research papers
Stochastic hydration of a high-nitrogen-content molecular compound recrystallized under pressure
aFaculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland, and bDepartment of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań 60-780, Poland
*Correspondence e-mail: aniao@amu.edu.pl
Partial hydration of organic compounds can be achieved by high-pressure crystallization. This has been demonstrated for the high-nitrogen-content compound 6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl), which becomes partly hydrated by isochoric crystallizations below 0.15 GPa. This hydrate, C4H2N5Cl·xH2O, is isostructural with the ambient-pressure phase α of C4H2N5Cl, but the crystal volume is somewhat larger than that of the anhydrate. At 0.20 GPa, the α-C4H2N5Cl anhydrate phase transforms abruptly into a new higher-symmetry phase, α′; the transformation is clearly visible due to a strong contraction of the crystals. The hydrate α-C4H2N5Cl·xH2O can also be isothermally compressed up to 0.30 GPa before transforming to the α′-C4H2N5Cl·xH2O phase. The isochoric recrystallization of C4H2N5Cl above 0.18 GPa yields a new anhydrous phase β, which, on releasing pressure, transforms back to the α phase below 0.15 GPa. The from the α to the β phase is destructive for the single crystal and involves a large volume drop and significant elongation of all the shortest intermolecular distances which are the CH⋯N and CH⋯Cl hydrogen bonds, as well as the N⋯N contacts. The α-to-α′ increases the crystal symmetry in the relation; however, there are no structural nor symmetry relations between phases α and β.
1. Introduction
High-nitrogen organic compounds have relatively high density, but short intermolecular contacts are usually absent in their structures (Bernstein, 2002; Fabbiani & Pulham, 2006; Millar et al., 2010; Zakharov & Boldyreva, 2019). The strong interdependence of the density and properties generally involves intermolecular interactions (Gao & Shreeve, 2011; Nair et al., 2010) and thermodynamic conditions (Fabbiani & Pulham, 2006; Boldyreva, 2008, 2014; Resnati et al., 2015). We report a pressure and temperature dependence of the of the pyridazine-based compound 6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl), hereafter CTP. It can transform between the azide and tetrazole forms in the gaseous and liquid states (Fig. 1). Azido-tetrazole is common for many high-nitrogen content compounds, widely applied as energetic materials and active pharmaceutical ingredients (Katrusiak et al., 1996, 2005; Bałoniak & Katrusiak, 1994; Yang et al., 2015; Olejniczak et al., 2019). We determined the of C4H2N5Cl under normal conditions in order to gain information about the tautomeric and molecular forms, and we noted relatively large voids, accommodating a probing sphere of 0.65 Å radius. Under ambient conditions the studied compound assumes the tetrazole form. We established that isothermal compression, isobaric cooling and high-pressure recrystallization result in new unexpected forms of CTP.
2. Methods
The effect of high pressure on CTP was studied in a diamond anvil cell (DAC) (Merrill & Bassett, 1974) modified by mounting the anvils directly on steel disks with conical windows. Two procedures were applied (Fig. S1 of the supporting information): (i) isothermal compression (Figs. 2, S2 and S3) in Daphne oil and (ii) high-pressure recrystallizations performed from saturated solutions (Figs. 2 and S4). Method (i) resulted in monotonic compression of the ambient-pressure phase α up to 0.20 GPa, whereby the sample crystal visibly became shorter and transformed to a new phase α′ (Fig. 2). X-ray diffraction confirmed this to be a single-crystal-to-single-crystal of the subgroup–group symmetry relation, and clearly discontinuous in character.
For the high-pressure recrystallization, solvents were chosen according to their freezing pressure and the compound solubility. The highest solubility was found for water. The initial trials revealed that the concentration in the ). High-pressure recrystallizations were performed from aqueous, methanol, ethanol and acetone solutions or from mixtures of them. Temperatures higher than 473 K caused the sample to decompose.
is not sufficient for obtaining single crystals large enough for X-ray diffraction measurements. Therefore before loading the solution, some additional crystals were placed in the high-pressure chamber to increase the concentration at high temperature. After increasing the pressure to the required value, the DAC was heated until all seeds except one dissolved and a single crystal was grown by controlled slow cooling of the sample to room temperature (Fig. 3Pressure in the DAC chamber was calibrated by the ruby-fluorescence method (Mao et al., 1985) with a photon control spectrometer affording an accuracy of 0.02 GPa; the calibration was performed before and after the diffraction measurements. The crystal sample in the DAC was centered on the diffractometer by the gasket shadowing method (Budzianowski & Katrusiak, 2004). For the low-temperature measurements an Oxford Cryosystems 700 Series attachment and SuperNova diffractometer using Cu Kα radiation and a CCD plate Atlas detector was used. The high-pressure diffraction data were measured with a KUMA KM4-CCD diffractometer using Mo Kα radiation and a CCD two-dimensional Eos detector. CrysAlisPro (171.40.67a; Rigaku Oxford Diffraction, 2019) was used for recording reflections and preliminary data reduction. Reflection intensities were corrected for the DAC absorption and sample shadowing by the gasket, the sample absorption and reflections overlapping with diamond reflections were eliminated. OLEX2 (version 1.2, Dolomanov et al., 2009), SHELX-T (Sheldrick, 2015a) and SHELX-L (Sheldrick, 2015b) were used to solve the structural models by and then refine the models by full-matrix least-squares. Anisotropic temperature factors were applied for non-hydrogen atoms, but the isotropic thermal parameters were occasionally retained for the atoms with unreasonable anisotropic thermal ellipsoids. Hydrogen atoms were located from the molecular geometry, with the C—H distance equal to 0.93 Å and their Uiso factors constrained to 1.2 × Ueq of the carriers. The crystal data and details are summarized in Tables 1 and S1–S3 of the supporting information; the experimental and structural details have been deposited in format in the Cambridge Structural Database as supporting publications (CCDC deposition Nos. CCDC 2102408–2102436). Structural drawings were prepared using the X-Seed interface of POV-Ray (Barbour, 2001; Persistence of Vision Raytracer, 2004) and the program Mercury (Macrae et al., 2020).
|
3. Results and discussion
High-pressure recrystallization revealed several crystalline forms of CTP. The β phase can easily be distinguished from phases α and α′ by the crystal morphology, but X-ray diffraction measurements were required for detecting the uptake of water molecules.
Crystals of the orthorhombic α phase were obtained from methanol solution under ambient conditions exclusively. The single-crystal sample isothermally compressed to 0.20 GPa displays an abrupt strong visible strain marking the transition to α′ (Figs. S2 and S3); subsequent X-ray measurements revealed the single crystal retains its high quality after the transformation is complete. This new high-pressure α′ phase remains orthorhombic, but its symmetry increases to Pnma (Table 1). On releasing pressure, α′ transforms back to α at 0.12 GPa. The α′ phase can be compressed to 0.6 GPa, when its transformation to the monoclinic β phase damages the single crystal. Single crystals of β were grown under isochoric conditions above 0.15 GPa. On releasing pressure, β transforms back to α at 0.15 GPa and the single crystal was pulverized again.
The high-pressure isochoric recrystallizations of CTP from aqueous solution up to 0.15 GPa yielded single crystals, which initially appeared to be identical to the α phase; however, their volume was markedly larger by about 3 Å3 per C4H2N5Cl molecule compared with that of the α phase grown at atmospheric pressure (Fig. 4). Moreover, the volume dependence on pressure displays clearly a convex shape, and the crystals could be compressed to 0.3 GPa before undergoing transformation to the α′ phase in an analogous way to that observed for the α phase. We concluded that the high-pressure recrystallization forces some water molecules into the so the C4H2N5Cl·xH2O is obtained, with H2O contents too small to be visible in our X-ray From isochoric recrystallizations above 0.16 GPa β was obtained, which is stable up to 0.80 GPa at least and on releasing pressure transforms back to α.
The low-temperature behavior of CTP crystals at atmospheric pressure was also studied by X-ray diffraction. Over the temperature range down to 130 K the crystal remained in the α phase and it contracted to about 98% of the volume at 296 K. Such a volume compression was achieved at 296 K under a pressure of 0.10 GPa (Fig. 4).
3.1. Symmetry relations
It is quite unusual and inconsistent with the rule of temperature and pressure inverse effects (Tapie) (Hazen & Finger, 1982; Cai & Katrusiak, 2014) that the space-group symmetry of the low-pressure phase α-CTP increases on transforming to the α′ phase, from P212121 to Pnma. Tapie states that the effects of increased pressure are usually the inverse of those of increased temperature (usually increasing volume and symmetry). Indeed, there are numerous examples of symmetry reduction in high-pressure phases (Olejniczak et al., 2009, 2010; Svitlyk & Mezouar, 2021, Guńka et al., 2021; Roszak & Katrusiak, 2021). The β phase is monoclinic (space group P21/c), however its structure is very different from those of phases α and α′. The structure of β is built from double layers, which are absent in other phases (Figs. 5 and S5). The transition around 0.20 GPa between α and α′ can be observed visually, because the longest dimension of the crystal along the x direction of α is shortened by ca 10% at the transition to α′ (Fig. 4, Table 1). This visible strain precisely indicating the transition point on increasing and releasing the pressure was helpful for measuring the transition hysteresis (of about 0.08 GPa) as well as the higher transition pressure of the partial hydrate CTP·xH2O at 0.30 GPa.
Both phase transitions are accompanied by a volume reduction. The molecular volume of the β phase is over 10 Å3 smaller than that of the α phase (Fig. 4). At the α-to-α′ transition the molecular volume is reduced by about 3 Å3. The unit-cell volume of the isothermally compressed α phase is smaller compared with that of the sample recrystallized in situ under pressure. The in situ crystallized sample has the same symmetry and nearly identical structure and lattice as the α phase. The volume increase can be attributed to the presence of some small amount of water (Glasser, 2019) randomly distributed in the structure of α. We postulated that the presence of water in CTP·xH2O increases the crystal volume, reduces the compressibility of CTP·xH2O, and the transition to the α′ phase of CTP·xH2O occurs at pressures higher than that of the anhydrate (Fig. 4). Due to the absence of the water molecule electron-density peak in the ΔF maps, we were able to assess the value of x from only the volume increase of the in situ recrystallized crystals compared with those obtained under ambient conditions and compressed without recrystallization. This assessment has been based on the formula x = [Vm(hydrate) − Vm(anhydrate)]/Vw, where Vw is the volume of one water molecule in a hydrate (Glasser, 2019). According to this assessment the water admixture coefficient x is about 0.14 for 0.10 GPa, 0.30 for 0.20 GPa and 0.08 for 0.49 GPa.
The structures of α and α′ are closely related (Fig. 5) and their lattice vectors are connected through the following matrix equations:
where primes refer to the α′ phase. The corrugated sheets of CH⋯N bonded molecular aggregates in α at the become perfectly planar in α′ (Fig. 5). Consequently, the lattice becomes elongated along the undulation of the sheets (unit-cell parameters c/a′), the other dimension along the sheets remains unchanged (b/c′) and the dimension between the sheets (a/b′) is shortened, as shown in the plot in Fig. 4(b).
In the tetrazole form the CTP molecules are rigid and planar under ambient conditions and these features are preserved in the high-pressure phases. All the structures are governed mainly by short CH⋯N bonds, while non contacts N⋯N, CH⋯Cl or Cl⋯Cl are shorter than the sum of van der Waals radii (Bondi, 1964) (Fig. 6). The arrangement of the molecules is clearly related between α and α′, but different from that in β (Fig. 5 and S10). All specific types of contacts in α become longer in β. Though the change in the CH⋯N distance is small (it is about 0.05 Å longer in phase β than it is in phase α), the elongation of distances N⋯N and CH⋯Cl is of the order of about 0.1 and 0.3 Å, respectively. This is due to the molecular arrangement becoming more optimized for denser packing rather than changes in the directional interactions under high pressure (Figs. S7 and S8).
The CH⋯N bonded corrugated sheets in α and the planar sheets in α′ are connected by N⋯N contacts between the sheets (Fig. 5). In β the two shortest CH⋯N bonds connect molecules into ribbons running along [100]; these ribbons are connected by other short CH⋯N bonds into double layers. There are short N⋯N contacts between these double layers. The patterns of molecules connected by the shortest CH⋯N contacts are rings that can be described as R44(17) in α and α′, and R22(8) and R44(12) in β (Fig. 5 and S9) according to graph notation (Etter et al., 1990).
Some similarities can be observed between the structures of CTP phases and previously studied compounds 6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7, ATriP) (Olejniczak et al., 2019) and 6-azido-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N8, TAPYR) (Olejniczak et al., 2020). Both CTP and TAPYR transform into new phases with considerably reduced volume. Moreover, the α-to-β transformation occurs only when the compounds are recrystallized in situ under high-pressure and high-temperature conditions. In TAPYR, the new β phase exists in the low-pressure range, then transforms to the ambient-condition α phase. In CTP at the low-pressure range the ambient-condition α phase is present, which further transforms to a new phase β. Unlike in TAPYR, where the new phase could be recovered after releasing the pressure, the β phase of CTP exists only under high-pressure conditions. In these three compounds, the molecules aggregate into sheets in phases α and α′ of CTP, in phase α of TAPYR, and in ATriP (planar in the α′ phase of CTP and in the α phase of TAPYR, while corrugated in the α phase of CTP and ATriP). The hydrogen-bond patterns are somewhat different (Fig. S9). In TAPYR the CH⋯N short contacts connect molecules into ribbons, which further extend through short N⋯N contacts into sheets. In CTP phases α and α′ and in ATriP the molecules aggregate into sheets only via CH⋯N bonds; however, in ATriP the N⋯N interactions are additionally present within the sheets. In all these structures N⋯N contacts are present between neighboring sheets, but they are longer than N⋯N contacts within the sheets.
The pressure-induced sorption of water molecules in small voids in the molecular crystal of CTP in some respect resembles the sorption in large pores of metal–organic frameworks (McKellar & Moggach, 2015), however access to the pores in CTP is hindered and requires dissolution.
4. Conclusions
With the exception of the three least-high-pressure phases of C4H2N5Cl we have revealed the different behavior of this compound compressed and recrystallized under high-pressure conditions. At ambient pressure and low temperature only the α phase was obtained. It transforms into the higher-symmetry α′ phase at 0.20 GPa and to phase β at about 0.70 GPa. The high-pressure recrystallization of C4H2N5Cl yields its stochastic hydrate α·xH2O when water is present in the solvent. This stochastic hydrate closely resembles the pure α phase, but its volume is somewhat larger; the volume–pressure dependence displays an unusual convex shape and the α·xH2O phase transforms into the α′·xH2O phase at a pressure about 0.1 GPa higher than the pure α-C4H2N5Cl phase. The presence of water can be also deducted from the voids present in the structure of phases α and α′, although their size is significantly smaller than that required for accommodating water molecules under ambient-pressure conditions.
Supporting information
https://doi.org/10.1107/S2052252521010381/lt5042sup1.cif
contains datablocks C4H2N5Cl1@300K_phase_alpha, C4H2N5Cl1@275K_phase_alpha, C4H2N5Cl1@250K_phase_alpha, C4H2N5Cl1@225K_phase_alpha, C4H2N5Cl1@200K_phase_alpha, C4H2N5Cl1@190K_phase_alpha, C4H2N5Cl1@175K_phase_alpha, C4H2N5Cl1@160K_phase_alpha, C4H2N5Cl1@150K_phase_alpha, C4H2N5Cl1@130K_phase_alpha, C4H2N5Cl1@0_0001GPa_phase_alpha, C4H2N5Cl1@0_12GPa_phase_alpha, C4H2N5Cl1@0_24GPa_phase_alpha_prim, C4H2N5Cl1@0_49GPa_phase_alpha_prim, C4H2N5Cl1@0_09GPa_phase_alpha_xH2O, C4H2N5Cl1@0_10GPa_phase_alpha_xH2O, C4H2N5Cl1@0_17GPa_phase_alpha_xH2O, C4H2N5Cl1@0_18GPa_phase_alpha_xH2O, C4H2N5Cl1@0_20GPa_phase_alpha_xH2O, C4H2N5Cl1@0_30GPa_phase_alpha_xH2O, C4H2N5Cl1@0_54GPa_phase_alpha_prim_xH2O, C4H2N5Cl1@0_17GPa_phase_beta, C4H2N5Cl1@0_20GPa_phase_beta, C4H2N5Cl1@0_25GPa_phase_beta, C4H2N5Cl1@0_33GPa_phase_beta, C4H2N5Cl1@0_40GPa_phase_beta, C4H2N5Cl1@0_48GPa_phase_beta, C4H2N5Cl1@0_55GPa_phase_beta, C4H2N5Cl1@0_80GPa_phase_beta. DOI:Supporting tables and figures. DOI: https://doi.org/10.1107/S2052252521010381/lt5042sup2.pdf
For all structures, data collection: CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019); cell
CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019); data reduction: CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019). Program(s) used to solve structure: SHELXT 2018/2 (Sheldrick, 2018) for C4H2N5Cl1@300K_phase_alpha, C4H2N5Cl1@275K_phase_alpha, C4H2N5Cl1@250K_phase_alpha, C4H2N5Cl1@225K_phase_alpha, C4H2N5Cl1@200K_phase_alpha, C4H2N5Cl1@190K_phase_alpha, C4H2N5Cl1@175K_phase_alpha, C4H2N5Cl1@160K_phase_alpha, C4H2N5Cl1@150K_phase_alpha, C4H2N5Cl1@130K_phase_alpha, C4H2N5Cl1@0_0001GPa_phase_alpha, C4H2N5Cl1@0_12GPa_phase_alpha, C4H2N5Cl1@0_24GPa_phase_alpha_prim, C4H2N5Cl1@0_49GPa_phase_alpha_prim, C4H2N5Cl1@0_09GPa_phase_alpha_xH2O, C4H2N5Cl1@0_10GPa_phase_alpha_xH2O, C4H2N5Cl1@0_17GPa_phase_alpha_xH2O, C4H2N5Cl1@0_18GPa_phase_alpha_xH2O, C4H2N5Cl1@0_20GPa_phase_alpha_xH2O, C4H2N5Cl1@0_30GPa_phase_alpha_xH2O, C4H2N5Cl1@0_54GPa_phase_alpha_prim_xH2O, C4H2N5Cl1@0_20GPa_phase_beta, C4H2N5Cl1@0_25GPa_phase_beta, C4H2N5Cl1@0_33GPa_phase_beta, C4H2N5Cl1@0_40GPa_phase_beta, C4H2N5Cl1@0_48GPa_phase_beta, C4H2N5Cl1@0_55GPa_phase_beta, C4H2N5Cl1@0_80GPa_phase_beta; SHELXT 2018/2 (Sheldrick, 2018)' for C4H2N5Cl1@0_17GPa_phase_beta. For all structures, program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).C4H2ClN5 | Dx = 1.650 Mg m−3 |
Mr = 155.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2612 reflections |
a = 7.0651 (2) Å | θ = 6.7–64.6° |
b = 8.7859 (2) Å | µ = 4.77 mm−1 |
c = 10.0906 (2) Å | T = 300 K |
V = 626.36 (3) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.20 × 0.15 mm |
F(000) = 312 |
SuperNova, Single source at offset/far, Atlas diffractometer | 1046 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 997 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.018 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 64.7°, θmin = 6.7° |
ω scans | h = −6→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −9→10 |
Tmin = 0.688, Tmax = 1.000 | l = −10→11 |
3680 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0448P)2 + 0.1954P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.13 e Å−3 |
1046 reflections | Δρmin = −0.22 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 378 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.489 (6) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.29048 (16) | 0.33468 (10) | 0.32125 (12) | 0.0758 (4) | |
N4 | 0.3556 (4) | 0.7485 (3) | 0.4123 (3) | 0.0481 (7) | |
N5 | 0.3659 (4) | 0.5953 (3) | 0.4188 (3) | 0.0525 (7) | |
N3 | 0.4277 (5) | 0.8396 (4) | 0.5062 (3) | 0.0686 (9) | |
N2 | 0.3893 (6) | 0.9774 (4) | 0.4657 (4) | 0.0783 (11) | |
N1 | 0.2970 (6) | 0.9804 (3) | 0.3494 (3) | 0.0674 (9) | |
C9 | 0.2765 (5) | 0.8343 (4) | 0.3156 (3) | 0.0484 (7) | |
C7 | 0.2014 (6) | 0.6048 (4) | 0.2090 (3) | 0.0568 (9) | |
H7 | 0.149172 | 0.548711 | 0.139977 | 0.068* | |
C6 | 0.2869 (5) | 0.5305 (4) | 0.3177 (3) | 0.0501 (8) | |
C8 | 0.1965 (6) | 0.7577 (4) | 0.2068 (3) | 0.0574 (9) | |
H8 | 0.142695 | 0.810517 | 0.136344 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0849 (7) | 0.0417 (5) | 0.1009 (8) | −0.0018 (5) | 0.0238 (6) | −0.0037 (5) |
N4 | 0.0582 (16) | 0.0460 (15) | 0.0401 (14) | −0.0028 (13) | −0.0016 (13) | −0.0018 (12) |
N5 | 0.0617 (17) | 0.0464 (15) | 0.0494 (15) | 0.0017 (14) | 0.0012 (15) | 0.0071 (13) |
N3 | 0.085 (2) | 0.068 (2) | 0.0531 (17) | −0.014 (2) | −0.0108 (16) | −0.0105 (19) |
N2 | 0.097 (3) | 0.059 (2) | 0.079 (2) | −0.014 (2) | 0.005 (2) | −0.0217 (18) |
N1 | 0.084 (2) | 0.0458 (15) | 0.0728 (19) | −0.0022 (17) | 0.008 (2) | −0.0049 (15) |
C9 | 0.0582 (18) | 0.0418 (16) | 0.0453 (16) | 0.0019 (17) | 0.0065 (15) | 0.0039 (14) |
C7 | 0.067 (2) | 0.061 (2) | 0.0418 (17) | −0.0055 (18) | −0.0006 (19) | −0.0090 (15) |
C6 | 0.0553 (19) | 0.0422 (16) | 0.0529 (18) | −0.0003 (16) | 0.0110 (18) | −0.0028 (14) |
C8 | 0.066 (2) | 0.064 (2) | 0.0415 (17) | 0.0038 (19) | −0.0031 (18) | 0.0080 (15) |
Cl1—C6 | 1.721 (3) | N1—C9 | 1.336 (4) |
N4—N5 | 1.350 (4) | C9—C8 | 1.406 (5) |
N4—N3 | 1.341 (4) | C7—H7 | 0.9300 |
N4—C9 | 1.354 (4) | C7—C6 | 1.411 (5) |
N5—C6 | 1.295 (5) | C7—C8 | 1.344 (5) |
N3—N2 | 1.306 (5) | C8—H8 | 0.9300 |
N2—N1 | 1.343 (5) | ||
N5—N4—C9 | 127.8 (3) | C6—C7—H7 | 120.4 |
N3—N4—N5 | 122.7 (3) | C8—C7—H7 | 120.4 |
N3—N4—C9 | 109.5 (3) | C8—C7—C6 | 119.1 (3) |
C6—N5—N4 | 112.1 (3) | N5—C6—Cl1 | 114.6 (3) |
N2—N3—N4 | 104.7 (3) | N5—C6—C7 | 126.4 (3) |
N3—N2—N1 | 113.1 (3) | C7—C6—Cl1 | 119.0 (3) |
C9—N1—N2 | 104.9 (3) | C9—C8—H8 | 121.5 |
N4—C9—C8 | 117.5 (3) | C7—C8—C9 | 117.1 (3) |
N1—C9—N4 | 107.8 (3) | C7—C8—H8 | 121.5 |
N1—C9—C8 | 134.7 (3) | ||
N4—N5—C6—Cl1 | −178.7 (2) | N3—N2—N1—C9 | 0.1 (5) |
N4—N5—C6—C7 | 1.3 (5) | N2—N1—C9—N4 | 0.3 (4) |
N4—N3—N2—N1 | −0.5 (5) | N2—N1—C9—C8 | −178.9 (4) |
N4—C9—C8—C7 | 1.5 (6) | N1—C9—C8—C7 | −179.3 (4) |
N5—N4—N3—N2 | −179.6 (3) | C9—N4—N5—C6 | −0.4 (5) |
N5—N4—C9—N1 | 179.6 (3) | C9—N4—N3—N2 | 0.7 (4) |
N5—N4—C9—C8 | −1.0 (6) | C6—C7—C8—C9 | −0.7 (6) |
N3—N4—N5—C6 | 179.9 (3) | C8—C7—C6—Cl1 | 179.2 (3) |
N3—N4—C9—N1 | −0.6 (4) | C8—C7—C6—N5 | −0.7 (6) |
N3—N4—C9—C8 | 178.8 (3) |
C4H2ClN5 | Dx = 1.655 Mg m−3 |
Mr = 155.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2552 reflections |
a = 7.0604 (2) Å | θ = 6.7–64.7° |
b = 8.7800 (2) Å | µ = 4.78 mm−1 |
c = 10.0712 (2) Å | T = 275 K |
V = 624.32 (3) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.20 × 0.15 mm |
F(000) = 312 |
SuperNova, Single source at offset/far, Atlas diffractometer | 1044 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 999 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.018 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 64.8°, θmin = 6.7° |
ω scans | h = −6→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −10→9 |
Tmin = 0.674, Tmax = 1.000 | l = −11→10 |
3674 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2676P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.085 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.13 e Å−3 |
1044 reflections | Δρmin = −0.19 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 380 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.486 (7) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.29038 (15) | 0.33417 (10) | 0.32067 (11) | 0.0694 (4) | |
N4 | 0.3563 (4) | 0.7482 (3) | 0.4120 (3) | 0.0445 (7) | |
N5 | 0.3668 (4) | 0.5951 (3) | 0.4184 (3) | 0.0483 (7) | |
N3 | 0.4287 (5) | 0.8389 (4) | 0.5063 (3) | 0.0631 (8) | |
N2 | 0.3906 (6) | 0.9774 (4) | 0.4658 (4) | 0.0714 (10) | |
N1 | 0.2975 (6) | 0.9806 (3) | 0.3493 (3) | 0.0620 (9) | |
C9 | 0.2766 (5) | 0.8344 (4) | 0.3153 (3) | 0.0445 (7) | |
C7 | 0.2011 (6) | 0.6048 (4) | 0.2086 (3) | 0.0525 (8) | |
H7 | 0.148917 | 0.548741 | 0.139328 | 0.063* | |
C6 | 0.2869 (5) | 0.5303 (4) | 0.3175 (3) | 0.0462 (8) | |
C8 | 0.1959 (6) | 0.7579 (4) | 0.2065 (3) | 0.0531 (8) | |
H8 | 0.141406 | 0.810760 | 0.136232 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0785 (6) | 0.0383 (5) | 0.0913 (7) | −0.0018 (5) | 0.0213 (5) | −0.0032 (5) |
N4 | 0.0550 (16) | 0.0411 (14) | 0.0373 (14) | −0.0038 (13) | −0.0005 (13) | −0.0018 (12) |
N5 | 0.0573 (16) | 0.0424 (15) | 0.0452 (15) | 0.0006 (14) | 0.0013 (15) | 0.0059 (12) |
N3 | 0.079 (2) | 0.0607 (19) | 0.0493 (16) | −0.011 (2) | −0.0091 (16) | −0.0101 (18) |
N2 | 0.090 (3) | 0.053 (2) | 0.070 (2) | −0.0122 (19) | 0.005 (2) | −0.0191 (17) |
N1 | 0.078 (2) | 0.0424 (15) | 0.0661 (19) | −0.0016 (16) | 0.0071 (19) | −0.0039 (14) |
C9 | 0.0542 (18) | 0.0387 (16) | 0.0406 (15) | 0.0020 (17) | 0.0051 (15) | 0.0044 (14) |
C7 | 0.061 (2) | 0.058 (2) | 0.0385 (17) | −0.0058 (18) | −0.0004 (18) | −0.0087 (14) |
C6 | 0.0516 (19) | 0.0389 (16) | 0.0480 (17) | −0.0010 (16) | 0.0115 (18) | −0.0029 (14) |
C8 | 0.061 (2) | 0.059 (2) | 0.0399 (17) | 0.0032 (18) | −0.0027 (18) | 0.0070 (15) |
Cl1—C6 | 1.722 (3) | N1—C9 | 1.336 (4) |
N4—N5 | 1.348 (4) | C9—C8 | 1.406 (5) |
N4—N3 | 1.340 (4) | C7—H7 | 0.9300 |
N4—C9 | 1.356 (4) | C7—C6 | 1.413 (5) |
N5—C6 | 1.294 (5) | C7—C8 | 1.345 (5) |
N3—N2 | 1.311 (5) | C8—H8 | 0.9300 |
N2—N1 | 1.345 (5) | ||
N5—N4—C9 | 127.9 (3) | C6—C7—H7 | 120.4 |
N3—N4—N5 | 122.5 (3) | C8—C7—H7 | 120.4 |
N3—N4—C9 | 109.6 (3) | C8—C7—C6 | 119.1 (3) |
C6—N5—N4 | 112.1 (3) | N5—C6—Cl1 | 114.8 (3) |
N2—N3—N4 | 104.6 (3) | N5—C6—C7 | 126.3 (3) |
N3—N2—N1 | 113.0 (3) | C7—C6—Cl1 | 118.9 (3) |
C9—N1—N2 | 104.9 (3) | C9—C8—H8 | 121.5 |
N4—C9—C8 | 117.4 (3) | C7—C8—C9 | 117.0 (3) |
N1—C9—N4 | 107.8 (3) | C7—C8—H8 | 121.5 |
N1—C9—C8 | 134.7 (3) | ||
N4—N5—C6—Cl1 | −178.7 (2) | N3—N2—N1—C9 | 0.0 (5) |
N4—N5—C6—C7 | 1.6 (5) | N2—N1—C9—N4 | 0.3 (4) |
N4—N3—N2—N1 | −0.3 (5) | N2—N1—C9—C8 | −179.0 (4) |
N4—C9—C8—C7 | 1.3 (6) | N1—C9—C8—C7 | −179.5 (4) |
N5—N4—N3—N2 | −179.8 (3) | C9—N4—N5—C6 | −0.6 (5) |
N5—N4—C9—N1 | 179.8 (3) | C9—N4—N3—N2 | 0.5 (4) |
N5—N4—C9—C8 | −0.8 (6) | C6—C7—C8—C9 | −0.4 (6) |
N3—N4—N5—C6 | 179.7 (3) | C8—C7—C6—Cl1 | 179.1 (3) |
N3—N4—C9—N1 | −0.5 (4) | C8—C7—C6—N5 | −1.2 (6) |
N3—N4—C9—C8 | 178.9 (3) |
C4H2ClN5 | Dx = 1.660 Mg m−3 |
Mr = 155.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2554 reflections |
a = 7.0533 (2) Å | θ = 6.7–64.7° |
b = 8.7742 (2) Å | µ = 4.80 mm−1 |
c = 10.0552 (2) Å | T = 250 K |
V = 622.29 (3) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.20 × 0.15 mm |
F(000) = 312 |
SuperNova, Single source at offset/far, Atlas diffractometer | 1038 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1006 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.017 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 64.6°, θmin = 6.7° |
ω scans | h = −6→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −10→9 |
Tmin = 0.705, Tmax = 1.000 | l = −11→10 |
3654 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2471P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.086 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.12 e Å−3 |
1038 reflections | Δρmin = −0.18 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 379 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.487 (7) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.29021 (15) | 0.33374 (10) | 0.32018 (10) | 0.0632 (3) | |
N4 | 0.3572 (4) | 0.7481 (3) | 0.4117 (3) | 0.0409 (6) | |
N5 | 0.3675 (4) | 0.5948 (3) | 0.4182 (3) | 0.0444 (7) | |
N3 | 0.4304 (5) | 0.8389 (4) | 0.5062 (3) | 0.0576 (8) | |
N2 | 0.3923 (6) | 0.9773 (4) | 0.4659 (3) | 0.0655 (10) | |
N1 | 0.2981 (5) | 0.9807 (3) | 0.3492 (3) | 0.0570 (8) | |
C9 | 0.2768 (5) | 0.8344 (3) | 0.3152 (3) | 0.0409 (7) | |
C7 | 0.2005 (6) | 0.6046 (4) | 0.2083 (3) | 0.0484 (8) | |
H7 | 0.147632 | 0.548551 | 0.139069 | 0.058* | |
C6 | 0.2867 (5) | 0.5299 (4) | 0.3171 (3) | 0.0427 (7) | |
C8 | 0.1958 (6) | 0.7579 (4) | 0.2061 (3) | 0.0491 (8) | |
H8 | 0.141421 | 0.810960 | 0.135661 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0723 (6) | 0.0348 (5) | 0.0826 (7) | −0.0019 (5) | 0.0189 (5) | −0.0032 (4) |
N4 | 0.0512 (15) | 0.0377 (14) | 0.0337 (13) | −0.0028 (12) | −0.0009 (13) | −0.0019 (12) |
N5 | 0.0537 (16) | 0.0388 (15) | 0.0406 (14) | 0.0007 (13) | 0.0022 (14) | 0.0053 (12) |
N3 | 0.073 (2) | 0.0551 (19) | 0.0443 (15) | −0.0099 (19) | −0.0085 (15) | −0.0086 (17) |
N2 | 0.083 (2) | 0.0499 (19) | 0.063 (2) | −0.0113 (18) | 0.0037 (19) | −0.0164 (16) |
N1 | 0.071 (2) | 0.0391 (15) | 0.0605 (18) | −0.0010 (16) | 0.0066 (18) | −0.0029 (14) |
C9 | 0.0507 (17) | 0.0349 (16) | 0.0371 (15) | 0.0019 (16) | 0.0054 (14) | 0.0037 (13) |
C7 | 0.058 (2) | 0.0521 (19) | 0.0348 (16) | −0.0044 (17) | 0.0001 (18) | −0.0083 (14) |
C6 | 0.0488 (18) | 0.0352 (16) | 0.0442 (17) | −0.0006 (15) | 0.0102 (17) | −0.0022 (13) |
C8 | 0.057 (2) | 0.054 (2) | 0.0356 (16) | 0.0027 (17) | −0.0014 (17) | 0.0065 (14) |
Cl1—C6 | 1.722 (3) | N1—C9 | 1.336 (4) |
N4—N5 | 1.348 (4) | C9—C8 | 1.408 (5) |
N4—N3 | 1.343 (4) | C7—H7 | 0.9300 |
N4—C9 | 1.355 (4) | C7—C6 | 1.413 (5) |
N5—C6 | 1.297 (4) | C7—C8 | 1.346 (5) |
N3—N2 | 1.308 (5) | C8—H8 | 0.9300 |
N2—N1 | 1.349 (5) | ||
N5—N4—C9 | 127.9 (3) | C6—C7—H7 | 120.4 |
N3—N4—N5 | 122.4 (3) | C8—C7—H7 | 120.4 |
N3—N4—C9 | 109.6 (3) | C8—C7—C6 | 119.1 (3) |
C6—N5—N4 | 112.1 (3) | N5—C6—Cl1 | 114.7 (3) |
N2—N3—N4 | 104.6 (3) | N5—C6—C7 | 126.3 (3) |
N3—N2—N1 | 113.0 (3) | C7—C6—Cl1 | 118.9 (3) |
C9—N1—N2 | 104.9 (3) | C9—C8—H8 | 121.5 |
N4—C9—C8 | 117.5 (3) | C7—C8—C9 | 117.0 (3) |
N1—C9—N4 | 107.8 (3) | C7—C8—H8 | 121.5 |
N1—C9—C8 | 134.7 (3) | ||
N4—N5—C6—Cl1 | −178.8 (2) | N3—N2—N1—C9 | −0.1 (4) |
N4—N5—C6—C7 | 1.6 (5) | N2—N1—C9—N4 | 0.3 (4) |
N4—N3—N2—N1 | −0.2 (4) | N2—N1—C9—C8 | −178.7 (4) |
N4—C9—C8—C7 | 1.7 (6) | N1—C9—C8—C7 | −179.4 (4) |
N5—N4—N3—N2 | −179.7 (3) | C9—N4—N5—C6 | −0.5 (5) |
N5—N4—C9—N1 | 179.7 (3) | C9—N4—N3—N2 | 0.3 (4) |
N5—N4—C9—C8 | −1.1 (6) | C6—C7—C8—C9 | −0.7 (6) |
N3—N4—N5—C6 | 179.6 (3) | C8—C7—C6—Cl1 | 179.4 (3) |
N3—N4—C9—N1 | −0.4 (4) | C8—C7—C6—N5 | −1.1 (6) |
N3—N4—C9—C8 | 178.8 (3) |
C4H2ClN5 | Dx = 1.666 Mg m−3 |
Mr = 155.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2569 reflections |
a = 7.0476 (2) Å | θ = 6.7–64.0° |
b = 8.7682 (2) Å | µ = 4.82 mm−1 |
c = 10.0363 (2) Å | T = 225 K |
V = 620.19 (3) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.20 × 0.15 mm |
F(000) = 312 |
SuperNova, Single source at offset/far, Atlas diffractometer | 1034 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1003 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.017 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 64.7°, θmin = 6.7° |
ω scans | h = −6→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −10→9 |
Tmin = 0.649, Tmax = 1.000 | l = −11→10 |
3647 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0408P)2 + 0.2669P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.085 | (Δ/σ)max < 0.001 |
S = 1.12 | Δρmax = 0.14 e Å−3 |
1034 reflections | Δρmin = −0.18 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 383 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.490 (7) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.29001 (14) | 0.33334 (10) | 0.31975 (10) | 0.0570 (3) | |
N4 | 0.3581 (4) | 0.7481 (3) | 0.4117 (3) | 0.0373 (6) | |
N5 | 0.3680 (4) | 0.5944 (3) | 0.4182 (3) | 0.0406 (7) | |
N3 | 0.4316 (4) | 0.8387 (4) | 0.5061 (3) | 0.0521 (8) | |
N2 | 0.3940 (6) | 0.9774 (4) | 0.4659 (3) | 0.0592 (9) | |
N1 | 0.2988 (5) | 0.9809 (3) | 0.3491 (3) | 0.0515 (8) | |
C9 | 0.2768 (5) | 0.8345 (4) | 0.3150 (3) | 0.0373 (7) | |
C7 | 0.1997 (6) | 0.6048 (4) | 0.2078 (3) | 0.0443 (8) | |
H7 | 0.145998 | 0.548842 | 0.138690 | 0.053* | |
C6 | 0.2870 (5) | 0.5296 (4) | 0.3166 (3) | 0.0390 (7) | |
C8 | 0.1955 (6) | 0.7583 (4) | 0.2057 (3) | 0.0446 (8) | |
H8 | 0.141301 | 0.811515 | 0.135118 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0656 (6) | 0.0315 (4) | 0.0738 (6) | −0.0017 (5) | 0.0167 (5) | −0.0030 (4) |
N4 | 0.0463 (15) | 0.0344 (14) | 0.0311 (13) | −0.0022 (12) | −0.0008 (13) | −0.0014 (11) |
N5 | 0.0496 (16) | 0.0349 (14) | 0.0373 (14) | 0.0009 (13) | 0.0033 (14) | 0.0050 (12) |
N3 | 0.0669 (19) | 0.0491 (18) | 0.0402 (15) | −0.0101 (18) | −0.0072 (15) | −0.0082 (17) |
N2 | 0.076 (2) | 0.0442 (18) | 0.0577 (19) | −0.0104 (17) | 0.0037 (18) | −0.0152 (15) |
N1 | 0.064 (2) | 0.0359 (14) | 0.0547 (17) | −0.0012 (15) | 0.0052 (17) | −0.0038 (13) |
C9 | 0.0457 (17) | 0.0328 (16) | 0.0334 (15) | 0.0019 (16) | 0.0050 (14) | 0.0039 (13) |
C7 | 0.052 (2) | 0.0486 (19) | 0.0317 (16) | −0.0045 (17) | 0.0006 (18) | −0.0079 (14) |
C6 | 0.0455 (18) | 0.0318 (16) | 0.0396 (17) | −0.0005 (15) | 0.0089 (17) | −0.0022 (13) |
C8 | 0.052 (2) | 0.0493 (19) | 0.0321 (16) | 0.0026 (17) | −0.0002 (17) | 0.0063 (14) |
Cl1—C6 | 1.721 (3) | N1—C9 | 1.338 (4) |
N4—N5 | 1.351 (4) | C9—C8 | 1.407 (5) |
N4—N3 | 1.341 (4) | C7—H7 | 0.9300 |
N4—C9 | 1.358 (4) | C7—C6 | 1.416 (5) |
N5—C6 | 1.299 (4) | C7—C8 | 1.347 (5) |
N3—N2 | 1.309 (4) | C8—H8 | 0.9300 |
N2—N1 | 1.351 (5) | ||
N5—N4—C9 | 127.8 (3) | C6—C7—H7 | 120.4 |
N3—N4—N5 | 122.5 (3) | C8—C7—H7 | 120.4 |
N3—N4—C9 | 109.7 (3) | C8—C7—C6 | 119.2 (3) |
C6—N5—N4 | 112.1 (3) | N5—C6—Cl1 | 114.7 (3) |
N2—N3—N4 | 104.7 (3) | N5—C6—C7 | 126.3 (3) |
N3—N2—N1 | 112.9 (3) | C7—C6—Cl1 | 119.0 (3) |
C9—N1—N2 | 104.9 (3) | C9—C8—H8 | 121.5 |
N4—C9—C8 | 117.7 (3) | C7—C8—C9 | 117.0 (3) |
N1—C9—N4 | 107.7 (3) | C7—C8—H8 | 121.5 |
N1—C9—C8 | 134.6 (3) | ||
N4—N5—C6—Cl1 | −178.8 (2) | N3—N2—N1—C9 | −0.1 (4) |
N4—N5—C6—C7 | 1.2 (5) | N2—N1—C9—N4 | 0.2 (4) |
N4—N3—N2—N1 | 0.0 (4) | N2—N1—C9—C8 | −178.4 (4) |
N4—C9—C8—C7 | 2.0 (6) | N1—C9—C8—C7 | −179.5 (4) |
N5—N4—N3—N2 | −179.7 (3) | C9—N4—N5—C6 | −0.1 (5) |
N5—N4—C9—N1 | 179.6 (3) | C9—N4—N3—N2 | 0.1 (4) |
N5—N4—C9—C8 | −1.5 (6) | C6—C7—C8—C9 | −1.1 (6) |
N3—N4—N5—C6 | 179.7 (3) | C8—C7—C6—Cl1 | 179.4 (3) |
N3—N4—C9—N1 | −0.2 (4) | C8—C7—C6—N5 | −0.6 (6) |
N3—N4—C9—C8 | 178.7 (3) |
C4H2ClN5 | Dx = 1.672 Mg m−3 |
Mr = 155.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2643 reflections |
a = 7.0422 (2) Å | θ = 5.0–64.7° |
b = 8.7617 (2) Å | µ = 4.83 mm−1 |
c = 10.0158 (2) Å | T = 200 K |
V = 617.99 (3) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.20 × 0.15 mm |
F(000) = 312 |
SuperNova, Single source at offset/far, Atlas diffractometer | 1032 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 999 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.017 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 64.8°, θmin = 6.7° |
ω scans | h = −8→6 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −9→10 |
Tmin = 0.652, Tmax = 1.000 | l = −11→10 |
3628 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0387P)2 + 0.3157P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.080 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.16 e Å−3 |
1032 reflections | Δρmin = −0.18 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 384 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.474 (6) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.28981 (13) | 0.33294 (9) | 0.31932 (9) | 0.0512 (3) | |
N4 | 0.3589 (4) | 0.7476 (3) | 0.4115 (3) | 0.0334 (6) | |
N5 | 0.3688 (4) | 0.5941 (3) | 0.4179 (3) | 0.0368 (7) | |
N3 | 0.4329 (4) | 0.8383 (4) | 0.5060 (3) | 0.0470 (7) | |
N2 | 0.3951 (5) | 0.9772 (4) | 0.4661 (3) | 0.0535 (9) | |
N1 | 0.2994 (5) | 0.9809 (3) | 0.3491 (3) | 0.0464 (8) | |
C9 | 0.2775 (5) | 0.8348 (3) | 0.3149 (3) | 0.0342 (7) | |
C7 | 0.1995 (5) | 0.6047 (4) | 0.2074 (3) | 0.0398 (8) | |
H7 | 0.145827 | 0.548787 | 0.138122 | 0.048* | |
C6 | 0.2871 (5) | 0.5293 (3) | 0.3163 (3) | 0.0353 (7) | |
C8 | 0.1950 (5) | 0.7585 (4) | 0.2054 (3) | 0.0402 (8) | |
H8 | 0.139924 | 0.811820 | 0.135026 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0592 (5) | 0.0283 (4) | 0.0662 (6) | −0.0016 (4) | 0.0150 (4) | −0.0028 (4) |
N4 | 0.0420 (14) | 0.0311 (13) | 0.0272 (12) | −0.0022 (12) | −0.0004 (12) | −0.0005 (11) |
N5 | 0.0451 (15) | 0.0320 (14) | 0.0335 (14) | 0.0009 (13) | 0.0025 (14) | 0.0049 (11) |
N3 | 0.0605 (17) | 0.0448 (17) | 0.0357 (14) | −0.0092 (17) | −0.0071 (14) | −0.0076 (16) |
N2 | 0.070 (2) | 0.0395 (17) | 0.0513 (18) | −0.0090 (16) | 0.0031 (17) | −0.0127 (14) |
N1 | 0.058 (2) | 0.0325 (14) | 0.0492 (16) | −0.0008 (14) | 0.0063 (16) | −0.0031 (12) |
C9 | 0.0415 (16) | 0.0302 (15) | 0.0310 (14) | 0.0021 (15) | 0.0047 (14) | 0.0032 (13) |
C7 | 0.0469 (18) | 0.0440 (18) | 0.0285 (16) | −0.0046 (15) | 0.0003 (17) | −0.0070 (13) |
C6 | 0.0406 (17) | 0.0289 (15) | 0.0364 (16) | −0.0005 (14) | 0.0083 (17) | −0.0021 (13) |
C8 | 0.0467 (18) | 0.0456 (18) | 0.0283 (15) | 0.0023 (16) | −0.0006 (16) | 0.0059 (13) |
Cl1—C6 | 1.721 (3) | N1—C9 | 1.335 (4) |
N4—N5 | 1.349 (4) | C9—C8 | 1.409 (5) |
N4—N3 | 1.341 (4) | C7—H7 | 0.9300 |
N4—C9 | 1.359 (4) | C7—C6 | 1.417 (5) |
N5—C6 | 1.299 (4) | C7—C8 | 1.348 (5) |
N3—N2 | 1.308 (4) | C8—H8 | 0.9300 |
N2—N1 | 1.353 (4) | ||
N5—N4—C9 | 128.0 (3) | C6—C7—H7 | 120.4 |
N3—N4—N5 | 122.5 (3) | C8—C7—H7 | 120.4 |
N3—N4—C9 | 109.5 (3) | C8—C7—C6 | 119.2 (3) |
C6—N5—N4 | 112.0 (3) | N5—C6—Cl1 | 114.7 (2) |
N2—N3—N4 | 104.9 (3) | N5—C6—C7 | 126.3 (3) |
N3—N2—N1 | 112.9 (3) | C7—C6—Cl1 | 119.0 (2) |
C9—N1—N2 | 104.9 (3) | C9—C8—H8 | 121.6 |
N4—C9—C8 | 117.5 (3) | C7—C8—C9 | 116.9 (3) |
N1—C9—N4 | 107.9 (3) | C7—C8—H8 | 121.6 |
N1—C9—C8 | 134.6 (3) | ||
N4—N5—C6—Cl1 | −178.7 (2) | N3—N2—N1—C9 | −0.2 (4) |
N4—N5—C6—C7 | 1.3 (5) | N2—N1—C9—N4 | 0.3 (4) |
N4—N3—N2—N1 | 0.0 (4) | N2—N1—C9—C8 | −178.7 (4) |
N4—C9—C8—C7 | 1.6 (5) | N1—C9—C8—C7 | −179.4 (4) |
N5—N4—N3—N2 | −179.7 (3) | C9—N4—N5—C6 | −0.3 (5) |
N5—N4—C9—N1 | 179.6 (3) | C9—N4—N3—N2 | 0.2 (4) |
N5—N4—C9—C8 | −1.2 (5) | C6—C7—C8—C9 | −0.7 (6) |
N3—N4—N5—C6 | 179.7 (3) | C8—C7—C6—Cl1 | 179.2 (3) |
N3—N4—C9—N1 | −0.4 (4) | C8—C7—C6—N5 | −0.9 (6) |
N3—N4—C9—C8 | 178.9 (3) |
C4H2ClN5 | Dx = 1.668 Mg m−3 |
Mr = 155.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2441 reflections |
a = 7.0473 (2) Å | θ = 5.0–64.4° |
b = 8.7636 (2) Å | µ = 4.82 mm−1 |
c = 10.0299 (2) Å | T = 190 K |
V = 619.44 (3) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.20 × 0.15 mm |
F(000) = 312 |
SuperNova, Single source at offset/far, Atlas diffractometer | 1032 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1001 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.018 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 64.8°, θmin = 6.7° |
ω scans | h = −8→6 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −10→9 |
Tmin = 0.661, Tmax = 1.000 | l = −10→11 |
3643 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3109P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.27 e Å−3 |
1032 reflections | Δρmin = −0.19 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 381 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.484 (7) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.28971 (15) | 0.33299 (10) | 0.31933 (10) | 0.0552 (4) | |
N4 | 0.3589 (5) | 0.7478 (3) | 0.4117 (3) | 0.0377 (7) | |
N5 | 0.3688 (5) | 0.5941 (3) | 0.4178 (3) | 0.0409 (7) | |
N3 | 0.4329 (5) | 0.8385 (4) | 0.5061 (3) | 0.0508 (8) | |
N2 | 0.3953 (6) | 0.9770 (4) | 0.4662 (4) | 0.0578 (10) | |
N1 | 0.2998 (6) | 0.9809 (4) | 0.3491 (3) | 0.0500 (9) | |
C9 | 0.2776 (5) | 0.8349 (4) | 0.3150 (3) | 0.0381 (7) | |
C7 | 0.1999 (6) | 0.6050 (4) | 0.2074 (3) | 0.0437 (9) | |
H7 | 0.146702 | 0.549069 | 0.138065 | 0.052* | |
C6 | 0.2869 (5) | 0.5295 (4) | 0.3166 (3) | 0.0394 (8) | |
C8 | 0.1952 (6) | 0.7586 (4) | 0.2054 (3) | 0.0441 (9) | |
H8 | 0.140148 | 0.811878 | 0.135199 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0675 (6) | 0.0293 (5) | 0.0689 (6) | −0.0015 (5) | 0.0148 (5) | −0.0029 (4) |
N4 | 0.0512 (17) | 0.0317 (14) | 0.0304 (14) | −0.0029 (13) | −0.0007 (14) | −0.0010 (12) |
N5 | 0.0529 (17) | 0.0328 (15) | 0.0369 (15) | 0.0002 (14) | 0.0029 (15) | 0.0047 (12) |
N3 | 0.069 (2) | 0.0449 (18) | 0.0387 (16) | −0.0094 (18) | −0.0064 (15) | −0.0062 (17) |
N2 | 0.078 (3) | 0.0407 (18) | 0.0544 (19) | −0.0084 (18) | 0.0029 (19) | −0.0124 (16) |
N1 | 0.065 (2) | 0.0335 (15) | 0.0513 (17) | −0.0014 (16) | 0.0057 (18) | −0.0032 (13) |
C9 | 0.0503 (19) | 0.0306 (17) | 0.0334 (16) | 0.0012 (17) | 0.0046 (15) | 0.0034 (14) |
C7 | 0.055 (2) | 0.0451 (19) | 0.0314 (17) | −0.0035 (17) | 0.0008 (19) | −0.0076 (14) |
C6 | 0.049 (2) | 0.0303 (17) | 0.0392 (18) | −0.0014 (16) | 0.0085 (18) | −0.0024 (14) |
C8 | 0.055 (2) | 0.047 (2) | 0.0313 (17) | 0.0033 (18) | −0.0003 (18) | 0.0059 (15) |
Cl1—C6 | 1.722 (3) | N1—C9 | 1.334 (4) |
N4—N5 | 1.350 (4) | C9—C8 | 1.411 (5) |
N4—N3 | 1.342 (4) | C7—H7 | 0.9300 |
N4—C9 | 1.361 (4) | C7—C6 | 1.418 (5) |
N5—C6 | 1.298 (5) | C7—C8 | 1.347 (5) |
N3—N2 | 1.305 (5) | C8—H8 | 0.9300 |
N2—N1 | 1.354 (5) | ||
N5—N4—C9 | 127.9 (3) | C6—C7—H7 | 120.4 |
N3—N4—N5 | 122.6 (3) | C8—C7—H7 | 120.4 |
N3—N4—C9 | 109.5 (3) | C8—C7—C6 | 119.2 (3) |
C6—N5—N4 | 112.1 (3) | N5—C6—Cl1 | 114.7 (3) |
N2—N3—N4 | 104.8 (3) | N5—C6—C7 | 126.3 (3) |
N3—N2—N1 | 113.0 (3) | C7—C6—Cl1 | 118.9 (3) |
C9—N1—N2 | 104.8 (3) | C9—C8—H8 | 121.6 |
N4—C9—C8 | 117.6 (3) | C7—C8—C9 | 116.9 (3) |
N1—C9—N4 | 107.8 (3) | C7—C8—H8 | 121.6 |
N1—C9—C8 | 134.6 (3) | ||
N4—N5—C6—Cl1 | −178.7 (2) | N3—N2—N1—C9 | −0.1 (5) |
N4—N5—C6—C7 | 1.7 (6) | N2—N1—C9—N4 | 0.3 (4) |
N4—N3—N2—N1 | −0.1 (5) | N2—N1—C9—C8 | −178.7 (4) |
N4—C9—C8—C7 | 1.5 (6) | N1—C9—C8—C7 | −179.6 (4) |
N5—N4—N3—N2 | −179.8 (3) | C9—N4—N5—C6 | −0.5 (6) |
N5—N4—C9—N1 | 179.8 (3) | C9—N4—N3—N2 | 0.2 (4) |
N5—N4—C9—C8 | −1.1 (6) | C6—C7—C8—C9 | −0.5 (6) |
N3—N4—N5—C6 | 179.6 (3) | C8—C7—C6—Cl1 | 179.2 (3) |
N3—N4—C9—N1 | −0.3 (4) | C8—C7—C6—N5 | −1.3 (7) |
N3—N4—C9—C8 | 178.8 (3) |
C4H2ClN5 | Dx = 1.677 Mg m−3 |
Mr = 155.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2763 reflections |
a = 7.0342 (1) Å | θ = 5.1–64.2° |
b = 8.7569 (2) Å | µ = 4.85 mm−1 |
c = 10.0049 (2) Å | T = 175 K |
V = 616.28 (2) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.20 × 0.15 mm |
F(000) = 312 |
SuperNova, Single source at offset/far, Atlas diffractometer | 1029 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1004 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.016 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 64.9°, θmin = 6.7° |
ω scans | h = −8→6 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −10→9 |
Tmin = 0.555, Tmax = 1.000 | l = −10→11 |
3623 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0364P)2 + 0.3837P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.077 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.15 e Å−3 |
1029 reflections | Δρmin = −0.15 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 384 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.481 (6) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.28970 (13) | 0.33255 (9) | 0.31896 (9) | 0.0457 (3) | |
N4 | 0.3593 (4) | 0.7477 (3) | 0.4115 (3) | 0.0307 (6) | |
N5 | 0.3695 (4) | 0.5940 (3) | 0.4178 (3) | 0.0333 (6) | |
N3 | 0.4343 (4) | 0.8381 (4) | 0.5060 (3) | 0.0423 (7) | |
N2 | 0.3966 (5) | 0.9773 (4) | 0.4659 (3) | 0.0480 (8) | |
N1 | 0.2999 (5) | 0.9812 (3) | 0.3491 (3) | 0.0420 (7) | |
C9 | 0.2777 (5) | 0.8346 (3) | 0.3148 (3) | 0.0310 (6) | |
C7 | 0.1992 (5) | 0.6047 (4) | 0.2071 (3) | 0.0363 (7) | |
H7 | 0.145246 | 0.548720 | 0.137845 | 0.044* | |
C6 | 0.2873 (5) | 0.5291 (3) | 0.3161 (3) | 0.0322 (7) | |
C8 | 0.1947 (5) | 0.7588 (4) | 0.2051 (3) | 0.0365 (7) | |
H8 | 0.139520 | 0.812296 | 0.134748 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0529 (5) | 0.0259 (4) | 0.0584 (5) | −0.0013 (4) | 0.0130 (4) | −0.0027 (4) |
N4 | 0.0386 (14) | 0.0283 (13) | 0.0253 (13) | −0.0026 (11) | −0.0003 (12) | −0.0009 (11) |
N5 | 0.0411 (15) | 0.0283 (13) | 0.0304 (14) | 0.0001 (12) | 0.0026 (13) | 0.0040 (11) |
N3 | 0.0540 (17) | 0.0404 (17) | 0.0326 (14) | −0.0081 (16) | −0.0056 (13) | −0.0069 (15) |
N2 | 0.061 (2) | 0.0359 (17) | 0.0466 (17) | −0.0077 (15) | 0.0026 (16) | −0.0107 (14) |
N1 | 0.0522 (19) | 0.0300 (13) | 0.0440 (16) | −0.0014 (14) | 0.0050 (16) | −0.0031 (12) |
C9 | 0.0376 (16) | 0.0277 (15) | 0.0275 (14) | 0.0021 (15) | 0.0047 (13) | 0.0041 (13) |
C7 | 0.0434 (18) | 0.0398 (17) | 0.0258 (15) | −0.0040 (15) | 0.0004 (17) | −0.0069 (13) |
C6 | 0.0368 (17) | 0.0259 (15) | 0.0339 (16) | 0.0002 (14) | 0.0077 (17) | −0.0018 (13) |
C8 | 0.0421 (18) | 0.0411 (18) | 0.0264 (16) | 0.0023 (16) | 0.0006 (16) | 0.0049 (13) |
Cl1—C6 | 1.722 (3) | N1—C9 | 1.337 (4) |
N4—N5 | 1.350 (4) | C9—C8 | 1.410 (5) |
N4—N3 | 1.341 (4) | C7—H7 | 0.9300 |
N4—C9 | 1.358 (4) | C7—C6 | 1.418 (5) |
N5—C6 | 1.301 (4) | C7—C8 | 1.350 (5) |
N3—N2 | 1.311 (4) | C8—H8 | 0.9300 |
N2—N1 | 1.353 (4) | ||
N5—N4—C9 | 127.9 (3) | C6—C7—H7 | 120.4 |
N3—N4—N5 | 122.3 (3) | C8—C7—H7 | 120.4 |
N3—N4—C9 | 109.7 (3) | C8—C7—C6 | 119.2 (3) |
C6—N5—N4 | 112.1 (3) | N5—C6—Cl1 | 114.8 (2) |
N2—N3—N4 | 104.7 (3) | N5—C6—C7 | 126.3 (3) |
N3—N2—N1 | 113.0 (3) | C7—C6—Cl1 | 118.9 (2) |
C9—N1—N2 | 104.8 (3) | C9—C8—H8 | 121.7 |
N4—C9—C8 | 117.8 (3) | C7—C8—C9 | 116.7 (3) |
N1—C9—N4 | 107.8 (3) | C7—C8—H8 | 121.7 |
N1—C9—C8 | 134.4 (3) | ||
N4—N5—C6—Cl1 | −178.6 (2) | N3—N2—N1—C9 | −0.4 (4) |
N4—N5—C6—C7 | 1.5 (5) | N2—N1—C9—N4 | 0.5 (4) |
N4—N3—N2—N1 | 0.1 (4) | N2—N1—C9—C8 | −178.4 (4) |
N4—C9—C8—C7 | 1.7 (5) | N1—C9—C8—C7 | −179.5 (4) |
N5—N4—N3—N2 | −180.0 (3) | C9—N4—N5—C6 | −0.4 (5) |
N5—N4—C9—N1 | 179.8 (3) | C9—N4—N3—N2 | 0.2 (4) |
N5—N4—C9—C8 | −1.1 (5) | C6—C7—C8—C9 | −0.8 (6) |
N3—N4—N5—C6 | 179.8 (3) | C8—C7—C6—Cl1 | 179.2 (3) |
N3—N4—C9—N1 | −0.5 (4) | C8—C7—C6—N5 | −0.9 (6) |
N3—N4—C9—C8 | 178.7 (3) |
C4H2ClN5 | Dx = 1.676 Mg m−3 |
Mr = 155.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2653 reflections |
a = 7.0336 (2) Å | θ = 5.1–64.8° |
b = 8.7575 (2) Å | µ = 4.85 mm−1 |
c = 10.0065 (2) Å | T = 160 K |
V = 616.37 (3) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.20 × 0.15 mm |
F(000) = 312 |
SuperNova, Single source at offset/far, Atlas diffractometer | 1028 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1009 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.016 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 64.9°, θmin = 6.7° |
ω scans | h = −6→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −9→10 |
Tmin = 0.664, Tmax = 1.000 | l = −10→11 |
3626 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0382P)2 + 0.3868P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.080 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.15 e Å−3 |
1028 reflections | Δρmin = −0.15 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 383 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.480 (7) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.28963 (13) | 0.33241 (9) | 0.31888 (9) | 0.0455 (3) | |
N4 | 0.3598 (4) | 0.7476 (3) | 0.4114 (3) | 0.0310 (6) | |
N5 | 0.3696 (4) | 0.5938 (3) | 0.4178 (3) | 0.0335 (7) | |
N3 | 0.4347 (4) | 0.8380 (4) | 0.5061 (3) | 0.0420 (7) | |
N2 | 0.3972 (5) | 0.9772 (4) | 0.4660 (3) | 0.0474 (8) | |
N1 | 0.3004 (5) | 0.9812 (3) | 0.3490 (3) | 0.0417 (7) | |
C9 | 0.2780 (5) | 0.8348 (4) | 0.3149 (3) | 0.0313 (7) | |
C7 | 0.1988 (5) | 0.6048 (4) | 0.2069 (3) | 0.0363 (8) | |
H7 | 0.144391 | 0.548941 | 0.137751 | 0.044* | |
C6 | 0.2873 (5) | 0.5291 (3) | 0.3161 (3) | 0.0325 (7) | |
C8 | 0.1949 (5) | 0.7589 (4) | 0.2050 (3) | 0.0366 (8) | |
H8 | 0.140145 | 0.812521 | 0.134631 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0538 (5) | 0.0254 (4) | 0.0571 (5) | −0.0015 (4) | 0.0123 (4) | −0.0024 (4) |
N4 | 0.0400 (15) | 0.0273 (13) | 0.0258 (13) | −0.0026 (12) | −0.0001 (12) | −0.0013 (11) |
N5 | 0.0422 (15) | 0.0279 (14) | 0.0305 (14) | −0.0002 (13) | 0.0023 (14) | 0.0040 (11) |
N3 | 0.0553 (17) | 0.0385 (17) | 0.0321 (14) | −0.0073 (17) | −0.0054 (14) | −0.0050 (15) |
N2 | 0.062 (2) | 0.0349 (17) | 0.0450 (17) | −0.0072 (15) | 0.0034 (16) | −0.0106 (14) |
N1 | 0.0522 (19) | 0.0295 (14) | 0.0434 (16) | −0.0008 (14) | 0.0050 (16) | −0.0027 (12) |
C9 | 0.0387 (16) | 0.0270 (15) | 0.0281 (14) | 0.0016 (16) | 0.0049 (14) | 0.0034 (13) |
C7 | 0.0430 (19) | 0.0392 (18) | 0.0267 (16) | −0.0039 (15) | 0.0007 (17) | −0.0065 (13) |
C6 | 0.0373 (17) | 0.0266 (15) | 0.0334 (16) | −0.0003 (15) | 0.0084 (17) | −0.0019 (13) |
C8 | 0.0428 (19) | 0.0407 (18) | 0.0265 (16) | 0.0018 (16) | 0.0008 (17) | 0.0046 (13) |
Cl1—C6 | 1.723 (3) | N1—C9 | 1.336 (4) |
N4—N5 | 1.350 (4) | C9—C8 | 1.411 (5) |
N4—N3 | 1.343 (4) | C7—H7 | 0.9300 |
N4—C9 | 1.359 (4) | C7—C6 | 1.421 (5) |
N5—C6 | 1.301 (4) | C7—C8 | 1.350 (5) |
N3—N2 | 1.310 (4) | C8—H8 | 0.9300 |
N2—N1 | 1.354 (5) | ||
N5—N4—C9 | 128.0 (3) | C6—C7—H7 | 120.5 |
N3—N4—N5 | 122.4 (3) | C8—C7—H7 | 120.5 |
N3—N4—C9 | 109.7 (3) | C8—C7—C6 | 119.1 (3) |
C6—N5—N4 | 112.0 (3) | N5—C6—Cl1 | 114.7 (2) |
N2—N3—N4 | 104.6 (3) | N5—C6—C7 | 126.4 (3) |
N3—N2—N1 | 113.0 (3) | C7—C6—Cl1 | 118.9 (2) |
C9—N1—N2 | 104.8 (3) | C9—C8—H8 | 121.6 |
N4—C9—C8 | 117.7 (3) | C7—C8—C9 | 116.8 (3) |
N1—C9—N4 | 107.9 (3) | C7—C8—H8 | 121.6 |
N1—C9—C8 | 134.4 (3) | ||
N4—N5—C6—Cl1 | −178.7 (2) | N3—N2—N1—C9 | −0.3 (4) |
N4—N5—C6—C7 | 1.3 (5) | N2—N1—C9—N4 | 0.4 (4) |
N4—N3—N2—N1 | 0.1 (4) | N2—N1—C9—C8 | −178.4 (4) |
N4—C9—C8—C7 | 1.9 (5) | N1—C9—C8—C7 | −179.5 (4) |
N5—N4—N3—N2 | −179.9 (3) | C9—N4—N5—C6 | −0.3 (5) |
N5—N4—C9—N1 | 179.7 (3) | C9—N4—N3—N2 | 0.1 (4) |
N5—N4—C9—C8 | −1.3 (5) | C6—C7—C8—C9 | −1.0 (6) |
N3—N4—N5—C6 | 179.7 (3) | C8—C7—C6—Cl1 | 179.3 (3) |
N3—N4—C9—N1 | −0.3 (4) | C8—C7—C6—N5 | −0.7 (6) |
N3—N4—C9—C8 | 178.7 (3) |
C4H2ClN5 | Dx = 1.680 Mg m−3 |
Mr = 155.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2774 reflections |
a = 7.0291 (1) Å | θ = 5.1–64.2° |
b = 8.7539 (1) Å | µ = 4.86 mm−1 |
c = 9.9932 (2) Å | T = 150 K |
V = 614.90 (2) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.20 × 0.15 mm |
F(000) = 312 |
SuperNova, Single source at offset/far, Atlas diffractometer | 1023 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1010 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.016 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 64.8°, θmin = 6.7° |
ω scans | h = −6→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −9→10 |
Tmin = 0.675, Tmax = 1.000 | l = −10→11 |
3613 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.038P)2 + 0.4114P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.078 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.14 e Å−3 |
1023 reflections | Δρmin = −0.15 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 380 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.491 (6) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.28958 (13) | 0.33211 (9) | 0.31862 (9) | 0.0407 (3) | |
N4 | 0.3602 (4) | 0.7477 (3) | 0.4113 (3) | 0.0275 (6) | |
N5 | 0.3700 (4) | 0.5937 (3) | 0.4176 (3) | 0.0300 (6) | |
N3 | 0.4355 (4) | 0.8380 (4) | 0.5059 (3) | 0.0377 (7) | |
N2 | 0.3977 (5) | 0.9771 (4) | 0.4662 (3) | 0.0426 (8) | |
N1 | 0.3007 (5) | 0.9813 (3) | 0.3490 (3) | 0.0375 (7) | |
C9 | 0.2781 (5) | 0.8347 (3) | 0.3148 (3) | 0.0282 (6) | |
C7 | 0.1987 (5) | 0.6047 (4) | 0.2067 (3) | 0.0329 (7) | |
H7 | 0.144544 | 0.548845 | 0.137277 | 0.039* | |
C6 | 0.2871 (5) | 0.5290 (3) | 0.3160 (3) | 0.0293 (7) | |
C8 | 0.1945 (5) | 0.7589 (4) | 0.2050 (3) | 0.0329 (7) | |
H8 | 0.139126 | 0.812618 | 0.134733 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0471 (5) | 0.0235 (4) | 0.0514 (5) | −0.0013 (4) | 0.0111 (4) | −0.0024 (3) |
N4 | 0.0348 (14) | 0.0250 (13) | 0.0228 (13) | −0.0030 (11) | −0.0001 (12) | −0.0008 (11) |
N5 | 0.0367 (14) | 0.0259 (13) | 0.0273 (13) | −0.0002 (12) | 0.0027 (13) | 0.0035 (11) |
N3 | 0.0483 (16) | 0.0362 (16) | 0.0287 (14) | −0.0062 (16) | −0.0045 (13) | −0.0051 (14) |
N2 | 0.0546 (19) | 0.0328 (16) | 0.0405 (16) | −0.0062 (15) | 0.0028 (15) | −0.0089 (13) |
N1 | 0.0460 (18) | 0.0276 (13) | 0.0389 (15) | −0.0012 (14) | 0.0048 (15) | −0.0027 (12) |
C9 | 0.0336 (16) | 0.0256 (15) | 0.0254 (14) | 0.0012 (15) | 0.0051 (13) | 0.0032 (13) |
C7 | 0.0391 (18) | 0.0363 (17) | 0.0232 (15) | −0.0034 (15) | 0.0009 (17) | −0.0062 (12) |
C6 | 0.0330 (17) | 0.0246 (15) | 0.0303 (16) | −0.0005 (14) | 0.0076 (16) | −0.0021 (13) |
C8 | 0.0372 (18) | 0.0374 (18) | 0.0241 (15) | 0.0026 (15) | 0.0008 (16) | 0.0040 (13) |
Cl1—C6 | 1.724 (3) | N1—C9 | 1.337 (4) |
N4—N5 | 1.351 (4) | C9—C8 | 1.411 (5) |
N4—N3 | 1.342 (4) | C7—H7 | 0.9300 |
N4—C9 | 1.358 (4) | C7—C6 | 1.421 (5) |
N5—C6 | 1.300 (4) | C7—C8 | 1.351 (5) |
N3—N2 | 1.308 (4) | C8—H8 | 0.9300 |
N2—N1 | 1.355 (4) | ||
N5—N4—C9 | 127.9 (3) | C6—C7—H7 | 120.5 |
N3—N4—N5 | 122.4 (3) | C8—C7—H7 | 120.5 |
N3—N4—C9 | 109.7 (3) | C8—C7—C6 | 119.0 (3) |
C6—N5—N4 | 112.1 (3) | N5—C6—Cl1 | 114.8 (2) |
N2—N3—N4 | 104.8 (3) | N5—C6—C7 | 126.4 (3) |
N3—N2—N1 | 112.9 (3) | C7—C6—Cl1 | 118.8 (2) |
C9—N1—N2 | 104.8 (3) | C9—C8—H8 | 121.6 |
N4—C9—C8 | 117.8 (3) | C7—C8—C9 | 116.8 (3) |
N1—C9—N4 | 107.8 (3) | C7—C8—H8 | 121.6 |
N1—C9—C8 | 134.4 (3) | ||
N4—N5—C6—Cl1 | −178.7 (2) | N3—N2—N1—C9 | −0.1 (4) |
N4—N5—C6—C7 | 1.6 (5) | N2—N1—C9—N4 | 0.3 (4) |
N4—N3—N2—N1 | −0.1 (4) | N2—N1—C9—C8 | −178.5 (4) |
N4—C9—C8—C7 | 1.7 (5) | N1—C9—C8—C7 | −179.6 (4) |
N5—N4—N3—N2 | −179.8 (3) | C9—N4—N5—C6 | −0.4 (5) |
N5—N4—C9—N1 | 179.8 (3) | C9—N4—N3—N2 | 0.3 (4) |
N5—N4—C9—C8 | −1.2 (5) | C6—C7—C8—C9 | −0.7 (6) |
N3—N4—N5—C6 | 179.7 (3) | C8—C7—C6—Cl1 | 179.2 (3) |
N3—N4—C9—N1 | −0.3 (4) | C8—C7—C6—N5 | −1.1 (6) |
N3—N4—C9—C8 | 178.7 (3) |
C4H2ClN5 | Dx = 1.684 Mg m−3 |
Mr = 155.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2782 reflections |
a = 7.0245 (1) Å | θ = 5.1–64.2° |
b = 8.7517 (1) Å | µ = 4.87 mm−1 |
c = 9.9817 (2) Å | T = 130 K |
V = 613.64 (2) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.20 × 0.15 mm |
F(000) = 312 |
SuperNova, Single source at offset/far, Atlas diffractometer | 1019 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1010 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.016 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 64.4°, θmin = 6.7° |
ω scans | h = −6→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −9→10 |
Tmin = 0.602, Tmax = 1.000 | l = −10→11 |
3602 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.034P)2 + 0.4512P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.074 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.14 e Å−3 |
1019 reflections | Δρmin = −0.14 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 383 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.485 (6) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.28953 (12) | 0.33187 (9) | 0.31839 (8) | 0.0365 (3) | |
N4 | 0.3606 (4) | 0.7476 (3) | 0.4114 (3) | 0.0253 (6) | |
N5 | 0.3705 (4) | 0.5934 (3) | 0.4173 (3) | 0.0275 (6) | |
N3 | 0.4365 (4) | 0.8378 (4) | 0.5059 (3) | 0.0340 (7) | |
N2 | 0.3987 (5) | 0.9774 (3) | 0.4660 (3) | 0.0387 (7) | |
N1 | 0.3009 (5) | 0.9814 (3) | 0.3489 (3) | 0.0340 (7) | |
C9 | 0.2782 (4) | 0.8347 (3) | 0.3146 (3) | 0.0257 (6) | |
C7 | 0.1985 (5) | 0.6045 (4) | 0.2063 (3) | 0.0299 (7) | |
H7 | 0.144393 | 0.548657 | 0.136859 | 0.036* | |
C6 | 0.2870 (5) | 0.5288 (3) | 0.3158 (3) | 0.0268 (7) | |
C8 | 0.1942 (5) | 0.7590 (4) | 0.2046 (3) | 0.0299 (7) | |
H8 | 0.138600 | 0.812696 | 0.134356 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0427 (5) | 0.0211 (4) | 0.0457 (5) | −0.0011 (4) | 0.0097 (4) | −0.0022 (3) |
N4 | 0.0328 (14) | 0.0222 (13) | 0.0210 (13) | −0.0025 (11) | 0.0000 (12) | −0.0004 (11) |
N5 | 0.0333 (14) | 0.0239 (13) | 0.0253 (13) | 0.0001 (12) | 0.0027 (13) | 0.0037 (11) |
N3 | 0.0438 (15) | 0.0326 (16) | 0.0256 (13) | −0.0058 (16) | −0.0040 (12) | −0.0047 (14) |
N2 | 0.0500 (18) | 0.0294 (16) | 0.0366 (16) | −0.0052 (14) | 0.0027 (14) | −0.0079 (13) |
N1 | 0.0419 (17) | 0.0255 (13) | 0.0344 (15) | −0.0011 (14) | 0.0046 (14) | −0.0023 (11) |
C9 | 0.0315 (15) | 0.0231 (14) | 0.0226 (14) | 0.0017 (15) | 0.0046 (13) | 0.0033 (13) |
C7 | 0.0345 (17) | 0.0335 (17) | 0.0216 (15) | −0.0028 (14) | 0.0014 (16) | −0.0057 (12) |
C6 | 0.0307 (16) | 0.0218 (15) | 0.0279 (15) | −0.0005 (14) | 0.0066 (16) | −0.0018 (13) |
C8 | 0.0336 (17) | 0.0343 (17) | 0.0219 (15) | 0.0019 (15) | 0.0011 (16) | 0.0036 (13) |
Cl1—C6 | 1.724 (3) | N1—C9 | 1.339 (4) |
N4—N5 | 1.352 (4) | C9—C8 | 1.412 (5) |
N4—N3 | 1.341 (4) | C7—H7 | 0.9300 |
N4—C9 | 1.360 (4) | C7—C6 | 1.421 (5) |
N5—C6 | 1.300 (4) | C7—C8 | 1.352 (4) |
N3—N2 | 1.311 (4) | C8—H8 | 0.9300 |
N2—N1 | 1.357 (4) | ||
N5—N4—C9 | 127.7 (3) | C6—C7—H7 | 120.5 |
N3—N4—N5 | 122.5 (3) | C8—C7—H7 | 120.5 |
N3—N4—C9 | 109.8 (3) | C8—C7—C6 | 119.1 (3) |
C6—N5—N4 | 112.2 (3) | N5—C6—Cl1 | 114.8 (2) |
N2—N3—N4 | 104.7 (3) | N5—C6—C7 | 126.4 (3) |
N3—N2—N1 | 112.9 (3) | C7—C6—Cl1 | 118.8 (2) |
C9—N1—N2 | 104.8 (3) | C9—C8—H8 | 121.6 |
N4—C9—C8 | 117.9 (3) | C7—C8—C9 | 116.7 (3) |
N1—C9—N4 | 107.8 (3) | C7—C8—H8 | 121.6 |
N1—C9—C8 | 134.3 (3) | ||
N4—N5—C6—Cl1 | −178.7 (2) | N3—N2—N1—C9 | −0.3 (4) |
N4—N5—C6—C7 | 1.8 (5) | N2—N1—C9—N4 | 0.4 (4) |
N4—N3—N2—N1 | 0.0 (4) | N2—N1—C9—C8 | −178.4 (4) |
N4—C9—C8—C7 | 1.6 (5) | N1—C9—C8—C7 | −179.6 (4) |
N5—N4—N3—N2 | −180.0 (3) | C9—N4—N5—C6 | −0.6 (5) |
N5—N4—C9—N1 | 179.8 (3) | C9—N4—N3—N2 | 0.3 (4) |
N5—N4—C9—C8 | −1.2 (5) | C6—C7—C8—C9 | −0.6 (6) |
N3—N4—N5—C6 | 179.7 (3) | C8—C7—C6—Cl1 | 179.2 (3) |
N3—N4—C9—N1 | −0.5 (4) | C8—C7—C6—N5 | −1.3 (6) |
N3—N4—C9—C8 | 178.6 (3) |
C4H2ClN5 | Dx = 1.647 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 958 reflections |
a = 7.0753 (7) Å | θ = 4.2–22.9° |
b = 8.7825 (7) Å | µ = 0.53 mm−1 |
c = 10.099 (10) Å | T = 296 K |
V = 627.5 (6) Å3 | Plate, colorless |
Z = 4 | 0.30 × 0.30 × 0.11 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 475 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 347 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.0°, θmin = 4.2° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −8→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −11→11 |
Tmin = 0.301, Tmax = 1.000 | l = −3→3 |
3465 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0239P)2 + 0.1128P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.061 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.09 e Å−3 |
475 reflections | Δρmin = −0.09 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 108 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.54 (7) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.0001 GPa (100 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.2905 (2) | 0.33485 (15) | 0.3207 (5) | 0.080 (3) | |
N4 | 0.3563 (8) | 0.7499 (6) | 0.4125 (16) | 0.045 (10) | |
N5 | 0.3668 (7) | 0.5951 (6) | 0.4211 (17) | 0.075 (11) | |
N3 | 0.4281 (7) | 0.8395 (7) | 0.5062 (15) | 0.078 (9) | |
N2 | 0.3878 (11) | 0.9788 (8) | 0.466 (3) | 0.067 (12) | |
N1 | 0.2968 (11) | 0.9789 (7) | 0.347 (2) | 0.063 (12) | |
C9 | 0.2772 (9) | 0.8345 (6) | 0.3177 (17) | 0.055 (10) | |
C7 | 0.2018 (10) | 0.6036 (8) | 0.208 (2) | 0.059 (13) | |
H7 | 0.150825 | 0.546684 | 0.138571 | 0.070* | |
C6 | 0.2876 (10) | 0.5319 (6) | 0.3192 (19) | 0.057 (11) | |
C8 | 0.1973 (9) | 0.7594 (7) | 0.206 (2) | 0.061 (12) | |
H8 | 0.144889 | 0.813322 | 0.135649 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0792 (10) | 0.0387 (7) | 0.122 (8) | −0.0016 (8) | 0.023 (2) | −0.0034 (17) |
N4 | 0.047 (3) | 0.043 (2) | 0.04 (3) | −0.004 (2) | −0.013 (5) | 0.002 (6) |
N5 | 0.052 (3) | 0.041 (3) | 0.13 (3) | −0.001 (2) | 0.007 (6) | 0.000 (7) |
N3 | 0.077 (4) | 0.066 (3) | 0.09 (3) | −0.014 (4) | −0.008 (6) | −0.005 (8) |
N2 | 0.089 (6) | 0.056 (4) | 0.06 (4) | −0.014 (4) | −0.007 (11) | −0.025 (7) |
N1 | 0.078 (6) | 0.045 (3) | 0.07 (4) | −0.007 (3) | −0.002 (10) | −0.011 (7) |
C9 | 0.045 (3) | 0.041 (3) | 0.08 (3) | 0.001 (3) | −0.003 (7) | 0.003 (8) |
C7 | 0.060 (4) | 0.060 (3) | 0.06 (4) | −0.009 (3) | −0.008 (9) | −0.016 (7) |
C6 | 0.048 (4) | 0.039 (3) | 0.08 (3) | −0.001 (3) | 0.010 (10) | 0.007 (7) |
C8 | 0.056 (4) | 0.064 (4) | 0.06 (4) | 0.008 (3) | 0.007 (8) | 0.017 (8) |
Cl1—C6 | 1.731 (6) | N1—C9 | 1.310 (9) |
N4—N5 | 1.364 (6) | C9—C8 | 1.42 (2) |
N4—N3 | 1.332 (16) | C7—H7 | 0.9300 |
N4—C9 | 1.335 (17) | C7—C6 | 1.43 (2) |
N5—C6 | 1.30 (2) | C7—C8 | 1.369 (8) |
N3—N2 | 1.320 (12) | C8—H8 | 0.9300 |
N2—N1 | 1.36 (3) | ||
N3—N4—N5 | 121.6 (13) | C6—C7—H7 | 121.3 |
N3—N4—C9 | 109.9 (7) | C8—C7—H7 | 121.3 |
C9—N4—N5 | 128.5 (14) | C8—C7—C6 | 117.4 (16) |
C6—N5—N4 | 110.7 (14) | N5—C6—Cl1 | 114.6 (11) |
N2—N3—N4 | 104.2 (13) | N5—C6—C7 | 128.4 (8) |
N3—N2—N1 | 112.1 (12) | C7—C6—Cl1 | 117.0 (11) |
C9—N1—N2 | 104.3 (10) | C9—C8—H8 | 121.8 |
N4—C9—C8 | 118.5 (7) | C7—C8—C9 | 116.3 (15) |
N1—C9—N4 | 109.5 (13) | C7—C8—H8 | 121.8 |
N1—C9—C8 | 131.9 (13) | ||
N4—N5—C6—Cl1 | −179.3 (6) | N3—N2—N1—C9 | 2 (2) |
N4—N5—C6—C7 | 1 (2) | N2—N1—C9—N4 | −1.5 (16) |
N4—N3—N2—N1 | −1.7 (18) | N2—N1—C9—C8 | −178.6 (15) |
N4—C9—C8—C7 | 2.5 (15) | N1—C9—C8—C7 | 179.4 (11) |
N5—N4—N3—N2 | −178.6 (11) | C9—N4—N5—C6 | 0.7 (19) |
N5—N4—C9—N1 | 179.8 (11) | C9—N4—N3—N2 | 0.7 (13) |
N5—N4—C9—C8 | −2.7 (18) | C6—C7—C8—C9 | −0.8 (16) |
N3—N4—N5—C6 | 179.9 (9) | C8—C7—C6—Cl1 | 179.4 (8) |
N3—N4—C9—N1 | 0.5 (13) | C8—C7—C6—N5 | −1 (2) |
N3—N4—C9—C8 | 178.1 (10) |
C4H2ClN5 | Dx = 1.697 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 923 reflections |
a = 6.9340 (5) Å | θ = 4.2–22.0° |
b = 8.7568 (6) Å | µ = 0.54 mm−1 |
c = 10.029 (7) Å | T = 296 K |
V = 609.0 (4) Å3 | Plate, colorless |
Z = 4 | 0.30 × 0.30 × 0.11 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 487 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 360 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 26.8°, θmin = 4.3° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −8→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −11→10 |
Tmin = 0.348, Tmax = 1.000 | l = −4→4 |
3365 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0294P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.059 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.10 e Å−3 |
487 reflections | Δρmin = −0.09 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 117 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.49 (8) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.12 GPa (120000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.2929 (2) | 0.33348 (13) | 0.3228 (4) | 0.0746 (19) | |
N4 | 0.3555 (7) | 0.7512 (5) | 0.4137 (14) | 0.055 (9) | |
N5 | 0.3685 (7) | 0.5951 (5) | 0.4233 (13) | 0.057 (9) | |
N3 | 0.4256 (6) | 0.8428 (6) | 0.5096 (13) | 0.065 (7) | |
N2 | 0.3845 (9) | 0.9812 (7) | 0.465 (2) | 0.070 (9) | |
N1 | 0.2924 (10) | 0.9803 (6) | 0.3481 (19) | 0.064 (10) | |
C9 | 0.2749 (8) | 0.8338 (6) | 0.3169 (15) | 0.053 (8) | |
C7 | 0.2011 (10) | 0.6025 (7) | 0.2073 (17) | 0.053 (10) | |
H7 | 0.150037 | 0.545129 | 0.137678 | 0.064* | |
C6 | 0.2875 (9) | 0.5309 (6) | 0.3192 (17) | 0.066 (8) | |
C8 | 0.1951 (8) | 0.7585 (6) | 0.2049 (16) | 0.044 (9) | |
H8 | 0.141638 | 0.812069 | 0.133815 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0758 (9) | 0.0341 (7) | 0.114 (6) | −0.0007 (7) | 0.0193 (18) | −0.0023 (14) |
N4 | 0.041 (3) | 0.040 (2) | 0.08 (3) | −0.002 (2) | −0.013 (5) | 0.006 (5) |
N5 | 0.048 (3) | 0.040 (2) | 0.08 (3) | 0.002 (2) | 0.001 (6) | 0.011 (5) |
N3 | 0.070 (3) | 0.062 (3) | 0.06 (2) | −0.015 (3) | −0.009 (6) | −0.004 (7) |
N2 | 0.077 (5) | 0.053 (4) | 0.08 (3) | −0.013 (3) | 0.004 (9) | −0.019 (6) |
N1 | 0.068 (5) | 0.039 (3) | 0.08 (3) | −0.003 (3) | 0.016 (8) | −0.007 (6) |
C9 | 0.042 (3) | 0.037 (3) | 0.08 (2) | 0.002 (3) | −0.006 (6) | −0.005 (7) |
C7 | 0.056 (4) | 0.057 (3) | 0.05 (3) | −0.010 (3) | 0.006 (8) | −0.017 (6) |
C6 | 0.041 (3) | 0.034 (3) | 0.12 (3) | 0.000 (3) | 0.019 (9) | 0.007 (6) |
C8 | 0.056 (4) | 0.055 (3) | 0.02 (3) | 0.006 (3) | 0.004 (7) | 0.016 (6) |
Cl1—C6 | 1.730 (6) | N1—C9 | 1.326 (8) |
N4—N5 | 1.373 (6) | C9—C8 | 1.415 (19) |
N4—N3 | 1.343 (15) | C7—H7 | 0.9300 |
N4—C9 | 1.334 (14) | C7—C6 | 1.419 (18) |
N5—C6 | 1.312 (19) | C7—C8 | 1.367 (7) |
N3—N2 | 1.321 (11) | C8—H8 | 0.9300 |
N2—N1 | 1.34 (3) | ||
N3—N4—N5 | 121.4 (11) | C6—C7—H7 | 121.0 |
C9—N4—N5 | 128.2 (11) | C8—C7—H7 | 121.0 |
C9—N4—N3 | 110.4 (6) | C8—C7—C6 | 117.9 (13) |
C6—N5—N4 | 110.0 (11) | N5—C6—Cl1 | 113.7 (10) |
N2—N3—N4 | 103.3 (12) | N5—C6—C7 | 128.4 (7) |
N3—N2—N1 | 113.1 (10) | C7—C6—Cl1 | 117.8 (9) |
C9—N1—N2 | 104.9 (9) | C9—C8—H8 | 122.0 |
N4—C9—C8 | 119.3 (6) | C7—C8—C9 | 116.1 (13) |
N1—C9—N4 | 108.3 (10) | C7—C8—H8 | 122.0 |
N1—C9—C8 | 132.4 (10) | ||
N4—N5—C6—Cl1 | −179.1 (5) | N3—N2—N1—C9 | 0.0 (16) |
N4—N5—C6—C7 | 1.7 (16) | N2—N1—C9—N4 | −0.2 (12) |
N4—N3—N2—N1 | 0.2 (15) | N2—N1—C9—C8 | −178.5 (13) |
N4—C9—C8—C7 | 2.3 (14) | N1—C9—C8—C7 | −179.5 (8) |
N5—N4—N3—N2 | −179.4 (8) | C9—N4—N5—C6 | 0.1 (14) |
N5—N4—C9—N1 | 179.3 (8) | C9—N4—N3—N2 | −0.3 (11) |
N5—N4—C9—C8 | −2.1 (15) | C6—C7—C8—C9 | −0.8 (14) |
N3—N4—N5—C6 | 179.0 (9) | C8—C7—C6—Cl1 | 179.4 (6) |
N3—N4—C9—N1 | 0.3 (10) | C8—C7—C6—N5 | −1.4 (17) |
N3—N4—C9—C8 | 178.9 (9) |
C4H2ClN5 | Dx = 1.755 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 651 reflections |
a = 10.697 (4) Å | θ = 4.4–22.7° |
b = 6.2545 (7) Å | µ = 0.56 mm−1 |
c = 8.8012 (10) Å | T = 296 K |
V = 588.8 (3) Å3 | Plate, colorless |
Z = 4 | 0.30 × 0.26 × 0.11 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 263 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 187 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 26.9°, θmin = 4.4° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −4→4 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −7→7 |
Tmin = 0.383, Tmax = 1.000 | l = −11→10 |
2687 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.043 | w = 1/[σ2(Fo2) + (0.0185P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
263 reflections | Δρmax = 0.08 e Å−3 |
61 parameters | Δρmin = −0.09 e Å−3 |
6 restraints |
Experimental. Data were collected at room temperature and pressure of 0.24 GPa (240000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.61551 (16) | 0.750000 | 0.91127 (9) | 0.0760 (13) | |
C6 | 0.624 (2) | 0.750000 | 0.7158 (5) | 0.033 (6) | |
C7 | 0.7471 (17) | 0.750000 | 0.6526 (7) | 0.050 (9) | |
H7 | 0.818559 | 0.750000 | 0.712702 | 0.060* | |
N6 | 0.5353 (13) | 0.750000 | 0.4928 (5) | 0.035 (5) | |
N1 | 0.6188 (12) | 0.750000 | 0.2671 (6) | 0.043 (7) | |
N5 | 0.5216 (12) | 0.750000 | 0.6465 (5) | 0.052 (6) | |
C8 | 0.7523 (17) | 0.750000 | 0.4976 (5) | 0.069 (7) | |
H8 | 0.829630 | 0.750000 | 0.449439 | 0.083* | |
N2 | 0.4917 (12) | 0.750000 | 0.2617 (6) | 0.069 (8) | |
N3 | 0.4408 (11) | 0.750000 | 0.3956 (4) | 0.074 (5) | |
C9 | 0.6492 (18) | 0.750000 | 0.4150 (6) | 0.051 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.115 (4) | 0.0785 (5) | 0.0346 (5) | 0.000 | −0.0036 (8) | 0.000 |
C6 | 0.016 (19) | 0.0469 (19) | 0.036 (2) | 0.000 | −0.009 (5) | 0.000 |
C7 | 0.03 (3) | 0.059 (2) | 0.066 (5) | 0.000 | −0.006 (6) | 0.000 |
N6 | 0.019 (19) | 0.0432 (14) | 0.044 (3) | 0.000 | 0.005 (5) | 0.000 |
N1 | 0.02 (2) | 0.071 (2) | 0.040 (2) | 0.000 | −0.005 (5) | 0.000 |
N5 | 0.07 (2) | 0.0505 (15) | 0.036 (3) | 0.000 | 0.002 (3) | 0.000 |
C8 | 0.09 (2) | 0.061 (2) | 0.051 (4) | 0.000 | 0.024 (5) | 0.000 |
N2 | 0.10 (2) | 0.0609 (19) | 0.042 (2) | 0.000 | −0.025 (6) | 0.000 |
N3 | 0.106 (19) | 0.0557 (16) | 0.059 (3) | 0.000 | −0.023 (4) | 0.000 |
C9 | 0.07 (2) | 0.0469 (17) | 0.036 (3) | 0.000 | 0.002 (6) | 0.000 |
Cl1—C6 | 1.723 (5) | N6—C9 | 1.40 (3) |
C6—C7 | 1.43 (3) | N1—N2 | 1.36 (2) |
C6—N5 | 1.26 (3) | N1—C9 | 1.341 (10) |
C7—H7 | 0.9300 | C8—H8 | 0.9300 |
C7—C8 | 1.365 (8) | C8—C9 | 1.32 (3) |
N6—N5 | 1.360 (6) | N2—N3 | 1.298 (12) |
N6—N3 | 1.324 (17) | ||
C7—C6—Cl1 | 116.0 (16) | C6—N5—N6 | 112.9 (15) |
N5—C6—Cl1 | 116.0 (16) | C7—C8—H8 | 119.5 |
N5—C6—C7 | 128.0 (6) | C9—C8—C7 | 121 (2) |
C6—C7—H7 | 122.4 | C9—C8—H8 | 119.5 |
C8—C7—C6 | 115.3 (19) | N3—N2—N1 | 112.7 (8) |
C8—C7—H7 | 122.4 | N2—N3—N6 | 105.5 (13) |
N5—N6—C9 | 125.5 (16) | N1—C9—N6 | 105.3 (17) |
N3—N6—N5 | 124.1 (14) | C8—C9—N6 | 117.3 (7) |
N3—N6—C9 | 110.4 (5) | C8—C9—N1 | 137.4 (18) |
C9—N1—N2 | 106.0 (13) | ||
Cl1—C6—C7—C8 | 180.000 (2) | N5—N6—C9—C8 | 0.000 (3) |
Cl1—C6—N5—N6 | 180.000 (2) | N2—N1—C9—N6 | 0.000 (1) |
C6—C7—C8—C9 | 0.000 (3) | N2—N1—C9—C8 | 180.000 (1) |
C7—C6—N5—N6 | 0.000 (3) | N3—N6—N5—C6 | 180.000 (3) |
C7—C8—C9—N6 | 0.000 (3) | N3—N6—C9—N1 | 0.000 (2) |
C7—C8—C9—N1 | 180.000 (2) | N3—N6—C9—C8 | 180.000 (1) |
N1—N2—N3—N6 | 0.000 (1) | C9—N6—N5—C6 | 0.000 (3) |
N5—C6—C7—C8 | 0.000 (5) | C9—N6—N3—N2 | 0.000 (1) |
N5—N6—N3—N2 | 180.000 (2) | C9—N1—N2—N3 | 0.000 (1) |
N5—N6—C9—N1 | 180.000 (2) |
C4H2ClN5 | Dx = 1.782 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 710 reflections |
a = 10.654 (3) Å | θ = 4.4–22.8° |
b = 6.1954 (6) Å | µ = 0.57 mm−1 |
c = 8.7823 (8) Å | T = 296 K |
V = 579.69 (17) Å3 | Plate, colorless |
Z = 4 | 0.30 × 0.26 × 0.11 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 268 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 191 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.0°, θmin = 4.5° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −4→4 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −7→7 |
Tmin = 0.391, Tmax = 1.000 | l = −10→11 |
2828 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0336P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
268 reflections | Δρmax = 0.12 e Å−3 |
61 parameters | Δρmin = −0.14 e Å−3 |
12 restraints |
Experimental. Data were collected at room temperature and pressure of 0.49 GPa (490000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.6141 (2) | 0.750000 | 0.91216 (12) | 0.0694 (17) | |
C6 | 0.6262 (19) | 0.750000 | 0.7176 (6) | 0.039 (8) | |
C7 | 0.7457 (19) | 0.750000 | 0.6521 (7) | 0.054 (9) | |
H7 | 0.817347 | 0.750000 | 0.712599 | 0.065* | |
N6 | 0.5351 (14) | 0.750000 | 0.4922 (5) | 0.033 (3) | |
N1 | 0.6181 (17) | 0.750000 | 0.2665 (6) | 0.045 (9) | |
N5 | 0.5193 (13) | 0.750000 | 0.6462 (5) | 0.039 (4) | |
C8 | 0.7543 (18) | 0.750000 | 0.4982 (6) | 0.047 (9) | |
H8 | 0.832342 | 0.750000 | 0.450604 | 0.056* | |
N2 | 0.4905 (15) | 0.750000 | 0.2608 (8) | 0.056 (10) | |
N3 | 0.4401 (14) | 0.750000 | 0.3946 (5) | 0.065 (6) | |
C9 | 0.648 (2) | 0.750000 | 0.4152 (7) | 0.042 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.104 (5) | 0.0725 (7) | 0.0319 (6) | 0.000 | −0.0041 (9) | 0.000 |
C6 | 0.04 (3) | 0.042 (2) | 0.031 (3) | 0.000 | −0.006 (5) | 0.000 |
C7 | 0.06 (3) | 0.055 (3) | 0.053 (5) | 0.000 | −0.005 (6) | 0.000 |
N6 | 0.021 (11) | 0.0390 (16) | 0.039 (2) | 0.000 | 0.007 (5) | 0.000 |
N1 | 0.05 (3) | 0.056 (2) | 0.033 (2) | 0.000 | −0.007 (6) | 0.000 |
N5 | 0.032 (12) | 0.0480 (17) | 0.036 (2) | 0.000 | 0.008 (4) | 0.000 |
C8 | 0.03 (3) | 0.057 (3) | 0.057 (5) | 0.000 | 0.023 (5) | 0.000 |
N2 | 0.06 (3) | 0.061 (2) | 0.044 (2) | 0.000 | −0.027 (7) | 0.000 |
N3 | 0.09 (2) | 0.0502 (19) | 0.053 (3) | 0.000 | −0.024 (4) | 0.000 |
C9 | 0.04 (3) | 0.046 (2) | 0.037 (4) | 0.000 | −0.004 (5) | 0.000 |
Cl1—C6 | 1.714 (5) | N6—C9 | 1.38 (3) |
C6—C7 | 1.40 (3) | N1—N2 | 1.36 (2) |
C6—N5 | 1.30 (3) | N1—C9 | 1.344 (10) |
C7—H7 | 0.9300 | C8—H8 | 0.9300 |
C7—C8 | 1.356 (8) | C8—C9 | 1.35 (3) |
N6—N5 | 1.363 (6) | N2—N3 | 1.291 (13) |
N6—N3 | 1.33 (2) | ||
C7—C6—Cl1 | 118.6 (15) | C6—N5—N6 | 111.7 (14) |
N5—C6—Cl1 | 114.5 (14) | C7—C8—H8 | 120.6 |
N5—C6—C7 | 126.9 (7) | C9—C8—C7 | 119 (2) |
C6—C7—H7 | 120.9 | C9—C8—H8 | 120.6 |
C8—C7—C6 | 118.2 (19) | N3—N2—N1 | 112.5 (11) |
C8—C7—H7 | 120.9 | N2—N3—N6 | 105.7 (16) |
N5—N6—C9 | 126.5 (16) | N1—C9—N6 | 105.7 (19) |
N3—N6—N5 | 123.2 (15) | N1—C9—C8 | 136 (2) |
N3—N6—C9 | 110.4 (5) | C8—C9—N6 | 117.9 (8) |
C9—N1—N2 | 105.8 (15) | ||
Cl1—C6—C7—C8 | 180.000 (2) | N5—N6—C9—C8 | 0.000 (3) |
Cl1—C6—N5—N6 | 180.000 (2) | N2—N1—C9—N6 | 0.000 (2) |
C6—C7—C8—C9 | 0.000 (3) | N2—N1—C9—C8 | 180.000 (2) |
C7—C6—N5—N6 | 0.000 (3) | N3—N6—N5—C6 | 180.000 (2) |
C7—C8—C9—N6 | 0.000 (2) | N3—N6—C9—N1 | 0.000 (2) |
C7—C8—C9—N1 | 180.000 (2) | N3—N6—C9—C8 | 180.000 (1) |
N1—N2—N3—N6 | 0.000 (2) | C9—N6—N5—C6 | 0.000 (3) |
N5—C6—C7—C8 | 0.000 (5) | C9—N6—N3—N2 | 0.000 (2) |
N5—N6—N3—N2 | 180.000 (2) | C9—N1—N2—N3 | 0.000 (1) |
N5—N6—C9—N1 | 180.000 (2) |
C4H2ClN5 | Dx = 1.652 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1187 reflections |
a = 7.0542 (4) Å | θ = 3.7–21.7° |
b = 8.7774 (14) Å | µ = 0.53 mm−1 |
c = 10.1041 (5) Å | T = 296 K |
V = 625.62 (11) Å3 | Plate, colorless |
Z = 4 | 0.39 × 0.29 × 0.18 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 764 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 561 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.2°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −8→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −6→6 |
Tmin = 0.421, Tmax = 1.000 | l = −12→12 |
3890 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0387P)2 + 0.0855P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.084 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.15 e Å−3 |
764 reflections | Δρmin = −0.11 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 194 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.21 (4) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.09 (2) GPa (90000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.29094 (18) | 0.3347 (3) | 0.32212 (14) | 0.0727 (10) | |
N4 | 0.3549 (5) | 0.7495 (10) | 0.4133 (4) | 0.047 (3) | |
N5 | 0.3656 (5) | 0.5974 (11) | 0.4187 (4) | 0.046 (2) | |
N3 | 0.4259 (6) | 0.8387 (12) | 0.5058 (4) | 0.058 (3) | |
N2 | 0.3883 (8) | 0.9788 (11) | 0.4665 (6) | 0.072 (4) | |
N1 | 0.2961 (7) | 0.9829 (10) | 0.3471 (5) | 0.059 (4) | |
C9 | 0.2757 (6) | 0.8368 (11) | 0.3166 (4) | 0.037 (3) | |
C7 | 0.2010 (7) | 0.6045 (12) | 0.2088 (5) | 0.053 (3) | |
H7 | 0.148234 | 0.547882 | 0.140270 | 0.063* | |
C6 | 0.2870 (6) | 0.5322 (11) | 0.3175 (4) | 0.040 (2) | |
C8 | 0.1970 (7) | 0.7580 (11) | 0.2067 (5) | 0.051 (3) | |
H8 | 0.144484 | 0.810539 | 0.135687 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0781 (9) | 0.043 (3) | 0.0974 (10) | −0.0017 (10) | 0.0241 (7) | −0.0016 (13) |
N4 | 0.050 (2) | 0.052 (10) | 0.038 (2) | −0.003 (2) | 0.0016 (16) | −0.007 (3) |
N5 | 0.055 (2) | 0.031 (9) | 0.050 (2) | 0.001 (3) | 0.0024 (18) | 0.001 (3) |
N3 | 0.081 (3) | 0.038 (10) | 0.056 (2) | −0.012 (3) | −0.008 (2) | −0.016 (4) |
N2 | 0.090 (4) | 0.038 (14) | 0.088 (4) | −0.015 (3) | 0.011 (3) | −0.021 (4) |
N1 | 0.072 (3) | 0.033 (12) | 0.071 (3) | −0.006 (3) | 0.008 (2) | −0.010 (4) |
C9 | 0.050 (2) | 0.016 (11) | 0.044 (2) | −0.001 (3) | 0.0043 (18) | 0.010 (4) |
C7 | 0.059 (3) | 0.059 (11) | 0.040 (2) | −0.007 (4) | −0.003 (2) | −0.010 (4) |
C6 | 0.054 (3) | 0.012 (8) | 0.055 (2) | −0.003 (3) | 0.012 (2) | 0.005 (4) |
C8 | 0.057 (3) | 0.059 (11) | 0.038 (2) | 0.001 (3) | −0.002 (2) | 0.005 (4) |
Cl1—C6 | 1.735 (9) | N1—C9 | 1.327 (11) |
N4—N5 | 1.338 (6) | C9—C8 | 1.421 (8) |
N4—N3 | 1.318 (10) | C7—H7 | 0.9300 |
N4—C9 | 1.362 (9) | C7—C6 | 1.406 (9) |
N5—C6 | 1.296 (8) | C7—C8 | 1.348 (8) |
N3—N2 | 1.319 (10) | C8—H8 | 0.9300 |
N2—N1 | 1.371 (8) | ||
N5—N4—C9 | 127.8 (6) | C6—C7—H7 | 120.9 |
N3—N4—N5 | 122.8 (6) | C8—C7—H7 | 120.9 |
N3—N4—C9 | 109.3 (8) | C8—C7—C6 | 118.2 (6) |
C6—N5—N4 | 112.6 (6) | N5—C6—Cl1 | 114.4 (6) |
N4—N3—N2 | 105.3 (6) | N5—C6—C7 | 127.0 (10) |
N3—N2—N1 | 112.6 (8) | C7—C6—Cl1 | 118.6 (6) |
C9—N1—N2 | 103.3 (7) | C9—C8—H8 | 121.1 |
N4—C9—C8 | 116.6 (8) | C7—C8—C9 | 117.8 (6) |
N1—C9—N4 | 109.4 (5) | C7—C8—H8 | 121.1 |
N1—C9—C8 | 134.0 (7) | ||
N4—N5—C6—Cl1 | −178.2 (3) | N3—N2—N1—C9 | 1.3 (5) |
N4—N5—C6—C7 | 1.4 (7) | N2—N1—C9—N4 | −0.8 (5) |
N4—N3—N2—N1 | −1.3 (5) | N2—N1—C9—C8 | −178.5 (5) |
N4—C9—C8—C7 | 2.2 (8) | N1—C9—C8—C7 | 179.8 (5) |
N5—N4—N3—N2 | −180.0 (4) | C9—N4—N5—C6 | −0.7 (7) |
N5—N4—C9—N1 | −179.2 (4) | C9—N4—N3—N2 | 0.7 (5) |
N5—N4—C9—C8 | −1.0 (7) | C6—C7—C8—C9 | −1.7 (8) |
N3—N4—N5—C6 | −179.9 (4) | C8—C7—C6—Cl1 | 179.4 (4) |
N3—N4—C9—N1 | 0.0 (5) | C8—C7—C6—N5 | −0.2 (8) |
N3—N4—C9—C8 | 178.2 (4) |
C4H2ClN5 | Dx = 1.654 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1101 reflections |
a = 7.0733 (6) Å | θ = 3.7–21.9° |
b = 8.7965 (6) Å | µ = 0.53 mm−1 |
c = 10.042 (8) Å | T = 296 K |
V = 624.8 (5) Å3 | Plate, colorless |
Z = 4 | 0.38 × 0.29 × 0.21 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 491 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 361 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.2°, θmin = 3.7° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −8→9 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −11→10 |
Tmin = 0.061, Tmax = 1.000 | l = −3→3 |
3715 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0252P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.056 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.10 e Å−3 |
491 reflections | Δρmin = −0.08 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 112 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
6 restraints | Absolute structure parameter: −0.06 (6) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.10 (2) GPa (100000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.29054 (18) | 0.33488 (12) | 0.3213 (4) | 0.081 (2) | |
N4 | 0.3555 (7) | 0.7502 (5) | 0.4119 (14) | 0.043 (8) | |
N5 | 0.3672 (7) | 0.5948 (5) | 0.4195 (14) | 0.063 (8) | |
N3 | 0.4272 (6) | 0.8393 (7) | 0.5081 (12) | 0.065 (8) | |
N2 | 0.3882 (9) | 0.9773 (6) | 0.462 (2) | 0.079 (10) | |
N1 | 0.2949 (9) | 0.9803 (6) | 0.3498 (19) | 0.068 (10) | |
C9 | 0.2762 (7) | 0.8344 (6) | 0.3160 (15) | 0.054 (8) | |
C7 | 0.2015 (9) | 0.6034 (7) | 0.2076 (17) | 0.054 (11) | |
H7 | 0.149998 | 0.547159 | 0.138065 | 0.064* | |
C6 | 0.2873 (8) | 0.5314 (6) | 0.3188 (15) | 0.046 (9) | |
C8 | 0.1978 (7) | 0.7586 (6) | 0.2070 (17) | 0.051 (8) | |
H8 | 0.144775 | 0.812038 | 0.136379 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0809 (9) | 0.0409 (7) | 0.120 (7) | −0.0014 (7) | 0.0209 (17) | −0.0026 (13) |
N4 | 0.049 (3) | 0.046 (2) | 0.03 (2) | −0.001 (2) | −0.007 (5) | −0.008 (5) |
N5 | 0.052 (3) | 0.046 (2) | 0.09 (3) | 0.003 (2) | −0.006 (6) | 0.004 (5) |
N3 | 0.077 (3) | 0.069 (3) | 0.05 (2) | −0.010 (3) | −0.014 (5) | −0.012 (6) |
N2 | 0.078 (5) | 0.055 (3) | 0.10 (3) | −0.014 (3) | 0.004 (9) | −0.016 (6) |
N1 | 0.067 (5) | 0.049 (3) | 0.09 (3) | −0.001 (3) | 0.012 (8) | −0.008 (5) |
C9 | 0.048 (3) | 0.044 (3) | 0.07 (3) | 0.008 (3) | 0.001 (6) | −0.001 (7) |
C7 | 0.059 (4) | 0.067 (3) | 0.03 (4) | −0.010 (3) | 0.006 (8) | −0.008 (6) |
C6 | 0.043 (3) | 0.050 (3) | 0.05 (3) | 0.000 (3) | 0.008 (9) | 0.005 (6) |
C8 | 0.056 (4) | 0.069 (4) | 0.03 (2) | 0.007 (3) | −0.004 (7) | 0.014 (6) |
Cl1—C6 | 1.729 (6) | N1—C9 | 1.335 (9) |
N4—N5 | 1.372 (6) | C9—C8 | 1.397 (17) |
N4—N3 | 1.343 (14) | C7—H7 | 0.9300 |
N4—C9 | 1.338 (15) | C7—C6 | 1.420 (17) |
N5—C6 | 1.286 (18) | C7—C8 | 1.365 (7) |
N3—N2 | 1.330 (11) | C8—H8 | 0.9300 |
N2—N1 | 1.30 (3) | ||
N3—N4—N5 | 121.2 (12) | C6—C7—H7 | 121.4 |
C9—N4—N5 | 128.1 (12) | C8—C7—H7 | 121.4 |
C9—N4—N3 | 110.7 (6) | C8—C7—C6 | 117.2 (13) |
C6—N5—N4 | 111.2 (12) | N5—C6—Cl1 | 114.6 (9) |
N2—N3—N4 | 101.7 (11) | N5—C6—C7 | 127.9 (8) |
N1—N2—N3 | 115.2 (10) | C7—C6—Cl1 | 117.6 (9) |
N2—N1—C9 | 104.5 (9) | C9—C8—H8 | 121.1 |
N4—C9—C8 | 117.8 (7) | C7—C8—C9 | 117.8 (12) |
N1—C9—N4 | 107.9 (11) | C7—C8—H8 | 121.1 |
N1—C9—C8 | 134.2 (11) | ||
N4—N5—C6—Cl1 | −178.7 (6) | N3—N2—N1—C9 | −2.5 (18) |
N4—N5—C6—C7 | 2.3 (16) | N2—N1—C9—N4 | 1.6 (14) |
N4—N3—N2—N1 | 2.2 (16) | N2—N1—C9—C8 | −177.4 (13) |
N4—C9—C8—C7 | 2.1 (13) | N1—C9—C8—C7 | −178.9 (9) |
N5—N4—N3—N2 | 179.4 (9) | C9—N4—N5—C6 | −0.6 (16) |
N5—N4—C9—N1 | 179.2 (9) | C9—N4—N3—N2 | −1.0 (11) |
N5—N4—C9—C8 | −1.6 (15) | C6—C7—C8—C9 | −0.7 (14) |
N3—N4—N5—C6 | 178.9 (8) | C8—C7—C6—Cl1 | 179.3 (7) |
N3—N4—C9—N1 | −0.4 (11) | C8—C7—C6—N5 | −1.7 (17) |
N3—N4—C9—C8 | 178.8 (8) |
C4H2ClN5 | Dx = 1.668 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1145 reflections |
a = 6.9987 (3) Å | θ = 4.2–22.2° |
b = 8.7740 (15) Å | µ = 0.53 mm−1 |
c = 10.0863 (9) Å | T = 296 K |
V = 619.37 (12) Å3 | Plate, colorless |
Z = 4 | 0.37 × 0.27 × 0.16 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 666 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 519 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.1°, θmin = 4.2° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −8→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −7→7 |
Tmin = 0.387, Tmax = 1.000 | l = −11→11 |
3715 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0432P)2 + 0.1036P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.090 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.17 e Å−3 |
666 reflections | Δρmin = −0.13 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 181 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.39 (5) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.17 (2) GPa (170000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.2920 (2) | 0.3336 (3) | 0.32339 (17) | 0.0755 (10) | |
N4 | 0.3537 (8) | 0.7494 (13) | 0.4127 (5) | 0.047 (3) | |
N5 | 0.3663 (7) | 0.5973 (13) | 0.4200 (5) | 0.048 (2) | |
N3 | 0.4249 (7) | 0.8405 (12) | 0.5071 (5) | 0.063 (3) | |
N2 | 0.3848 (10) | 0.9793 (14) | 0.4648 (8) | 0.074 (3) | |
N1 | 0.2950 (8) | 0.9840 (11) | 0.3477 (6) | 0.064 (3) | |
C9 | 0.2750 (8) | 0.8358 (11) | 0.3158 (5) | 0.046 (3) | |
C7 | 0.2010 (10) | 0.6046 (13) | 0.2087 (6) | 0.053 (3) | |
H7 | 0.148452 | 0.548371 | 0.139555 | 0.063* | |
C6 | 0.2873 (7) | 0.5303 (11) | 0.3180 (5) | 0.042 (2) | |
C8 | 0.1965 (9) | 0.7567 (12) | 0.2066 (5) | 0.055 (3) | |
H8 | 0.143226 | 0.809035 | 0.135421 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0761 (9) | 0.055 (3) | 0.0955 (14) | −0.0021 (14) | 0.0249 (8) | −0.0035 (10) |
N4 | 0.048 (2) | 0.059 (11) | 0.033 (4) | −0.002 (4) | 0.001 (2) | −0.002 (3) |
N5 | 0.055 (3) | 0.043 (10) | 0.046 (4) | 0.004 (4) | 0.001 (2) | 0.004 (3) |
N3 | 0.078 (3) | 0.056 (12) | 0.055 (4) | −0.008 (5) | −0.008 (2) | −0.012 (4) |
N2 | 0.088 (4) | 0.052 (14) | 0.083 (6) | −0.019 (4) | 0.010 (3) | −0.026 (4) |
N1 | 0.065 (3) | 0.067 (10) | 0.060 (4) | −0.003 (4) | 0.007 (3) | −0.017 (3) |
C9 | 0.047 (2) | 0.058 (13) | 0.032 (4) | −0.003 (4) | 0.003 (2) | 0.004 (4) |
C7 | 0.057 (3) | 0.060 (11) | 0.041 (5) | −0.008 (5) | −0.005 (3) | −0.006 (3) |
C6 | 0.051 (3) | 0.019 (9) | 0.057 (4) | −0.003 (4) | 0.013 (3) | 0.001 (3) |
C8 | 0.057 (3) | 0.072 (12) | 0.036 (5) | −0.001 (5) | −0.001 (3) | 0.010 (3) |
Cl1—C6 | 1.727 (9) | N1—C9 | 1.347 (11) |
N4—N5 | 1.340 (8) | C9—C8 | 1.413 (10) |
N4—N3 | 1.339 (11) | C7—H7 | 0.9300 |
N4—C9 | 1.354 (11) | C7—C6 | 1.416 (11) |
N5—C6 | 1.308 (10) | C7—C8 | 1.336 (8) |
N3—N2 | 1.320 (13) | C8—H8 | 0.9300 |
N2—N1 | 1.339 (9) | ||
N5—N4—C9 | 128.6 (6) | C6—C7—H7 | 120.6 |
N3—N4—N5 | 122.1 (7) | C8—C7—H7 | 120.6 |
N3—N4—C9 | 109.3 (10) | C8—C7—C6 | 118.9 (6) |
C6—N5—N4 | 112.2 (6) | N5—C6—Cl1 | 114.6 (7) |
N2—N3—N4 | 104.0 (7) | N5—C6—C7 | 125.9 (10) |
N3—N2—N1 | 114.4 (9) | C7—C6—Cl1 | 119.5 (6) |
N2—N1—C9 | 103.3 (7) | C9—C8—H8 | 121.0 |
N4—C9—C8 | 116.5 (9) | C7—C8—C9 | 118.0 (6) |
N1—C9—N4 | 109.0 (5) | C7—C8—H8 | 121.0 |
N1—C9—C8 | 134.5 (8) | ||
N4—N5—C6—Cl1 | −178.1 (4) | N3—N2—N1—C9 | 1.1 (7) |
N4—N5—C6—C7 | 1.5 (9) | N2—N1—C9—N4 | −0.6 (7) |
N4—N3—N2—N1 | −1.1 (7) | N2—N1—C9—C8 | −179.0 (6) |
N4—C9—C8—C7 | 1.8 (9) | N1—C9—C8—C7 | −179.9 (7) |
N5—N4—N3—N2 | −179.9 (5) | C9—N4—N5—C6 | −1.0 (10) |
N5—N4—C9—N1 | −179.4 (6) | C9—N4—N3—N2 | 0.7 (7) |
N5—N4—C9—C8 | −0.6 (10) | C6—C7—C8—C9 | −1.3 (10) |
N3—N4—N5—C6 | 179.8 (5) | C8—C7—C6—Cl1 | 179.2 (5) |
N3—N4—C9—N1 | −0.1 (7) | C8—C7—C6—N5 | −0.4 (10) |
N3—N4—C9—C8 | 178.7 (5) |
C4H2ClN5 | Dx = 1.670 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 859 reflections |
a = 7.005 (2) Å | θ = 3.5–23.4° |
b = 8.7554 (18) Å | µ = 0.53 mm−1 |
c = 10.086 (2) Å | T = 296 K |
V = 618.6 (3) Å3 | Plate, colorless |
Z = 4 | 0.38 × 0.26 × 0.14 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 961 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 410 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.313 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.2°, θmin = 3.1° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −7→7 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −9→9 |
Tmin = 0.520, Tmax = 1.000 | l = −12→12 |
3219 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.143 | w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.430 | (Δ/σ)max < 0.001 |
S = 1.16 | Δρmax = 0.66 e Å−3 |
961 reflections | Δρmin = −0.79 e Å−3 |
91 parameters | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
0 restraints | Absolute structure parameter: −0.3 (7) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.18 (2) GPa (180000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.2916 (10) | 0.3335 (6) | 0.3239 (6) | 0.091 (3) | |
N4 | 0.352 (3) | 0.749 (2) | 0.4127 (13) | 0.072 (6) | |
N5 | 0.364 (3) | 0.5955 (19) | 0.4182 (15) | 0.082 (6) | |
N3 | 0.421 (3) | 0.840 (2) | 0.5084 (13) | 0.089 (6) | |
N2 | 0.380 (3) | 0.978 (3) | 0.4674 (18) | 0.086 (6) | |
N1 | 0.295 (3) | 0.984 (2) | 0.3477 (16) | 0.076 (5) | |
C9 | 0.274 (3) | 0.831 (2) | 0.3154 (14) | 0.057 (5) | |
C7 | 0.207 (4) | 0.605 (3) | 0.2071 (17) | 0.074 (6) | |
H7 | 0.164726 | 0.549814 | 0.134175 | 0.088* | |
C6 | 0.284 (3) | 0.5309 (18) | 0.3169 (15) | 0.053 (4) | |
C8 | 0.195 (4) | 0.756 (3) | 0.2078 (15) | 0.072 (6) | |
H8 | 0.136090 | 0.809662 | 0.139331 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.109 (6) | 0.037 (4) | 0.127 (4) | −0.003 (3) | 0.024 (3) | −0.004 (2) |
N4 | 0.096 (17) | 0.063 (14) | 0.058 (8) | 0.001 (9) | 0.017 (10) | −0.010 (7) |
N5 | 0.13 (2) | 0.028 (13) | 0.083 (10) | −0.001 (9) | −0.006 (11) | 0.006 (7) |
N3 | 0.141 (19) | 0.056 (16) | 0.070 (10) | 0.000 (11) | −0.012 (10) | −0.007 (10) |
N2 | 0.078 (17) | 0.078 (17) | 0.100 (11) | −0.002 (9) | 0.020 (10) | −0.022 (9) |
N1 | 0.065 (15) | 0.071 (14) | 0.092 (9) | 0.002 (10) | 0.019 (11) | −0.008 (8) |
C9 | 0.076 (17) | 0.035 (13) | 0.061 (9) | 0.000 (9) | 0.005 (9) | 0.005 (7) |
C7 | 0.09 (2) | 0.068 (16) | 0.059 (9) | 0.004 (12) | −0.008 (11) | −0.005 (7) |
C6 | 0.054 (14) | 0.020 (11) | 0.087 (10) | −0.004 (7) | 0.016 (10) | −0.005 (7) |
C8 | 0.090 (19) | 0.075 (17) | 0.051 (9) | 0.010 (13) | −0.007 (12) | 0.010 (7) |
Cl1—C6 | 1.730 (16) | N1—C9 | 1.39 (2) |
N4—N5 | 1.34 (2) | C9—C8 | 1.38 (3) |
N4—N3 | 1.35 (2) | C7—H7 | 0.9300 |
N4—C9 | 1.33 (2) | C7—C6 | 1.39 (3) |
N5—C6 | 1.29 (2) | C7—C8 | 1.33 (2) |
N3—N2 | 1.30 (2) | C8—H8 | 0.9300 |
N2—N1 | 1.35 (2) | ||
N5—N4—N3 | 122.9 (17) | C6—C7—H7 | 120.4 |
C9—N4—N5 | 126.6 (16) | C8—C7—H7 | 120.4 |
C9—N4—N3 | 110.5 (19) | C8—C7—C6 | 119.1 (16) |
C6—N5—N4 | 112.1 (16) | N5—C6—Cl1 | 113.0 (14) |
N2—N3—N4 | 104.1 (17) | N5—C6—C7 | 126.1 (17) |
N3—N2—N1 | 114.9 (15) | C7—C6—Cl1 | 120.8 (14) |
N2—N1—C9 | 102.4 (14) | C9—C8—H8 | 121.6 |
N4—C9—N1 | 108.0 (14) | C7—C8—C9 | 116.8 (18) |
N4—C9—C8 | 118.9 (19) | C7—C8—H8 | 121.6 |
C8—C9—N1 | 133.1 (18) | ||
N4—N5—C6—Cl1 | −178.3 (14) | N3—N2—N1—C9 | 3 (2) |
N4—N5—C6—C7 | 5 (3) | N2—N1—C9—N4 | −2 (2) |
N4—N3—N2—N1 | −3 (3) | N2—N1—C9—C8 | 179 (2) |
N4—C9—C8—C7 | −2 (4) | N1—C9—C8—C7 | 177 (2) |
N5—N4—N3—N2 | −179.5 (17) | C9—N4—N5—C6 | −2 (3) |
N5—N4—C9—N1 | −178.8 (19) | C9—N4—N3—N2 | 1 (3) |
N5—N4—C9—C8 | 1 (4) | C6—C7—C8—C9 | 5 (4) |
N3—N4—N5—C6 | 179 (2) | C8—C7—C6—Cl1 | 177 (2) |
N3—N4—C9—N1 | 1 (2) | C8—C7—C6—N5 | −7 (4) |
N3—N4—C9—C8 | −180 (2) |
C4H2ClN5 | Dx = 1.674 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 802 reflections |
a = 7.0156 (18) Å | θ = 3.1–19.8° |
b = 8.7539 (8) Å | µ = 0.53 mm−1 |
c = 10.0529 (13) Å | T = 296 K |
V = 617.39 (19) Å3 | Plate, colorless |
Z = 4 | 0.28 × 0.22 × 0.10 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 923 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 431 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.188 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 28.6°, θmin = 3.1° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −6→6 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −11→11 |
Tmin = 0.491, Tmax = 1.000 | l = −11→12 |
4557 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.062 | w = 1/[σ2(Fo2) + (0.0207P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.123 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.23 e Å−3 |
923 reflections | Δρmin = −0.18 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 119 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: −0.1 (3) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.20 (2) GPa (200000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.2913 (5) | 0.3347 (2) | 0.3215 (2) | 0.0783 (13) | |
N4 | 0.3543 (17) | 0.7480 (8) | 0.4127 (8) | 0.050 (4) | |
N5 | 0.3672 (16) | 0.5962 (9) | 0.4190 (7) | 0.052 (3) | |
N3 | 0.4285 (13) | 0.8417 (10) | 0.5064 (6) | 0.070 (3) | |
N2 | 0.3876 (19) | 0.9804 (9) | 0.4631 (10) | 0.079 (5) | |
N1 | 0.2922 (18) | 0.9827 (8) | 0.3487 (8) | 0.065 (4) | |
C9 | 0.2755 (15) | 0.8332 (10) | 0.3177 (8) | 0.043 (3) | |
C7 | 0.201 (2) | 0.6029 (10) | 0.2088 (8) | 0.063 (4) | |
H7 | 0.149029 | 0.545775 | 0.139895 | 0.075* | |
C6 | 0.2889 (18) | 0.5305 (8) | 0.3183 (11) | 0.052 (4) | |
C8 | 0.1956 (19) | 0.7558 (10) | 0.2062 (9) | 0.060 (4) | |
H8 | 0.142124 | 0.808787 | 0.135276 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.087 (4) | 0.0470 (13) | 0.101 (2) | −0.001 (2) | 0.0258 (16) | 0.0008 (15) |
N4 | 0.051 (13) | 0.050 (5) | 0.048 (6) | −0.002 (5) | −0.001 (4) | 0.001 (4) |
N5 | 0.055 (11) | 0.047 (5) | 0.053 (6) | 0.000 (5) | 0.001 (4) | 0.005 (4) |
N3 | 0.081 (11) | 0.077 (6) | 0.053 (5) | −0.003 (7) | −0.013 (4) | −0.019 (6) |
N2 | 0.089 (15) | 0.053 (5) | 0.096 (8) | −0.011 (6) | 0.003 (6) | −0.019 (5) |
N1 | 0.068 (13) | 0.057 (5) | 0.069 (7) | −0.001 (6) | −0.001 (5) | −0.005 (5) |
C9 | 0.040 (11) | 0.043 (5) | 0.046 (5) | 0.004 (7) | −0.001 (4) | 0.000 (6) |
C7 | 0.092 (15) | 0.059 (5) | 0.037 (7) | −0.005 (7) | −0.005 (5) | −0.006 (4) |
C6 | 0.056 (13) | 0.039 (5) | 0.062 (7) | 0.003 (6) | 0.015 (6) | 0.001 (5) |
C8 | 0.068 (15) | 0.073 (6) | 0.040 (7) | 0.002 (7) | 0.000 (5) | 0.009 (5) |
Cl1—C6 | 1.715 (7) | N1—C9 | 1.351 (9) |
N4—N5 | 1.333 (7) | C9—C8 | 1.424 (12) |
N4—N3 | 1.354 (9) | C7—H7 | 0.9300 |
N4—C9 | 1.332 (10) | C7—C6 | 1.411 (12) |
N5—C6 | 1.288 (12) | C7—C8 | 1.339 (9) |
N3—N2 | 1.321 (9) | C8—H8 | 0.9300 |
N2—N1 | 1.331 (11) | ||
N5—N4—N3 | 123.0 (9) | C6—C7—H7 | 120.8 |
C9—N4—N5 | 128.4 (9) | C8—C7—H7 | 120.8 |
C9—N4—N3 | 108.6 (7) | C8—C7—C6 | 118.5 (9) |
C6—N5—N4 | 112.2 (8) | N5—C6—Cl1 | 115.3 (8) |
N2—N3—N4 | 104.1 (7) | N5—C6—C7 | 126.8 (8) |
N3—N2—N1 | 114.0 (7) | C7—C6—Cl1 | 117.9 (8) |
N2—N1—C9 | 103.2 (7) | C9—C8—H8 | 121.7 |
N4—C9—N1 | 110.0 (8) | C7—C8—C9 | 116.6 (10) |
N4—C9—C8 | 117.5 (8) | C7—C8—H8 | 121.7 |
N1—C9—C8 | 132.6 (9) | ||
N4—N5—C6—Cl1 | −177.7 (9) | N3—N2—N1—C9 | −1.0 (13) |
N4—N5—C6—C7 | 1.5 (19) | N2—N1—C9—N4 | 1.5 (12) |
N4—N3—N2—N1 | 0.1 (14) | N2—N1—C9—C8 | −177.3 (13) |
N4—C9—C8—C7 | 2.0 (19) | N1—C9—C8—C7 | −179.2 (12) |
N5—N4—N3—N2 | 179.3 (11) | C9—N4—N5—C6 | −1 (2) |
N5—N4—C9—N1 | −179.9 (12) | C9—N4—N3—N2 | 0.8 (13) |
N5—N4—C9—C8 | −1 (2) | C6—C7—C8—C9 | −1 (2) |
N3—N4—N5—C6 | −179.0 (10) | C8—C7—C6—Cl1 | 178.8 (11) |
N3—N4—C9—N1 | −1.5 (13) | C8—C7—C6—N5 | 0 (2) |
N3—N4—C9—C8 | 177.5 (9) |
C4H2ClN5 | Dx = 1.700 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1343 reflections |
a = 6.9235 (13) Å | θ = 4.2–22.3° |
b = 8.7578 (5) Å | µ = 0.54 mm−1 |
c = 10.0265 (11) Å | T = 296 K |
V = 607.95 (14) Å3 | Plate, colorless |
Z = 4 | 0.26 × 0.22 × 0.16 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 815 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 621 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.4°, θmin = 4.3° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −6→6 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −11→11 |
Tmin = 0.318, Tmax = 1.000 | l = −11→11 |
3805 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0262P)2 + 0.2376P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.14 e Å−3 |
815 reflections | Δρmin = −0.13 e Å−3 |
91 parameters | Absolute structure: Flack x determined using 201 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). |
0 restraints | Absolute structure parameter: 0.16 (7) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.30 (2) GPa (300000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.2930 (3) | 0.33337 (13) | 0.32396 (16) | 0.0680 (7) | |
N4 | 0.3534 (9) | 0.7503 (4) | 0.4126 (5) | 0.0402 (17) | |
N5 | 0.3681 (9) | 0.5960 (5) | 0.4211 (5) | 0.0504 (18) | |
N3 | 0.4245 (8) | 0.8417 (5) | 0.5086 (4) | 0.0620 (17) | |
N2 | 0.3858 (11) | 0.9800 (5) | 0.4647 (6) | 0.070 (2) | |
N1 | 0.2907 (11) | 0.9822 (5) | 0.3483 (6) | 0.062 (2) | |
C9 | 0.2740 (9) | 0.8339 (5) | 0.3152 (5) | 0.0408 (16) | |
C7 | 0.2020 (11) | 0.6027 (6) | 0.2094 (5) | 0.049 (2) | |
H7 | 0.151171 | 0.545085 | 0.139791 | 0.059* | |
C6 | 0.2875 (11) | 0.5300 (5) | 0.3190 (6) | 0.0438 (18) | |
C8 | 0.1937 (11) | 0.7561 (6) | 0.2052 (6) | 0.050 (2) | |
H8 | 0.138187 | 0.807947 | 0.133834 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0723 (19) | 0.0372 (6) | 0.0945 (13) | −0.0008 (10) | 0.0255 (9) | −0.0024 (8) |
N4 | 0.036 (6) | 0.043 (2) | 0.042 (3) | −0.004 (2) | −0.004 (2) | 0.001 (2) |
N5 | 0.067 (6) | 0.041 (2) | 0.043 (3) | 0.002 (3) | 0.000 (2) | 0.007 (2) |
N3 | 0.076 (6) | 0.063 (3) | 0.047 (4) | −0.008 (4) | −0.010 (2) | −0.011 (3) |
N2 | 0.084 (8) | 0.053 (3) | 0.073 (5) | −0.009 (3) | 0.009 (3) | −0.016 (3) |
N1 | 0.077 (7) | 0.041 (2) | 0.068 (4) | 0.000 (3) | 0.008 (3) | −0.004 (2) |
C9 | 0.050 (6) | 0.037 (2) | 0.036 (3) | 0.001 (3) | 0.004 (2) | 0.005 (3) |
C7 | 0.053 (7) | 0.054 (3) | 0.040 (4) | −0.007 (3) | 0.000 (3) | −0.011 (2) |
C6 | 0.050 (7) | 0.035 (2) | 0.046 (4) | 0.001 (3) | 0.009 (3) | −0.001 (3) |
C8 | 0.053 (8) | 0.060 (3) | 0.038 (4) | 0.004 (3) | −0.004 (3) | 0.008 (3) |
Cl1—C6 | 1.723 (4) | N1—C9 | 1.346 (6) |
N4—N5 | 1.358 (5) | C9—C8 | 1.411 (8) |
N4—N3 | 1.346 (6) | C7—H7 | 0.9300 |
N4—C9 | 1.339 (6) | C7—C6 | 1.401 (8) |
N5—C6 | 1.301 (7) | C7—C8 | 1.346 (6) |
N3—N2 | 1.317 (6) | C8—H8 | 0.9300 |
N2—N1 | 1.340 (8) | ||
N3—N4—N5 | 121.3 (5) | C6—C7—H7 | 120.1 |
C9—N4—N5 | 128.4 (5) | C8—C7—H7 | 120.1 |
C9—N4—N3 | 110.3 (4) | C8—C7—C6 | 119.7 (5) |
C6—N5—N4 | 111.1 (5) | N5—C6—Cl1 | 114.3 (4) |
N2—N3—N4 | 103.5 (5) | N5—C6—C7 | 126.6 (4) |
N3—N2—N1 | 113.9 (4) | C7—C6—Cl1 | 119.1 (5) |
N2—N1—C9 | 104.1 (5) | C9—C8—H8 | 121.9 |
N4—C9—N1 | 108.2 (5) | C7—C8—C9 | 116.1 (6) |
N4—C9—C8 | 117.9 (4) | C7—C8—H8 | 121.9 |
N1—C9—C8 | 133.8 (5) | ||
N4—N5—C6—Cl1 | −178.2 (5) | N3—N2—N1—C9 | −1.9 (8) |
N4—N5—C6—C7 | 2.5 (11) | N2—N1—C9—N4 | 1.5 (8) |
N4—N3—N2—N1 | 1.4 (8) | N2—N1—C9—C8 | −178.6 (8) |
N4—C9—C8—C7 | 1.0 (11) | N1—C9—C8—C7 | −178.9 (7) |
N5—N4—N3—N2 | 179.2 (6) | C9—N4—N5—C6 | −1.5 (11) |
N5—N4—C9—N1 | 179.7 (7) | C9—N4—N3—N2 | −0.3 (7) |
N5—N4—C9—C8 | −0.1 (11) | C6—C7—C8—C9 | −0.1 (12) |
N3—N4—N5—C6 | 179.0 (6) | C8—C7—C6—Cl1 | 178.9 (6) |
N3—N4—C9—N1 | −0.8 (8) | C8—C7—C6—N5 | −1.8 (13) |
N3—N4—C9—C8 | 179.3 (6) |
C4H2ClN5 | Dx = 1.778 Mg m−3 |
Mr = 155.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 734 reflections |
a = 10.668 (2) Å | θ = 4.4–23.1° |
b = 6.2042 (7) Å | µ = 0.57 mm−1 |
c = 8.780 (4) Å | T = 296 K |
V = 581.1 (3) Å3 | Plate, colorless |
Z = 4 | 0.40 × 0.25 × 0.20 mm |
F(000) = 312 |
KM-4 CCD diffractometer | 321 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 225 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.1°, θmin = 4.5° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −11→12 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −7→7 |
Tmin = 0.710, Tmax = 1.000 | l = −6→6 |
2992 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0468P)2 + 0.1183P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
321 reflections | Δρmax = 0.16 e Å−3 |
61 parameters | Δρmin = −0.13 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.54 GPa (540000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.61432 (15) | 0.750000 | 0.9123 (3) | 0.0670 (10) | |
C6 | 0.6267 (4) | 0.750000 | 0.7208 (11) | 0.037 (3) | |
C7 | 0.7478 (5) | 0.750000 | 0.6485 (8) | 0.053 (3) | |
H7 | 0.820363 | 0.750000 | 0.707122 | 0.063* | |
N6 | 0.5355 (4) | 0.750000 | 0.4951 (10) | 0.031 (3) | |
N1 | 0.6145 (5) | 0.750000 | 0.2652 (9) | 0.057 (3) | |
N5 | 0.5194 (4) | 0.750000 | 0.6431 (8) | 0.037 (2) | |
C8 | 0.7552 (5) | 0.750000 | 0.4979 (10) | 0.050 (3) | |
H8 | 0.832933 | 0.750000 | 0.449951 | 0.060* | |
N2 | 0.4922 (8) | 0.750000 | 0.2641 (15) | 0.063 (3) | |
N3 | 0.4373 (6) | 0.750000 | 0.3954 (14) | 0.063 (4) | |
C9 | 0.6447 (6) | 0.750000 | 0.4118 (12) | 0.054 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0895 (14) | 0.0686 (8) | 0.043 (3) | 0.000 | −0.0039 (8) | 0.000 |
C6 | 0.067 (6) | 0.038 (2) | 0.006 (14) | 0.000 | 0.001 (3) | 0.000 |
C7 | 0.022 (4) | 0.055 (2) | 0.081 (13) | 0.000 | −0.008 (2) | 0.000 |
N6 | 0.043 (4) | 0.0382 (18) | 0.011 (11) | 0.000 | −0.003 (3) | 0.000 |
N1 | 0.078 (5) | 0.054 (2) | 0.040 (11) | 0.000 | −0.012 (4) | 0.000 |
N5 | 0.038 (4) | 0.0415 (18) | 0.031 (9) | 0.000 | −0.002 (3) | 0.000 |
C8 | 0.040 (5) | 0.056 (2) | 0.055 (11) | 0.000 | 0.008 (3) | 0.000 |
N2 | 0.080 (6) | 0.053 (2) | 0.057 (14) | 0.000 | −0.012 (4) | 0.000 |
N3 | 0.044 (5) | 0.048 (2) | 0.097 (15) | 0.000 | −0.022 (3) | 0.000 |
C9 | 0.032 (6) | 0.038 (2) | 0.092 (19) | 0.000 | 0.001 (3) | 0.000 |
Cl1—C6 | 1.687 (9) | N6—C9 | 1.375 (12) |
C6—C7 | 1.440 (10) | N1—N2 | 1.305 (9) |
C6—N5 | 1.332 (8) | N1—C9 | 1.327 (12) |
C7—H7 | 0.9300 | C8—H8 | 0.9300 |
C7—C8 | 1.324 (8) | C8—C9 | 1.401 (11) |
N6—N5 | 1.310 (8) | N2—N3 | 1.293 (15) |
N6—N3 | 1.366 (13) | ||
C7—C6—Cl1 | 120.7 (5) | N6—N5—C6 | 113.3 (5) |
N5—C6—Cl1 | 116.3 (5) | C7—C8—H8 | 120.4 |
N5—C6—C7 | 123.0 (8) | C7—C8—C9 | 119.2 (5) |
C6—C7—H7 | 120.2 | C9—C8—H8 | 120.4 |
C8—C7—C6 | 119.6 (5) | N3—N2—N1 | 116.5 (13) |
C8—C7—H7 | 120.2 | N2—N3—N6 | 102.9 (7) |
N5—N6—N3 | 122.3 (7) | N6—C9—C8 | 115.2 (9) |
N5—N6—C9 | 129.7 (5) | N1—C9—N6 | 108.1 (5) |
N3—N6—C9 | 108.0 (9) | N1—C9—C8 | 136.7 (8) |
N2—N1—C9 | 104.5 (7) | ||
Cl1—C6—C7—C8 | 180.000 (2) | N5—N6—C9—C8 | 0.000 (2) |
Cl1—C6—N5—N6 | 180.000 (1) | N2—N1—C9—N6 | 0.000 (1) |
C6—C7—C8—C9 | 0.000 (2) | N2—N1—C9—C8 | 180.000 (1) |
C7—C6—N5—N6 | 0.000 (1) | N3—N6—N5—C6 | 180.000 (1) |
C7—C8—C9—N6 | 0.000 (2) | N3—N6—C9—N1 | 0.000 (1) |
C7—C8—C9—N1 | 180.000 (1) | N3—N6—C9—C8 | 180.000 (1) |
N1—N2—N3—N6 | 0.000 (2) | C9—N6—N5—C6 | 0.000 (2) |
N5—C6—C7—C8 | 0.000 (2) | C9—N6—N3—N2 | 0.000 (2) |
N5—N6—N3—N2 | 180.000 (1) | C9—N1—N2—N3 | 0.000 (1) |
N5—N6—C9—N1 | 180.000 (1) |
C4H2ClN5 | F(000) = 312 |
Mr = 155.56 | Dx = 1.766 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.878 (12) Å | Cell parameters from 734 reflections |
b = 13.2446 (15) Å | θ = 3.9–21.9° |
c = 5.7134 (11) Å | µ = 0.56 mm−1 |
β = 101.14 (6)° | T = 296 K |
V = 584.9 (9) Å3 | Plate, colorless |
Z = 4 | 0.39 × 0.28 × 0.16 mm |
KM-4 CCD diffractometer | 424 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 290 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.4°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −4→3 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→17 |
Tmin = 0.338, Tmax = 1.000 | l = −7→7 |
3430 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0358P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
424 reflections | Δρmax = 0.10 e Å−3 |
91 parameters | Δρmin = −0.11 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.17 (2) GPa (170000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.0272 (7) | 0.33900 (8) | 0.8387 (3) | 0.082 (3) | |
N4 | 0.563 (6) | 0.3541 (4) | 0.536 (3) | 0.068 (19) | |
N5 | 0.693 (4) | 0.3316 (3) | 0.6974 (14) | 0.031 (11) | |
N1 | 0.390 (4) | 0.4160 (6) | 0.2271 (14) | 0.073 (14) | |
N3 | 0.398 (4) | 0.3381 (5) | 0.570 (3) | 0.050 (15) | |
N2 | 0.292 (2) | 0.3752 (3) | 0.3821 (11) | 0.067 (10) | |
C8 | 0.712 (3) | 0.4242 (3) | 0.2574 (17) | 0.044 (11) | |
H8 | 0.715217 | 0.455216 | 0.112459 | 0.053* | |
C6 | 0.850 (3) | 0.3573 (4) | 0.636 (2) | 0.049 (13) | |
C9 | 0.549 (6) | 0.4002 (6) | 0.322 (2) | 0.062 (19) | |
C7 | 0.857 (3) | 0.4010 (3) | 0.4098 (10) | 0.054 (13) | |
H7 | 0.964161 | 0.413346 | 0.368643 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.129 (10) | 0.0651 (7) | 0.0515 (10) | 0.0042 (14) | 0.017 (3) | 0.0088 (7) |
N4 | 0.13 (6) | 0.034 (2) | 0.044 (8) | 0.003 (8) | 0.040 (16) | 0.002 (3) |
N5 | 0.01 (4) | 0.040 (2) | 0.037 (4) | −0.006 (5) | −0.006 (10) | −0.001 (2) |
N1 | 0.13 (4) | 0.039 (3) | 0.052 (5) | 0.013 (5) | 0.016 (12) | 0.004 (3) |
N3 | 0.05 (5) | 0.050 (2) | 0.051 (5) | −0.003 (6) | 0.004 (15) | −0.005 (3) |
N2 | 0.09 (3) | 0.051 (2) | 0.065 (4) | 0.005 (5) | 0.011 (10) | −0.007 (3) |
C8 | 0.06 (3) | 0.038 (2) | 0.037 (4) | −0.003 (5) | 0.021 (11) | 0.001 (2) |
C6 | 0.07 (4) | 0.035 (2) | 0.048 (6) | 0.000 (6) | 0.023 (14) | 0.000 (2) |
C9 | 0.12 (6) | 0.027 (3) | 0.039 (7) | 0.014 (9) | 0.027 (19) | 0.003 (3) |
C7 | 0.09 (4) | 0.040 (2) | 0.035 (4) | 0.006 (5) | 0.014 (10) | 0.001 (2) |
Cl1—C6 | 1.65 (2) | N3—N2 | 1.32 (3) |
N4—N5 | 1.27 (6) | C8—H8 | 0.9300 |
N4—N3 | 1.37 (6) | C8—C9 | 1.44 (6) |
N4—C9 | 1.351 (14) | C8—C7 | 1.34 (4) |
N5—C6 | 1.39 (4) | C6—C7 | 1.426 (12) |
N1—N2 | 1.39 (3) | C7—H7 | 0.9300 |
N1—C9 | 1.28 (6) | ||
N5—N4—N3 | 121.0 (11) | N5—C6—Cl1 | 117.3 (10) |
N5—N4—C9 | 133 (5) | N5—C6—C7 | 122 (3) |
C9—N4—N3 | 106 (4) | C7—C6—Cl1 | 121.0 (19) |
N4—N5—C6 | 112.8 (14) | N4—C9—C8 | 114 (4) |
C9—N1—N2 | 106.3 (12) | N1—C9—N4 | 111 (4) |
N2—N3—N4 | 107.0 (16) | N1—C9—C8 | 134.4 (13) |
N3—N2—N1 | 108.9 (18) | C8—C7—C6 | 120 (2) |
C9—C8—H8 | 120.7 | C8—C7—H7 | 120.0 |
C7—C8—H8 | 120.7 | C6—C7—H7 | 120.0 |
C7—C8—C9 | 118.6 (9) | ||
Cl1—C6—C7—C8 | −173.5 (4) | N3—N4—C9—C8 | 179.3 (5) |
N4—N5—C6—Cl1 | 175.9 (3) | N2—N1—C9—N4 | −2.0 (12) |
N4—N5—C6—C7 | −1.9 (7) | N2—N1—C9—C8 | −178.9 (7) |
N4—N3—N2—N1 | −0.5 (6) | C9—N4—N5—C6 | −2.3 (8) |
N5—N4—N3—N2 | 175.5 (3) | C9—N4—N3—N2 | −0.6 (7) |
N5—N4—C9—N1 | −173.7 (9) | C9—N1—N2—N3 | 1.6 (9) |
N5—N4—C9—C8 | 3.8 (9) | C9—C8—C7—C6 | −2.6 (7) |
N5—C6—C7—C8 | 4.3 (6) | C7—C8—C9—N4 | −0.9 (8) |
N3—N4—N5—C6 | −177.3 (4) | C7—C8—C9—N1 | 175.9 (11) |
N3—N4—C9—N1 | 1.7 (11) |
C4H2ClN5 | F(000) = 312 |
Mr = 155.56 | Dx = 1.775 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.885 (6) Å | Cell parameters from 1648 reflections |
b = 13.2116 (6) Å | θ = 4.7–26.6° |
c = 5.6949 (3) Å | µ = 0.57 mm−1 |
β = 101.20 (2)° | T = 296 K |
V = 582.0 (4) Å3 | Plate, colorless |
Z = 4 | 0.28 × 0.26 × 0.23 mm |
KM-4 CCD diffractometer | 361 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 310 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.4°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −2→2 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→17 |
Tmin = 0.394, Tmax = 1.000 | l = −7→7 |
3466 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0299P)2 + 0.0432P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
361 reflections | Δρmax = 0.07 e Å−3 |
91 parameters | Δρmin = −0.06 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.20 (2) GPa (200000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.0288 (3) | 0.33898 (4) | 0.84022 (13) | 0.062 (2) | |
N4 | 0.556 (4) | 0.3534 (3) | 0.5363 (13) | 0.041 (14) | |
N5 | 0.703 (2) | 0.3316 (2) | 0.7002 (5) | 0.033 (8) | |
N1 | 0.388 (2) | 0.4147 (3) | 0.2274 (8) | 0.047 (9) | |
N3 | 0.398 (3) | 0.3372 (4) | 0.5736 (17) | 0.051 (14) | |
N2 | 0.2966 (14) | 0.3751 (2) | 0.3832 (8) | 0.066 (9) | |
C8 | 0.704 (2) | 0.4245 (2) | 0.2549 (10) | 0.039 (10) | |
H8 | 0.701587 | 0.455311 | 0.107460 | 0.047* | |
C6 | 0.843 (2) | 0.3580 (2) | 0.6325 (15) | 0.058 (10) | |
C9 | 0.561 (4) | 0.4008 (3) | 0.3254 (8) | 0.067 (17) | |
C7 | 0.8624 (18) | 0.40180 (18) | 0.4103 (5) | 0.051 (11) | |
H7 | 0.969486 | 0.414336 | 0.370922 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.074 (6) | 0.0632 (4) | 0.0441 (4) | 0.0034 (6) | 0.0003 (11) | 0.0082 (2) |
N4 | 0.05 (4) | 0.0330 (13) | 0.036 (3) | −0.003 (4) | 0.013 (9) | −0.0006 (14) |
N5 | 0.02 (3) | 0.0380 (12) | 0.0292 (15) | 0.003 (3) | −0.014 (7) | 0.0022 (10) |
N1 | 0.05 (3) | 0.0421 (13) | 0.046 (2) | 0.002 (3) | −0.001 (5) | −0.0011 (14) |
N3 | 0.05 (4) | 0.0490 (17) | 0.055 (4) | −0.004 (5) | 0.020 (10) | −0.0020 (15) |
N2 | 0.09 (3) | 0.0487 (13) | 0.0576 (19) | 0.011 (4) | 0.006 (6) | −0.0056 (13) |
C8 | 0.05 (3) | 0.0365 (12) | 0.0247 (15) | 0.004 (3) | −0.005 (6) | 0.0035 (10) |
C6 | 0.11 (3) | 0.0301 (13) | 0.038 (2) | −0.008 (4) | 0.026 (7) | −0.0009 (12) |
C9 | 0.14 (5) | 0.0312 (14) | 0.027 (3) | −0.004 (6) | 0.019 (11) | 0.0026 (18) |
C7 | 0.07 (3) | 0.0384 (11) | 0.0349 (16) | −0.005 (4) | 0.001 (4) | −0.0033 (11) |
Cl1—C6 | 1.713 (15) | N3—N2 | 1.316 (18) |
N4—N5 | 1.37 (4) | C8—H8 | 0.9300 |
N4—N3 | 1.32 (4) | C8—C9 | 1.31 (4) |
N4—C9 | 1.362 (8) | C8—C7 | 1.417 (18) |
N5—C6 | 1.28 (3) | C6—C7 | 1.426 (8) |
N1—N2 | 1.353 (15) | C7—H7 | 0.9300 |
N1—C9 | 1.38 (4) | ||
N3—N4—N5 | 123.9 (9) | N5—C6—Cl1 | 114.9 (8) |
N3—N4—C9 | 114 (3) | N5—C6—C7 | 128.5 (16) |
C9—N4—N5 | 122 (3) | C7—C6—Cl1 | 116.6 (11) |
C6—N5—N4 | 113.8 (7) | N4—C9—N1 | 103 (3) |
N2—N1—C9 | 107.0 (8) | C8—C9—N4 | 124 (3) |
N4—N3—N2 | 104.4 (9) | C8—C9—N1 | 133.4 (5) |
N3—N2—N1 | 111.7 (11) | C8—C7—C6 | 114.0 (13) |
C9—C8—H8 | 121.1 | C8—C7—H7 | 123.0 |
C9—C8—C7 | 117.9 (8) | C6—C7—H7 | 123.0 |
C7—C8—H8 | 121.1 | ||
Cl1—C6—C7—C8 | −174.3 (2) | N3—N4—C9—C8 | 179.5 (4) |
N4—N5—C6—Cl1 | 176.2 (3) | N2—N1—C9—N4 | −0.2 (3) |
N4—N5—C6—C7 | −2.9 (5) | N2—N1—C9—C8 | −179.4 (3) |
N4—N3—N2—N1 | 0.0 (5) | C9—N4—N5—C6 | −1.5 (5) |
N5—N4—N3—N2 | 175.4 (2) | C9—N4—N3—N2 | −0.1 (6) |
N5—N4—C9—N1 | −175.4 (4) | C9—N1—N2—N3 | 0.1 (4) |
N5—N4—C9—C8 | 3.9 (6) | C9—C8—C7—C6 | −2.1 (3) |
N5—C6—C7—C8 | 4.7 (5) | C7—C8—C9—N4 | −1.8 (5) |
N3—N4—N5—C6 | −176.7 (6) | C7—C8—C9—N1 | 177.3 (3) |
N3—N4—C9—N1 | 0.2 (6) |
C4H2ClN5 | F(000) = 312 |
Mr = 155.56 | Dx = 1.789 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.864 (4) Å | Cell parameters from 711 reflections |
b = 13.1668 (6) Å | θ = 4.3–22.0° |
c = 5.6843 (4) Å | µ = 0.57 mm−1 |
β = 101.159 (16)° | T = 296 K |
V = 577.5 (3) Å3 | Colourless, colourless |
Z = 4 | 0.34 × 0.28 × 0.27 mm |
KM-4 CCD diffractometer | 379 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 250 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.1°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −3→3 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.475, Tmax = 1.000 | l = −6→7 |
3307 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0224P)2 + 0.0843P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
379 reflections | Δρmax = 0.10 e Å−3 |
91 parameters | Δρmin = −0.10 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.25 (2) GPa 250000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.0263 (9) | 0.33933 (10) | 0.8415 (3) | 0.077 (4) | |
N4 | 0.559 (9) | 0.3535 (6) | 0.537 (4) | 0.09 (4) | |
N5 | 0.694 (7) | 0.3316 (5) | 0.7005 (17) | 0.05 (2) | |
N1 | 0.392 (6) | 0.4159 (9) | 0.2282 (19) | 0.08 (2) | |
N3 | 0.402 (6) | 0.3372 (7) | 0.574 (4) | 0.06 (2) | |
N2 | 0.297 (3) | 0.3746 (4) | 0.3847 (12) | 0.075 (15) | |
C8 | 0.708 (5) | 0.4246 (4) | 0.256 (2) | 0.045 (16) | |
H8 | 0.709793 | 0.455552 | 0.109945 | 0.055* | |
C6 | 0.847 (5) | 0.3575 (6) | 0.637 (3) | 0.07 (2) | |
C9 | 0.547 (9) | 0.4010 (8) | 0.323 (3) | 0.08 (3) | |
C7 | 0.860 (3) | 0.4015 (5) | 0.4085 (15) | 0.04 (2) | |
H7 | 0.966977 | 0.413585 | 0.366676 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.121 (14) | 0.0616 (7) | 0.0497 (9) | 0.0041 (18) | 0.020 (3) | 0.0077 (8) |
N4 | 0.20 (11) | 0.034 (3) | 0.047 (10) | 0.011 (13) | 0.05 (2) | 0.000 (4) |
N5 | 0.06 (7) | 0.042 (2) | 0.032 (4) | −0.005 (9) | −0.011 (15) | −0.002 (3) |
N1 | 0.15 (7) | 0.041 (4) | 0.055 (7) | 0.008 (8) | 0.023 (18) | 0.000 (4) |
N3 | 0.07 (7) | 0.049 (3) | 0.047 (8) | −0.004 (10) | 0.005 (19) | −0.004 (4) |
N2 | 0.12 (5) | 0.047 (3) | 0.061 (4) | 0.010 (7) | 0.017 (12) | −0.005 (3) |
C8 | 0.07 (5) | 0.039 (2) | 0.029 (5) | 0.012 (8) | 0.016 (15) | 0.000 (3) |
C6 | 0.14 (7) | 0.034 (3) | 0.046 (8) | 0.006 (10) | 0.039 (19) | 0.001 (3) |
C9 | 0.18 (10) | 0.029 (3) | 0.045 (9) | 0.011 (16) | 0.07 (3) | 0.004 (5) |
C7 | 0.05 (6) | 0.038 (3) | 0.040 (6) | 0.005 (9) | 0.027 (14) | 0.000 (3) |
Cl1—C6 | 1.66 (4) | N3—N2 | 1.32 (4) |
N4—N5 | 1.30 (9) | C8—H8 | 0.9300 |
N4—N3 | 1.31 (9) | C8—C9 | 1.43 (9) |
N4—C9 | 1.355 (18) | C8—C7 | 1.37 (5) |
N5—C6 | 1.37 (7) | C6—C7 | 1.44 (2) |
N1—N2 | 1.38 (4) | C7—H7 | 0.9300 |
N1—C9 | 1.25 (10) | ||
N5—N4—N3 | 121 (2) | N5—C6—Cl1 | 116.8 (16) |
N5—N4—C9 | 131 (7) | N5—C6—C7 | 124 (4) |
N3—N4—C9 | 108 (7) | C7—C6—Cl1 | 119 (3) |
N4—N5—C6 | 113.2 (19) | N4—C9—C8 | 115 (6) |
C9—N1—N2 | 105.1 (16) | N1—C9—N4 | 111 (6) |
N4—N3—N2 | 106 (2) | N1—C9—C8 | 133.9 (16) |
N3—N2—N1 | 110 (2) | C8—C7—C6 | 117 (3) |
C9—C8—H8 | 120.1 | C8—C7—H7 | 121.6 |
C7—C8—H8 | 120.1 | C6—C7—H7 | 121.6 |
C7—C8—C9 | 119.9 (12) | ||
Cl1—C6—C7—C8 | −173.4 (6) | N3—N4—C9—C8 | 179.9 (8) |
N4—N5—C6—Cl1 | 176.1 (5) | N2—N1—C9—N4 | −1.1 (15) |
N4—N5—C6—C7 | −2.0 (9) | N2—N1—C9—C8 | −179.9 (8) |
N4—N3—N2—N1 | −0.5 (9) | C9—N4—N5—C6 | −3.3 (11) |
N5—N4—N3—N2 | 175.1 (4) | C9—N4—N3—N2 | −0.2 (11) |
N5—N4—C9—N1 | −173.8 (12) | C9—N1—N2—N3 | 1.0 (12) |
N5—N4—C9—C8 | 5.2 (12) | C9—C8—C7—C6 | −2.6 (9) |
N5—C6—C7—C8 | 4.7 (9) | C7—C8—C9—N4 | −1.7 (11) |
N3—N4—N5—C6 | −177.4 (9) | C7—C8—C9—N1 | 177.0 (13) |
N3—N4—C9—N1 | 0.9 (15) |
C4H2ClN5 | F(000) = 312 |
Mr = 155.56 | Dx = 1.808 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.824 (8) Å | Cell parameters from 822 reflections |
b = 13.1476 (8) Å | θ = 3.1–22.1° |
c = 5.6603 (6) Å | µ = 0.58 mm−1 |
β = 101.05 (4)° | T = 296 K |
V = 571.4 (6) Å3 | Plate, colourless |
Z = 4 | 0.38 × 0.38 × 0.28 mm |
KM-4 CCD diffractometer | 366 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 230 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 27.9°, θmin = 3.1° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −3→3 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −17→17 |
Tmin = 0.769, Tmax = 1.000 | l = −7→7 |
3822 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.060 | H-atom parameters constrained |
wR(F2) = 0.177 | w = 1/[σ2(Fo2) + (0.0673P)2 + 1.1248P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
366 reflections | Δρmax = 0.22 e Å−3 |
41 parameters | Δρmin = −0.29 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.33 (2) GPa (330000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.0289 (12) | 0.33956 (14) | 0.8424 (5) | 0.0582 (9)* | |
N4 | 0.549 (5) | 0.3528 (4) | 0.5375 (19) | 0.0364 (18)* | |
N5 | 0.696 (5) | 0.3320 (4) | 0.7036 (19) | 0.0384 (17)* | |
N1 | 0.389 (3) | 0.4153 (5) | 0.2290 (17) | 0.050 (2)* | |
N3 | 0.396 (4) | 0.3360 (5) | 0.575 (2) | 0.054 (2)* | |
N2 | 0.299 (3) | 0.3742 (5) | 0.3873 (16) | 0.055 (2)* | |
C8 | 0.706 (3) | 0.4251 (5) | 0.2579 (17) | 0.0368 (19)* | |
H8 | 0.708544 | 0.457206 | 0.112389 | 0.044* | |
C6 | 0.838 (5) | 0.3573 (4) | 0.6308 (19) | 0.033 (2)* | |
C9 | 0.542 (6) | 0.4008 (5) | 0.322 (2) | 0.035 (2)* | |
C7 | 0.856 (4) | 0.4013 (4) | 0.4093 (16) | 0.035 (2)* | |
H7 | 0.964682 | 0.413124 | 0.369796 | 0.042* |
Cl1—C6 | 1.74 (3) | N3—N2 | 1.28 (3) |
N4—N5 | 1.37 (5) | C8—H8 | 0.9300 |
N4—N3 | 1.28 (5) | C8—C9 | 1.43 (5) |
N4—C9 | 1.367 (13) | C8—C7 | 1.35 (4) |
N5—C6 | 1.30 (5) | C6—C7 | 1.412 (11) |
N1—N2 | 1.35 (2) | C7—H7 | 0.9300 |
N1—C9 | 1.22 (5) | ||
N5—N4—C9 | 126 (4) | N5—C6—Cl1 | 114.8 (11) |
N3—N4—N5 | 122.9 (9) | N5—C6—C7 | 128 (3) |
N3—N4—C9 | 110 (3) | C7—C6—Cl1 | 117 (2) |
C6—N5—N4 | 112.9 (8) | N4—C9—C8 | 116 (4) |
C9—N1—N2 | 103.9 (14) | N1—C9—N4 | 109 (3) |
N4—N3—N2 | 102.4 (13) | N1—C9—C8 | 134.8 (10) |
N3—N2—N1 | 114 (2) | C8—C7—C6 | 116 (3) |
C9—C8—H8 | 119.9 | C8—C7—H7 | 122.2 |
C7—C8—H8 | 119.9 | C6—C7—H7 | 122.2 |
C7—C8—C9 | 120.2 (9) | ||
Cl1—C6—C7—C8 | −172.8 (5) | N3—N4—C9—C8 | 179.4 (6) |
N4—N5—C6—Cl1 | 176.3 (4) | N2—N1—C9—N4 | −1.0 (9) |
N4—N5—C6—C7 | −0.3 (9) | N2—N1—C9—C8 | −178.9 (8) |
N4—N3—N2—N1 | 0.0 (8) | C9—N4—N5—C6 | −4.1 (10) |
N5—N4—N3—N2 | 174.4 (6) | C9—N4—N3—N2 | −0.6 (8) |
N5—N4—C9—N1 | −173.7 (7) | C9—N1—N2—N3 | 0.7 (9) |
N5—N4—C9—C8 | 4.6 (10) | C9—C8—C7—C6 | −3.0 (9) |
N5—C6—C7—C8 | 3.8 (10) | C7—C8—C9—N4 | −0.6 (10) |
N3—N4—N5—C6 | −178.4 (7) | C7—C8—C9—N1 | 177.2 (9) |
N3—N4—C9—N1 | 1.1 (10) |
C4H2ClN5 | F(000) = 312 |
Mr = 155.56 | Dx = 1.826 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.824 (4) Å | Cell parameters from 1140 reflections |
b = 13.0789 (6) Å | θ = 4.0–26.7° |
c = 5.6290 (4) Å | µ = 0.58 mm−1 |
β = 100.793 (19)° | T = 296 K |
V = 565.8 (3) Å3 | Plate, colourless |
Z = 4 | 0.38 × 0.28 × 0.27 mm |
KM-4 CCD diffractometer | 433 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 345 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.3°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −4→4 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.434, Tmax = 1.000 | l = −7→7 |
3186 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.062 | H-atom parameters constrained |
wR(F2) = 0.158 | w = 1/[σ2(Fo2) + (0.0594P)2 + 1.5841P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
433 reflections | Δρmax = 0.39 e Å−3 |
41 parameters | Δρmin = −0.45 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.40 (2) GPa (400000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.0297 (6) | 0.33986 (11) | 0.8469 (3) | 0.0498 (6)* | |
N4 | 0.553 (2) | 0.3530 (3) | 0.5387 (10) | 0.0299 (12)* | |
N5 | 0.6971 (17) | 0.3312 (3) | 0.7051 (10) | 0.0312 (11)* | |
N1 | 0.3853 (19) | 0.4148 (4) | 0.2297 (12) | 0.0424 (16)* | |
N3 | 0.394 (2) | 0.3356 (4) | 0.5771 (11) | 0.0425 (14)* | |
N2 | 0.2928 (17) | 0.3733 (4) | 0.3871 (11) | 0.0457 (14)* | |
C8 | 0.7079 (18) | 0.4256 (4) | 0.2567 (11) | 0.0303 (13)* | |
H8 | 0.711452 | 0.457264 | 0.109814 | 0.036* | |
C6 | 0.841 (2) | 0.3577 (3) | 0.6357 (11) | 0.0282 (13)* | |
C9 | 0.546 (3) | 0.4011 (4) | 0.3234 (13) | 0.0287 (14)* | |
C7 | 0.855 (2) | 0.4019 (3) | 0.4110 (11) | 0.0322 (14)* | |
H7 | 0.963592 | 0.414222 | 0.371132 | 0.039* |
Cl1—C6 | 1.730 (15) | N3—N2 | 1.302 (14) |
N4—N5 | 1.356 (17) | C8—H8 | 0.9300 |
N4—N3 | 1.321 (19) | C8—C9 | 1.42 (2) |
N4—C9 | 1.358 (8) | C8—C7 | 1.344 (19) |
N5—C6 | 1.305 (18) | C6—C7 | 1.415 (8) |
N1—N2 | 1.358 (12) | C7—H7 | 0.9300 |
N1—C9 | 1.28 (2) | ||
N5—N4—C9 | 126.9 (14) | N5—C6—Cl1 | 115.6 (5) |
N3—N4—N5 | 122.6 (6) | N5—C6—C7 | 126.4 (14) |
N3—N4—C9 | 110.3 (15) | C7—C6—Cl1 | 118.0 (12) |
C6—N5—N4 | 113.0 (5) | N4—C9—C8 | 117.0 (15) |
C9—N1—N2 | 106.1 (8) | N1—C9—N4 | 107.5 (15) |
N2—N3—N4 | 104.2 (7) | N1—C9—C8 | 135.5 (7) |
N3—N2—N1 | 111.8 (12) | C8—C7—C6 | 118.0 (14) |
C9—C8—H8 | 120.8 | C8—C7—H7 | 121.0 |
C7—C8—H8 | 120.8 | C6—C7—H7 | 121.0 |
C7—C8—C9 | 118.4 (6) | ||
Cl1—C6—C7—C8 | −173.2 (4) | N3—N4—C9—C8 | 179.7 (4) |
N4—N5—C6—Cl1 | 176.0 (3) | N2—N1—C9—N4 | −1.0 (6) |
N4—N5—C6—C7 | −1.9 (7) | N2—N1—C9—C8 | −179.5 (5) |
N4—N3—N2—N1 | −0.4 (6) | C9—N4—N5—C6 | −2.7 (7) |
N5—N4—N3—N2 | 175.3 (4) | C9—N4—N3—N2 | −0.3 (6) |
N5—N4—C9—N1 | −174.5 (5) | C9—N1—N2—N3 | 0.9 (6) |
N5—N4—C9—C8 | 4.3 (7) | C9—C8—C7—C6 | −2.6 (7) |
N5—C6—C7—C8 | 4.6 (8) | C7—C8—C9—N4 | −1.3 (7) |
N3—N4—N5—C6 | −177.5 (4) | C7—C8—C9—N1 | 177.1 (6) |
N3—N4—C9—N1 | 0.9 (6) |
C4H2ClN5 | F(000) = 312 |
Mr = 155.56 | Dx = 1.850 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.836 (2) Å | Cell parameters from 675 reflections |
b = 12.9703 (12) Å | θ = 4.0–23.0° |
c = 5.5885 (5) Å | µ = 0.59 mm−1 |
β = 100.542 (16)° | T = 296 K |
V = 558.43 (18) Å3 | Plate, colourless |
Z = 4 | 0.34 × 0.30 × 0.26 mm |
KM-4 CCD diffractometer | 359 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 240 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.2°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −3→3 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.544, Tmax = 1.000 | l = −7→6 |
3109 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.019P)2 + 1.8498P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
359 reflections | Δρmax = 0.28 e Å−3 |
41 parameters | Δρmin = −0.26 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.48 (2) GPa 480000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.0317 (9) | 0.34042 (14) | 0.8507 (4) | 0.0517 (7)* | |
N4 | 0.540 (4) | 0.3516 (4) | 0.5395 (15) | 0.0326 (17)* | |
N5 | 0.707 (3) | 0.3304 (4) | 0.7138 (13) | 0.0339 (15)* | |
N1 | 0.385 (3) | 0.4144 (5) | 0.2293 (14) | 0.041 (2)* | |
N3 | 0.401 (3) | 0.3344 (5) | 0.5865 (16) | 0.046 (2)* | |
N2 | 0.294 (3) | 0.3729 (4) | 0.3901 (14) | 0.0491 (19)* | |
C8 | 0.710 (3) | 0.4261 (5) | 0.2584 (15) | 0.0310 (18)* | |
H8 | 0.714611 | 0.458760 | 0.111546 | 0.037* | |
C6 | 0.830 (3) | 0.3572 (4) | 0.6333 (16) | 0.0263 (18)* | |
C9 | 0.544 (5) | 0.4009 (5) | 0.3242 (18) | 0.0291 (19)* | |
C7 | 0.853 (3) | 0.4023 (4) | 0.4091 (13) | 0.0312 (19)* | |
H7 | 0.962580 | 0.413998 | 0.372121 | 0.037* |
Cl1—C6 | 1.82 (3) | N3—N2 | 1.35 (2) |
N4—N5 | 1.51 (4) | C8—H8 | 0.9300 |
N4—N3 | 1.19 (4) | C8—C9 | 1.45 (4) |
N4—C9 | 1.369 (11) | C8—C7 | 1.31 (3) |
N5—C6 | 1.19 (3) | C6—C7 | 1.424 (10) |
N1—N2 | 1.354 (18) | C7—H7 | 0.9300 |
N1—C9 | 1.28 (4) | ||
N3—N4—N5 | 123.1 (9) | N5—C6—Cl1 | 112.2 (10) |
N3—N4—C9 | 117 (3) | N5—C6—C7 | 134 (2) |
C9—N4—N5 | 120 (3) | C7—C6—Cl1 | 113.6 (18) |
C6—N5—N4 | 111.8 (8) | N4—C9—C8 | 120 (3) |
C9—N1—N2 | 105.2 (11) | N1—C9—N4 | 104 (3) |
N4—N3—N2 | 101.9 (12) | N1—C9—C8 | 135.8 (9) |
N3—N2—N1 | 111.5 (19) | C8—C7—C6 | 115 (2) |
C9—C8—H8 | 120.5 | C8—C7—H7 | 122.3 |
C7—C8—H8 | 120.5 | C6—C7—H7 | 122.3 |
C7—C8—C9 | 119.0 (8) | ||
Cl1—C6—C7—C8 | −172.8 (5) | N3—N4—C9—C8 | 178.7 (6) |
N4—N5—C6—Cl1 | 175.9 (4) | N2—N1—C9—N4 | −0.1 (7) |
N4—N5—C6—C7 | −1.6 (10) | N2—N1—C9—C8 | −178.9 (7) |
N4—N3—N2—N1 | −0.7 (7) | C9—N4—N5—C6 | −2.9 (8) |
N5—N4—N3—N2 | 175.1 (5) | C9—N4—N3—N2 | 0.6 (8) |
N5—N4—C9—N1 | −175.0 (6) | C9—N1—N2—N3 | 0.5 (7) |
N5—N4—C9—C8 | 4.0 (9) | C9—C8—C7—C6 | −3.0 (9) |
N5—C6—C7—C8 | 4.7 (10) | C7—C8—C9—N4 | −0.9 (9) |
N3—N4—N5—C6 | −177.2 (7) | C7—C8—C9—N1 | 177.8 (7) |
N3—N4—C9—N1 | −0.3 (9) |
C4H2ClN5 | F(000) = 312 |
Mr = 155.56 | Dx = 1.865 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.808 (6) Å | Cell parameters from 1193 reflections |
b = 12.9522 (8) Å | θ = 4.0–25.6° |
c = 5.5722 (4) Å | µ = 0.59 mm−1 |
β = 100.54 (2)° | T = 296 K |
V = 554.0 (4) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.25 × 0.14 mm |
KM-4 CCD diffractometer | 367 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 308 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.2°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −2→2 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −15→16 |
Tmin = 0.453, Tmax = 1.000 | l = −7→7 |
3241 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.048 | w = 1/[σ2(Fo2) + (0.0229P)2 + 0.0869P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
367 reflections | Δρmax = 0.08 e Å−3 |
91 parameters | Δρmin = −0.08 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.55 (2) GPa 550000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.0298 (3) | 0.34049 (5) | 0.85234 (12) | 0.0418 (16) | |
N4 | 0.560 (3) | 0.3523 (3) | 0.5444 (12) | 0.035 (13) | |
N5 | 0.6976 (18) | 0.3299 (2) | 0.7117 (6) | 0.027 (7) | |
N1 | 0.3851 (18) | 0.4143 (3) | 0.2306 (8) | 0.029 (8) | |
N3 | 0.397 (3) | 0.3347 (4) | 0.5820 (12) | 0.028 (12) | |
N2 | 0.2924 (13) | 0.3726 (2) | 0.3897 (6) | 0.047 (8) | |
C8 | 0.7050 (19) | 0.4260 (3) | 0.2559 (9) | 0.026 (9) | |
H8 | 0.705002 | 0.458180 | 0.106683 | 0.031* | |
C6 | 0.8467 (19) | 0.3572 (3) | 0.6437 (10) | 0.026 (9) | |
C9 | 0.554 (3) | 0.4007 (3) | 0.3268 (10) | 0.030 (13) | |
C7 | 0.8610 (17) | 0.40255 (17) | 0.4123 (5) | 0.030 (8) | |
H7 | 0.968583 | 0.415519 | 0.369373 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.035 (5) | 0.0514 (4) | 0.0355 (4) | 0.0026 (7) | −0.0039 (9) | 0.0053 (3) |
N4 | 0.06 (4) | 0.0240 (14) | 0.029 (3) | −0.002 (4) | 0.019 (7) | 0.0014 (13) |
N5 | 0.02 (2) | 0.0290 (13) | 0.0283 (17) | 0.001 (3) | −0.001 (5) | 0.0015 (10) |
N1 | 0.01 (3) | 0.0336 (14) | 0.039 (2) | 0.002 (4) | −0.002 (4) | −0.0004 (14) |
N3 | 0.01 (4) | 0.0357 (19) | 0.039 (3) | 0.003 (4) | 0.003 (7) | −0.0013 (15) |
N2 | 0.06 (2) | 0.0358 (14) | 0.0461 (18) | 0.007 (4) | −0.003 (5) | −0.0059 (11) |
C8 | 0.03 (3) | 0.0252 (14) | 0.0219 (18) | 0.001 (3) | −0.003 (5) | 0.0022 (11) |
C6 | 0.02 (3) | 0.0253 (16) | 0.028 (2) | 0.003 (4) | −0.008 (5) | −0.0027 (13) |
C9 | 0.04 (4) | 0.0216 (15) | 0.025 (3) | −0.001 (5) | 0.011 (9) | 0.0016 (17) |
C7 | 0.03 (2) | 0.0282 (13) | 0.0290 (16) | 0.000 (4) | 0.004 (4) | −0.0019 (10) |
Cl1—C6 | 1.684 (12) | N3—N2 | 1.317 (15) |
N4—N5 | 1.32 (3) | C8—H8 | 0.9300 |
N4—N3 | 1.35 (3) | C8—C9 | 1.35 (3) |
N4—C9 | 1.358 (8) | C8—C7 | 1.396 (16) |
N5—C6 | 1.34 (2) | C6—C7 | 1.439 (7) |
N1—N2 | 1.355 (13) | C7—H7 | 0.9300 |
N1—C9 | 1.34 (3) | ||
N5—N4—N3 | 121.6 (8) | N5—C6—Cl1 | 116.4 (5) |
N5—N4—C9 | 128 (2) | N5—C6—C7 | 125.2 (12) |
N3—N4—C9 | 110 (2) | C7—C6—Cl1 | 118.4 (10) |
N4—N5—C6 | 112.4 (7) | N1—C9—N4 | 107 (2) |
C9—N1—N2 | 106.9 (7) | N1—C9—C8 | 134.3 (7) |
N2—N3—N4 | 105.8 (7) | C8—C9—N4 | 119 (2) |
N3—N2—N1 | 110.9 (10) | C8—C7—C6 | 116.5 (11) |
C9—C8—H8 | 120.9 | C8—C7—H7 | 121.7 |
C9—C8—C7 | 118.3 (7) | C6—C7—H7 | 121.7 |
C7—C8—H8 | 120.9 | ||
Cl1—C6—C7—C8 | −172.8 (2) | N3—N4—C9—C8 | 179.5 (4) |
N4—N5—C6—Cl1 | 175.5 (3) | N2—N1—C9—N4 | −0.9 (4) |
N4—N5—C6—C7 | −2.2 (5) | N2—N1—C9—C8 | −179.3 (4) |
N4—N3—N2—N1 | −0.2 (6) | C9—N4—N5—C6 | −2.5 (5) |
N5—N4—N3—N2 | 175.3 (2) | C9—N4—N3—N2 | −0.3 (7) |
N5—N4—C9—N1 | −174.5 (4) | C9—N1—N2—N3 | 0.7 (4) |
N5—N4—C9—C8 | 4.2 (7) | C9—C8—C7—C6 | −2.8 (4) |
N5—C6—C7—C8 | 4.8 (5) | C7—C8—C9—N4 | −1.1 (5) |
N3—N4—N5—C6 | −177.3 (7) | C7—C8—C9—N1 | 177.3 (3) |
N3—N4—C9—N1 | 0.8 (6) |
C4H2ClN5 | F(000) = 312 |
Mr = 155.56 | Dx = 1.945 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.756 (5) Å | Cell parameters from 1202 reflections |
b = 12.7163 (5) Å | θ = 4.1–26.0° |
c = 5.4680 (3) Å | µ = 0.62 mm−1 |
β = 100.006 (18)° | T = 296 K |
V = 531.1 (3) Å3 | Plate, colourless |
Z = 4 | 0.24 × 0.22 × 0.22 mm |
KM-4 CCD diffractometer | 355 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 306 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.0°, θmin = 4.1° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −2→2 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −15→16 |
Tmin = 0.535, Tmax = 1.000 | l = −6→6 |
2908 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.0513P)2 + 1.5556P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
355 reflections | Δρmax = 0.37 e Å−3 |
41 parameters | Δρmin = −0.44 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.80 (2) GPa 800000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.0312 (6) | 0.34163 (10) | 0.8608 (3) | 0.0364 (6)* | |
N4 | 0.553 (2) | 0.3507 (3) | 0.5508 (9) | 0.0209 (12)* | |
N5 | 0.6944 (19) | 0.3293 (3) | 0.7196 (8) | 0.0216 (11)* | |
N1 | 0.383 (2) | 0.4142 (3) | 0.2324 (10) | 0.0303 (14)* | |
N3 | 0.392 (2) | 0.3322 (4) | 0.5901 (11) | 0.0332 (14)* | |
N2 | 0.2904 (19) | 0.3708 (4) | 0.3966 (9) | 0.0341 (14)* | |
C8 | 0.705 (2) | 0.4269 (4) | 0.2560 (10) | 0.0209 (13)* | |
H8 | 0.707514 | 0.459507 | 0.104428 | 0.025* | |
C6 | 0.844 (2) | 0.3569 (4) | 0.6483 (10) | 0.0200 (12)* | |
C9 | 0.543 (3) | 0.4008 (4) | 0.3279 (12) | 0.0193 (13)* | |
C7 | 0.857 (2) | 0.4034 (3) | 0.4126 (9) | 0.0225 (13)* | |
H7 | 0.965471 | 0.417025 | 0.368229 | 0.027* |
Cl1—C6 | 1.703 (15) | N3—N2 | 1.299 (14) |
N4—N5 | 1.333 (18) | C8—H8 | 0.9300 |
N4—N3 | 1.33 (2) | C8—C9 | 1.42 (3) |
N4—C9 | 1.366 (8) | C8—C7 | 1.37 (2) |
N5—C6 | 1.34 (2) | C6—C7 | 1.437 (8) |
N1—N2 | 1.362 (14) | C7—H7 | 0.9300 |
N1—C9 | 1.27 (2) | ||
N5—N4—C9 | 128.8 (17) | N5—C6—Cl1 | 116.8 (5) |
N3—N4—N5 | 122.5 (7) | N5—C6—C7 | 124.7 (14) |
N3—N4—C9 | 108.5 (15) | C7—C6—Cl1 | 118.4 (13) |
N4—N5—C6 | 113.4 (7) | N4—C9—C8 | 116.0 (16) |
C9—N1—N2 | 105.3 (8) | N1—C9—N4 | 109.4 (16) |
N2—N3—N4 | 104.8 (9) | N1—C9—C8 | 134.6 (7) |
N3—N2—N1 | 112.1 (14) | C8—C7—C6 | 117.8 (14) |
C9—C8—H8 | 120.5 | C8—C7—H7 | 121.1 |
C7—C8—H8 | 120.5 | C6—C7—H7 | 121.1 |
C7—C8—C9 | 119.1 (6) | ||
Cl1—C6—C7—C8 | −172.2 (4) | N3—N4—C9—C8 | 180.0 (5) |
N4—N5—C6—Cl1 | 175.3 (3) | N2—N1—C9—N4 | −0.6 (6) |
N4—N5—C6—C7 | −1.1 (8) | N2—N1—C9—C8 | −179.8 (6) |
N4—N3—N2—N1 | −0.1 (6) | C9—N4—N5—C6 | −3.9 (8) |
N5—N4—N3—N2 | 174.8 (4) | C9—N4—N3—N2 | −0.3 (6) |
N5—N4—C9—N1 | −174.0 (5) | C9—N1—N2—N3 | 0.5 (6) |
N5—N4—C9—C8 | 5.3 (8) | C9—C8—C7—C6 | −2.5 (7) |
N5—C6—C7—C8 | 4.1 (8) | C7—C8—C9—N4 | −1.6 (7) |
N3—N4—N5—C6 | −177.9 (5) | C7—C8—C9—N1 | 177.5 (6) |
N3—N4—C9—N1 | 0.6 (6) |
Funding information
This study was supported by the National Science Centre (grant No. 2016/23/D/ST5/00283).
References
Bałoniak, S. & Katrusiak, A. (1994). Pol. J. Chem. 68, 683–691. Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bernstein, J. (2002). IUCr Monographs on Crystallography. Oxford: Clarendon Press. Google Scholar
Boldyreva, E. V. (2008). Acta Cryst. A64, 218–231. Web of Science CrossRef CAS IUCr Journals Google Scholar
Boldyreva, E. V. (2014). Z. Kristallogr. 3, 236–245. Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Budzianowski, A. & Katrusiak, A. (2004). High-pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 101–112. Dordrecht: Kluwer. Google Scholar
Cai, W. & Katrusiak, A. (2014). Nat. Commun. 5, 1–8. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Fabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932–942. Web of Science CrossRef PubMed CAS Google Scholar
Gao, H. & Shreeve, J. M. (2011). Chem. Rev. 111, 7377–7436. Web of Science CrossRef CAS PubMed Google Scholar
Glasser, L. (2019). Acta Cryst. B75, 784–787 Web of Science CrossRef IUCr Journals Google Scholar
Guńka, P., Olejniczak, A., Fanetti, S., Bini, R., Collings, I. E., Svitlyk, V. & Dziubek, K. F. (2021). Chem. Eur. J. 27, 1094–1102. Web of Science PubMed Google Scholar
Hazen, R. M. & Finger, L. W. (1982). Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure. Chichester, New York: Wiley. Google Scholar
Katrusiak, A. A., Bałoniak, S. & Katrusiak, A. S. (1996). Pol. J. Chem. 70, 1279–1289. CAS Google Scholar
Katrusiak, A., Skierska, U. & Katrusiak, A. (2005). J. Mol. Struct. 751, 65–73. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mao, H. K., Xu, J. & Bell, P. M. (1985). J. Geophys. Res. 91, 4673–4676. CrossRef Web of Science Google Scholar
McKellar, S. C. & Moggach, S. A. (2015). Acta Cryst. B71, 587–607. Web of Science CrossRef IUCr Journals Google Scholar
Merrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290–294. CrossRef Web of Science Google Scholar
Millar, D. I. A., Marshall, W. G., Oswald, I. D. H. & Pulham, C. R. (2010). Cryst. Rev. 16, 115–132. Web of Science CrossRef CAS Google Scholar
Nair, U. R., Asthana, S. N., Rao, A. & Gandhe, B. R. (2010). Def. Sci. J. 60, 137–151. Web of Science CrossRef CAS Google Scholar
Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2019). Cryst. Growth Des. 19, 1832–1838. Web of Science CSD CrossRef CAS Google Scholar
Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2020). Acta Cryst. B76, 1136–1142. Web of Science CSD CrossRef IUCr Journals Google Scholar
Olejniczak, A., Katrusiak, A. & Szafrański, M. (2010). Cryst. Growth Des. 10, 3537–3546. Web of Science CSD CrossRef CAS Google Scholar
Olejniczak, A., Ostrowska, K. & Katrusiak, A. (2009). Cryst. Growth Des. 113, 15761–15767. CAS Google Scholar
Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: https://www.povray.org/. Google Scholar
Resnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675–690. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Rigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK. Google Scholar
Roszak, K. & Katrusiak, A. (2021). Acta Cryst. B77, 449–455. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Svitlyk, V. & Mezouar, M. (2021). J. Phys. Condens. Matter, 33, 245401. Web of Science CrossRef Google Scholar
Yang, J., Gong, X. & Wang, G. (2015). RSC Adv. 5, 9503–9509. Web of Science CrossRef CAS Google Scholar
Zakharov, B. A. & Boldyreva, E. V. (2019). CrystEngComm, 21, 10–22. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.