research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
ISSN: 2052-2525

Regioisomers of singly bridged calix[6]crown-6 and their heavy alkali metal complexes: a molecular baseball glove for caesium(I)

crossmark logo

aDepartment of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea, and bGraduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
*Correspondence e-mail: sslee@gnu.ac.kr, ipark@cnu.ac.kr

Edited by C.-Y. Su, Sun Yat-Sen University, China (Received 19 August 2021; accepted 12 October 2021; online 3 November 2021)

We report the formation of heavy alkali metal complexes of bicyclic host molecules including the caesium(I) complex that catches the central metal ion with the deep pocket of the host similar to a baseball glove. For this, three regioisomers of singly bridged calix[6]crown-6 [1,2-bridged (H4L1,2), 1,3-bridged (H4L1,3) and 1,4-bridged (H4L1,4)] have been synthesized by alkyl­ation of calix[6]arene with penta­ethyl­ene glycol di­tosyl­ate in the presence of M2CO3 (M = Na, K, Rb and Cs). The larger the cation size of the metal carbonate, the higher the yield of the H4L1,4 isomer, indicating the size-based template effect. A combination of H4L1,2 and RbOH allowed isolation of the mononuclear rubidium(I) complex (1) in which the metal center is six-coordinated in a loose fashion, the remaining two oxygen donors in the crown loop and two phenols in the calix rim are uncoordinated. Notably, the complexation of H4L1,2 with CsOH yielded the mononuclear caesium(I) complex (2), in which all possible ten binding sites on the deep and good-fit pocket participate in coordination via high cooperativity between the crown loop and calix rim, similar to a baseball glove. In dipolar organic solution, the caesium(I) complex 2 remains intact. H4L1,4 afforded a dicesium(I) complex (3) and adjacent complexes are linked by intermolecular cation–π interactions, giving rise to a pseudo one-dimensional coordination polymer. These results provide insight into the metal carbonate-dependent synthesis of calix[6]crowns and the influence of regioisomers on caesium(I) complexation.

1. Introduction

Since the pioneering works of Pedersen, Lehn and Cram, supramolecular chemistry of macrocycles is still significant in chemistry and biology because many of the roots and concepts came from the phenomena found in biological process such as molecular recognition, self-assembly, enzyme catalysis and ion transport (Pedersen, 1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 2495-2496.]; Izatt et al., 1995[Izatt, R. M., Pawlak, K., Bradshaw, J. S. & Bruening, R. L. (1995). Chem. Rev. 95, 2529-2586.]; Lindoy, 1990[Lindoy, L. F. (1990). J. Coord. Chem. 21, 87-87.]; Lehn, 1995[Lehn, J.-M. (1995). Supramolecular Chemistry, Concept and Perspectives. Weinheim, Germany: VCH.]). Supramolecular chemistry has been extended to various research areas such as metal–organic frameworks, metal–organic coordination cages, hydrogen-bonded organic frameworks, covalent organic frameworks, ππ stacked frameworks, as well as applications of macrocyclic complexes and continuous studies being carried out (Zhou et al., 2012[Zhou, H.-C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673-674.]; Fujita et al., 2005[Fujita, M., Tominaga, M., Hori, A. & Therrien, B. (2005). Acc. Chem. Res. 38, 369-378.]; Cook et al., 2013[Cook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734-777.]; Chakraborty et al., 2021[Chakraborty, G., Park, I.-H., Medishetty, R. & Vittal, J. J. (2021). Chem. Rev. 121, 3751-3891.]; Deng et al., 2020[Deng, J.-H., Luo, J., Mao, Y.-L., Lai, S., Gong, Y.-N., Zhong, D.-C. & Lu, T.-B. (2020). Sci. Adv. 6, eaax9976.]; Ouyang et al., 2017[Ouyang, T., Huang, H.-H., Wang, J.-W., Zhong, D.-C. & Lu, T.-B. (2017). Angew. Chem. Int. Ed. 56, 738-743.], 2018[Ouyang, T., Wang, H.-J., Huang, H.-H., Wang, J.-W., Guo, S., Liu, W.-J., Zhong, D.-C. & Lu, T.-B. (2018). Angew. Chem. Int. Ed. 57, 16480-16485.]; Li et al., 2014[Li, K., Zhang, L.-Y., Yan, C., Wei, S.-C., Pan, M., Zhang, L. & Su, C.-Y. (2014). J. Am. Chem. Soc. 136, 4456-4459.], 2021[Li, Y., Wang, N., Lei, H., Li, X., Zheng, H., Wang, H., Zhang, W. & Cao, R. (2021). Coord. Chem. Rev. 442, 213996.]; Park et al., 2020[Park, I.-H., Dey, A., Sasaki, K., Ohba, M., Lee, S. S. & Vittal, J. J. (2020). IUCrJ, 7, 324-330.]; Britton et al., 2021[Britton, E., Ansell, R. J., Howard, M. J. & Hardie, M. J. (2021). Inorg. Chem. 60, 12912-12923.]; Boer et al., 2019[Boer, S. A., Wang, P.-X., MacLachlan, M. J. & White, N. G. (2019). Cryst. Growth Des. 19, 4829-4835.]; Braunecker et al., 2018[Braunecker, W. A., Hurst, K. E., Ray, K. G., Owczarczyk, Z. R., Martinez, M. B., Leick, N., Keuhlen, A., Sellinger, A. & Johnson, J. C. (2018). Cryst. Growth Des. 18, 4160-4166.]; Hong et al., 2021[Hong, D. H., Shim, H. S., Ha, J. & Moon, H. R. (2021). Bull. Korean Chem. Soc. 42, 956-969.]; Yadava et al., 2020[Yadava, K., Gallo, G., Bette, S., Mulijanto, C. E., Karothu, D. P., Park, I.-H., Medishetty, R., Naumov, P., Dinnebier, R. E. & Vittal, J. J. (2020). IUCrJ, 7, 83-89.]). The advances of experimental instruments for structural analyses including single-crystal X-ray diffraction and high-field NMR have also led such progress.

Before the discovery of crown ethers by Pederson, ionophores for alkali metal ions were very rare except in some specified natural products, e.g. valinomycin and nonactin (Brockmann & Schmidt-Kastner, 1955[Brockmann, H. & Schmidt-Kastner, G. (1955). Chem. Ber. 88, 57-61.]; Brockmann & Geeren, 1957[Brockmann, H. & Geeren, H. (1957). Justus Liebigs Ann. Chem. 603, 216-232.]; Prestegard & Chan, 1969[Prestegard, J. H. & Chan, S. I. (1969). Biochemistry, 8, 3921-3927.], 1970[Prestegard, J. H. & Chan, S. I. (1970). J. Am. Chem. Soc. 92, 4440-4446.]). So far, complexes of heavy alkali metal ions including Rb+ and Cs+ are relatively less explored than their lighter homologues such as Li+, Na+ and K+ (Izatt et al., 1995[Izatt, R. M., Pawlak, K., Bradshaw, J. S. & Bruening, R. L. (1995). Chem. Rev. 95, 2529-2586.]; Gokel et al., 2004[Gokel, G. W., Leevy, W. M. & Weber, M. E. (2004). Chem. Rev. 104, 2723-2750.]). For the complexation of heavy alkali metal ions, hetero-di and polytopic receptors incorporating two different macrocycle units could be more advantageous due to the deep pocket being formed rather than simple flat macrocycles (Lehn, 1978[Lehn, J.-M. (1978). Acc. Chem. Res. 11, 49-57.]). In this sense, calix[n]crowns are one of the most important host molecules (Asfari et al., 2001[Asfari, M.-Z., Böhmer, V., Harrowfield, J. & Vicens, J. (2001). Calixarenes. Dordrecht: Kluwer Academic Publishers.]; Harrowfield & Koutsantonis, 2007[Harrowfield, J. & Koutsantonis, G. (2007). Calixarenes in the Nanoworld, edited by J. Vicens, J. Harrowfield & L. Baklouti, pp. 197-212. Dordrecht: Springer Netherlands.]; Ikeda & Shinkai, 1997[Ikeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713-1734.]; Kim, Lee et al., 2012[Kim, H. J., Lee, M. H., Mutihac, L., Vicens, J. & Kim, J. S. (2012). Chem. Soc. Rev. 41, 1173-1190.]; Nimse & Kim, 2013[Nimse, S. B. & Kim, T. (2013). Chem. Soc. Rev. 42, 366-386.]). Practically, some large crown ethers (Talanov et al., 2000[Talanov, V. S., Talanova, G. G. & Bartsch, R. A. (2000). Tetrahedron Lett. 41, 8221-8224.]; Shinkai et al., 1982[Shinkai, S., Kinda, H. & Manabe, O. (1982). J. Am. Chem. Soc. 104, 2933-2934.]; Rofouei et al., 2010[Rofouei, M. K., Taghdiri, M., Shamsipur, M. & Alizadeh, K. (2010). J. Solution Chem. 39, 1350-1359.]) and calix[4]crown derivatives (Ji et al., 1999[Ji, H.-F. M., Brown, G. & Dabestani, R. (1999). Chem. Commun. pp. 609-610.], 2001[Ji, H.-F., Dabestani, R., Brown, G. M. & Hettich, R. L. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 585-591.]; Boda & Sheikh, 2012[Boda, A. & Sheikh, M. A. (2012). J. Phys. Chem. A, 116, 8615-8623.]; Kim et al., 2004[Kim, S. K., Lee, S. H., Lee, J. Y., Lee, J. Y., Bartsch, R. A. & Kim, J. S. (2004). J. Am. Chem. Soc. 126, 16499-16506.], 2010[Kim, S. K., Sessler, J. L., Gross, D. E., Lee, C.-H., Kim, J. S., Lynch, V. M., Delmau, L. H. & Hay, B. P. (2010). J. Am. Chem. Soc. 132, 5827-5836.]; Choi et al., 2006[Choi, J. K., Kim, S. H., Yoon, J., Lee, K.-H., Bartsch, R. A. & Kim, J. S. (2006). J. Org. Chem. 71, 8011-8015.]; Lee et al., 2008[Lee, J. Y., Kim, H. J., Jung, J. H., Sim, W. & Lee, S. S. (2008). J. Am. Chem. Soc. 130, 13838-13839.]; Kim, Lynch et al., 2012[Kim, S. K., Lynch, V. M., Young, N. J., Hay, B. P., Lee, C.-H., Kim, J. S., Moyer, B. A. & Sessler, J. L. (2012). J. Am. Chem. Soc. 134, 20837-20843.]; Bu et al., 2004[Bu, J.-H., Zheng, Q.-Y., Chen, C.-F. & Huang, Z.-T. (2004). Org. Lett. 6, 3301-3303.]) have been utilized in complexation not only for heavy alkali metal ions but also for their radioactive elements including 137Cs+ (Russell et al., 2014[Russell, B. C., Warwick, P. E. & Croudace, I. W. (2014). Anal. Chem. 86, 11890-11896.]).

Considering the large size of Cs+ in the alkali metal family and its hard-acid nature, bridging of calix[6]arene with larger crown loops could be promising rather than those with calix[4]arene. Furthermore, this approach serves regioisomers depending on the bridging positions, some of which can possess a semi-flexible and deeper binding pocket. Shinkai et al. (1982[Shinkai, S., Kinda, H. & Manabe, O. (1982). J. Am. Chem. Soc. 104, 2933-2934.]) proposed the O-methyl­ation processes of p-tert-butyl­calix[6]arene in the presence of K2CO3 (Otsuka et al., 1994[Otsuka, H., Araki, K. & Shinkai, S. (1994). J. Org. Chem. 59, 1542-1547.]). The Chen group reported the regioselective synthesis of 1,2-bridged p-tert-butyl­calix[6]-dioxocrowns in the presence of K2CO3 (Yang & Chen, 2001[Yang, F. & Chen, Y. (2001). Eur. J. Org. Chem. 2001, 365-368.]). Unlike the big advances in calix[4]crowns, the corresponding calix[6]crowns especially with larger crown loops have been relatively less explored because their functionalization by the selective bridging of two phenolic units could be complicated due to the greater number of sites (six OH groups) being attached (Gutsche, 1989[Gutsche, C. D. (1989). Calixarenes. Cambridge: The Royal Society of Chemistry.]; Blanda et al., 2000[Blanda, M. T., Farmer, D. B., Brodbelt, J. S. & Goolsby, B. J. (2000). J. Am. Chem. Soc. 122, 1486-1491.]; Chen & Li, 2001[Chen, Y. & Li, H. (2001). New J. Chem. 25, 340-343.]; Li et al., 1999[Li, J., Chen, Y. & Lu, X. (1999). Tetrahedron, 55, 10365-10374.]). The difficulty also arises from the isolation and characterization of pure regioisomers.

In this work, we accomplished regioselective syntheses of calix[6]crown-6 isomers (Scheme 1[link]). Reactions of calix[6]arene with a di-electrophile can lead to the formation of three singly bridged regioisomers; 1,2-bridged (H4L1,2), 1,3-bridged (H4L1,3) and 1,4-bridged (H4L1,4). The regioisomer distribution in the product could be dependent on the reaction conditions including the base (Otsuka et al., 1994[Otsuka, H., Araki, K. & Shinkai, S. (1994). J. Org. Chem. 59, 1542-1547.]). Thus, single-bridging reactions were accomplished between calix[6]arene and penta­ethyl­ene glycol di­tosyl­ate in the presence of different metal (Na, K, Rb and Cs) carbonates in xylene.

[Scheme 1]

In addition to the synthesis for the above regioisomers, we focused our attention to the preparation and structural studies of their heavy alkali metal complexes including Cs+. Notably, the semi-flexible calix[6]crown regioisomers are expected to provide pockets with different depths and dimensions depending on the bridging positions. For example, 1,2-bridging makes a deeper pocket but 1,4-bridging produces a shallow one (Scheme 1[link]). Furthermore, the phenol groups under the basic reaction conditions could be advantageous for a few reasons: (i) charge neutrality of the complexes can be achieved by phenolate groups, (ii) the phenolate group can acts as a strong cation-ligation site. In this regard, such modification of calix[6]arene entity by bridging with proper crown loops could be a potential design tool for engineering new coordination products in terms of stoichiometries, topologies and coordination modes. In our results, the metal carbonate template-based synthesis was highly cation-dependent. Here it is highlighted that one of the complexes isolated exhibits binding of Cs+ in the deep pocket of the host molecule similar to a baseball glove. The details are discussed below.

2. Results and discussion

2.1. Synthesis of three regioisomers of calix[6]crown-6

Calix[6]arene was prepared as reported previously (Casnati et al., 1995[Casnati, A., Jacopozzi, P., Pochini, A., Ugozzoli, F., Cacciapaglia, R., Mandolini, L. & Ungaro, R. (1995). Tetrahedron, 51, 591-598.]). As shown in Scheme 1[link], regioisomers of the singly bridged calix[6]crown-6 were synthesized via direct alkyl­ation of calix[6]arene with penta­ethyl­ene glycol di­tosyl­ate in the presence of M2CO3 (M = Na, K, Rb and Cs). Depending on the metal carbonates used the regioisomer products were obtained in low to reasonable yields. The selectivity ratios were determined from the NMR data of the reaction mixtures as listed in Table 1[link]. The same reactions in the presence of Na2CO3, K2CO3 or Rb2CO3 gave the selectivity ratio (%) of three regioisomers (H4L1,2:H4L1,3:H4L1,4): 75:15:0, 49:43:8 and 17:22:61. As the cation size becomes smaller, the 1,2-bridging is predominant. Moreover, when Cs2CO3 was used, only 1,3- and 1,4-bridging occurred with a 17:83 ratio, indicating the favorable 1,4-bridging by the largest cation, Cs+. On the basis of these results, we can explain that the cation size for the bases plays a crucial role as a template in the synthesis of the regioisomers. Some similar results on the bridging of p-tert-calix[6]arene with shorter polyethyl­ene glycol di­tosyl­ates have been reported by the Chen group (Li et al., 1999[Li, J., Chen, Y. & Lu, X. (1999). Tetrahedron, 55, 10365-10374.]).

Table 1
Base-dependent synthesis of three regioisomers of singly bridged calix[6]crown-6

Reaction conditions: calix[6]arene (1.0 equiv), base (2.0 equiv), penta­ethyl­ene glycol di­tosyl­ate (0.9 equiv), xylene (500 ml), reflux. Selectivity ratios were determined by 1H NMR.

  Selectivity ratio (%)  
Base H4L1,2 H4L1,3 H4L1,4 Total yield (%)
Na2CO3 75 15 10 32.4
K2CO3 49 43 8 33.6
Rb2CO3 17 22 61 32.5
Cs2CO3 0 17 83 35.9

2.2. Separation and identification of the regioisomers

Medium-pressure liquid column chromatography of the reaction mixture (ethyl acetate/n-hexane) on silica gel afforded 1,2-, 1,3- and 1,4-bridged isomers in pure form. The structural characterization of three isomers isolated was confirmed by 1H and 13C NMR (Figs. S1 and S2 of the supporting information). In the 1H NMR spectra, the conformations of H4L1,2, H4L1,3 and H4L1,4 could not be fully deduced owing to the complicated and overlapped peaks for O—CH2, Ar—CH2—Ar and Ar—H. Instead, the peak patterns of the four hydroxyl groups (Ar—OH) in each isomer serve as sensitive probes to distinguish the 1,2-, 1,3- or 1,4-bridging due to the different molecular symmetry levels (Table 2[link]) (Cunsolo et al., 1998[Cunsolo, F., Consoli, G. M. L., Piattelli, M. & Neri, P. (1998). J. Org. Chem. 63, 6852-6858.]; Geraci et al., 1996[Geraci, C., Piattelli, M. & Neri, P. (1996). Tetrahedron Lett. 37, 3899-3902.]).

Table 2
1H NMR resonances for the phenolic protons of three regioisomers in CDCl3

  H4L1,2 H4L1,3 H4L1,4
Ar—OH (δ, p.p.m.) 8.31 (2H) 8.79 (2H) 8.26 (1H) 7.72 (1H) 7.72 (2H) 7.75 (4H)

In the spectrum for H4L1,2, the peaks for two non-equivalent Ar—OH groups on the 3- and 4-positions appear at 8.31 p.p.m. (2H) and 8.79 p.p.m. (2H), respectively [Table 2[link] and Fig. S1(a)]. Two singlets at 8.26 p.p.m. (1H) and 7.72 p.p.m. (3H) in the spectrum for H4L1,3 indicate one hydroxyl proton on the 2-position and three hydroxyl protons on the 3-, 4- and 5-positions in accidental equivalence, respectively [Table 2[link] and Fig. S1(b)]. One singlet at 7.75 p.p.m. (4H) in the spectrum for H4L1,4 is attributed to the four hydroxyl protons in equivalent positions due to the high symmetry [Table 2[link] and Fig. S1(c)]. In the 13C NMR spectra, as expected, the numbers of peaks for the 1,4-bridged isomer is much smaller than those of the 1,2- or 1,3-bridged isomers (Fig. S2).

2.3. Preparation of rubidium(I) and caesium(I) complexes of H4L1,2 (1 and 2)

As mentioned, the use of alkali metal hydroxides in the complexation study was successful in isolating solid products. First, the reaction of H4L1,2 with RbOH in chloro­form/methanol afforded a colorless crystalline product (1) in low yield (5%). When the same synthetic procedure was repeated with CsOH, a colorless crystalline product (2) was obtained in a much higher yield (70%). X-ray analysis revealed that both products feature mononuclear complexes but their coordination environments are different (Fig. 1[link]).

[Figure 1]
Figure 1
(a) Formation of the rubidium(I) complex of H4L1,2, [Rb(H3L1,2)(CH3OH)] (1) showing a six-coordinated environment; (b) loose capture of Rb+; and (c) space-filling structure. (d) Formation of the caesium(I) complex of H4L1,2, [Cs(H3L1,2)]·3CHCl3 (2) showing a ten-coordinated environment; (e) tight capture of Cs+ in the deep pocket similar to (f) a baseball glove; and (g) space-filling structure. Non-coordinated solvent molecules are not shown.

The rubidium(I) complex 1 crystallizes in the monoclinic space group P21/n (Tables S1 and S2 of the supporting information). The structure features a 1:1 (metal-to-ligand) complex of type [Rb(H3L1,2)(CH3OH)] [Figs. 1[link](a)–(c)]. The rubidium(I) center is six-coordinated by four ether oxygens [Rb1—O 2.911 (17)–3.143 (2) Å], one phenolate oxygen [Rb1—O1 3.080 (18) Å] and one methanol molecule [Rb1—O11 2.879 (3) Å] [Fig. 1[link](a)]. The calix rim shows a bent cone shape mainly due to two bridging phenol units on 1,2-positions and two phenol units on 4,5-positions showing an up conformation with the flattened conformation of two remaining phenol units on the 3,6-positions. Two ether oxygens (O6 and O7) and three phenol groups remain uncoordinated, indicating that the semi-rigid pocket is somewhat larger than the cation, creating a loose structure [Figs. 1[link](b) and 1(c)]. Although the synthesis of 1 is reproducible, the yield is quite low (5%) probably due to low stability.

The caesium(I) complex 2 crystallizes in the monoclinic space group P21/n (Tables S1 and S3). Again, the structure features a 1:1 (meta-to-ligand) complex of type [Cs(H3L1,2)]·3CHCl3 [Figs. 1[link](d)–1(g)]. The caesium(I) center is fac-coordinated by six ether oxygens [Cs1—O 3.056 (2)–3.553 (7) Å] [Fig. 1[link](d)]. The remaining sites are occupied by four phenol oxygens to yield an overall metal coordination of ten. As we understand, this is an example in which Cs+ possesses the maximum coordination number (CN = 10). Accordingly, the caesium(I) in 2 is tightly captured by the bicyclic pocket in a baseball glove like manner [Figs. 1[link](e)–(f)]. Among the four bonds between Cs1 and phenol oxygens, the Cs1—O4 [3.187 (2) Å] is much shorter than the other three bonds [3.377 (2)–3.653 (2) Å], indicating that the O4 atom is deprotonated [Fig. S3(b)]. Unlike that in the rubidium(I) complex 1, the 1,2-bridged isomer in 2 effectively shields the caesium(I) center from the solvent molecules [Figs. 1[link](b)–1(d)].

In 2, the crown loop is somewhat ellipsoidal, mainly due to the 1,2-bridging with a narrow distance and all the ether oxygens are associated with a gauche arrangement [torsion angles of O—(CH2)2—O 35.0 (4)–78.5 (9)°] adopting a shrunken and folded conformation [Fig. 1[link](d) and 1(e)]. In this case, the calix rim exhibits a partial flattened cone shape due to four unsubstituted phenolates on the 3,4,5,6-positions showing a flattened conformation and two bridging phenol units on 1,2-positions with an up conformation. Considering that synthetic hosts for heavy alkali metal ions usually employ 6 to 8 binding interactions, the observed 10 bindings in 2 represents a good example of the highest coordination number in the deep and good-fit pocket, reflecting the efficient inclusion of caesium(I) to achieve maximum stabilization. Consequently, the preferred formation of 2 results in the three ligating components (crown loop, phenol and phenolate) toward caesium(I) being optimally fitted to satisfy the geometric and electronic requirements that appear to be a baseball glove structure.

2.4. Preparation of the dicesium(I) complex of H4L1,4 (3)

When H4L1,4 was reacted with CsOH under identical conditions, colorless crystalline 3 was isolated. X-ray analysis revealed that 3 crystallizes in the monoclinic space group P21/c (Tables S1 and S4). Unlike 2, this product features a dinuclear complex with the formula {[Cs2(H2L1,4)(H2O)]·CHCl3}n (Fig. 2[link]). In 3, two Cs+ ions (Cs1 and Cs2) show very different coordination environments [Fig. 2[link](a)]. For example, the Cs1 atom mainly occupies the cavity center of the crown loop because the 1,4-bridging in 3 provides a wider and shallow pocket than the 1,2-bridging does in 2 [Fig. 2[link](b)]. In fact, the distance between two bridging oxygens in 3 [O5⋯O10 6.138 (4) Å] is almost twice of that in 2 [3.109 (3) Å]. Thus, the H4L1,4 could have some extra empty space inside the calix rim where the second Cs+ (Cs2 atom) is located [Fig. 2[link](c)]. The Cs1⋯Cs2 separation (5.014 Å) is slightly longer than twice of the van der Waals radius of Cs+ (2.35 Å). Diverse types of dicesium(I) compounds formed by inorganic counter ions are known (Kříž et al., 2011[Kříž, J., Dybal, J., Makrlík, E., Vaňura, P. & Moyer, B. A. (2011). J. Phys. Chem. B, 115, 7578-7587.]), but the corresponding dicesium(I) complexes stabilized by organic ligands are relatively rare (Duraisamy et al., 2020[Duraisamy, R., Liebing, P., Harmgarth, N., Lorenz, V., Hilfert, L., Feneberg, M., Goldhahn, R., Engelhardt, F. & Edelmann, F. T. (2020). ACS Omega, 5, 19061-19069.]).

[Figure 2]
Figure 2
(a) Formation of the dicesium(I) complex of H2L1,4, {[Cs2(H2L1,4)(H2O)]·CHCl3}n (3); (b) capture of two Cs+; (c) space-filling structure; and (d) pseudo one-dimensional polymeric zigzag chain via intermolecular cation–π interactions (purple dashed lines).

In 3, the Cs1 atom is seven-coordinated, with five coordination sites occupied by crown ether oxygens [Cs1—O 3.098 (3)–3.376 (4) Å, average 3.201 (5) Å] and the remaining sites occupied by two phenol oxygens [Cs1—O3 3.145 (3), Cs1—O4 3.200 (3) Å]. Two phenol groups (O1 and O4) are deprotonated [Fig. S3(c)]. Again, all the ether oxygens on the crown loop are associated with the gauche conformation [torsion angles of O—(CH2)2—O 54.1 (5)–64.3 (6)°]. However, the Cs2 atom is three-coordinated being bound by two phenol oxygens [Cs2—O1 3.046 (3), Cs2—O4 3.063 (3) Å] and one water molecule. In addition, the Cs2 atom shows two different η6-type cation⋯π interactions from one ligand [green dashed lines, Cs2⋯C 3.420 (5)–3.825 (4) Å, average 3.633 (10) Å] and another ligand [purple dashed lines, Cs2⋯C 3.489 (5)–3.974 (4) Å, average 3.726 (11) Å] resulting in the formation of a pseudo one-dimensional zigzag polymer structure as a first example of this type [Fig. 2[link](d)]. Recently, our group reported a poly(sandwich)-type caesium(I)complex of bis-o-xylyl-(17-crown-5) (Kim et al., 2020[Kim, S., Park, I.-H., Lee, S. S., Sim, W. & Lee, J. Y. (2020). CrystEngComm, 22, 5601-5605.]).

Consequently, the 1,4-bridging provides a wider and shallow pocket which occupies two Cs+ ions. In stabilizing the Cs1 atom, the crown loop acts as the primary binding sites, in addition to some phenol groups. The Cs2 atom is mainly stabilized by the calix rim unit, indicating the partial cooperativity between the crown loop and calix rim. Attempts to isolate some other heavy alkali metal complexes of H4L1,3 and H4L1,4 were not successful.

2.5. NMR studies of the caesium(I) complexes

The 1H-NMR spectra of the caesium(I) complexes 2 and 3 in DMSO-d6 were observed and compared with their free forms (Figs. 3[link] and 4[link]). Compared with the spectrum of free H4L1,2, its caesium(I) complex 2 shows remarkable peak broadening, with the signal of OCH2 of the crown loop being shifted downfield because of the presence of multiple Cs—O bonds restricting the conformational mobility of the ligand (Fig. 3[link]). This observation illustrates that not only the six ether oxygens of the crown loop but also the four phenol oxygens are strongly involved in the interaction with Cs+, indicating that the baseball glove structure remains intact. The similar line broadening and Cs+-induced low-field shifts for 3 were also observed but the magnitudes are smaller, probably the 1,4-isomer interacts weakly with Cs+ than the 1,2-isomer does (Fig. 4[link]). Consequently, it is obvious that the inclusion of Cs+ is highly regulated by the bridging positions and the products including the baseball glove-type species are stable in the dipolar aprotic medium. Due to the solubility problem, we were not able to obtain the binding constants for the complexations.

[Figure 3]
Figure 3
1H NMR spectra of (a) H4L1,2 and (b) [Cs(H3L1,2)]·3CHCl3 (2) in DMSO-d6.
[Figure 4]
Figure 4
1H NMR spectra of (a) H4L1,4 and (b) {[Cs2(H2L1,4)(H2O)]·CHCl3}n (2) in DMSO-d6.

3. Conclusions

With the aim of developing a novel host system for heavy alkali metal ions including Cs+, our syntheses of three regioisomers (H4L1,2, H4L1,3 and H4L1,4) in the presence of M2CO3 (M = Na, K, Rb and Cs) exhibited the size-based template effect. In the complexations with heavy alkali metal hydroxides, we probed the factors influencing the preferential formation of a baseball glove-type caesium(I) complex by employing the 1,2-bridging isomer (H4L1,2). Our NMR study also supports that such caesium(I) complex is stable in solution. Consequently, the optimized baseball glove-type complexation is strongly associated with the 1,2-bridging of calix[6]crown-6, which provides the deeper and good-fit pocket for Cs+ in comparison with other bridging types.

Supporting information


Computing details top

Data collection: Bruker APEX software for (1); Bruker APEX2 for (2), (3). Cell refinement: Bruker APEX software for (1); Bruker SAINT for (2), (3). Data reduction: Bruker APEX software for (1); Bruker SAINT for (2), (3). Program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014) for (1); 'Bruker SHELXTL for (2), (3). Program(s) used to refine structure: SHELXL for (1); SHELXL2017/1 (Sheldrick, 2017) for (2), (3). Molecular graphics: ORTEP for (1); Bruker SHELXTL for (2), (3). Software used to prepare material for publication: CIFTAB for (1); Bruker SHELXTL for (2), (3).

(1) top
Crystal data top
C54H58Cl3O11RbZ = 2
Mr = 1074.82F(000) = 1116
Triclinic, P1Dx = 1.440 Mg m3
a = 13.4400 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.3933 (3) ÅCell parameters from 9848 reflections
c = 14.8036 (3) Åθ = 2.5–24.2°
α = 84.073 (1)°µ = 1.22 mm1
β = 76.728 (1)°T = 173 K
γ = 62.777 (1)°Block, colourless
V = 2478.47 (9) Å30.32 × 0.18 × 0.17 mm
Data collection top
CCD detector
diffractometer
7303 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
phi and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
SADABS
h = 1616
Tmin = 0.696, Tmax = 0.819k = 1717
57893 measured reflectionsl = 1818
9744 independent reflections
Refinement top
Refinement on F218 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0649P)2 + 1.7058P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
9744 reflectionsΔρmax = 0.83 e Å3
626 parametersΔρmin = 0.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.83312 (4)0.25249 (3)0.18667 (2)0.05781 (13)
O10.78895 (17)0.06242 (14)0.25419 (13)0.0333 (4)
H1A0.7280460.0809500.2621720.041 (10)*
O20.57018 (15)0.13823 (14)0.29080 (14)0.0357 (4)
H2A0.5134560.2226060.2891760.088 (13)*
O30.45577 (15)0.32338 (14)0.28008 (13)0.0324 (4)
O40.54142 (16)0.45294 (14)0.21922 (15)0.0387 (5)
O50.81626 (15)0.43496 (14)0.27020 (12)0.0301 (4)
H5B0.5128130.4177720.2354510.034 (9)*
O60.93300 (16)0.40354 (16)0.08442 (13)0.0411 (5)
O70.91302 (19)0.25473 (19)0.01431 (16)0.0561 (6)
O81.09516 (18)0.07594 (18)0.04882 (14)0.0477 (5)
O91.18657 (16)0.14498 (15)0.16878 (13)0.0362 (4)
O101.00274 (14)0.18887 (14)0.31900 (12)0.0292 (4)
O110.6737 (2)0.2279 (3)0.10228 (19)0.0756 (8)
H10.6164290.2324020.1426510.9 (3)*
C10.8327 (2)0.03816 (19)0.28474 (17)0.0271 (6)
C20.9306 (2)0.0735 (2)0.32194 (17)0.0281 (6)
C30.9787 (2)0.1757 (2)0.35337 (19)0.0330 (6)
H3A1.0448130.2003370.3792690.040*
C40.9319 (2)0.2421 (2)0.3476 (2)0.0368 (7)
H4A0.9657580.3119500.3692720.044*
C50.8360 (2)0.2067 (2)0.31028 (19)0.0333 (6)
H5A0.8037670.2525120.3070360.040*
C60.7851 (2)0.1049 (2)0.27715 (17)0.0288 (6)
C70.5197 (2)0.0782 (2)0.33372 (18)0.0286 (6)
C80.5702 (2)0.0267 (2)0.30666 (19)0.0309 (6)
C90.5212 (2)0.0903 (2)0.3519 (2)0.0377 (7)
H9A0.5544650.1614540.3338820.045*
C100.4258 (2)0.0521 (2)0.4219 (2)0.0407 (7)
H10A0.3934930.0965460.4520390.049*
C110.3767 (2)0.0519 (2)0.4485 (2)0.0364 (6)
H11A0.3108550.0781080.4971770.044*
C120.4223 (2)0.1183 (2)0.40503 (18)0.0289 (6)
C130.3420 (2)0.35949 (19)0.31018 (18)0.0283 (6)
C140.2970 (2)0.3153 (2)0.38757 (18)0.0301 (6)
C150.1794 (2)0.3590 (2)0.4181 (2)0.0359 (6)
H15A0.1479950.3303110.4709610.043*
C160.1066 (2)0.4435 (2)0.3735 (2)0.0394 (7)
H16A0.0262490.4726600.3958560.047*
C170.1520 (2)0.4850 (2)0.2962 (2)0.0373 (7)
H17A0.1020420.5419520.2646620.045*
C180.2693 (2)0.4447 (2)0.26395 (18)0.0293 (6)
C190.4571 (2)0.55279 (19)0.21866 (18)0.0290 (6)
C200.3486 (2)0.5755 (2)0.20529 (17)0.0285 (6)
C210.2673 (2)0.6796 (2)0.20928 (18)0.0321 (6)
H21A0.1921520.6962990.2029920.039*
C220.2928 (2)0.7589 (2)0.22209 (19)0.0351 (6)
H22A0.2355430.8293890.2255050.042*
C230.4024 (2)0.7352 (2)0.22998 (18)0.0321 (6)
H23A0.4210390.7901490.2361330.038*
C240.4856 (2)0.6323 (2)0.22904 (17)0.0292 (6)
C250.7323 (2)0.48654 (19)0.34734 (17)0.0272 (6)
C260.6280 (2)0.5672 (2)0.33493 (18)0.0289 (6)
C270.5446 (2)0.6133 (2)0.41394 (19)0.0344 (6)
H27A0.4724230.6684120.4073780.041*
C280.5652 (3)0.5801 (2)0.50139 (19)0.0378 (7)
H28A0.5070910.6117820.5544870.045*
C290.6698 (3)0.5012 (2)0.51220 (19)0.0359 (6)
H29A0.6837840.4801940.5728590.043*
C300.7554 (2)0.4518 (2)0.43529 (18)0.0295 (6)
C310.9245 (2)0.1763 (2)0.39359 (17)0.0261 (5)
C320.8589 (2)0.2582 (2)0.45713 (17)0.0271 (5)
C330.7840 (2)0.2427 (2)0.53256 (17)0.0290 (6)
H33A0.7389080.2965390.5775400.035*
C340.7743 (2)0.1515 (2)0.54288 (18)0.0313 (6)
H34A0.7247360.1416580.5958660.038*
C350.8365 (2)0.0731 (2)0.47628 (18)0.0296 (6)
H35A0.8269310.0111930.4827860.036*
C360.9126 (2)0.0847 (2)0.40038 (17)0.0263 (5)
C370.6807 (2)0.0699 (2)0.23569 (19)0.0341 (6)
H37A0.6793360.0156960.1883800.041*
H37B0.6866290.1300830.2039770.041*
C380.3744 (2)0.2277 (2)0.44136 (19)0.0319 (6)
H38A0.4393950.2415030.4440740.038*
H38B0.3313630.2303880.5058000.038*
C390.3197 (2)0.4920 (2)0.18159 (18)0.0320 (6)
H39A0.2646970.5226630.1397140.038*
H39B0.3901250.4353500.1470420.038*
C400.6051 (2)0.6047 (2)0.23872 (18)0.0313 (6)
H40A0.6189790.6669460.2232430.038*
H40B0.6601530.5493730.1931230.038*
C410.8674 (2)0.3601 (2)0.44762 (19)0.0321 (6)
H41A0.9283740.3558900.3934650.038*
H41B0.8888470.3715670.5036990.038*
C420.9817 (2)0.0009 (2)0.32760 (19)0.0308 (6)
H42A0.9906720.0321970.2661950.037*
H42B1.0590590.0427650.3410770.037*
C430.8835 (2)0.4880 (2)0.2283 (2)0.0369 (6)
H43A0.9142920.5043170.2759290.044*
H43B0.8355210.5543780.2001810.044*
C440.9791 (2)0.4188 (3)0.1557 (2)0.0407 (7)
H44A1.0305220.4512520.1295080.049*
H44B1.0241710.3507140.1831290.049*
C451.0187 (3)0.3442 (3)0.0079 (2)0.0479 (8)
H45A1.0748160.2778240.0302270.057*
H45B1.0597380.3840480.0249760.057*
C460.9608 (3)0.3225 (3)0.0554 (2)0.0540 (9)
H46A0.8994110.3891420.0719190.065*
H46B1.0166100.2904190.1132730.065*
C470.9652 (3)0.1523 (3)0.0541 (3)0.0628 (10)
H47A0.9612560.1592890.1206050.075*
H47B0.9205930.1147790.0232470.075*
C481.0865 (3)0.0885 (3)0.0461 (2)0.0564 (9)
H48A1.1168090.0191320.0748040.068*
H48B1.1329890.1233280.0797160.068*
C491.2117 (3)0.0250 (3)0.0572 (2)0.0463 (8)
H49A1.2559220.0550520.0121150.056*
H49B1.2444790.0503360.0430370.056*
C501.2201 (3)0.0382 (2)0.1533 (2)0.0402 (7)
H50A1.1699180.0145170.1988080.048*
H50B1.2997450.0046740.1614230.048*
C511.1937 (2)0.1669 (2)0.25797 (19)0.0351 (6)
H51A1.1745300.2418110.2607660.042*
H51B1.2736410.1258010.2658930.042*
C521.1164 (2)0.1430 (2)0.33723 (19)0.0328 (6)
H52A1.1452460.0663980.3442830.039*
H52B1.1151670.1716800.3956640.039*
C530.6373 (3)0.2972 (4)0.0288 (3)0.0747 (12)
H53A0.5835880.2829510.0046360.112*
H53B0.5994370.3693310.0515120.112*
H53C0.7036630.2874090.0208610.112*
C540.6361 (3)0.7916 (3)0.9656 (2)0.0571 (9)
H54A0.7037070.8052460.9391980.069*
Cl10.68672 (10)0.65921 (9)0.99385 (7)0.0752 (3)
Cl20.55935 (9)0.86884 (9)1.06669 (6)0.0694 (3)
Cl30.55217 (9)0.82677 (10)0.88263 (6)0.0722 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.1021 (3)0.0610 (2)0.03970 (19)0.0569 (2)0.03021 (18)0.01327 (15)
O10.0277 (11)0.0274 (10)0.0432 (11)0.0104 (8)0.0099 (8)0.0038 (8)
O20.0281 (10)0.0263 (10)0.0474 (12)0.0112 (8)0.0022 (8)0.0040 (8)
O30.0251 (9)0.0282 (9)0.0406 (11)0.0099 (8)0.0076 (8)0.0054 (8)
O40.0335 (10)0.0252 (10)0.0583 (13)0.0117 (9)0.0162 (9)0.0047 (9)
O50.0307 (10)0.0327 (10)0.0291 (10)0.0174 (8)0.0027 (8)0.0013 (8)
O60.0312 (10)0.0529 (13)0.0343 (11)0.0152 (9)0.0057 (8)0.0007 (9)
O70.0492 (13)0.0673 (16)0.0474 (13)0.0211 (12)0.0072 (11)0.0135 (12)
O80.0437 (12)0.0607 (14)0.0356 (11)0.0219 (11)0.0028 (9)0.0067 (10)
O90.0388 (11)0.0385 (11)0.0313 (10)0.0198 (9)0.0037 (8)0.0036 (8)
O100.0230 (9)0.0405 (10)0.0252 (9)0.0160 (8)0.0050 (7)0.0050 (8)
O110.0784 (19)0.117 (2)0.0536 (16)0.0607 (18)0.0225 (14)0.0134 (15)
C10.0259 (13)0.0261 (13)0.0241 (13)0.0085 (11)0.0013 (10)0.0024 (10)
C20.0231 (13)0.0328 (14)0.0239 (13)0.0100 (11)0.0013 (10)0.0063 (11)
C30.0239 (13)0.0346 (15)0.0321 (14)0.0049 (12)0.0077 (11)0.0005 (11)
C40.0348 (15)0.0257 (14)0.0378 (16)0.0053 (12)0.0036 (12)0.0018 (12)
C50.0338 (15)0.0286 (14)0.0345 (15)0.0128 (12)0.0019 (12)0.0053 (11)
C60.0257 (13)0.0311 (14)0.0260 (13)0.0097 (11)0.0028 (10)0.0058 (11)
C70.0274 (13)0.0299 (14)0.0335 (14)0.0153 (11)0.0129 (11)0.0059 (11)
C80.0291 (14)0.0331 (14)0.0361 (15)0.0148 (12)0.0163 (11)0.0022 (11)
C90.0356 (15)0.0321 (15)0.0542 (18)0.0184 (13)0.0193 (14)0.0019 (13)
C100.0352 (16)0.0392 (16)0.059 (2)0.0254 (14)0.0164 (14)0.0106 (14)
C110.0284 (14)0.0415 (16)0.0428 (16)0.0185 (13)0.0113 (12)0.0086 (13)
C120.0279 (13)0.0305 (14)0.0324 (14)0.0146 (11)0.0135 (11)0.0068 (11)
C130.0282 (14)0.0260 (13)0.0319 (14)0.0116 (11)0.0077 (11)0.0043 (11)
C140.0311 (14)0.0286 (13)0.0325 (14)0.0139 (12)0.0079 (11)0.0024 (11)
C150.0327 (15)0.0347 (15)0.0414 (16)0.0170 (13)0.0035 (12)0.0041 (12)
C160.0257 (14)0.0363 (16)0.0546 (19)0.0123 (12)0.0060 (13)0.0057 (14)
C170.0305 (15)0.0302 (14)0.0514 (18)0.0097 (12)0.0173 (13)0.0001 (13)
C180.0299 (14)0.0283 (14)0.0335 (14)0.0131 (11)0.0123 (11)0.0028 (11)
C190.0303 (14)0.0247 (13)0.0276 (13)0.0078 (11)0.0087 (11)0.0021 (10)
C200.0338 (14)0.0284 (13)0.0236 (13)0.0137 (12)0.0081 (11)0.0036 (10)
C210.0294 (14)0.0340 (15)0.0285 (14)0.0101 (12)0.0082 (11)0.0038 (11)
C220.0360 (15)0.0246 (14)0.0350 (15)0.0072 (12)0.0045 (12)0.0025 (11)
C230.0406 (16)0.0270 (14)0.0292 (14)0.0172 (12)0.0049 (12)0.0025 (11)
C240.0342 (14)0.0297 (14)0.0230 (13)0.0142 (12)0.0068 (11)0.0047 (10)
C250.0315 (14)0.0280 (13)0.0269 (13)0.0183 (11)0.0031 (11)0.0027 (10)
C260.0327 (14)0.0306 (14)0.0306 (14)0.0195 (12)0.0087 (11)0.0010 (11)
C270.0354 (15)0.0282 (14)0.0380 (16)0.0125 (12)0.0068 (12)0.0038 (12)
C280.0474 (17)0.0342 (15)0.0304 (15)0.0186 (14)0.0014 (13)0.0076 (12)
C290.0525 (18)0.0345 (15)0.0262 (14)0.0229 (14)0.0103 (13)0.0006 (11)
C300.0354 (15)0.0276 (13)0.0324 (14)0.0185 (12)0.0097 (11)0.0006 (11)
C310.0203 (12)0.0359 (14)0.0237 (13)0.0133 (11)0.0079 (10)0.0047 (11)
C320.0256 (13)0.0328 (14)0.0275 (13)0.0146 (11)0.0119 (11)0.0031 (11)
C330.0270 (13)0.0342 (14)0.0250 (13)0.0130 (11)0.0048 (11)0.0023 (11)
C340.0281 (14)0.0399 (15)0.0273 (13)0.0184 (12)0.0016 (11)0.0001 (11)
C350.0267 (13)0.0328 (14)0.0320 (14)0.0165 (12)0.0049 (11)0.0018 (11)
C360.0191 (12)0.0309 (14)0.0273 (13)0.0090 (11)0.0072 (10)0.0013 (10)
C370.0384 (15)0.0327 (15)0.0345 (15)0.0159 (12)0.0123 (12)0.0032 (12)
C380.0324 (14)0.0337 (14)0.0305 (14)0.0158 (12)0.0064 (11)0.0009 (11)
C390.0328 (14)0.0317 (14)0.0317 (14)0.0115 (12)0.0139 (12)0.0011 (11)
C400.0330 (14)0.0307 (14)0.0320 (14)0.0166 (12)0.0061 (11)0.0031 (11)
C410.0338 (15)0.0376 (15)0.0319 (14)0.0203 (12)0.0115 (12)0.0027 (12)
C420.0191 (12)0.0356 (15)0.0335 (14)0.0095 (11)0.0026 (11)0.0032 (11)
C430.0354 (15)0.0418 (16)0.0401 (16)0.0243 (13)0.0063 (12)0.0034 (13)
C440.0314 (15)0.0524 (18)0.0409 (17)0.0218 (14)0.0097 (13)0.0090 (14)
C450.0369 (17)0.059 (2)0.0360 (17)0.0153 (15)0.0009 (13)0.0055 (15)
C460.051 (2)0.065 (2)0.0325 (17)0.0147 (18)0.0073 (14)0.0012 (15)
C470.063 (2)0.077 (3)0.052 (2)0.029 (2)0.0160 (18)0.0160 (19)
C480.060 (2)0.062 (2)0.0397 (18)0.0213 (18)0.0051 (16)0.0148 (16)
C490.0419 (18)0.0488 (18)0.0429 (18)0.0196 (15)0.0026 (14)0.0075 (14)
C500.0378 (16)0.0347 (15)0.0444 (17)0.0160 (13)0.0023 (13)0.0009 (13)
C510.0286 (14)0.0458 (17)0.0339 (15)0.0200 (13)0.0058 (12)0.0023 (12)
C520.0241 (13)0.0444 (16)0.0313 (14)0.0156 (12)0.0089 (11)0.0033 (12)
C530.053 (2)0.114 (4)0.043 (2)0.027 (2)0.0069 (17)0.002 (2)
C540.064 (2)0.085 (3)0.0414 (18)0.051 (2)0.0104 (16)0.0065 (17)
Cl10.0917 (8)0.0753 (7)0.0648 (6)0.0421 (6)0.0184 (5)0.0021 (5)
Cl20.0836 (7)0.0872 (7)0.0470 (5)0.0486 (6)0.0041 (5)0.0099 (5)
Cl30.0791 (7)0.1144 (9)0.0496 (5)0.0619 (6)0.0278 (5)0.0139 (5)
Geometric parameters (Å, º) top
Rb1—O112.879 (3)C21—H21A0.9500
Rb1—O52.9114 (17)C22—C231.383 (4)
Rb1—O72.924 (2)C22—H22A0.9500
Rb1—O13.0797 (18)C23—C241.388 (4)
Rb1—O103.1052 (17)C23—H23A0.9500
Rb1—O63.143 (2)C24—C401.506 (4)
Rb1—C313.449 (2)C25—C261.390 (4)
Rb1—O83.551 (2)C25—C301.397 (4)
Rb1—O43.6052 (19)C26—C271.394 (4)
Rb1—C443.667 (3)C26—C401.518 (4)
Rb1—C473.708 (4)C27—C281.377 (4)
Rb1—C533.710 (4)C27—H27A0.9500
O1—C11.362 (3)C28—C291.377 (4)
O1—H1A0.7193C28—H28A0.9500
O2—C71.355 (3)C29—C301.394 (4)
O2—H2A1.1009C29—H29A0.9500
O3—C131.347 (3)C30—C411.517 (4)
O3—H2A1.3046C31—C361.391 (4)
O4—C191.365 (3)C31—C321.396 (4)
O4—H5B0.7565C32—C331.396 (4)
O5—C251.395 (3)C32—C411.514 (4)
O5—C431.435 (3)C33—C341.367 (4)
O6—C441.420 (4)C33—H33A0.9500
O6—C451.428 (4)C34—C351.390 (4)
O7—C461.416 (4)C34—H34A0.9500
O7—C471.433 (4)C35—C361.387 (4)
O8—C481.423 (4)C35—H35A0.9500
O8—C491.423 (4)C36—C421.519 (4)
O9—C501.417 (3)C37—H37A0.9900
O9—C511.423 (3)C37—H37B0.9900
O10—C311.399 (3)C38—H38A0.9900
O10—C521.440 (3)C38—H38B0.9900
O11—C531.411 (5)C39—H39A0.9900
O11—H10.8400C39—H39B0.9900
C1—C21.399 (4)C40—H40A0.9900
C1—C61.400 (4)C40—H40B0.9900
C2—C31.387 (4)C41—H41A0.9900
C2—C421.508 (4)C41—H41B0.9900
C3—C41.382 (4)C42—H42A0.9900
C3—H3A0.9500C42—H42B0.9900
C4—C51.376 (4)C43—C441.489 (4)
C4—H4A0.9500C43—H43A0.9900
C5—C61.394 (4)C43—H43B0.9900
C5—H5A0.9500C44—H44A0.9900
C6—C371.512 (4)C44—H44B0.9900
C7—C81.401 (4)C45—C461.483 (5)
C7—C121.401 (4)C45—H45A0.9900
C8—C91.394 (4)C45—H45B0.9900
C8—C371.507 (4)C46—H46A0.9900
C9—C101.372 (4)C46—H46B0.9900
C9—H9A0.9500C47—C481.488 (5)
C10—C111.390 (4)C47—H47A0.9900
C10—H10A0.9500C47—H47B0.9900
C11—C121.389 (4)C48—H48A0.9900
C11—H11A0.9500C48—H48B0.9900
C12—C381.508 (4)C49—C501.491 (4)
C13—C181.402 (4)C49—H49A0.9900
C13—C141.403 (4)C49—H49B0.9900
C14—C151.385 (4)C50—H50A0.9900
C14—C381.509 (4)C50—H50B0.9900
C15—C161.383 (4)C51—C521.503 (4)
C15—H15A0.9500C51—H51A0.9900
C16—C171.382 (4)C51—H51B0.9900
C16—H16A0.9500C52—H52A0.9900
C17—C181.388 (4)C52—H52B0.9900
C17—H17A0.9500C53—H53A0.9800
C18—C391.509 (4)C53—H53B0.9800
C19—C241.395 (4)C53—H53C0.9800
C19—C201.397 (4)C54—Cl31.739 (4)
C20—C211.390 (4)C54—Cl11.746 (4)
C20—C391.516 (4)C54—Cl21.768 (4)
C21—C221.374 (4)C54—H54A1.0000
O11—Rb1—O5130.58 (8)C23—C24—C19118.7 (2)
O11—Rb1—O773.01 (7)C23—C24—C40121.8 (2)
O5—Rb1—O7109.87 (6)C19—C24—C40119.5 (2)
O11—Rb1—O164.88 (7)C26—C25—O5119.7 (2)
O5—Rb1—O1136.87 (5)C26—C25—C30122.2 (2)
O7—Rb1—O1113.26 (6)O5—C25—C30118.0 (2)
O11—Rb1—O10154.20 (7)C25—C26—C27117.8 (2)
O5—Rb1—O1068.63 (5)C25—C26—C40121.4 (2)
O7—Rb1—O10120.53 (6)C27—C26—C40120.7 (2)
O1—Rb1—O1089.32 (5)C28—C27—C26120.9 (3)
O11—Rb1—O6116.01 (7)C28—C27—H27A119.5
O5—Rb1—O655.00 (5)C26—C27—H27A119.5
O7—Rb1—O656.00 (6)C29—C28—C27120.3 (3)
O1—Rb1—O6165.29 (5)C29—C28—H28A119.8
O10—Rb1—O688.80 (5)C27—C28—H28A119.8
O11—Rb1—C31135.02 (7)C28—C29—C30120.8 (3)
O5—Rb1—C3172.02 (6)C28—C29—H29A119.6
O7—Rb1—C31143.31 (6)C30—C29—H29A119.6
O1—Rb1—C3173.71 (6)C29—C30—C25117.8 (2)
O10—Rb1—C3123.91 (5)C29—C30—C41120.6 (2)
O6—Rb1—C31108.54 (6)C25—C30—C41121.6 (2)
O11—Rb1—O8100.03 (7)C36—C31—C32122.5 (2)
O5—Rb1—O8120.67 (5)C36—C31—O10119.2 (2)
O7—Rb1—O851.66 (6)C32—C31—O10118.3 (2)
O1—Rb1—O887.36 (5)C36—C31—Rb194.59 (15)
O10—Rb1—O877.28 (5)C32—C31—Rb1108.44 (15)
O6—Rb1—O878.00 (5)O10—C31—Rb164.13 (11)
C31—Rb1—O894.71 (5)C31—C32—C33117.3 (2)
O11—Rb1—O460.69 (7)C31—C32—C41122.8 (2)
O5—Rb1—O471.02 (5)C33—C32—C41119.9 (2)
O7—Rb1—O4102.49 (6)C34—C33—C32121.2 (2)
O1—Rb1—O499.14 (5)C34—C33—H33A119.4
O10—Rb1—O4128.42 (5)C32—C33—H33A119.4
O6—Rb1—O493.44 (5)C33—C34—C35120.4 (2)
C31—Rb1—O4112.10 (5)C33—C34—H34A119.8
O8—Rb1—O4153.18 (5)C35—C34—H34A119.8
O11—Rb1—C44137.38 (8)C36—C35—C34120.5 (2)
O5—Rb1—C4440.27 (6)C36—C35—H35A119.8
O7—Rb1—C4476.16 (7)C34—C35—H35A119.8
O1—Rb1—C44156.91 (6)C35—C36—C31118.0 (2)
O10—Rb1—C4468.21 (6)C35—C36—C42120.9 (2)
O6—Rb1—C4422.42 (6)C31—C36—C42121.1 (2)
C31—Rb1—C4486.38 (6)C8—C37—C6113.2 (2)
O8—Rb1—C4482.65 (6)C8—C37—H37A108.9
O4—Rb1—C4499.14 (6)C6—C37—H37A108.9
O11—Rb1—C4768.88 (8)C8—C37—H37B108.9
O5—Rb1—C47128.87 (8)C6—C37—H37B108.9
O7—Rb1—C4721.00 (8)H37A—C37—H37B107.8
O1—Rb1—C4793.77 (8)C12—C38—C14117.1 (2)
O10—Rb1—C47115.11 (7)C12—C38—H38A108.0
O6—Rb1—C4773.89 (8)C14—C38—H38A108.0
C31—Rb1—C47132.67 (7)C12—C38—H38B108.0
O8—Rb1—C4738.33 (7)C14—C38—H38B108.0
O4—Rb1—C47114.94 (7)H38A—C38—H38B107.3
C44—Rb1—C4791.21 (8)C18—C39—C20115.0 (2)
O11—Rb1—C5320.10 (9)C18—C39—H39A108.5
O5—Rb1—C53117.63 (9)C20—C39—H39A108.5
O7—Rb1—C5359.90 (8)C18—C39—H39B108.5
O1—Rb1—C5384.85 (9)C20—C39—H39B108.5
O10—Rb1—C53173.57 (9)H39A—C39—H39B107.5
O6—Rb1—C5396.15 (8)C24—C40—C26114.0 (2)
C31—Rb1—C53153.55 (8)C24—C40—H40A108.8
O8—Rb1—C5399.69 (7)C26—C40—H40A108.8
O4—Rb1—C5355.54 (7)C24—C40—H40B108.8
C44—Rb1—C53117.29 (9)C26—C40—H40B108.8
C47—Rb1—C5362.73 (8)H40A—C40—H40B107.7
C1—O1—Rb1147.00 (16)C32—C41—C30111.6 (2)
C1—O1—H1A106.3C32—C41—H41A109.3
Rb1—O1—H1A106.2C30—C41—H41A109.3
C7—O2—H2A115.8C32—C41—H41B109.3
C13—O3—H2A113.8C30—C41—H41B109.3
C19—O4—Rb1155.17 (16)H41A—C41—H41B108.0
C19—O4—H5B107.4C2—C42—C36114.8 (2)
Rb1—O4—H5B97.4C2—C42—H42A108.6
C25—O5—C43113.81 (19)C36—C42—H42A108.6
C25—O5—Rb1122.98 (14)C2—C42—H42B108.6
C43—O5—Rb1122.71 (15)C36—C42—H42B108.6
C44—O6—C45113.1 (2)H42A—C42—H42B107.5
C44—O6—Rb1100.03 (16)O5—C43—C44108.5 (2)
C45—O6—Rb1104.88 (18)O5—C43—H43A110.0
C46—O7—C47116.3 (3)C44—C43—H43A110.0
C46—O7—Rb1120.94 (18)O5—C43—H43B110.0
C47—O7—Rb1112.0 (2)C44—C43—H43B110.0
C48—O8—C49110.8 (2)H43A—C43—H43B108.4
C48—O8—Rb1109.36 (18)O6—C44—C43108.9 (2)
C49—O8—Rb1135.65 (17)O6—C44—Rb157.55 (14)
C50—O9—C51114.4 (2)C43—C44—Rb186.78 (16)
C31—O10—C52112.03 (18)O6—C44—H44A109.9
C31—O10—Rb191.96 (12)C43—C44—H44A109.9
C52—O10—Rb1152.26 (14)Rb1—C44—H44A162.5
C53—O11—Rb1115.4 (2)O6—C44—H44B109.9
C53—O11—H1109.5C43—C44—H44B109.9
Rb1—O11—H1110.3Rb1—C44—H44B69.1
O1—C1—C2116.7 (2)H44A—C44—H44B108.3
O1—C1—C6122.3 (2)O6—C45—C46107.7 (3)
C2—C1—C6120.9 (2)O6—C45—H45A110.2
C3—C2—C1118.8 (2)C46—C45—H45A110.2
C3—C2—C42121.2 (2)O6—C45—H45B110.2
C1—C2—C42120.0 (2)C46—C45—H45B110.2
C4—C3—C2121.0 (3)H45A—C45—H45B108.5
C4—C3—H3A119.5O7—C46—C45111.7 (3)
C2—C3—H3A119.5O7—C46—H46A109.3
C5—C4—C3119.7 (3)C45—C46—H46A109.3
C5—C4—H4A120.1O7—C46—H46B109.3
C3—C4—H4A120.1C45—C46—H46B109.3
C4—C5—C6121.4 (3)H46A—C46—H46B107.9
C4—C5—H5A119.3O7—C47—C48114.1 (3)
C6—C5—H5A119.3O7—C47—Rb146.97 (16)
C5—C6—C1118.2 (2)C48—C47—Rb1100.5 (2)
C5—C6—C37119.4 (2)O7—C47—H47A108.7
C1—C6—C37122.4 (2)C48—C47—H47A108.7
O2—C7—C8117.9 (2)Rb1—C47—H47A148.8
O2—C7—C12121.3 (2)O7—C47—H47B108.7
C8—C7—C12120.8 (2)C48—C47—H47B108.7
C9—C8—C7118.6 (3)Rb1—C47—H47B71.7
C9—C8—C37121.7 (2)H47A—C47—H47B107.6
C7—C8—C37119.5 (2)O8—C48—C47110.2 (3)
C10—C9—C8121.3 (3)O8—C48—H48A109.6
C10—C9—H9A119.4C47—C48—H48A109.6
C8—C9—H9A119.4O8—C48—H48B109.6
C9—C10—C11119.6 (3)C47—C48—H48B109.6
C9—C10—H10A120.2H48A—C48—H48B108.1
C11—C10—H10A120.2O8—C49—C50109.9 (2)
C12—C11—C10121.1 (3)O8—C49—H49A109.7
C12—C11—H11A119.5C50—C49—H49A109.7
C10—C11—H11A119.5O8—C49—H49B109.7
C11—C12—C7118.6 (2)C50—C49—H49B109.7
C11—C12—C38119.9 (2)H49A—C49—H49B108.2
C7—C12—C38121.2 (2)O9—C50—C49109.3 (2)
O3—C13—C18118.4 (2)O9—C50—H50A109.8
O3—C13—C14121.1 (2)C49—C50—H50A109.8
C18—C13—C14120.6 (2)O9—C50—H50B109.8
C15—C14—C13118.5 (2)C49—C50—H50B109.8
C15—C14—C38120.3 (2)H50A—C50—H50B108.3
C13—C14—C38121.0 (2)O9—C51—C52114.2 (2)
C16—C15—C14121.6 (3)O9—C51—H51A108.7
C16—C15—H15A119.2C52—C51—H51A108.7
C14—C15—H15A119.2O9—C51—H51B108.7
C17—C16—C15119.4 (3)C52—C51—H51B108.7
C17—C16—H16A120.3H51A—C51—H51B107.6
C15—C16—H16A120.3O10—C52—C51109.2 (2)
C16—C17—C18121.0 (3)O10—C52—H52A109.8
C16—C17—H17A119.5C51—C52—H52A109.8
C18—C17—H17A119.5O10—C52—H52B109.8
C17—C18—C13118.9 (3)C51—C52—H52B109.8
C17—C18—C39121.4 (2)H52A—C52—H52B108.3
C13—C18—C39119.7 (2)O11—C53—Rb144.50 (18)
O4—C19—C24116.5 (2)O11—C53—H53A109.5
O4—C19—C20122.4 (2)Rb1—C53—H53A154.0
C24—C19—C20121.1 (2)O11—C53—H53B109.5
C21—C20—C19118.0 (2)Rb1—C53—H53B84.7
C21—C20—C39119.6 (2)H53A—C53—H53B109.5
C19—C20—C39122.4 (2)O11—C53—H53C109.5
C22—C21—C20121.7 (3)Rb1—C53—H53C84.7
C22—C21—H21A119.2H53A—C53—H53C109.5
C20—C21—H21A119.2H53B—C53—H53C109.5
C21—C22—C23119.5 (2)Cl3—C54—Cl1112.0 (2)
C21—C22—H22A120.3Cl3—C54—Cl2110.6 (2)
C23—C22—H22A120.3Cl1—C54—Cl2110.10 (19)
C22—C23—C24120.9 (3)Cl3—C54—H54A108.0
C22—C23—H23A119.6Cl1—C54—H54A108.0
C24—C23—H23A119.6Cl2—C54—H54A108.0
(2) top
Crystal data top
C52H50CsO10·3(CHCl3)F(000) = 2684
Mr = 1325.93Dx = 1.515 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.1773 (15) ÅCell parameters from 9951 reflections
b = 20.344 (2) Åθ = 2.3–26.9°
c = 22.581 (3) ŵ = 1.11 mm1
β = 106.172 (3)°T = 173 K
V = 5814.2 (12) Å3Block, colourless
Z = 40.33 × 0.26 × 0.19 mm
Data collection top
Bruker APEX-II CCD
diffractometer
9852 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
φ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
SADABS
h = 1717
Tmin = 0.712, Tmax = 0.817k = 2627
57934 measured reflectionsl = 2630
14416 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0628P)2 + 6.690P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
14416 reflectionsΔρmax = 1.38 e Å3
797 parametersΔρmin = 0.81 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.19406 (2)0.50161 (2)0.32273 (2)0.04154 (8)
O10.28564 (19)0.38608 (11)0.40220 (10)0.0425 (5)
H1A0.2481220.3682830.3928740.048 (13)*
O20.1402 (2)0.33204 (12)0.36977 (11)0.0489 (6)
O30.12810 (19)0.34354 (12)0.26624 (11)0.0461 (6)
H2A0.1300390.3362660.3229060.070 (13)*
O40.2419 (2)0.42857 (11)0.19300 (10)0.0448 (5)
O50.36974 (18)0.56568 (12)0.36713 (11)0.0442 (5)
O100.34488 (19)0.59744 (11)0.23722 (10)0.0443 (5)
C10.2270 (3)0.43056 (17)0.13563 (14)0.0423 (7)
C20.2508 (4)0.48952 (19)0.10385 (16)0.0538 (10)
C30.2343 (5)0.4946 (2)0.04592 (19)0.0765 (15)
H3A0.2478280.5351740.0243350.092*
C40.1985 (5)0.4417 (3)0.01918 (18)0.0845 (17)
H4A0.1880400.4456290.0206260.101*
C50.1782 (4)0.3834 (2)0.05078 (16)0.0625 (11)
H5A0.1547790.3469170.0318950.075*
C60.1908 (3)0.37595 (18)0.10961 (14)0.0437 (8)
C70.0464 (3)0.31657 (15)0.24965 (15)0.0377 (7)
C80.0617 (3)0.30110 (15)0.18743 (15)0.0394 (7)
C90.0226 (3)0.27540 (17)0.16936 (17)0.0464 (8)
H9A0.0136110.2652640.1271460.056*
C100.1189 (3)0.2643 (2)0.21138 (18)0.0550 (9)
H10A0.1760080.2473530.1980960.066*
C110.1321 (3)0.27801 (19)0.27284 (18)0.0522 (9)
H11A0.1982760.2691580.3018130.063*
C120.0506 (3)0.30453 (16)0.29331 (15)0.0399 (7)
C130.0804 (3)0.28320 (15)0.40234 (14)0.0392 (7)
C140.0227 (3)0.27428 (16)0.39870 (14)0.0398 (7)
C150.0820 (3)0.22304 (18)0.43226 (17)0.0495 (8)
H15A0.1519070.2158820.4296590.059*
C160.0422 (3)0.18276 (19)0.46887 (19)0.0575 (10)
H16A0.0842480.1484130.4917290.069*
C170.0600 (3)0.19256 (18)0.47227 (17)0.0507 (9)
H17A0.0873160.1649630.4981090.061*
C180.1236 (3)0.24208 (16)0.43855 (14)0.0402 (7)
C190.2979 (3)0.36345 (16)0.45610 (14)0.0365 (7)
C200.2701 (3)0.29968 (16)0.47787 (15)0.0401 (7)
C210.2832 (3)0.28296 (18)0.53489 (17)0.0504 (9)
H21A0.2623510.2404530.5512080.060*
C220.3254 (3)0.3261 (2)0.56839 (17)0.0555 (10)
H22A0.3331780.3134250.6074030.067*
C230.3566 (3)0.38784 (19)0.54508 (16)0.0491 (8)
H23A0.3881720.4170170.5676340.059*
C240.3426 (3)0.40791 (16)0.48928 (15)0.0393 (7)
C250.4603 (3)0.52888 (17)0.36182 (16)0.0415 (7)
C260.4604 (3)0.48244 (17)0.40765 (17)0.0421 (8)
C270.5495 (3)0.44318 (19)0.3991 (2)0.0533 (9)
H27A0.5514580.4109420.4291580.064*
C280.6350 (3)0.4498 (2)0.3480 (2)0.0616 (11)
H28A0.6950040.4222520.3429800.074*
C290.6335 (3)0.4964 (2)0.3043 (2)0.0599 (11)
H29A0.6934640.5011430.2695740.072*
C300.5456 (3)0.53695 (18)0.30953 (18)0.0499 (9)
C310.4240 (3)0.56564 (16)0.19310 (15)0.0462 (8)
C320.5237 (3)0.55993 (18)0.20280 (17)0.0525 (9)
C330.6010 (4)0.5280 (2)0.1576 (2)0.0700 (13)
H33A0.6703870.5245630.1620750.084*
C340.5796 (4)0.5015 (2)0.1068 (2)0.0788 (16)
H34A0.6340310.4797350.0766700.095*
C350.4795 (4)0.5061 (2)0.09890 (18)0.0659 (12)
H35A0.4654560.4865360.0638030.079*
C360.3994 (3)0.53891 (18)0.14163 (15)0.0512 (9)
C370.1697 (3)0.31010 (17)0.14171 (16)0.0443 (8)
C380.0685 (3)0.32156 (17)0.36121 (16)0.0443 (8)
H38A0.1456330.3246380.3806160.053*
H38B0.0381910.3656350.3637730.053*
C390.2380 (3)0.24812 (16)0.43756 (15)0.0430 (8)
H39A0.2608940.2047760.4491010.052*
H39B0.2791720.2566600.3943910.052*
C400.3683 (3)0.47630 (17)0.46451 (16)0.0417 (7)
H40A0.3049140.4946870.4551200.050*
H40B0.3828410.5037470.4974010.050*
C410.5467 (3)0.58792 (19)0.26009 (18)0.0533 (9)
H41A0.6168570.6094090.2479230.064*
H41B0.4934850.6221410.2778350.064*
C420.2912 (3)0.54698 (18)0.13313 (17)0.0552 (10)
H42A0.2407650.5553770.1739760.066*
H42B0.2915330.5864090.1073790.066*
C430.3566 (4)0.62251 (19)0.4060 (2)0.0653 (12)
H43A0.3721930.6109940.4451360.078*0.612 (9)
H43B0.4067370.6572010.3853520.078*0.612 (9)
H43C0.3830260.6613210.3797730.078*0.388 (9)
H43D0.4014190.6171810.4343060.078*0.388 (9)
O60.1694 (5)0.5971 (3)0.4445 (3)0.0530 (16)0.612 (9)
O70.0099 (5)0.5228 (5)0.4297 (3)0.0690 (19)0.612 (9)
O80.0130 (8)0.5601 (4)0.2952 (4)0.079 (3)0.612 (9)
O90.1525 (6)0.6632 (4)0.2742 (3)0.0621 (17)0.612 (9)
C440.2439 (11)0.6481 (5)0.4194 (5)0.052 (3)0.612 (9)
H44C0.2315000.6648710.3808950.063*0.612 (9)
H44D0.2338650.6849610.4491160.063*0.612 (9)
C450.063 (2)0.6227 (13)0.4544 (10)0.077 (5)0.612 (9)
H45C0.0507420.6591080.4846580.092*0.612 (9)
H45D0.0537430.6396700.4152310.092*0.612 (9)
C460.0112 (7)0.5684 (6)0.4779 (4)0.095 (4)0.612 (9)
H46C0.0834220.5862060.4946730.114*0.612 (9)
H46D0.0087700.5455520.5117650.114*0.612 (9)
C470.0999 (14)0.5336 (11)0.4094 (6)0.086 (4)0.612 (9)
H47C0.1311070.5757700.4275350.103*0.612 (9)
H47D0.1514430.4987710.4279890.103*0.612 (9)
C480.0940 (12)0.5357 (14)0.3483 (10)0.171 (9)0.612 (9)
H48A0.1049980.4895700.3376250.205*0.612 (9)
H48B0.1588190.5594600.3467470.205*0.612 (9)
C490.0290 (7)0.6377 (6)0.2979 (5)0.093 (3)0.612 (9)
H49A0.0292040.6549850.3389550.112*0.612 (9)
H49B0.0964790.6497450.2895580.112*0.612 (9)
O6'0.1746 (8)0.6206 (6)0.4189 (5)0.056 (3)0.388 (9)
O7'0.0061 (8)0.5553 (6)0.4134 (5)0.056 (2)0.388 (9)
O8'0.0208 (12)0.5824 (8)0.3200 (7)0.081 (4)0.388 (9)
O9'0.1545 (10)0.6410 (6)0.2476 (8)0.081 (4)0.388 (9)
C44'0.2604 (18)0.6345 (9)0.4387 (8)0.058 (4)0.388 (9)
H44A0.2505610.6110850.4783730.070*0.388 (9)
H44B0.2570240.6820620.4483820.070*0.388 (9)
C45'0.079 (3)0.628 (2)0.4657 (13)0.064 (7)0.388 (9)
H45A0.0738460.5952280.4985540.077*0.388 (9)
H45B0.0753550.6726760.4841710.077*0.388 (9)
C46'0.0060 (13)0.6194 (8)0.4369 (9)0.090 (5)0.388 (9)
H46A0.0022540.6515100.4029980.109*0.388 (9)
H46B0.0745450.6279390.4676990.109*0.388 (9)
C47'0.100 (2)0.532 (2)0.3898 (9)0.123 (13)0.388 (9)
H47A0.1643200.5260880.4244370.147*0.388 (9)
H47B0.0828230.4898580.3671570.147*0.388 (9)
C48'0.1120 (15)0.5778 (6)0.3540 (17)0.111 (11)0.388 (9)
H48C0.1356900.6191900.3767610.133*0.388 (9)
H48D0.1625130.5652840.3306980.133*0.388 (9)
C49'0.0088 (13)0.6085 (8)0.2419 (9)0.099 (6)0.388 (9)
H49C0.0762930.6228710.2349360.119*0.388 (9)
H49D0.0279770.5764360.2102110.119*0.388 (9)
C500.0591 (5)0.6634 (3)0.2509 (3)0.0823 (15)
H50A0.0723420.6359070.2133680.099*0.612 (9)
H50B0.0436420.7087390.2401450.099*0.612 (9)
H50C0.0281370.6839430.2917090.099*0.388 (9)
H50D0.0635390.6972190.2188030.099*0.388 (9)
C510.2374 (5)0.6889 (2)0.2374 (4)0.101 (2)
H51A0.2248970.6905130.1961670.121*0.612 (9)
H51B0.2391820.7351260.2507810.121*0.612 (9)
H51C0.2218150.7188550.2733610.121*0.388 (9)
H51D0.2355470.7154890.2009840.121*0.388 (9)
C520.3359 (4)0.6658 (2)0.2283 (3)0.0831 (16)
H52A0.3770320.6766550.1856780.100*
H52B0.3690130.6892280.2565840.100*
Cl10.45419 (11)0.31664 (8)0.14680 (6)0.0866 (4)
Cl20.62663 (10)0.34169 (10)0.19767 (8)0.1104 (6)
Cl30.41560 (9)0.36382 (6)0.27224 (5)0.0665 (3)
C530.4990 (3)0.3657 (2)0.1976 (2)0.0641 (11)
H53A0.5026020.4120400.1825000.077*
Cl40.05240 (16)0.76224 (11)0.14233 (8)0.1217 (6)
Cl50.01375 (15)0.67774 (8)0.03250 (11)0.1190 (6)
Cl60.13452 (10)0.78109 (7)0.03924 (7)0.0820 (4)
C540.0275 (4)0.7549 (2)0.0629 (2)0.0760 (13)
H54A0.0315860.7859080.0442500.091*
Cl70.1018 (7)0.4430 (3)0.2085 (2)0.086 (2)0.388 (14)
Cl80.1233 (8)0.4214 (7)0.0884 (4)0.166 (5)0.388 (14)
Cl90.0831 (9)0.5562 (3)0.1418 (5)0.136 (4)0.388 (14)
Cl7'0.0788 (11)0.4569 (6)0.2127 (3)0.264 (6)0.612 (14)
Cl8'0.1404 (6)0.4240 (3)0.1057 (5)0.183 (3)0.612 (14)
Cl9'0.0574 (10)0.5405 (5)0.1039 (8)0.264 (7)0.612 (14)
C550.0532 (5)0.4653 (3)0.1345 (3)0.133 (3)
H55A0.0245870.4570470.1195110.160*0.388 (14)
H55B0.0185050.4464580.1151630.160*0.612 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.04804 (13)0.03752 (12)0.03642 (11)0.00412 (9)0.00740 (8)0.00432 (8)
O10.0536 (14)0.0413 (13)0.0394 (12)0.0127 (11)0.0245 (11)0.0055 (10)
O20.0626 (15)0.0506 (14)0.0425 (13)0.0224 (12)0.0296 (12)0.0125 (11)
O30.0475 (13)0.0572 (15)0.0383 (12)0.0148 (11)0.0200 (10)0.0076 (11)
O40.0646 (15)0.0415 (13)0.0325 (11)0.0069 (11)0.0203 (11)0.0001 (9)
O50.0440 (13)0.0463 (13)0.0437 (13)0.0009 (10)0.0146 (10)0.0078 (10)
O100.0588 (14)0.0333 (12)0.0361 (12)0.0072 (10)0.0054 (10)0.0002 (9)
C10.0510 (19)0.0473 (19)0.0270 (14)0.0054 (15)0.0084 (13)0.0021 (13)
C20.076 (3)0.054 (2)0.0296 (16)0.0169 (19)0.0127 (16)0.0033 (15)
C30.124 (4)0.073 (3)0.0355 (19)0.039 (3)0.026 (2)0.0162 (19)
C40.127 (4)0.099 (4)0.0319 (19)0.046 (3)0.030 (2)0.013 (2)
C50.080 (3)0.075 (3)0.0329 (18)0.025 (2)0.0149 (18)0.0038 (18)
C60.0487 (19)0.050 (2)0.0302 (15)0.0063 (15)0.0071 (14)0.0051 (14)
C70.0438 (17)0.0323 (16)0.0421 (17)0.0008 (13)0.0205 (14)0.0018 (13)
C80.0477 (18)0.0299 (15)0.0437 (17)0.0006 (13)0.0181 (14)0.0005 (13)
C90.057 (2)0.0432 (19)0.0439 (18)0.0022 (16)0.0220 (16)0.0078 (15)
C100.053 (2)0.061 (2)0.057 (2)0.0105 (18)0.0251 (18)0.0113 (18)
C110.0428 (19)0.056 (2)0.056 (2)0.0066 (16)0.0115 (16)0.0066 (17)
C120.0447 (18)0.0359 (17)0.0408 (17)0.0010 (14)0.0146 (14)0.0020 (13)
C130.0553 (19)0.0318 (16)0.0289 (14)0.0066 (14)0.0092 (13)0.0040 (12)
C140.0460 (18)0.0388 (17)0.0333 (15)0.0025 (14)0.0089 (13)0.0083 (13)
C150.0450 (19)0.049 (2)0.050 (2)0.0071 (16)0.0056 (16)0.0046 (16)
C160.061 (2)0.046 (2)0.058 (2)0.0113 (18)0.0038 (19)0.0079 (17)
C170.067 (2)0.0400 (19)0.0444 (19)0.0034 (17)0.0134 (17)0.0043 (15)
C180.0543 (19)0.0328 (16)0.0319 (15)0.0037 (14)0.0094 (14)0.0057 (12)
C190.0429 (17)0.0370 (16)0.0332 (15)0.0004 (13)0.0169 (13)0.0006 (12)
C200.0488 (19)0.0356 (17)0.0394 (16)0.0016 (14)0.0183 (14)0.0013 (13)
C210.070 (2)0.0404 (19)0.0463 (19)0.0025 (17)0.0257 (18)0.0031 (15)
C220.079 (3)0.055 (2)0.0417 (19)0.007 (2)0.0332 (19)0.0022 (16)
C230.060 (2)0.051 (2)0.0458 (19)0.0038 (17)0.0301 (17)0.0090 (16)
C240.0426 (17)0.0392 (17)0.0400 (16)0.0033 (14)0.0178 (14)0.0045 (13)
C250.0394 (17)0.0393 (18)0.0485 (19)0.0050 (14)0.0170 (15)0.0121 (15)
C260.0421 (18)0.0369 (17)0.0511 (19)0.0065 (13)0.0195 (15)0.0105 (14)
C270.048 (2)0.047 (2)0.071 (3)0.0027 (16)0.0254 (19)0.0087 (18)
C280.044 (2)0.059 (2)0.082 (3)0.0027 (18)0.019 (2)0.013 (2)
C290.0415 (19)0.061 (3)0.073 (3)0.0081 (18)0.0078 (18)0.013 (2)
C300.0443 (19)0.046 (2)0.059 (2)0.0118 (16)0.0137 (16)0.0110 (17)
C310.057 (2)0.0371 (17)0.0351 (16)0.0159 (15)0.0029 (15)0.0031 (13)
C320.056 (2)0.045 (2)0.0460 (19)0.0177 (17)0.0029 (16)0.0021 (16)
C330.053 (2)0.074 (3)0.067 (3)0.018 (2)0.010 (2)0.014 (2)
C340.077 (3)0.078 (3)0.056 (3)0.022 (2)0.025 (2)0.018 (2)
C350.082 (3)0.065 (3)0.0371 (19)0.027 (2)0.0057 (19)0.0045 (17)
C360.071 (2)0.042 (2)0.0321 (16)0.0184 (17)0.0012 (16)0.0030 (14)
C370.0499 (19)0.0376 (18)0.0423 (18)0.0005 (14)0.0077 (15)0.0053 (14)
C380.0449 (18)0.0432 (19)0.0437 (18)0.0003 (15)0.0104 (15)0.0062 (14)
C390.058 (2)0.0333 (16)0.0401 (17)0.0003 (15)0.0180 (15)0.0026 (13)
C400.0484 (19)0.0371 (16)0.0442 (18)0.0033 (14)0.0203 (15)0.0078 (14)
C410.051 (2)0.048 (2)0.057 (2)0.0174 (17)0.0083 (17)0.0039 (17)
C420.084 (3)0.043 (2)0.0381 (18)0.0137 (19)0.0169 (18)0.0061 (15)
C430.069 (3)0.035 (2)0.097 (3)0.0050 (18)0.033 (3)0.019 (2)
O60.060 (3)0.054 (3)0.040 (3)0.008 (3)0.007 (3)0.002 (2)
O70.054 (3)0.091 (6)0.054 (4)0.003 (4)0.004 (3)0.005 (4)
O80.081 (4)0.061 (5)0.082 (6)0.005 (3)0.001 (4)0.007 (3)
O90.066 (4)0.053 (4)0.065 (4)0.005 (3)0.013 (3)0.012 (3)
C440.073 (7)0.036 (5)0.044 (5)0.012 (4)0.009 (4)0.001 (4)
C450.068 (8)0.100 (10)0.067 (10)0.026 (7)0.028 (7)0.053 (7)
C460.057 (5)0.156 (11)0.056 (5)0.006 (6)0.012 (4)0.031 (6)
C470.054 (6)0.160 (13)0.040 (8)0.017 (6)0.009 (6)0.009 (7)
C480.085 (10)0.31 (3)0.128 (15)0.094 (15)0.041 (10)0.010 (18)
C490.069 (5)0.121 (9)0.097 (7)0.004 (5)0.034 (5)0.020 (7)
O6'0.046 (5)0.064 (7)0.057 (6)0.007 (5)0.015 (5)0.028 (5)
O7'0.053 (5)0.061 (6)0.051 (5)0.005 (5)0.007 (4)0.005 (4)
O8'0.064 (7)0.081 (10)0.097 (11)0.003 (7)0.021 (8)0.024 (7)
O9'0.067 (6)0.049 (6)0.132 (12)0.003 (5)0.034 (8)0.001 (6)
C44'0.085 (11)0.033 (8)0.057 (10)0.003 (7)0.021 (8)0.013 (6)
C45'0.064 (14)0.083 (11)0.038 (8)0.002 (9)0.001 (9)0.042 (8)
C46'0.077 (10)0.083 (10)0.099 (12)0.015 (8)0.004 (9)0.040 (9)
C47'0.041 (8)0.29 (4)0.030 (12)0.034 (12)0.005 (9)0.053 (16)
C48'0.051 (8)0.031 (6)0.24 (3)0.007 (6)0.024 (11)0.015 (10)
C49'0.102 (11)0.091 (11)0.124 (15)0.014 (9)0.064 (11)0.013 (10)
C500.095 (4)0.072 (3)0.090 (4)0.008 (3)0.041 (3)0.019 (3)
C510.082 (4)0.048 (3)0.168 (6)0.002 (3)0.028 (4)0.005 (3)
C520.079 (3)0.035 (2)0.122 (4)0.010 (2)0.006 (3)0.016 (2)
Cl10.0828 (8)0.1056 (10)0.0741 (8)0.0050 (7)0.0263 (6)0.0240 (7)
Cl20.0508 (7)0.1559 (15)0.1190 (12)0.0015 (8)0.0142 (7)0.0344 (11)
Cl30.0647 (6)0.0757 (7)0.0559 (6)0.0074 (5)0.0117 (5)0.0039 (5)
C530.062 (2)0.062 (3)0.062 (3)0.007 (2)0.007 (2)0.001 (2)
Cl40.1341 (14)0.1629 (17)0.0877 (10)0.0110 (12)0.0634 (10)0.0205 (11)
Cl50.1233 (13)0.0696 (9)0.1844 (19)0.0099 (8)0.0762 (13)0.0057 (10)
Cl60.0803 (8)0.0862 (9)0.0957 (9)0.0159 (7)0.0511 (7)0.0148 (7)
C540.076 (3)0.073 (3)0.094 (4)0.006 (2)0.048 (3)0.002 (3)
Cl70.119 (4)0.059 (3)0.061 (3)0.034 (3)0.005 (2)0.0002 (17)
Cl80.103 (5)0.324 (14)0.083 (4)0.022 (6)0.046 (3)0.044 (5)
Cl90.171 (6)0.079 (4)0.196 (8)0.046 (3)0.112 (6)0.077 (4)
Cl7'0.251 (9)0.270 (9)0.204 (7)0.182 (8)0.048 (6)0.079 (6)
Cl8'0.095 (3)0.137 (4)0.301 (9)0.020 (3)0.029 (5)0.060 (4)
Cl9'0.276 (10)0.259 (9)0.329 (14)0.098 (8)0.200 (11)0.212 (9)
C550.066 (4)0.178 (7)0.149 (7)0.009 (4)0.018 (4)0.101 (6)
Geometric parameters (Å, º) top
Cs1—O7'3.055 (10)C25—C261.401 (5)
Cs1—O103.056 (2)C26—C271.388 (5)
Cs1—O53.059 (2)C26—C401.507 (5)
Cs1—O73.103 (7)C27—C281.377 (6)
Cs1—O43.187 (2)C28—C291.372 (6)
Cs1—O83.193 (11)C29—C301.400 (6)
Cs1—O6'3.214 (9)C30—C411.521 (6)
Cs1—O8'3.289 (15)C31—C321.395 (6)
Cs1—O63.308 (6)C31—C361.400 (5)
Cs1—O13.377 (2)C32—C331.386 (6)
Cs1—O9'3.418 (13)C32—C411.519 (5)
Cs1—O93.556 (7)C33—C341.366 (7)
O1—C191.352 (4)C34—C351.383 (8)
O2—C131.351 (4)C35—C361.387 (6)
O3—C71.351 (4)C36—C421.500 (6)
O4—C11.364 (4)C43—C44'1.30 (2)
O5—C251.386 (4)C43—C441.522 (13)
O5—C431.432 (4)O6—C441.432 (15)
O10—C311.386 (4)O6—C451.45 (3)
O10—C521.414 (5)O7—C471.403 (19)
C1—C21.388 (5)O7—C461.427 (12)
C1—C61.401 (5)O8—C481.45 (2)
C2—C31.389 (5)O8—C491.592 (15)
C2—C421.511 (5)O9—C511.302 (9)
C3—C41.379 (6)O9—C501.466 (9)
C4—C51.371 (6)C45—C461.48 (3)
C5—C61.392 (5)C47—C481.36 (2)
C6—C371.512 (5)C49—C501.435 (11)
C7—C81.398 (4)O6'—C44'1.36 (2)
C7—C121.401 (5)O6'—C45'1.41 (4)
C8—C91.388 (5)O7'—C46'1.408 (17)
C8—C371.518 (5)O7'—C47'1.55 (3)
C9—C101.374 (5)O8'—C48'1.24 (3)
C10—C111.378 (5)O8'—C49'1.80 (2)
C11—C121.392 (5)O8'—C47'1.93 (4)
C12—C381.525 (5)O9'—C501.319 (13)
C13—C141.396 (5)O9'—C511.434 (13)
C13—C181.396 (5)C45'—C46'1.45 (3)
C14—C151.394 (5)C47'—C48'1.27 (4)
C14—C381.513 (5)C49'—C501.480 (16)
C15—C161.368 (6)C51—C521.342 (7)
C16—C171.384 (6)Cl1—C531.742 (5)
C17—C181.393 (5)Cl2—C531.752 (5)
C18—C391.507 (5)Cl3—C531.737 (4)
C19—C201.400 (4)Cl4—C541.737 (5)
C19—C241.404 (4)Cl5—C541.739 (5)
C20—C211.388 (5)Cl6—C541.726 (5)
C20—C391.524 (4)Cl7—C551.677 (9)
C21—C221.373 (5)Cl8—C551.808 (14)
C22—C231.380 (5)Cl9—C551.889 (11)
C23—C241.385 (5)Cl7'—C551.713 (5)
C24—C401.503 (5)Cl8'—C551.692 (5)
C25—C301.395 (5)Cl9'—C551.687 (5)
O7'—Cs1—O10118.9 (2)O5—C25—C30118.8 (3)
O7'—Cs1—O5102.6 (2)O5—C25—C26118.6 (3)
O10—Cs1—O561.11 (6)C30—C25—C26122.6 (3)
O10—Cs1—O7132.30 (18)O5—C25—Cs144.50 (14)
O5—Cs1—O7104.85 (15)C30—C25—Cs1112.9 (2)
O7'—Cs1—O4134.1 (2)C26—C25—Cs1104.9 (2)
O10—Cs1—O477.84 (6)C27—C26—C25117.3 (3)
O5—Cs1—O4121.73 (6)C27—C26—C40121.4 (3)
O7—Cs1—O4133.39 (15)C25—C26—C40121.3 (3)
O10—Cs1—O894.6 (2)C28—C27—C26121.6 (4)
O5—Cs1—O8132.13 (17)C29—C28—C27119.9 (4)
O7—Cs1—O859.8 (2)C28—C29—C30121.6 (4)
O4—Cs1—O887.48 (15)C25—C30—C29117.1 (4)
O7'—Cs1—O6'52.1 (3)C25—C30—C41122.8 (3)
O10—Cs1—O6'82.1 (2)C29—C30—C41120.1 (4)
O5—Cs1—O6'51.89 (18)O10—C31—C32118.6 (3)
O4—Cs1—O6'158.5 (3)O10—C31—C36118.4 (3)
O7'—Cs1—O8'41.2 (4)C32—C31—C36122.9 (3)
O10—Cs1—O8'94.6 (3)O10—C31—Cs147.84 (14)
O5—Cs1—O8'121.8 (3)C32—C31—Cs1115.7 (2)
O4—Cs1—O8'99.6 (3)C36—C31—Cs1100.7 (2)
O6'—Cs1—O8'74.3 (4)C33—C32—C31117.0 (4)
O10—Cs1—O692.65 (12)C33—C32—C41121.5 (4)
O5—Cs1—O652.07 (12)C31—C32—C41121.5 (3)
O7—Cs1—O653.72 (19)C34—C33—C32121.4 (5)
O4—Cs1—O6170.49 (12)C33—C34—C35120.6 (4)
O8—Cs1—O692.9 (2)C34—C35—C36120.7 (4)
O7'—Cs1—O1105.2 (2)C35—C36—C31117.2 (4)
O10—Cs1—O1120.92 (6)C35—C36—C42122.0 (4)
O5—Cs1—O172.98 (6)C31—C36—C42120.8 (3)
O7—Cs1—O192.48 (17)C6—C37—C8116.4 (3)
O4—Cs1—O198.95 (6)C14—C38—C12116.3 (3)
O8—Cs1—O1144.5 (2)C18—C39—C20119.3 (3)
O6'—Cs1—O197.9 (2)C24—C40—C26116.0 (3)
O8'—Cs1—O1142.6 (3)C32—C41—C30114.0 (3)
O6—Cs1—O186.23 (12)C36—C42—C2115.7 (3)
O7'—Cs1—O9'79.2 (3)C44'—C43—O5115.6 (8)
O10—Cs1—O9'47.1 (2)O5—C43—C44110.1 (6)
O5—Cs1—O9'92.5 (2)C44—O6—C45109.1 (13)
O4—Cs1—O9'87.1 (3)C44—O6—Cs1101.5 (6)
O6'—Cs1—O9'73.5 (3)C45—O6—Cs1101.9 (8)
O8'—Cs1—O9'47.5 (3)C47—O7—C46108.5 (10)
O1—Cs1—O9'165.3 (2)C47—O7—Cs1113.3 (7)
O10—Cs1—O949.03 (13)C46—O7—Cs1120.5 (5)
O5—Cs1—O984.41 (14)C48—O8—C49104.4 (13)
O7—Cs1—O986.4 (2)C48—O8—Cs1100.6 (11)
O4—Cs1—O998.97 (13)C49—O8—Cs1118.2 (6)
O8—Cs1—O951.8 (2)C51—O9—C50115.3 (6)
O6—Cs1—O974.03 (14)C51—O9—Cs1112.9 (5)
O1—Cs1—O9156.29 (14)C50—O9—Cs1109.2 (4)
C19—O1—Cs1149.9 (2)O6—C44—C43110.8 (7)
C13—O2—Cs1153.8 (2)O6—C44—Cs157.2 (5)
C7—O3—Cs1137.7 (2)C43—C44—Cs186.2 (5)
C1—O4—Cs1144.6 (2)O6—C45—C46107.7 (18)
C25—O5—C43116.3 (3)O6—C45—Cs156.6 (7)
C25—O5—Cs1116.99 (17)C46—C45—Cs184.8 (9)
C43—O5—Cs1124.8 (2)O7—C46—C45110.3 (10)
C31—O10—C52115.6 (3)C48—C47—O7121.5 (16)
C31—O10—Cs1112.53 (17)C48—C47—Cs174.2 (11)
C52—O10—Cs1130.6 (2)O7—C47—Cs147.3 (6)
O4—C1—C2116.4 (3)C47—C48—O8132.0 (14)
O4—C1—C6122.0 (3)C47—C48—Cs185.4 (12)
C2—C1—C6121.5 (3)O8—C48—Cs157.0 (8)
C1—C2—C3118.6 (3)C50—C49—O8105.2 (8)
C1—C2—C42119.9 (3)C44'—O6'—C45'112.4 (17)
C3—C2—C42121.4 (3)C44'—O6'—Cs1117.6 (9)
C4—C3—C2121.1 (4)C45'—O6'—Cs1118.5 (14)
C5—C4—C3119.2 (4)C46'—O7'—C47'120 (2)
C4—C5—C6122.2 (4)C46'—O7'—Cs1119.5 (9)
C5—C6—C1117.3 (3)C47'—O7'—Cs1106.3 (12)
C5—C6—C37120.0 (3)C48'—O8'—C49'116 (2)
C1—C6—C37122.7 (3)C48'—O8'—C47'40.7 (15)
O3—C7—C8117.8 (3)C49'—O8'—C47'146.8 (13)
O3—C7—C12121.1 (3)C48'—O8'—Cs1130.1 (15)
C8—C7—C12121.1 (3)C49'—O8'—Cs1108.9 (9)
C9—C8—C7118.5 (3)C47'—O8'—Cs189.4 (13)
C9—C8—C37121.4 (3)C50—O9'—C51116.5 (9)
C7—C8—C37120.1 (3)C50—O9'—Cs1122.2 (8)
C10—C9—C8121.3 (3)C51—O9'—Cs1115.4 (7)
C9—C10—C11119.7 (3)C43—C44'—O6'122.9 (14)
C10—C11—C12121.3 (3)O6'—C45'—C46'107 (2)
C11—C12—C7118.1 (3)O7'—C46'—C45'111.5 (19)
C11—C12—C38120.3 (3)C48'—C47'—O7'104 (3)
C7—C12—C38121.6 (3)C48'—C47'—O8'39.2 (13)
O2—C13—C14119.5 (3)O7'—C47'—O8'79.5 (16)
O2—C13—C18119.3 (3)C48'—C47'—Cs199.3 (17)
C14—C13—C18121.2 (3)O7'—C47'—Cs150.6 (10)
C15—C14—C13118.2 (3)O8'—C47'—Cs160.1 (9)
C15—C14—C38122.0 (3)O8'—C48'—C47'100.1 (19)
C13—C14—C38119.8 (3)C50—C49'—O8'88.8 (11)
C16—C15—C14121.7 (4)C49—C50—O9108.7 (6)
C15—C16—C17119.3 (3)O9'—C50—C49'109.6 (10)
C16—C17—C18121.3 (4)O9—C51—C52125.4 (6)
C17—C18—C13118.2 (3)C52—C51—O9'116.6 (6)
C17—C18—C39120.9 (3)C51—C52—O10116.0 (4)
C13—C18—C39120.7 (3)C53—Cl3—Cs1118.57 (17)
O1—C19—C20123.1 (3)Cl3—C53—Cl1112.8 (2)
O1—C19—C24115.7 (3)Cl3—C53—Cl2109.9 (3)
C20—C19—C24121.2 (3)Cl1—C53—Cl2110.0 (2)
C21—C20—C19117.7 (3)Cl6—C54—Cl4111.0 (3)
C21—C20—C39120.8 (3)Cl6—C54—Cl5110.4 (3)
C19—C20—C39121.2 (3)Cl4—C54—Cl5115.7 (3)
C22—C21—C20121.9 (3)Cl9'—C55—Cl8'101.0 (5)
C21—C22—C23119.7 (3)Cl9'—C55—Cl7'119.5 (7)
C22—C23—C24120.9 (3)Cl8'—C55—Cl7'112.8 (6)
C23—C24—C19118.5 (3)Cl7—C55—Cl8109.1 (6)
C23—C24—C40122.6 (3)Cl7—C55—Cl999.5 (6)
C19—C24—C40118.8 (3)Cl8—C55—Cl9113.9 (6)
(3) top
Crystal data top
C52H54Cs2O11·CHCl3F(000) = 2488
Mr = 1240.14Dx = 1.573 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.166 (5) ÅCell parameters from 8228 reflections
b = 31.338 (12) Åθ = 2.5–27.6°
c = 14.278 (5) ŵ = 1.60 mm1
β = 117.28 (2)°T = 173 K
V = 5236 (4) Å3Block, colourless
Z = 40.47 × 0.20 × 0.17 mm
Data collection top
Bruker APEX-II CCD
diffractometer
9013 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
φ and ω scansθmax = 28.0°, θmin = 1.3°
Absorption correction: multi-scan
SADABS
h = 1715
Tmin = 0.519, Tmax = 0.772k = 4141
73709 measured reflectionsl = 1818
12632 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0525P)2 + 11.0749P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
12632 reflectionsΔρmax = 2.28 e Å3
629 parametersΔρmin = 1.91 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.15507 (3)0.62805 (2)0.48679 (2)0.05370 (11)
Cs20.38371 (2)0.69645 (2)0.83966 (2)0.03858 (9)
O10.3238 (2)0.73456 (8)0.6244 (2)0.0335 (6)
H1A0.3903560.7073280.5885910.10 (2)*
O20.4262 (3)0.69054 (9)0.5539 (2)0.0364 (7)
O30.3343 (3)0.57705 (9)0.6826 (2)0.0364 (7)
O40.2177 (3)0.62292 (9)0.7311 (2)0.0336 (6)
H4B0.279 (5)0.6025 (18)0.718 (4)0.066 (16)*
O50.3159 (2)0.58535 (10)0.4101 (2)0.0382 (7)
O60.0861 (3)0.56847 (11)0.2689 (3)0.0490 (8)
O70.0180 (3)0.53427 (12)0.3847 (3)0.0549 (9)
O80.0982 (4)0.60380 (13)0.4565 (4)0.0750 (12)
O90.0763 (3)0.67078 (13)0.3372 (3)0.0651 (11)
O100.0334 (2)0.70478 (9)0.5407 (2)0.0324 (6)
O1W0.4976 (3)0.64083 (11)0.7365 (3)0.0478 (8)
H1WA0.4914060.6539520.6881870.046 (16)*
H1WB0.4537400.6205370.7144700.07 (2)*
C10.3395 (3)0.77658 (12)0.6207 (3)0.0293 (8)
C20.2470 (4)0.80437 (13)0.5982 (3)0.0311 (8)
C30.2609 (4)0.84757 (13)0.5878 (3)0.0364 (9)
H3A0.1994360.8659120.5712350.044*
C40.3636 (4)0.86391 (13)0.6014 (4)0.0400 (10)
H4A0.3710710.8930210.5935310.048*
C50.4560 (4)0.83699 (14)0.6270 (3)0.0385 (10)
H5A0.5257680.8481230.6370900.046*
C60.4449 (4)0.79345 (13)0.6376 (3)0.0312 (9)
C70.5007 (4)0.70855 (13)0.5267 (3)0.0317 (9)
C80.5619 (3)0.74568 (13)0.5773 (3)0.0332 (9)
C90.6359 (4)0.76420 (14)0.5440 (4)0.0393 (10)
H9A0.6756960.7887740.5771260.047*
C100.6512 (4)0.74674 (15)0.4624 (4)0.0439 (11)
H10A0.6982890.7601290.4388410.053*
C110.5964 (4)0.70959 (14)0.4167 (4)0.0403 (10)
H11A0.6091030.6971910.3638730.048*
C120.5219 (4)0.68998 (13)0.4479 (3)0.0353 (9)
C130.3640 (4)0.53801 (12)0.7248 (3)0.0321 (9)
C140.3895 (4)0.50688 (13)0.6678 (3)0.0338 (9)
C150.4212 (4)0.46642 (14)0.7108 (4)0.0404 (10)
H15A0.4404400.4458400.6747280.048*
C160.4247 (4)0.45617 (14)0.8065 (4)0.0426 (11)
H16A0.4437650.4286500.8333000.051*
C170.3998 (4)0.48688 (14)0.8620 (3)0.0393 (10)
H17A0.4025410.4798290.9263530.047*
C180.3706 (3)0.52813 (13)0.8236 (3)0.0330 (9)
C190.1716 (4)0.60485 (12)0.7887 (3)0.0299 (8)
C200.2309 (4)0.57383 (12)0.8643 (3)0.0318 (9)
C210.1782 (4)0.55622 (14)0.9208 (3)0.0410 (10)
H21A0.2165690.5353370.9710170.049*
C220.0706 (4)0.56896 (14)0.9044 (4)0.0429 (11)
H22A0.0363690.5562880.9417420.052*
C230.0144 (4)0.60084 (14)0.8315 (4)0.0396 (10)
H23A0.0568060.6102460.8215570.047*
C240.0637 (4)0.61886 (12)0.7731 (3)0.0318 (9)
C250.4310 (4)0.58186 (13)0.4836 (3)0.0327 (9)
C260.5077 (4)0.61232 (13)0.4820 (3)0.0343 (9)
C270.6211 (4)0.60905 (14)0.5573 (4)0.0382 (10)
H27A0.6746490.6282380.5565530.046*
C280.6554 (4)0.57728 (14)0.6338 (4)0.0406 (10)
H28A0.7316560.5752060.6838020.049*
C290.5769 (4)0.54910 (13)0.6353 (3)0.0375 (10)
H29A0.6003010.5286730.6884070.045*
C300.4633 (4)0.55020 (12)0.5599 (3)0.0335 (9)
C310.0738 (3)0.72093 (12)0.6425 (3)0.0278 (8)
C320.0639 (3)0.69638 (12)0.7190 (3)0.0296 (8)
C330.1102 (4)0.71280 (13)0.8205 (3)0.0345 (9)
H33A0.0913000.6990010.8720950.041*
C340.1630 (4)0.75232 (13)0.8445 (3)0.0377 (10)
H34A0.1748050.7665930.9097540.045*
C350.1710 (4)0.77594 (13)0.7661 (3)0.0342 (9)
H35A0.1943950.8059140.7798430.041*
C360.1260 (3)0.76079 (13)0.6636 (3)0.0304 (8)
C370.4662 (4)0.64814 (14)0.4015 (3)0.0384 (10)
H37A0.4822360.6408570.3435750.046*
H37B0.3840300.6510280.3734010.046*
C380.3778 (4)0.51780 (14)0.5605 (3)0.0382 (10)
H38A0.3014060.5287270.5174520.046*
H38B0.3857110.4917580.5276390.046*
C390.3525 (4)0.56186 (13)0.8900 (3)0.0347 (9)
H39A0.3911190.5875930.8858240.042*
H39B0.3904790.5523320.9627330.042*
C400.0034 (4)0.65352 (13)0.6930 (3)0.0351 (9)
H40A0.0726530.6572630.6866140.042*
H40B0.0051360.6441480.6249930.042*
C410.1321 (4)0.78634 (14)0.5767 (3)0.0343 (9)
H41A0.0786490.8098960.5593350.041*
H41B0.1057760.7682990.5147860.041*
C420.5481 (4)0.76456 (14)0.6682 (3)0.0350 (9)
H42A0.6164130.7807700.7118360.042*
H42B0.5430030.7413670.7108380.042*
C430.2884 (4)0.56613 (16)0.3106 (4)0.0451 (11)
H43A0.2940890.5353220.3176000.054*
H43B0.3411270.5758310.2849460.054*
C440.1686 (4)0.57880 (17)0.2350 (4)0.0495 (12)
H44A0.1667610.6093620.2234870.059*
H44B0.1477440.5649020.1679390.059*
C450.0694 (5)0.52393 (17)0.2734 (4)0.0558 (13)
H45A0.1348620.5114590.3325210.067*
H45B0.0612050.5103390.2092750.067*
C460.0359 (5)0.51703 (19)0.2859 (4)0.0573 (14)
H46A0.1005210.5310040.2290430.069*
H46B0.0524250.4867590.2832790.069*
C470.1173 (5)0.52999 (17)0.3998 (4)0.0537 (13)
H47A0.1228300.5010650.4212240.064*
H47B0.1852230.5360400.3345680.064*
C480.1080 (6)0.56083 (19)0.4835 (5)0.0665 (16)
H48A0.1750220.5581740.4946600.080*
H48B0.0415860.5536370.5490590.080*
C490.1967 (6)0.6216 (2)0.3735 (8)0.103 (3)
H49A0.2289170.6431110.4008850.123*
H49B0.2536320.5995290.3397740.123*
C500.1654 (7)0.6409 (2)0.2965 (6)0.111 (3)
H50A0.1438550.6182060.2628910.133*
H50B0.2325970.6547090.2423750.133*
C510.1036 (4)0.71111 (16)0.3604 (4)0.0480 (12)
H51A0.1834840.7168200.3137340.058*
H51B0.0587060.7322240.3459740.058*
C520.0831 (4)0.71643 (15)0.4719 (4)0.0418 (10)
H52A0.0965550.7458290.4844750.050*
H52B0.1348610.6983250.4852460.050*
C530.7185 (6)0.6077 (2)0.9259 (6)0.0774 (18)
H53A0.6623250.6125940.8523690.093*
Cl10.64877 (17)0.61212 (7)1.00383 (15)0.0914 (6)
Cl20.7796 (3)0.55853 (8)0.9339 (2)0.1275 (9)
Cl30.8234 (3)0.64672 (10)0.9613 (4)0.1855 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0581 (2)0.0680 (2)0.03799 (16)0.02937 (16)0.02460 (15)0.00753 (14)
Cs20.04004 (16)0.03839 (15)0.03615 (15)0.00031 (11)0.01647 (12)0.00482 (11)
O10.0388 (16)0.0257 (14)0.0419 (16)0.0010 (12)0.0236 (14)0.0029 (12)
O20.0460 (18)0.0298 (15)0.0442 (17)0.0007 (12)0.0301 (15)0.0007 (12)
O30.0502 (18)0.0273 (14)0.0393 (16)0.0071 (13)0.0269 (14)0.0034 (12)
O40.0399 (17)0.0298 (14)0.0390 (16)0.0035 (12)0.0249 (14)0.0046 (12)
O50.0371 (16)0.0446 (17)0.0332 (15)0.0039 (13)0.0165 (13)0.0073 (13)
O60.049 (2)0.0484 (19)0.051 (2)0.0094 (15)0.0237 (16)0.0026 (16)
O70.052 (2)0.065 (2)0.050 (2)0.0165 (17)0.0256 (17)0.0122 (17)
O80.064 (3)0.058 (2)0.079 (3)0.010 (2)0.012 (2)0.019 (2)
O90.066 (2)0.069 (3)0.0371 (19)0.011 (2)0.0040 (18)0.0107 (17)
O100.0284 (14)0.0393 (16)0.0261 (14)0.0043 (12)0.0096 (12)0.0044 (12)
O1W0.064 (2)0.0409 (18)0.0430 (19)0.0037 (17)0.0280 (17)0.0010 (16)
C10.037 (2)0.029 (2)0.0229 (18)0.0018 (16)0.0143 (17)0.0028 (15)
C20.038 (2)0.032 (2)0.0246 (19)0.0020 (17)0.0159 (17)0.0007 (16)
C30.045 (3)0.027 (2)0.037 (2)0.0069 (18)0.018 (2)0.0024 (17)
C40.053 (3)0.026 (2)0.041 (2)0.0026 (19)0.022 (2)0.0020 (18)
C50.044 (3)0.036 (2)0.039 (2)0.0079 (19)0.022 (2)0.0045 (18)
C60.038 (2)0.031 (2)0.0253 (19)0.0024 (17)0.0148 (17)0.0015 (15)
C70.035 (2)0.032 (2)0.032 (2)0.0081 (17)0.0185 (18)0.0074 (16)
C80.031 (2)0.036 (2)0.033 (2)0.0065 (17)0.0149 (18)0.0023 (17)
C90.032 (2)0.037 (2)0.047 (3)0.0008 (18)0.017 (2)0.0014 (19)
C100.041 (3)0.050 (3)0.052 (3)0.004 (2)0.031 (2)0.011 (2)
C110.050 (3)0.041 (2)0.040 (2)0.007 (2)0.029 (2)0.0040 (19)
C120.042 (2)0.034 (2)0.034 (2)0.0066 (18)0.0208 (19)0.0052 (17)
C130.035 (2)0.0249 (19)0.035 (2)0.0024 (16)0.0151 (18)0.0004 (16)
C140.035 (2)0.029 (2)0.040 (2)0.0020 (17)0.0196 (19)0.0037 (17)
C150.038 (2)0.032 (2)0.052 (3)0.0046 (18)0.022 (2)0.0066 (19)
C160.047 (3)0.029 (2)0.047 (3)0.0084 (19)0.018 (2)0.0051 (19)
C170.045 (3)0.035 (2)0.034 (2)0.0073 (19)0.014 (2)0.0023 (18)
C180.034 (2)0.031 (2)0.031 (2)0.0027 (17)0.0124 (18)0.0022 (16)
C190.040 (2)0.0239 (19)0.032 (2)0.0051 (16)0.0214 (18)0.0054 (15)
C200.042 (2)0.0240 (19)0.029 (2)0.0028 (16)0.0169 (18)0.0055 (15)
C210.059 (3)0.033 (2)0.032 (2)0.007 (2)0.021 (2)0.0018 (17)
C220.057 (3)0.037 (2)0.046 (3)0.013 (2)0.033 (2)0.005 (2)
C230.041 (2)0.041 (2)0.042 (2)0.0085 (19)0.023 (2)0.009 (2)
C240.037 (2)0.029 (2)0.032 (2)0.0052 (16)0.0182 (18)0.0081 (16)
C250.038 (2)0.034 (2)0.033 (2)0.0034 (17)0.0225 (18)0.0080 (17)
C260.040 (2)0.031 (2)0.039 (2)0.0029 (17)0.024 (2)0.0064 (17)
C270.038 (2)0.036 (2)0.046 (3)0.0015 (18)0.024 (2)0.0064 (19)
C280.034 (2)0.042 (2)0.045 (3)0.0048 (19)0.017 (2)0.003 (2)
C290.044 (2)0.033 (2)0.038 (2)0.0103 (18)0.020 (2)0.0012 (18)
C300.042 (2)0.027 (2)0.038 (2)0.0036 (17)0.025 (2)0.0082 (17)
C310.0272 (19)0.033 (2)0.0246 (18)0.0051 (15)0.0129 (16)0.0042 (15)
C320.029 (2)0.031 (2)0.032 (2)0.0046 (16)0.0164 (17)0.0017 (16)
C330.043 (2)0.034 (2)0.034 (2)0.0012 (18)0.0241 (19)0.0012 (17)
C340.051 (3)0.036 (2)0.029 (2)0.0036 (19)0.021 (2)0.0050 (17)
C350.039 (2)0.031 (2)0.037 (2)0.0000 (17)0.0207 (19)0.0032 (17)
C360.031 (2)0.034 (2)0.0296 (19)0.0075 (16)0.0166 (17)0.0032 (16)
C370.048 (3)0.039 (2)0.033 (2)0.0036 (19)0.023 (2)0.0024 (18)
C380.047 (3)0.035 (2)0.040 (2)0.0029 (19)0.026 (2)0.0094 (18)
C390.042 (2)0.032 (2)0.028 (2)0.0029 (17)0.0139 (18)0.0002 (16)
C400.033 (2)0.036 (2)0.038 (2)0.0028 (17)0.0174 (19)0.0027 (18)
C410.035 (2)0.037 (2)0.030 (2)0.0041 (18)0.0147 (18)0.0058 (17)
C420.032 (2)0.037 (2)0.033 (2)0.0019 (17)0.0125 (18)0.0038 (17)
C430.051 (3)0.049 (3)0.040 (2)0.007 (2)0.024 (2)0.010 (2)
C440.053 (3)0.061 (3)0.037 (2)0.014 (2)0.023 (2)0.003 (2)
C450.068 (4)0.055 (3)0.050 (3)0.014 (3)0.032 (3)0.018 (2)
C460.058 (3)0.066 (3)0.047 (3)0.024 (3)0.022 (3)0.012 (3)
C470.052 (3)0.050 (3)0.060 (3)0.009 (2)0.027 (3)0.002 (2)
C480.079 (4)0.068 (4)0.061 (4)0.009 (3)0.040 (3)0.009 (3)
C490.057 (4)0.056 (4)0.147 (8)0.007 (3)0.005 (5)0.008 (5)
C500.105 (6)0.064 (4)0.076 (5)0.006 (4)0.035 (5)0.017 (4)
C510.037 (3)0.052 (3)0.038 (3)0.002 (2)0.002 (2)0.002 (2)
C520.028 (2)0.048 (3)0.043 (3)0.0051 (19)0.0102 (19)0.000 (2)
C530.080 (5)0.079 (4)0.080 (4)0.010 (4)0.043 (4)0.007 (4)
Cl10.0906 (13)0.1173 (15)0.0781 (12)0.0092 (11)0.0488 (11)0.0041 (11)
Cl20.166 (2)0.0939 (15)0.1182 (18)0.0504 (15)0.0609 (17)0.0147 (13)
Cl30.138 (2)0.127 (2)0.351 (5)0.0386 (19)0.163 (3)0.036 (3)
Geometric parameters (Å, º) top
Cs1—O53.098 (3)C7—C81.412 (6)
Cs1—O93.110 (4)C8—C91.392 (6)
Cs1—O33.145 (3)C8—C421.511 (6)
Cs1—O103.173 (3)C9—C101.382 (7)
Cs1—O43.200 (3)C10—C111.368 (7)
Cs1—O83.250 (5)C11—C121.391 (6)
Cs1—O63.376 (4)C12—C371.500 (6)
Cs1—O73.593 (4)C13—C141.406 (6)
Cs1—O23.790 (3)C13—C181.407 (6)
Cs1—C503.852 (8)C14—C151.387 (6)
Cs1—Cs25.0139 (18)C14—C381.508 (6)
Cs2—O13.046 (3)C15—C161.384 (7)
Cs2—O43.063 (3)C16—C171.378 (6)
Cs2—O1W3.079 (3)C17—C181.388 (6)
Cs2—C343.420 (5)C18—C391.511 (6)
Cs2—C9i3.489 (5)C19—C201.396 (6)
Cs2—C333.521 (4)C19—C241.404 (6)
Cs2—C353.529 (4)C20—C211.396 (6)
Cs2—C10i3.603 (5)C20—C391.517 (6)
Cs2—C8i3.607 (4)C21—C221.385 (7)
Cs2—C323.748 (4)C22—C231.387 (7)
Cs2—C363.752 (4)C23—C241.389 (6)
Cs2—C7i3.820 (4)C24—C401.512 (6)
O1—C11.338 (5)C25—C301.389 (6)
O2—C71.334 (5)C25—C261.397 (6)
O3—C131.340 (5)C26—C271.387 (6)
O4—C191.349 (5)C26—C371.518 (6)
O5—C251.397 (5)C27—C281.392 (6)
O5—C431.429 (5)C28—C291.368 (6)
O6—C441.414 (6)C29—C301.386 (6)
O6—C451.419 (6)C30—C381.518 (6)
O7—C471.425 (6)C31—C321.390 (6)
O7—C461.426 (6)C31—C361.390 (6)
O8—C491.410 (8)C32—C331.388 (6)
O8—C481.423 (7)C32—C401.518 (6)
O9—C511.394 (6)C33—C341.384 (6)
O9—C501.403 (9)C34—C351.386 (6)
O10—C311.394 (4)C35—C361.386 (6)
O10—C521.439 (5)C36—C411.509 (6)
C1—C61.399 (6)C43—C441.500 (7)
C1—C21.409 (6)C45—C461.493 (7)
C2—C31.383 (6)C47—C481.497 (8)
C2—C411.510 (6)C49—C501.468 (13)
C3—C41.374 (6)C51—C521.498 (7)
C4—C51.385 (6)C53—Cl21.718 (7)
C5—C61.388 (6)C53—Cl31.737 (8)
C6—C421.521 (6)C53—Cl11.743 (7)
C7—C121.404 (6)
O5—Cs1—O9123.81 (9)C49—O8—Cs1120.8 (5)
O5—Cs1—O374.87 (8)C48—O8—Cs1113.6 (4)
O9—Cs1—O3158.26 (10)C51—O9—C50116.5 (5)
O5—Cs1—O10156.31 (8)C51—O9—Cs1120.3 (3)
O9—Cs1—O1052.82 (8)C50—O9—Cs1111.5 (4)
O3—Cs1—O10115.20 (7)C31—O10—C52113.4 (3)
O5—Cs1—O4119.16 (8)C31—O10—Cs1122.3 (2)
O9—Cs1—O4116.88 (9)C52—O10—Cs1121.7 (2)
O3—Cs1—O444.91 (7)O1—C1—C6121.6 (4)
O10—Cs1—O471.35 (7)O1—C1—C2119.0 (4)
O5—Cs1—O8132.67 (9)C6—C1—C2119.4 (4)
O9—Cs1—O852.18 (12)O1—C1—Cs245.02 (18)
O3—Cs1—O8107.77 (10)C6—C1—Cs2109.8 (2)
O10—Cs1—O866.94 (9)C2—C1—Cs2112.5 (2)
O4—Cs1—O882.49 (10)C3—C2—C1119.2 (4)
O5—Cs1—O651.25 (8)C3—C2—C41120.9 (4)
O9—Cs1—O680.82 (9)C1—C2—C41119.7 (4)
O3—Cs1—O6108.27 (8)C4—C3—C2121.3 (4)
O10—Cs1—O6133.64 (8)C3—C4—C5119.9 (4)
O4—Cs1—O6143.41 (8)C4—C5—C6120.2 (4)
O8—Cs1—O685.53 (10)C4—C5—Cs2ii97.2 (3)
O5—Cs1—O784.97 (8)C6—C5—Cs2ii82.2 (2)
O9—Cs1—O780.46 (10)C5—C6—C1119.9 (4)
O3—Cs1—O791.30 (9)C5—C6—C42119.4 (4)
O10—Cs1—O7114.93 (8)C1—C6—C42120.7 (4)
O4—Cs1—O7101.52 (8)O2—C7—C12120.1 (4)
O8—Cs1—O748.20 (9)O2—C7—C8121.6 (4)
O6—Cs1—O747.26 (8)C12—C7—C8118.4 (4)
O5—Cs1—O266.13 (7)O2—C7—Cs2ii114.8 (2)
O9—Cs1—O2117.65 (10)C12—C7—Cs2ii85.8 (2)
O3—Cs1—O278.58 (8)C8—C7—Cs2ii70.6 (2)
O10—Cs1—O293.95 (7)C9—C8—C7119.6 (4)
O4—Cs1—O290.47 (7)C9—C8—C42120.6 (4)
O8—Cs1—O2160.85 (8)C7—C8—C42119.8 (4)
O6—Cs1—O2110.05 (7)C9—C8—Cs2ii74.0 (2)
O7—Cs1—O2150.93 (7)C7—C8—Cs2ii87.7 (2)
O5—Cs1—C50120.07 (16)C42—C8—Cs2ii109.2 (2)
O9—Cs1—C5019.80 (14)C10—C9—C8121.2 (4)
O3—Cs1—C50144.37 (16)C10—C9—Cs2ii83.5 (3)
O10—Cs1—C5065.19 (13)C8—C9—Cs2ii83.5 (2)
O4—Cs1—C50115.19 (18)C11—C10—C9119.3 (4)
O8—Cs1—C5037.35 (18)C11—C10—Cs2ii90.2 (3)
O6—Cs1—C5070.30 (15)C9—C10—Cs2ii74.1 (3)
O7—Cs1—C5060.87 (13)C10—C11—C12121.3 (4)
O2—Cs1—C50136.46 (15)C10—C11—Cs2ii69.0 (3)
O5—Cs1—Cs2110.30 (6)C12—C11—Cs2ii84.4 (3)
O9—Cs1—Cs2117.00 (7)C11—C12—C7120.1 (4)
O3—Cs1—Cs257.56 (6)C11—C12—C37121.2 (4)
O10—Cs1—Cs264.51 (5)C7—C12—C37118.6 (4)
O4—Cs1—Cs235.90 (5)O3—C13—C14118.1 (4)
O8—Cs1—Cs2109.91 (8)O3—C13—C18121.5 (4)
O6—Cs1—Cs2161.14 (6)C14—C13—C18120.4 (4)
O7—Cs1—Cs2137.25 (6)C15—C14—C13118.8 (4)
O2—Cs1—Cs257.51 (5)C15—C14—C38121.8 (4)
C50—Cs1—Cs2128.55 (13)C13—C14—C38119.4 (4)
O1—Cs2—O489.42 (8)C16—C15—C14121.1 (4)
O1—Cs2—O1W72.35 (9)C17—C16—C15119.8 (4)
O4—Cs2—O1W73.93 (9)C16—C17—C18121.3 (4)
O1—Cs2—C3489.44 (9)C17—C18—C13118.7 (4)
O4—Cs2—C3488.81 (10)C17—C18—C39119.9 (4)
O1W—Cs2—C34154.68 (10)C13—C18—C39121.4 (4)
O1—Cs2—C9i114.34 (10)O4—C19—C20121.0 (4)
O4—Cs2—C9i150.89 (9)O4—C19—C24118.5 (4)
O1W—Cs2—C9i96.58 (11)C20—C19—C24120.5 (4)
C34—Cs2—C9i107.10 (11)O4—C19—Cs246.35 (18)
O1—Cs2—C3394.70 (9)C20—C19—Cs2105.9 (3)
O4—Cs2—C3366.60 (9)C24—C19—Cs2113.1 (2)
O1W—Cs2—C33138.59 (10)C19—C20—C21118.2 (4)
C34—Cs2—C3322.94 (10)C19—C20—C39120.9 (4)
C9i—Cs2—C33124.12 (10)C21—C20—C39120.7 (4)
O1—Cs2—C3567.65 (9)C22—C21—C20121.9 (4)
O4—Cs2—C3595.48 (9)C21—C22—C23119.1 (4)
O1W—Cs2—C35138.69 (9)C22—C23—C24120.6 (4)
C34—Cs2—C3522.94 (10)C23—C24—C19119.7 (4)
C9i—Cs2—C35108.70 (10)C23—C24—C40121.2 (4)
C33—Cs2—C3539.69 (10)C19—C24—C40119.1 (4)
O1—Cs2—C10i92.32 (10)C30—C25—O5118.8 (4)
O4—Cs2—C10i158.33 (9)C30—C25—C26122.5 (4)
O1W—Cs2—C10i86.02 (11)O5—C25—C26118.5 (4)
C34—Cs2—C10i112.79 (11)C27—C26—C25117.8 (4)
C9i—Cs2—C10i22.40 (11)C27—C26—C37121.8 (4)
C33—Cs2—C10i134.64 (10)C25—C26—C37120.4 (4)
C35—Cs2—C10i105.16 (11)C26—C27—C28120.5 (4)
O1—Cs2—C8i120.55 (9)C29—C28—C27119.9 (4)
O4—Cs2—C8i149.29 (8)C28—C29—C30121.7 (4)
O1W—Cs2—C8i119.02 (10)C29—C30—C25117.4 (4)
C34—Cs2—C8i85.19 (10)C29—C30—C38121.2 (4)
C9i—Cs2—C8i22.54 (10)C25—C30—C38121.4 (4)
C33—Cs2—C8i101.61 (10)C32—C31—C36122.8 (4)
C35—Cs2—C8i90.61 (10)C32—C31—O10119.3 (3)
C10i—Cs2—C8i39.17 (10)C36—C31—O10117.8 (3)
O1—Cs2—C3279.61 (8)C32—C31—Cs276.3 (2)
O4—Cs2—C3251.40 (8)C36—C31—Cs276.5 (2)
O1W—Cs2—C32118.06 (9)O10—C31—Cs2117.6 (2)
C34—Cs2—C3239.08 (9)C33—C32—C31117.4 (4)
C9i—Cs2—C32145.35 (10)C33—C32—C40120.9 (4)
C33—Cs2—C3221.73 (9)C31—C32—C40121.7 (4)
C35—Cs2—C3244.97 (9)C33—C32—Cs269.9 (2)
C10i—Cs2—C32149.94 (10)C31—C32—Cs282.6 (2)
C8i—Cs2—C32122.84 (9)C40—C32—Cs2117.8 (2)
O1—Cs2—C3651.46 (8)C34—C33—C32121.4 (4)
O4—Cs2—C3681.30 (9)C34—C33—Cs274.4 (3)
O1W—Cs2—C36118.23 (9)C32—C33—Cs288.4 (2)
C34—Cs2—C3638.97 (9)C33—C34—C35119.6 (4)
C9i—Cs2—C36126.30 (10)C33—C34—Cs282.6 (3)
C33—Cs2—C3644.86 (9)C35—C34—Cs283.0 (3)
C35—Cs2—C3621.67 (9)C34—C35—C36121.0 (4)
C10i—Cs2—C36116.27 (11)C34—C35—Cs274.1 (2)
C8i—Cs2—C36111.02 (10)C36—C35—Cs288.2 (2)
C32—Cs2—C3637.99 (9)C35—C36—C31117.8 (4)
O1—Cs2—C7i103.59 (9)C35—C36—C41121.8 (4)
O4—Cs2—C7i154.86 (8)C31—C36—C41120.3 (4)
O1W—Cs2—C7i130.31 (10)C35—C36—Cs270.1 (2)
C34—Cs2—C7i70.19 (10)C31—C36—Cs282.4 (2)
C9i—Cs2—C7i38.37 (10)C41—C36—Cs2117.6 (2)
C33—Cs2—C7i90.64 (9)C12—C37—C26112.2 (4)
C35—Cs2—C7i70.65 (10)C14—C38—C30115.2 (4)
C10i—Cs2—C7i44.29 (10)C18—C39—C20118.3 (3)
C8i—Cs2—C7i21.67 (9)C24—C40—C32114.6 (3)
C32—Cs2—C7i109.26 (9)C36—C41—C2117.2 (3)
C36—Cs2—C7i90.03 (9)C8—C42—C6115.5 (3)
C1—O1—Cs2116.9 (2)O5—C43—C44107.9 (4)
C7—O2—Cs1151.4 (2)O6—C44—C43114.4 (4)
C13—O3—Cs1144.0 (3)O6—C45—C46108.7 (5)
C19—O4—Cs2115.1 (2)O7—C46—C45108.7 (4)
C19—O4—Cs1136.2 (2)O7—C47—C48108.3 (4)
Cs2—O4—Cs1106.33 (8)O8—C48—C47112.3 (5)
C25—O5—C43114.0 (3)O8—C49—C50109.1 (7)
C25—O5—Cs1116.8 (2)O9—C50—C49115.6 (6)
C43—O5—Cs1129.1 (3)O9—C50—Cs148.7 (3)
C44—O6—C45113.6 (4)C49—C50—Cs191.2 (4)
C44—O6—Cs1105.3 (3)O9—C51—C52114.4 (4)
C45—O6—Cs1118.9 (3)O10—C52—C51108.2 (4)
C47—O7—C46111.5 (4)Cl2—C53—Cl3109.1 (4)
C47—O7—Cs1118.1 (3)Cl2—C53—Cl1113.3 (4)
C46—O7—Cs1119.9 (3)Cl3—C53—Cl1109.9 (4)
C49—O8—C48116.0 (5)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

Authors sincerely thank Professor Jacques Vicens who gave advice for the synthesis of calix[6]crown-6.

Funding information

This work was supported by National Research Foundation (grant Nos. 2019R1A2C1002075; 2020R1A4A2002831; 2021R1C1C1006765), South Korea.

References

First citationAsfari, M.-Z., Böhmer, V., Harrowfield, J. & Vicens, J. (2001). Calixarenes. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationBlanda, M. T., Farmer, D. B., Brodbelt, J. S. & Goolsby, B. J. (2000). J. Am. Chem. Soc. 122, 1486–1491.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoda, A. & Sheikh, M. A. (2012). J. Phys. Chem. A, 116, 8615–8623.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBoer, S. A., Wang, P.-X., MacLachlan, M. J. & White, N. G. (2019). Cryst. Growth Des. 19, 4829–4835.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraunecker, W. A., Hurst, K. E., Ray, K. G., Owczarczyk, Z. R., Martinez, M. B., Leick, N., Keuhlen, A., Sellinger, A. & Johnson, J. C. (2018). Cryst. Growth Des. 18, 4160–4166.  Web of Science CrossRef CAS Google Scholar
First citationBritton, E., Ansell, R. J., Howard, M. J. & Hardie, M. J. (2021). Inorg. Chem. 60, 12912–12923.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrockmann, H. & Geeren, H. (1957). Justus Liebigs Ann. Chem. 603, 216–232.  CrossRef CAS Google Scholar
First citationBrockmann, H. & Schmidt-Kastner, G. (1955). Chem. Ber. 88, 57–61.  CrossRef CAS Web of Science Google Scholar
First citationBu, J.-H., Zheng, Q.-Y., Chen, C.-F. & Huang, Z.-T. (2004). Org. Lett. 6, 3301–3303.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCasnati, A., Jacopozzi, P., Pochini, A., Ugozzoli, F., Cacciapaglia, R., Mandolini, L. & Ungaro, R. (1995). Tetrahedron, 51, 591–598.  CSD CrossRef CAS Web of Science Google Scholar
First citationChakraborty, G., Park, I.-H., Medishetty, R. & Vittal, J. J. (2021). Chem. Rev. 121, 3751–3891.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, Y. & Li, H. (2001). New J. Chem. 25, 340–343.  Web of Science CrossRef CAS Google Scholar
First citationChoi, J. K., Kim, S. H., Yoon, J., Lee, K.-H., Bartsch, R. A. & Kim, J. S. (2006). J. Org. Chem. 71, 8011–8015.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734–777.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCunsolo, F., Consoli, G. M. L., Piattelli, M. & Neri, P. (1998). J. Org. Chem. 63, 6852–6858.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeng, J.-H., Luo, J., Mao, Y.-L., Lai, S., Gong, Y.-N., Zhong, D.-C. & Lu, T.-B. (2020). Sci. Adv. 6, eaax9976.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDuraisamy, R., Liebing, P., Harmgarth, N., Lorenz, V., Hilfert, L., Feneberg, M., Goldhahn, R., Engelhardt, F. & Edelmann, F. T. (2020). ACS Omega, 5, 19061–19069.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFujita, M., Tominaga, M., Hori, A. & Therrien, B. (2005). Acc. Chem. Res. 38, 369–378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGeraci, C., Piattelli, M. & Neri, P. (1996). Tetrahedron Lett. 37, 3899–3902.  CrossRef CAS Web of Science Google Scholar
First citationGokel, G. W., Leevy, W. M. & Weber, M. E. (2004). Chem. Rev. 104, 2723–2750.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGutsche, C. D. (1989). Calixarenes. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationHarrowfield, J. & Koutsantonis, G. (2007). Calixarenes in the Nanoworld, edited by J. Vicens, J. Harrowfield & L. Baklouti, pp. 197–212. Dordrecht: Springer Netherlands.  Google Scholar
First citationHong, D. H., Shim, H. S., Ha, J. & Moon, H. R. (2021). Bull. Korean Chem. Soc. 42, 956–969.  Web of Science CrossRef CAS Google Scholar
First citationIkeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713–1734.  CrossRef PubMed CAS Web of Science Google Scholar
First citationIzatt, R. M., Pawlak, K., Bradshaw, J. S. & Bruening, R. L. (1995). Chem. Rev. 95, 2529–2586.  CrossRef CAS Web of Science Google Scholar
First citationJi, H.-F., Dabestani, R., Brown, G. M. & Hettich, R. L. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 585–591.  Web of Science CrossRef Google Scholar
First citationJi, H.-F. M., Brown, G. & Dabestani, R. (1999). Chem. Commun. pp. 609–610.  Web of Science CrossRef Google Scholar
First citationKim, H. J., Lee, M. H., Mutihac, L., Vicens, J. & Kim, J. S. (2012). Chem. Soc. Rev. 41, 1173–1190.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKim, S., Park, I.-H., Lee, S. S., Sim, W. & Lee, J. Y. (2020). CrystEngComm, 22, 5601–5605.  Web of Science CSD CrossRef Google Scholar
First citationKim, S. K., Lee, S. H., Lee, J. Y., Lee, J. Y., Bartsch, R. A. & Kim, J. S. (2004). J. Am. Chem. Soc. 126, 16499–16506.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, S. K., Lynch, V. M., Young, N. J., Hay, B. P., Lee, C.-H., Kim, J. S., Moyer, B. A. & Sessler, J. L. (2012). J. Am. Chem. Soc. 134, 20837–20843.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKim, S. K., Sessler, J. L., Gross, D. E., Lee, C.-H., Kim, J. S., Lynch, V. M., Delmau, L. H. & Hay, B. P. (2010). J. Am. Chem. Soc. 132, 5827–5836.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKříž, J., Dybal, J., Makrlík, E., Vaňura, P. & Moyer, B. A. (2011). J. Phys. Chem. B, 115, 7578–7587.  Web of Science PubMed Google Scholar
First citationLee, J. Y., Kim, H. J., Jung, J. H., Sim, W. & Lee, S. S. (2008). J. Am. Chem. Soc. 130, 13838–13839.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLehn, J.-M. (1978). Acc. Chem. Res. 11, 49–57.  CrossRef CAS Web of Science Google Scholar
First citationLehn, J.-M. (1995). Supramolecular Chemistry, Concept and Perspectives. Weinheim, Germany: VCH.  Google Scholar
First citationLi, J., Chen, Y. & Lu, X. (1999). Tetrahedron, 55, 10365–10374.  Web of Science CrossRef CAS Google Scholar
First citationLi, K., Zhang, L.-Y., Yan, C., Wei, S.-C., Pan, M., Zhang, L. & Su, C.-Y. (2014). J. Am. Chem. Soc. 136, 4456–4459.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, Y., Wang, N., Lei, H., Li, X., Zheng, H., Wang, H., Zhang, W. & Cao, R. (2021). Coord. Chem. Rev. 442, 213996.  Web of Science CrossRef Google Scholar
First citationLindoy, L. F. (1990). J. Coord. Chem. 21, 87–87.  Google Scholar
First citationNimse, S. B. & Kim, T. (2013). Chem. Soc. Rev. 42, 366–386.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOtsuka, H., Araki, K. & Shinkai, S. (1994). J. Org. Chem. 59, 1542–1547.  CrossRef CAS Web of Science Google Scholar
First citationOuyang, T., Huang, H.-H., Wang, J.-W., Zhong, D.-C. & Lu, T.-B. (2017). Angew. Chem. Int. Ed. 56, 738–743.  Web of Science CrossRef CAS Google Scholar
First citationOuyang, T., Wang, H.-J., Huang, H.-H., Wang, J.-W., Guo, S., Liu, W.-J., Zhong, D.-C. & Lu, T.-B. (2018). Angew. Chem. Int. Ed. 57, 16480–16485.  Web of Science CrossRef CAS Google Scholar
First citationPark, I.-H., Dey, A., Sasaki, K., Ohba, M., Lee, S. S. & Vittal, J. J. (2020). IUCrJ, 7, 324–330.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationPedersen, C. J. (1967). J. Am. Chem. Soc. 89, 2495–2496.  CrossRef CAS Web of Science Google Scholar
First citationPrestegard, J. H. & Chan, S. I. (1969). Biochemistry, 8, 3921–3927.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPrestegard, J. H. & Chan, S. I. (1970). J. Am. Chem. Soc. 92, 4440–4446.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRofouei, M. K., Taghdiri, M., Shamsipur, M. & Alizadeh, K. (2010). J. Solution Chem. 39, 1350–1359.  Web of Science CrossRef CAS Google Scholar
First citationRussell, B. C., Warwick, P. E. & Croudace, I. W. (2014). Anal. Chem. 86, 11890–11896.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShinkai, S., Kinda, H. & Manabe, O. (1982). J. Am. Chem. Soc. 104, 2933–2934.  CrossRef CAS Web of Science Google Scholar
First citationTalanov, V. S., Talanova, G. G. & Bartsch, R. A. (2000). Tetrahedron Lett. 41, 8221–8224.  Web of Science CrossRef CAS Google Scholar
First citationYadava, K., Gallo, G., Bette, S., Mulijanto, C. E., Karothu, D. P., Park, I.-H., Medishetty, R., Naumov, P., Dinnebier, R. E. & Vittal, J. J. (2020). IUCrJ, 7, 83–89.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationYang, F. & Chen, Y. (2001). Eur. J. Org. Chem. 2001, 365–368.  CrossRef Google Scholar
First citationZhou, H.-C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673–674.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
ISSN: 2052-2525