research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
ISSN: 2052-2525

Stochastic hydration of a high-nitro­gen-content molecular compound recrystallized under pressure

crossmark logo

aFaculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland, and bDepartment of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań 60-780, Poland
*Correspondence e-mail: aniao@amu.edu.pl

Edited by P. Lightfoot, University of St Andrews, United Kingdom (Received 17 August 2021; accepted 7 October 2021; online 16 November 2021)

Partial hydration of organic compounds can be achieved by high-pressure crystallization. This has been demonstrated for the high-nitro­gen-content compound 6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl), which becomes partly hydrated by isochoric crystallizations below 0.15 GPa. This hydrate, C4H2N5Cl·xH2O, is isostructural with the ambient-pressure phase α of C4H2N5Cl, but the crystal volume is somewhat larger than that of the anhydrate. At 0.20 GPa, the α-C4H2N5Cl anhydrate phase transforms abruptly into a new higher-symmetry phase, α′; the transformation is clearly visible due to a strong contraction of the crystals. The hydrate α-C4H2N5Cl·xH2O can also be isothermally compressed up to 0.30 GPa before transforming to the α′-C4H2N5Cl·xH2O phase. The isochoric recrystallization of C4H2N5Cl above 0.18 GPa yields a new anhydrous phase β, which, on releasing pressure, transforms back to the α phase below 0.15 GPa. The structural transition from the α to the β phase is destructive for the single crystal and involves a large volume drop and significant elongation of all the shortest intermolecular distances which are the CH⋯N and CH⋯Cl hydrogen bonds, as well as the N⋯N contacts. The α-to-αphase transition increases the crystal symmetry in the subgroup relation; however, there are no structural nor symmetry relations between phases α and β.

1. Introduction

High-nitro­gen organic compounds have relatively high density, but short intermolecular contacts are usually absent in their structures (Bernstein, 2002[Bernstein, J. (2002). IUCr Monographs on Crystallography. Oxford: Clarendon Press.]; Fabbiani & Pulham, 2006[Fabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932-942.]; Millar et al., 2010[Millar, D. I. A., Marshall, W. G., Oswald, I. D. H. & Pulham, C. R. (2010). Cryst. Rev. 16, 115-132.]; Zakharov & Boldyreva, 2019[Zakharov, B. A. & Boldyreva, E. V. (2019). CrystEngComm, 21, 10-22.]). The strong interdependence of the density and properties generally involves intermolecular interactions (Gao & Shreeve, 2011[Gao, H. & Shreeve, J. M. (2011). Chem. Rev. 111, 7377-7436.]; Nair et al., 2010[Nair, U. R., Asthana, S. N., Rao, A. & Gandhe, B. R. (2010). Def. Sci. J. 60, 137-151.]) and thermodynamic conditions (Fabbiani & Pulham, 2006[Fabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932-942.]; Boldyreva, 2008[Boldyreva, E. V. (2008). Acta Cryst. A64, 218-231.], 2014[Boldyreva, E. V. (2014). Z. Kristallogr. 3, 236-245.]; Resnati et al., 2015[Resnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675-690.]). We report a pressure and temperature dependence of the crystal structure of the pyridazine-based compound 6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl), hereafter CTP. It can transform between the azide and tetrazole forms in the gaseous and liquid states (Fig. 1[link]). Azido-tetrazole tautomerism is common for many high-nitro­gen content compounds, widely applied as energetic materials and active pharmaceutical ingredients (Katrusiak et al., 1996[Katrusiak, A. A., Bałoniak, S. & Katrusiak, A. S. (1996). Pol. J. Chem. 70, 1279-1289.], 2005[Katrusiak, A., Skierska, U. & Katrusiak, A. (2005). J. Mol. Struct. 751, 65-73.]; Bałoniak & Katrusiak, 1994[Bałoniak, S. & Katrusiak, A. (1994). Pol. J. Chem. 68, 683-691.]; Yang et al., 2015[Yang, J., Gong, X. & Wang, G. (2015). RSC Adv. 5, 9503-9509.]; Olejniczak et al., 2019[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2019). Cryst. Growth Des. 19, 1832-1838.]). We determined the crystal structure of C4H2N5Cl under normal conditions in order to gain information about the tautomeric and molecular forms, and we noted relatively large voids, accommodating a probing sphere of 0.65 Å radius. Under ambient conditions the studied compound assumes the tetrazole form. We established that isothermal compression, isobaric cooling and high-pressure recrystallization result in new unexpected forms of CTP.

[Figure 1]
Figure 1
Structural formula of CTP and its azide tautomer.

2. Methods

The effect of high pressure on CTP was studied in a diamond anvil cell (DAC) (Merrill & Bassett, 1974[Merrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290-294.]) modified by mounting the anvils directly on steel disks with conical windows. Two procedures were applied (Fig. S1 of the supporting information): (i) isothermal compression (Figs. 2[link], S2 and S3) in Daphne oil and (ii) high-pressure recrystallizations performed from saturated solutions (Figs. 2[link] and S4). Method (i) resulted in monotonic compression of the ambient-pressure phase α up to 0.20 GPa, whereby the sample crystal visibly became shorter and transformed to a new phase α′ (Fig. 2[link]). X-ray diffraction confirmed this to be a single-crystal-to-single-crystal phase transition of the subgroup–group symmetry relation, and clearly discontinuous in character.

[Figure 2]
Figure 2
Single-crystal C4H2N5Cl in the α phase (0.1 MPa), compressed to the α′ phase (0.24 GPa) and decompressed to the α phase again (0.05 GPa). The vertical double arrows compare the initial and final vertical dimension of the crystal along its x direction in the α phase and corresponding y direction in the α′ phase (cf. Table 1[link]).

For the high-pressure recrystallization, solvents were chosen according to their freezing pressure and the compound solubility. The highest solubility was found for water. The initial trials revealed that the concentration in the saturated solution is not sufficient for obtaining single crystals large enough for X-ray diffraction measurements. Therefore before loading the solution, some additional crystals were placed in the high-pressure chamber to increase the concentration at high temperature. After increasing the pressure to the required value, the DAC was heated until all seeds except one dissolved and a single crystal was grown by controlled slow cooling of the sample to room temperature (Fig. 3[link]). High-pressure recrystallizations were performed from aqueous, methanol, ethanol and acetone solutions or from mixtures of them. Temperatures higher than 473 K caused the sample to decompose.

[Figure 3]
Figure 3
Stages of isochoric recrystallization of C4H2N5Cl in the β phase from acetone solution at 0.33 GPa: (a)–(b) a single crystal nucleated and growing in the DAC at 363 K; (c) the same crystal at 353 K and (d) at 296 K. Several ruby chips are mainly located close to the gasket edge.

Pressure in the DAC chamber was calibrated by the ruby-fluorescence method (Mao et al., 1985[Mao, H. K., Xu, J. & Bell, P. M. (1985). J. Geophys. Res. 91, 4673-4676.]) with a photon control spectrometer affording an accuracy of 0.02 GPa; the calibration was performed before and after the diffraction measurements. The crystal sample in the DAC was centered on the diffractometer by the gasket shadowing method (Budzianowski & Katrusiak, 2004[Budzianowski, A. & Katrusiak, A. (2004). High-pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 101-112. Dordrecht: Kluwer.]). For the low-temperature measurements an Oxford Cryosystems 700 Series attachment and SuperNova diffractometer using Cu Kα radiation and a CCD plate Atlas detector was used. The high-pressure diffraction data were measured with a KUMA KM4-CCD diffractometer using Mo Kα radiation and a CCD two-dimensional Eos detector. CrysAlisPro (171.40.67a; Rigaku Oxford Diffraction, 2019[Rigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.]) was used for recording reflections and preliminary data reduction. Reflection intensities were corrected for the DAC absorption and sample shadowing by the gasket, the sample absorption and reflections overlapping with diamond reflections were eliminated. OLEX2 (version 1.2, Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELX-T (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELX-L (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) were used to solve the structural models by direct methods, and then refine the models by full-matrix least-squares. Anisotropic temperature factors were applied for non-hydrogen atoms, but the isotropic thermal parameters were occasionally retained for the atoms with unreasonable anisotropic thermal ellipsoids. Hydrogen atoms were located from the molecular geometry, with the C—H distance equal to 0.93 Å and their Uiso factors constrained to 1.2 × Ueq of the carriers. The crystal data and refinement details are summarized in Tables 1[link] and S1–S3 of the supporting information; the experimental and structural details have been deposited in CIF format in the Cambridge Structural Database as supporting publications (CCDC deposition Nos. CCDC 2102408–2102436). Structural drawings were prepared using the X-Seed interface of POV-Ray (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Persistence of Vision Raytracer, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: https://www.povray.org/. ]) and the program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Table 1
Selected data of C4H2N5Cl recrystallized from different solutions (cf. Tables S1–S3 in the supporting information)

Formula C4H2N5Cl C4H2N5Cl·xH2O C4H2N5Cl C4H2N5Cl
p (GPa), T (K) 0.0001, 300.0 (1) 0.10 (2), 296 (2) 0.24 (2), 296 (2) 0.40 (2), 296 (2)
Phase α α α β
Space group P212121 P212121 Pnma P21/c
Unit-cell parameters
  a (Å) 7.0651 (2) 7.0733 (6) 10.697 (4) 7.824 (4)
  b (Å) 8.7859 (2) 8.7965 (6) 6.2545 (7) 13.0789 (6)
  c (Å) 10.0906 (2) 10.042 (8) 8.8012 (10) 5.6290 (4)
  β (°) 100.793 (19)
Volume (Å3) 626.36 (3) 624.8 (5) 588.8 (3) 565.8 (3)
Z, Z 4/1 4/1 4/0.5 4/1
Dcalc (g cm−3) 1.650 1.654 1.755 1.826
Final R1/wR2 (I > 2σ1) 0.0340/0.0893 0.0339/0.0493 0.0249/0.0378 0.0619/0.1476
Solvent MeOH:H2O (1:1) Acetone

3. Results and discussion

High-pressure recrystallization revealed several crystalline forms of CTP. The β phase can easily be distinguished from phases α and α′ by the crystal morphology, but X-ray diffraction measurements were required for detecting the uptake of water molecules.

Crystals of the orthorhombic α phase were obtained from methanol solution under ambient conditions exclusively. The single-crystal sample isothermally compressed to 0.20 GPa displays an abrupt strong visible strain marking the transition to α′ (Figs. S2 and S3); subsequent X-ray measurements revealed the single crystal retains its high quality after the transformation is complete. This new high-pressure α′ phase remains orthorhombic, but its space group symmetry increases to Pnma (Table 1[link]). On releasing pressure, α′ transforms back to α at 0.12 GPa. The α′ phase can be compressed to 0.6 GPa, when its transformation to the monoclinic β phase damages the single crystal. Single crystals of β were grown under isochoric conditions above 0.15 GPa. On releasing pressure, β transforms back to α at 0.15 GPa and the single crystal was pulverized again.

The high-pressure isochoric recrystallizations of CTP from aqueous solution up to 0.15 GPa yielded single crystals, which initially appeared to be identical to the α phase; however, their volume was markedly larger by about 3 Å3 per C4H2N5Cl molecule compared with that of the α phase grown at atmospheric pressure (Fig. 4[link]). Moreover, the volume dependence on pressure displays clearly a convex shape, and the crystals could be compressed to 0.3 GPa before undergoing transformation to the α′ phase in an analogous way to that observed for the α phase. We concluded that the high-pressure recrystallization forces some water molecules into the crystal structure, so the inclusion compound C4H2N5Cl·xH2O is obtained, with H2O contents too small to be visible in our X-ray diffraction analysis. From isochoric recrystallizations above 0.16 GPa β was obtained, which is stable up to 0.80 GPa at least and on releasing pressure transforms back to α.

[Figure 4]
Figure 4
(a) Compression and thermal expansion of the molecular volume and (b) compression of the unit-cell dimensions of C4H2N5Cl (open symbols) and C4H2N5Cl·xH2O (full symbols). The compression line for the partial hydrate α′-C4H2N5Cl·xH2O (through one experimental point) is drawn parallel to that of the anhydrate α′-C4H2N5Cl as a guide for the eye only. All estimated standard deviations are smaller than the plotted symbols; the highlighted sections mark the corresponding dimensions of the α and α′ phases.

The low-temperature behavior of CTP crystals at atmospheric pressure was also studied by X-ray diffraction. Over the temperature range down to 130 K the crystal remained in the α phase and it contracted to about 98% of the volume at 296 K. Such a volume compression was achieved at 296 K under a pressure of 0.10 GPa (Fig. 4[link]).

3.1. Symmetry relations

It is quite unusual and inconsistent with the rule of temperature and pressure inverse effects (Tapie) (Hazen & Finger, 1982[Hazen, R. M. & Finger, L. W. (1982). Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure. Chichester, New York: Wiley.]; Cai & Katrusiak, 2014[Cai, W. & Katrusiak, A. (2014). Nat. Commun. 5, 1-8.]) that the space-group symmetry of the low-pressure phase α-CTP increases on transforming to the α′ phase, from P212121 to Pnma. Tapie states that the effects of increased pressure are usually the inverse of those of increased temperature (usually increasing volume and symmetry). Indeed, there are numerous examples of symmetry reduction in high-pressure phases (Olejniczak et al., 2009[Olejniczak, A., Ostrowska, K. & Katrusiak, A. (2009). Cryst. Growth Des. 113, 15761-15767.], 2010[Olejniczak, A., Katrusiak, A. & Szafrański, M. (2010). Cryst. Growth Des. 10, 3537-3546.]; Svitlyk & Mezouar, 2021[Svitlyk, V. & Mezouar, M. (2021). J. Phys. Condens. Matter, 33, 245401.], Guńka et al., 2021[Guńka, P., Olejniczak, A., Fanetti, S., Bini, R., Collings, I. E., Svitlyk, V. & Dziubek, K. F. (2021). Chem. Eur. J. 27, 1094-1102.]; Roszak & Katrusiak, 2021[Roszak, K. & Katrusiak, A. (2021). Acta Cryst. B77, 449-455.]). The β phase is monoclinic (space group P21/c), however its structure is very different from those of phases α and α′. The structure of β is built from double layers, which are absent in other phases (Figs. 5[link] and S5). The transition around 0.20 GPa between α and α′ can be observed visually, because the longest dimension of the crystal along the x direction of α is shortened by ca 10% at the transition to α′ (Fig. 4[link], Table 1[link]). This visible strain precisely indicating the transition point on increasing and releasing the pressure was helpful for measuring the transition hysteresis (of about 0.08 GPa) as well as the higher transition pressure of the partial hydrate CTP·xH2O at 0.30 GPa.

[Figure 5]
Figure 5
Molecular packing and the short contacts CH⋯N and N⋯N (dotted lines) in the C4H2N5Cl (a) α phase, (b) α′ phase and (c) β phase. Consecutive single layers (α and α′) and double layers (β) are marked in pink and green.

Both phase transitions are accompanied by a volume reduction. The molecular volume of the β phase is over 10 Å3 smaller than that of the α phase (Fig. 4[link]). At the α-to-α′ transition the molecular volume is reduced by about 3 Å3. The unit-cell volume of the isothermally compressed α phase is smaller compared with that of the sample recrystallized in situ under pressure. The in situ crystallized sample has the same symmetry and nearly identical structure and lattice as the α phase. The volume increase can be attributed to the presence of some small amount of water (Glasser, 2019[Glasser, L. (2019). Acta Cryst. B75, 784-787]) randomly distributed in the structure of α. We postulated that the presence of water in CTP·xH2O increases the crystal volume, reduces the compressibility of CTP·xH2O, and the transition to the α′ phase of CTP·xH2O occurs at pressures higher than that of the anhydrate (Fig. 4[link]). Due to the absence of the water molecule electron-density peak in the ΔF maps, we were able to assess the value of x from only the volume increase of the in situ recrystallized crystals compared with those obtained under ambient conditions and compressed without recrystallization. This assessment has been based on the formula x = [Vm(hydrate) − Vm(anhydrate)]/Vw, where Vw is the volume of one water molecule in a hydrate (Glasser, 2019[Glasser, L. (2019). Acta Cryst. B75, 784-787]). According to this assessment the water admixture coefficient x is about 0.14 for 0.10 GPa, 0.30 for 0.20 GPa and 0.08 for 0.49 GPa.

The structures of α and α′ are closely related (Fig. 5[link]) and their lattice vectors are connected through the following matrix equations:

[\left(\matrix{a\rm {'}\cr b\rm {'}\cr c\rm {'}}\right) = \left(\matrix{0 & 1 & 0\cr 0 & 0 & 1\cr 1 & 0 & 0 }\right)\left(\matrix{a\cr b\cr c}\right), \ \ \left(\matrix{a\cr b\cr c}\right) = \left(\matrix{0 & 0 & 1\cr 1 & 0 & 0\cr 0 & 1 & 0 }\right)\left(\matrix{a\rm {'}\cr b\rm {'}\cr c\rm {'}}\right),]

where primes refer to the α′ phase. The corrugated sheets of CH⋯N bonded molecular aggregates in α at the phase transition become perfectly planar in α′ (Fig. 5[link]). Consequently, the lattice becomes elongated along the undulation of the sheets (unit-cell parameters c/a′), the other dimension along the sheets remains unchanged (b/c′) and the dimension between the sheets (a/b′) is shortened, as shown in the plot in Fig. 4[link](b).

In the tetrazole form the CTP molecules are rigid and planar under ambient conditions and these features are preserved in the high-pressure phases. All the structures are governed mainly by short CH⋯N bonds, while non contacts N⋯N, CH⋯Cl or Cl⋯Cl are shorter than the sum of van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) (Fig. 6[link]). The arrangement of the molecules is clearly related between α and α′, but different from that in β (Fig. 5[link] and S10). All specific types of contacts in α become longer in β. Though the change in the CH⋯N distance is small (it is about 0.05 Å longer in phase β than it is in phase α), the elongation of distances N⋯N and CH⋯Cl is of the order of about 0.1 and 0.3 Å, respectively. This is due to the molecular arrangement becoming more optimized for denser packing rather than changes in the directional interactions under high pressure (Figs. S7 and S8).

[Figure 6]
Figure 6
The shortest intermolecular distances plotted as a function of pressure in C4H2N5Cl (open symbols) and C4H2N5Cl·xH2O (full symbols): α phase (circles), α′ phase (squares), β phase (diamonds); distances H⋯N (black), C⋯N (gray), H⋯Cl (green), C⋯Cl (dark green), N⋯N (blue), sum of van der Waals radii (dash-dot lines).

The CH⋯N bonded corrugated sheets in α and the planar sheets in α′ are connected by N⋯N contacts between the sheets (Fig. 5[link]). In β the two shortest CH⋯N bonds connect molecules into ribbons running along [100]; these ribbons are connected by other short CH⋯N bonds into double layers. There are short N⋯N contacts between these double layers. The patterns of molecules connected by the shortest CH⋯N contacts are rings that can be described as R44(17) in α and α′, and R22(8) and R44(12) in β (Fig. 5[link] and S9) according to graph notation (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

Some similarities can be observed between the structures of CTP phases and previously studied compounds 6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7, ATriP) (Olejniczak et al., 2019[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2019). Cryst. Growth Des. 19, 1832-1838.]) and 6-azido-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N8, TAPYR) (Olejniczak et al., 2020[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2020). Acta Cryst. B76, 1136-1142.]). Both CTP and TAPYR transform into new phases with considerably reduced volume. Moreover, the α-to-β transformation occurs only when the compounds are recrystallized in situ under high-pressure and high-temperature conditions. In TAPYR, the new β phase exists in the low-pressure range, then transforms to the ambient-condition α phase. In CTP at the low-pressure range the ambient-condition α phase is present, which further transforms to a new phase β. Unlike in TAPYR, where the new phase could be recovered after releasing the pressure, the β phase of CTP exists only under high-pressure conditions. In these three compounds, the molecules aggregate into sheets in phases α and α′ of CTP, in phase α of TAPYR, and in ATriP (planar in the α′ phase of CTP and in the α phase of TAPYR, while corrugated in the α phase of CTP and ATriP). The hydrogen-bond patterns are somewhat different (Fig. S9). In TAPYR the CH⋯N short contacts connect molecules into ribbons, which further extend through short N⋯N contacts into sheets. In CTP phases α and α′ and in ATriP the molecules aggregate into sheets only via CH⋯N bonds; however, in ATriP the N⋯N interactions are additionally present within the sheets. In all these structures N⋯N contacts are present between neighboring sheets, but they are longer than N⋯N contacts within the sheets.

The pressure-induced sorption of water molecules in small voids in the molecular crystal of CTP in some respect resembles the sorption in large pores of metal–organic frameworks (McKellar & Moggach, 2015[McKellar, S. C. & Moggach, S. A. (2015). Acta Cryst. B71, 587-607.]), however access to the pores in CTP is hindered and requires dissolution.

4. Conclusions

With the exception of the three least-high-pressure phases of C4H2N5Cl we have revealed the different behavior of this compound compressed and recrystallized under high-pressure conditions. At ambient pressure and low temperature only the α phase was obtained. It transforms into the higher-symmetry α′ phase at 0.20 GPa and to phase β at about 0.70 GPa. The high-pressure recrystallization of C4H2N5Cl yields its stochastic hydrate α·xH2O when water is present in the solvent. This stochastic hydrate closely resembles the pure α phase, but its volume is somewhat larger; the volume–pressure dependence displays an unusual convex shape and the α·xH2O phase transforms into the α′·xH2O phase at a pressure about 0.1 GPa higher than the pure α-C4H2N5Cl phase. The presence of water can be also deducted from the voids present in the structure of phases α and α′, although their size is significantly smaller than that required for accommodating water molecules under ambient-pressure conditions.

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019); cell refinement: CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019); data reduction: CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019). Program(s) used to solve structure: SHELXT 2018/2 (Sheldrick, 2018) for C4H2N5Cl1@300K_phase_alpha, C4H2N5Cl1@275K_phase_alpha, C4H2N5Cl1@250K_phase_alpha, C4H2N5Cl1@225K_phase_alpha, C4H2N5Cl1@200K_phase_alpha, C4H2N5Cl1@190K_phase_alpha, C4H2N5Cl1@175K_phase_alpha, C4H2N5Cl1@160K_phase_alpha, C4H2N5Cl1@150K_phase_alpha, C4H2N5Cl1@130K_phase_alpha, C4H2N5Cl1@0_0001GPa_phase_alpha, C4H2N5Cl1@0_12GPa_phase_alpha, C4H2N5Cl1@0_24GPa_phase_alpha_prim, C4H2N5Cl1@0_49GPa_phase_alpha_prim, C4H2N5Cl1@0_09GPa_phase_alpha_xH2O, C4H2N5Cl1@0_10GPa_phase_alpha_xH2O, C4H2N5Cl1@0_17GPa_phase_alpha_xH2O, C4H2N5Cl1@0_18GPa_phase_alpha_xH2O, C4H2N5Cl1@0_20GPa_phase_alpha_xH2O, C4H2N5Cl1@0_30GPa_phase_alpha_xH2O, C4H2N5Cl1@0_54GPa_phase_alpha_prim_xH2O, C4H2N5Cl1@0_20GPa_phase_beta, C4H2N5Cl1@0_25GPa_phase_beta, C4H2N5Cl1@0_33GPa_phase_beta, C4H2N5Cl1@0_40GPa_phase_beta, C4H2N5Cl1@0_48GPa_phase_beta, C4H2N5Cl1@0_55GPa_phase_beta, C4H2N5Cl1@0_80GPa_phase_beta; SHELXT 2018/2 (Sheldrick, 2018)' for C4H2N5Cl1@0_17GPa_phase_beta. For all structures, program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).

6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@300K_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.650 Mg m3
Mr = 155.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2612 reflections
a = 7.0651 (2) Åθ = 6.7–64.6°
b = 8.7859 (2) ŵ = 4.77 mm1
c = 10.0906 (2) ÅT = 300 K
V = 626.36 (3) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.15 mm
F(000) = 312
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1046 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source997 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.5357 pixels mm-1θmax = 64.7°, θmin = 6.7°
ω scansh = 68
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 910
Tmin = 0.688, Tmax = 1.000l = 1011
3680 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.1954P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.13 e Å3
1046 reflectionsΔρmin = 0.22 e Å3
91 parametersAbsolute structure: Flack x determined using 378 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.489 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29048 (16)0.33468 (10)0.32125 (12)0.0758 (4)
N40.3556 (4)0.7485 (3)0.4123 (3)0.0481 (7)
N50.3659 (4)0.5953 (3)0.4188 (3)0.0525 (7)
N30.4277 (5)0.8396 (4)0.5062 (3)0.0686 (9)
N20.3893 (6)0.9774 (4)0.4657 (4)0.0783 (11)
N10.2970 (6)0.9804 (3)0.3494 (3)0.0674 (9)
C90.2765 (5)0.8343 (4)0.3156 (3)0.0484 (7)
C70.2014 (6)0.6048 (4)0.2090 (3)0.0568 (9)
H70.1491720.5487110.1399770.068*
C60.2869 (5)0.5305 (4)0.3177 (3)0.0501 (8)
C80.1965 (6)0.7577 (4)0.2068 (3)0.0574 (9)
H80.1426950.8105170.1363440.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0849 (7)0.0417 (5)0.1009 (8)0.0018 (5)0.0238 (6)0.0037 (5)
N40.0582 (16)0.0460 (15)0.0401 (14)0.0028 (13)0.0016 (13)0.0018 (12)
N50.0617 (17)0.0464 (15)0.0494 (15)0.0017 (14)0.0012 (15)0.0071 (13)
N30.085 (2)0.068 (2)0.0531 (17)0.014 (2)0.0108 (16)0.0105 (19)
N20.097 (3)0.059 (2)0.079 (2)0.014 (2)0.005 (2)0.0217 (18)
N10.084 (2)0.0458 (15)0.0728 (19)0.0022 (17)0.008 (2)0.0049 (15)
C90.0582 (18)0.0418 (16)0.0453 (16)0.0019 (17)0.0065 (15)0.0039 (14)
C70.067 (2)0.061 (2)0.0418 (17)0.0055 (18)0.0006 (19)0.0090 (15)
C60.0553 (19)0.0422 (16)0.0529 (18)0.0003 (16)0.0110 (18)0.0028 (14)
C80.066 (2)0.064 (2)0.0415 (17)0.0038 (19)0.0031 (18)0.0080 (15)
Geometric parameters (Å, º) top
Cl1—C61.721 (3)N1—C91.336 (4)
N4—N51.350 (4)C9—C81.406 (5)
N4—N31.341 (4)C7—H70.9300
N4—C91.354 (4)C7—C61.411 (5)
N5—C61.295 (5)C7—C81.344 (5)
N3—N21.306 (5)C8—H80.9300
N2—N11.343 (5)
N5—N4—C9127.8 (3)C6—C7—H7120.4
N3—N4—N5122.7 (3)C8—C7—H7120.4
N3—N4—C9109.5 (3)C8—C7—C6119.1 (3)
C6—N5—N4112.1 (3)N5—C6—Cl1114.6 (3)
N2—N3—N4104.7 (3)N5—C6—C7126.4 (3)
N3—N2—N1113.1 (3)C7—C6—Cl1119.0 (3)
C9—N1—N2104.9 (3)C9—C8—H8121.5
N4—C9—C8117.5 (3)C7—C8—C9117.1 (3)
N1—C9—N4107.8 (3)C7—C8—H8121.5
N1—C9—C8134.7 (3)
N4—N5—C6—Cl1178.7 (2)N3—N2—N1—C90.1 (5)
N4—N5—C6—C71.3 (5)N2—N1—C9—N40.3 (4)
N4—N3—N2—N10.5 (5)N2—N1—C9—C8178.9 (4)
N4—C9—C8—C71.5 (6)N1—C9—C8—C7179.3 (4)
N5—N4—N3—N2179.6 (3)C9—N4—N5—C60.4 (5)
N5—N4—C9—N1179.6 (3)C9—N4—N3—N20.7 (4)
N5—N4—C9—C81.0 (6)C6—C7—C8—C90.7 (6)
N3—N4—N5—C6179.9 (3)C8—C7—C6—Cl1179.2 (3)
N3—N4—C9—N10.6 (4)C8—C7—C6—N50.7 (6)
N3—N4—C9—C8178.8 (3)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@275K_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.655 Mg m3
Mr = 155.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2552 reflections
a = 7.0604 (2) Åθ = 6.7–64.7°
b = 8.7800 (2) ŵ = 4.78 mm1
c = 10.0712 (2) ÅT = 275 K
V = 624.32 (3) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.15 mm
F(000) = 312
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1044 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source999 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.5357 pixels mm-1θmax = 64.8°, θmin = 6.7°
ω scansh = 68
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 109
Tmin = 0.674, Tmax = 1.000l = 1110
3674 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2676P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.13 e Å3
1044 reflectionsΔρmin = 0.19 e Å3
91 parametersAbsolute structure: Flack x determined using 380 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.486 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29038 (15)0.33417 (10)0.32067 (11)0.0694 (4)
N40.3563 (4)0.7482 (3)0.4120 (3)0.0445 (7)
N50.3668 (4)0.5951 (3)0.4184 (3)0.0483 (7)
N30.4287 (5)0.8389 (4)0.5063 (3)0.0631 (8)
N20.3906 (6)0.9774 (4)0.4658 (4)0.0714 (10)
N10.2975 (6)0.9806 (3)0.3493 (3)0.0620 (9)
C90.2766 (5)0.8344 (4)0.3153 (3)0.0445 (7)
C70.2011 (6)0.6048 (4)0.2086 (3)0.0525 (8)
H70.1489170.5487410.1393280.063*
C60.2869 (5)0.5303 (4)0.3175 (3)0.0462 (8)
C80.1959 (6)0.7579 (4)0.2065 (3)0.0531 (8)
H80.1414060.8107600.1362320.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0785 (6)0.0383 (5)0.0913 (7)0.0018 (5)0.0213 (5)0.0032 (5)
N40.0550 (16)0.0411 (14)0.0373 (14)0.0038 (13)0.0005 (13)0.0018 (12)
N50.0573 (16)0.0424 (15)0.0452 (15)0.0006 (14)0.0013 (15)0.0059 (12)
N30.079 (2)0.0607 (19)0.0493 (16)0.011 (2)0.0091 (16)0.0101 (18)
N20.090 (3)0.053 (2)0.070 (2)0.0122 (19)0.005 (2)0.0191 (17)
N10.078 (2)0.0424 (15)0.0661 (19)0.0016 (16)0.0071 (19)0.0039 (14)
C90.0542 (18)0.0387 (16)0.0406 (15)0.0020 (17)0.0051 (15)0.0044 (14)
C70.061 (2)0.058 (2)0.0385 (17)0.0058 (18)0.0004 (18)0.0087 (14)
C60.0516 (19)0.0389 (16)0.0480 (17)0.0010 (16)0.0115 (18)0.0029 (14)
C80.061 (2)0.059 (2)0.0399 (17)0.0032 (18)0.0027 (18)0.0070 (15)
Geometric parameters (Å, º) top
Cl1—C61.722 (3)N1—C91.336 (4)
N4—N51.348 (4)C9—C81.406 (5)
N4—N31.340 (4)C7—H70.9300
N4—C91.356 (4)C7—C61.413 (5)
N5—C61.294 (5)C7—C81.345 (5)
N3—N21.311 (5)C8—H80.9300
N2—N11.345 (5)
N5—N4—C9127.9 (3)C6—C7—H7120.4
N3—N4—N5122.5 (3)C8—C7—H7120.4
N3—N4—C9109.6 (3)C8—C7—C6119.1 (3)
C6—N5—N4112.1 (3)N5—C6—Cl1114.8 (3)
N2—N3—N4104.6 (3)N5—C6—C7126.3 (3)
N3—N2—N1113.0 (3)C7—C6—Cl1118.9 (3)
C9—N1—N2104.9 (3)C9—C8—H8121.5
N4—C9—C8117.4 (3)C7—C8—C9117.0 (3)
N1—C9—N4107.8 (3)C7—C8—H8121.5
N1—C9—C8134.7 (3)
N4—N5—C6—Cl1178.7 (2)N3—N2—N1—C90.0 (5)
N4—N5—C6—C71.6 (5)N2—N1—C9—N40.3 (4)
N4—N3—N2—N10.3 (5)N2—N1—C9—C8179.0 (4)
N4—C9—C8—C71.3 (6)N1—C9—C8—C7179.5 (4)
N5—N4—N3—N2179.8 (3)C9—N4—N5—C60.6 (5)
N5—N4—C9—N1179.8 (3)C9—N4—N3—N20.5 (4)
N5—N4—C9—C80.8 (6)C6—C7—C8—C90.4 (6)
N3—N4—N5—C6179.7 (3)C8—C7—C6—Cl1179.1 (3)
N3—N4—C9—N10.5 (4)C8—C7—C6—N51.2 (6)
N3—N4—C9—C8178.9 (3)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@250K_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.660 Mg m3
Mr = 155.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2554 reflections
a = 7.0533 (2) Åθ = 6.7–64.7°
b = 8.7742 (2) ŵ = 4.80 mm1
c = 10.0552 (2) ÅT = 250 K
V = 622.29 (3) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.15 mm
F(000) = 312
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1038 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1006 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.5357 pixels mm-1θmax = 64.6°, θmin = 6.7°
ω scansh = 68
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 109
Tmin = 0.705, Tmax = 1.000l = 1110
3654 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2471P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.12 e Å3
1038 reflectionsΔρmin = 0.18 e Å3
91 parametersAbsolute structure: Flack x determined using 379 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.487 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29021 (15)0.33374 (10)0.32018 (10)0.0632 (3)
N40.3572 (4)0.7481 (3)0.4117 (3)0.0409 (6)
N50.3675 (4)0.5948 (3)0.4182 (3)0.0444 (7)
N30.4304 (5)0.8389 (4)0.5062 (3)0.0576 (8)
N20.3923 (6)0.9773 (4)0.4659 (3)0.0655 (10)
N10.2981 (5)0.9807 (3)0.3492 (3)0.0570 (8)
C90.2768 (5)0.8344 (3)0.3152 (3)0.0409 (7)
C70.2005 (6)0.6046 (4)0.2083 (3)0.0484 (8)
H70.1476320.5485510.1390690.058*
C60.2867 (5)0.5299 (4)0.3171 (3)0.0427 (7)
C80.1958 (6)0.7579 (4)0.2061 (3)0.0491 (8)
H80.1414210.8109600.1356610.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0723 (6)0.0348 (5)0.0826 (7)0.0019 (5)0.0189 (5)0.0032 (4)
N40.0512 (15)0.0377 (14)0.0337 (13)0.0028 (12)0.0009 (13)0.0019 (12)
N50.0537 (16)0.0388 (15)0.0406 (14)0.0007 (13)0.0022 (14)0.0053 (12)
N30.073 (2)0.0551 (19)0.0443 (15)0.0099 (19)0.0085 (15)0.0086 (17)
N20.083 (2)0.0499 (19)0.063 (2)0.0113 (18)0.0037 (19)0.0164 (16)
N10.071 (2)0.0391 (15)0.0605 (18)0.0010 (16)0.0066 (18)0.0029 (14)
C90.0507 (17)0.0349 (16)0.0371 (15)0.0019 (16)0.0054 (14)0.0037 (13)
C70.058 (2)0.0521 (19)0.0348 (16)0.0044 (17)0.0001 (18)0.0083 (14)
C60.0488 (18)0.0352 (16)0.0442 (17)0.0006 (15)0.0102 (17)0.0022 (13)
C80.057 (2)0.054 (2)0.0356 (16)0.0027 (17)0.0014 (17)0.0065 (14)
Geometric parameters (Å, º) top
Cl1—C61.722 (3)N1—C91.336 (4)
N4—N51.348 (4)C9—C81.408 (5)
N4—N31.343 (4)C7—H70.9300
N4—C91.355 (4)C7—C61.413 (5)
N5—C61.297 (4)C7—C81.346 (5)
N3—N21.308 (5)C8—H80.9300
N2—N11.349 (5)
N5—N4—C9127.9 (3)C6—C7—H7120.4
N3—N4—N5122.4 (3)C8—C7—H7120.4
N3—N4—C9109.6 (3)C8—C7—C6119.1 (3)
C6—N5—N4112.1 (3)N5—C6—Cl1114.7 (3)
N2—N3—N4104.6 (3)N5—C6—C7126.3 (3)
N3—N2—N1113.0 (3)C7—C6—Cl1118.9 (3)
C9—N1—N2104.9 (3)C9—C8—H8121.5
N4—C9—C8117.5 (3)C7—C8—C9117.0 (3)
N1—C9—N4107.8 (3)C7—C8—H8121.5
N1—C9—C8134.7 (3)
N4—N5—C6—Cl1178.8 (2)N3—N2—N1—C90.1 (4)
N4—N5—C6—C71.6 (5)N2—N1—C9—N40.3 (4)
N4—N3—N2—N10.2 (4)N2—N1—C9—C8178.7 (4)
N4—C9—C8—C71.7 (6)N1—C9—C8—C7179.4 (4)
N5—N4—N3—N2179.7 (3)C9—N4—N5—C60.5 (5)
N5—N4—C9—N1179.7 (3)C9—N4—N3—N20.3 (4)
N5—N4—C9—C81.1 (6)C6—C7—C8—C90.7 (6)
N3—N4—N5—C6179.6 (3)C8—C7—C6—Cl1179.4 (3)
N3—N4—C9—N10.4 (4)C8—C7—C6—N51.1 (6)
N3—N4—C9—C8178.8 (3)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@225K_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.666 Mg m3
Mr = 155.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2569 reflections
a = 7.0476 (2) Åθ = 6.7–64.0°
b = 8.7682 (2) ŵ = 4.82 mm1
c = 10.0363 (2) ÅT = 225 K
V = 620.19 (3) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.15 mm
F(000) = 312
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1034 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1003 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.5357 pixels mm-1θmax = 64.7°, θmin = 6.7°
ω scansh = 68
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 109
Tmin = 0.649, Tmax = 1.000l = 1110
3647 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.2669P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.14 e Å3
1034 reflectionsΔρmin = 0.18 e Å3
91 parametersAbsolute structure: Flack x determined using 383 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.490 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29001 (14)0.33334 (10)0.31975 (10)0.0570 (3)
N40.3581 (4)0.7481 (3)0.4117 (3)0.0373 (6)
N50.3680 (4)0.5944 (3)0.4182 (3)0.0406 (7)
N30.4316 (4)0.8387 (4)0.5061 (3)0.0521 (8)
N20.3940 (6)0.9774 (4)0.4659 (3)0.0592 (9)
N10.2988 (5)0.9809 (3)0.3491 (3)0.0515 (8)
C90.2768 (5)0.8345 (4)0.3150 (3)0.0373 (7)
C70.1997 (6)0.6048 (4)0.2078 (3)0.0443 (8)
H70.1459980.5488420.1386900.053*
C60.2870 (5)0.5296 (4)0.3166 (3)0.0390 (7)
C80.1955 (6)0.7583 (4)0.2057 (3)0.0446 (8)
H80.1413010.8115150.1351180.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0656 (6)0.0315 (4)0.0738 (6)0.0017 (5)0.0167 (5)0.0030 (4)
N40.0463 (15)0.0344 (14)0.0311 (13)0.0022 (12)0.0008 (13)0.0014 (11)
N50.0496 (16)0.0349 (14)0.0373 (14)0.0009 (13)0.0033 (14)0.0050 (12)
N30.0669 (19)0.0491 (18)0.0402 (15)0.0101 (18)0.0072 (15)0.0082 (17)
N20.076 (2)0.0442 (18)0.0577 (19)0.0104 (17)0.0037 (18)0.0152 (15)
N10.064 (2)0.0359 (14)0.0547 (17)0.0012 (15)0.0052 (17)0.0038 (13)
C90.0457 (17)0.0328 (16)0.0334 (15)0.0019 (16)0.0050 (14)0.0039 (13)
C70.052 (2)0.0486 (19)0.0317 (16)0.0045 (17)0.0006 (18)0.0079 (14)
C60.0455 (18)0.0318 (16)0.0396 (17)0.0005 (15)0.0089 (17)0.0022 (13)
C80.052 (2)0.0493 (19)0.0321 (16)0.0026 (17)0.0002 (17)0.0063 (14)
Geometric parameters (Å, º) top
Cl1—C61.721 (3)N1—C91.338 (4)
N4—N51.351 (4)C9—C81.407 (5)
N4—N31.341 (4)C7—H70.9300
N4—C91.358 (4)C7—C61.416 (5)
N5—C61.299 (4)C7—C81.347 (5)
N3—N21.309 (4)C8—H80.9300
N2—N11.351 (5)
N5—N4—C9127.8 (3)C6—C7—H7120.4
N3—N4—N5122.5 (3)C8—C7—H7120.4
N3—N4—C9109.7 (3)C8—C7—C6119.2 (3)
C6—N5—N4112.1 (3)N5—C6—Cl1114.7 (3)
N2—N3—N4104.7 (3)N5—C6—C7126.3 (3)
N3—N2—N1112.9 (3)C7—C6—Cl1119.0 (3)
C9—N1—N2104.9 (3)C9—C8—H8121.5
N4—C9—C8117.7 (3)C7—C8—C9117.0 (3)
N1—C9—N4107.7 (3)C7—C8—H8121.5
N1—C9—C8134.6 (3)
N4—N5—C6—Cl1178.8 (2)N3—N2—N1—C90.1 (4)
N4—N5—C6—C71.2 (5)N2—N1—C9—N40.2 (4)
N4—N3—N2—N10.0 (4)N2—N1—C9—C8178.4 (4)
N4—C9—C8—C72.0 (6)N1—C9—C8—C7179.5 (4)
N5—N4—N3—N2179.7 (3)C9—N4—N5—C60.1 (5)
N5—N4—C9—N1179.6 (3)C9—N4—N3—N20.1 (4)
N5—N4—C9—C81.5 (6)C6—C7—C8—C91.1 (6)
N3—N4—N5—C6179.7 (3)C8—C7—C6—Cl1179.4 (3)
N3—N4—C9—N10.2 (4)C8—C7—C6—N50.6 (6)
N3—N4—C9—C8178.7 (3)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@200K_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.672 Mg m3
Mr = 155.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2643 reflections
a = 7.0422 (2) Åθ = 5.0–64.7°
b = 8.7617 (2) ŵ = 4.83 mm1
c = 10.0158 (2) ÅT = 200 K
V = 617.99 (3) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.15 mm
F(000) = 312
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1032 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source999 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.5357 pixels mm-1θmax = 64.8°, θmin = 6.7°
ω scansh = 86
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 910
Tmin = 0.652, Tmax = 1.000l = 1110
3628 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.3157P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.16 e Å3
1032 reflectionsΔρmin = 0.18 e Å3
91 parametersAbsolute structure: Flack x determined using 384 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.474 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28981 (13)0.33294 (9)0.31932 (9)0.0512 (3)
N40.3589 (4)0.7476 (3)0.4115 (3)0.0334 (6)
N50.3688 (4)0.5941 (3)0.4179 (3)0.0368 (7)
N30.4329 (4)0.8383 (4)0.5060 (3)0.0470 (7)
N20.3951 (5)0.9772 (4)0.4661 (3)0.0535 (9)
N10.2994 (5)0.9809 (3)0.3491 (3)0.0464 (8)
C90.2775 (5)0.8348 (3)0.3149 (3)0.0342 (7)
C70.1995 (5)0.6047 (4)0.2074 (3)0.0398 (8)
H70.1458270.5487870.1381220.048*
C60.2871 (5)0.5293 (3)0.3163 (3)0.0353 (7)
C80.1950 (5)0.7585 (4)0.2054 (3)0.0402 (8)
H80.1399240.8118200.1350260.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0592 (5)0.0283 (4)0.0662 (6)0.0016 (4)0.0150 (4)0.0028 (4)
N40.0420 (14)0.0311 (13)0.0272 (12)0.0022 (12)0.0004 (12)0.0005 (11)
N50.0451 (15)0.0320 (14)0.0335 (14)0.0009 (13)0.0025 (14)0.0049 (11)
N30.0605 (17)0.0448 (17)0.0357 (14)0.0092 (17)0.0071 (14)0.0076 (16)
N20.070 (2)0.0395 (17)0.0513 (18)0.0090 (16)0.0031 (17)0.0127 (14)
N10.058 (2)0.0325 (14)0.0492 (16)0.0008 (14)0.0063 (16)0.0031 (12)
C90.0415 (16)0.0302 (15)0.0310 (14)0.0021 (15)0.0047 (14)0.0032 (13)
C70.0469 (18)0.0440 (18)0.0285 (16)0.0046 (15)0.0003 (17)0.0070 (13)
C60.0406 (17)0.0289 (15)0.0364 (16)0.0005 (14)0.0083 (17)0.0021 (13)
C80.0467 (18)0.0456 (18)0.0283 (15)0.0023 (16)0.0006 (16)0.0059 (13)
Geometric parameters (Å, º) top
Cl1—C61.721 (3)N1—C91.335 (4)
N4—N51.349 (4)C9—C81.409 (5)
N4—N31.341 (4)C7—H70.9300
N4—C91.359 (4)C7—C61.417 (5)
N5—C61.299 (4)C7—C81.348 (5)
N3—N21.308 (4)C8—H80.9300
N2—N11.353 (4)
N5—N4—C9128.0 (3)C6—C7—H7120.4
N3—N4—N5122.5 (3)C8—C7—H7120.4
N3—N4—C9109.5 (3)C8—C7—C6119.2 (3)
C6—N5—N4112.0 (3)N5—C6—Cl1114.7 (2)
N2—N3—N4104.9 (3)N5—C6—C7126.3 (3)
N3—N2—N1112.9 (3)C7—C6—Cl1119.0 (2)
C9—N1—N2104.9 (3)C9—C8—H8121.6
N4—C9—C8117.5 (3)C7—C8—C9116.9 (3)
N1—C9—N4107.9 (3)C7—C8—H8121.6
N1—C9—C8134.6 (3)
N4—N5—C6—Cl1178.7 (2)N3—N2—N1—C90.2 (4)
N4—N5—C6—C71.3 (5)N2—N1—C9—N40.3 (4)
N4—N3—N2—N10.0 (4)N2—N1—C9—C8178.7 (4)
N4—C9—C8—C71.6 (5)N1—C9—C8—C7179.4 (4)
N5—N4—N3—N2179.7 (3)C9—N4—N5—C60.3 (5)
N5—N4—C9—N1179.6 (3)C9—N4—N3—N20.2 (4)
N5—N4—C9—C81.2 (5)C6—C7—C8—C90.7 (6)
N3—N4—N5—C6179.7 (3)C8—C7—C6—Cl1179.2 (3)
N3—N4—C9—N10.4 (4)C8—C7—C6—N50.9 (6)
N3—N4—C9—C8178.9 (3)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@190K_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.668 Mg m3
Mr = 155.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2441 reflections
a = 7.0473 (2) Åθ = 5.0–64.4°
b = 8.7636 (2) ŵ = 4.82 mm1
c = 10.0299 (2) ÅT = 190 K
V = 619.44 (3) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.15 mm
F(000) = 312
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1032 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1001 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.5357 pixels mm-1θmax = 64.8°, θmin = 6.7°
ω scansh = 86
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 109
Tmin = 0.661, Tmax = 1.000l = 1011
3643 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3109P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.27 e Å3
1032 reflectionsΔρmin = 0.19 e Å3
91 parametersAbsolute structure: Flack x determined using 381 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.484 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28971 (15)0.33299 (10)0.31933 (10)0.0552 (4)
N40.3589 (5)0.7478 (3)0.4117 (3)0.0377 (7)
N50.3688 (5)0.5941 (3)0.4178 (3)0.0409 (7)
N30.4329 (5)0.8385 (4)0.5061 (3)0.0508 (8)
N20.3953 (6)0.9770 (4)0.4662 (4)0.0578 (10)
N10.2998 (6)0.9809 (4)0.3491 (3)0.0500 (9)
C90.2776 (5)0.8349 (4)0.3150 (3)0.0381 (7)
C70.1999 (6)0.6050 (4)0.2074 (3)0.0437 (9)
H70.1467020.5490690.1380650.052*
C60.2869 (5)0.5295 (4)0.3166 (3)0.0394 (8)
C80.1952 (6)0.7586 (4)0.2054 (3)0.0441 (9)
H80.1401480.8118780.1351990.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0675 (6)0.0293 (5)0.0689 (6)0.0015 (5)0.0148 (5)0.0029 (4)
N40.0512 (17)0.0317 (14)0.0304 (14)0.0029 (13)0.0007 (14)0.0010 (12)
N50.0529 (17)0.0328 (15)0.0369 (15)0.0002 (14)0.0029 (15)0.0047 (12)
N30.069 (2)0.0449 (18)0.0387 (16)0.0094 (18)0.0064 (15)0.0062 (17)
N20.078 (3)0.0407 (18)0.0544 (19)0.0084 (18)0.0029 (19)0.0124 (16)
N10.065 (2)0.0335 (15)0.0513 (17)0.0014 (16)0.0057 (18)0.0032 (13)
C90.0503 (19)0.0306 (17)0.0334 (16)0.0012 (17)0.0046 (15)0.0034 (14)
C70.055 (2)0.0451 (19)0.0314 (17)0.0035 (17)0.0008 (19)0.0076 (14)
C60.049 (2)0.0303 (17)0.0392 (18)0.0014 (16)0.0085 (18)0.0024 (14)
C80.055 (2)0.047 (2)0.0313 (17)0.0033 (18)0.0003 (18)0.0059 (15)
Geometric parameters (Å, º) top
Cl1—C61.722 (3)N1—C91.334 (4)
N4—N51.350 (4)C9—C81.411 (5)
N4—N31.342 (4)C7—H70.9300
N4—C91.361 (4)C7—C61.418 (5)
N5—C61.298 (5)C7—C81.347 (5)
N3—N21.305 (5)C8—H80.9300
N2—N11.354 (5)
N5—N4—C9127.9 (3)C6—C7—H7120.4
N3—N4—N5122.6 (3)C8—C7—H7120.4
N3—N4—C9109.5 (3)C8—C7—C6119.2 (3)
C6—N5—N4112.1 (3)N5—C6—Cl1114.7 (3)
N2—N3—N4104.8 (3)N5—C6—C7126.3 (3)
N3—N2—N1113.0 (3)C7—C6—Cl1118.9 (3)
C9—N1—N2104.8 (3)C9—C8—H8121.6
N4—C9—C8117.6 (3)C7—C8—C9116.9 (3)
N1—C9—N4107.8 (3)C7—C8—H8121.6
N1—C9—C8134.6 (3)
N4—N5—C6—Cl1178.7 (2)N3—N2—N1—C90.1 (5)
N4—N5—C6—C71.7 (6)N2—N1—C9—N40.3 (4)
N4—N3—N2—N10.1 (5)N2—N1—C9—C8178.7 (4)
N4—C9—C8—C71.5 (6)N1—C9—C8—C7179.6 (4)
N5—N4—N3—N2179.8 (3)C9—N4—N5—C60.5 (6)
N5—N4—C9—N1179.8 (3)C9—N4—N3—N20.2 (4)
N5—N4—C9—C81.1 (6)C6—C7—C8—C90.5 (6)
N3—N4—N5—C6179.6 (3)C8—C7—C6—Cl1179.2 (3)
N3—N4—C9—N10.3 (4)C8—C7—C6—N51.3 (7)
N3—N4—C9—C8178.8 (3)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@175K_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.677 Mg m3
Mr = 155.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2763 reflections
a = 7.0342 (1) Åθ = 5.1–64.2°
b = 8.7569 (2) ŵ = 4.85 mm1
c = 10.0049 (2) ÅT = 175 K
V = 616.28 (2) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.15 mm
F(000) = 312
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1029 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1004 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.5357 pixels mm-1θmax = 64.9°, θmin = 6.7°
ω scansh = 86
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 109
Tmin = 0.555, Tmax = 1.000l = 1011
3623 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.3837P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.15 e Å3
1029 reflectionsΔρmin = 0.15 e Å3
91 parametersAbsolute structure: Flack x determined using 384 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.481 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28970 (13)0.33255 (9)0.31896 (9)0.0457 (3)
N40.3593 (4)0.7477 (3)0.4115 (3)0.0307 (6)
N50.3695 (4)0.5940 (3)0.4178 (3)0.0333 (6)
N30.4343 (4)0.8381 (4)0.5060 (3)0.0423 (7)
N20.3966 (5)0.9773 (4)0.4659 (3)0.0480 (8)
N10.2999 (5)0.9812 (3)0.3491 (3)0.0420 (7)
C90.2777 (5)0.8346 (3)0.3148 (3)0.0310 (6)
C70.1992 (5)0.6047 (4)0.2071 (3)0.0363 (7)
H70.1452460.5487200.1378450.044*
C60.2873 (5)0.5291 (3)0.3161 (3)0.0322 (7)
C80.1947 (5)0.7588 (4)0.2051 (3)0.0365 (7)
H80.1395200.8122960.1347480.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0529 (5)0.0259 (4)0.0584 (5)0.0013 (4)0.0130 (4)0.0027 (4)
N40.0386 (14)0.0283 (13)0.0253 (13)0.0026 (11)0.0003 (12)0.0009 (11)
N50.0411 (15)0.0283 (13)0.0304 (14)0.0001 (12)0.0026 (13)0.0040 (11)
N30.0540 (17)0.0404 (17)0.0326 (14)0.0081 (16)0.0056 (13)0.0069 (15)
N20.061 (2)0.0359 (17)0.0466 (17)0.0077 (15)0.0026 (16)0.0107 (14)
N10.0522 (19)0.0300 (13)0.0440 (16)0.0014 (14)0.0050 (16)0.0031 (12)
C90.0376 (16)0.0277 (15)0.0275 (14)0.0021 (15)0.0047 (13)0.0041 (13)
C70.0434 (18)0.0398 (17)0.0258 (15)0.0040 (15)0.0004 (17)0.0069 (13)
C60.0368 (17)0.0259 (15)0.0339 (16)0.0002 (14)0.0077 (17)0.0018 (13)
C80.0421 (18)0.0411 (18)0.0264 (16)0.0023 (16)0.0006 (16)0.0049 (13)
Geometric parameters (Å, º) top
Cl1—C61.722 (3)N1—C91.337 (4)
N4—N51.350 (4)C9—C81.410 (5)
N4—N31.341 (4)C7—H70.9300
N4—C91.358 (4)C7—C61.418 (5)
N5—C61.301 (4)C7—C81.350 (5)
N3—N21.311 (4)C8—H80.9300
N2—N11.353 (4)
N5—N4—C9127.9 (3)C6—C7—H7120.4
N3—N4—N5122.3 (3)C8—C7—H7120.4
N3—N4—C9109.7 (3)C8—C7—C6119.2 (3)
C6—N5—N4112.1 (3)N5—C6—Cl1114.8 (2)
N2—N3—N4104.7 (3)N5—C6—C7126.3 (3)
N3—N2—N1113.0 (3)C7—C6—Cl1118.9 (2)
C9—N1—N2104.8 (3)C9—C8—H8121.7
N4—C9—C8117.8 (3)C7—C8—C9116.7 (3)
N1—C9—N4107.8 (3)C7—C8—H8121.7
N1—C9—C8134.4 (3)
N4—N5—C6—Cl1178.6 (2)N3—N2—N1—C90.4 (4)
N4—N5—C6—C71.5 (5)N2—N1—C9—N40.5 (4)
N4—N3—N2—N10.1 (4)N2—N1—C9—C8178.4 (4)
N4—C9—C8—C71.7 (5)N1—C9—C8—C7179.5 (4)
N5—N4—N3—N2180.0 (3)C9—N4—N5—C60.4 (5)
N5—N4—C9—N1179.8 (3)C9—N4—N3—N20.2 (4)
N5—N4—C9—C81.1 (5)C6—C7—C8—C90.8 (6)
N3—N4—N5—C6179.8 (3)C8—C7—C6—Cl1179.2 (3)
N3—N4—C9—N10.5 (4)C8—C7—C6—N50.9 (6)
N3—N4—C9—C8178.7 (3)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@160K_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.676 Mg m3
Mr = 155.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2653 reflections
a = 7.0336 (2) Åθ = 5.1–64.8°
b = 8.7575 (2) ŵ = 4.85 mm1
c = 10.0065 (2) ÅT = 160 K
V = 616.37 (3) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.15 mm
F(000) = 312
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1028 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1009 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.5357 pixels mm-1θmax = 64.9°, θmin = 6.7°
ω scansh = 68
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 910
Tmin = 0.664, Tmax = 1.000l = 1011
3626 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.3868P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.15 e Å3
1028 reflectionsΔρmin = 0.15 e Å3
91 parametersAbsolute structure: Flack x determined using 383 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.480 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28963 (13)0.33241 (9)0.31888 (9)0.0455 (3)
N40.3598 (4)0.7476 (3)0.4114 (3)0.0310 (6)
N50.3696 (4)0.5938 (3)0.4178 (3)0.0335 (7)
N30.4347 (4)0.8380 (4)0.5061 (3)0.0420 (7)
N20.3972 (5)0.9772 (4)0.4660 (3)0.0474 (8)
N10.3004 (5)0.9812 (3)0.3490 (3)0.0417 (7)
C90.2780 (5)0.8348 (4)0.3149 (3)0.0313 (7)
C70.1988 (5)0.6048 (4)0.2069 (3)0.0363 (8)
H70.1443910.5489410.1377510.044*
C60.2873 (5)0.5291 (3)0.3161 (3)0.0325 (7)
C80.1949 (5)0.7589 (4)0.2050 (3)0.0366 (8)
H80.1401450.8125210.1346310.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0538 (5)0.0254 (4)0.0571 (5)0.0015 (4)0.0123 (4)0.0024 (4)
N40.0400 (15)0.0273 (13)0.0258 (13)0.0026 (12)0.0001 (12)0.0013 (11)
N50.0422 (15)0.0279 (14)0.0305 (14)0.0002 (13)0.0023 (14)0.0040 (11)
N30.0553 (17)0.0385 (17)0.0321 (14)0.0073 (17)0.0054 (14)0.0050 (15)
N20.062 (2)0.0349 (17)0.0450 (17)0.0072 (15)0.0034 (16)0.0106 (14)
N10.0522 (19)0.0295 (14)0.0434 (16)0.0008 (14)0.0050 (16)0.0027 (12)
C90.0387 (16)0.0270 (15)0.0281 (14)0.0016 (16)0.0049 (14)0.0034 (13)
C70.0430 (19)0.0392 (18)0.0267 (16)0.0039 (15)0.0007 (17)0.0065 (13)
C60.0373 (17)0.0266 (15)0.0334 (16)0.0003 (15)0.0084 (17)0.0019 (13)
C80.0428 (19)0.0407 (18)0.0265 (16)0.0018 (16)0.0008 (17)0.0046 (13)
Geometric parameters (Å, º) top
Cl1—C61.723 (3)N1—C91.336 (4)
N4—N51.350 (4)C9—C81.411 (5)
N4—N31.343 (4)C7—H70.9300
N4—C91.359 (4)C7—C61.421 (5)
N5—C61.301 (4)C7—C81.350 (5)
N3—N21.310 (4)C8—H80.9300
N2—N11.354 (5)
N5—N4—C9128.0 (3)C6—C7—H7120.5
N3—N4—N5122.4 (3)C8—C7—H7120.5
N3—N4—C9109.7 (3)C8—C7—C6119.1 (3)
C6—N5—N4112.0 (3)N5—C6—Cl1114.7 (2)
N2—N3—N4104.6 (3)N5—C6—C7126.4 (3)
N3—N2—N1113.0 (3)C7—C6—Cl1118.9 (2)
C9—N1—N2104.8 (3)C9—C8—H8121.6
N4—C9—C8117.7 (3)C7—C8—C9116.8 (3)
N1—C9—N4107.9 (3)C7—C8—H8121.6
N1—C9—C8134.4 (3)
N4—N5—C6—Cl1178.7 (2)N3—N2—N1—C90.3 (4)
N4—N5—C6—C71.3 (5)N2—N1—C9—N40.4 (4)
N4—N3—N2—N10.1 (4)N2—N1—C9—C8178.4 (4)
N4—C9—C8—C71.9 (5)N1—C9—C8—C7179.5 (4)
N5—N4—N3—N2179.9 (3)C9—N4—N5—C60.3 (5)
N5—N4—C9—N1179.7 (3)C9—N4—N3—N20.1 (4)
N5—N4—C9—C81.3 (5)C6—C7—C8—C91.0 (6)
N3—N4—N5—C6179.7 (3)C8—C7—C6—Cl1179.3 (3)
N3—N4—C9—N10.3 (4)C8—C7—C6—N50.7 (6)
N3—N4—C9—C8178.7 (3)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@150K_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.680 Mg m3
Mr = 155.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2774 reflections
a = 7.0291 (1) Åθ = 5.1–64.2°
b = 8.7539 (1) ŵ = 4.86 mm1
c = 9.9932 (2) ÅT = 150 K
V = 614.90 (2) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.15 mm
F(000) = 312
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1023 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1010 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.5357 pixels mm-1θmax = 64.8°, θmin = 6.7°
ω scansh = 68
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 910
Tmin = 0.675, Tmax = 1.000l = 1011
3613 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.038P)2 + 0.4114P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.14 e Å3
1023 reflectionsΔρmin = 0.15 e Å3
91 parametersAbsolute structure: Flack x determined using 380 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.491 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28958 (13)0.33211 (9)0.31862 (9)0.0407 (3)
N40.3602 (4)0.7477 (3)0.4113 (3)0.0275 (6)
N50.3700 (4)0.5937 (3)0.4176 (3)0.0300 (6)
N30.4355 (4)0.8380 (4)0.5059 (3)0.0377 (7)
N20.3977 (5)0.9771 (4)0.4662 (3)0.0426 (8)
N10.3007 (5)0.9813 (3)0.3490 (3)0.0375 (7)
C90.2781 (5)0.8347 (3)0.3148 (3)0.0282 (6)
C70.1987 (5)0.6047 (4)0.2067 (3)0.0329 (7)
H70.1445440.5488450.1372770.039*
C60.2871 (5)0.5290 (3)0.3160 (3)0.0293 (7)
C80.1945 (5)0.7589 (4)0.2050 (3)0.0329 (7)
H80.1391260.8126180.1347330.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0471 (5)0.0235 (4)0.0514 (5)0.0013 (4)0.0111 (4)0.0024 (3)
N40.0348 (14)0.0250 (13)0.0228 (13)0.0030 (11)0.0001 (12)0.0008 (11)
N50.0367 (14)0.0259 (13)0.0273 (13)0.0002 (12)0.0027 (13)0.0035 (11)
N30.0483 (16)0.0362 (16)0.0287 (14)0.0062 (16)0.0045 (13)0.0051 (14)
N20.0546 (19)0.0328 (16)0.0405 (16)0.0062 (15)0.0028 (15)0.0089 (13)
N10.0460 (18)0.0276 (13)0.0389 (15)0.0012 (14)0.0048 (15)0.0027 (12)
C90.0336 (16)0.0256 (15)0.0254 (14)0.0012 (15)0.0051 (13)0.0032 (13)
C70.0391 (18)0.0363 (17)0.0232 (15)0.0034 (15)0.0009 (17)0.0062 (12)
C60.0330 (17)0.0246 (15)0.0303 (16)0.0005 (14)0.0076 (16)0.0021 (13)
C80.0372 (18)0.0374 (18)0.0241 (15)0.0026 (15)0.0008 (16)0.0040 (13)
Geometric parameters (Å, º) top
Cl1—C61.724 (3)N1—C91.337 (4)
N4—N51.351 (4)C9—C81.411 (5)
N4—N31.342 (4)C7—H70.9300
N4—C91.358 (4)C7—C61.421 (5)
N5—C61.300 (4)C7—C81.351 (5)
N3—N21.308 (4)C8—H80.9300
N2—N11.355 (4)
N5—N4—C9127.9 (3)C6—C7—H7120.5
N3—N4—N5122.4 (3)C8—C7—H7120.5
N3—N4—C9109.7 (3)C8—C7—C6119.0 (3)
C6—N5—N4112.1 (3)N5—C6—Cl1114.8 (2)
N2—N3—N4104.8 (3)N5—C6—C7126.4 (3)
N3—N2—N1112.9 (3)C7—C6—Cl1118.8 (2)
C9—N1—N2104.8 (3)C9—C8—H8121.6
N4—C9—C8117.8 (3)C7—C8—C9116.8 (3)
N1—C9—N4107.8 (3)C7—C8—H8121.6
N1—C9—C8134.4 (3)
N4—N5—C6—Cl1178.7 (2)N3—N2—N1—C90.1 (4)
N4—N5—C6—C71.6 (5)N2—N1—C9—N40.3 (4)
N4—N3—N2—N10.1 (4)N2—N1—C9—C8178.5 (4)
N4—C9—C8—C71.7 (5)N1—C9—C8—C7179.6 (4)
N5—N4—N3—N2179.8 (3)C9—N4—N5—C60.4 (5)
N5—N4—C9—N1179.8 (3)C9—N4—N3—N20.3 (4)
N5—N4—C9—C81.2 (5)C6—C7—C8—C90.7 (6)
N3—N4—N5—C6179.7 (3)C8—C7—C6—Cl1179.2 (3)
N3—N4—C9—N10.3 (4)C8—C7—C6—N51.1 (6)
N3—N4—C9—C8178.7 (3)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@130K_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.684 Mg m3
Mr = 155.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2782 reflections
a = 7.0245 (1) Åθ = 5.1–64.2°
b = 8.7517 (1) ŵ = 4.87 mm1
c = 9.9817 (2) ÅT = 130 K
V = 613.64 (2) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.15 mm
F(000) = 312
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1019 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1010 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.5357 pixels mm-1θmax = 64.4°, θmin = 6.7°
ω scansh = 68
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 910
Tmin = 0.602, Tmax = 1.000l = 1011
3602 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.034P)2 + 0.4512P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.14 e Å3
1019 reflectionsΔρmin = 0.14 e Å3
91 parametersAbsolute structure: Flack x determined using 383 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.485 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28953 (12)0.33187 (9)0.31839 (8)0.0365 (3)
N40.3606 (4)0.7476 (3)0.4114 (3)0.0253 (6)
N50.3705 (4)0.5934 (3)0.4173 (3)0.0275 (6)
N30.4365 (4)0.8378 (4)0.5059 (3)0.0340 (7)
N20.3987 (5)0.9774 (3)0.4660 (3)0.0387 (7)
N10.3009 (5)0.9814 (3)0.3489 (3)0.0340 (7)
C90.2782 (4)0.8347 (3)0.3146 (3)0.0257 (6)
C70.1985 (5)0.6045 (4)0.2063 (3)0.0299 (7)
H70.1443930.5486570.1368590.036*
C60.2870 (5)0.5288 (3)0.3158 (3)0.0268 (7)
C80.1942 (5)0.7590 (4)0.2046 (3)0.0299 (7)
H80.1386000.8126960.1343560.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0427 (5)0.0211 (4)0.0457 (5)0.0011 (4)0.0097 (4)0.0022 (3)
N40.0328 (14)0.0222 (13)0.0210 (13)0.0025 (11)0.0000 (12)0.0004 (11)
N50.0333 (14)0.0239 (13)0.0253 (13)0.0001 (12)0.0027 (13)0.0037 (11)
N30.0438 (15)0.0326 (16)0.0256 (13)0.0058 (16)0.0040 (12)0.0047 (14)
N20.0500 (18)0.0294 (16)0.0366 (16)0.0052 (14)0.0027 (14)0.0079 (13)
N10.0419 (17)0.0255 (13)0.0344 (15)0.0011 (14)0.0046 (14)0.0023 (11)
C90.0315 (15)0.0231 (14)0.0226 (14)0.0017 (15)0.0046 (13)0.0033 (13)
C70.0345 (17)0.0335 (17)0.0216 (15)0.0028 (14)0.0014 (16)0.0057 (12)
C60.0307 (16)0.0218 (15)0.0279 (15)0.0005 (14)0.0066 (16)0.0018 (13)
C80.0336 (17)0.0343 (17)0.0219 (15)0.0019 (15)0.0011 (16)0.0036 (13)
Geometric parameters (Å, º) top
Cl1—C61.724 (3)N1—C91.339 (4)
N4—N51.352 (4)C9—C81.412 (5)
N4—N31.341 (4)C7—H70.9300
N4—C91.360 (4)C7—C61.421 (5)
N5—C61.300 (4)C7—C81.352 (4)
N3—N21.311 (4)C8—H80.9300
N2—N11.357 (4)
N5—N4—C9127.7 (3)C6—C7—H7120.5
N3—N4—N5122.5 (3)C8—C7—H7120.5
N3—N4—C9109.8 (3)C8—C7—C6119.1 (3)
C6—N5—N4112.2 (3)N5—C6—Cl1114.8 (2)
N2—N3—N4104.7 (3)N5—C6—C7126.4 (3)
N3—N2—N1112.9 (3)C7—C6—Cl1118.8 (2)
C9—N1—N2104.8 (3)C9—C8—H8121.6
N4—C9—C8117.9 (3)C7—C8—C9116.7 (3)
N1—C9—N4107.8 (3)C7—C8—H8121.6
N1—C9—C8134.3 (3)
N4—N5—C6—Cl1178.7 (2)N3—N2—N1—C90.3 (4)
N4—N5—C6—C71.8 (5)N2—N1—C9—N40.4 (4)
N4—N3—N2—N10.0 (4)N2—N1—C9—C8178.4 (4)
N4—C9—C8—C71.6 (5)N1—C9—C8—C7179.6 (4)
N5—N4—N3—N2180.0 (3)C9—N4—N5—C60.6 (5)
N5—N4—C9—N1179.8 (3)C9—N4—N3—N20.3 (4)
N5—N4—C9—C81.2 (5)C6—C7—C8—C90.6 (6)
N3—N4—N5—C6179.7 (3)C8—C7—C6—Cl1179.2 (3)
N3—N4—C9—N10.5 (4)C8—C7—C6—N51.3 (6)
N3—N4—C9—C8178.6 (3)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_0001GPa_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.647 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 958 reflections
a = 7.0753 (7) Åθ = 4.2–22.9°
b = 8.7825 (7) ŵ = 0.53 mm1
c = 10.099 (10) ÅT = 296 K
V = 627.5 (6) Å3Plate, colorless
Z = 40.30 × 0.30 × 0.11 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
475 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.2413 pixels mm-1θmax = 27.0°, θmin = 4.2°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 88
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1111
Tmin = 0.301, Tmax = 1.000l = 33
3465 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.1128P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.09 e Å3
475 reflectionsΔρmin = 0.09 e Å3
91 parametersAbsolute structure: Flack x determined using 108 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.54 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.0001 GPa (100 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2905 (2)0.33485 (15)0.3207 (5)0.080 (3)
N40.3563 (8)0.7499 (6)0.4125 (16)0.045 (10)
N50.3668 (7)0.5951 (6)0.4211 (17)0.075 (11)
N30.4281 (7)0.8395 (7)0.5062 (15)0.078 (9)
N20.3878 (11)0.9788 (8)0.466 (3)0.067 (12)
N10.2968 (11)0.9789 (7)0.347 (2)0.063 (12)
C90.2772 (9)0.8345 (6)0.3177 (17)0.055 (10)
C70.2018 (10)0.6036 (8)0.208 (2)0.059 (13)
H70.1508250.5466840.1385710.070*
C60.2876 (10)0.5319 (6)0.3192 (19)0.057 (11)
C80.1973 (9)0.7594 (7)0.206 (2)0.061 (12)
H80.1448890.8133220.1356490.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0792 (10)0.0387 (7)0.122 (8)0.0016 (8)0.023 (2)0.0034 (17)
N40.047 (3)0.043 (2)0.04 (3)0.004 (2)0.013 (5)0.002 (6)
N50.052 (3)0.041 (3)0.13 (3)0.001 (2)0.007 (6)0.000 (7)
N30.077 (4)0.066 (3)0.09 (3)0.014 (4)0.008 (6)0.005 (8)
N20.089 (6)0.056 (4)0.06 (4)0.014 (4)0.007 (11)0.025 (7)
N10.078 (6)0.045 (3)0.07 (4)0.007 (3)0.002 (10)0.011 (7)
C90.045 (3)0.041 (3)0.08 (3)0.001 (3)0.003 (7)0.003 (8)
C70.060 (4)0.060 (3)0.06 (4)0.009 (3)0.008 (9)0.016 (7)
C60.048 (4)0.039 (3)0.08 (3)0.001 (3)0.010 (10)0.007 (7)
C80.056 (4)0.064 (4)0.06 (4)0.008 (3)0.007 (8)0.017 (8)
Geometric parameters (Å, º) top
Cl1—C61.731 (6)N1—C91.310 (9)
N4—N51.364 (6)C9—C81.42 (2)
N4—N31.332 (16)C7—H70.9300
N4—C91.335 (17)C7—C61.43 (2)
N5—C61.30 (2)C7—C81.369 (8)
N3—N21.320 (12)C8—H80.9300
N2—N11.36 (3)
N3—N4—N5121.6 (13)C6—C7—H7121.3
N3—N4—C9109.9 (7)C8—C7—H7121.3
C9—N4—N5128.5 (14)C8—C7—C6117.4 (16)
C6—N5—N4110.7 (14)N5—C6—Cl1114.6 (11)
N2—N3—N4104.2 (13)N5—C6—C7128.4 (8)
N3—N2—N1112.1 (12)C7—C6—Cl1117.0 (11)
C9—N1—N2104.3 (10)C9—C8—H8121.8
N4—C9—C8118.5 (7)C7—C8—C9116.3 (15)
N1—C9—N4109.5 (13)C7—C8—H8121.8
N1—C9—C8131.9 (13)
N4—N5—C6—Cl1179.3 (6)N3—N2—N1—C92 (2)
N4—N5—C6—C71 (2)N2—N1—C9—N41.5 (16)
N4—N3—N2—N11.7 (18)N2—N1—C9—C8178.6 (15)
N4—C9—C8—C72.5 (15)N1—C9—C8—C7179.4 (11)
N5—N4—N3—N2178.6 (11)C9—N4—N5—C60.7 (19)
N5—N4—C9—N1179.8 (11)C9—N4—N3—N20.7 (13)
N5—N4—C9—C82.7 (18)C6—C7—C8—C90.8 (16)
N3—N4—N5—C6179.9 (9)C8—C7—C6—Cl1179.4 (8)
N3—N4—C9—N10.5 (13)C8—C7—C6—N51 (2)
N3—N4—C9—C8178.1 (10)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_12GPa_phase_alpha) top
Crystal data top
C4H2ClN5Dx = 1.697 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 923 reflections
a = 6.9340 (5) Åθ = 4.2–22.0°
b = 8.7568 (6) ŵ = 0.54 mm1
c = 10.029 (7) ÅT = 296 K
V = 609.0 (4) Å3Plate, colorless
Z = 40.30 × 0.30 × 0.11 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
487 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.2413 pixels mm-1θmax = 26.8°, θmin = 4.3°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 88
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1110
Tmin = 0.348, Tmax = 1.000l = 44
3365 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0294P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.10 e Å3
487 reflectionsΔρmin = 0.09 e Å3
91 parametersAbsolute structure: Flack x determined using 117 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.49 (8)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.12 GPa (120000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2929 (2)0.33348 (13)0.3228 (4)0.0746 (19)
N40.3555 (7)0.7512 (5)0.4137 (14)0.055 (9)
N50.3685 (7)0.5951 (5)0.4233 (13)0.057 (9)
N30.4256 (6)0.8428 (6)0.5096 (13)0.065 (7)
N20.3845 (9)0.9812 (7)0.465 (2)0.070 (9)
N10.2924 (10)0.9803 (6)0.3481 (19)0.064 (10)
C90.2749 (8)0.8338 (6)0.3169 (15)0.053 (8)
C70.2011 (10)0.6025 (7)0.2073 (17)0.053 (10)
H70.1500370.5451290.1376780.064*
C60.2875 (9)0.5309 (6)0.3192 (17)0.066 (8)
C80.1951 (8)0.7585 (6)0.2049 (16)0.044 (9)
H80.1416380.8120690.1338150.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0758 (9)0.0341 (7)0.114 (6)0.0007 (7)0.0193 (18)0.0023 (14)
N40.041 (3)0.040 (2)0.08 (3)0.002 (2)0.013 (5)0.006 (5)
N50.048 (3)0.040 (2)0.08 (3)0.002 (2)0.001 (6)0.011 (5)
N30.070 (3)0.062 (3)0.06 (2)0.015 (3)0.009 (6)0.004 (7)
N20.077 (5)0.053 (4)0.08 (3)0.013 (3)0.004 (9)0.019 (6)
N10.068 (5)0.039 (3)0.08 (3)0.003 (3)0.016 (8)0.007 (6)
C90.042 (3)0.037 (3)0.08 (2)0.002 (3)0.006 (6)0.005 (7)
C70.056 (4)0.057 (3)0.05 (3)0.010 (3)0.006 (8)0.017 (6)
C60.041 (3)0.034 (3)0.12 (3)0.000 (3)0.019 (9)0.007 (6)
C80.056 (4)0.055 (3)0.02 (3)0.006 (3)0.004 (7)0.016 (6)
Geometric parameters (Å, º) top
Cl1—C61.730 (6)N1—C91.326 (8)
N4—N51.373 (6)C9—C81.415 (19)
N4—N31.343 (15)C7—H70.9300
N4—C91.334 (14)C7—C61.419 (18)
N5—C61.312 (19)C7—C81.367 (7)
N3—N21.321 (11)C8—H80.9300
N2—N11.34 (3)
N3—N4—N5121.4 (11)C6—C7—H7121.0
C9—N4—N5128.2 (11)C8—C7—H7121.0
C9—N4—N3110.4 (6)C8—C7—C6117.9 (13)
C6—N5—N4110.0 (11)N5—C6—Cl1113.7 (10)
N2—N3—N4103.3 (12)N5—C6—C7128.4 (7)
N3—N2—N1113.1 (10)C7—C6—Cl1117.8 (9)
C9—N1—N2104.9 (9)C9—C8—H8122.0
N4—C9—C8119.3 (6)C7—C8—C9116.1 (13)
N1—C9—N4108.3 (10)C7—C8—H8122.0
N1—C9—C8132.4 (10)
N4—N5—C6—Cl1179.1 (5)N3—N2—N1—C90.0 (16)
N4—N5—C6—C71.7 (16)N2—N1—C9—N40.2 (12)
N4—N3—N2—N10.2 (15)N2—N1—C9—C8178.5 (13)
N4—C9—C8—C72.3 (14)N1—C9—C8—C7179.5 (8)
N5—N4—N3—N2179.4 (8)C9—N4—N5—C60.1 (14)
N5—N4—C9—N1179.3 (8)C9—N4—N3—N20.3 (11)
N5—N4—C9—C82.1 (15)C6—C7—C8—C90.8 (14)
N3—N4—N5—C6179.0 (9)C8—C7—C6—Cl1179.4 (6)
N3—N4—C9—N10.3 (10)C8—C7—C6—N51.4 (17)
N3—N4—C9—C8178.9 (9)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_24GPa_phase_alpha_prim) top
Crystal data top
C4H2ClN5Dx = 1.755 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 651 reflections
a = 10.697 (4) Åθ = 4.4–22.7°
b = 6.2545 (7) ŵ = 0.56 mm1
c = 8.8012 (10) ÅT = 296 K
V = 588.8 (3) Å3Plate, colorless
Z = 40.30 × 0.26 × 0.11 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
263 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.2413 pixels mm-1θmax = 26.9°, θmin = 4.4°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 44
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 77
Tmin = 0.383, Tmax = 1.000l = 1110
2687 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0185P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
263 reflectionsΔρmax = 0.08 e Å3
61 parametersΔρmin = 0.09 e Å3
6 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.24 GPa (240000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.61551 (16)0.7500000.91127 (9)0.0760 (13)
C60.624 (2)0.7500000.7158 (5)0.033 (6)
C70.7471 (17)0.7500000.6526 (7)0.050 (9)
H70.8185590.7500000.7127020.060*
N60.5353 (13)0.7500000.4928 (5)0.035 (5)
N10.6188 (12)0.7500000.2671 (6)0.043 (7)
N50.5216 (12)0.7500000.6465 (5)0.052 (6)
C80.7523 (17)0.7500000.4976 (5)0.069 (7)
H80.8296300.7500000.4494390.083*
N20.4917 (12)0.7500000.2617 (6)0.069 (8)
N30.4408 (11)0.7500000.3956 (4)0.074 (5)
C90.6492 (18)0.7500000.4150 (6)0.051 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.115 (4)0.0785 (5)0.0346 (5)0.0000.0036 (8)0.000
C60.016 (19)0.0469 (19)0.036 (2)0.0000.009 (5)0.000
C70.03 (3)0.059 (2)0.066 (5)0.0000.006 (6)0.000
N60.019 (19)0.0432 (14)0.044 (3)0.0000.005 (5)0.000
N10.02 (2)0.071 (2)0.040 (2)0.0000.005 (5)0.000
N50.07 (2)0.0505 (15)0.036 (3)0.0000.002 (3)0.000
C80.09 (2)0.061 (2)0.051 (4)0.0000.024 (5)0.000
N20.10 (2)0.0609 (19)0.042 (2)0.0000.025 (6)0.000
N30.106 (19)0.0557 (16)0.059 (3)0.0000.023 (4)0.000
C90.07 (2)0.0469 (17)0.036 (3)0.0000.002 (6)0.000
Geometric parameters (Å, º) top
Cl1—C61.723 (5)N6—C91.40 (3)
C6—C71.43 (3)N1—N21.36 (2)
C6—N51.26 (3)N1—C91.341 (10)
C7—H70.9300C8—H80.9300
C7—C81.365 (8)C8—C91.32 (3)
N6—N51.360 (6)N2—N31.298 (12)
N6—N31.324 (17)
C7—C6—Cl1116.0 (16)C6—N5—N6112.9 (15)
N5—C6—Cl1116.0 (16)C7—C8—H8119.5
N5—C6—C7128.0 (6)C9—C8—C7121 (2)
C6—C7—H7122.4C9—C8—H8119.5
C8—C7—C6115.3 (19)N3—N2—N1112.7 (8)
C8—C7—H7122.4N2—N3—N6105.5 (13)
N5—N6—C9125.5 (16)N1—C9—N6105.3 (17)
N3—N6—N5124.1 (14)C8—C9—N6117.3 (7)
N3—N6—C9110.4 (5)C8—C9—N1137.4 (18)
C9—N1—N2106.0 (13)
Cl1—C6—C7—C8180.000 (2)N5—N6—C9—C80.000 (3)
Cl1—C6—N5—N6180.000 (2)N2—N1—C9—N60.000 (1)
C6—C7—C8—C90.000 (3)N2—N1—C9—C8180.000 (1)
C7—C6—N5—N60.000 (3)N3—N6—N5—C6180.000 (3)
C7—C8—C9—N60.000 (3)N3—N6—C9—N10.000 (2)
C7—C8—C9—N1180.000 (2)N3—N6—C9—C8180.000 (1)
N1—N2—N3—N60.000 (1)C9—N6—N5—C60.000 (3)
N5—C6—C7—C80.000 (5)C9—N6—N3—N20.000 (1)
N5—N6—N3—N2180.000 (2)C9—N1—N2—N30.000 (1)
N5—N6—C9—N1180.000 (2)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_49GPa_phase_alpha_prim) top
Crystal data top
C4H2ClN5Dx = 1.782 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 710 reflections
a = 10.654 (3) Åθ = 4.4–22.8°
b = 6.1954 (6) ŵ = 0.57 mm1
c = 8.7823 (8) ÅT = 296 K
V = 579.69 (17) Å3Plate, colorless
Z = 40.30 × 0.26 × 0.11 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
268 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.2413 pixels mm-1θmax = 27.0°, θmin = 4.5°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 44
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 77
Tmin = 0.391, Tmax = 1.000l = 1011
2828 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
268 reflectionsΔρmax = 0.12 e Å3
61 parametersΔρmin = 0.14 e Å3
12 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.49 GPa (490000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.6141 (2)0.7500000.91216 (12)0.0694 (17)
C60.6262 (19)0.7500000.7176 (6)0.039 (8)
C70.7457 (19)0.7500000.6521 (7)0.054 (9)
H70.8173470.7500000.7125990.065*
N60.5351 (14)0.7500000.4922 (5)0.033 (3)
N10.6181 (17)0.7500000.2665 (6)0.045 (9)
N50.5193 (13)0.7500000.6462 (5)0.039 (4)
C80.7543 (18)0.7500000.4982 (6)0.047 (9)
H80.8323420.7500000.4506040.056*
N20.4905 (15)0.7500000.2608 (8)0.056 (10)
N30.4401 (14)0.7500000.3946 (5)0.065 (6)
C90.648 (2)0.7500000.4152 (7)0.042 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.104 (5)0.0725 (7)0.0319 (6)0.0000.0041 (9)0.000
C60.04 (3)0.042 (2)0.031 (3)0.0000.006 (5)0.000
C70.06 (3)0.055 (3)0.053 (5)0.0000.005 (6)0.000
N60.021 (11)0.0390 (16)0.039 (2)0.0000.007 (5)0.000
N10.05 (3)0.056 (2)0.033 (2)0.0000.007 (6)0.000
N50.032 (12)0.0480 (17)0.036 (2)0.0000.008 (4)0.000
C80.03 (3)0.057 (3)0.057 (5)0.0000.023 (5)0.000
N20.06 (3)0.061 (2)0.044 (2)0.0000.027 (7)0.000
N30.09 (2)0.0502 (19)0.053 (3)0.0000.024 (4)0.000
C90.04 (3)0.046 (2)0.037 (4)0.0000.004 (5)0.000
Geometric parameters (Å, º) top
Cl1—C61.714 (5)N6—C91.38 (3)
C6—C71.40 (3)N1—N21.36 (2)
C6—N51.30 (3)N1—C91.344 (10)
C7—H70.9300C8—H80.9300
C7—C81.356 (8)C8—C91.35 (3)
N6—N51.363 (6)N2—N31.291 (13)
N6—N31.33 (2)
C7—C6—Cl1118.6 (15)C6—N5—N6111.7 (14)
N5—C6—Cl1114.5 (14)C7—C8—H8120.6
N5—C6—C7126.9 (7)C9—C8—C7119 (2)
C6—C7—H7120.9C9—C8—H8120.6
C8—C7—C6118.2 (19)N3—N2—N1112.5 (11)
C8—C7—H7120.9N2—N3—N6105.7 (16)
N5—N6—C9126.5 (16)N1—C9—N6105.7 (19)
N3—N6—N5123.2 (15)N1—C9—C8136 (2)
N3—N6—C9110.4 (5)C8—C9—N6117.9 (8)
C9—N1—N2105.8 (15)
Cl1—C6—C7—C8180.000 (2)N5—N6—C9—C80.000 (3)
Cl1—C6—N5—N6180.000 (2)N2—N1—C9—N60.000 (2)
C6—C7—C8—C90.000 (3)N2—N1—C9—C8180.000 (2)
C7—C6—N5—N60.000 (3)N3—N6—N5—C6180.000 (2)
C7—C8—C9—N60.000 (2)N3—N6—C9—N10.000 (2)
C7—C8—C9—N1180.000 (2)N3—N6—C9—C8180.000 (1)
N1—N2—N3—N60.000 (2)C9—N6—N5—C60.000 (3)
N5—C6—C7—C80.000 (5)C9—N6—N3—N20.000 (2)
N5—N6—N3—N2180.000 (2)C9—N1—N2—N30.000 (1)
N5—N6—C9—N1180.000 (2)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_09GPa_phase_alpha_xH2O) top
Crystal data top
C4H2ClN5Dx = 1.652 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1187 reflections
a = 7.0542 (4) Åθ = 3.7–21.7°
b = 8.7774 (14) ŵ = 0.53 mm1
c = 10.1041 (5) ÅT = 296 K
V = 625.62 (11) Å3Plate, colorless
Z = 40.39 × 0.29 × 0.18 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
764 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.2413 pixels mm-1θmax = 27.2°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 88
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 66
Tmin = 0.421, Tmax = 1.000l = 1212
3890 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.0855P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.15 e Å3
764 reflectionsΔρmin = 0.11 e Å3
91 parametersAbsolute structure: Flack x determined using 194 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.21 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.09 (2) GPa (90000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29094 (18)0.3347 (3)0.32212 (14)0.0727 (10)
N40.3549 (5)0.7495 (10)0.4133 (4)0.047 (3)
N50.3656 (5)0.5974 (11)0.4187 (4)0.046 (2)
N30.4259 (6)0.8387 (12)0.5058 (4)0.058 (3)
N20.3883 (8)0.9788 (11)0.4665 (6)0.072 (4)
N10.2961 (7)0.9829 (10)0.3471 (5)0.059 (4)
C90.2757 (6)0.8368 (11)0.3166 (4)0.037 (3)
C70.2010 (7)0.6045 (12)0.2088 (5)0.053 (3)
H70.1482340.5478820.1402700.063*
C60.2870 (6)0.5322 (11)0.3175 (4)0.040 (2)
C80.1970 (7)0.7580 (11)0.2067 (5)0.051 (3)
H80.1444840.8105390.1356870.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0781 (9)0.043 (3)0.0974 (10)0.0017 (10)0.0241 (7)0.0016 (13)
N40.050 (2)0.052 (10)0.038 (2)0.003 (2)0.0016 (16)0.007 (3)
N50.055 (2)0.031 (9)0.050 (2)0.001 (3)0.0024 (18)0.001 (3)
N30.081 (3)0.038 (10)0.056 (2)0.012 (3)0.008 (2)0.016 (4)
N20.090 (4)0.038 (14)0.088 (4)0.015 (3)0.011 (3)0.021 (4)
N10.072 (3)0.033 (12)0.071 (3)0.006 (3)0.008 (2)0.010 (4)
C90.050 (2)0.016 (11)0.044 (2)0.001 (3)0.0043 (18)0.010 (4)
C70.059 (3)0.059 (11)0.040 (2)0.007 (4)0.003 (2)0.010 (4)
C60.054 (3)0.012 (8)0.055 (2)0.003 (3)0.012 (2)0.005 (4)
C80.057 (3)0.059 (11)0.038 (2)0.001 (3)0.002 (2)0.005 (4)
Geometric parameters (Å, º) top
Cl1—C61.735 (9)N1—C91.327 (11)
N4—N51.338 (6)C9—C81.421 (8)
N4—N31.318 (10)C7—H70.9300
N4—C91.362 (9)C7—C61.406 (9)
N5—C61.296 (8)C7—C81.348 (8)
N3—N21.319 (10)C8—H80.9300
N2—N11.371 (8)
N5—N4—C9127.8 (6)C6—C7—H7120.9
N3—N4—N5122.8 (6)C8—C7—H7120.9
N3—N4—C9109.3 (8)C8—C7—C6118.2 (6)
C6—N5—N4112.6 (6)N5—C6—Cl1114.4 (6)
N4—N3—N2105.3 (6)N5—C6—C7127.0 (10)
N3—N2—N1112.6 (8)C7—C6—Cl1118.6 (6)
C9—N1—N2103.3 (7)C9—C8—H8121.1
N4—C9—C8116.6 (8)C7—C8—C9117.8 (6)
N1—C9—N4109.4 (5)C7—C8—H8121.1
N1—C9—C8134.0 (7)
N4—N5—C6—Cl1178.2 (3)N3—N2—N1—C91.3 (5)
N4—N5—C6—C71.4 (7)N2—N1—C9—N40.8 (5)
N4—N3—N2—N11.3 (5)N2—N1—C9—C8178.5 (5)
N4—C9—C8—C72.2 (8)N1—C9—C8—C7179.8 (5)
N5—N4—N3—N2180.0 (4)C9—N4—N5—C60.7 (7)
N5—N4—C9—N1179.2 (4)C9—N4—N3—N20.7 (5)
N5—N4—C9—C81.0 (7)C6—C7—C8—C91.7 (8)
N3—N4—N5—C6179.9 (4)C8—C7—C6—Cl1179.4 (4)
N3—N4—C9—N10.0 (5)C8—C7—C6—N50.2 (8)
N3—N4—C9—C8178.2 (4)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_10GPa_phase_alpha_xH2O) top
Crystal data top
C4H2ClN5Dx = 1.654 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1101 reflections
a = 7.0733 (6) Åθ = 3.7–21.9°
b = 8.7965 (6) ŵ = 0.53 mm1
c = 10.042 (8) ÅT = 296 K
V = 624.8 (5) Å3Plate, colorless
Z = 40.38 × 0.29 × 0.21 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
491 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.2413 pixels mm-1θmax = 27.2°, θmin = 3.7°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 89
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1110
Tmin = 0.061, Tmax = 1.000l = 33
3715 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0252P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.10 e Å3
491 reflectionsΔρmin = 0.08 e Å3
91 parametersAbsolute structure: Flack x determined using 112 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
6 restraintsAbsolute structure parameter: 0.06 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.10 (2) GPa (100000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29054 (18)0.33488 (12)0.3213 (4)0.081 (2)
N40.3555 (7)0.7502 (5)0.4119 (14)0.043 (8)
N50.3672 (7)0.5948 (5)0.4195 (14)0.063 (8)
N30.4272 (6)0.8393 (7)0.5081 (12)0.065 (8)
N20.3882 (9)0.9773 (6)0.462 (2)0.079 (10)
N10.2949 (9)0.9803 (6)0.3498 (19)0.068 (10)
C90.2762 (7)0.8344 (6)0.3160 (15)0.054 (8)
C70.2015 (9)0.6034 (7)0.2076 (17)0.054 (11)
H70.1499980.5471590.1380650.064*
C60.2873 (8)0.5314 (6)0.3188 (15)0.046 (9)
C80.1978 (7)0.7586 (6)0.2070 (17)0.051 (8)
H80.1447750.8120380.1363790.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0809 (9)0.0409 (7)0.120 (7)0.0014 (7)0.0209 (17)0.0026 (13)
N40.049 (3)0.046 (2)0.03 (2)0.001 (2)0.007 (5)0.008 (5)
N50.052 (3)0.046 (2)0.09 (3)0.003 (2)0.006 (6)0.004 (5)
N30.077 (3)0.069 (3)0.05 (2)0.010 (3)0.014 (5)0.012 (6)
N20.078 (5)0.055 (3)0.10 (3)0.014 (3)0.004 (9)0.016 (6)
N10.067 (5)0.049 (3)0.09 (3)0.001 (3)0.012 (8)0.008 (5)
C90.048 (3)0.044 (3)0.07 (3)0.008 (3)0.001 (6)0.001 (7)
C70.059 (4)0.067 (3)0.03 (4)0.010 (3)0.006 (8)0.008 (6)
C60.043 (3)0.050 (3)0.05 (3)0.000 (3)0.008 (9)0.005 (6)
C80.056 (4)0.069 (4)0.03 (2)0.007 (3)0.004 (7)0.014 (6)
Geometric parameters (Å, º) top
Cl1—C61.729 (6)N1—C91.335 (9)
N4—N51.372 (6)C9—C81.397 (17)
N4—N31.343 (14)C7—H70.9300
N4—C91.338 (15)C7—C61.420 (17)
N5—C61.286 (18)C7—C81.365 (7)
N3—N21.330 (11)C8—H80.9300
N2—N11.30 (3)
N3—N4—N5121.2 (12)C6—C7—H7121.4
C9—N4—N5128.1 (12)C8—C7—H7121.4
C9—N4—N3110.7 (6)C8—C7—C6117.2 (13)
C6—N5—N4111.2 (12)N5—C6—Cl1114.6 (9)
N2—N3—N4101.7 (11)N5—C6—C7127.9 (8)
N1—N2—N3115.2 (10)C7—C6—Cl1117.6 (9)
N2—N1—C9104.5 (9)C9—C8—H8121.1
N4—C9—C8117.8 (7)C7—C8—C9117.8 (12)
N1—C9—N4107.9 (11)C7—C8—H8121.1
N1—C9—C8134.2 (11)
N4—N5—C6—Cl1178.7 (6)N3—N2—N1—C92.5 (18)
N4—N5—C6—C72.3 (16)N2—N1—C9—N41.6 (14)
N4—N3—N2—N12.2 (16)N2—N1—C9—C8177.4 (13)
N4—C9—C8—C72.1 (13)N1—C9—C8—C7178.9 (9)
N5—N4—N3—N2179.4 (9)C9—N4—N5—C60.6 (16)
N5—N4—C9—N1179.2 (9)C9—N4—N3—N21.0 (11)
N5—N4—C9—C81.6 (15)C6—C7—C8—C90.7 (14)
N3—N4—N5—C6178.9 (8)C8—C7—C6—Cl1179.3 (7)
N3—N4—C9—N10.4 (11)C8—C7—C6—N51.7 (17)
N3—N4—C9—C8178.8 (8)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_17GPa_phase_alpha_xH2O) top
Crystal data top
C4H2ClN5Dx = 1.668 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1145 reflections
a = 6.9987 (3) Åθ = 4.2–22.2°
b = 8.7740 (15) ŵ = 0.53 mm1
c = 10.0863 (9) ÅT = 296 K
V = 619.37 (12) Å3Plate, colorless
Z = 40.37 × 0.27 × 0.16 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
666 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.2413 pixels mm-1θmax = 27.1°, θmin = 4.2°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 88
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 77
Tmin = 0.387, Tmax = 1.000l = 1111
3715 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.1036P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.17 e Å3
666 reflectionsΔρmin = 0.13 e Å3
91 parametersAbsolute structure: Flack x determined using 181 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.39 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.17 (2) GPa (170000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2920 (2)0.3336 (3)0.32339 (17)0.0755 (10)
N40.3537 (8)0.7494 (13)0.4127 (5)0.047 (3)
N50.3663 (7)0.5973 (13)0.4200 (5)0.048 (2)
N30.4249 (7)0.8405 (12)0.5071 (5)0.063 (3)
N20.3848 (10)0.9793 (14)0.4648 (8)0.074 (3)
N10.2950 (8)0.9840 (11)0.3477 (6)0.064 (3)
C90.2750 (8)0.8358 (11)0.3158 (5)0.046 (3)
C70.2010 (10)0.6046 (13)0.2087 (6)0.053 (3)
H70.1484520.5483710.1395550.063*
C60.2873 (7)0.5303 (11)0.3180 (5)0.042 (2)
C80.1965 (9)0.7567 (12)0.2066 (5)0.055 (3)
H80.1432260.8090350.1354210.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0761 (9)0.055 (3)0.0955 (14)0.0021 (14)0.0249 (8)0.0035 (10)
N40.048 (2)0.059 (11)0.033 (4)0.002 (4)0.001 (2)0.002 (3)
N50.055 (3)0.043 (10)0.046 (4)0.004 (4)0.001 (2)0.004 (3)
N30.078 (3)0.056 (12)0.055 (4)0.008 (5)0.008 (2)0.012 (4)
N20.088 (4)0.052 (14)0.083 (6)0.019 (4)0.010 (3)0.026 (4)
N10.065 (3)0.067 (10)0.060 (4)0.003 (4)0.007 (3)0.017 (3)
C90.047 (2)0.058 (13)0.032 (4)0.003 (4)0.003 (2)0.004 (4)
C70.057 (3)0.060 (11)0.041 (5)0.008 (5)0.005 (3)0.006 (3)
C60.051 (3)0.019 (9)0.057 (4)0.003 (4)0.013 (3)0.001 (3)
C80.057 (3)0.072 (12)0.036 (5)0.001 (5)0.001 (3)0.010 (3)
Geometric parameters (Å, º) top
Cl1—C61.727 (9)N1—C91.347 (11)
N4—N51.340 (8)C9—C81.413 (10)
N4—N31.339 (11)C7—H70.9300
N4—C91.354 (11)C7—C61.416 (11)
N5—C61.308 (10)C7—C81.336 (8)
N3—N21.320 (13)C8—H80.9300
N2—N11.339 (9)
N5—N4—C9128.6 (6)C6—C7—H7120.6
N3—N4—N5122.1 (7)C8—C7—H7120.6
N3—N4—C9109.3 (10)C8—C7—C6118.9 (6)
C6—N5—N4112.2 (6)N5—C6—Cl1114.6 (7)
N2—N3—N4104.0 (7)N5—C6—C7125.9 (10)
N3—N2—N1114.4 (9)C7—C6—Cl1119.5 (6)
N2—N1—C9103.3 (7)C9—C8—H8121.0
N4—C9—C8116.5 (9)C7—C8—C9118.0 (6)
N1—C9—N4109.0 (5)C7—C8—H8121.0
N1—C9—C8134.5 (8)
N4—N5—C6—Cl1178.1 (4)N3—N2—N1—C91.1 (7)
N4—N5—C6—C71.5 (9)N2—N1—C9—N40.6 (7)
N4—N3—N2—N11.1 (7)N2—N1—C9—C8179.0 (6)
N4—C9—C8—C71.8 (9)N1—C9—C8—C7179.9 (7)
N5—N4—N3—N2179.9 (5)C9—N4—N5—C61.0 (10)
N5—N4—C9—N1179.4 (6)C9—N4—N3—N20.7 (7)
N5—N4—C9—C80.6 (10)C6—C7—C8—C91.3 (10)
N3—N4—N5—C6179.8 (5)C8—C7—C6—Cl1179.2 (5)
N3—N4—C9—N10.1 (7)C8—C7—C6—N50.4 (10)
N3—N4—C9—C8178.7 (5)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_18GPa_phase_alpha_xH2O) top
Crystal data top
C4H2ClN5Dx = 1.670 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 859 reflections
a = 7.005 (2) Åθ = 3.5–23.4°
b = 8.7554 (18) ŵ = 0.53 mm1
c = 10.086 (2) ÅT = 296 K
V = 618.6 (3) Å3Plate, colorless
Z = 40.38 × 0.26 × 0.14 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
961 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.313
Detector resolution: 16.1544 pixels mm-1θmax = 28.2°, θmin = 3.1°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 77
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 99
Tmin = 0.520, Tmax = 1.000l = 1212
3219 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.143 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.430(Δ/σ)max < 0.001
S = 1.16Δρmax = 0.66 e Å3
961 reflectionsΔρmin = 0.79 e Å3
91 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
0 restraintsAbsolute structure parameter: 0.3 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.18 (2) GPa (180000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2916 (10)0.3335 (6)0.3239 (6)0.091 (3)
N40.352 (3)0.749 (2)0.4127 (13)0.072 (6)
N50.364 (3)0.5955 (19)0.4182 (15)0.082 (6)
N30.421 (3)0.840 (2)0.5084 (13)0.089 (6)
N20.380 (3)0.978 (3)0.4674 (18)0.086 (6)
N10.295 (3)0.984 (2)0.3477 (16)0.076 (5)
C90.274 (3)0.831 (2)0.3154 (14)0.057 (5)
C70.207 (4)0.605 (3)0.2071 (17)0.074 (6)
H70.1647260.5498140.1341750.088*
C60.284 (3)0.5309 (18)0.3169 (15)0.053 (4)
C80.195 (4)0.756 (3)0.2078 (15)0.072 (6)
H80.1360900.8096620.1393310.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.109 (6)0.037 (4)0.127 (4)0.003 (3)0.024 (3)0.004 (2)
N40.096 (17)0.063 (14)0.058 (8)0.001 (9)0.017 (10)0.010 (7)
N50.13 (2)0.028 (13)0.083 (10)0.001 (9)0.006 (11)0.006 (7)
N30.141 (19)0.056 (16)0.070 (10)0.000 (11)0.012 (10)0.007 (10)
N20.078 (17)0.078 (17)0.100 (11)0.002 (9)0.020 (10)0.022 (9)
N10.065 (15)0.071 (14)0.092 (9)0.002 (10)0.019 (11)0.008 (8)
C90.076 (17)0.035 (13)0.061 (9)0.000 (9)0.005 (9)0.005 (7)
C70.09 (2)0.068 (16)0.059 (9)0.004 (12)0.008 (11)0.005 (7)
C60.054 (14)0.020 (11)0.087 (10)0.004 (7)0.016 (10)0.005 (7)
C80.090 (19)0.075 (17)0.051 (9)0.010 (13)0.007 (12)0.010 (7)
Geometric parameters (Å, º) top
Cl1—C61.730 (16)N1—C91.39 (2)
N4—N51.34 (2)C9—C81.38 (3)
N4—N31.35 (2)C7—H70.9300
N4—C91.33 (2)C7—C61.39 (3)
N5—C61.29 (2)C7—C81.33 (2)
N3—N21.30 (2)C8—H80.9300
N2—N11.35 (2)
N5—N4—N3122.9 (17)C6—C7—H7120.4
C9—N4—N5126.6 (16)C8—C7—H7120.4
C9—N4—N3110.5 (19)C8—C7—C6119.1 (16)
C6—N5—N4112.1 (16)N5—C6—Cl1113.0 (14)
N2—N3—N4104.1 (17)N5—C6—C7126.1 (17)
N3—N2—N1114.9 (15)C7—C6—Cl1120.8 (14)
N2—N1—C9102.4 (14)C9—C8—H8121.6
N4—C9—N1108.0 (14)C7—C8—C9116.8 (18)
N4—C9—C8118.9 (19)C7—C8—H8121.6
C8—C9—N1133.1 (18)
N4—N5—C6—Cl1178.3 (14)N3—N2—N1—C93 (2)
N4—N5—C6—C75 (3)N2—N1—C9—N42 (2)
N4—N3—N2—N13 (3)N2—N1—C9—C8179 (2)
N4—C9—C8—C72 (4)N1—C9—C8—C7177 (2)
N5—N4—N3—N2179.5 (17)C9—N4—N5—C62 (3)
N5—N4—C9—N1178.8 (19)C9—N4—N3—N21 (3)
N5—N4—C9—C81 (4)C6—C7—C8—C95 (4)
N3—N4—N5—C6179 (2)C8—C7—C6—Cl1177 (2)
N3—N4—C9—N11 (2)C8—C7—C6—N57 (4)
N3—N4—C9—C8180 (2)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_20GPa_phase_alpha_xH2O) top
Crystal data top
C4H2ClN5Dx = 1.674 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 802 reflections
a = 7.0156 (18) Åθ = 3.1–19.8°
b = 8.7539 (8) ŵ = 0.53 mm1
c = 10.0529 (13) ÅT = 296 K
V = 617.39 (19) Å3Plate, colorless
Z = 40.28 × 0.22 × 0.10 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
923 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.188
Detector resolution: 16.1544 pixels mm-1θmax = 28.6°, θmin = 3.1°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 66
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1111
Tmin = 0.491, Tmax = 1.000l = 1112
4557 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0207P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.23 e Å3
923 reflectionsΔρmin = 0.18 e Å3
91 parametersAbsolute structure: Flack x determined using 119 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.1 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.20 (2) GPa (200000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2913 (5)0.3347 (2)0.3215 (2)0.0783 (13)
N40.3543 (17)0.7480 (8)0.4127 (8)0.050 (4)
N50.3672 (16)0.5962 (9)0.4190 (7)0.052 (3)
N30.4285 (13)0.8417 (10)0.5064 (6)0.070 (3)
N20.3876 (19)0.9804 (9)0.4631 (10)0.079 (5)
N10.2922 (18)0.9827 (8)0.3487 (8)0.065 (4)
C90.2755 (15)0.8332 (10)0.3177 (8)0.043 (3)
C70.201 (2)0.6029 (10)0.2088 (8)0.063 (4)
H70.1490290.5457750.1398950.075*
C60.2889 (18)0.5305 (8)0.3183 (11)0.052 (4)
C80.1956 (19)0.7558 (10)0.2062 (9)0.060 (4)
H80.1421240.8087870.1352760.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.087 (4)0.0470 (13)0.101 (2)0.001 (2)0.0258 (16)0.0008 (15)
N40.051 (13)0.050 (5)0.048 (6)0.002 (5)0.001 (4)0.001 (4)
N50.055 (11)0.047 (5)0.053 (6)0.000 (5)0.001 (4)0.005 (4)
N30.081 (11)0.077 (6)0.053 (5)0.003 (7)0.013 (4)0.019 (6)
N20.089 (15)0.053 (5)0.096 (8)0.011 (6)0.003 (6)0.019 (5)
N10.068 (13)0.057 (5)0.069 (7)0.001 (6)0.001 (5)0.005 (5)
C90.040 (11)0.043 (5)0.046 (5)0.004 (7)0.001 (4)0.000 (6)
C70.092 (15)0.059 (5)0.037 (7)0.005 (7)0.005 (5)0.006 (4)
C60.056 (13)0.039 (5)0.062 (7)0.003 (6)0.015 (6)0.001 (5)
C80.068 (15)0.073 (6)0.040 (7)0.002 (7)0.000 (5)0.009 (5)
Geometric parameters (Å, º) top
Cl1—C61.715 (7)N1—C91.351 (9)
N4—N51.333 (7)C9—C81.424 (12)
N4—N31.354 (9)C7—H70.9300
N4—C91.332 (10)C7—C61.411 (12)
N5—C61.288 (12)C7—C81.339 (9)
N3—N21.321 (9)C8—H80.9300
N2—N11.331 (11)
N5—N4—N3123.0 (9)C6—C7—H7120.8
C9—N4—N5128.4 (9)C8—C7—H7120.8
C9—N4—N3108.6 (7)C8—C7—C6118.5 (9)
C6—N5—N4112.2 (8)N5—C6—Cl1115.3 (8)
N2—N3—N4104.1 (7)N5—C6—C7126.8 (8)
N3—N2—N1114.0 (7)C7—C6—Cl1117.9 (8)
N2—N1—C9103.2 (7)C9—C8—H8121.7
N4—C9—N1110.0 (8)C7—C8—C9116.6 (10)
N4—C9—C8117.5 (8)C7—C8—H8121.7
N1—C9—C8132.6 (9)
N4—N5—C6—Cl1177.7 (9)N3—N2—N1—C91.0 (13)
N4—N5—C6—C71.5 (19)N2—N1—C9—N41.5 (12)
N4—N3—N2—N10.1 (14)N2—N1—C9—C8177.3 (13)
N4—C9—C8—C72.0 (19)N1—C9—C8—C7179.2 (12)
N5—N4—N3—N2179.3 (11)C9—N4—N5—C61 (2)
N5—N4—C9—N1179.9 (12)C9—N4—N3—N20.8 (13)
N5—N4—C9—C81 (2)C6—C7—C8—C91 (2)
N3—N4—N5—C6179.0 (10)C8—C7—C6—Cl1178.8 (11)
N3—N4—C9—N11.5 (13)C8—C7—C6—N50 (2)
N3—N4—C9—C8177.5 (9)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_30GPa_phase_alpha_xH2O) top
Crystal data top
C4H2ClN5Dx = 1.700 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1343 reflections
a = 6.9235 (13) Åθ = 4.2–22.3°
b = 8.7578 (5) ŵ = 0.54 mm1
c = 10.0265 (11) ÅT = 296 K
V = 607.95 (14) Å3Plate, colorless
Z = 40.26 × 0.22 × 0.16 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
815 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.2413 pixels mm-1θmax = 27.4°, θmin = 4.3°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 66
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1111
Tmin = 0.318, Tmax = 1.000l = 1111
3805 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.2376P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.14 e Å3
815 reflectionsΔρmin = 0.13 e Å3
91 parametersAbsolute structure: Flack x determined using 201 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.16 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.30 (2) GPa (300000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2930 (3)0.33337 (13)0.32396 (16)0.0680 (7)
N40.3534 (9)0.7503 (4)0.4126 (5)0.0402 (17)
N50.3681 (9)0.5960 (5)0.4211 (5)0.0504 (18)
N30.4245 (8)0.8417 (5)0.5086 (4)0.0620 (17)
N20.3858 (11)0.9800 (5)0.4647 (6)0.070 (2)
N10.2907 (11)0.9822 (5)0.3483 (6)0.062 (2)
C90.2740 (9)0.8339 (5)0.3152 (5)0.0408 (16)
C70.2020 (11)0.6027 (6)0.2094 (5)0.049 (2)
H70.1511710.5450850.1397910.059*
C60.2875 (11)0.5300 (5)0.3190 (6)0.0438 (18)
C80.1937 (11)0.7561 (6)0.2052 (6)0.050 (2)
H80.1381870.8079470.1338340.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0723 (19)0.0372 (6)0.0945 (13)0.0008 (10)0.0255 (9)0.0024 (8)
N40.036 (6)0.043 (2)0.042 (3)0.004 (2)0.004 (2)0.001 (2)
N50.067 (6)0.041 (2)0.043 (3)0.002 (3)0.000 (2)0.007 (2)
N30.076 (6)0.063 (3)0.047 (4)0.008 (4)0.010 (2)0.011 (3)
N20.084 (8)0.053 (3)0.073 (5)0.009 (3)0.009 (3)0.016 (3)
N10.077 (7)0.041 (2)0.068 (4)0.000 (3)0.008 (3)0.004 (2)
C90.050 (6)0.037 (2)0.036 (3)0.001 (3)0.004 (2)0.005 (3)
C70.053 (7)0.054 (3)0.040 (4)0.007 (3)0.000 (3)0.011 (2)
C60.050 (7)0.035 (2)0.046 (4)0.001 (3)0.009 (3)0.001 (3)
C80.053 (8)0.060 (3)0.038 (4)0.004 (3)0.004 (3)0.008 (3)
Geometric parameters (Å, º) top
Cl1—C61.723 (4)N1—C91.346 (6)
N4—N51.358 (5)C9—C81.411 (8)
N4—N31.346 (6)C7—H70.9300
N4—C91.339 (6)C7—C61.401 (8)
N5—C61.301 (7)C7—C81.346 (6)
N3—N21.317 (6)C8—H80.9300
N2—N11.340 (8)
N3—N4—N5121.3 (5)C6—C7—H7120.1
C9—N4—N5128.4 (5)C8—C7—H7120.1
C9—N4—N3110.3 (4)C8—C7—C6119.7 (5)
C6—N5—N4111.1 (5)N5—C6—Cl1114.3 (4)
N2—N3—N4103.5 (5)N5—C6—C7126.6 (4)
N3—N2—N1113.9 (4)C7—C6—Cl1119.1 (5)
N2—N1—C9104.1 (5)C9—C8—H8121.9
N4—C9—N1108.2 (5)C7—C8—C9116.1 (6)
N4—C9—C8117.9 (4)C7—C8—H8121.9
N1—C9—C8133.8 (5)
N4—N5—C6—Cl1178.2 (5)N3—N2—N1—C91.9 (8)
N4—N5—C6—C72.5 (11)N2—N1—C9—N41.5 (8)
N4—N3—N2—N11.4 (8)N2—N1—C9—C8178.6 (8)
N4—C9—C8—C71.0 (11)N1—C9—C8—C7178.9 (7)
N5—N4—N3—N2179.2 (6)C9—N4—N5—C61.5 (11)
N5—N4—C9—N1179.7 (7)C9—N4—N3—N20.3 (7)
N5—N4—C9—C80.1 (11)C6—C7—C8—C90.1 (12)
N3—N4—N5—C6179.0 (6)C8—C7—C6—Cl1178.9 (6)
N3—N4—C9—N10.8 (8)C8—C7—C6—N51.8 (13)
N3—N4—C9—C8179.3 (6)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_54GPa_phase_alpha_prim_xH2O) top
Crystal data top
C4H2ClN5Dx = 1.778 Mg m3
Mr = 155.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 734 reflections
a = 10.668 (2) Åθ = 4.4–23.1°
b = 6.2042 (7) ŵ = 0.57 mm1
c = 8.780 (4) ÅT = 296 K
V = 581.1 (3) Å3Plate, colorless
Z = 40.40 × 0.25 × 0.20 mm
F(000) = 312
Data collection top
KM-4 CCD
diffractometer
321 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.2413 pixels mm-1θmax = 27.1°, θmin = 4.5°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 1112
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 77
Tmin = 0.710, Tmax = 1.000l = 66
2992 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.1183P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
321 reflectionsΔρmax = 0.16 e Å3
61 parametersΔρmin = 0.13 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.54 GPa (540000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.61432 (15)0.7500000.9123 (3)0.0670 (10)
C60.6267 (4)0.7500000.7208 (11)0.037 (3)
C70.7478 (5)0.7500000.6485 (8)0.053 (3)
H70.8203630.7500000.7071220.063*
N60.5355 (4)0.7500000.4951 (10)0.031 (3)
N10.6145 (5)0.7500000.2652 (9)0.057 (3)
N50.5194 (4)0.7500000.6431 (8)0.037 (2)
C80.7552 (5)0.7500000.4979 (10)0.050 (3)
H80.8329330.7500000.4499510.060*
N20.4922 (8)0.7500000.2641 (15)0.063 (3)
N30.4373 (6)0.7500000.3954 (14)0.063 (4)
C90.6447 (6)0.7500000.4118 (12)0.054 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0895 (14)0.0686 (8)0.043 (3)0.0000.0039 (8)0.000
C60.067 (6)0.038 (2)0.006 (14)0.0000.001 (3)0.000
C70.022 (4)0.055 (2)0.081 (13)0.0000.008 (2)0.000
N60.043 (4)0.0382 (18)0.011 (11)0.0000.003 (3)0.000
N10.078 (5)0.054 (2)0.040 (11)0.0000.012 (4)0.000
N50.038 (4)0.0415 (18)0.031 (9)0.0000.002 (3)0.000
C80.040 (5)0.056 (2)0.055 (11)0.0000.008 (3)0.000
N20.080 (6)0.053 (2)0.057 (14)0.0000.012 (4)0.000
N30.044 (5)0.048 (2)0.097 (15)0.0000.022 (3)0.000
C90.032 (6)0.038 (2)0.092 (19)0.0000.001 (3)0.000
Geometric parameters (Å, º) top
Cl1—C61.687 (9)N6—C91.375 (12)
C6—C71.440 (10)N1—N21.305 (9)
C6—N51.332 (8)N1—C91.327 (12)
C7—H70.9300C8—H80.9300
C7—C81.324 (8)C8—C91.401 (11)
N6—N51.310 (8)N2—N31.293 (15)
N6—N31.366 (13)
C7—C6—Cl1120.7 (5)N6—N5—C6113.3 (5)
N5—C6—Cl1116.3 (5)C7—C8—H8120.4
N5—C6—C7123.0 (8)C7—C8—C9119.2 (5)
C6—C7—H7120.2C9—C8—H8120.4
C8—C7—C6119.6 (5)N3—N2—N1116.5 (13)
C8—C7—H7120.2N2—N3—N6102.9 (7)
N5—N6—N3122.3 (7)N6—C9—C8115.2 (9)
N5—N6—C9129.7 (5)N1—C9—N6108.1 (5)
N3—N6—C9108.0 (9)N1—C9—C8136.7 (8)
N2—N1—C9104.5 (7)
Cl1—C6—C7—C8180.000 (2)N5—N6—C9—C80.000 (2)
Cl1—C6—N5—N6180.000 (1)N2—N1—C9—N60.000 (1)
C6—C7—C8—C90.000 (2)N2—N1—C9—C8180.000 (1)
C7—C6—N5—N60.000 (1)N3—N6—N5—C6180.000 (1)
C7—C8—C9—N60.000 (2)N3—N6—C9—N10.000 (1)
C7—C8—C9—N1180.000 (1)N3—N6—C9—C8180.000 (1)
N1—N2—N3—N60.000 (2)C9—N6—N5—C60.000 (2)
N5—C6—C7—C80.000 (2)C9—N6—N3—N20.000 (2)
N5—N6—N3—N2180.000 (1)C9—N1—N2—N30.000 (1)
N5—N6—C9—N1180.000 (1)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_17GPa_phase_beta) top
Crystal data top
C4H2ClN5F(000) = 312
Mr = 155.56Dx = 1.766 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.878 (12) ÅCell parameters from 734 reflections
b = 13.2446 (15) Åθ = 3.9–21.9°
c = 5.7134 (11) ŵ = 0.56 mm1
β = 101.14 (6)°T = 296 K
V = 584.9 (9) Å3Plate, colorless
Z = 40.39 × 0.28 × 0.16 mm
Data collection top
KM-4 CCD
diffractometer
424 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.2413 pixels mm-1θmax = 27.4°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 43
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1617
Tmin = 0.338, Tmax = 1.000l = 77
3430 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0358P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
424 reflectionsΔρmax = 0.10 e Å3
91 parametersΔρmin = 0.11 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.17 (2) GPa (170000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.0272 (7)0.33900 (8)0.8387 (3)0.082 (3)
N40.563 (6)0.3541 (4)0.536 (3)0.068 (19)
N50.693 (4)0.3316 (3)0.6974 (14)0.031 (11)
N10.390 (4)0.4160 (6)0.2271 (14)0.073 (14)
N30.398 (4)0.3381 (5)0.570 (3)0.050 (15)
N20.292 (2)0.3752 (3)0.3821 (11)0.067 (10)
C80.712 (3)0.4242 (3)0.2574 (17)0.044 (11)
H80.7152170.4552160.1124590.053*
C60.850 (3)0.3573 (4)0.636 (2)0.049 (13)
C90.549 (6)0.4002 (6)0.322 (2)0.062 (19)
C70.857 (3)0.4010 (3)0.4098 (10)0.054 (13)
H70.9641610.4133460.3686430.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.129 (10)0.0651 (7)0.0515 (10)0.0042 (14)0.017 (3)0.0088 (7)
N40.13 (6)0.034 (2)0.044 (8)0.003 (8)0.040 (16)0.002 (3)
N50.01 (4)0.040 (2)0.037 (4)0.006 (5)0.006 (10)0.001 (2)
N10.13 (4)0.039 (3)0.052 (5)0.013 (5)0.016 (12)0.004 (3)
N30.05 (5)0.050 (2)0.051 (5)0.003 (6)0.004 (15)0.005 (3)
N20.09 (3)0.051 (2)0.065 (4)0.005 (5)0.011 (10)0.007 (3)
C80.06 (3)0.038 (2)0.037 (4)0.003 (5)0.021 (11)0.001 (2)
C60.07 (4)0.035 (2)0.048 (6)0.000 (6)0.023 (14)0.000 (2)
C90.12 (6)0.027 (3)0.039 (7)0.014 (9)0.027 (19)0.003 (3)
C70.09 (4)0.040 (2)0.035 (4)0.006 (5)0.014 (10)0.001 (2)
Geometric parameters (Å, º) top
Cl1—C61.65 (2)N3—N21.32 (3)
N4—N51.27 (6)C8—H80.9300
N4—N31.37 (6)C8—C91.44 (6)
N4—C91.351 (14)C8—C71.34 (4)
N5—C61.39 (4)C6—C71.426 (12)
N1—N21.39 (3)C7—H70.9300
N1—C91.28 (6)
N5—N4—N3121.0 (11)N5—C6—Cl1117.3 (10)
N5—N4—C9133 (5)N5—C6—C7122 (3)
C9—N4—N3106 (4)C7—C6—Cl1121.0 (19)
N4—N5—C6112.8 (14)N4—C9—C8114 (4)
C9—N1—N2106.3 (12)N1—C9—N4111 (4)
N2—N3—N4107.0 (16)N1—C9—C8134.4 (13)
N3—N2—N1108.9 (18)C8—C7—C6120 (2)
C9—C8—H8120.7C8—C7—H7120.0
C7—C8—H8120.7C6—C7—H7120.0
C7—C8—C9118.6 (9)
Cl1—C6—C7—C8173.5 (4)N3—N4—C9—C8179.3 (5)
N4—N5—C6—Cl1175.9 (3)N2—N1—C9—N42.0 (12)
N4—N5—C6—C71.9 (7)N2—N1—C9—C8178.9 (7)
N4—N3—N2—N10.5 (6)C9—N4—N5—C62.3 (8)
N5—N4—N3—N2175.5 (3)C9—N4—N3—N20.6 (7)
N5—N4—C9—N1173.7 (9)C9—N1—N2—N31.6 (9)
N5—N4—C9—C83.8 (9)C9—C8—C7—C62.6 (7)
N5—C6—C7—C84.3 (6)C7—C8—C9—N40.9 (8)
N3—N4—N5—C6177.3 (4)C7—C8—C9—N1175.9 (11)
N3—N4—C9—N11.7 (11)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_20GPa_phase_beta) top
Crystal data top
C4H2ClN5F(000) = 312
Mr = 155.56Dx = 1.775 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.885 (6) ÅCell parameters from 1648 reflections
b = 13.2116 (6) Åθ = 4.7–26.6°
c = 5.6949 (3) ŵ = 0.57 mm1
β = 101.20 (2)°T = 296 K
V = 582.0 (4) Å3Plate, colorless
Z = 40.28 × 0.26 × 0.23 mm
Data collection top
KM-4 CCD
diffractometer
361 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.2413 pixels mm-1θmax = 27.4°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 22
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1617
Tmin = 0.394, Tmax = 1.000l = 77
3466 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.0432P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
361 reflectionsΔρmax = 0.07 e Å3
91 parametersΔρmin = 0.06 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.20 (2) GPa (200000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.0288 (3)0.33898 (4)0.84022 (13)0.062 (2)
N40.556 (4)0.3534 (3)0.5363 (13)0.041 (14)
N50.703 (2)0.3316 (2)0.7002 (5)0.033 (8)
N10.388 (2)0.4147 (3)0.2274 (8)0.047 (9)
N30.398 (3)0.3372 (4)0.5736 (17)0.051 (14)
N20.2966 (14)0.3751 (2)0.3832 (8)0.066 (9)
C80.704 (2)0.4245 (2)0.2549 (10)0.039 (10)
H80.7015870.4553110.1074600.047*
C60.843 (2)0.3580 (2)0.6325 (15)0.058 (10)
C90.561 (4)0.4008 (3)0.3254 (8)0.067 (17)
C70.8624 (18)0.40180 (18)0.4103 (5)0.051 (11)
H70.9694860.4143360.3709220.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.074 (6)0.0632 (4)0.0441 (4)0.0034 (6)0.0003 (11)0.0082 (2)
N40.05 (4)0.0330 (13)0.036 (3)0.003 (4)0.013 (9)0.0006 (14)
N50.02 (3)0.0380 (12)0.0292 (15)0.003 (3)0.014 (7)0.0022 (10)
N10.05 (3)0.0421 (13)0.046 (2)0.002 (3)0.001 (5)0.0011 (14)
N30.05 (4)0.0490 (17)0.055 (4)0.004 (5)0.020 (10)0.0020 (15)
N20.09 (3)0.0487 (13)0.0576 (19)0.011 (4)0.006 (6)0.0056 (13)
C80.05 (3)0.0365 (12)0.0247 (15)0.004 (3)0.005 (6)0.0035 (10)
C60.11 (3)0.0301 (13)0.038 (2)0.008 (4)0.026 (7)0.0009 (12)
C90.14 (5)0.0312 (14)0.027 (3)0.004 (6)0.019 (11)0.0026 (18)
C70.07 (3)0.0384 (11)0.0349 (16)0.005 (4)0.001 (4)0.0033 (11)
Geometric parameters (Å, º) top
Cl1—C61.713 (15)N3—N21.316 (18)
N4—N51.37 (4)C8—H80.9300
N4—N31.32 (4)C8—C91.31 (4)
N4—C91.362 (8)C8—C71.417 (18)
N5—C61.28 (3)C6—C71.426 (8)
N1—N21.353 (15)C7—H70.9300
N1—C91.38 (4)
N3—N4—N5123.9 (9)N5—C6—Cl1114.9 (8)
N3—N4—C9114 (3)N5—C6—C7128.5 (16)
C9—N4—N5122 (3)C7—C6—Cl1116.6 (11)
C6—N5—N4113.8 (7)N4—C9—N1103 (3)
N2—N1—C9107.0 (8)C8—C9—N4124 (3)
N4—N3—N2104.4 (9)C8—C9—N1133.4 (5)
N3—N2—N1111.7 (11)C8—C7—C6114.0 (13)
C9—C8—H8121.1C8—C7—H7123.0
C9—C8—C7117.9 (8)C6—C7—H7123.0
C7—C8—H8121.1
Cl1—C6—C7—C8174.3 (2)N3—N4—C9—C8179.5 (4)
N4—N5—C6—Cl1176.2 (3)N2—N1—C9—N40.2 (3)
N4—N5—C6—C72.9 (5)N2—N1—C9—C8179.4 (3)
N4—N3—N2—N10.0 (5)C9—N4—N5—C61.5 (5)
N5—N4—N3—N2175.4 (2)C9—N4—N3—N20.1 (6)
N5—N4—C9—N1175.4 (4)C9—N1—N2—N30.1 (4)
N5—N4—C9—C83.9 (6)C9—C8—C7—C62.1 (3)
N5—C6—C7—C84.7 (5)C7—C8—C9—N41.8 (5)
N3—N4—N5—C6176.7 (6)C7—C8—C9—N1177.3 (3)
N3—N4—C9—N10.2 (6)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_25GPa_phase_beta) top
Crystal data top
C4H2ClN5F(000) = 312
Mr = 155.56Dx = 1.789 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.864 (4) ÅCell parameters from 711 reflections
b = 13.1668 (6) Åθ = 4.3–22.0°
c = 5.6843 (4) ŵ = 0.57 mm1
β = 101.159 (16)°T = 296 K
V = 577.5 (3) Å3Colourless, colourless
Z = 40.34 × 0.28 × 0.27 mm
Data collection top
KM-4 CCD
diffractometer
379 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.2413 pixels mm-1θmax = 27.1°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 33
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1616
Tmin = 0.475, Tmax = 1.000l = 67
3307 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0224P)2 + 0.0843P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
379 reflectionsΔρmax = 0.10 e Å3
91 parametersΔρmin = 0.10 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.25 (2) GPa 250000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.0263 (9)0.33933 (10)0.8415 (3)0.077 (4)
N40.559 (9)0.3535 (6)0.537 (4)0.09 (4)
N50.694 (7)0.3316 (5)0.7005 (17)0.05 (2)
N10.392 (6)0.4159 (9)0.2282 (19)0.08 (2)
N30.402 (6)0.3372 (7)0.574 (4)0.06 (2)
N20.297 (3)0.3746 (4)0.3847 (12)0.075 (15)
C80.708 (5)0.4246 (4)0.256 (2)0.045 (16)
H80.7097930.4555520.1099450.055*
C60.847 (5)0.3575 (6)0.637 (3)0.07 (2)
C90.547 (9)0.4010 (8)0.323 (3)0.08 (3)
C70.860 (3)0.4015 (5)0.4085 (15)0.04 (2)
H70.9669770.4135850.3666760.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.121 (14)0.0616 (7)0.0497 (9)0.0041 (18)0.020 (3)0.0077 (8)
N40.20 (11)0.034 (3)0.047 (10)0.011 (13)0.05 (2)0.000 (4)
N50.06 (7)0.042 (2)0.032 (4)0.005 (9)0.011 (15)0.002 (3)
N10.15 (7)0.041 (4)0.055 (7)0.008 (8)0.023 (18)0.000 (4)
N30.07 (7)0.049 (3)0.047 (8)0.004 (10)0.005 (19)0.004 (4)
N20.12 (5)0.047 (3)0.061 (4)0.010 (7)0.017 (12)0.005 (3)
C80.07 (5)0.039 (2)0.029 (5)0.012 (8)0.016 (15)0.000 (3)
C60.14 (7)0.034 (3)0.046 (8)0.006 (10)0.039 (19)0.001 (3)
C90.18 (10)0.029 (3)0.045 (9)0.011 (16)0.07 (3)0.004 (5)
C70.05 (6)0.038 (3)0.040 (6)0.005 (9)0.027 (14)0.000 (3)
Geometric parameters (Å, º) top
Cl1—C61.66 (4)N3—N21.32 (4)
N4—N51.30 (9)C8—H80.9300
N4—N31.31 (9)C8—C91.43 (9)
N4—C91.355 (18)C8—C71.37 (5)
N5—C61.37 (7)C6—C71.44 (2)
N1—N21.38 (4)C7—H70.9300
N1—C91.25 (10)
N5—N4—N3121 (2)N5—C6—Cl1116.8 (16)
N5—N4—C9131 (7)N5—C6—C7124 (4)
N3—N4—C9108 (7)C7—C6—Cl1119 (3)
N4—N5—C6113.2 (19)N4—C9—C8115 (6)
C9—N1—N2105.1 (16)N1—C9—N4111 (6)
N4—N3—N2106 (2)N1—C9—C8133.9 (16)
N3—N2—N1110 (2)C8—C7—C6117 (3)
C9—C8—H8120.1C8—C7—H7121.6
C7—C8—H8120.1C6—C7—H7121.6
C7—C8—C9119.9 (12)
Cl1—C6—C7—C8173.4 (6)N3—N4—C9—C8179.9 (8)
N4—N5—C6—Cl1176.1 (5)N2—N1—C9—N41.1 (15)
N4—N5—C6—C72.0 (9)N2—N1—C9—C8179.9 (8)
N4—N3—N2—N10.5 (9)C9—N4—N5—C63.3 (11)
N5—N4—N3—N2175.1 (4)C9—N4—N3—N20.2 (11)
N5—N4—C9—N1173.8 (12)C9—N1—N2—N31.0 (12)
N5—N4—C9—C85.2 (12)C9—C8—C7—C62.6 (9)
N5—C6—C7—C84.7 (9)C7—C8—C9—N41.7 (11)
N3—N4—N5—C6177.4 (9)C7—C8—C9—N1177.0 (13)
N3—N4—C9—N10.9 (15)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_33GPa_phase_beta) top
Crystal data top
C4H2ClN5F(000) = 312
Mr = 155.56Dx = 1.808 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.824 (8) ÅCell parameters from 822 reflections
b = 13.1476 (8) Åθ = 3.1–22.1°
c = 5.6603 (6) ŵ = 0.58 mm1
β = 101.05 (4)°T = 296 K
V = 571.4 (6) Å3Plate, colourless
Z = 40.38 × 0.38 × 0.28 mm
Data collection top
KM-4 CCD
diffractometer
366 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 16.1544 pixels mm-1θmax = 27.9°, θmin = 3.1°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 33
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1717
Tmin = 0.769, Tmax = 1.000l = 77
3822 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0673P)2 + 1.1248P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
366 reflectionsΔρmax = 0.22 e Å3
41 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.33 (2) GPa (330000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.0289 (12)0.33956 (14)0.8424 (5)0.0582 (9)*
N40.549 (5)0.3528 (4)0.5375 (19)0.0364 (18)*
N50.696 (5)0.3320 (4)0.7036 (19)0.0384 (17)*
N10.389 (3)0.4153 (5)0.2290 (17)0.050 (2)*
N30.396 (4)0.3360 (5)0.575 (2)0.054 (2)*
N20.299 (3)0.3742 (5)0.3873 (16)0.055 (2)*
C80.706 (3)0.4251 (5)0.2579 (17)0.0368 (19)*
H80.7085440.4572060.1123890.044*
C60.838 (5)0.3573 (4)0.6308 (19)0.033 (2)*
C90.542 (6)0.4008 (5)0.322 (2)0.035 (2)*
C70.856 (4)0.4013 (4)0.4093 (16)0.035 (2)*
H70.9646820.4131240.3697960.042*
Geometric parameters (Å, º) top
Cl1—C61.74 (3)N3—N21.28 (3)
N4—N51.37 (5)C8—H80.9300
N4—N31.28 (5)C8—C91.43 (5)
N4—C91.367 (13)C8—C71.35 (4)
N5—C61.30 (5)C6—C71.412 (11)
N1—N21.35 (2)C7—H70.9300
N1—C91.22 (5)
N5—N4—C9126 (4)N5—C6—Cl1114.8 (11)
N3—N4—N5122.9 (9)N5—C6—C7128 (3)
N3—N4—C9110 (3)C7—C6—Cl1117 (2)
C6—N5—N4112.9 (8)N4—C9—C8116 (4)
C9—N1—N2103.9 (14)N1—C9—N4109 (3)
N4—N3—N2102.4 (13)N1—C9—C8134.8 (10)
N3—N2—N1114 (2)C8—C7—C6116 (3)
C9—C8—H8119.9C8—C7—H7122.2
C7—C8—H8119.9C6—C7—H7122.2
C7—C8—C9120.2 (9)
Cl1—C6—C7—C8172.8 (5)N3—N4—C9—C8179.4 (6)
N4—N5—C6—Cl1176.3 (4)N2—N1—C9—N41.0 (9)
N4—N5—C6—C70.3 (9)N2—N1—C9—C8178.9 (8)
N4—N3—N2—N10.0 (8)C9—N4—N5—C64.1 (10)
N5—N4—N3—N2174.4 (6)C9—N4—N3—N20.6 (8)
N5—N4—C9—N1173.7 (7)C9—N1—N2—N30.7 (9)
N5—N4—C9—C84.6 (10)C9—C8—C7—C63.0 (9)
N5—C6—C7—C83.8 (10)C7—C8—C9—N40.6 (10)
N3—N4—N5—C6178.4 (7)C7—C8—C9—N1177.2 (9)
N3—N4—C9—N11.1 (10)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_40GPa_phase_beta) top
Crystal data top
C4H2ClN5F(000) = 312
Mr = 155.56Dx = 1.826 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.824 (4) ÅCell parameters from 1140 reflections
b = 13.0789 (6) Åθ = 4.0–26.7°
c = 5.6290 (4) ŵ = 0.58 mm1
β = 100.793 (19)°T = 296 K
V = 565.8 (3) Å3Plate, colourless
Z = 40.38 × 0.28 × 0.27 mm
Data collection top
KM-4 CCD
diffractometer
433 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.2413 pixels mm-1θmax = 27.3°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 44
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1616
Tmin = 0.434, Tmax = 1.000l = 77
3186 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0594P)2 + 1.5841P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
433 reflectionsΔρmax = 0.39 e Å3
41 parametersΔρmin = 0.45 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.40 (2) GPa (400000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.0297 (6)0.33986 (11)0.8469 (3)0.0498 (6)*
N40.553 (2)0.3530 (3)0.5387 (10)0.0299 (12)*
N50.6971 (17)0.3312 (3)0.7051 (10)0.0312 (11)*
N10.3853 (19)0.4148 (4)0.2297 (12)0.0424 (16)*
N30.394 (2)0.3356 (4)0.5771 (11)0.0425 (14)*
N20.2928 (17)0.3733 (4)0.3871 (11)0.0457 (14)*
C80.7079 (18)0.4256 (4)0.2567 (11)0.0303 (13)*
H80.7114520.4572640.1098140.036*
C60.841 (2)0.3577 (3)0.6357 (11)0.0282 (13)*
C90.546 (3)0.4011 (4)0.3234 (13)0.0287 (14)*
C70.855 (2)0.4019 (3)0.4110 (11)0.0322 (14)*
H70.9635920.4142220.3711320.039*
Geometric parameters (Å, º) top
Cl1—C61.730 (15)N3—N21.302 (14)
N4—N51.356 (17)C8—H80.9300
N4—N31.321 (19)C8—C91.42 (2)
N4—C91.358 (8)C8—C71.344 (19)
N5—C61.305 (18)C6—C71.415 (8)
N1—N21.358 (12)C7—H70.9300
N1—C91.28 (2)
N5—N4—C9126.9 (14)N5—C6—Cl1115.6 (5)
N3—N4—N5122.6 (6)N5—C6—C7126.4 (14)
N3—N4—C9110.3 (15)C7—C6—Cl1118.0 (12)
C6—N5—N4113.0 (5)N4—C9—C8117.0 (15)
C9—N1—N2106.1 (8)N1—C9—N4107.5 (15)
N2—N3—N4104.2 (7)N1—C9—C8135.5 (7)
N3—N2—N1111.8 (12)C8—C7—C6118.0 (14)
C9—C8—H8120.8C8—C7—H7121.0
C7—C8—H8120.8C6—C7—H7121.0
C7—C8—C9118.4 (6)
Cl1—C6—C7—C8173.2 (4)N3—N4—C9—C8179.7 (4)
N4—N5—C6—Cl1176.0 (3)N2—N1—C9—N41.0 (6)
N4—N5—C6—C71.9 (7)N2—N1—C9—C8179.5 (5)
N4—N3—N2—N10.4 (6)C9—N4—N5—C62.7 (7)
N5—N4—N3—N2175.3 (4)C9—N4—N3—N20.3 (6)
N5—N4—C9—N1174.5 (5)C9—N1—N2—N30.9 (6)
N5—N4—C9—C84.3 (7)C9—C8—C7—C62.6 (7)
N5—C6—C7—C84.6 (8)C7—C8—C9—N41.3 (7)
N3—N4—N5—C6177.5 (4)C7—C8—C9—N1177.1 (6)
N3—N4—C9—N10.9 (6)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_48GPa_phase_beta) top
Crystal data top
C4H2ClN5F(000) = 312
Mr = 155.56Dx = 1.850 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.836 (2) ÅCell parameters from 675 reflections
b = 12.9703 (12) Åθ = 4.0–23.0°
c = 5.5885 (5) ŵ = 0.59 mm1
β = 100.542 (16)°T = 296 K
V = 558.43 (18) Å3Plate, colourless
Z = 40.34 × 0.30 × 0.26 mm
Data collection top
KM-4 CCD
diffractometer
359 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.2413 pixels mm-1θmax = 27.2°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 33
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1616
Tmin = 0.544, Tmax = 1.000l = 76
3109 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.019P)2 + 1.8498P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
359 reflectionsΔρmax = 0.28 e Å3
41 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.48 (2) GPa 480000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.0317 (9)0.34042 (14)0.8507 (4)0.0517 (7)*
N40.540 (4)0.3516 (4)0.5395 (15)0.0326 (17)*
N50.707 (3)0.3304 (4)0.7138 (13)0.0339 (15)*
N10.385 (3)0.4144 (5)0.2293 (14)0.041 (2)*
N30.401 (3)0.3344 (5)0.5865 (16)0.046 (2)*
N20.294 (3)0.3729 (4)0.3901 (14)0.0491 (19)*
C80.710 (3)0.4261 (5)0.2584 (15)0.0310 (18)*
H80.7146110.4587600.1115460.037*
C60.830 (3)0.3572 (4)0.6333 (16)0.0263 (18)*
C90.544 (5)0.4009 (5)0.3242 (18)0.0291 (19)*
C70.853 (3)0.4023 (4)0.4091 (13)0.0312 (19)*
H70.9625800.4139980.3721210.037*
Geometric parameters (Å, º) top
Cl1—C61.82 (3)N3—N21.35 (2)
N4—N51.51 (4)C8—H80.9300
N4—N31.19 (4)C8—C91.45 (4)
N4—C91.369 (11)C8—C71.31 (3)
N5—C61.19 (3)C6—C71.424 (10)
N1—N21.354 (18)C7—H70.9300
N1—C91.28 (4)
N3—N4—N5123.1 (9)N5—C6—Cl1112.2 (10)
N3—N4—C9117 (3)N5—C6—C7134 (2)
C9—N4—N5120 (3)C7—C6—Cl1113.6 (18)
C6—N5—N4111.8 (8)N4—C9—C8120 (3)
C9—N1—N2105.2 (11)N1—C9—N4104 (3)
N4—N3—N2101.9 (12)N1—C9—C8135.8 (9)
N3—N2—N1111.5 (19)C8—C7—C6115 (2)
C9—C8—H8120.5C8—C7—H7122.3
C7—C8—H8120.5C6—C7—H7122.3
C7—C8—C9119.0 (8)
Cl1—C6—C7—C8172.8 (5)N3—N4—C9—C8178.7 (6)
N4—N5—C6—Cl1175.9 (4)N2—N1—C9—N40.1 (7)
N4—N5—C6—C71.6 (10)N2—N1—C9—C8178.9 (7)
N4—N3—N2—N10.7 (7)C9—N4—N5—C62.9 (8)
N5—N4—N3—N2175.1 (5)C9—N4—N3—N20.6 (8)
N5—N4—C9—N1175.0 (6)C9—N1—N2—N30.5 (7)
N5—N4—C9—C84.0 (9)C9—C8—C7—C63.0 (9)
N5—C6—C7—C84.7 (10)C7—C8—C9—N40.9 (9)
N3—N4—N5—C6177.2 (7)C7—C8—C9—N1177.8 (7)
N3—N4—C9—N10.3 (9)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_55GPa_phase_beta) top
Crystal data top
C4H2ClN5F(000) = 312
Mr = 155.56Dx = 1.865 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.808 (6) ÅCell parameters from 1193 reflections
b = 12.9522 (8) Åθ = 4.0–25.6°
c = 5.5722 (4) ŵ = 0.59 mm1
β = 100.54 (2)°T = 296 K
V = 554.0 (4) Å3Plate, colourless
Z = 40.35 × 0.25 × 0.14 mm
Data collection top
KM-4 CCD
diffractometer
367 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.2413 pixels mm-1θmax = 27.2°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 22
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1516
Tmin = 0.453, Tmax = 1.000l = 77
3241 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.0869P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
367 reflectionsΔρmax = 0.08 e Å3
91 parametersΔρmin = 0.08 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.55 (2) GPa 550000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.0298 (3)0.34049 (5)0.85234 (12)0.0418 (16)
N40.560 (3)0.3523 (3)0.5444 (12)0.035 (13)
N50.6976 (18)0.3299 (2)0.7117 (6)0.027 (7)
N10.3851 (18)0.4143 (3)0.2306 (8)0.029 (8)
N30.397 (3)0.3347 (4)0.5820 (12)0.028 (12)
N20.2924 (13)0.3726 (2)0.3897 (6)0.047 (8)
C80.7050 (19)0.4260 (3)0.2559 (9)0.026 (9)
H80.7050020.4581800.1066830.031*
C60.8467 (19)0.3572 (3)0.6437 (10)0.026 (9)
C90.554 (3)0.4007 (3)0.3268 (10)0.030 (13)
C70.8610 (17)0.40255 (17)0.4123 (5)0.030 (8)
H70.9685830.4155190.3693730.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.035 (5)0.0514 (4)0.0355 (4)0.0026 (7)0.0039 (9)0.0053 (3)
N40.06 (4)0.0240 (14)0.029 (3)0.002 (4)0.019 (7)0.0014 (13)
N50.02 (2)0.0290 (13)0.0283 (17)0.001 (3)0.001 (5)0.0015 (10)
N10.01 (3)0.0336 (14)0.039 (2)0.002 (4)0.002 (4)0.0004 (14)
N30.01 (4)0.0357 (19)0.039 (3)0.003 (4)0.003 (7)0.0013 (15)
N20.06 (2)0.0358 (14)0.0461 (18)0.007 (4)0.003 (5)0.0059 (11)
C80.03 (3)0.0252 (14)0.0219 (18)0.001 (3)0.003 (5)0.0022 (11)
C60.02 (3)0.0253 (16)0.028 (2)0.003 (4)0.008 (5)0.0027 (13)
C90.04 (4)0.0216 (15)0.025 (3)0.001 (5)0.011 (9)0.0016 (17)
C70.03 (2)0.0282 (13)0.0290 (16)0.000 (4)0.004 (4)0.0019 (10)
Geometric parameters (Å, º) top
Cl1—C61.684 (12)N3—N21.317 (15)
N4—N51.32 (3)C8—H80.9300
N4—N31.35 (3)C8—C91.35 (3)
N4—C91.358 (8)C8—C71.396 (16)
N5—C61.34 (2)C6—C71.439 (7)
N1—N21.355 (13)C7—H70.9300
N1—C91.34 (3)
N5—N4—N3121.6 (8)N5—C6—Cl1116.4 (5)
N5—N4—C9128 (2)N5—C6—C7125.2 (12)
N3—N4—C9110 (2)C7—C6—Cl1118.4 (10)
N4—N5—C6112.4 (7)N1—C9—N4107 (2)
C9—N1—N2106.9 (7)N1—C9—C8134.3 (7)
N2—N3—N4105.8 (7)C8—C9—N4119 (2)
N3—N2—N1110.9 (10)C8—C7—C6116.5 (11)
C9—C8—H8120.9C8—C7—H7121.7
C9—C8—C7118.3 (7)C6—C7—H7121.7
C7—C8—H8120.9
Cl1—C6—C7—C8172.8 (2)N3—N4—C9—C8179.5 (4)
N4—N5—C6—Cl1175.5 (3)N2—N1—C9—N40.9 (4)
N4—N5—C6—C72.2 (5)N2—N1—C9—C8179.3 (4)
N4—N3—N2—N10.2 (6)C9—N4—N5—C62.5 (5)
N5—N4—N3—N2175.3 (2)C9—N4—N3—N20.3 (7)
N5—N4—C9—N1174.5 (4)C9—N1—N2—N30.7 (4)
N5—N4—C9—C84.2 (7)C9—C8—C7—C62.8 (4)
N5—C6—C7—C84.8 (5)C7—C8—C9—N41.1 (5)
N3—N4—N5—C6177.3 (7)C7—C8—C9—N1177.3 (3)
N3—N4—C9—N10.8 (6)
6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl1@0_80GPa_phase_beta) top
Crystal data top
C4H2ClN5F(000) = 312
Mr = 155.56Dx = 1.945 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.756 (5) ÅCell parameters from 1202 reflections
b = 12.7163 (5) Åθ = 4.1–26.0°
c = 5.4680 (3) ŵ = 0.62 mm1
β = 100.006 (18)°T = 296 K
V = 531.1 (3) Å3Plate, colourless
Z = 40.24 × 0.22 × 0.22 mm
Data collection top
KM-4 CCD
diffractometer
355 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.2413 pixels mm-1θmax = 27.0°, θmin = 4.1°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 22
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1516
Tmin = 0.535, Tmax = 1.000l = 66
2908 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0513P)2 + 1.5556P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
355 reflectionsΔρmax = 0.37 e Å3
41 parametersΔρmin = 0.44 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.80 (2) GPa 800000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.0312 (6)0.34163 (10)0.8608 (3)0.0364 (6)*
N40.553 (2)0.3507 (3)0.5508 (9)0.0209 (12)*
N50.6944 (19)0.3293 (3)0.7196 (8)0.0216 (11)*
N10.383 (2)0.4142 (3)0.2324 (10)0.0303 (14)*
N30.392 (2)0.3322 (4)0.5901 (11)0.0332 (14)*
N20.2904 (19)0.3708 (4)0.3966 (9)0.0341 (14)*
C80.705 (2)0.4269 (4)0.2560 (10)0.0209 (13)*
H80.7075140.4595070.1044280.025*
C60.844 (2)0.3569 (4)0.6483 (10)0.0200 (12)*
C90.543 (3)0.4008 (4)0.3279 (12)0.0193 (13)*
C70.857 (2)0.4034 (3)0.4126 (9)0.0225 (13)*
H70.9654710.4170250.3682290.027*
Geometric parameters (Å, º) top
Cl1—C61.703 (15)N3—N21.299 (14)
N4—N51.333 (18)C8—H80.9300
N4—N31.33 (2)C8—C91.42 (3)
N4—C91.366 (8)C8—C71.37 (2)
N5—C61.34 (2)C6—C71.437 (8)
N1—N21.362 (14)C7—H70.9300
N1—C91.27 (2)
N5—N4—C9128.8 (17)N5—C6—Cl1116.8 (5)
N3—N4—N5122.5 (7)N5—C6—C7124.7 (14)
N3—N4—C9108.5 (15)C7—C6—Cl1118.4 (13)
N4—N5—C6113.4 (7)N4—C9—C8116.0 (16)
C9—N1—N2105.3 (8)N1—C9—N4109.4 (16)
N2—N3—N4104.8 (9)N1—C9—C8134.6 (7)
N3—N2—N1112.1 (14)C8—C7—C6117.8 (14)
C9—C8—H8120.5C8—C7—H7121.1
C7—C8—H8120.5C6—C7—H7121.1
C7—C8—C9119.1 (6)
Cl1—C6—C7—C8172.2 (4)N3—N4—C9—C8180.0 (5)
N4—N5—C6—Cl1175.3 (3)N2—N1—C9—N40.6 (6)
N4—N5—C6—C71.1 (8)N2—N1—C9—C8179.8 (6)
N4—N3—N2—N10.1 (6)C9—N4—N5—C63.9 (8)
N5—N4—N3—N2174.8 (4)C9—N4—N3—N20.3 (6)
N5—N4—C9—N1174.0 (5)C9—N1—N2—N30.5 (6)
N5—N4—C9—C85.3 (8)C9—C8—C7—C62.5 (7)
N5—C6—C7—C84.1 (8)C7—C8—C9—N41.6 (7)
N3—N4—N5—C6177.9 (5)C7—C8—C9—N1177.5 (6)
N3—N4—C9—N10.6 (6)
 

Funding information

This study was supported by the National Science Centre (grant No. 2016/23/D/ST5/00283).

References

First citationBałoniak, S. & Katrusiak, A. (1994). Pol. J. Chem. 68, 683–691.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J. (2002). IUCr Monographs on Crystallography. Oxford: Clarendon Press.  Google Scholar
First citationBoldyreva, E. V. (2008). Acta Cryst. A64, 218–231.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoldyreva, E. V. (2014). Z. Kristallogr. 3, 236–245.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBudzianowski, A. & Katrusiak, A. (2004). High-pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 101–112. Dordrecht: Kluwer.  Google Scholar
First citationCai, W. & Katrusiak, A. (2014). Nat. Commun. 5, 1–8.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932–942.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, H. & Shreeve, J. M. (2011). Chem. Rev. 111, 7377–7436.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGlasser, L. (2019). Acta Cryst. B75, 784–787  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuńka, P., Olejniczak, A., Fanetti, S., Bini, R., Collings, I. E., Svitlyk, V. & Dziubek, K. F. (2021). Chem. Eur. J. 27, 1094–1102.  Web of Science PubMed Google Scholar
First citationHazen, R. M. & Finger, L. W. (1982). Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure. Chichester, New York: Wiley.  Google Scholar
First citationKatrusiak, A. A., Bałoniak, S. & Katrusiak, A. S. (1996). Pol. J. Chem. 70, 1279–1289.  CAS Google Scholar
First citationKatrusiak, A., Skierska, U. & Katrusiak, A. (2005). J. Mol. Struct. 751, 65–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMao, H. K., Xu, J. & Bell, P. M. (1985). J. Geophys. Res. 91, 4673–4676.  CrossRef Web of Science Google Scholar
First citationMcKellar, S. C. & Moggach, S. A. (2015). Acta Cryst. B71, 587–607.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMerrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290–294.  CrossRef Web of Science Google Scholar
First citationMillar, D. I. A., Marshall, W. G., Oswald, I. D. H. & Pulham, C. R. (2010). Cryst. Rev. 16, 115–132.  Web of Science CrossRef CAS Google Scholar
First citationNair, U. R., Asthana, S. N., Rao, A. & Gandhe, B. R. (2010). Def. Sci. J. 60, 137–151.  Web of Science CrossRef CAS Google Scholar
First citationOlejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2019). Cryst. Growth Des. 19, 1832–1838.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2020). Acta Cryst. B76, 1136–1142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOlejniczak, A., Katrusiak, A. & Szafrański, M. (2010). Cryst. Growth Des. 10, 3537–3546.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlejniczak, A., Ostrowska, K. & Katrusiak, A. (2009). Cryst. Growth Des. 113, 15761–15767.  CAS Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: https://www.povray.org/.   Google Scholar
First citationResnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675–690.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationRoszak, K. & Katrusiak, A. (2021). Acta Cryst. B77, 449–455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSvitlyk, V. & Mezouar, M. (2021). J. Phys. Condens. Matter, 33, 245401.  Web of Science CrossRef Google Scholar
First citationYang, J., Gong, X. & Wang, G. (2015). RSC Adv. 5, 9503–9509.  Web of Science CrossRef CAS Google Scholar
First citationZakharov, B. A. & Boldyreva, E. V. (2019). CrystEngComm, 21, 10–22.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
ISSN: 2052-2525