H—C interactions were identified and, predominantly, the attractive, mostly Coulomb driven, C—H⋯Ni/Cu preagostic (not repulsive anagostic) bonds were discovered despite their long distances (∼2.8–3.1 Å). Interestingly, despite the long distances, non-negligible charge-delocalization constituent was discovered. Notably, all the crystal structures are further stabilized by very efficient (the interaction energy is >60 kcal mol−1) intermolecular C—H⋯π(benzene) and C—H⋯π(chelate) interactions, which are responsible for their high stability as seen from the thermogravimetric (TG) analyses. Although they contain the prevailing dispersion constituent, the charge-delocalization contribution is only slightly less important followed by the Coulomb term. Our results, clearly showing that the bulky cyclohexyl groups are the sources of London dispersion stabilization, are in line with the recent discoveries outlining the true character of steric effects in small and sizable species (Cukrowski et al., 2016; Liptrot & Power, 2017; Mitoraj et al., 2019d, 2020; Sagan & Mitoraj, 2019; Wagner & Schreiner, 2015). Furthermore, we have determined that intramolecular C—H⋯O interactions can be both attractive and repulsive depending on the distance.
Finally, dissolving crystals of the complexes in CH2Cl2 yielded yellow and reddish yellow solutions for the NiII and CuII derivatives, respectively. The UV–Vis absorption spectra exhibit three clearly defined regions, corresponding to intraligand π → π* and n → π* transitions, MLCT transitions and (d–d) transitions, as indicated by the time-dependent density functional theory (TDDFT) computations. Importantly, all the complexes were found to be planar and photoluminescent in CH2Cl2, with [Cu(LII)2] exhibiting the most pronounced emission, mostly owing to MLCT transitions.
4. Experimental
4.1. Materials
All reagents and solvents were commercially available and used without further purification.
4.2. Physical measurements
Nuclear magnetic resonance (NMR) spectra in CDCl3 were obtained on a Bruker AVANCE II 400 MHz spectrometer at 25°C. Chemical shifts are reported with reference to SiMe4. Infrared spectra (KBr) were recorded with a FT-IR FSM 1201 spectrometer in the range 400–3400 cm–1. UV–Vis and fluorescent spectra from the freshly prepared solutions (5 × 10−5 M) in freshly distilled CH2Cl2 were recorded on an Agilent 8453 instrument and a RF-5301 spectrofluorophotometer. TG analyses were performed by a NETZSCH STA 449 F5 Jupiter instrument in a dynamic air or argon atmosphere (100 ml min−1) from laboratory temperature to 1000°C with a 10°C min−1 heating rate. Microanalyses were performed using a ElementarVario EL III analyzer.
4.3. Synthesis of HLI,II
A solution of an equimolar amount of salicylaldehyde or 2-hydroxy-1-naphthaldehyde (10 mmol; 1.221 and 1.722 g, respectively) and cyclohexylamine (10 mmol, 0.992 g) in ethanol (50 ml) was stirred for 1 h under reflux. For a solution of HLI, the solvent and non-reacted starting materials were removed in vacuo. The resulting yellow viscous oil was analyzed and used as is. The resulting solution of HLII was allowed to cool to room temperature to give crystals, which were filtered off.
(a) HLI. Yield = 1.809 g (89%). 1H NMR: δ = 1.28–1.75 (m, 6H, CH2, C6H11), 1.80–1.95 (m, 4H, CH2, C6H11), 3.25–3.35 (m, 1H, CH, C6H11), 6.84 (t, 3JH,H = 7.4 Hz, 1H, 5-H, C6H4), 6.96 (d, 3JH,H = 8.2 Hz, 1H, 3-H, C6H4), 7.32 (d, 3JH,H = 7.4 Hz, 1H, 6-H, C6H4), 7.38 (d, 3JH,H = 8.3 Hz, 1H, 4-H, C6H4), 8.37 (s, 1H, imine) and 13.30 (br. s, 1H, OH). Analysis calculated for C13H17NO (203.29): C = 76.81, H = 8.43 and N = 6.89%; found: C = 76.68, H = 8.37 and N = 6.94%.
(b) HLII. Yield = 2128 g (84%). 1H NMR: δ = 1.30–1.76 (m, 6H, CH2, C6H11), 1.86–1.97 (m, 2H, CH2, C6H11), 2.03–2.12 (m, 2H, CH2, C6H11), 3.44–3.58 (m, 1H, CH, C6H11), 6.94 (d, 3JH,H = 9.8 Hz, 1H, C10H6), 7.26 (t, 3JH,H = 7.3 Hz, 1H, C10H6), 7.46 (t, 3JH,H = 7.3 Hz, 1H, C10H6), 7.64 (d, 3JH,H = 7.8 Hz, 1H, C10H6), 7.71 (d, 3JH,H = 9.8 Hz, 1H, C10H6), 7.87 (d, 3JH,H = 7.8 Hz, 1H, C10H6), 8.77 [d, 3JH,H = 5.9 Hz, 1H, (naphthalene)CHN], 14.58 (br. s, 1H, NH). Analysis calculated for C17H19NO (253.35): C = 80.60, H = 7.56 and N = 5.53%; found: C = 80.48, H = 7.62 and N = 5.48%.
4.4. Synthesis of [Ni(LI,II)2] and [Cu(LI,II)2]
To a solution of HLI,II (2 mmol; 0.407 and 0.507 g, respectively) in ethanol (10 ml) was added a solution of Ni(CH3COO)24H2O (0.249 g, 1 mmol) or Cu(CH3COO)2 (0.182 g, 1 mmol) in a mixture of water (1 ml) and ethanol (50 ml). The mixture was stirred at room temperature for 1 h. The resulting precipitate was filtered off, washed with ethanol (3 × 50 ml) and dried in vacuo. Then the product was dissolved in CH2Cl2. X-ray suitable crystals were formed during the next few days upon slow evaporation of the solvent.
(i) [Ni(LI)2]. Light brown needle-like crystals. Yield = 0.389 g (84%). Analysis calculated for C26H32N2NiO2 (463.25): C = 67.41, H = 6.96 and N = 6.05%; found: C = 67.52, H = 7.05 and N = 5.97%.
(ii) [Cu(LI)2]. Dark red block-like crystals. Yield = 0.360 g (77%). Analysis calculated for C26H32CuN2O2 (468.10): C = 66.71, H = 6.89 and N = 5.98%; found: C = 66.62, H = 6.79 and N = 5.91%.
(iii) [Ni(LII)2]. Green needle-like crystals. Yield = 0.439 g (78%). Analysis calculated for C34H36N2NiO2 (563.37): C = 72.49, H = 6.44 and N = 4.97%; found: C = 72.61, H = 6.49 and N = 5.02%.
(iv) [Cu(LII)2]. Greenish yellow needle-like crystals. Yield = 0.472 g (83%). Analysis calculated for C34H36CuN2O2 (568.22): C = 71.87, H = 6.39 and N = 4.93%; found: C = 71.98, H = 6.34 and N = 4.88%.
4.5. X-ray powder diffraction of [Ni(LI,II)2] and [Cu(LI,II)2]
X-ray powder diffraction for a bulk sample was carried out using a Rigaku Miniflex X-ray powder diffractometer (λ = 1.54059 Å).
4.6. Single-crystal X-ray diffraction of [Ni(LI,II)2] and [Cu(LI,II)2]
Data for all the structures were collected on a Stoe IPDS II two-circle diffractometer with a Genix Microfocus tube with mirror optics using Mo Kα radiation (λ = 0.71073 Å). The data were scaled using the frame-scaling procedure in the X-AREA program system (Stoe & Cie, 2002). The structures were solved by using the program SHELXS (Sheldrick, 2008, 2015) and refined against F2 with full-matrix least-squares techniques using the program SHELXL (Sheldrick, 2008, 2015). Hydrogen atoms were geometrically positioned and refined using a riding model.
(1) Crystal data for [Ni(LI)2]. C26H32N2NiO2, Mr = 463.24 g mol−1, T = 173 (2) K, triclinic, P-1 (No. 2), a = 6.4256 (6), b = 7.7129 (8), c = 11.9856 (11) Å, α = 98.709 (8), β = 101.800 (8), γ = 104.300 (8)°, V = 550.52 (10) Å3, Z = 1, ρ = 1.397 g cm−3, μ(Mo Kα) = 0.907 mm−1, reflections = 6716 collected and 2530 unique, Rint = 0.0361, R1(all) = 0.0592, wR2(all) = 0.1094 and S = 1.151.
(2) Crystal data for [Cu(LI)2]. C26H32CuN2O2, Mr = 468.07 g mol−1, T = 173 (2) K, triclinic, P-1 (No. 2), a = 6.4641 (4), b = 7.7224 (5), c = 11.9925 (7) Å, α = 97.647 (5), β = 101.861 (5), γ = 105.261 (5)°, V = 553.99 (6) Å3, Z = 1, ρ = 1.403 g cm−3, μ(Mo Kα) = 1.011 mm−1, reflections = 12 420 collected and 3073 unique, Rint = 0.0206, R1(all) = 0.0252, wR2(all) = 0.0693 and S = 1.103.
(3) Crystal data for [Ni(LII)2]. C34H36N2NiO2, Mr = 563.36 g mol−1, T = 173 (2) K, monoclinic, P21/n, a = 6.0847 (3), b = 10.5704 (7), c = 20.8597 (11) Å, β = 97.882 (4)°, V = 1328.97 (13) Å3, Z = 2, ρ = 1.408 g cm−3, μ(Mo Kα) = 0.766 mm−1, reflections = 15 012 collected and 2930 unique, Rint = 0.043, R1(all) = 0.0527, wR2(all) = 0.0879 and S = 1.106.
(4) Crystal data for [Cu(LII)2]. C34H36CuN2O2, Mr = 568.19 g mol−1, T = 173 (2) K, monoclinic, P21/n, a = 11.0325 (10), b = 5.6889 (3), c = 21.554 (2) Å, β = 99.410 (7)°, V = 1334.59 (19) Å3, Z = 2, ρ = 1.414 g cm−3, μ(Mo Kα) = 0.854 mm−1, reflections = 10 452 collected, 2485 unique, Rint = 0.032, R1(all) = 0.0455, wR2(all) = 0.0842 and S = 1.137.
Supporting information
https://doi.org/10.1107/S2052252521000610/ed5022sup1.cif
contains datablocks ba37, ba36, ba43, ba41. DOI:Supporting information. DOI: https://doi.org/10.1107/S2052252521000610/ed5022sup2.pdf
For all structures, data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for ba37, ba36, ba43. Program(s) used to refine structure: SHELXL (Sheldrick, 2008) for ba37, ba36, ba43; SHELXL2018/3 (Sheldrick, 2018) for ba41. For all structures, molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008). Software used to prepare material for publication: SHELXL for ba37, ba36, ba43.C26H32N2NiO2 | Z = 1 |
Mr = 463.24 | F(000) = 246 |
Triclinic, P1 | Dx = 1.397 Mg m−3 |
a = 6.4256 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.7129 (8) Å | Cell parameters from 6716 reflections |
c = 11.9856 (11) Å | θ = 3.4–28.0° |
α = 98.709 (8)° | µ = 0.91 mm−1 |
β = 101.800 (8)° | T = 173 K |
γ = 104.300 (8)° | Needle, light brown |
V = 550.52 (10) Å3 | 0.16 × 0.08 × 0.06 mm |
STOE IPDS II two-circle- diffractometer | 2282 reflections with I > 2σ(I) |
Radiation source: Genix 3D IµS microfocus X-ray source | Rint = 0.036 |
ω scans | θmax = 27.6°, θmin = 3.6° |
Absorption correction: multi-scan X-Area (Stoe & Cie, 2001) | h = −7→8 |
Tmin = 0.651, Tmax = 1.000 | k = −10→10 |
6716 measured reflections | l = −15→15 |
2530 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0456P)2 + 0.4632P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
2530 reflections | Δρmax = 0.45 e Å−3 |
142 parameters | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 0.000000 | 0.500000 | 0.01432 (15) | |
O1 | 0.6307 (3) | 0.1097 (3) | 0.65492 (15) | 0.0203 (4) | |
N1 | 0.2904 (3) | 0.1441 (3) | 0.49251 (18) | 0.0155 (4) | |
C1 | 0.5253 (4) | 0.1577 (3) | 0.7319 (2) | 0.0171 (5) | |
C2 | 0.3233 (4) | 0.2021 (3) | 0.7014 (2) | 0.0165 (5) | |
C3 | 0.2208 (5) | 0.2567 (4) | 0.7883 (2) | 0.0205 (5) | |
H3 | 0.085866 | 0.287318 | 0.766718 | 0.025* | |
C4 | 0.3133 (5) | 0.2664 (4) | 0.9042 (2) | 0.0243 (6) | |
H4 | 0.241786 | 0.301213 | 0.962260 | 0.029* | |
C5 | 0.5140 (5) | 0.2243 (4) | 0.9351 (2) | 0.0257 (6) | |
H5 | 0.578808 | 0.231165 | 1.014944 | 0.031* | |
C6 | 0.6196 (5) | 0.1731 (4) | 0.8520 (2) | 0.0214 (5) | |
H6 | 0.757471 | 0.147864 | 0.875503 | 0.026* | |
C7 | 0.2294 (4) | 0.2071 (4) | 0.5825 (2) | 0.0176 (5) | |
H7 | 0.111941 | 0.261894 | 0.569098 | 0.021* | |
C11 | 0.1926 (4) | 0.1818 (3) | 0.3777 (2) | 0.0154 (5) | |
H11 | 0.133518 | 0.061517 | 0.320583 | 0.018* | |
C12 | 0.3786 (4) | 0.3001 (4) | 0.3363 (2) | 0.0184 (5) | |
H12A | 0.437566 | 0.422888 | 0.388676 | 0.022* | |
H12B | 0.501395 | 0.243200 | 0.339287 | 0.022* | |
C13 | 0.2900 (4) | 0.3187 (4) | 0.2113 (2) | 0.0200 (5) | |
H13A | 0.409289 | 0.400931 | 0.187100 | 0.024* | |
H13B | 0.245548 | 0.197171 | 0.158014 | 0.024* | |
C14 | 0.0920 (5) | 0.3951 (4) | 0.2014 (2) | 0.0225 (6) | |
H14A | 0.031322 | 0.396099 | 0.118714 | 0.027* | |
H14B | 0.140967 | 0.522984 | 0.246550 | 0.027* | |
C15 | −0.0894 (4) | 0.2813 (4) | 0.2469 (2) | 0.0212 (5) | |
H15A | −0.149750 | 0.156901 | 0.196641 | 0.025* | |
H15B | −0.212071 | 0.338404 | 0.243609 | 0.025* | |
C16 | 0.0019 (4) | 0.2676 (4) | 0.3732 (2) | 0.0184 (5) | |
H16A | 0.055281 | 0.391122 | 0.424659 | 0.022* | |
H16B | −0.117102 | 0.191427 | 0.400809 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0142 (2) | 0.0171 (3) | 0.0130 (2) | 0.00755 (18) | 0.00319 (17) | 0.00265 (17) |
O1 | 0.0181 (9) | 0.0287 (10) | 0.0140 (9) | 0.0110 (8) | 0.0026 (7) | −0.0006 (7) |
N1 | 0.0125 (10) | 0.0193 (11) | 0.0162 (10) | 0.0052 (8) | 0.0036 (8) | 0.0065 (8) |
C1 | 0.0177 (12) | 0.0157 (12) | 0.0162 (12) | 0.0048 (9) | 0.0026 (9) | 0.0010 (9) |
C2 | 0.0173 (12) | 0.0160 (12) | 0.0162 (12) | 0.0054 (9) | 0.0031 (9) | 0.0035 (9) |
C3 | 0.0210 (13) | 0.0224 (13) | 0.0201 (13) | 0.0089 (10) | 0.0067 (10) | 0.0040 (10) |
C4 | 0.0290 (14) | 0.0287 (15) | 0.0170 (13) | 0.0088 (12) | 0.0108 (11) | 0.0027 (11) |
C5 | 0.0296 (15) | 0.0303 (15) | 0.0151 (12) | 0.0078 (12) | 0.0034 (11) | 0.0030 (11) |
C6 | 0.0213 (13) | 0.0233 (13) | 0.0185 (13) | 0.0088 (10) | 0.0011 (10) | 0.0028 (10) |
C7 | 0.0165 (12) | 0.0196 (12) | 0.0179 (12) | 0.0065 (10) | 0.0043 (10) | 0.0053 (10) |
C11 | 0.0142 (11) | 0.0193 (12) | 0.0151 (11) | 0.0075 (9) | 0.0034 (9) | 0.0068 (9) |
C12 | 0.0142 (12) | 0.0268 (14) | 0.0178 (12) | 0.0078 (10) | 0.0057 (9) | 0.0101 (10) |
C13 | 0.0217 (13) | 0.0247 (14) | 0.0184 (12) | 0.0091 (11) | 0.0077 (10) | 0.0111 (11) |
C14 | 0.0224 (13) | 0.0276 (14) | 0.0223 (13) | 0.0106 (11) | 0.0066 (11) | 0.0130 (11) |
C15 | 0.0155 (12) | 0.0282 (14) | 0.0232 (13) | 0.0093 (10) | 0.0032 (10) | 0.0128 (11) |
C16 | 0.0155 (12) | 0.0241 (13) | 0.0206 (12) | 0.0095 (10) | 0.0070 (10) | 0.0094 (10) |
Ni1—O1 | 1.8451 (18) | C7—H7 | 0.9500 |
Ni1—O1i | 1.8451 (18) | C11—C16 | 1.526 (3) |
Ni1—N1 | 1.943 (2) | C11—C12 | 1.533 (3) |
Ni1—N1i | 1.943 (2) | C11—H11 | 1.0000 |
O1—C1 | 1.313 (3) | C12—C13 | 1.532 (3) |
N1—C7 | 1.288 (3) | C12—H12A | 0.9900 |
N1—C11 | 1.494 (3) | C12—H12B | 0.9900 |
C1—C2 | 1.414 (4) | C13—C14 | 1.520 (4) |
C1—C6 | 1.417 (4) | C13—H13A | 0.9900 |
C2—C3 | 1.407 (4) | C13—H13B | 0.9900 |
C2—C7 | 1.440 (3) | C14—C15 | 1.526 (4) |
C3—C4 | 1.378 (4) | C14—H14A | 0.9900 |
C3—H3 | 0.9500 | C14—H14B | 0.9900 |
C4—C5 | 1.397 (4) | C15—C16 | 1.536 (3) |
C4—H4 | 0.9500 | C15—H15A | 0.9900 |
C5—C6 | 1.378 (4) | C15—H15B | 0.9900 |
C5—H5 | 0.9500 | C16—H16A | 0.9900 |
C6—H6 | 0.9500 | C16—H16B | 0.9900 |
O1—Ni1—O1i | 180.0 | N1—C11—H11 | 107.0 |
O1—Ni1—N1 | 91.30 (9) | C16—C11—H11 | 107.0 |
O1i—Ni1—N1 | 88.71 (9) | C12—C11—H11 | 107.0 |
O1—Ni1—N1i | 88.70 (9) | C13—C12—C11 | 110.1 (2) |
O1i—Ni1—N1i | 91.30 (9) | C13—C12—H12A | 109.6 |
N1—Ni1—N1i | 180.00 (9) | C11—C12—H12A | 109.6 |
C1—O1—Ni1 | 125.28 (16) | C13—C12—H12B | 109.6 |
C7—N1—C11 | 118.2 (2) | C11—C12—H12B | 109.6 |
C7—N1—Ni1 | 122.77 (17) | H12A—C12—H12B | 108.2 |
C11—N1—Ni1 | 119.00 (16) | C14—C13—C12 | 111.3 (2) |
O1—C1—C2 | 123.0 (2) | C14—C13—H13A | 109.4 |
O1—C1—C6 | 119.4 (2) | C12—C13—H13A | 109.4 |
C2—C1—C6 | 117.5 (2) | C14—C13—H13B | 109.4 |
C3—C2—C1 | 120.3 (2) | C12—C13—H13B | 109.4 |
C3—C2—C7 | 119.0 (2) | H13A—C13—H13B | 108.0 |
C1—C2—C7 | 120.5 (2) | C13—C14—C15 | 111.4 (2) |
C4—C3—C2 | 121.0 (3) | C13—C14—H14A | 109.4 |
C4—C3—H3 | 119.5 | C15—C14—H14A | 109.4 |
C2—C3—H3 | 119.5 | C13—C14—H14B | 109.4 |
C3—C4—C5 | 119.0 (3) | C15—C14—H14B | 109.4 |
C3—C4—H4 | 120.5 | H14A—C14—H14B | 108.0 |
C5—C4—H4 | 120.5 | C14—C15—C16 | 110.9 (2) |
C6—C5—C4 | 121.2 (3) | C14—C15—H15A | 109.5 |
C6—C5—H5 | 119.4 | C16—C15—H15A | 109.5 |
C4—C5—H5 | 119.4 | C14—C15—H15B | 109.5 |
C5—C6—C1 | 120.9 (3) | C16—C15—H15B | 109.5 |
C5—C6—H6 | 119.5 | H15A—C15—H15B | 108.0 |
C1—C6—H6 | 119.5 | C11—C16—C15 | 109.1 (2) |
N1—C7—C2 | 125.9 (2) | C11—C16—H16A | 109.9 |
N1—C7—H7 | 117.1 | C15—C16—H16A | 109.9 |
C2—C7—H7 | 117.1 | C11—C16—H16B | 109.9 |
N1—C11—C16 | 116.5 (2) | C15—C16—H16B | 109.9 |
N1—C11—C12 | 108.76 (19) | H16A—C16—H16B | 108.3 |
C16—C11—C12 | 110.2 (2) | ||
N1—Ni1—O1—C1 | 36.5 (2) | Ni1—N1—C7—C2 | 8.2 (4) |
N1i—Ni1—O1—C1 | −143.5 (2) | C3—C2—C7—N1 | −172.4 (2) |
Ni1—O1—C1—C2 | −26.8 (3) | C1—C2—C7—N1 | 12.8 (4) |
Ni1—O1—C1—C6 | 155.64 (19) | C7—N1—C11—C16 | −8.9 (3) |
O1—C1—C2—C3 | −178.5 (2) | Ni1—N1—C11—C16 | 170.21 (17) |
C6—C1—C2—C3 | −0.9 (4) | C7—N1—C11—C12 | 116.3 (2) |
O1—C1—C2—C7 | −3.8 (4) | Ni1—N1—C11—C12 | −64.6 (2) |
C6—C1—C2—C7 | 173.8 (2) | N1—C11—C12—C13 | 172.1 (2) |
C1—C2—C3—C4 | −0.6 (4) | C16—C11—C12—C13 | −59.1 (3) |
C7—C2—C3—C4 | −175.4 (2) | C11—C12—C13—C14 | 55.9 (3) |
C2—C3—C4—C5 | 1.2 (4) | C12—C13—C14—C15 | −54.5 (3) |
C3—C4—C5—C6 | −0.2 (4) | C13—C14—C15—C16 | 55.9 (3) |
C4—C5—C6—C1 | −1.4 (4) | N1—C11—C16—C15 | −175.4 (2) |
O1—C1—C6—C5 | 179.6 (2) | C12—C11—C16—C15 | 60.2 (3) |
C2—C1—C6—C5 | 1.9 (4) | C14—C15—C16—C11 | −58.4 (3) |
C11—N1—C7—C2 | −172.7 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
C26H32CuN2O2 | Z = 1 |
Mr = 468.07 | F(000) = 247 |
Triclinic, P1 | Dx = 1.403 Mg m−3 |
a = 6.4641 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.7224 (5) Å | Cell parameters from 12420 reflections |
c = 11.9925 (7) Å | θ = 3.4–30.0° |
α = 97.647 (5)° | µ = 1.01 mm−1 |
β = 101.861 (5)° | T = 173 K |
γ = 105.261 (5)° | Block, dark red |
V = 553.99 (6) Å3 | 0.28 × 0.26 × 0.14 mm |
STOE IPDS II two-circle- diffractometer | 3052 reflections with I > 2σ(I) |
Radiation source: Genix 3D IµS microfocus X-ray source | Rint = 0.021 |
ω scans | θmax = 29.6°, θmin = 3.4° |
Absorption correction: multi-scan X-Area (Stoe & Cie, 2001) | h = −8→8 |
Tmin = 0.613, Tmax = 1.000 | k = −10→10 |
12420 measured reflections | l = −16→16 |
3073 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.0362P)2 + 0.2633P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
3073 reflections | Δρmax = 0.40 e Å−3 |
142 parameters | Δρmin = −0.45 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.500000 | 0.000000 | 0.500000 | 0.01445 (7) | |
O1 | 0.62861 (15) | 0.10824 (14) | 0.65936 (8) | 0.02276 (18) | |
N1 | 0.28645 (16) | 0.15003 (13) | 0.49196 (8) | 0.01533 (17) | |
C1 | 0.52316 (19) | 0.15818 (15) | 0.73405 (10) | 0.0172 (2) | |
C2 | 0.32425 (19) | 0.20477 (15) | 0.70143 (10) | 0.0165 (2) | |
C3 | 0.2205 (2) | 0.25847 (17) | 0.78688 (11) | 0.0209 (2) | |
H3 | 0.087226 | 0.289211 | 0.763784 | 0.025* | |
C4 | 0.3080 (2) | 0.2674 (2) | 0.90304 (11) | 0.0263 (3) | |
H4 | 0.235524 | 0.302308 | 0.959692 | 0.032* | |
C5 | 0.5068 (2) | 0.2237 (2) | 0.93612 (11) | 0.0268 (3) | |
H5 | 0.569738 | 0.230612 | 1.016079 | 0.032* | |
C6 | 0.6119 (2) | 0.17110 (18) | 0.85437 (11) | 0.0231 (2) | |
H6 | 0.746454 | 0.142915 | 0.879114 | 0.028* | |
C7 | 0.22891 (18) | 0.21071 (15) | 0.58270 (10) | 0.0165 (2) | |
H7 | 0.112088 | 0.264683 | 0.570066 | 0.020* | |
C11 | 0.18580 (18) | 0.18372 (15) | 0.37711 (9) | 0.01557 (19) | |
H11 | 0.126641 | 0.062772 | 0.321933 | 0.019* | |
C12 | 0.36967 (19) | 0.30361 (18) | 0.33374 (10) | 0.0198 (2) | |
H12A | 0.427589 | 0.427010 | 0.384201 | 0.024* | |
H12B | 0.493098 | 0.249291 | 0.338095 | 0.024* | |
C13 | 0.2817 (2) | 0.31991 (18) | 0.20825 (11) | 0.0214 (2) | |
H13A | 0.400704 | 0.402576 | 0.182950 | 0.026* | |
H13B | 0.236701 | 0.197982 | 0.156725 | 0.026* | |
C14 | 0.0840 (2) | 0.39460 (18) | 0.19761 (11) | 0.0232 (2) | |
H14A | 0.022288 | 0.394243 | 0.114856 | 0.028* | |
H14B | 0.133805 | 0.522831 | 0.240863 | 0.028* | |
C15 | −0.0962 (2) | 0.28056 (19) | 0.24529 (11) | 0.0225 (2) | |
H15A | −0.157909 | 0.155905 | 0.196509 | 0.027* | |
H15B | −0.217828 | 0.336929 | 0.241562 | 0.027* | |
C16 | −0.00449 (19) | 0.26762 (17) | 0.37146 (10) | 0.0192 (2) | |
H16A | 0.049283 | 0.391204 | 0.421615 | 0.023* | |
H16B | −0.123098 | 0.190565 | 0.399938 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01390 (10) | 0.01745 (10) | 0.01309 (10) | 0.00766 (7) | 0.00287 (6) | 0.00152 (6) |
O1 | 0.0198 (4) | 0.0326 (5) | 0.0161 (4) | 0.0148 (4) | 0.0011 (3) | −0.0031 (3) |
N1 | 0.0145 (4) | 0.0174 (4) | 0.0152 (4) | 0.0067 (3) | 0.0033 (3) | 0.0039 (3) |
C1 | 0.0182 (5) | 0.0168 (5) | 0.0155 (5) | 0.0064 (4) | 0.0025 (4) | 0.0002 (4) |
C2 | 0.0180 (5) | 0.0170 (5) | 0.0154 (5) | 0.0066 (4) | 0.0046 (4) | 0.0029 (4) |
C3 | 0.0216 (5) | 0.0247 (6) | 0.0192 (5) | 0.0101 (4) | 0.0078 (4) | 0.0032 (4) |
C4 | 0.0299 (6) | 0.0334 (7) | 0.0183 (5) | 0.0118 (5) | 0.0101 (5) | 0.0032 (5) |
C5 | 0.0311 (6) | 0.0332 (7) | 0.0156 (5) | 0.0111 (5) | 0.0035 (5) | 0.0035 (5) |
C6 | 0.0240 (6) | 0.0270 (6) | 0.0173 (5) | 0.0108 (5) | 0.0005 (4) | 0.0018 (4) |
C7 | 0.0162 (5) | 0.0182 (5) | 0.0173 (5) | 0.0078 (4) | 0.0049 (4) | 0.0040 (4) |
C11 | 0.0142 (5) | 0.0191 (5) | 0.0150 (5) | 0.0069 (4) | 0.0038 (4) | 0.0047 (4) |
C12 | 0.0152 (5) | 0.0264 (6) | 0.0198 (5) | 0.0067 (4) | 0.0057 (4) | 0.0083 (4) |
C13 | 0.0215 (5) | 0.0275 (6) | 0.0195 (5) | 0.0101 (5) | 0.0080 (4) | 0.0092 (4) |
C14 | 0.0224 (5) | 0.0278 (6) | 0.0247 (6) | 0.0112 (5) | 0.0075 (4) | 0.0137 (5) |
C15 | 0.0167 (5) | 0.0306 (6) | 0.0236 (6) | 0.0099 (4) | 0.0044 (4) | 0.0122 (5) |
C16 | 0.0168 (5) | 0.0248 (5) | 0.0209 (5) | 0.0109 (4) | 0.0068 (4) | 0.0087 (4) |
Cu1—O1i | 1.8969 (9) | C7—H7 | 0.9500 |
Cu1—O1 | 1.8969 (9) | C11—C16 | 1.5278 (15) |
Cu1—N1 | 2.0184 (9) | C11—C12 | 1.5308 (16) |
Cu1—N1i | 2.0185 (9) | C11—H11 | 1.0000 |
O1—C1 | 1.3089 (14) | C12—C13 | 1.5297 (16) |
N1—C7 | 1.2902 (14) | C12—H12A | 0.9900 |
N1—C11 | 1.4846 (14) | C12—H12B | 0.9900 |
C1—C2 | 1.4177 (16) | C13—C14 | 1.5241 (17) |
C1—C6 | 1.4186 (16) | C13—H13A | 0.9900 |
C2—C3 | 1.4098 (16) | C13—H13B | 0.9900 |
C2—C7 | 1.4424 (15) | C14—C15 | 1.5258 (17) |
C3—C4 | 1.3767 (17) | C14—H14A | 0.9900 |
C3—H3 | 0.9500 | C14—H14B | 0.9900 |
C4—C5 | 1.406 (2) | C15—C16 | 1.5341 (16) |
C4—H4 | 0.9500 | C15—H15A | 0.9900 |
C5—C6 | 1.3788 (18) | C15—H15B | 0.9900 |
C5—H5 | 0.9500 | C16—H16A | 0.9900 |
C6—H6 | 0.9500 | C16—H16B | 0.9900 |
O1i—Cu1—O1 | 180.0 | N1—C11—H11 | 107.2 |
O1i—Cu1—N1 | 89.42 (4) | C16—C11—H11 | 107.2 |
O1—Cu1—N1 | 90.58 (4) | C12—C11—H11 | 107.2 |
O1i—Cu1—N1i | 90.58 (4) | C13—C12—C11 | 110.60 (9) |
O1—Cu1—N1i | 89.42 (4) | C13—C12—H12A | 109.5 |
N1—Cu1—N1i | 180.0 | C11—C12—H12A | 109.5 |
C1—O1—Cu1 | 125.74 (8) | C13—C12—H12B | 109.5 |
C7—N1—C11 | 119.42 (9) | C11—C12—H12B | 109.5 |
C7—N1—Cu1 | 121.86 (8) | H12A—C12—H12B | 108.1 |
C11—N1—Cu1 | 118.66 (7) | C14—C13—C12 | 110.78 (10) |
O1—C1—C2 | 123.30 (10) | C14—C13—H13A | 109.5 |
O1—C1—C6 | 119.35 (11) | C12—C13—H13A | 109.5 |
C2—C1—C6 | 117.33 (11) | C14—C13—H13B | 109.5 |
C3—C2—C1 | 120.14 (11) | C12—C13—H13B | 109.5 |
C3—C2—C7 | 117.71 (10) | H13A—C13—H13B | 108.1 |
C1—C2—C7 | 122.03 (10) | C13—C14—C15 | 111.43 (10) |
C4—C3—C2 | 121.49 (11) | C13—C14—H14A | 109.3 |
C4—C3—H3 | 119.3 | C15—C14—H14A | 109.3 |
C2—C3—H3 | 119.3 | C13—C14—H14B | 109.3 |
C3—C4—C5 | 118.65 (12) | C15—C14—H14B | 109.3 |
C3—C4—H4 | 120.7 | H14A—C14—H14B | 108.0 |
C5—C4—H4 | 120.7 | C14—C15—C16 | 111.20 (10) |
C6—C5—C4 | 121.06 (12) | C14—C15—H15A | 109.4 |
C6—C5—H5 | 119.5 | C16—C15—H15A | 109.4 |
C4—C5—H5 | 119.5 | C14—C15—H15B | 109.4 |
C5—C6—C1 | 121.32 (12) | C16—C15—H15B | 109.4 |
C5—C6—H6 | 119.3 | H15A—C15—H15B | 108.0 |
C1—C6—H6 | 119.3 | C11—C16—C15 | 109.20 (10) |
N1—C7—C2 | 126.51 (10) | C11—C16—H16A | 109.8 |
N1—C7—H7 | 116.7 | C15—C16—H16A | 109.8 |
C2—C7—H7 | 116.7 | C11—C16—H16B | 109.8 |
N1—C11—C16 | 116.76 (9) | C15—C16—H16B | 109.8 |
N1—C11—C12 | 108.36 (9) | H16A—C16—H16B | 108.3 |
C16—C11—C12 | 109.78 (9) | ||
N1—Cu1—O1—C1 | 34.25 (10) | Cu1—N1—C7—C2 | 8.86 (16) |
N1i—Cu1—O1—C1 | −145.75 (10) | C3—C2—C7—N1 | −172.55 (11) |
Cu1—O1—C1—C2 | −25.23 (17) | C1—C2—C7—N1 | 11.39 (19) |
Cu1—O1—C1—C6 | 156.19 (9) | C7—N1—C11—C16 | −7.89 (15) |
O1—C1—C2—C3 | −179.60 (11) | Cu1—N1—C11—C16 | 169.38 (8) |
C6—C1—C2—C3 | −1.00 (17) | C7—N1—C11—C12 | 116.64 (11) |
O1—C1—C2—C7 | −3.64 (18) | Cu1—N1—C11—C12 | −66.09 (10) |
C6—C1—C2—C7 | 174.96 (11) | N1—C11—C12—C13 | 171.81 (9) |
C1—C2—C3—C4 | 0.06 (19) | C16—C11—C12—C13 | −59.61 (13) |
C7—C2—C3—C4 | −176.07 (12) | C11—C12—C13—C14 | 56.44 (14) |
C2—C3—C4—C5 | 0.8 (2) | C12—C13—C14—C15 | −54.34 (14) |
C3—C4—C5—C6 | −0.7 (2) | C13—C14—C15—C16 | 55.61 (15) |
C4—C5—C6—C1 | −0.3 (2) | N1—C11—C16—C15 | −176.38 (10) |
O1—C1—C6—C5 | 179.79 (12) | C12—C11—C16—C15 | 59.83 (12) |
C2—C1—C6—C5 | 1.12 (19) | C14—C15—C16—C11 | −58.06 (13) |
C11—N1—C7—C2 | −173.96 (10) |
Symmetry code: (i) −x+1, −y, −z+1. |
C34H36N2NiO2 | F(000) = 596 |
Mr = 563.36 | Dx = 1.408 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0847 (3) Å | Cell parameters from 15012 reflections |
b = 10.5704 (7) Å | θ = 3.4–27.5° |
c = 20.8597 (11) Å | µ = 0.77 mm−1 |
β = 97.882 (4)° | T = 173 K |
V = 1328.97 (13) Å3 | Needle, green |
Z = 2 | 0.16 × 0.03 × 0.03 mm |
STOE IPDS II two-circle- diffractometer | 2409 reflections with I > 2σ(I) |
Radiation source: Genix 3D IµS microfocus X-ray source | Rint = 0.043 |
ω scans | θmax = 27.2°, θmin = 3.4° |
Absorption correction: multi-scan X-Area (Stoe & Cie, 2001) | h = −7→7 |
Tmin = 0.618, Tmax = 1.000 | k = −13→13 |
15012 measured reflections | l = −26→26 |
2930 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0346P)2 + 1.176P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
2930 reflections | Δρmax = 0.28 e Å−3 |
178 parameters | Δρmin = −0.47 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 0.500000 | 0.500000 | 0.01499 (11) | |
N1 | 0.3865 (3) | 0.33253 (15) | 0.51060 (8) | 0.0154 (3) | |
O1 | 0.7745 (2) | 0.45194 (14) | 0.53949 (7) | 0.0216 (3) | |
C1 | 0.8187 (3) | 0.36913 (18) | 0.58592 (9) | 0.0170 (4) | |
C2 | 1.0345 (3) | 0.37605 (19) | 0.62364 (10) | 0.0205 (4) | |
H2 | 1.136469 | 0.439033 | 0.614016 | 0.025* | |
C3 | 1.0944 (3) | 0.2937 (2) | 0.67284 (10) | 0.0216 (4) | |
H3 | 1.238327 | 0.300029 | 0.696864 | 0.026* | |
C4 | 0.9474 (3) | 0.19797 (19) | 0.68949 (10) | 0.0192 (4) | |
C5 | 1.0089 (4) | 0.1155 (2) | 0.74216 (10) | 0.0246 (5) | |
H5 | 1.151577 | 0.123526 | 0.766775 | 0.030* | |
C6 | 0.8662 (4) | 0.0237 (2) | 0.75854 (10) | 0.0266 (5) | |
H6 | 0.909204 | −0.030899 | 0.794232 | 0.032* | |
C7 | 0.6567 (4) | 0.0120 (2) | 0.72177 (10) | 0.0256 (5) | |
H7 | 0.557811 | −0.051554 | 0.732588 | 0.031* | |
C8 | 0.5918 (3) | 0.0909 (2) | 0.67037 (10) | 0.0222 (4) | |
H8 | 0.448142 | 0.081087 | 0.646528 | 0.027* | |
C9 | 0.7339 (3) | 0.18636 (18) | 0.65207 (9) | 0.0171 (4) | |
C10 | 0.6727 (3) | 0.27304 (18) | 0.59896 (9) | 0.0163 (4) | |
C11 | 0.4731 (3) | 0.25399 (18) | 0.55478 (9) | 0.0167 (4) | |
H11 | 0.397009 | 0.176340 | 0.558200 | 0.020* | |
C21 | 0.1879 (3) | 0.29071 (18) | 0.46574 (9) | 0.0163 (4) | |
H21 | 0.076329 | 0.360537 | 0.464044 | 0.020* | |
C22 | 0.0719 (3) | 0.16995 (19) | 0.48364 (10) | 0.0191 (4) | |
H22A | 0.038484 | 0.175344 | 0.528688 | 0.023* | |
H22B | 0.168645 | 0.095657 | 0.480149 | 0.023* | |
C23 | −0.1429 (3) | 0.1568 (2) | 0.43661 (11) | 0.0240 (5) | |
H23A | −0.224192 | 0.080657 | 0.447910 | 0.029* | |
H23B | −0.238337 | 0.231425 | 0.440717 | 0.029* | |
C24 | −0.0957 (4) | 0.1460 (2) | 0.36714 (11) | 0.0272 (5) | |
H24A | −0.237785 | 0.143074 | 0.337684 | 0.033* | |
H24B | −0.014964 | 0.066220 | 0.361882 | 0.033* | |
C25 | 0.0420 (4) | 0.2573 (2) | 0.34868 (10) | 0.0265 (5) | |
H25A | −0.049337 | 0.335114 | 0.346196 | 0.032* | |
H25B | 0.085731 | 0.241939 | 0.305342 | 0.032* | |
C26 | 0.2505 (3) | 0.2771 (2) | 0.39761 (10) | 0.0213 (4) | |
H26A | 0.351590 | 0.204047 | 0.396223 | 0.026* | |
H26B | 0.329110 | 0.354117 | 0.386218 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01363 (17) | 0.01412 (17) | 0.01660 (18) | −0.00152 (14) | −0.00021 (12) | 0.00103 (15) |
N1 | 0.0133 (8) | 0.0182 (8) | 0.0141 (8) | −0.0013 (6) | −0.0006 (6) | −0.0017 (6) |
O1 | 0.0180 (7) | 0.0181 (7) | 0.0280 (8) | −0.0024 (6) | 0.0008 (6) | 0.0052 (6) |
C1 | 0.0181 (9) | 0.0154 (9) | 0.0168 (9) | 0.0023 (7) | 0.0003 (7) | −0.0019 (7) |
C2 | 0.0162 (9) | 0.0193 (10) | 0.0255 (11) | −0.0019 (8) | 0.0009 (8) | −0.0038 (8) |
C3 | 0.0162 (9) | 0.0220 (10) | 0.0246 (11) | 0.0017 (8) | −0.0042 (8) | −0.0066 (8) |
C4 | 0.0197 (10) | 0.0190 (10) | 0.0178 (10) | 0.0022 (8) | −0.0012 (8) | −0.0046 (8) |
C5 | 0.0254 (11) | 0.0277 (11) | 0.0183 (10) | 0.0041 (9) | −0.0056 (8) | −0.0019 (9) |
C6 | 0.0341 (12) | 0.0264 (12) | 0.0183 (10) | 0.0059 (9) | 0.0002 (9) | 0.0041 (8) |
C7 | 0.0314 (11) | 0.0238 (11) | 0.0216 (10) | −0.0003 (9) | 0.0038 (8) | 0.0045 (9) |
C8 | 0.0219 (10) | 0.0240 (10) | 0.0198 (10) | −0.0028 (8) | −0.0001 (8) | 0.0022 (8) |
C9 | 0.0187 (9) | 0.0186 (10) | 0.0134 (9) | 0.0018 (7) | 0.0006 (7) | −0.0027 (7) |
C10 | 0.0160 (9) | 0.0179 (10) | 0.0144 (9) | 0.0007 (7) | 0.0003 (7) | −0.0010 (7) |
C11 | 0.0177 (9) | 0.0158 (9) | 0.0166 (9) | −0.0017 (7) | 0.0024 (7) | −0.0002 (7) |
C21 | 0.0140 (9) | 0.0157 (9) | 0.0178 (9) | −0.0016 (7) | −0.0024 (7) | −0.0008 (7) |
C22 | 0.0174 (9) | 0.0181 (10) | 0.0209 (10) | −0.0020 (8) | −0.0004 (8) | 0.0002 (8) |
C23 | 0.0181 (10) | 0.0222 (10) | 0.0302 (12) | −0.0070 (8) | −0.0024 (8) | 0.0000 (9) |
C24 | 0.0271 (11) | 0.0262 (11) | 0.0252 (11) | −0.0062 (9) | −0.0072 (9) | −0.0022 (9) |
C25 | 0.0309 (12) | 0.0296 (12) | 0.0170 (10) | −0.0058 (9) | −0.0039 (9) | 0.0004 (9) |
C26 | 0.0208 (10) | 0.0232 (11) | 0.0190 (10) | −0.0044 (8) | −0.0002 (8) | 0.0012 (8) |
Ni1—O1 | 1.8302 (14) | C8—H8 | 0.9500 |
Ni1—O1i | 1.8302 (14) | C9—C10 | 1.447 (3) |
Ni1—N1 | 1.9238 (16) | C10—C11 | 1.435 (3) |
Ni1—N1i | 1.9239 (16) | C11—H11 | 0.9500 |
N1—C11 | 1.297 (2) | C21—C26 | 1.528 (3) |
N1—C21 | 1.491 (2) | C21—C22 | 1.529 (3) |
O1—C1 | 1.306 (2) | C21—H21 | 1.0000 |
C1—C10 | 1.400 (3) | C22—C23 | 1.529 (3) |
C1—C2 | 1.437 (3) | C22—H22A | 0.9900 |
C2—C3 | 1.357 (3) | C22—H22B | 0.9900 |
C2—H2 | 0.9500 | C23—C24 | 1.520 (3) |
C3—C4 | 1.424 (3) | C23—H23A | 0.9900 |
C3—H3 | 0.9500 | C23—H23B | 0.9900 |
C4—C5 | 1.413 (3) | C24—C25 | 1.524 (3) |
C4—C9 | 1.426 (3) | C24—H24A | 0.9900 |
C5—C6 | 1.376 (3) | C24—H24B | 0.9900 |
C5—H5 | 0.9500 | C25—C26 | 1.529 (3) |
C6—C7 | 1.400 (3) | C25—H25A | 0.9900 |
C6—H6 | 0.9500 | C25—H25B | 0.9900 |
C7—C8 | 1.372 (3) | C26—H26A | 0.9900 |
C7—H7 | 0.9500 | C26—H26B | 0.9900 |
C8—C9 | 1.416 (3) | ||
O1—Ni1—O1i | 180.0 | N1—C11—C10 | 126.31 (18) |
O1—Ni1—N1 | 90.72 (6) | N1—C11—H11 | 116.8 |
O1i—Ni1—N1 | 89.28 (6) | C10—C11—H11 | 116.8 |
O1—Ni1—N1i | 89.28 (6) | N1—C21—C26 | 109.13 (16) |
O1i—Ni1—N1i | 90.72 (6) | N1—C21—C22 | 117.12 (16) |
N1—Ni1—N1i | 180.0 | C26—C21—C22 | 109.30 (16) |
C11—N1—C21 | 118.14 (16) | N1—C21—H21 | 106.9 |
C11—N1—Ni1 | 123.59 (13) | C26—C21—H21 | 106.9 |
C21—N1—Ni1 | 118.27 (12) | C22—C21—H21 | 106.9 |
C1—O1—Ni1 | 127.03 (13) | C21—C22—C23 | 107.55 (16) |
O1—C1—C10 | 123.97 (18) | C21—C22—H22A | 110.2 |
O1—C1—C2 | 116.85 (18) | C23—C22—H22A | 110.2 |
C10—C1—C2 | 119.14 (18) | C21—C22—H22B | 110.2 |
C3—C2—C1 | 120.78 (19) | C23—C22—H22B | 110.2 |
C3—C2—H2 | 119.6 | H22A—C22—H22B | 108.5 |
C1—C2—H2 | 119.6 | C24—C23—C22 | 111.21 (18) |
C2—C3—C4 | 121.85 (19) | C24—C23—H23A | 109.4 |
C2—C3—H3 | 119.1 | C22—C23—H23A | 109.4 |
C4—C3—H3 | 119.1 | C24—C23—H23B | 109.4 |
C5—C4—C3 | 121.32 (19) | C22—C23—H23B | 109.4 |
C5—C4—C9 | 119.80 (19) | H23A—C23—H23B | 108.0 |
C3—C4—C9 | 118.88 (18) | C23—C24—C25 | 111.44 (18) |
C6—C5—C4 | 121.3 (2) | C23—C24—H24A | 109.3 |
C6—C5—H5 | 119.3 | C25—C24—H24A | 109.3 |
C4—C5—H5 | 119.3 | C23—C24—H24B | 109.3 |
C5—C6—C7 | 118.95 (19) | C25—C24—H24B | 109.3 |
C5—C6—H6 | 120.5 | H24A—C24—H24B | 108.0 |
C7—C6—H6 | 120.5 | C24—C25—C26 | 111.78 (18) |
C8—C7—C6 | 121.2 (2) | C24—C25—H25A | 109.3 |
C8—C7—H7 | 119.4 | C26—C25—H25A | 109.3 |
C6—C7—H7 | 119.4 | C24—C25—H25B | 109.3 |
C7—C8—C9 | 121.5 (2) | C26—C25—H25B | 109.3 |
C7—C8—H8 | 119.3 | H25A—C25—H25B | 107.9 |
C9—C8—H8 | 119.3 | C21—C26—C25 | 110.12 (17) |
C8—C9—C4 | 117.28 (18) | C21—C26—H26A | 109.6 |
C8—C9—C10 | 123.75 (18) | C25—C26—H26A | 109.6 |
C4—C9—C10 | 118.96 (18) | C21—C26—H26B | 109.6 |
C1—C10—C11 | 118.73 (17) | C25—C26—H26B | 109.6 |
C1—C10—C9 | 120.31 (17) | H26A—C26—H26B | 108.1 |
C11—C10—C9 | 120.63 (18) | ||
N1—Ni1—O1—C1 | −33.06 (17) | O1—C1—C10—C9 | −179.07 (18) |
N1i—Ni1—O1—C1 | 146.94 (17) | C2—C1—C10—C9 | 3.4 (3) |
Ni1—O1—C1—C10 | 22.5 (3) | C8—C9—C10—C1 | 176.76 (19) |
Ni1—O1—C1—C2 | −160.00 (14) | C4—C9—C10—C1 | −1.9 (3) |
O1—C1—C2—C3 | 180.00 (19) | C8—C9—C10—C11 | −9.9 (3) |
C10—C1—C2—C3 | −2.3 (3) | C4—C9—C10—C11 | 171.41 (18) |
C1—C2—C3—C4 | −0.3 (3) | C21—N1—C11—C10 | 174.99 (19) |
C2—C3—C4—C5 | −177.9 (2) | Ni1—N1—C11—C10 | −5.2 (3) |
C2—C3—C4—C9 | 1.9 (3) | C1—C10—C11—N1 | −15.7 (3) |
C3—C4—C5—C6 | 179.5 (2) | C9—C10—C11—N1 | 170.83 (19) |
C9—C4—C5—C6 | −0.3 (3) | C11—N1—C21—C26 | −112.4 (2) |
C4—C5—C6—C7 | 0.4 (3) | Ni1—N1—C21—C26 | 67.79 (18) |
C5—C6—C7—C8 | −0.5 (3) | C11—N1—C21—C22 | 12.4 (3) |
C6—C7—C8—C9 | 0.5 (3) | Ni1—N1—C21—C22 | −167.41 (13) |
C7—C8—C9—C4 | −0.4 (3) | N1—C21—C22—C23 | 172.02 (17) |
C7—C8—C9—C10 | −179.1 (2) | C26—C21—C22—C23 | −63.3 (2) |
C5—C4—C9—C8 | 0.2 (3) | C21—C22—C23—C24 | 60.8 (2) |
C3—C4—C9—C8 | −179.50 (19) | C22—C23—C24—C25 | −55.5 (2) |
C5—C4—C9—C10 | 179.02 (19) | C23—C24—C25—C26 | 51.8 (3) |
C3—C4—C9—C10 | −0.7 (3) | N1—C21—C26—C25 | −169.98 (16) |
O1—C1—C10—C11 | 7.5 (3) | C22—C21—C26—C25 | 60.8 (2) |
C2—C1—C10—C11 | −170.02 (18) | C24—C25—C26—C21 | −54.5 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
C34H36CuN2O2 | F(000) = 598 |
Mr = 568.19 | Dx = 1.414 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.0325 (10) Å | Cell parameters from 14124 reflections |
b = 5.6889 (3) Å | θ = 3.7–26.0° |
c = 21.554 (2) Å | µ = 0.85 mm−1 |
β = 99.410 (7)° | T = 173 K |
V = 1334.59 (19) Å3 | Needle, green yellow |
Z = 2 | 0.14 × 0.04 × 0.03 mm |
STOE IPDS II two-circle- diffractometer | 2186 reflections with I > 2σ(I) |
Radiation source: Genix 3D IµS microfocus X-ray source | Rint = 0.032 |
ω scans | θmax = 25.6°, θmin = 3.7° |
Absorption correction: multi-scan X-Area (Stoe & Cie, 2001) | h = −13→10 |
Tmin = 0.634, Tmax = 1.000 | k = −6→6 |
10452 measured reflections | l = −26→26 |
2485 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0357P)2 + 1.0752P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
2485 reflections | Δρmax = 0.31 e Å−3 |
178 parameters | Δρmin = −0.27 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.500000 | 0.500000 | 0.000000 | 0.01558 (12) | |
N1 | 0.41290 (17) | 0.4602 (3) | 0.07499 (8) | 0.0159 (4) | |
O1 | 0.58807 (15) | 0.2180 (3) | 0.02154 (7) | 0.0214 (4) | |
C1 | 0.5975 (2) | 0.0860 (4) | 0.07113 (10) | 0.0170 (4) | |
C2 | 0.6759 (2) | −0.1170 (4) | 0.07234 (10) | 0.0193 (5) | |
H2 | 0.718329 | −0.144689 | 0.038089 | 0.023* | |
C3 | 0.6903 (2) | −0.2691 (4) | 0.12128 (10) | 0.0190 (5) | |
H3 | 0.740333 | −0.404370 | 0.120014 | 0.023* | |
C4 | 0.6319 (2) | −0.2305 (4) | 0.17460 (10) | 0.0175 (5) | |
C5 | 0.6493 (2) | −0.3908 (4) | 0.22552 (10) | 0.0212 (5) | |
H5 | 0.698762 | −0.526297 | 0.223466 | 0.025* | |
C6 | 0.5957 (2) | −0.3534 (4) | 0.27782 (11) | 0.0257 (5) | |
H6 | 0.606347 | −0.463609 | 0.311374 | 0.031* | |
C7 | 0.5253 (2) | −0.1514 (4) | 0.28107 (11) | 0.0268 (5) | |
H7 | 0.489679 | −0.122793 | 0.317610 | 0.032* | |
C8 | 0.5066 (2) | 0.0077 (5) | 0.23201 (10) | 0.0235 (5) | |
H8 | 0.458901 | 0.144505 | 0.235631 | 0.028* | |
C9 | 0.55700 (19) | −0.0289 (4) | 0.17647 (10) | 0.0169 (4) | |
C10 | 0.5359 (2) | 0.1262 (4) | 0.12215 (10) | 0.0168 (4) | |
C11 | 0.4448 (2) | 0.3090 (4) | 0.11920 (10) | 0.0165 (4) | |
H11 | 0.402910 | 0.319525 | 0.154264 | 0.020* | |
C21 | 0.3120 (2) | 0.6264 (4) | 0.08202 (10) | 0.0181 (5) | |
H21 | 0.341274 | 0.787134 | 0.072876 | 0.022* | |
C22 | 0.2713 (2) | 0.6386 (4) | 0.14648 (11) | 0.0250 (5) | |
H22A | 0.343287 | 0.667974 | 0.179509 | 0.030* | |
H22B | 0.233598 | 0.487527 | 0.155834 | 0.030* | |
C23 | 0.1779 (3) | 0.8382 (5) | 0.14579 (13) | 0.0356 (7) | |
H23A | 0.150456 | 0.846133 | 0.187223 | 0.043* | |
H23B | 0.217961 | 0.989461 | 0.138785 | 0.043* | |
C24 | 0.0667 (3) | 0.8032 (6) | 0.09463 (14) | 0.0395 (7) | |
H24A | 0.019906 | 0.663996 | 0.104880 | 0.047* | |
H24B | 0.012226 | 0.942033 | 0.093257 | 0.047* | |
C25 | 0.1045 (2) | 0.7689 (5) | 0.03056 (13) | 0.0294 (6) | |
H25A | 0.138871 | 0.917730 | 0.017153 | 0.035* | |
H25B | 0.031085 | 0.728971 | −0.000593 | 0.035* | |
C26 | 0.2001 (2) | 0.5735 (4) | 0.03187 (12) | 0.0238 (5) | |
H26A | 0.225971 | 0.561069 | −0.009861 | 0.029* | |
H26B | 0.163447 | 0.421410 | 0.041280 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0161 (2) | 0.01449 (19) | 0.01602 (19) | 0.00218 (17) | 0.00231 (13) | 0.00227 (16) |
N1 | 0.0144 (9) | 0.0139 (10) | 0.0192 (9) | 0.0008 (7) | 0.0018 (7) | −0.0022 (7) |
O1 | 0.0268 (9) | 0.0184 (8) | 0.0202 (8) | 0.0054 (7) | 0.0073 (6) | 0.0043 (6) |
C1 | 0.0160 (11) | 0.0157 (10) | 0.0181 (10) | −0.0029 (9) | −0.0010 (8) | −0.0003 (8) |
C2 | 0.0212 (12) | 0.0194 (11) | 0.0171 (10) | 0.0012 (9) | 0.0029 (9) | −0.0022 (9) |
C3 | 0.0186 (11) | 0.0143 (11) | 0.0228 (11) | 0.0018 (9) | −0.0002 (9) | −0.0023 (9) |
C4 | 0.0184 (11) | 0.0150 (11) | 0.0176 (10) | −0.0028 (9) | −0.0015 (8) | 0.0000 (9) |
C5 | 0.0227 (12) | 0.0162 (11) | 0.0224 (11) | 0.0017 (10) | −0.0031 (9) | 0.0022 (9) |
C6 | 0.0327 (14) | 0.0242 (13) | 0.0189 (11) | −0.0019 (11) | 0.0001 (10) | 0.0072 (10) |
C7 | 0.0320 (14) | 0.0292 (14) | 0.0200 (11) | 0.0022 (11) | 0.0070 (10) | 0.0022 (10) |
C8 | 0.0273 (12) | 0.0215 (11) | 0.0223 (11) | 0.0040 (11) | 0.0056 (9) | −0.0001 (10) |
C9 | 0.0161 (10) | 0.0163 (11) | 0.0175 (10) | −0.0017 (9) | 0.0006 (8) | 0.0008 (9) |
C10 | 0.0165 (11) | 0.0153 (11) | 0.0178 (10) | −0.0013 (9) | 0.0009 (8) | 0.0008 (9) |
C11 | 0.0164 (11) | 0.0157 (11) | 0.0174 (10) | −0.0009 (9) | 0.0028 (8) | 0.0000 (8) |
C21 | 0.0165 (11) | 0.0159 (11) | 0.0221 (11) | 0.0029 (9) | 0.0041 (9) | 0.0018 (9) |
C22 | 0.0262 (13) | 0.0249 (13) | 0.0263 (12) | 0.0060 (10) | 0.0114 (10) | 0.0057 (10) |
C23 | 0.0427 (16) | 0.0332 (15) | 0.0365 (14) | 0.0161 (13) | 0.0235 (12) | 0.0069 (12) |
C24 | 0.0276 (14) | 0.0418 (17) | 0.0543 (17) | 0.0170 (13) | 0.0224 (13) | 0.0209 (14) |
C25 | 0.0186 (12) | 0.0280 (13) | 0.0410 (14) | 0.0056 (10) | 0.0032 (11) | 0.0088 (11) |
C26 | 0.0171 (11) | 0.0208 (12) | 0.0322 (13) | 0.0016 (9) | 0.0004 (9) | 0.0017 (9) |
Cu1—O1 | 1.8935 (16) | C8—H8 | 0.9500 |
Cu1—O1i | 1.8935 (16) | C9—C10 | 1.454 (3) |
Cu1—N1i | 2.0236 (18) | C10—C11 | 1.441 (3) |
Cu1—N1 | 2.0236 (18) | C11—H11 | 0.9500 |
N1—C11 | 1.289 (3) | C21—C22 | 1.530 (3) |
N1—C21 | 1.487 (3) | C21—C26 | 1.532 (3) |
O1—C1 | 1.297 (3) | C21—H21 | 1.0000 |
C1—C10 | 1.403 (3) | C22—C23 | 1.532 (3) |
C1—C2 | 1.440 (3) | C22—H22A | 0.9900 |
C2—C3 | 1.354 (3) | C22—H22B | 0.9900 |
C2—H2 | 0.9500 | C23—C24 | 1.523 (4) |
C3—C4 | 1.423 (3) | C23—H23A | 0.9900 |
C3—H3 | 0.9500 | C23—H23B | 0.9900 |
C4—C5 | 1.416 (3) | C24—C25 | 1.519 (4) |
C4—C9 | 1.418 (3) | C24—H24A | 0.9900 |
C5—C6 | 1.372 (3) | C24—H24B | 0.9900 |
C5—H5 | 0.9500 | C25—C26 | 1.529 (3) |
C6—C7 | 1.395 (4) | C25—H25A | 0.9900 |
C6—H6 | 0.9500 | C25—H25B | 0.9900 |
C7—C8 | 1.381 (3) | C26—H26A | 0.9900 |
C7—H7 | 0.9500 | C26—H26B | 0.9900 |
C8—C9 | 1.415 (3) | ||
O1—Cu1—O1i | 180.0 | N1—C11—C10 | 128.2 (2) |
O1—Cu1—N1i | 89.94 (7) | N1—C11—H11 | 115.9 |
O1i—Cu1—N1i | 90.06 (7) | C10—C11—H11 | 115.9 |
O1—Cu1—N1 | 90.06 (7) | N1—C21—C22 | 117.18 (18) |
O1i—Cu1—N1 | 89.94 (7) | N1—C21—C26 | 109.50 (18) |
N1i—Cu1—N1 | 180.0 | C22—C21—C26 | 109.12 (19) |
C11—N1—C21 | 117.86 (18) | N1—C21—H21 | 106.8 |
C11—N1—Cu1 | 123.86 (15) | C22—C21—H21 | 106.8 |
C21—N1—Cu1 | 118.12 (13) | C26—C21—H21 | 106.8 |
C1—O1—Cu1 | 131.44 (15) | C21—C22—C23 | 108.75 (19) |
O1—C1—C10 | 124.6 (2) | C21—C22—H22A | 109.9 |
O1—C1—C2 | 116.53 (19) | C23—C22—H22A | 109.9 |
C10—C1—C2 | 118.9 (2) | C21—C22—H22B | 109.9 |
C3—C2—C1 | 121.4 (2) | C23—C22—H22B | 109.9 |
C3—C2—H2 | 119.3 | H22A—C22—H22B | 108.3 |
C1—C2—H2 | 119.3 | C24—C23—C22 | 111.8 (2) |
C2—C3—C4 | 121.3 (2) | C24—C23—H23A | 109.3 |
C2—C3—H3 | 119.4 | C22—C23—H23A | 109.3 |
C4—C3—H3 | 119.4 | C24—C23—H23B | 109.3 |
C5—C4—C9 | 120.3 (2) | C22—C23—H23B | 109.3 |
C5—C4—C3 | 120.3 (2) | H23A—C23—H23B | 107.9 |
C9—C4—C3 | 119.4 (2) | C25—C24—C23 | 111.5 (2) |
C6—C5—C4 | 121.0 (2) | C25—C24—H24A | 109.3 |
C6—C5—H5 | 119.5 | C23—C24—H24A | 109.3 |
C4—C5—H5 | 119.5 | C25—C24—H24B | 109.3 |
C5—C6—C7 | 119.2 (2) | C23—C24—H24B | 109.3 |
C5—C6—H6 | 120.4 | H24A—C24—H24B | 108.0 |
C7—C6—H6 | 120.4 | C24—C25—C26 | 111.5 (2) |
C8—C7—C6 | 121.1 (2) | C24—C25—H25A | 109.3 |
C8—C7—H7 | 119.5 | C26—C25—H25A | 109.3 |
C6—C7—H7 | 119.5 | C24—C25—H25B | 109.3 |
C7—C8—C9 | 121.4 (2) | C26—C25—H25B | 109.3 |
C7—C8—H8 | 119.3 | H25A—C25—H25B | 108.0 |
C9—C8—H8 | 119.3 | C25—C26—C21 | 110.1 (2) |
C8—C9—C4 | 117.0 (2) | C25—C26—H26A | 109.6 |
C8—C9—C10 | 124.0 (2) | C21—C26—H26A | 109.6 |
C4—C9—C10 | 119.01 (19) | C25—C26—H26B | 109.6 |
C1—C10—C11 | 120.46 (19) | C21—C26—H26B | 109.6 |
C1—C10—C9 | 119.9 (2) | H26A—C26—H26B | 108.1 |
C11—C10—C9 | 119.49 (19) | ||
N1i—Cu1—O1—C1 | 170.4 (2) | O1—C1—C10—C9 | −177.7 (2) |
N1—Cu1—O1—C1 | −9.6 (2) | C2—C1—C10—C9 | 3.3 (3) |
Cu1—O1—C1—C10 | 2.2 (3) | C8—C9—C10—C1 | 175.0 (2) |
Cu1—O1—C1—C2 | −178.76 (15) | C4—C9—C10—C1 | −5.3 (3) |
O1—C1—C2—C3 | −178.7 (2) | C8—C9—C10—C11 | −9.8 (3) |
C10—C1—C2—C3 | 0.5 (3) | C4—C9—C10—C11 | 170.0 (2) |
C1—C2—C3—C4 | −2.2 (3) | C21—N1—C11—C10 | 177.6 (2) |
C2—C3—C4—C5 | −179.4 (2) | Cu1—N1—C11—C10 | −7.1 (3) |
C2—C3—C4—C9 | 0.1 (3) | C1—C10—C11—N1 | −4.0 (4) |
C9—C4—C5—C6 | −0.9 (3) | C9—C10—C11—N1 | −179.3 (2) |
C3—C4—C5—C6 | 178.6 (2) | C11—N1—C21—C22 | 11.9 (3) |
C4—C5—C6—C7 | −1.4 (4) | Cu1—N1—C21—C22 | −163.72 (16) |
C5—C6—C7—C8 | 1.5 (4) | C11—N1—C21—C26 | −113.0 (2) |
C6—C7—C8—C9 | 0.6 (4) | Cu1—N1—C21—C26 | 71.4 (2) |
C7—C8—C9—C4 | −2.7 (3) | N1—C21—C22—C23 | 173.6 (2) |
C7—C8—C9—C10 | 177.1 (2) | C26—C21—C22—C23 | −61.3 (3) |
C5—C4—C9—C8 | 2.8 (3) | C21—C22—C23—C24 | 58.3 (3) |
C3—C4—C9—C8 | −176.7 (2) | C22—C23—C24—C25 | −54.1 (3) |
C5—C4—C9—C10 | −176.9 (2) | C23—C24—C25—C26 | 52.7 (3) |
C3—C4—C9—C10 | 3.6 (3) | C24—C25—C26—C21 | −56.3 (3) |
O1—C1—C10—C11 | 7.1 (3) | N1—C21—C26—C25 | −169.71 (19) |
C2—C1—C10—C11 | −171.9 (2) | C22—C21—C26—C25 | 60.8 (3) |
Symmetry code: (i) −x+1, −y+1, −z. |
Acknowledgements
DFT calculations were partially performed using the PL-Grid Infrastructure and resources provided by ACC Cyfronet AGH (Kraków, Poland).
Funding information
MPM acknowledges the financial support of the Polish National Science Center within the Sonata Bis Project 2017/26/E/ST4/00104.
References
Babashkina, M. G., Safin, D. A., Mitoraj, M. P., Sagan, F., Bolte, M. & Klein, A. (2016). Cryst. Growth Des. 16, 3287–3296. Web of Science CSD CrossRef CAS Google Scholar
Babashkina, M. G., Safin, D. A., Srebro, M., Kubisiak, P., Mitoraj, M. P., Bolte, M. & Garcia, Y. (2011). CrystEngComm, 13, 5321–5327. Web of Science CSD CrossRef CAS Google Scholar
Babashkina, M. G., Safin, D. A., Srebro, M., Kubisiak, P., Mitoraj, M. P., Bolte, M. & Garcia, Y. (2012). CrystEngComm, 14, 370–373. Web of Science CSD CrossRef CAS Google Scholar
Babashkina, M. G., Safin, D. A., Srebro, M., Kubisiak, P., Mitoraj, M. P., Bolte, M. & Garcia, Y. (2013). Eur. J. Inorg. Chem. 2013, 545–555. Web of Science CSD CrossRef CAS Google Scholar
Bhatia, S. C., Syal, V. K., Kashyap, R. P., Jain, P. C. & Brown, C. J. (1983). Acta Cryst. C39, 199–200. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Biedermann, F. & Schneider, H.-J. (2016). Chem. Rev. 116, 5216–5300. Web of Science CrossRef CAS PubMed Google Scholar
Blanco, M. A., Martín Pendás, A. & Francisco, E. (2005). J. Chem. Theory Comput. 1, 1096–1109. Web of Science CrossRef CAS PubMed Google Scholar
Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908–6914. Web of Science CrossRef PubMed CAS Google Scholar
Brunet, G., Safin, D. A., Aghaji, M. Z., Robeyns, K., Korobkov, I., Woo, T. K. & Murugesu, M. (2017a). Chem. Sci. 8, 3171–3177. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brunet, G., Safin, D. A., Robeyns, K., Facey, G. A., Korobkov, I., Filinchuk, Y. & Murugesu, M. (2017b). Chem. Commun. 53, 5645–5648. Web of Science CSD CrossRef CAS Google Scholar
Castro, M., Cruz, J., López-Sandoval, H. & Barba-Behrens, N. (2005). Chem. Commun. pp. 3779. Google Scholar
Cukrowski, I., Sagan, F. & Mitoraj, M. P. (2016). J. Comput. Chem. 37, 2783–2798. Web of Science CrossRef CAS PubMed Google Scholar
Fernández-G, J. M., Patiño-Maya, M. R., Toscano, R. A., Velasco, L., Otero-López, M. & Aguilar-Martínez, M. (1997). Polyhedron, 16, 4371–4378. Google Scholar
Grabowski, S. (2011). Chem. Rev. 111, 2597–2625. Web of Science CrossRef CAS PubMed Google Scholar
Grabowski, S. & Lipkowski, P. (2011). J. Phys. Chem. A, 115, 4765–4773. Web of Science CrossRef CAS PubMed Google Scholar
Hobza, P. & Zahradník, R. (1988). Chem. Rev. 88, 871–897. CrossRef CAS Web of Science Google Scholar
Hobza, P., Zahradník, R. & Müller-Dethlefs, K. (2006). Collect. Czech. Chem. Commun. 71, 443–531. Web of Science CrossRef CAS Google Scholar
Jain, P. C. & Syal, V. K. (1988). Proc. Natl Acad. Sci. India, A58, 65. Google Scholar
Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Kashyap, R. P., Bindlish, J. M., Bhatia, S. C. & Jain, P. C. (1975). Acta Cryst. A31, S146. Google Scholar
Kim, K. S., Karthikeyan, S. & Singh, N. J. (2011). J. Chem. Theory Comput. 7, 3471–3477. Web of Science CrossRef CAS PubMed Google Scholar
Liptrot, D. J. & Power, P. P. (2017). Nat. Rev. Chem. 1, 0004. Web of Science CrossRef Google Scholar
Lu, Q., Neese, F. & Bistoni, G. (2018). Angew. Chem. Int. Ed. 57, 4760–4764. Web of Science CrossRef CAS Google Scholar
Mahadevi, A. S. & Sastry, G. N. (2016). Chem. Rev. 116, 2775–2825. Web of Science CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017a). Inorg. Chem. 56, 9698–9709. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Khandar, A. A., White, J., Mitoraj, M. P., Jena, H. S., Der Voort, P. V., Qureshi, N., Kirillov, A. M., Robeyns, K. & Safin, D. A. (2017b). CrystEngComm, 19, 3017–3025. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Safin, D. A., Mitoraj, M. P., Amini, M., Kubicki, M., Doert, T., Locherer, F. & Fleck, M. (2017c). Inorg. Chem. Front. 4, 171–182. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Coord. Chem. Rev. 345, 54–72. Web of Science CrossRef CAS Google Scholar
Mitoraj, M. P., Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Gurbanov, A. V., Zubkov, F. I., Waterman, R., Babashkina, M. G., Szczepanik, D. W., Jena, H. S. & Safin, D. A. (2019a). RSC Adv. 9, 23764–23773. Web of Science CSD CrossRef CAS Google Scholar
Mitoraj, M. P., Babashkina, M. G., Isaev, A. Y., Chichigina, Y. M., Robeyns, K., Garcia, Y. & Safin, D. A. (2018). Cryst. Growth Des. 18, 5385–5397. Web of Science CSD CrossRef CAS Google Scholar
Mitoraj, M. P., Babashkina, M. G., Robeyns, K., Sagan, F., Szczepanik, D. W., Seredina, Y. V., Garcia, Y. & Safin, D. A. (2019b). Organometallics, 38, 1973–1981. Web of Science CSD CrossRef CAS Google Scholar
Mitoraj, M. P., Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., Giester, G., Konyaeva, I. A., Khandar, A. A., Qu, F., Gupta, A., Sagan, F., Szczepanik, D. W. & Safin, D. A. (2019c). Cryst. Growth Des. 19, 1649–1659. Web of Science CSD CrossRef CAS Google Scholar
Mitoraj, M. P., Michalak, A. & Ziegler, T. (2009). J. Chem. Theory Comput. 5, 962–975. Web of Science CrossRef CAS PubMed Google Scholar
Mitoraj, M. P., Sagan, F., Babashkina, M. G., Isaev, A. Y., Chichigina, Y. M. & Safin, D. A. (2019d). Eur. J. Org. Chem. 2019, 493–503. Web of Science CrossRef CAS Google Scholar
Mitoraj, M. P., Sagan, F., Szczepanik, D. W., de Lange, J. H., Ptaszek, A. L., van Niekerk, D. M. E. & Cukrowski, I. (2020). ChemPhysChem, 21, 494–502. Web of Science CrossRef CAS PubMed Google Scholar
Müller-Dethlefs, K. & Hobza, P. (2000). Chem. Rev. 100, 143–168. Web of Science PubMed Google Scholar
Ran, J. & Wong, M. W. (2006). J. Phys. Chem. A, 110, 9702–9709. Web of Science CrossRef PubMed CAS Google Scholar
Řezáč, J. & Hobza, P. (2016). Chem. Rev. 116, 5038–5071. Web of Science PubMed Google Scholar
Riley, K. E. & Hobza, P. (2013). Acc. Chem. Res. 46, 927–936. Web of Science CrossRef CAS PubMed Google Scholar
Riley, K. E., Pitoňák, M., Jurečka, P. & Hobza, P. (2010). Chem. Rev. 110, 5023–5063. Web of Science CrossRef CAS PubMed Google Scholar
Safin, D. A., Babashkina, M. G., Bolte, M., Mitoraj, M. P. & Klein, A. (2015a). Dalton Trans. 44, 14101–14109. Web of Science CSD CrossRef CAS PubMed Google Scholar
Safin, D. A., Babashkina, M. G., Kubisiak, P., Mitoraj, M. P., Le Duff, C. S., Robeyns, K. & Garcia, Y. (2014). Eur. J. Inorg. Chem. pp. 5522–5529. Web of Science CSD CrossRef Google Scholar
Safin, D. A., Babashkina, M. G., Kubisiak, P., Mitoraj, M. P., Robeyns, K., Goovaerts, E. & Garcia, Y. (2013a). Dalton Trans. 42, 5252–5257. Web of Science CSD CrossRef CAS PubMed Google Scholar
Safin, D. A., Babashkina, M. G., Mitoraj, M. P., Kubisiak, P., Robeyns, K., Bolte, M. & Garcia, Y. (2016a). Inorg. Chem. Front. 3, 1419–1431. Web of Science CSD CrossRef CAS Google Scholar
Safin, D. A., Babashkina, M. G., Robeyns, K., Mitoraj, M. P., Kubisiak, P., Brela, M. & Garcia, Y. (2013b). CrystEngComm, 15, 7845–7851. Web of Science CSD CrossRef CAS Google Scholar
Safin, D. A., Babashkina, M. G., Robeyns, K., Mitoraj, M. P., Kubisiak, P. & Garcia, Y. (2015b). Chem. Eur. J. 21, 16679–16687. Web of Science CSD CrossRef CAS PubMed Google Scholar
Safin, D. A., Mitoraj, M. P., Robeyns, K., Filinchuk, Y. & Vande Velde, C. (2015c). Dalton Trans. 44, 16824–16832. Web of Science CSD CrossRef CAS PubMed Google Scholar
Safin, D. A., Railliet, A. P., Robeyns, K., Mitoraj, M. P., Kubisiak, P., Sagan, F. & Garcia, Y. (2017a). New J. Chem. 41, 6210–6218. Web of Science CSD CrossRef CAS Google Scholar
Safin, D. A., Robeyns, K., Babashkina, M. G., Vande Velde, C. M. L. & Filinchuk, Y. (2016b). Cryst. Growth Des. 16, 3763–3770. Web of Science CSD CrossRef CAS Google Scholar
Safin, D. A., Robeyns, K., Vande Velde, C. M. L., Thijs, M., Mitoraj, M. P., Sagan, F. & Filinchuk, Y. (2017b). Inorg. Chim. Acta, 459, 63–72. Web of Science CSD CrossRef CAS Google Scholar
Sagan, F. & Mitoraj, M. P. (2019). In Transition Metals in Coordination Environments: Computational Chemistry and Catalysis Viewpoints. Edited by E. Broclawik, T. Borowski & M. Radoń. pp. 65–89. Cham, Switzerland: Springer International Publishing. Google Scholar
Salonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808–4842. Web of Science CrossRef CAS Google Scholar
Scherer, W., Dunbar, A. C., Barquera-Lozada, J. E., Schmitz, D., Eickerling, G., Kratzert, D., Stalke, D., Lanza, A., Macchi, P., Casati, N. P. M., Ebad-Allah, J. & Kuntscher, C. (2015). Angew. Chem. Int. Ed. 54, 2505–2509. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA, Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Sundquist, W. I., Bancroft, D. P. & Lippard, S. J. (1990). J. Am. Chem. Soc. 112, 1590–1596. CSD CrossRef CAS Web of Science Google Scholar
Tamura, H., Ogawa, K., Takeuchi, A. & Yamada, S. (1977). Chem. Lett. 6, 889–890. CSD CrossRef Web of Science Google Scholar
Thakur, T. S. & Desiraju, G. R. (2006). Chem. Commun. pp. 552–554. Web of Science CrossRef Google Scholar
Thakuria, R., Nath, N. K. & Saha, B. K. (2019). Cryst. Growth Des. 19, 523–528. Web of Science CrossRef CAS Google Scholar
Tsuzuki, S. (2012). Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 108, 69–95. CrossRef CAS Google Scholar
Waals, J. D. van der (1873). Doctoral Dissertation, Leiden, The Netherlands. Google Scholar
Wagner, J. P. & Schreiner, P. R. (2015). Angew. Chem. Int. Ed. 54, 12274–12296. Web of Science CrossRef CAS Google Scholar
Watson, J. D. & Crick, F. H. C. (1953). Nature, 171, 737–738. CrossRef PubMed CAS Web of Science Google Scholar
Wheeler, S. E. (2013). Acc. Chem. Res. 46, 1029–1038. Web of Science CrossRef CAS PubMed Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer 3.1. University of Western Australia, Perth. Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.