research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
ISSN: 2052-2525

Differences in thermal expansion and motion ability for herringbone and face-to-face π-stacked solids

crossmark logo

aDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
*Correspondence e-mail: kristin.hutchins@ttu.edu

Edited by L. R. MacGillivray, University of Iowa, USA (Received 9 August 2021; accepted 15 September 2021; online 3 November 2021)

A series of aromatic organic molecules functionalized with different halogen atoms (I/ Br), motion-capable groups (olefin, azo or imine) and molecular length were designed and synthesized. The molecules self-assemble in the solid state through halogen bonding and exhibit molecular packing sustained by either herringbone or face-to-face π-stacking, two common motifs in organic semiconductor molecules. Interestingly, dynamic pedal motion is only achieved in solids with herringbone packing. On average, solids with herringbone packing exhibit larger thermal expansion within the halogen-bonded sheets due to motion occurrence and molecular twisting, whereas molecules with face-to-face π-stacking do not undergo motion or twisting. Thermal expansion along the π-stacked direction is surprisingly similar, but slightly larger for the face-to-face π-stacked solids due to larger changes in π-stacking distances with temperature changes. The results speak to the importance of crystal packing and intermolecular interaction strength when designing aromatic-based solids for organic electronics applications.

1. Introduction

Thermal expansion (TE) is a fundamental property of materials, and it describes the response to temperature change (Yao et al., 2019[Yao, Z., Guan, H., Shiota, Y., He, C., Wang, X., Wu, S., Zheng, X., Su, S., Yoshizawa, K., Kong, X., Sato, O. & Tao, J. (2019). Nat. Commun. 10, 4805.]; Saha, 2017[Saha, B. K. (2017). J. Indian Inst. Sci. 97, 177-191.]). An increase in the size or dimension of a material upon heating is positive thermal expansion (PTE) (Das et al., 2010[Das, D., Jacobs, T. & Barbour, L. J. (2010). Nat. Mater. 9, 36-39.]; Bhattacharya & Saha, 2014[Bhattacharya, S. & Saha, B. K. (2014). CrystEngComm, 16, 2340-2343.]). Negative thermal expansion (NTE) or zero thermal expansion (ZTE) are rarer behaviors, which correspond to a decrease or nearly no change in size upon heating, respectively (Chen et al., 2015[Chen, J., Hu, L., Deng, J. & Xing, X. (2015). Chem. Soc. Rev. 44, 3522-3567.]; Wu et al., 2016[Wu, L., Li, B. & Zhou, J. (2016a). Appl. Mater. Interfaces, 8, 17721-17727.]a; Zhu et al., 2018[Zhu, H., Li, Q., Yang, C., Zhang, Q., Ren, Y., Gao, Q., Wang, N., Lin, K., Deng, J., Chen, J., Gu, L., Hong, J. & Xing, X. (2018). J. Am. Chem. Soc. 140, 7403-7406.]). TE is capable of controlling phase transitions and mechanical properties of organic crystals and has potential applications in thermally responsive materials (Naumov et al., 2015[Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. (2015). Chem. Rev. 115, 12440-12490.]; Reddy et al., 2010[Reddy, C. M., Rama Krishna, G. & Ghosh, S. (2010). CrystEngComm, 12, 2296-2314.]). Moreover, understanding TE in materials such as organic semiconductors is important because it influences bandwidth narrowing (Li et al., 2012[Li, Y., Coropceanu, V. & Brédas, J. (2012). J. Phys. Chem. Lett. 3, 3325-3329.]; van der Lee et al., 2018[Lee, A. van der, Roche, G. H., Wantz, G., Moreau, J. J. E., Dautel, O. J. & Filhol, J. (2018). Chem. Sci. 9, 3948-3956.]) and performance can be reduced if TE properties in a device are mismatched (Mei et al., 2017[Mei, Y., Diemer, P. J., Niazi, M. R., Hallani, R. K., Jarolimek, K., Day, C. S., Risko, C., Anthony, J. E., Amassian, A. & Jurchescu, O. D. (2017). PNAS, 114, 6739-6748.]; Wu et al., 2016[Wu, Y., Chew, A. R., Rojas, G. A., Sini, G., Haugstad, G., Belianinov, A., Kalinin, S. V., Li, H., Risko, C., Brédas, J., Salleo, A. & Frisbie, C. D. (2016b). Nat. Commun. 7, 10270.]b).

One aspect that affects the TE of a solid material is the strength of the interactions holding it together. Stronger interactions are less affected by temperature and lead to smaller expansion when compared with weaker interactions (Saraswatula et al., 2018[Saraswatula, V. G., Sharada, D. & Saha, B. K. (2018). Cryst. Growth Des. 18, 52-56.]). Halogen bonding is quickly becoming a widely utilized interaction in materials science (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]; Saccone & Catalano, 2019[Saccone, M. & Catalano, L. (2019). J. Phys. Chem. B, 123, 9281-9290.]). Recently, halogen bonds have been used to control solid-state packing in organic semiconductor-based materials and improve device performance (Wilson et al., 2015[Wilson, J., Dal Williams, J. S., Petkovsek, C., Reves, P., Jurss, J. W., Hammer, N. I., Tschumper, G. S. & Watkins, D. L. (2015). RSC Adv. 5, 82544-82548.]; Weldeab et al., 2018[Weldeab, A. O., Steen, A., Starkenburg, D. J., Williams, J. S. D., Abboud, K. A., Xue, J., Hammer, N. I., Castellano, R. K. & Watkins, D. L. (2018). J. Mater. Chem. C. 6, 11992-12000.]; Zhang & Wang, 2021[Zhang, Y. & Wang, W. (2021). Comput. Theor. Chem. 1194, 113074.]; Li et al., 2018[Li, J., Hu, Y., Ge, C., Gong, H. & Gao, X. (2018). Chin. Chem. Lett. 29, 423-428.]). Halogen⋯halogen interactions are a subset of halogen bonds and can be classified into two distinct types based on the angles (θ) between the halogens [C—X⋯X, Fig. 1[link](a)] (Mukherjee et al., 2014[Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514-2524.]). Saraswatula and Saha have studied the TE behavior of halogen⋯halogen interactions within a series of isostructural organic molecules (Saraswatula & Saha, 2014[Saraswatula, V. G. & Saha, B. K. (2014). New J. Chem. 38, 897-901.]). The TE responses of the solids correlated with the strength of the inter-halogen interactions, and the trend was I⋯I < Br⋯Br < Cl⋯Cl (where < refers to a smaller distance change). However, bond strength is not the only parameter that influences TE.

[Figure 1]
Figure 1
Geometries of (a) type-I and type-II halogen⋯halogen interactions and (b) herringbone and offset face-to-face π-stacking. (c) Pedal motion in a di­phenyl molecule with a motion-capable group.

A continued interest in our group is to investigate the effect of molecular pedal motion (Harada & Ogawa, 2009[Harada, J. & Ogawa, K. (2009). Chem. Soc. Rev. 38, 2244-2252.]) on TE behaviors [Fig. 1[link](c)]. Recently, our group demonstrated that dynamic pedal motion leads to large PTE in organic solids (Hutchins et al., 2018[Hutchins, K. M., Unruh, D. K., Verdu, F. A. & Groeneman, R. H. (2018). Cryst. Growth Des. 18, 566-570.]; Juneja et al., 2019[Juneja, N., Unruh, D. K., Bosch, E., Groeneman, R. H. & Hutchins, K. M. (2019). New J. Chem. 43, 18433-18436.]; Ding et al., 2020[Ding, X., Unruh, D. K., Groeneman, R. H. & Hutchins, K. M. (2020). Chem. Sci. 11, 7701-7707.]). The most widely studied motion-capable moieties are olefin (C=C) and azo (N=N) groups (Harada & Ogawa, 2001[Harada, J. & Ogawa, K. (2001). J. Am. Chem. Soc. 123, 10884-10888.]; Peedikakkal, 2017[Peedikakkal, A. M. P. (2017). J. Chem. Sci. 129, 733-739.]). Imine (C=N) groups are also capable of pedal motion, and though imines have been well studied in Schiff base chemistry (Kiefer et al., 2019[Kiefer, H. V., Gruber, E., Langeland, J., Kusochek, P. A., Bochenkova, A. V. & Andersen, L. H. (2019). Nat. Commun. 10, 1210.]; Hadjoudis et al., 2004[Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. Chem. 162, 521-530.], 2011[Hadjoudis, E., Yannakopoulou, K., Chatziefthimiou, S. D., Paulidou, A. & Mavridis, I. M. (2011). J. Photochem. Photobiol. Chem. 217, 293-298.]; Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]), pedal motion of imines has been investigated to a lesser extent (Harada et al., 2004a[Harada, J., Harakawa, M. & Ogawa, K. (2004a). Acta Cryst. B60, 578-588.],b[Harada, J., Harakawa, M. & Ogawa, K. (2004b). Acta Cryst. B60, 589-597.]). To date, our group has only investigated TE properties for motion-capable moieties substituted with pyridine rings (Juneja et al., 2019[Juneja, N., Unruh, D. K., Bosch, E., Groeneman, R. H. & Hutchins, K. M. (2019). New J. Chem. 43, 18433-18436.]; Ding et al., 2020[Ding, X., Unruh, D. K., Groeneman, R. H. & Hutchins, K. M. (2020). Chem. Sci. 11, 7701-7707.]).

Here, we designed and synthesized a series of aromatic, di-halogenated molecules functionalized with one or two olefin, azo and imine groups [Figs. 2[link](a) and 2[link](b)]. The compounds outlined in Fig. 2[link] were chosen to systematically tune three features and investigate the impact on TE: motion group identity, number of motion groups and halogen-bond strength. We demonstrate that the molecules crystallize into packing arrangements analogous to those frequently observed in organic semiconductor materials, herringbone or face-to-face π-stacked [Fig. 1[link](b)]. We show that herringbone packing supports solid-state pedal motion, yet face-to-face stacking does not. Furthermore, the herringbone and face-to-face π-stacked solids undergo different degrees of TE along two directions. Surprisingly, the TE along the π-stacked direction is similar even though the interactions and packing along the direction are clearly different. Overall, we demonstrate the comprehensive influence of crystal packing motion and noncovalent interaction strength on TE behaviors in π-stacked solids.

[Figure 2]
Figure 2
Structures and abbreviations of halogenated molecules in this work with (a) one motion group and (b) two motion groups. The compound abbreviations are shown in bold.

2. Experimental

The 16 compounds in Figs. 2[link](a) and 2[link](b) were synthesized using literature or modified-literature procedures and characterized by variable-temperature single-crystal X-ray diffraction (VT SCXRD) and 1H NMR spectroscopy (pages S2–S9, Tables S1–S34 and Figs. S18–S36 of the supporting information). The diolefin compounds were not soluble in common deuterated solvents, so powder X-ray diffraction was used to characterize these three compounds in place of NMR (Figs. S37–S39). VT SCXRD studies were performed in the range 290–190 K, and full crystallographic datasets were collected at 20 K intervals. Each crystal was mounted at 190 K and warmed to collect additional datasets. The morphology and color of each crystal was characterized using a Leica DM2700M microscope equipped with a camera. TE coefficients were calculated using the software PASCal (Cliffe & Goodwin, 2012[Cliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321-1329.]).

A search of the Cambridge Structural Database (CSD; version 5.42 + 2 updates) demonstrated that the single-crystal structures of imine-Br (Bernstein & Izak, 1975[Bernstein, L. & Izak, I. (1975). J. Cryst. Mol. Struct. 5, 257-266.]; Marin et al., 2013[Marin, L., Harabagiu, V., Lee, A., Arvinte, A. & Barboiu, M. (2013). J. Mol. Struct. 1049, 377-385.]; Ashokkumar et al., 2021[Ashokkumar, S., Veeramani, V., Kaliannan, T., Stoeckli-Evans, H., Philip, R., Rose, P., Ramamurthi, K. & Babu, R. R. (2021). CSD Conmunication (CCDC deposition number 1583365). CCDC, Cambridge, England.]), azo-I (Grebel-Koehler et al., 2003[Grebel-Koehler, D., Liu, D., De Feyter, S., Enkelmann, V., Weil, T., Engels, C., Samyn, C., Müllen, K. & De Schryver, F. C. (2003). Macromolecules, 36, 578-590.]) and azo-Br (Amit & Hope, 1966[Amit, A. G. & Hope, H. (1966). Acta Chem. Scand. 20, 835-844.]; Howard et al., 1994[Howard, J. A. K., Batsanov, A. S., Bryce, M. R. & Chesney, A. (1994). Acta Cryst. C50, 1818-1819.]; Karanam & Choudhury, 2013[Karanam, M. & Choudhury, A. R. (2013). Cryst. Growth Des. 13, 4803-4814.]) have been previously published at one temperature. For imine-Br and azo-I, we obtained crystals that are identical to the published structures (Marin et al., 2013[Marin, L., Harabagiu, V., Lee, A., Arvinte, A. & Barboiu, M. (2013). J. Mol. Struct. 1049, 377-385.]; Grebel-Koehler et al., 2003[Grebel-Koehler, D., Liu, D., De Feyter, S., Enkelmann, V., Weil, T., Engels, C., Samyn, C., Müllen, K. & De Schryver, F. C. (2003). Macromolecules, 36, 578-590.]) and conducted VT SCXRD studies here. Azo-Br has been reported to crystallize as two polymorphs (a and b) (Amit & Hope, 1966[Amit, A. G. & Hope, H. (1966). Acta Chem. Scand. 20, 835-844.]; Howard et al., 1994[Howard, J. A. K., Batsanov, A. S., Bryce, M. R. & Chesney, A. (1994). Acta Cryst. C50, 1818-1819.]; Karanam & Choudhury, 2013[Karanam, M. & Choudhury, A. R. (2013). Cryst. Growth Des. 13, 4803-4814.]), and we conducted VT SCXRD experiments for both. The polymorph azo-Br(a) crystallizes in the face-to-face packing arrangement (isostructural to others) and is discussed below. The polymorph azo-Br(b) crystallizes in an arrangement that differs from the other 16 solids discussed here; thus, it is not a focus of this work and full details are given in the supporting information (pages S86–S87).

3. Results and discussion

We incorporated three different motion groups to systematically investigate if one motion group undergoes dynamic motion more readily than another, if the number of motion groups impacts motion ability, and to study the influence of motion on TE. In total, 12 of the 16 halogenated molecules are symmetrical (olefin-I, olefin-Br, imine-I, imine-Br, azo-I, azo-Br, diolefin-I, diolefin-Br, di­imine-I, di­imine-Br, diazo-I and diazo-Br) and four are unsymmetrical (olefin-I Br, azo-I Br, diolefin-I Br and diazo-I Br). The two unsymmetrical imine compounds are not included in this manuscript. The unsymmetrical nature of the single-imine molecule was not distinguishable by X-ray diffraction due to an inversion center in the imine, and the iodine and bromine occupying the same crystallographic site. The synthesis of the unsymmetrical double-imine molecule was unsuccessful due to competing reactions that afford the symmetrical products.

In the solid state, the halogenated molecules are expected to assemble into an extended structure through XX forces. The symmetrical compounds were chosen to include two iodo or two bromo groups. We expected the stronger I⋯I interactions to be less affected by temperature changes, while Br⋯Br interactions are weaker and should be more affected. The unsymmetrical donor molecules feature one iodo and one bromo group and offer a subtle interplay between the two symmetrical systems.

Single-crystal analysis revealed the three single olefin compounds (olefin-I, olefin-Br and olefin-I Br), imine-I, azo-I (Grebel-Koehler et al., 2003[Grebel-Koehler, D., Liu, D., De Feyter, S., Enkelmann, V., Weil, T., Engels, C., Samyn, C., Müllen, K. & De Schryver, F. C. (2003). Macromolecules, 36, 578-590.]) and three diolefin compounds (diolefin-I, diolefin-Br and diolefin-I Br) to crystallize in the orthorhombic space group Pccn. Imine-Br (Marin et al., 2013[Marin, L., Harabagiu, V., Lee, A., Arvinte, A. & Barboiu, M. (2013). J. Mol. Struct. 1049, 377-385.]), azo-Br(a) (Amit & Hope, 1966[Amit, A. G. & Hope, H. (1966). Acta Chem. Scand. 20, 835-844.]), azo-I Br, the two di­imine compounds (di­imine-I and di­imine-Br) and diazo-I crystallized in the monoclinic space group P21/c. The other two diazo compounds diazo-Br and diazo-I Br crystallized in the monoclinic space group P21/n. The asymmetric units of di­imine-I, di­imine-Br and diazo-I contain one-half of two unique molecules, while in the other 13 crystals, the asymmetric units contain one-half of the molecule. In the unsymmetrical iodo-bromo compounds, olefin-I Br, azo-I Br, diolefin-I Br and diazo-I Br, the iodine and bromine atoms sit at nearly identical crystallographic positions. The site occupancy for each atom was constrained at 0.5 with SIMU restraints being used primarily to maintain reasonable ADP values for the two atoms. For the single imine compounds, imine-I and imine-Br, an inversion center lies at the center of the bridge group; thus, the carbon and nitro­gen atoms occupy the same crystallographic space. The halogen⋯halogen interaction distances and angles for each solid are shown in Table S36. Of the 16 solids, 11 self-assembled into herringbone packed structures and five into face-to-face π-stacked structures. The morphology and color of each crystal are shown below (Fig. 3[link]).

[Figure 3]
Figure 3
Images of each crystal with the corresponding molecular structure for (a) herringbone and (b) face-to-face π-stacked arrangements.

3.1. Molecular motion

Motion was characterized using VT SCXRD and observed through disorder of the motion-capable molecule. If disorder is present, the site occupancies of the major and minor sites are quantified. If the site occupancies change with temperature, the motion is dynamic, and if the occupancies remain nearly constant, the disorder is static (Harada & Ogawa, 2001[Harada, J. & Ogawa, K. (2001). J. Am. Chem. Soc. 123, 10884-10888.], 2009[Harada, J. & Ogawa, K. (2009). Chem. Soc. Rev. 38, 2244-2252.]). The molecules imine-I, azo-I, diolefin-Br, diolefin-I Br and diazo-I exhibited disorder during the variable-temperature experiments. The site occupancies of each orientation were allowed to freely refine in the five compounds, and the sum of the two site occupancies was set to a total of one. VT SCXRD experiments demonstrated that all five compounds undergo dynamic pedal motion as confirmed by changes in the site occupancies as a function of temperature (Table 1[link]). The overall change in the site occupancies between 190 and 290 K ranged from 3 to 27% for the five solids. Imine-I and azo-I undergo dynamic pedal motion over the entire temperature range studied [190–290 K, Figs. 4[link](a) and 4[link](b)]. The disorder resolves at 250 K in diolefin-Br and 230 K in diolefin-I Br [Figs. 4[link](c) and 4[link](d)]. Diazo-I includes two crystallographically unique molecules. Disorder in one of the two molecules resolves at 250 K, and the second molecule exhibits pedal motion over the entire temperature range [Fig. 4[link](e)]. There was no evidence of pedal motion in the other 11 structures.

Table 1
Site occupancies of the major conformations within molecules that undergo dynamic pedal motion

Crystal 290 K 270 K 250 K 230 K 210 K 190 K
Imine-I 0.78 (1) 0.79 (1) 0.83 (1) 0.84 (1) 0.86 (1) 0.87 (1)
Azo-I 0.73 (1) 0.78 (1) 0.80 (1) 0.85 (1) 0.88 (1) 0.93 (1)
Diolefin-Br 0.97 (1) 0.98 (1) 1.00 1.00 1.00 1.00
Diolefin-I Br 0.93 (1) 0.95 (1) 0.97 (1) 1.00 1.00 1.00
Diazo-I 0.73 (1) 0.80 (1) 1.00 1.00 1.00 1.00
0.72 (1) 0.71 (1) 0.70 (2) 0.82 (1) 0.91 (1) 0.96 (1)
[Figure 4]
Figure 4
X-ray crystal structures at 290 and 190 K highlighting unresolved or resolved disorder within (a) imine-I, (b) azo-I, (c) diolefin-Br, (d) diolefin-I Br and (e) diazo-I. Disorder is only shown for the bridge groups for clarity.

3.2. Compounds with herringbone crystal packing

In total, 11 of the 16 solids crystallize with the extended packing sustained by herringbone π-stacking. The molecules described below self-assemble into 2D sheets through type-II halogen⋯halogen forces. The sheets assemble into herringbone-packed layers that interact through C—H⋯π interactions, type-I halogen⋯halogen bonds and C—H⋯X forces.

The three single-olefin compounds, olefin-I, olefin-Br and olefin-I Br, are isostructural (IUCr Online Dictionary of Crystallography, 2019[International Union of Crystallography (2019). IUCr Online Dictionary of Crystallography. Isostructural crystals. https://dictionary.iucr.org/Isostructural_crystals.]) and do not exhibit pedal motion. The molecules self-assemble into 2D sheets, which extend in the bc plane [Figs. 5[link](a), 5[link](c) and 5(e)]. The sheets further assemble into layers that stack along the crystallographic a axis [Figs. 5[link](b), 5[link](d) and 5(f)].

[Figure 5]
Figure 5
Single-crystal X-ray structures showing 2D halogen-bonded sheets, layers and TE axes for (a) and (b) olefin-I, (c) and (d) olefin-Br, and (e) and (f) olefin-I Br. Type-II halogen bonds are shown with yellow dashed lines, type-I halogen bonds are shown with blue dashed lines and C—H⋯X forces are shown with green dashed lines. Structures are shown at 290 K for olefin-Br and olefin-I Br, and 270 K for olefin-I (due to poor data quality at 290 K).

Unlike the single motion group olefin series, the single imine and azo compounds are not isostructural within a series. Two of the molecules that undergo dynamic pedal motion, imine-I and azo-I, crystallize in the same space group as the three single-olefin molecules and exhibit crystal packing that is isostructural to the olefins (Fig. 6[link]).

[Figure 6]
Figure 6
Single-crystal X-ray structures at 290 K showing 2D halogen-bonded sheets, layers and TE axes for (a) and (b) imine-I, and (c) and (d) azo-I. Disorder in the aromatic rings and halogens has been omitted for clarity. Type-II halogen bonds are shown with yellow dashed lines, type-I halogen bonds are shown with blue dashed lines and C—H⋯I forces are shown with green dashed lines.

The three diolefin molecules diolefin-I, diolefin-Br and diolefin-I Br crystallize in the same space group as the molecules above and exhibit isostructural crystal packing. The 2D sheets extend in the bc plane [Figs. 7[link](a), 7[link](c) and 7(e)] and further stack into herringbone-packed layers along the crystallographic a axis [Figs. 7[link](b), 7[link](d) and 7(f)].

[Figure 7]
Figure 7
Single-crystal X-ray structures at 290 K showing 2D halogen-bonded sheets, layers and TE axes for (a) and (b) diolefin-I, (c) and (d) diolefin-Br, and (e) and (f) diolefin-I Br. Type-II halogen⋯halogen bonds are shown with yellow dashed lines, type-I bonds are shown with blue dashed lines and C—H⋯X forces are shown with green dashed lines.

The two di­imine compounds di­imine-I and di­imine-Br crystallize in a different space group than all the molecules above; however, the crystal packing is still isostructural. The 2D halogen-bonded sheets self-assemble in the bc plane [Figs. 8[link](a) and 8[link](c)] and then stack into herringbone-packed layers along the crystallographic a axis [Figs. 8[link](b) and 8[link](d)].

[Figure 8]
Figure 8
Single-crystal X-ray structures at 290 K, highlighting the 2D halogen-bonded sheets, layers and TE axes for (a) and (b) di­imine-I, and (c) and (d) di­imine-Br. Type-II halogen⋯halogen bonds are shown with yellow dashed lines, type-I bonds are shown with blue dashed lines and C—H⋯X bonds are shown with green dashed lines.

The three diazo molecules are not isostructural within a series. The compound diazo-I, which undergoes pedal motion over the entire temperature range, crystallizes in the same space group as the two di­imine molecules and exhibits crystal packing that is isostructural with all the compounds outlined above [Figs. 9[link](a) and 9[link](b)]. Diazo-I contains two crystallographically unique molecules and, as outlined in the molecular motion section, one molecule is fully ordered from 190–250 K and exhibits disorder at 270 and 290 K. The second molecule is disordered at all the temperatures studied; however, between 250 and 270 K the positions of major and minor conformations switch [Figs. 9[link](c) and 9[link](d)]. The conformational change is accompanied by a 0.13 Å increase in the b axis between 250 and 270 K, while the β angle decreases by 0.58° and approaches 90° (Table S29).

[Figure 9]
Figure 9
(a) and (b) Single-crystal X-ray structures at 290 K showing 2D halogen-bonded sheets, herringbone packing and TE axes for diazo-I. Disorder in the aromatic rings has been omitted for clarity. Type-II halogen⋯halogen bonds are shown with yellow dashed lines, type-I bonds are shown with blue dashed lines and C—H⋯X bonds are shown with green dashed lines. (c) and (d) Conformational switch in major sites of diazo-I (bottom molecule) between 270 and 250 K. Only the major sites are shown for both molecules.

3.3. Compounds with face-to-face π-stacked crystal packing

Out of the 16 solids, 5 crystallize with the extended packing sustained by face-to-face π-stacking. The five structures described below also self-assemble into 2D sheets through type-II halogen⋯halogen forces, similar to the structures discussed above. However, the sheets in the structures described below assemble into face-to-face π-stacked layers that interact through C—H⋯X forces, rather than herringbone-packed layers.

The three molecules imine-Br, azo-Br(a) and azo-I Br crystallize in the same space group and exhibit isostructural crystal packing. The 2D sheets extend approximately in the bc plane [Figs. 10[link](a), 10[link](c) and 10(e)] and then pack into face-to-face π-stacked layers along the crystallographic a axis [Figs. 10[link](b), 10[link](d) and 10(f)]. However, the arrangement of the molecules within the 2D sheets differs from the previous structures. Within the sheet, neighboring halogen-bonded molecules are twisted from planarity by ∼55°, whereas in the all the previously described structures, the molecules are much closer to planarity (deviation by 19–32°).

[Figure 10]
Figure 10
Single-crystal X-ray structures at 290 K highlighting the 2D halogen-bonded sheets, layered packing and TE axes for (a) and (b) imine-Br, (c) and (d) azo-Br(a), and (e) and (f) azo-I Br. Type-II halogen⋯halogen bonds are shown with yellow dashed lines.

The two diazo compounds diazo-Br and diazo-I Br crystallize in a different space group than imine-Br, azo-Br(a) and azo-I Br; however, all five solids exhibit isostructural crystal packing. Within the 2D sheets, which extend approximately in the bc plane [Figs. 11[link](a) and 11[link](c)], the neighboring halogen-bonded molecules are twisted from planarity by ∼54°. The face-to-face layers are further packed along the crystallographic a axis [Figs. 11[link](b) and 11[link](d)].

[Figure 11]
Figure 11
Single-crystal X-ray structures at 290 K highlighting 2D halogen-bonded sheets, layered packing and TE axes for (a) and (b) diazo-Br, and (c) and (d) diazo-I Br. Type-II halogen⋯halogen bonds are shown with yellow dashed lines and C—H⋯X bonds are shown with green dashed lines.

3.4. Influence of packing and motion group on pedal motion

As highlighted above, 5 of the 16 single-component solids undergo pedal motion and all five compounds exhibit herringbone crystal packing. Thus, solid-state packing has a clear influence on motion ability.

In the single motion group series, zero of three olefin molecules, one of three azo structures and one of two imine molecules undergo pedal motion in the solid state. In the double-motion group series, two of three double-olefin molecules, one of three double-azo molecules and zero of two double-imine molecules undergo pedal motion in the solid state. At first glance, the identity of the motion group does not appear to significantly impact the occurrence of pedal motion in these single-component halogenated solids. However, examination of the five solids that undergo motion suggests that the degree of motion is influenced by identity. The overall change of the site occupancy between 290 and 190 K reveals that azo groups undergo larger changes (azo-I = 20%, diazo-I = 27 and 24%), the imine lies in the middle (imine-I = 9%) and the olefins undergo the smallest overall changes (diolefin-Br = 3%, diolefin-I Br = 7%).

The pedal motion behaviors in four of the five solids (imine-I, azo-I, diolefin-I Br and diazo-I) were further analyzed by a van't Hoff plot analysis (Harada & Ogawa, 2004[Harada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539-3544.], 2009[Harada, J. & Ogawa, K. (2009). Chem. Soc. Rev. 38, 2244-2252.]; Harada et al., 2004b[Harada, J., Harakawa, M. & Ogawa, K. (2004b). Acta Cryst. B60, 589-597.]; Vande Velde et al., 2015[Vande Velde, C. M. L., Zeller, M. & Azov, V. A. (2015). CrystEngComm, 17, 5751-5756.]) (Figs. S57–S60). Analysis for diolefin-Br was not performed because disorder is only present at two temperatures. The natural logarithm of the ratio between occupancies of major and minor sites was plotted against the reciprocal of temperature. For the disordered solids imine-I, azo-I and diolefin-I Br, the plots are linear, so the entropic and enthalpic differences between the two sites remain constant during the temperature range and the pedal motion reaches thermodynamic equilibrium. For one of the two unique molecules in diazo-I, the plot is linear in the lower temperature range from 190 to 250 K. On reaching 270 K, the minor conformation of the molecule switches to the major conformation and remains the major site at 290 K. Nonlinearity in van't Hoff plots has been observed in cases where the enthalpy and entropy are different at high and low temperatures, which can indicate a phase transition (Vande Velde et al., 2011[Vande Velde, C. M. L., Collas, A., De Borger, R. & Blockhuys, F. (2011). Chem. Eur. J. 17, 912-919.]). In diazo-I, the conformational switching of the major and minor sites corresponds to a phase transition and is the cause of nonlinearity.

3.5. Thermal expansion analysis

In order to determine the TE behaviors of these halogenated molecules and the impact of crystal packing and motion on TE, PASCal (Cliffe & Goodwin, 2012[Cliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321-1329.]) was used to calculate the principal axes (X1, X2 and X3) and TE coefficients (αX1 and αX2, αX3) for each crystal using the VT SCXRD data (Table 2[link], Figs. S1–S17). The single-crystal data at 290 K for olefin-I were excluded because the crystal began to disintegrate and data quality was low. Since diazo-I undergoes a phase transition, only the VT SCXRD data between 190 and 250 K was used for the TE calculations. The crystal packing of diazo-I at 250 K is shown in Fig. S62, which is identical to the packing at 290 K [Figs. 9[link](a) and 9[link](b)]. The principal axes for each solid are highlighted in Figs. 5[link]–11[link][link][link][link][link][link]. As a benchmark, a TE coefficient ≥ 100 MK−1 has been termed `colossal' TE (Goodwin et al., 2008[Goodwin, A. L., Calleja, M., Conterio, M. J., Dove, M. T., Evans, J. S. O., Keen, D. A., Peters, L. & Tucker, M. G. (2008). Science, 319, 794-797.]).

Table 2
TE coefficients for crystals with errors denoted in parentheses and approximate crystallographic axes denoted in brackets

The solids are divided into sections based on crystal packing. The average values for solids with the same packing are provided at the bottom of each section.

Crystal αX1 (MK−1) [axis] αX2 (MK−1) [axis] αX3 (MK−1) [axis] αV (MK−1)
Herringbone crystal packing
Olefin-I −2 (1) [0 1 0] 68 (5) [0 0 1] 128 (1) [−1 0 0] 194 (3)
Olefin-Br 11 (1) [0 1 0] 83 (2) [0 0 1] 114 (1) [−1 0 0] 209 (2)
Olefin-I Br 0.5 (0.5) [0 1 0] 75 (1) [0 0 1] 115 (2) [−1 0 0] 191 (2)
Imine-I 8 (1) [0 −1 0] 70 (1) [0 0 1] 134 (1) [1 0 0] 212 (2)
Azo-I 24 (1) [0 −1 0] 60 (1) [0 0 1] 120 (1) [1 0 0] 205 (3)
Diolefin-I −18 (4) [0 −1 0] 71 (1) [0 0 1] 135 (4) [1 0 0] 194 (9)
Diolefin-Br −4 (1) [0 1 0] 76 (2) [0 0 1] 114 (3) [−1 0 0] 187 (3)
Diolefin-I Br −15 (1) [0 1 0] 78 (1) [0 0 1] 131 (3) [−1 0 0] 195 (3)
Di­imine-I −9 (1) [0 1 0] 74 (2) [0 0 −1] 120 (1) [−1 0 0] 186 (3)
Di­imine-Br −12 (1) [0 1 0] 75 (1) [0 0 −1] 133 (1) [−1 0 0] 196 (3)
Average coefficients for herringbone −2 73 124 197
 
Herringbone crystal packing (with a phase transition)
Diazo-I 38 (4) [0 1 0] 41 (4) [1 0 -2] 120 (3) [-3 0 -2] 199 (2)
 
Face-to-face π-stacked crystal packing
Imine-Br 0 (1) [1 0 2] 43 (1) [0 −1 0] 162 (3) [1 0 0] 206 (2)
Azo-Br(a) 16 (1) [1 0 9] 52 (1) [0 −1 0] 122 (2) [1 0 0] 191 (3)
Azo-I Br 12 (1) [0 0 1] 52 (2) [0 −1 0] 134 (3) [1 0 0] 199 (3)
Diazo-Br 9 (2) [−1 0 4] 42 (1) [0 1 0] 114 (3) [−1 0 0] 166 (4)
Diazo-I Br 10 (1) [1 0 −2] 42 (1) [0 −1 0] 120 (2) [1 0 0] 173 (2)
Average coefficients for π-stacked 9 46 130 187
†Only the VT SCXRD data between 190 and 250 K for diazo-I are used for the TE calculations due to a phase transition. The diazo-I coefficients are not included with the average values for the other herringbone structures because the calculations do not encompass the same temperature range.

On average, the solids with herringbone packing exhibit different TE behaviors from the face-to-face packed solids along the X1 and X2 axes, while the behavior along the X3 axis is similar. The herringbone solids undergo minimal TE along the X1 axis, appreciable PTE along the X2 axis and colossal PTE along X3 (average: αX1 = −2, αX2 = 73, αX3 = 124 MK−1). The face-to-face packed solids undergo PTE along the X1 and X2 axes and colossal PTE along X3 (average: αX1 = 9, αX2 = 46, αX3 = 130 MK−1). The key differences in TE behavior of the solids arise from differences in halogen-bond strength, crystal packing and motion occurrence.

For the solids with herringbone crystal packing, the X1 axis lies along the direction of the 2D halogen-bonded sheet. The X1 axis corresponds to the crystallographic b axis, and the TE coefficients range from −18 to 24 MK−1 (Table 2[link]). Specifically, the molecules with a single motion group exhibit nearly ZTE or PTE, whereas the molecules with two motion groups all exhibit NTE along X1. The ZTE in olefin-I and olefin-I Br arises from minimal changes along the crystallographic b axis (in the third decimal place) as a function of temperature (Tables S1, S2, S5 and S6). The solids olefin-Br, imine-I and azo-I undergo slight to moderate PTE along X1, and the length of the crystallographic b axis increases gradually with increasing temperature in each case. The NTE in diolefin-Br, diolefin-I Br, di­imine-I and di­imine-Br arises from a decrease in the length of the crystallographic b axis as the temperature is increased. For diolefin-I, the length of the b axis also decreases upon heating overall to afford NTE, but there is a slight increase in length between 230 and 250 K (Tables S19 and S20).

The influence of molecular width on TE has been investigated by Saha and coworkers who showed that the direction of longer molecular width experiences less TE (Rather et al., 2019[Rather, S. A., Saraswatula, V. G., Sharada, D. & Saha, B. K. (2019). New J. Chem. 43, 17146-17150.]). The direction of longer molecular width contains more covalent bonds and less intermolecular interactions; thus, the covalent bonds within the molecule are stronger and will expand less than noncovalent bonds between molecules. In the herringbone structures, the b axis corresponds to the longest width of the molecules and does indeed exhibit the smallest expansion. Perhaps more interesting is that when comparing the shorter (one motion group) to the longer (two motion group) molecules, the longer molecules exhibit less expansion along X1.

The intermolecular interactions that contribute to TE along X1 are primarily type-II halogen⋯halogen bonds (Table S37). In the symmetrical single- and double-olefin molecules, the type-II I⋯I distances increase by 0.03 Å in both olefin-I and diolefin-I, whereas the type-II Br⋯Br bond lengths increase by 0.04 Å in both olefin-Br and diolefin-Br on heating. In the two di­imine compounds, the type-II bond lengths increase on heating by 0.03 Å on average for di­imine-I and 0.04 Å on average for di­imine-Br. The larger increase in the Br⋯Br bond lengths is expected since they are weaker than I⋯I bonds. In imine-I and azo-I, the type-II I⋯I separations increase by ca 0.06 Å on warming. The larger increase in bond length for these iodinated solids could be due to appreciable pedal motion over the entire temperature range, which includes a small repositioning of the iodine atoms. For the unsymmetrical solids, the iodine and bromine atoms sit at nearly identical crystallographic positions with site occupancies of 0.5 and 0.5. This prevented a clear comparison of bond length changes between the symmetrical and unsymmetrical solids because, at any point, the contact could be I⋯I, Br⋯Br or I⋯Br (see Table S37 for all three values). We also calculated the centroid of the I/Br atoms on each side of the type-II bond and measured the distance between the centroids. For olefin-I Br, the centroid separation decreases by 0.01 Å on heating, and the separation increases by 0.03 Å for diolefin-I Br on heating. The type-I halogen⋯halogen interactions also contribute slightly to the expansion along X1 in the herringbone-packed compounds, and the distances increase by ca 0.03–0.09 Å on warming.

Diazo-I exhibits slightly larger PTE along X1 than the other herringbone solids, but the temperature range used for the calculation only includes data from 190–250 K due to the conformational change at 270 K. The PTE arises from an increase in the length of the b axis with increasing temperature, the type-II I⋯I bonds increase by an average of 0.02 Å, and the type-I I⋯I bonds increase by 0.05 Å.

In the isostructural molecules that exhibit face-to-face π-stacked crystal packing, imine-Br exhibits ZTE and the other four molecules undergo slight PTE along X1. The ZTE in imine-Br arises from minimal changes along the crystallographic c axis (in the third decimal place) as a function of temperature (Tables S9 and S10). Unlike the herringbone solids, expansion along X1 for the face-to-face π-stacked solids encompasses the a and/or c crystallographic axes (Table 2[link]). In all five solids, the direction of the X1 axis includes the C—H⋯X forces, which increase by ca 0.03–0.06 Å on warming (Table S37). In imine-Br, diazo-Br and diazo-I Br, the ππ-stacking interactions also contribute to X1 and increase by ca 0.05–0.07 Å on warming. In one case, namely azo-I Br, the type-II halogen⋯halogen bonds lie along X1, akin to the herringbone structures, and the centroid I/Br distance increases by 0.03 Å on heating. The difference in the direction of the X1 axis and included intermolecular forces for the face-to-face solids with respect to the structure results in larger average TE coefficients compared with the herringbone solids.

The X2 axis corresponds to the c axis in the herringbone solids and the b axis for the face-to-face π-stacked solids. Importantly, in both the herringbone and the face-to-face π-stacked solids, the direction of X2 with respect to the structure is nearly identical. The X2 axis lies along the vertical direction of the 2D halogen-bonded sheet and includes the type-II halogen⋯halogen contacts [Figs. 12[link](a) and 12[link](c); Table S38]. The difference in the two structure types arises in the arrangement of neighboring molecules within the 2D sheet. In the herringbone structures, molecules within a sheet are parallel, but lie edge-to-face between the sheets [Fig. 12[link](b)]. In the face-to-face structures, molecules within a sheet and between sheets are parallel [Fig. 12[link](d)]. On heating, the solids in the herringbone arrangement twist further from co-planarity, and for solids that undergo pedal motion, the conformational interconversion affects the X2 axis [Fig. 12[link](b)]. On the other hand, molecules in the face-to-face structures remain coplanar and do not undergo motion. This structural difference results in a difference in TE behaviors; thus, the solids with herringbone packing exhibit larger PTE along X2. Additionally, on average, the c-axis length in the herringbone solids experiences a larger increase on heating than the b axis length in the face-to-face π-stacked molecules.

[Figure 12]
Figure 12
Single-crystal X-ray structures highlighting X2 axes for representative (a) and (b) herringbone structures (imine-I), and (c) and (d) face-to-face π-stacked structures (imine-Br). The X2 planes are shown in red and going into the page.

All 16 solids in the herringbone and face-to-face categories exhibit colossal (Goodwin et al., 2008[Goodwin, A. L., Calleja, M., Conterio, M. J., Dove, M. T., Evans, J. S. O., Keen, D. A., Peters, L. & Tucker, M. G. (2008). Science, 319, 794-797.]) PTE along X3, and on average, the solids exhibit similar TE coefficients (Table 2[link]). The X3 axis in both types of solids lies along the π-stacking direction. For the herringbone solids, this encompasses the C—H⋯π interactions, whereas in the face-to-face stacked solids, this includes ππ interactions. On heating, the C—H⋯π distances increase by ca 0.04–0.05 Å on average in the herringbone solids, whereas the ππ distances increase by ca 0.05–0.07 Å on average in the face-to-face stacked solids (Table S39). These differences in interaction type and distance change over the temperature range afford a slightly higher TE average for the face-to-face π-stacked solids. The solid imine-Br exhibits the largest PTE along X3 (αX3 = 162 MK−1) due to the largest increase in ππ distance (0.07 Å).

The volumetric TE coefficient for all 16 solids is also colossal and ranges from 166 to 212 MK−1. The volume of each crystal increases gradually on warming (Figs. S40–S56) and the volume increases by ca 1.5–2.1% on heating. On average, the solids with herringbone packing exhibit slightly larger volumetric TE (average αV = 197 MK−1) than the solids with face-to-face π-stacking (average αV = 187 MK−1), owing to the significantly larger expansion along X2.

3.6. Unsymmetrical olefins

The unsymmetrical I⋯Br systems were designed to offer an interplay between the symmetrical I⋯I and Br⋯Br solids with regard to bond strength and TE along the halogen-bonding direction. All six olefins crystallized in the herringbone packing motif, and the type-II halogen⋯halogen interactions contribute to TE along the X1 and X2 axes. Gratifyingly, the solid olefin-I Br exhibits a TE coefficient between olefin-I and olefin-Br for both αX1 and αX2. The solid diolefin-I Br exhibits a TE coefficient between diolefin-I and diolefin-Br for αX1; however, the TE coefficient of diolefin-I Br along X2 is within the error of diolefin-Br.

4. Conclusions

Here, we report the TE behaviors and the impact of crystal packing and pedal motion on TE in 16 di-halogenated molecules with one or two motion-capable moieties, which self-assemble into herringbone or face-to-face π-stacked structures. Dynamic pedal motion was successfully achieved in five solids, which all exhibit herringbone packing; thus, crystal packing influences motion ability. Moreover, the degree of pedal motion is affected by the identity of the motion group, and the azo groups undergo the largest changes. Halogen bonds contribute to TE along X1 in the herringbone solids and X2 in all 16 solids. The type-II I⋯I bonds are stronger and undergo less expansion than the Br⋯Br bonds. On average, herringbone-packed solids exhibit larger TE along one direction of the 2D halogen-bonded sheet and larger volumetric expansion, which results from twisting within the herringbone arrangement and pedal motion. The TE along X3 corresponds to the π-stacking direction. The degree of TE is similar in both types of molecules, but face-to-face packed solids experience slightly more TE along X3 due to the larger increase in the ππ distances. Solid-state packing arrangements and noncovalent interaction strengths both contribute to TE in aromatic based solids, which are important in the field of organic electronics. We are continuing to investigate TE properties of aromatic and halogen-bonded solids.

5. Related literature

The following references are cited in the supporting information: Wang et al. (2012[Wang, H., Chen, Y., Chen, Y., Chen, C., Lee, R., Chan, L. & Jeng, R. (2012). Polymer, 53, 4091-4103. ], 2018[Wang, Q., Ligorio, G., Diez-Cabanes, V., Cornil, D., Kobin, B., Hildebrandt, J., Nardi, M. V., Timpel, M., Hecht, S., Cornil, J., List-Kratochvil, E. J. W. & Koch, N. (2018). Adv. Funct. Mater. 28, 1800716. ]); Mizoshita et al. (2008[Mizoshita, N., Goto, Y., Tani, T. & Inagaki, S. (2008). Adv. Funct. Mater. 18, 3699-3705.]); Huskić et al. (2012[Huskić, I., Halasz, I., Friščić, T. & Vančik, H. (2012). Green Chem. 14, 1597-1600. ]); Nguyen et al. (2011[Nguyen, T. T. T., Türp, D., Wang, D., Nölscher, B., Laquai, F. & Müllen, K. J. (2011). J. Am. Chem. Soc. 133, 11194-11204.]); Albers et al. (2011[Albers, H. M. H. G., Hendrickx, L. J. D., van Tol, R. J. P., Hausmann, J., Perrakis, A. & Ovaa, H. (2011). J. Med. Chem. 54, 4619-4626.]); Tian et al. (2017[Tian, X., Zhang, C., Xu, Q., Li, Z. & Shao, X. (2017). Org. Biomol. Chem. 15, 3320-3323.]); Sheldrick (2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); Rigaku (2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. ]); Oxford Diffraction (2015[Oxford Diffraction (2015). SCALE3 ABSPACK, CrysAlis Software Package, Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.40.57a (Rigaku OD, 2019) for olefinI_190, olefinI_210, olefinI_230, olefinI_250, olefinI_270, olefinBr_190, olefinBr_210, olefinBr_230, olefinBr_250, olefinBr_270, olefinBr_290; CrysAlis PRO 1.171.40.68a (Rigaku OD, 2019) for olefinIBr_190K, olefinIBr_210K, olefinIBr_230K, olefinIBr_250K, olefinIBr_270K; CrysAlis PRO 1.171.40.69a (Rigaku OD, 2020) for olefinIBr_290K. Cell refinement: CrysAlis PRO 1.171.40.57a (Rigaku OD, 2019) for olefinI_190, olefinI_210, olefinI_230, olefinI_250, olefinI_270, olefinBr_190, olefinBr_210, olefinBr_230, olefinBr_250, olefinBr_270, olefinBr_290; CrysAlis PRO 1.171.40.68a (Rigaku OD, 2019) for olefinIBr_190K, olefinIBr_210K, olefinIBr_230K, olefinIBr_250K, olefinIBr_270K; CrysAlis PRO 1.171.40.69a (Rigaku OD, 2020) for olefinIBr_290K. Data reduction: CrysAlis PRO 1.171.40.57a (Rigaku OD, 2019) for olefinI_190, olefinI_210, olefinI_230, olefinI_250, olefinI_270, olefinBr_190, olefinBr_210, olefinBr_230, olefinBr_250, olefinBr_270, olefinBr_290; CrysAlis PRO 1.171.40.68a (Rigaku OD, 2019) for olefinIBr_190K, olefinIBr_210K, olefinIBr_230K, olefinIBr_250K, olefinIBr_270K; CrysAlis PRO 1.171.40.69a (Rigaku OD, 2020) for olefinIBr_290K. For all structures, program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2018).

(olefinI_190) top
Crystal data top
C14H10I2F(000) = 800
Mr = 432.02Dx = 2.248 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 7435 reflections
a = 7.3723 (2) Åθ = 3.0–77.3°
b = 28.9496 (8) ŵ = 38.44 mm1
c = 5.98149 (14) ÅT = 190 K
V = 1276.60 (6) Å3Plate, clear colourless
Z = 40.17 × 0.10 × 0.01 × 0.03 (radius) mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1330 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1234 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10 pixels mm-1θmax = 77.4°, θmin = 3.1°
ω scansh = 99
Absorption correction: for a sphere
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Spherical absorption correction using equivalent radius and absorption coefficient. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3436
Tmin = 0.014, Tmax = 0.092l = 75
12742 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0925P)2 + 0.2194P]
where P = (Fo2 + 2Fc2)/3
1330 reflections(Δ/σ)max = 0.002
73 parametersΔρmax = 2.19 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.54010 (4)0.70341 (2)0.43607 (5)0.0586 (2)
C10.4830 (6)0.56191 (16)0.8768 (9)0.0529 (9)
C20.4208 (7)0.60408 (17)0.9604 (7)0.0535 (9)
H20.364610.6050351.1032090.064*
C30.4397 (6)0.64497 (17)0.8376 (8)0.0537 (10)
H30.3992680.6735520.8975720.064*
C40.5182 (6)0.64316 (15)0.6277 (8)0.0493 (8)
C50.5797 (7)0.60158 (17)0.5414 (7)0.0533 (9)
H50.6339040.6006920.3974240.064*
C60.5621 (6)0.56121 (17)0.6649 (8)0.0538 (10)
H60.6044290.5328330.6045490.065*
C70.4637 (5)0.52043 (19)1.0195 (9)0.0543 (10)
H70.3924950.5235071.1510570.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0653 (3)0.0499 (3)0.0605 (3)0.00412 (10)0.00006 (11)0.00357 (9)
C10.0482 (19)0.053 (2)0.057 (2)0.0044 (16)0.0036 (18)0.000 (2)
C20.054 (2)0.056 (2)0.051 (2)0.001 (2)0.0042 (17)0.0022 (17)
C30.055 (2)0.052 (2)0.054 (2)0.0043 (15)0.0004 (16)0.0044 (17)
C40.0477 (19)0.050 (2)0.051 (2)0.0035 (15)0.0065 (16)0.0014 (18)
C50.0500 (18)0.052 (2)0.058 (2)0.0008 (19)0.0012 (17)0.0017 (17)
C60.053 (2)0.052 (2)0.056 (2)0.0009 (15)0.0018 (17)0.0052 (17)
C70.053 (2)0.057 (2)0.054 (2)0.0040 (16)0.0015 (17)0.003 (2)
Geometric parameters (Å, º) top
I1—C42.094 (5)C3—H30.95
C1—C61.395 (7)C4—C51.386 (7)
C1—C21.397 (7)C5—C61.389 (7)
C1—C71.480 (7)C5—H50.95
C2—C31.400 (7)C6—H60.95
C2—H20.95C7—C7i1.319 (10)
C3—C41.383 (7)C7—H70.95
C6—C1—C2118.4 (4)C5—C4—I1119.6 (4)
C6—C1—C7123.5 (4)C4—C5—C6120.2 (4)
C2—C1—C7118.1 (5)C4—C5—H5119.9
C1—C2—C3121.2 (4)C6—C5—H5119.9
C1—C2—H2119.4C5—C6—C1120.7 (4)
C3—C2—H2119.4C5—C6—H6119.7
C4—C3—C2119.1 (4)C1—C6—H6119.7
C4—C3—H3120.5C7i—C7—C1125.9 (6)
C2—C3—H3120.5C7i—C7—H7117.1
C3—C4—C5120.5 (4)C1—C7—H7117.1
C3—C4—I1119.8 (3)
Symmetry code: (i) x+1, y+1, z+2.
(olefinI_210) top
Crystal data top
C14H10I2F(000) = 800
Mr = 432.02Dx = 2.238 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 7943 reflections
a = 7.39255 (12) Åθ = 3.0–77.2°
b = 28.9478 (4) ŵ = 38.27 mm1
c = 5.99085 (9) ÅT = 210 K
V = 1282.03 (3) Å3Plate, clear colourless
Z = 40.17 × 0.10 × 0.01 × 0.03 (radius) mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1341 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1228 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10 pixels mm-1θmax = 77.4°, θmin = 3.1°
ω scansh = 99
Absorption correction: for a sphere
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Spherical absorption correction using equivalent radius and absorption coefficient. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3634
Tmin = 0.014, Tmax = 0.092l = 57
12977 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0882P)2 + 0.0207P]
where P = (Fo2 + 2Fc2)/3
1341 reflections(Δ/σ)max = 0.001
73 parametersΔρmax = 2.31 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.53994 (4)0.70331 (2)0.43635 (5)0.0628 (2)
C10.4826 (6)0.56179 (15)0.8762 (8)0.0555 (8)
C20.4215 (7)0.60413 (17)0.9593 (7)0.0568 (9)
H20.3667070.6051661.1007540.068*
C30.4400 (5)0.64493 (15)0.8369 (7)0.0564 (9)
H30.3998790.6731950.8962570.068*
C40.5183 (5)0.64317 (14)0.6266 (8)0.0515 (8)
C50.5804 (7)0.60151 (17)0.5416 (7)0.0565 (9)
H50.6354030.6005770.4001940.068*
C60.5614 (5)0.56126 (15)0.6647 (7)0.0560 (9)
H60.60230.5331410.6046810.067*
C70.4641 (5)0.52033 (18)1.0197 (9)0.0572 (9)
H70.3947930.523431.1503520.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0703 (3)0.0534 (3)0.0647 (3)0.00483 (10)0.00010 (10)0.00406 (9)
C10.0497 (17)0.057 (2)0.0602 (19)0.0029 (15)0.0046 (17)0.0004 (18)
C20.0544 (18)0.061 (2)0.054 (2)0.0001 (18)0.0031 (15)0.0037 (16)
C30.058 (2)0.0518 (19)0.060 (2)0.0055 (13)0.0011 (15)0.0046 (16)
C40.0515 (18)0.0507 (19)0.0522 (18)0.0023 (14)0.0046 (15)0.0015 (16)
C50.0543 (17)0.057 (2)0.058 (2)0.0013 (18)0.0020 (15)0.0019 (16)
C60.0558 (18)0.054 (2)0.058 (2)0.0027 (13)0.0012 (15)0.0050 (16)
C70.053 (2)0.062 (2)0.057 (2)0.0010 (15)0.0021 (16)0.0015 (19)
Geometric parameters (Å, º) top
I1—C42.087 (4)C3—H30.94
C1—C61.394 (7)C4—C51.387 (6)
C1—C21.398 (7)C5—C61.386 (6)
C1—C71.483 (7)C5—H50.94
C2—C31.397 (6)C6—H60.94
C2—H20.94C7—C7i1.312 (10)
C3—C41.388 (7)C7—H70.94
C6—C1—C2117.9 (4)C3—C4—I1119.8 (3)
C6—C1—C7123.8 (4)C6—C5—C4120.1 (4)
C2—C1—C7118.3 (4)C6—C5—H5119.9
C3—C2—C1121.5 (4)C4—C5—H5119.9
C3—C2—H2119.2C5—C6—C1121.1 (4)
C1—C2—H2119.2C5—C6—H6119.4
C4—C3—C2119.1 (4)C1—C6—H6119.4
C4—C3—H3120.5C7i—C7—C1125.8 (6)
C2—C3—H3120.5C7i—C7—H7117.1
C5—C4—C3120.2 (4)C1—C7—H7117.1
C5—C4—I1120.0 (3)
Symmetry code: (i) x+1, y+1, z+2.
(olefinI_230) top
Crystal data top
C14H10I2F(000) = 800
Mr = 432.02Dx = 2.23 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 7700 reflections
a = 7.40898 (16) Åθ = 3.0–77.0°
b = 28.9461 (6) ŵ = 38.13 mm1
c = 6.00040 (12) ÅT = 230 K
V = 1286.85 (4) Å3Plate, clear colourless
Z = 40.17 × 0.10 × 0.01 × 0.03 (radius) mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1351 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1225 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.053
Detector resolution: 10 pixels mm-1θmax = 77.2°, θmin = 6.1°
ω scansh = 99
Absorption correction: for a sphere
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Spherical absorption correction using equivalent radius and absorption coefficient. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3634
Tmin = 0.260, Tmax = 0.342l = 75
12598 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.7932P]
where P = (Fo2 + 2Fc2)/3
1351 reflections(Δ/σ)max = 0.002
73 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.53969 (4)0.70324 (2)0.43658 (4)0.04801 (14)
C10.4831 (4)0.56172 (12)0.8764 (6)0.0384 (7)
C20.4216 (5)0.60389 (14)0.9572 (5)0.0404 (7)
H20.3659570.604841.0979340.049*
C30.4397 (4)0.64464 (12)0.8374 (6)0.0403 (7)
H30.3996410.6728360.8973850.048*
C40.5181 (4)0.64298 (11)0.6269 (6)0.0356 (6)
C50.5796 (5)0.60121 (13)0.5408 (6)0.0399 (7)
H50.632850.6002160.3986840.048*
C60.5621 (4)0.56123 (12)0.6644 (6)0.0412 (7)
H60.6041070.5331550.6051840.049*
C70.4644 (5)0.52049 (14)1.0191 (7)0.0416 (7)
H70.3952270.5237391.1495330.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0568 (2)0.03707 (18)0.0502 (2)0.00555 (9)0.00010 (10)0.00484 (8)
C10.0336 (14)0.0410 (17)0.0405 (16)0.0059 (13)0.0041 (14)0.0018 (14)
C20.0358 (15)0.051 (2)0.0349 (17)0.0006 (15)0.0037 (13)0.0011 (14)
C30.0421 (17)0.0396 (17)0.0393 (18)0.0034 (13)0.0001 (13)0.0055 (14)
C40.0371 (15)0.0318 (15)0.0380 (15)0.0031 (12)0.0033 (13)0.0022 (13)
C50.0392 (16)0.0411 (18)0.0393 (18)0.0006 (14)0.0009 (13)0.0038 (14)
C60.0414 (16)0.0381 (16)0.0441 (19)0.0028 (12)0.0005 (14)0.0036 (14)
C70.0406 (18)0.0441 (19)0.0403 (16)0.0042 (14)0.0032 (14)0.0002 (15)
Geometric parameters (Å, º) top
I1—C42.091 (3)C3—H30.94
C1—C21.390 (5)C4—C51.392 (5)
C1—C61.400 (5)C5—C61.381 (5)
C1—C71.475 (5)C5—H50.94
C2—C31.388 (5)C6—H60.94
C2—H20.94C7—C7i1.318 (8)
C3—C41.391 (5)C7—H70.94
C2—C1—C6117.6 (3)C5—C4—I1119.8 (3)
C2—C1—C7118.5 (3)C6—C5—C4119.9 (3)
C6—C1—C7123.9 (3)C6—C5—H5120.1
C3—C2—C1122.3 (3)C4—C5—H5120.1
C3—C2—H2118.9C5—C6—C1121.2 (3)
C1—C2—H2118.9C5—C6—H6119.4
C2—C3—C4118.8 (3)C1—C6—H6119.4
C2—C3—H3120.6C7i—C7—C1126.1 (5)
C4—C3—H3120.6C7i—C7—H7117
C3—C4—C5120.3 (3)C1—C7—H7117
C3—C4—I1119.9 (3)
Symmetry code: (i) x+1, y+1, z+2.
(olefinI_250) top
Crystal data top
C14H10I2F(000) = 800
Mr = 432.02Dx = 2.221 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 6923 reflections
a = 7.4287 (3) Åθ = 3.0–77.1°
b = 28.9400 (9) ŵ = 37.98 mm1
c = 6.00927 (19) ÅT = 250 K
V = 1291.91 (7) Å3Plate, clear colourless
Z = 40.17 × 0.10 × 0.01 × 0.03 (radius) mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1360 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1189 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.066
Detector resolution: 10 pixels mm-1θmax = 77.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: for a sphere
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Spherical absorption correction using equivalent radius and absorption coefficient. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3634
Tmin = 0.261, Tmax = 0.344l = 57
12600 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.063P)2 + 1.0901P]
where P = (Fo2 + 2Fc2)/3
1360 reflections(Δ/σ)max = 0.002
73 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.53942 (5)0.70317 (2)0.43692 (6)0.05623 (19)
C10.4829 (6)0.56157 (17)0.8757 (8)0.0449 (9)
C20.4224 (7)0.60373 (19)0.9559 (7)0.0484 (10)
H20.3678480.6047791.0969720.058*
C30.4393 (6)0.64435 (17)0.8359 (8)0.0487 (10)
H30.3980380.672510.8948850.058*
C40.5184 (6)0.64266 (15)0.6270 (8)0.0424 (9)
C50.5801 (7)0.60118 (17)0.5407 (7)0.0460 (10)
H50.6334750.6002770.3989910.055*
C60.5627 (6)0.56105 (16)0.6644 (8)0.0470 (10)
H60.6050650.5329910.6055520.056*
C70.4634 (6)0.52056 (18)1.0191 (9)0.0480 (10)
H70.3932790.5237611.1484570.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0662 (3)0.0441 (2)0.0583 (3)0.00600 (12)0.00027 (14)0.00533 (11)
C10.0386 (19)0.050 (2)0.046 (2)0.0075 (17)0.0045 (18)0.0002 (19)
C20.043 (2)0.059 (3)0.043 (2)0.003 (2)0.0019 (17)0.0003 (19)
C30.050 (2)0.049 (2)0.047 (2)0.0039 (18)0.0013 (19)0.0059 (19)
C40.043 (2)0.039 (2)0.045 (2)0.0053 (16)0.0005 (18)0.0056 (18)
C50.044 (2)0.046 (2)0.048 (2)0.0021 (19)0.0019 (18)0.0066 (18)
C60.049 (2)0.040 (2)0.051 (2)0.0019 (16)0.0011 (19)0.0033 (18)
C70.047 (2)0.049 (3)0.048 (2)0.0053 (19)0.0028 (19)0.002 (2)
Geometric parameters (Å, º) top
I1—C42.097 (4)C3—H30.94
C1—C21.387 (7)C4—C51.385 (7)
C1—C61.402 (7)C5—C61.384 (7)
C1—C71.474 (7)C5—H50.94
C2—C31.385 (7)C6—H60.94
C2—H20.94C7—C7i1.328 (10)
C3—C41.387 (7)C7—H70.94
C2—C1—C6117.5 (4)C3—C4—I1119.7 (3)
C2—C1—C7118.2 (4)C6—C5—C4119.7 (4)
C6—C1—C7124.3 (4)C6—C5—H5120.2
C3—C2—C1122.4 (4)C4—C5—H5120.2
C3—C2—H2118.8C5—C6—C1121.1 (4)
C1—C2—H2118.8C5—C6—H6119.4
C2—C3—C4118.7 (4)C1—C6—H6119.4
C2—C3—H3120.7C7i—C7—C1125.4 (6)
C4—C3—H3120.7C7i—C7—H7117.3
C5—C4—C3120.6 (4)C1—C7—H7117.3
C5—C4—I1119.7 (4)
Symmetry code: (i) x+1, y+1, z+2.
(olefinI_270) top
Crystal data top
C14H10I2F(000) = 800
Mr = 432.02Dx = 2.213 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 6526 reflections
a = 7.4485 (3) Åθ = 3.0–77.0°
b = 28.9467 (11) ŵ = 37.85 mm1
c = 6.0127 (3) ÅT = 270 K
V = 1296.39 (9) Å3Plate, clear colourless
Z = 40.17 × 0.10 × 0.01 × 0.03 (radius) mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1367 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1140 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.065
Detector resolution: 10 pixels mm-1θmax = 77.8°, θmin = 3.1°
ω scansh = 99
Absorption correction: for a sphere
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Spherical absorption correction using equivalent radius and absorption coefficient. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3436
Tmin = 0.262, Tmax = 0.344l = 75
11640 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0744P)2 + 1.967P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max = 0.002
S = 1.11Δρmax = 0.94 e Å3
1367 reflectionsΔρmin = 0.74 e Å3
74 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00057 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.53916 (7)0.70306 (2)0.43702 (7)0.0636 (3)
C10.4833 (8)0.5616 (2)0.8743 (11)0.0528 (13)
C20.4232 (9)0.6033 (3)0.9545 (10)0.0572 (15)
H20.3698140.6041231.0942170.069*
C30.4387 (8)0.6443 (2)0.8362 (10)0.0549 (14)
H30.3976850.6720330.8951150.066*
C40.5173 (8)0.64249 (19)0.6269 (10)0.0470 (11)
C50.5808 (9)0.6010 (2)0.5406 (10)0.0519 (13)
H50.6347670.6001770.4012350.062*
C60.5627 (8)0.5610 (2)0.6643 (10)0.0540 (13)
H60.6041550.5331830.6064150.065*
C70.4644 (8)0.5204 (2)1.0197 (12)0.0551 (14)
H70.3969380.5237051.148820.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0752 (4)0.0499 (3)0.0658 (4)0.00681 (17)0.00076 (19)0.00595 (15)
C10.047 (3)0.056 (3)0.056 (3)0.009 (2)0.004 (2)0.001 (3)
C20.054 (3)0.066 (4)0.052 (3)0.003 (3)0.000 (2)0.003 (3)
C30.059 (3)0.055 (3)0.051 (3)0.004 (2)0.002 (3)0.003 (3)
C40.050 (3)0.037 (3)0.053 (3)0.003 (2)0.001 (2)0.009 (2)
C50.050 (3)0.051 (3)0.054 (3)0.001 (2)0.005 (2)0.005 (2)
C60.059 (3)0.044 (3)0.059 (3)0.002 (2)0.004 (3)0.006 (2)
C70.057 (3)0.052 (3)0.056 (3)0.006 (3)0.003 (3)0.003 (3)
Geometric parameters (Å, º) top
I1—C42.098 (5)C3—H30.93
C1—C21.374 (10)C4—C51.391 (9)
C1—C61.394 (9)C5—C61.383 (9)
C1—C71.486 (9)C5—H50.93
C2—C31.387 (9)C6—H60.93
C2—H20.93C7—C7i1.316 (14)
C3—C41.389 (9)C7—H70.93
C2—C1—C6117.9 (6)C5—C4—I1119.5 (5)
C2—C1—C7117.9 (6)C6—C5—C4119.3 (6)
C6—C1—C7124.2 (6)C6—C5—H5120.3
C1—C2—C3122.9 (6)C4—C5—H5120.3
C1—C2—H2118.5C5—C6—C1121.1 (6)
C3—C2—H2118.5C5—C6—H6119.4
C2—C3—C4117.9 (6)C1—C6—H6119.4
C2—C3—H3121C7i—C7—C1125.2 (8)
C4—C3—H3121C7i—C7—H7117.4
C3—C4—C5120.9 (5)C1—C7—H7117.4
C3—C4—I1119.7 (4)
Symmetry code: (i) x+1, y+1, z+2.
(olefinBr_190) top
Crystal data top
C14H10Br2F(000) = 656
Mr = 338.04Dx = 1.875 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 5347 reflections
a = 7.3293 (2) Åθ = 3.2–76.2°
b = 27.6552 (12) ŵ = 8.31 mm1
c = 5.9082 (2) ÅT = 190 K
V = 1197.55 (8) Å3Plate, clear colourless
Z = 40.16 × 0.09 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1230 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1028 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.066
Detector resolution: 10 pixels mm-1θmax = 77.8°, θmin = 3.2°
ω scansh = 97
Absorption correction: gaussian
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3433
Tmin = 0.545, Tmax = 1l = 77
12105 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0572P)2 + 7.0394P]
where P = (Fo2 + 2Fc2)/3
1230 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 1.42 e Å3
0 restraintsΔρmin = 0.71 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The inconsist reflections 0 32 2, 3 31 0, 1 7 7, 6 7 5, and 3 14 6 were omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45221 (10)0.29428 (2)0.44348 (13)0.0470 (3)
C10.5179 (8)0.4354 (2)0.8736 (10)0.0341 (12)
C20.4388 (8)0.4365 (2)0.6576 (10)0.0358 (12)
H20.3991180.4664270.5956920.043*
C30.4182 (8)0.3946 (2)0.5345 (11)0.0363 (13)
H30.3605590.3955330.3905770.044*
C40.4806 (8)0.3514 (2)0.6189 (10)0.0340 (12)
C50.5589 (8)0.3486 (2)0.8331 (11)0.0388 (13)
H50.5973550.3184950.8937120.047*
C60.5792 (8)0.3907 (2)0.9545 (10)0.0372 (13)
H60.636810.389421.0983870.045*
C70.5377 (8)0.4783 (2)1.0204 (11)0.0369 (13)
H70.6092450.4749331.1535540.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0551 (5)0.0376 (4)0.0484 (5)0.0037 (3)0.0029 (3)0.0064 (3)
C10.031 (3)0.039 (3)0.032 (3)0.004 (2)0.003 (2)0.000 (2)
C20.034 (3)0.039 (3)0.034 (3)0.000 (2)0.002 (2)0.003 (3)
C30.033 (3)0.038 (3)0.037 (3)0.001 (2)0.001 (2)0.003 (2)
C40.041 (3)0.035 (3)0.026 (3)0.005 (2)0.003 (2)0.004 (2)
C50.035 (3)0.038 (3)0.043 (3)0.001 (2)0.002 (3)0.001 (3)
C60.038 (3)0.038 (3)0.036 (3)0.000 (2)0.003 (2)0.002 (2)
C70.034 (3)0.038 (3)0.039 (3)0.002 (2)0.001 (2)0.003 (3)
Geometric parameters (Å, º) top
Br1—C41.902 (6)C3—H30.95
C1—C61.399 (8)C4—C51.391 (9)
C1—C21.402 (8)C5—C61.376 (9)
C1—C71.476 (9)C5—H50.95
C2—C31.377 (9)C6—H60.95
C2—H20.95C7—C7i1.344 (12)
C3—C41.372 (9)C7—H70.95
C6—C1—C2117.6 (6)C5—C4—Br1119.7 (5)
C6—C1—C7118.5 (5)C6—C5—C4118.1 (6)
C2—C1—C7123.9 (6)C6—C5—H5120.9
C3—C2—C1120.5 (6)C4—C5—H5120.9
C3—C2—H2119.8C5—C6—C1122.3 (6)
C1—C2—H2119.8C5—C6—H6118.8
C4—C3—C2120.3 (6)C1—C6—H6118.8
C4—C3—H3119.9C7i—C7—C1124.9 (7)
C2—C3—H3119.9C7i—C7—H7117.6
C3—C4—C5121.1 (6)C1—C7—H7117.6
C3—C4—Br1119.2 (5)
Symmetry code: (i) x+1, y+1, z+2.
(olefinBr_210) top
Crystal data top
C14H10Br2F(000) = 656
Mr = 338.04Dx = 1.866 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 8832 reflections
a = 7.34625 (11) Åθ = 3.2–77.2°
b = 27.6646 (4) ŵ = 8.27 mm1
c = 5.91922 (8) ÅT = 210 K
V = 1202.97 (3) Å3Plate, clear colourless
Z = 40.16 × 0.09 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1259 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1155 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 10 pixels mm-1θmax = 77.3°, θmin = 3.2°
ω scansh = 79
Absorption correction: gaussian
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3334
Tmin = 0.546, Tmax = 1l = 77
14940 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0344P)2 + 1.2602P]
where P = (Fo2 + 2Fc2)/3
1259 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The inconsist reflections 0 32 2, 3 31 0, 1 7 7, 6 7 5, and 3 14 6 were omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45232 (4)0.29436 (2)0.44429 (5)0.04534 (14)
C10.5187 (3)0.43546 (9)0.8738 (4)0.0301 (5)
C20.4383 (3)0.43641 (9)0.6585 (4)0.0319 (5)
H20.3973190.4659490.5987260.038*
C30.4185 (3)0.39451 (9)0.5330 (4)0.0323 (5)
H30.3638770.3955540.3894250.039*
C40.4796 (3)0.35120 (9)0.6204 (4)0.0321 (5)
C50.5590 (3)0.34852 (9)0.8326 (4)0.0342 (5)
H50.5982010.3187420.8916530.041*
C60.5792 (3)0.39084 (10)0.9555 (4)0.0331 (5)
H60.6353180.3894991.0981220.04*
C70.5376 (3)0.47822 (10)1.0180 (4)0.0331 (5)
H70.6093780.4748131.1484230.04*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0558 (2)0.0345 (2)0.0458 (2)0.00431 (11)0.00263 (12)0.00771 (11)
C10.0273 (10)0.0344 (12)0.0286 (11)0.0015 (9)0.0018 (9)0.0015 (10)
C20.0321 (11)0.0332 (12)0.0304 (12)0.0019 (9)0.0006 (9)0.0042 (10)
C30.0318 (11)0.0369 (13)0.0281 (11)0.0022 (9)0.0009 (9)0.0027 (9)
C40.0338 (12)0.0316 (12)0.0310 (11)0.0038 (9)0.0032 (10)0.0012 (10)
C50.0340 (12)0.0344 (13)0.0340 (12)0.0024 (9)0.0010 (9)0.0049 (10)
C60.0321 (11)0.0382 (14)0.0289 (12)0.0009 (10)0.0003 (9)0.0024 (10)
C70.0309 (11)0.0363 (13)0.0319 (12)0.0015 (9)0.0012 (9)0.0003 (10)
Geometric parameters (Å, º) top
Br1—C41.897 (3)C3—H30.94
C1—C61.398 (4)C4—C51.387 (4)
C1—C21.405 (3)C5—C61.386 (4)
C1—C71.465 (4)C5—H50.94
C2—C31.384 (4)C6—H60.94
C2—H20.94C7—C7i1.342 (5)
C3—C41.380 (4)C7—H70.94
C6—C1—C2117.6 (2)C5—C4—Br1119.85 (19)
C6—C1—C7118.8 (2)C6—C5—C4118.4 (2)
C2—C1—C7123.6 (2)C6—C5—H5120.8
C3—C2—C1121.0 (2)C4—C5—H5120.8
C3—C2—H2119.5C5—C6—C1122.0 (2)
C1—C2—H2119.5C5—C6—H6119
C4—C3—C2119.4 (2)C1—C6—H6119
C4—C3—H3120.3C7i—C7—C1126.4 (3)
C2—C3—H3120.3C7i—C7—H7116.8
C3—C4—C5121.5 (2)C1—C7—H7116.8
C3—C4—Br1118.62 (19)
Symmetry code: (i) x+1, y+1, z+2.
(olefinBr_230) top
Crystal data top
C14H10Br2F(000) = 656
Mr = 338.04Dx = 1.86 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 8153 reflections
a = 7.36051 (14) Åθ = 3.2–77.2°
b = 27.6702 (6) ŵ = 8.24 mm1
c = 5.92784 (11) ÅT = 230 K
V = 1207.30 (4) Å3Plate, clear colourless
Z = 40.16 × 0.09 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1246 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1111 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 10 pixels mm-1θmax = 77.3°, θmin = 3.2°
ω scansh = 79
Absorption correction: gaussian
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3334
Tmin = 0.548, Tmax = 1l = 77
13730 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.8695P]
where P = (Fo2 + 2Fc2)/3
1246 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The inconsist reflections 0 32 2, 3 31 0, 1 7 7, 6 7 5, and 3 14 6 were omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45259 (4)0.29446 (2)0.44515 (6)0.05064 (15)
C10.5187 (3)0.43550 (9)0.8741 (4)0.0334 (5)
C20.4384 (3)0.43641 (9)0.6592 (4)0.0362 (5)
H20.3975750.4659590.5996030.043*
C30.4185 (3)0.39461 (10)0.5335 (4)0.0361 (5)
H30.3638860.3956810.3902180.043*
C40.4797 (3)0.35129 (9)0.6208 (4)0.0355 (5)
C50.5590 (3)0.34872 (9)0.8325 (4)0.0380 (5)
H50.5983680.3189740.8915540.046*
C60.5790 (3)0.39102 (10)0.9551 (4)0.0366 (5)
H60.6351350.3896761.0973980.044*
C70.5375 (3)0.47832 (10)1.0179 (4)0.0365 (5)
H70.609420.4749851.1480740.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0620 (2)0.0386 (2)0.0513 (2)0.00478 (12)0.00274 (13)0.00877 (11)
C10.0301 (11)0.0370 (12)0.0331 (11)0.0024 (9)0.0020 (10)0.0016 (10)
C20.0366 (12)0.0356 (12)0.0364 (12)0.0013 (9)0.0000 (10)0.0049 (10)
C30.0356 (12)0.0406 (13)0.0321 (11)0.0013 (10)0.0016 (10)0.0026 (10)
C40.0366 (12)0.0353 (12)0.0347 (12)0.0046 (10)0.0046 (10)0.0016 (10)
C50.0383 (13)0.0379 (13)0.0378 (13)0.0039 (10)0.0001 (10)0.0041 (10)
C60.0365 (12)0.0417 (14)0.0317 (12)0.0024 (10)0.0000 (9)0.0024 (10)
C70.0333 (12)0.0402 (13)0.0358 (12)0.0022 (10)0.0017 (10)0.0006 (10)
Geometric parameters (Å, º) top
Br1—C41.897 (3)C3—H30.94
C1—C61.394 (4)C4—C51.386 (4)
C1—C21.404 (3)C5—C61.385 (4)
C1—C71.466 (4)C5—H50.94
C2—C31.384 (4)C6—H60.94
C2—H20.94C7—C7i1.338 (5)
C3—C41.381 (4)C7—H70.94
C6—C1—C2117.5 (2)C5—C4—Br1119.94 (19)
C6—C1—C7118.9 (2)C6—C5—C4118.4 (2)
C2—C1—C7123.6 (2)C6—C5—H5120.8
C3—C2—C1121.2 (2)C4—C5—H5120.8
C3—C2—H2119.4C5—C6—C1122.1 (2)
C1—C2—H2119.4C5—C6—H6118.9
C4—C3—C2119.3 (2)C1—C6—H6118.9
C4—C3—H3120.4C7i—C7—C1126.4 (3)
C2—C3—H3120.4C7i—C7—H7116.8
C3—C4—C5121.4 (2)C1—C7—H7116.8
C3—C4—Br1118.64 (19)
Symmetry code: (i) x+1, y+1, z+2.
(olefinBr_250) top
Crystal data top
C14H10Br2F(000) = 656
Mr = 338.04Dx = 1.852 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 7848 reflections
a = 7.37825 (13) Åθ = 3.2–77.0°
b = 27.6789 (5) ŵ = 8.20 mm1
c = 5.93730 (11) ÅT = 250 K
V = 1212.53 (4) Å3Plate, clear colourless
Z = 40.16 × 0.09 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1252 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1100 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 10 pixels mm-1θmax = 77.4°, θmin = 3.2°
ω scansh = 79
Absorption correction: gaussian
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3334
Tmin = 0.544, Tmax = 1l = 77
13410 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0343P)2 + 1.1123P]
where P = (Fo2 + 2Fc2)/3
1252 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The inconsist reflections 0 32 2, 3 31 0, 1 7 7, 6 7 5, and 3 14 6 were omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45286 (5)0.29456 (2)0.44596 (6)0.05660 (16)
C10.5186 (3)0.43563 (9)0.8741 (4)0.0369 (5)
C20.4381 (3)0.43654 (9)0.6594 (5)0.0402 (6)
H20.3968740.4660290.599860.048*
C30.4187 (3)0.39459 (10)0.5342 (4)0.0399 (6)
H30.3642320.3955710.3911310.048*
C40.4800 (4)0.35140 (9)0.6213 (5)0.0394 (5)
C50.5589 (4)0.34883 (10)0.8321 (5)0.0422 (6)
H50.5983440.3191210.8909890.051*
C60.5783 (4)0.39115 (10)0.9543 (4)0.0408 (6)
H60.6338160.3897721.0966660.049*
C70.5376 (3)0.47839 (10)1.0179 (5)0.0414 (6)
H70.6094990.475061.1476020.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0698 (3)0.0428 (2)0.0572 (2)0.00532 (13)0.00267 (15)0.00955 (12)
C10.0315 (12)0.0424 (14)0.0367 (12)0.0024 (10)0.0028 (10)0.0014 (10)
C20.0419 (14)0.0386 (13)0.0401 (13)0.0022 (10)0.0011 (11)0.0045 (11)
C30.0365 (13)0.0457 (14)0.0375 (13)0.0016 (10)0.0032 (10)0.0022 (10)
C40.0418 (14)0.0376 (13)0.0387 (12)0.0047 (10)0.0036 (11)0.0023 (10)
C50.0440 (14)0.0414 (14)0.0414 (13)0.0046 (11)0.0004 (11)0.0053 (11)
C60.0424 (14)0.0455 (15)0.0346 (12)0.0023 (11)0.0002 (10)0.0019 (10)
C70.0381 (13)0.0451 (15)0.0410 (13)0.0034 (10)0.0016 (11)0.0000 (11)
Geometric parameters (Å, º) top
Br1—C41.897 (3)C3—H30.94
C1—C61.392 (4)C4—C51.382 (4)
C1—C21.407 (4)C5—C61.386 (4)
C1—C71.466 (4)C5—H50.94
C2—C31.386 (4)C6—H60.94
C2—H20.94C7—C7i1.336 (6)
C3—C41.379 (4)C7—H70.94
C6—C1—C2117.4 (2)C5—C4—Br1119.9 (2)
C6—C1—C7119.0 (2)C4—C5—C6118.3 (2)
C2—C1—C7123.6 (2)C4—C5—H5120.8
C3—C2—C1121.0 (2)C6—C5—H5120.8
C3—C2—H2119.5C5—C6—C1122.4 (2)
C1—C2—H2119.5C5—C6—H6118.8
C4—C3—C2119.4 (2)C1—C6—H6118.8
C4—C3—H3120.3C7i—C7—C1126.2 (3)
C2—C3—H3120.3C7i—C7—H7116.9
C3—C4—C5121.5 (2)C1—C7—H7116.9
C3—C4—Br1118.6 (2)
Symmetry code: (i) x+1, y+1, z+2.
(olefinBr_270) top
Crystal data top
C14H10Br2F(000) = 656
Mr = 338.04Dx = 1.843 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 7435 reflections
a = 7.39602 (15) Åθ = 3.2–76.7°
b = 27.6823 (6) ŵ = 8.16 mm1
c = 5.94943 (12) ÅT = 270 K
V = 1218.08 (4) Å3Plate, clear colourless
Z = 40.16 × 0.09 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1264 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1073 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
Detector resolution: 10 pixels mm-1θmax = 76.9°, θmin = 3.2°
ω scansh = 79
Absorption correction: gaussian
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3334
Tmin = 0.544, Tmax = 1l = 77
14316 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0321P)2 + 1.1014P]
where P = (Fo2 + 2Fc2)/3
1264 reflections(Δ/σ)max = 0.001
73 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The inconsist reflections 0 32 2, 3 31 0, 1 7 7, 6 7 5, and 3 14 6 were omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45317 (5)0.29468 (2)0.44683 (7)0.06236 (17)
C10.5179 (3)0.43570 (10)0.8735 (5)0.0408 (6)
C20.4382 (4)0.43651 (10)0.6596 (5)0.0435 (6)
H20.3976690.4656730.6006160.052*
C30.4190 (4)0.39469 (11)0.5350 (5)0.0438 (6)
H30.3652090.3957310.393860.053*
C40.4800 (4)0.35146 (10)0.6209 (5)0.0433 (6)
C50.5593 (4)0.34906 (11)0.8313 (5)0.0469 (6)
H50.5987750.3197080.8894420.056*
C60.5786 (4)0.39125 (11)0.9531 (5)0.0439 (6)
H60.6340940.3899131.0932790.053*
C70.5369 (4)0.47842 (11)1.0172 (5)0.0450 (6)
H70.607830.4749961.145370.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0775 (3)0.0464 (2)0.0632 (3)0.00623 (15)0.00282 (17)0.01052 (15)
C10.0353 (12)0.0468 (15)0.0405 (13)0.0041 (11)0.0022 (11)0.0021 (11)
C20.0466 (14)0.0405 (14)0.0435 (15)0.0027 (11)0.0006 (11)0.0054 (12)
C30.0424 (13)0.0491 (16)0.0400 (13)0.0026 (11)0.0041 (11)0.0041 (12)
C40.0467 (14)0.0411 (14)0.0420 (14)0.0046 (11)0.0034 (12)0.0022 (11)
C50.0505 (15)0.0465 (16)0.0436 (15)0.0035 (12)0.0002 (12)0.0064 (12)
C60.0432 (13)0.0510 (16)0.0374 (13)0.0017 (11)0.0020 (11)0.0007 (12)
C70.0430 (13)0.0486 (15)0.0434 (14)0.0037 (11)0.0021 (11)0.0013 (12)
Geometric parameters (Å, º) top
Br1—C41.893 (3)C3—H30.93
C1—C61.393 (4)C4—C51.384 (4)
C1—C21.403 (4)C5—C61.382 (4)
C1—C71.466 (4)C5—H50.93
C2—C31.382 (4)C6—H60.93
C2—H20.93C7—C7i1.330 (6)
C3—C41.377 (4)C7—H70.93
C6—C1—C2117.3 (3)C5—C4—Br1120.0 (2)
C6—C1—C7118.9 (3)C6—C5—C4118.5 (3)
C2—C1—C7123.8 (3)C6—C5—H5120.7
C3—C2—C1121.1 (3)C4—C5—H5120.7
C3—C2—H2119.5C5—C6—C1122.3 (3)
C1—C2—H2119.5C5—C6—H6118.8
C4—C3—C2119.7 (3)C1—C6—H6118.8
C4—C3—H3120.1C7i—C7—C1126.5 (3)
C2—C3—H3120.1C7i—C7—H7116.7
C3—C4—C5121.1 (3)C1—C7—H7116.7
C3—C4—Br1119.0 (2)
Symmetry code: (i) x+1, y+1, z+2.
(olefinBr_290) top
Crystal data top
C14H10Br2F(000) = 656
Mr = 338.04Dx = 1.837 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 6481 reflections
a = 7.4125 (2) Åθ = 3.2–76.4°
b = 27.6845 (8) ŵ = 8.14 mm1
c = 5.95711 (19) ÅT = 290 K
V = 1222.46 (6) Å3Plate, clear colourless
Z = 40.16 × 0.09 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1211 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source992 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
Detector resolution: 10 pixels mm-1θmax = 77.1°, θmin = 3.2°
ω scansh = 79
Absorption correction: gaussian
CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3334
Tmin = 0.458, Tmax = 1l = 77
11242 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.5975P]
where P = (Fo2 + 2Fc2)/3
1211 reflections(Δ/σ)max = 0.001
73 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The inconsist reflections 0 32 2, 3 31 0, 1 7 7, 6 7 5, and 3 14 6 were omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45353 (6)0.29477 (2)0.44760 (8)0.0698 (2)
C10.5180 (4)0.43578 (10)0.8732 (5)0.0465 (6)
C20.4378 (4)0.43657 (10)0.6602 (6)0.0496 (7)
H20.396690.4657340.6020460.06*
C30.4184 (4)0.39474 (12)0.5345 (5)0.0490 (7)
H30.3642930.3957190.3936980.059*
C40.4808 (4)0.35159 (11)0.6213 (6)0.0477 (6)
C50.5594 (4)0.34927 (11)0.8303 (6)0.0523 (7)
H50.5988990.3199170.8881410.063*
C60.5786 (4)0.39146 (12)0.9529 (5)0.0505 (7)
H60.633830.3900931.0929110.061*
C70.5375 (4)0.47832 (11)1.0180 (6)0.0500 (7)
H70.6082150.4749081.1459590.06*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0863 (4)0.0519 (3)0.0711 (3)0.00702 (16)0.00254 (19)0.01176 (15)
C10.0398 (14)0.0505 (16)0.0491 (15)0.0032 (11)0.0022 (13)0.0018 (13)
C20.0504 (16)0.0457 (15)0.0528 (18)0.0019 (12)0.0003 (13)0.0055 (13)
C30.0494 (16)0.0537 (16)0.0439 (16)0.0021 (12)0.0034 (13)0.0032 (12)
C40.0492 (16)0.0454 (15)0.0485 (16)0.0033 (12)0.0048 (14)0.0030 (12)
C50.0556 (18)0.0499 (16)0.0513 (19)0.0047 (13)0.0020 (14)0.0076 (13)
C60.0507 (17)0.0569 (17)0.0439 (16)0.0012 (13)0.0005 (13)0.0033 (13)
C70.0492 (17)0.0516 (16)0.0491 (16)0.0035 (12)0.0012 (14)0.0007 (13)
Geometric parameters (Å, º) top
Br1—C41.894 (3)C3—H30.93
C1—C61.390 (4)C4—C51.376 (5)
C1—C21.402 (5)C5—C61.385 (5)
C1—C71.467 (5)C5—H50.93
C2—C31.387 (4)C6—H60.93
C2—H20.93C7—C7i1.340 (6)
C3—C41.381 (4)C7—H70.93
C6—C1—C2117.4 (3)C3—C4—Br1118.5 (2)
C6—C1—C7118.5 (3)C4—C5—C6118.8 (3)
C2—C1—C7124.2 (3)C4—C5—H5120.6
C3—C2—C1121.3 (3)C6—C5—H5120.6
C3—C2—H2119.3C5—C6—C1122.1 (3)
C1—C2—H2119.3C5—C6—H6119
C4—C3—C2119.0 (3)C1—C6—H6119
C4—C3—H3120.5C7i—C7—C1125.8 (4)
C2—C3—H3120.5C7i—C7—H7117.1
C5—C4—C3121.4 (3)C1—C7—H7117.1
C5—C4—Br1120.1 (2)
Symmetry code: (i) x+1, y+1, z+2.
(olefinIBr_190K) top
Crystal data top
C14H10BrIF(000) = 728
Mr = 385.03Dx = 2.057 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 15779 reflections
a = 7.36421 (7) Åθ = 3.1–77.1°
b = 28.3440 (3) ŵ = 23.74 mm1
c = 5.95563 (5) ÅT = 190 K
V = 1243.13 (2) Å3Plate, clear colourless
Z = 40.24 × 0.14 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1305 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1270 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
Detector resolution: 10 pixels mm-1θmax = 77.3°, θmin = 3.1°
ω scansh = 99
Absorption correction: gaussian
CrysAlisPro 1.171.40.68a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3535
Tmin = 0.385, Tmax = 1l = 57
14193 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0257P)2 + 4.087P]
where P = (Fo2 + 2Fc2)/3
1305 reflections(Δ/σ)max < 0.001
76 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. To help maintain reasonable ADP values for atom sites I1 and Br1, the EADP constraint was applied to them.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.4539 (8)0.29370 (15)0.4316 (9)0.0351 (4)0.5
Br10.4610 (14)0.2992 (3)0.4509 (15)0.0351 (4)0.5
C20.5598 (5)0.35204 (16)0.8354 (7)0.0346 (9)
H20.6001050.3228020.8953950.042*
C30.5784 (5)0.39373 (16)0.9568 (7)0.0333 (8)
H30.6342130.3926351.1005170.04*
C40.5181 (5)0.43684 (15)0.8751 (6)0.0298 (8)
C50.4388 (5)0.43800 (14)0.6609 (7)0.0309 (8)
H50.3979470.4671320.6003720.037*
C60.4198 (5)0.39684 (15)0.5369 (7)0.0323 (8)
H60.3652110.3978290.3924830.039*
C70.5371 (5)0.47888 (16)1.0171 (7)0.0343 (8)
H70.6102330.4756021.1475140.041*
C10.4803 (5)0.35442 (14)0.6233 (7)0.0300 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0467 (5)0.0244 (9)0.0343 (8)0.0066 (7)0.0029 (5)0.0092 (6)
Br10.0467 (5)0.0244 (9)0.0343 (8)0.0066 (7)0.0029 (5)0.0092 (6)
C20.037 (2)0.040 (2)0.0271 (19)0.0059 (16)0.0003 (15)0.0050 (17)
C30.0294 (19)0.044 (2)0.0267 (18)0.0003 (16)0.0017 (15)0.0038 (16)
C40.0255 (17)0.039 (2)0.0248 (17)0.0036 (15)0.0047 (15)0.0033 (16)
C50.0298 (18)0.036 (2)0.0272 (18)0.0033 (15)0.0001 (14)0.0039 (16)
C60.0299 (19)0.040 (2)0.0268 (18)0.0006 (16)0.0005 (15)0.0061 (16)
C70.0285 (19)0.042 (2)0.0328 (19)0.0025 (16)0.0019 (16)0.0008 (18)
C10.0287 (18)0.0328 (19)0.0285 (18)0.0046 (15)0.0037 (15)0.0021 (16)
Geometric parameters (Å, º) top
I1—C12.074 (5)C4—C71.468 (6)
Br1—C11.876 (7)C5—C61.388 (6)
C2—C31.392 (6)C5—H50.95
C2—C11.394 (6)C6—C11.381 (6)
C2—H20.95C6—H60.95
C3—C41.388 (6)C7—C7i1.331 (9)
C3—H30.95C7—H70.95
C4—C51.404 (5)
C3—C2—C1118.1 (4)C1—C6—C5120.1 (4)
C3—C2—H2121C1—C6—H6120
C1—C2—H2121C5—C6—H6120
C4—C3—C2122.3 (4)C7i—C7—C4127.1 (5)
C4—C3—H3118.9C7i—C7—H7116.5
C2—C3—H3118.9C4—C7—H7116.5
C3—C4—C5118.2 (4)C6—C1—C2121.0 (4)
C3—C4—C7118.8 (4)C6—C1—Br1119.8 (4)
C5—C4—C7123.0 (4)C2—C1—Br1119.2 (4)
C6—C5—C4120.4 (4)C6—C1—I1119.1 (3)
C6—C5—H5119.8C2—C1—I1119.8 (3)
C4—C5—H5119.8Br1—C1—I11.1 (5)
Symmetry code: (i) x+1, y+1, z+2.
(olefinIBr_210K) top
Crystal data top
C14H10BrIF(000) = 728
Mr = 385.03Dx = 2.05 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 15493 reflections
a = 7.37950 (7) Åθ = 3.1–77.3°
b = 28.3436 (3) ŵ = 23.65 mm1
c = 5.96456 (5) ÅT = 210 K
V = 1247.56 (2) Å3Plate, clear colourless
Z = 40.24 × 0.14 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1307 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1264 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
Detector resolution: 10 pixels mm-1θmax = 77.4°, θmin = 3.1°
ω scansh = 99
Absorption correction: gaussian
CrysAlisPro 1.171.40.68a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3535
Tmin = 0.384, Tmax = 1l = 75
14191 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0282P)2 + 3.1978P]
where P = (Fo2 + 2Fc2)/3
1307 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.40 e Å3
6 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. To help maintain reasonable ADP values for atom sites I1 and Br1, the SIMU restraint was applied to them.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.4554 (7)0.29304 (11)0.4286 (7)0.0369 (4)0.5
Br10.4591 (11)0.30040 (18)0.4564 (11)0.0357 (6)0.5
C20.5596 (5)0.35214 (15)0.8353 (6)0.0377 (8)
H20.5991220.3232160.8949240.045*
C30.5785 (5)0.39384 (15)0.9566 (6)0.0364 (8)
H30.6340280.3927661.0983760.044*
C40.5182 (5)0.43684 (14)0.8753 (6)0.0327 (7)
C50.4387 (5)0.43805 (14)0.6617 (6)0.0343 (8)
H50.3980190.4668950.6024690.041*
C60.4197 (5)0.39696 (14)0.5372 (6)0.0348 (8)
H60.3655650.3980210.3946690.042*
C70.5368 (5)0.47894 (15)1.0170 (7)0.0373 (8)
H70.6087170.4756891.146180.045*
C10.4806 (5)0.35440 (13)0.6231 (6)0.0323 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0525 (5)0.0224 (9)0.0358 (9)0.0063 (7)0.0031 (6)0.0127 (6)
Br10.0536 (8)0.0196 (13)0.0338 (13)0.0072 (10)0.0017 (8)0.0179 (8)
C20.0395 (19)0.043 (2)0.0301 (18)0.0057 (16)0.0003 (15)0.0062 (16)
C30.0333 (18)0.046 (2)0.0296 (17)0.0004 (16)0.0023 (14)0.0047 (15)
C40.0285 (16)0.0403 (19)0.0294 (16)0.0037 (14)0.0047 (14)0.0034 (15)
C50.0345 (18)0.0374 (19)0.0308 (18)0.0033 (14)0.0006 (14)0.0062 (15)
C60.0322 (17)0.042 (2)0.0304 (17)0.0011 (15)0.0019 (14)0.0051 (15)
C70.0330 (19)0.043 (2)0.0360 (18)0.0022 (15)0.0022 (15)0.0004 (17)
C10.0311 (17)0.0348 (18)0.0311 (16)0.0044 (14)0.0044 (14)0.0010 (15)
Geometric parameters (Å, º) top
I1—C12.099 (4)C4—C71.469 (6)
Br1—C11.832 (6)C5—C61.388 (6)
C2—C31.393 (6)C5—H50.94
C2—C11.395 (5)C6—C11.385 (6)
C2—H20.94C6—H60.94
C3—C41.385 (6)C7—C7i1.327 (9)
C3—H30.94C7—H70.94
C4—C51.403 (5)
C3—C2—C1118.3 (4)C1—C6—C5120.0 (3)
C3—C2—H2120.8C1—C6—H6120
C1—C2—H2120.8C5—C6—H6120
C4—C3—C2122.2 (3)C7i—C7—C4127.2 (5)
C4—C3—H3118.9C7i—C7—H7116.4
C2—C3—H3118.9C4—C7—H7116.4
C3—C4—C5118.3 (4)C6—C1—C2120.7 (4)
C3—C4—C7118.9 (3)C6—C1—Br1119.9 (4)
C5—C4—C7122.8 (4)C2—C1—Br1119.4 (4)
C6—C5—C4120.5 (3)C6—C1—I1119.2 (3)
C6—C5—H5119.8C2—C1—I1120.0 (3)
C4—C5—H5119.8Br1—C1—I10.7 (3)
Symmetry code: (i) x+1, y+1, z+2.
(olefinIBr_230K) top
Crystal data top
C14H10BrIF(000) = 728
Mr = 385.03Dx = 2.042 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 15250 reflections
a = 7.39554 (8) Åθ = 3.1–77.1°
b = 28.3456 (3) ŵ = 23.56 mm1
c = 5.97312 (5) ÅT = 230 K
V = 1252.15 (2) Å3Plate, clear colourless
Z = 40.24 × 0.14 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1313 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1265 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.055
Detector resolution: 10 pixels mm-1θmax = 77.3°, θmin = 3.1°
ω scansh = 99
Absorption correction: gaussian
CrysAlisPro 1.171.40.68a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3535
Tmin = 0.383, Tmax = 1l = 75
14149 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0332P)2 + 2.5457P]
where P = (Fo2 + 2Fc2)/3
1313 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.42 e Å3
65 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. To help maintain reasonable ADP values for atom sites I1 and Br1, the SIMU restraint was applied to them. The inconsistent reflection 1 11 1 was omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.4525 (6)0.29344 (11)0.4301 (6)0.0422 (4)0.5
Br10.4641 (10)0.30003 (19)0.4557 (11)0.0415 (7)0.5
C20.5597 (5)0.35234 (15)0.8352 (6)0.0411 (8)
H20.5993260.3234340.8946230.049*
C30.5782 (5)0.39388 (15)0.9559 (6)0.0408 (8)
H30.6335690.3927421.0974940.049*
C40.5181 (5)0.43708 (14)0.8753 (6)0.0363 (7)
C50.4387 (5)0.43805 (13)0.6616 (6)0.0381 (7)
H50.3979010.4668370.6020960.046*
C60.4199 (5)0.39701 (14)0.5378 (6)0.0384 (7)
H60.3657990.3980260.395440.046*
C70.5365 (5)0.47891 (15)1.0167 (7)0.0412 (8)
H70.6079530.475541.1458140.049*
C10.4807 (5)0.35453 (13)0.6235 (6)0.0361 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0568 (7)0.0282 (8)0.0416 (9)0.0088 (6)0.0054 (6)0.0116 (6)
Br10.0564 (10)0.0278 (11)0.0404 (11)0.0119 (8)0.0036 (7)0.0169 (7)
C20.0429 (18)0.0474 (19)0.0331 (17)0.0053 (15)0.0002 (14)0.0063 (15)
C30.0383 (18)0.052 (2)0.0320 (17)0.0011 (16)0.0023 (13)0.0054 (14)
C40.0311 (15)0.0452 (18)0.0325 (15)0.0049 (13)0.0044 (13)0.0046 (14)
C50.0373 (17)0.0413 (18)0.0357 (17)0.0039 (13)0.0008 (13)0.0067 (14)
C60.0355 (17)0.0459 (19)0.0339 (16)0.0013 (14)0.0021 (13)0.0059 (14)
C70.0367 (18)0.047 (2)0.0395 (17)0.0017 (15)0.0015 (14)0.0008 (16)
C10.0348 (16)0.0392 (17)0.0343 (15)0.0054 (13)0.0042 (14)0.0015 (15)
Geometric parameters (Å, º) top
I1—C12.092 (5)C4—C71.462 (6)
Br1—C11.846 (6)C5—C61.386 (6)
C2—C31.388 (6)C5—H50.94
C2—C11.394 (5)C6—C11.384 (5)
C2—H20.94C6—H60.94
C3—C41.389 (6)C7—C7i1.327 (8)
C3—H30.94C7—H70.94
C4—C51.405 (5)
C3—C2—C1118.4 (4)C1—C6—C5120.0 (3)
C3—C2—H2120.8C1—C6—H6120
C1—C2—H2120.8C5—C6—H6120
C2—C3—C4122.4 (3)C7i—C7—C4127.3 (5)
C2—C3—H3118.8C7i—C7—H7116.3
C4—C3—H3118.8C4—C7—H7116.3
C3—C4—C5117.8 (3)C6—C1—C2120.7 (4)
C3—C4—C7119.0 (3)C6—C1—Br1120.4 (3)
C5—C4—C7123.2 (3)C2—C1—Br1118.9 (4)
C6—C5—C4120.7 (3)C6—C1—I1118.9 (3)
C6—C5—H5119.6C2—C1—I1120.4 (3)
C4—C5—H5119.6Br1—C1—I12.0 (3)
Symmetry code: (i) x+1, y+1, z+2.
(olefinIBr_250K) top
Crystal data top
C14H10BrIF(000) = 728
Mr = 385.03Dx = 2.035 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 14912 reflections
a = 7.41258 (8) Åθ = 3.1–76.9°
b = 28.3456 (3) ŵ = 23.48 mm1
c = 5.98174 (5) ÅT = 250 K
V = 1256.85 (2) Å3Plate, clear colourless
Z = 40.24 × 0.14 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1319 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1258 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 10 pixels mm-1θmax = 77.4°, θmin = 3.1°
ω scansh = 99
Absorption correction: gaussian
CrysAlisPro 1.171.40.68a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3535
Tmin = 0.383, Tmax = 1l = 75
14290 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0344P)2 + 2.3129P]
where P = (Fo2 + 2Fc2)/3
1319 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.45 e Å3
65 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. To help maintain reasonable ADP values for atom sites I1 and Br1, the SIMU restraint was applied to them. The inconsistent reflection 1 11 1 was omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.4512 (6)0.29378 (12)0.4308 (6)0.0470 (4)0.5
Br10.4670 (10)0.2997 (2)0.4559 (11)0.0469 (8)0.5
C20.5600 (5)0.35251 (15)0.8345 (6)0.0447 (8)
H20.6001150.3236520.8939310.054*
C30.5782 (5)0.39407 (16)0.9549 (6)0.0446 (8)
H30.6335370.3929671.0962230.054*
C40.5178 (5)0.43716 (14)0.8749 (6)0.0397 (7)
C50.4387 (5)0.43817 (13)0.6617 (6)0.0418 (8)
H50.3979660.4669740.6024230.05*
C60.4200 (5)0.39721 (14)0.5378 (6)0.0419 (8)
H60.3659010.3982570.3957430.05*
C70.5365 (5)0.47898 (16)1.0163 (7)0.0454 (8)
H70.6083690.475611.1447330.054*
C10.4811 (5)0.35455 (13)0.6235 (6)0.0393 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0613 (8)0.0323 (8)0.0473 (9)0.0101 (6)0.0067 (6)0.0111 (6)
Br10.0602 (11)0.0337 (12)0.0467 (11)0.0141 (7)0.0042 (8)0.0166 (7)
C20.0464 (19)0.050 (2)0.0379 (17)0.0054 (15)0.0002 (14)0.0064 (15)
C30.0413 (18)0.055 (2)0.0370 (17)0.0013 (16)0.0021 (14)0.0051 (15)
C40.0343 (15)0.0480 (19)0.0369 (15)0.0047 (14)0.0046 (14)0.0042 (15)
C50.0405 (17)0.0441 (18)0.0408 (17)0.0039 (14)0.0005 (13)0.0063 (15)
C60.0396 (17)0.048 (2)0.0382 (17)0.0014 (15)0.0024 (14)0.0064 (14)
C70.0411 (19)0.051 (2)0.0445 (18)0.0020 (15)0.0011 (15)0.0014 (17)
C10.0381 (16)0.0418 (17)0.0379 (16)0.0037 (14)0.0047 (14)0.0028 (15)
Geometric parameters (Å, º) top
I1—C12.084 (5)C4—C71.463 (6)
Br1—C11.853 (7)C5—C61.384 (6)
C2—C31.388 (6)C5—H50.94
C2—C11.392 (5)C6—C11.389 (5)
C2—H20.94C6—H60.94
C3—C41.386 (6)C7—C7i1.323 (9)
C3—H30.94C7—H70.94
C4—C51.404 (5)
C3—C2—C1118.4 (4)C5—C6—C1120.0 (3)
C3—C2—H2120.8C5—C6—H6120
C1—C2—H2120.8C1—C6—H6120
C4—C3—C2122.5 (3)C7i—C7—C4127.3 (5)
C4—C3—H3118.7C7i—C7—H7116.3
C2—C3—H3118.7C4—C7—H7116.3
C3—C4—C5117.8 (4)C6—C1—C2120.5 (4)
C3—C4—C7118.9 (3)C6—C1—Br1120.8 (4)
C5—C4—C7123.2 (4)C2—C1—Br1118.6 (4)
C6—C5—C4120.7 (3)C6—C1—I1118.7 (3)
C6—C5—H5119.6C2—C1—I1120.8 (3)
C4—C5—H5119.6Br1—C1—I13.0 (3)
Symmetry code: (i) x+1, y+1, z+2.
(olefinIBr_270K) top
Crystal data top
C14H10BrIF(000) = 728
Mr = 385.03Dx = 2.027 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 14396 reflections
a = 7.42999 (8) Åθ = 3.1–77.1°
b = 28.3468 (3) ŵ = 23.38 mm1
c = 5.99099 (5) ÅT = 270 K
V = 1261.80 (2) Å3Plate, clear colourless
Z = 40.24 × 0.14 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1326 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1259 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.058
Detector resolution: 10 pixels mm-1θmax = 77.3°, θmin = 3.1°
ω scansh = 99
Absorption correction: gaussian
CrysAlisPro 1.171.40.68a (Rigaku Oxford Diffraction, 2019) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3535
Tmin = 0.384, Tmax = 1l = 75
14520 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0332P)2 + 1.9803P]
where P = (Fo2 + 2Fc2)/3
1326 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.41 e Å3
65 restraintsΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. To help maintain reasonable ADP values for atom sites I1 and Br1, the SIMU restraint was applied to them. The inconsistent reflection 1 11 1 was omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.4536 (6)0.29713 (15)0.4288 (9)0.0522 (5)0.5
Br10.4643 (11)0.2943 (3)0.4621 (13)0.0559 (13)0.5
C20.5601 (5)0.35274 (14)0.8343 (6)0.0489 (8)
H20.5999650.3242240.8930710.059*
C30.5783 (5)0.39408 (15)0.9540 (6)0.0491 (8)
H30.6332060.3929991.0933860.059*
C40.5177 (4)0.43719 (14)0.8742 (6)0.0442 (7)
C50.4383 (5)0.43812 (13)0.6616 (6)0.0460 (8)
H50.3977870.46660.6031540.055*
C60.4197 (5)0.39714 (14)0.5378 (6)0.0466 (8)
H60.3662420.398120.3975210.056*
C70.5363 (5)0.47896 (16)1.0165 (7)0.0502 (8)
H70.606810.4755411.1437680.06*
C10.4809 (5)0.35464 (13)0.6237 (6)0.0432 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0659 (7)0.0434 (6)0.0473 (11)0.0065 (5)0.0046 (7)0.0019 (6)
Br10.0765 (15)0.0411 (9)0.050 (2)0.0037 (7)0.0054 (10)0.0057 (11)
C20.0505 (19)0.0548 (19)0.0413 (17)0.0066 (15)0.0003 (14)0.0073 (15)
C30.0453 (18)0.062 (2)0.0406 (17)0.0004 (16)0.0026 (14)0.0068 (15)
C40.0369 (15)0.0546 (19)0.0410 (15)0.0044 (14)0.0056 (13)0.0023 (15)
C50.0446 (17)0.0486 (18)0.0448 (17)0.0041 (14)0.0007 (13)0.0071 (14)
C60.0429 (17)0.054 (2)0.0425 (17)0.0020 (15)0.0024 (14)0.0086 (14)
C70.0441 (19)0.057 (2)0.0493 (18)0.0035 (15)0.0025 (15)0.0025 (17)
C10.0413 (16)0.0474 (17)0.0408 (15)0.0041 (14)0.0052 (14)0.0033 (15)
Geometric parameters (Å, º) top
I1—C12.015 (5)C4—C71.466 (6)
Br1—C11.970 (8)C5—C61.385 (6)
C2—C31.380 (6)C5—H50.93
C2—C11.394 (5)C6—C11.387 (5)
C2—H20.93C6—H60.93
C3—C41.387 (6)C7—C7i1.324 (9)
C3—H30.93C7—H70.93
C4—C51.404 (5)
C3—C2—C1118.6 (4)C5—C6—C1119.8 (3)
C3—C2—H2120.7C5—C6—H6120.1
C1—C2—H2120.7C1—C6—H6120.1
C2—C3—C4122.5 (3)C7i—C7—C4127.0 (5)
C2—C3—H3118.8C7i—C7—H7116.5
C4—C3—H3118.8C4—C7—H7116.5
C3—C4—C5117.8 (3)C6—C1—C2120.5 (4)
C3—C4—C7118.7 (3)C6—C1—Br1123.5 (4)
C5—C4—C7123.5 (4)C2—C1—Br1116.0 (4)
C6—C5—C4120.8 (3)C6—C1—I1117.1 (3)
C6—C5—H5119.6C2—C1—I1122.4 (3)
C4—C5—H5119.6Br1—C1—I16.5 (4)
Symmetry code: (i) x+1, y+1, z+2.
(olefinIBr_290K) top
Crystal data top
C14H10BrIF(000) = 728
Mr = 385.03Dx = 2.019 Mg m3
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2acCell parameters from 12356 reflections
a = 7.44877 (12) Åθ = 6.1–77.2°
b = 28.3440 (4) ŵ = 23.29 mm1
c = 6.00033 (8) ÅT = 290 K
V = 1266.84 (3) Å3Plate, clear colourless
Z = 40.24 × 0.14 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1330 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1232 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.059
Detector resolution: 10 pixels mm-1θmax = 77.4°, θmin = 3.1°
ω scansh = 99
Absorption correction: gaussian
CrysAlisPro 1.171.40.69a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3535
Tmin = 0.384, Tmax = 1l = 75
13397 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.029P)2 + 1.8796P]
where P = (Fo2 + 2Fc2)/3
1330 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.37 e Å3
65 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. To help maintain reasonable ADP values for atom sites I1 and Br1, the SIMU restraint was applied to them. The inconsistent reflection 1 11 1 was omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.4540 (7)0.29694 (16)0.4321 (11)0.0591 (5)0.5
Br10.4647 (12)0.2948 (3)0.4587 (16)0.0659 (17)0.5
C20.5606 (5)0.35292 (15)0.8334 (6)0.0534 (9)
H20.6008410.3244310.8917180.064*
C30.5781 (5)0.39438 (16)0.9530 (6)0.0538 (9)
H30.6327990.3933941.0922780.065*
C40.5173 (5)0.43721 (14)0.8729 (6)0.0493 (8)
C50.4379 (5)0.43811 (14)0.6615 (6)0.0515 (8)
H50.3969490.4665480.6033720.062*
C60.4198 (5)0.39707 (15)0.5380 (6)0.0518 (8)
H60.3664120.3979770.39790.062*
C70.5358 (5)0.47908 (16)1.0161 (7)0.0560 (9)
H70.605890.4755541.1433340.067*
C10.4812 (5)0.35485 (13)0.6236 (6)0.0478 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0719 (8)0.0490 (7)0.0563 (8)0.0072 (6)0.0037 (7)0.0034 (5)
Br10.086 (2)0.0459 (11)0.066 (3)0.0061 (9)0.0037 (12)0.0098 (13)
C20.055 (2)0.058 (2)0.0476 (18)0.0049 (16)0.0006 (15)0.0081 (16)
C30.049 (2)0.066 (2)0.0463 (19)0.0011 (17)0.0033 (15)0.0039 (16)
C40.0419 (17)0.060 (2)0.0465 (17)0.0064 (15)0.0048 (14)0.0020 (16)
C50.051 (2)0.0520 (19)0.0515 (19)0.0053 (15)0.0011 (15)0.0078 (16)
C60.0488 (19)0.060 (2)0.0469 (18)0.0010 (16)0.0022 (15)0.0087 (15)
C70.049 (2)0.063 (2)0.0561 (19)0.0030 (17)0.0023 (17)0.0031 (18)
C10.0451 (18)0.0502 (18)0.0479 (17)0.0049 (15)0.0047 (15)0.0025 (16)
Geometric parameters (Å, º) top
I1—C12.014 (6)C4—C71.472 (6)
Br1—C11.972 (8)C5—C61.386 (6)
C2—C31.383 (6)C5—H50.93
C2—C11.392 (5)C6—C11.380 (6)
C2—H20.93C6—H60.93
C3—C41.382 (6)C7—C7i1.315 (9)
C3—H30.93C7—H70.93
C4—C51.400 (5)
C3—C2—C1118.4 (4)C1—C6—C5119.7 (3)
C3—C2—H2120.8C1—C6—H6120.1
C1—C2—H2120.8C5—C6—H6120.1
C4—C3—C2122.3 (3)C7i—C7—C4127.1 (5)
C4—C3—H3118.8C7i—C7—H7116.4
C2—C3—H3118.8C4—C7—H7116.4
C3—C4—C5118.0 (4)C6—C1—C2120.8 (4)
C3—C4—C7118.3 (4)C6—C1—Br1122.7 (4)
C5—C4—C7123.6 (4)C2—C1—Br1116.5 (4)
C6—C5—C4120.7 (4)C6—C1—I1117.4 (3)
C6—C5—H5119.6C2—C1—I1121.8 (4)
C4—C5—H5119.6Br1—C1—I15.3 (5)
Symmetry code: (i) x+1, y+1, z+2.
 

Funding information

Financial support from the National Science Foundation (grant No.DMR-2045506 awarded to KMH) and the American Chemical Society Petroleum Research Fund (grant No. 61912-DNI10 awarded to KMH) is gratefully acknowledged. EZ acknowledges the Welch Summer Scholar program for financial support.

References

First citationAlbers, H. M. H. G., Hendrickx, L. J. D., van Tol, R. J. P., Hausmann, J., Perrakis, A. & Ovaa, H. (2011). J. Med. Chem. 54, 4619–4626.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAmit, A. G. & Hope, H. (1966). Acta Chem. Scand. 20, 835–844.  CSD CrossRef CAS Web of Science Google Scholar
First citationAshokkumar, S., Veeramani, V., Kaliannan, T., Stoeckli-Evans, H., Philip, R., Rose, P., Ramamurthi, K. & Babu, R. R. (2021). CSD Conmunication (CCDC deposition number 1583365). CCDC, Cambridge, England.  Google Scholar
First citationBernstein, L. & Izak, I. (1975). J. Cryst. Mol. Struct. 5, 257–266.  CSD CrossRef CAS Web of Science Google Scholar
First citationBhattacharya, S. & Saha, B. K. (2014). CrystEngComm, 16, 2340–2343.  Web of Science CSD CrossRef CAS Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, J., Hu, L., Deng, J. & Xing, X. (2015). Chem. Soc. Rev. 44, 3522–3567.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321–1329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDas, D., Jacobs, T. & Barbour, L. J. (2010). Nat. Mater. 9, 36–39.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDing, X., Unruh, D. K., Groeneman, R. H. & Hutchins, K. M. (2020). Chem. Sci. 11, 7701–7707.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGoodwin, A. L., Calleja, M., Conterio, M. J., Dove, M. T., Evans, J. S. O., Keen, D. A., Peters, L. & Tucker, M. G. (2008). Science, 319, 794–797.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrebel-Koehler, D., Liu, D., De Feyter, S., Enkelmann, V., Weil, T., Engels, C., Samyn, C., Müllen, K. & De Schryver, F. C. (2003). Macromolecules, 36, 578–590.  CAS Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationHadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. Chem. 162, 521–530.  Web of Science CSD CrossRef CAS Google Scholar
First citationHadjoudis, E., Yannakopoulou, K., Chatziefthimiou, S. D., Paulidou, A. & Mavridis, I. M. (2011). J. Photochem. Photobiol. Chem. 217, 293–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarada, J., Harakawa, M. & Ogawa, K. (2004a). Acta Cryst. B60, 578–588.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarada, J., Harakawa, M. & Ogawa, K. (2004b). Acta Cryst. B60, 589–597.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarada, J. & Ogawa, K. (2001). J. Am. Chem. Soc. 123, 10884–10888.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539–3544.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarada, J. & Ogawa, K. (2009). Chem. Soc. Rev. 38, 2244–2252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHoward, J. A. K., Batsanov, A. S., Bryce, M. R. & Chesney, A. (1994). Acta Cryst. C50, 1818–1819.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuskić, I., Halasz, I., Friščić, T. & Vančik, H. (2012). Green Chem. 14, 1597–1600.   Google Scholar
First citationHutchins, K. M., Unruh, D. K., Verdu, F. A. & Groeneman, R. H. (2018). Cryst. Growth Des. 18, 566–570.  Web of Science CSD CrossRef CAS Google Scholar
First citationInternational Union of Crystallography (2019). IUCr Online Dictionary of Crystallography. Isostructural crystals. https://dictionary.iucr.org/Isostructural_crystalsGoogle Scholar
First citationJuneja, N., Unruh, D. K., Bosch, E., Groeneman, R. H. & Hutchins, K. M. (2019). New J. Chem. 43, 18433–18436.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaranam, M. & Choudhury, A. R. (2013). Cryst. Growth Des. 13, 4803–4814.  Web of Science CSD CrossRef CAS Google Scholar
First citationKiefer, H. V., Gruber, E., Langeland, J., Kusochek, P. A., Bochenkova, A. V. & Andersen, L. H. (2019). Nat. Commun. 10, 1210.  Web of Science CrossRef PubMed Google Scholar
First citationLee, A. van der, Roche, G. H., Wantz, G., Moreau, J. J. E., Dautel, O. J. & Filhol, J. (2018). Chem. Sci. 9, 3948–3956.  Web of Science PubMed Google Scholar
First citationLi, J., Hu, Y., Ge, C., Gong, H. & Gao, X. (2018). Chin. Chem. Lett. 29, 423–428.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y., Coropceanu, V. & Brédas, J. (2012). J. Phys. Chem. Lett. 3, 3325–3329.  Web of Science CrossRef CAS Google Scholar
First citationMarin, L., Harabagiu, V., Lee, A., Arvinte, A. & Barboiu, M. (2013). J. Mol. Struct. 1049, 377–385.  Web of Science CSD CrossRef CAS Google Scholar
First citationMei, Y., Diemer, P. J., Niazi, M. R., Hallani, R. K., Jarolimek, K., Day, C. S., Risko, C., Anthony, J. E., Amassian, A. & Jurchescu, O. D. (2017). PNAS, 114, 6739–6748.  Web of Science CrossRef Google Scholar
First citationMizoshita, N., Goto, Y., Tani, T. & Inagaki, S. (2008). Adv. Funct. Mater. 18, 3699–3705.  Web of Science CrossRef CAS Google Scholar
First citationMukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514–2524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNaumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. (2015). Chem. Rev. 115, 12440–12490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNguyen, T. T. T., Türp, D., Wang, D., Nölscher, B., Laquai, F. & Müllen, K. J. (2011). J. Am. Chem. Soc. 133, 11194–11204.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2015). SCALE3 ABSPACK, CrysAlis Software Package, Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPeedikakkal, A. M. P. (2017). J. Chem. Sci. 129, 733–739.  Web of Science CSD CrossRef CAS Google Scholar
First citationRather, S. A., Saraswatula, V. G., Sharada, D. & Saha, B. K. (2019). New J. Chem. 43, 17146–17150.  Web of Science CSD CrossRef CAS Google Scholar
First citationReddy, C. M., Rama Krishna, G. & Ghosh, S. (2010). CrystEngComm, 12, 2296–2314.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.   Google Scholar
First citationSaccone, M. & Catalano, L. (2019). J. Phys. Chem. B, 123, 9281–9290.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSaha, B. K. (2017). J. Indian Inst. Sci. 97, 177–191.  Web of Science CrossRef Google Scholar
First citationSaraswatula, V. G. & Saha, B. K. (2014). New J. Chem. 38, 897–901.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaraswatula, V. G., Sharada, D. & Saha, B. K. (2018). Cryst. Growth Des. 18, 52–56.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, X., Zhang, C., Xu, Q., Li, Z. & Shao, X. (2017). Org. Biomol. Chem. 15, 3320–3323.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVande Velde, C. M. L., Collas, A., De Borger, R. & Blockhuys, F. (2011). Chem. Eur. J. 17, 912–919.  Web of Science CAS PubMed Google Scholar
First citationVande Velde, C. M. L., Zeller, M. & Azov, V. A. (2015). CrystEngComm, 17, 5751–5756.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H., Chen, Y., Chen, Y., Chen, C., Lee, R., Chan, L. & Jeng, R. (2012). Polymer, 53, 4091–4103.   Web of Science CrossRef CAS Google Scholar
First citationWang, Q., Ligorio, G., Diez-Cabanes, V., Cornil, D., Kobin, B., Hildebrandt, J., Nardi, M. V., Timpel, M., Hecht, S., Cornil, J., List-Kratochvil, E. J. W. & Koch, N. (2018). Adv. Funct. Mater. 28, 1800716.   Google Scholar
First citationWeldeab, A. O., Steen, A., Starkenburg, D. J., Williams, J. S. D., Abboud, K. A., Xue, J., Hammer, N. I., Castellano, R. K. & Watkins, D. L. (2018). J. Mater. Chem. C. 6, 11992–12000.  Web of Science CSD CrossRef CAS Google Scholar
First citationWilson, J., Dal Williams, J. S., Petkovsek, C., Reves, P., Jurss, J. W., Hammer, N. I., Tschumper, G. S. & Watkins, D. L. (2015). RSC Adv. 5, 82544–82548.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, L., Li, B. & Zhou, J. (2016a). Appl. Mater. Interfaces, 8, 17721–17727.  Web of Science CrossRef CAS Google Scholar
First citationWu, Y., Chew, A. R., Rojas, G. A., Sini, G., Haugstad, G., Belianinov, A., Kalinin, S. V., Li, H., Risko, C., Brédas, J., Salleo, A. & Frisbie, C. D. (2016b). Nat. Commun. 7, 10270.  Web of Science CrossRef PubMed Google Scholar
First citationYao, Z., Guan, H., Shiota, Y., He, C., Wang, X., Wu, S., Zheng, X., Su, S., Yoshizawa, K., Kong, X., Sato, O. & Tao, J. (2019). Nat. Commun. 10, 4805.  Web of Science CSD CrossRef PubMed Google Scholar
First citationZhang, Y. & Wang, W. (2021). Comput. Theor. Chem. 1194, 113074.  Web of Science CSD CrossRef Google Scholar
First citationZhu, H., Li, Q., Yang, C., Zhang, Q., Ren, Y., Gao, Q., Wang, N., Lin, K., Deng, J., Chen, J., Gu, L., Hong, J. & Xing, X. (2018). J. Am. Chem. Soc. 140, 7403–7406.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
ISSN: 2052-2525