research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 9| Part 2| March 2022| Pages 194-203
ISSN: 2052-2525

Crystallography relevant to Mars and Galilean icy moons: crystal behavior of kieserite-type monohydrate sulfates at extraterrestrial conditions down to 15 K

crossmark logo

aDepartment of Mineralogy and Crystallography, University of Vienna, Althanstraße 14, A-1090 Wien, Austria, bBoreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Lavrentieva Avenue 5, Novosibirsk 630090, Russian Federation, and cNovosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation
*Correspondence e-mail: manfred.wildner@univie.ac.at

Edited by P. Lightfoot, University of St Andrews, United Kingdom (Received 13 October 2021; accepted 30 November 2021; online 11 January 2022)

Monohydrate sulfate kieserites (M2+SO4·H2O) and their solid solutions are essential constituents on the surface of Mars and most likely also on Galilean icy moons in our solar system. Phase stabilities of end-member representatives (M2+ = Mg, Fe, Co, Ni) have been examined crystallographically using single-crystal X-ray diffraction at 1 bar and temperatures down to 15 K, by means of applying open He cryojet techniques at in-house laboratory instrumentation. All four representative phases show a comparable, highly anisotropic thermal expansion behavior with a remarkable negative thermal expansion along the monoclinic b axis and a pronounced anisotropic expansion perpendicular to it. The lattice changes down to 15 K correspond to an `inverse thermal pressure' of approximately 0.7 GPa, which is far below the critical pressures of transition under hydro­static compression (Pc ≥ 2.40 GPa). Consequently, no equivalent structural phase transition was observed for any compound, and neither dehydration nor rearrangements of the hydrogen bonding schemes have been observed. The M2+SO4·H2O (M2+ = Mg, Fe, Co, Ni) end-member phases preserve the kieserite-type C2/c symmetry; hydrogen bonds and other structural details were found to vary smoothly down to the lowest experimental temperature. These findings serve as an important basis for the assignment of sulfate-related signals in remote-sensing data obtained from orbiters at celestial bodies, as well as for thermodynamic considerations and modeling of properties of kieserite-type sulfate monohydrates relevant to extraterrestrial sulfate associations at very low temperatures.

1. Introduction

The abundance of sulfate minerals, in particular hydrated magnesium sulfates (MgSO4·nH2O), has been confirmed on Mars and elsewhere in the solar system starting with the first in situ discovery in martian soils by the Viking Mars probe (Keil et al., 1978[Keil, K., Clark, B. C., Baird, A. K., Toulmin, P. III & Rose, H. J. J. (1978). Naturwissenschaften, 65, 231-238.]; Clark & Van Hart, 1981[Clark, B. C. & Van Hart, D. C. (1981). Icarus, 45, 370-378.]). The ability of these materials to release or absorb water and the prevailing humidity, even forming liquid brines (Peterson & Wang, 2006[Peterson, R. C. & Wang, R. (2006). Geol, 34, 957-960.]), ranks them among critical components governing the water cycles on the surface of Mars and other celestial bodies. The influence of temperature, humidity and pressure on dehydration and rehydration capabilities has been investigated in various laboratory studies (e.g. Wang et al., 2009[Wang, A., Freeman, J. J. & Jolliff, B. L. (2009). J. Geophys. Res. 114, E04010.]; Nakamura & Ohtani, 2011[Nakamura, R. & Ohtani, E. (2011). Icarus, 211, 648-654.]; Fortes et al., 2017a[Fortes, A. D., Fernandez-Alonso, F., Tucker, M. & Wood, I. G. (2017a). Acta Cryst. B73, 33-46.]). Among these MgSO4·nH2O phases, covering a wide range of hydration states (n) from 0 to 11, the monohydrate sulfate kieserite and its solid solutions with transition metal (TM) counterparts (Papike et al., 2007[Papike, J. J., Burger, P. V., Karner, J. M. & Shearer, C. K. (2007). Proceedings of the 7th International Conference on Mars, 9 July 2007, Albuquerque, New Mexico, USA. Abstract 87131.]) dominate the deposits at lower martian latitudes, where it is assumed to be an essential H2O carrier (e.g. Christensen et al., 2004[Christensen, P. R., Wyatt, M. B., Glotch, T. D., Rogers, A. D., Anwar, S., Arvidson, R. E., Bandfield, J. L., Blaney, D. L., Budney, C., Calvin, W. M., Fallacaro, A., Fergason, R. L., Gorelick, N., Graff, T. G., Hamilton, V. E., Hayes, A. G., Johnson, J. R., Knudson, A. T., McSween, H. Y. Jr, Mehall, G. L., Mehall, L. K., Moersch, J. E., Morris, R. V., Smith, M. D., Squyres, S. W., Ruff, S. W. & Wolff, M. J. (2004). Science, 306, 1733-1739.]; Arvidson et al., 2005[Arvidson, R. E., Poulet, F., Bibring, J.-P., Wolff, M., Gendrin, A., Morris, R. V., Freeman, J. J., Langevin, Y., Mangold, N. & Bellucci, G. (2005). Science, 307, 1591-1594.]; Clark et al., 2005[Clark, B. C., Morris, R. V., McLennan, S. M., Gellert, R., Jolliff, B., Knoll, A. H., Squyres, S. W., Lowenstein, T. K., Ming, D. W., Tosca, N. J., Yen, A., Christensen, P. R., Gorevan, S., Brückner, J., Calvin, W., Dreibus, G., Farrand, W., Klingelhoefer, G., Waenke, H., Zipfel, J., Bell, J. F. III, Grotzinger, J., McSween, H. Y. & Rieder, R. (2005). Earth Planet. Sci. Lett. 240, 73-94.]; Bishop et al., 2009[Bishop, J. L., Parente, M., Weitz, C. M., Noe Dobrea, E. Z., Roach, L. H., Murchie, S. L., McGuire, P. C., McKeown, N. K., Rossi, C. M., Brown, A. J., Calvin, W. M., Milliken, R. & Mustard, J. F. (2009). J. Geophys. Res. 114, E00D09.]).

However, there is some ongoing dispute regarding the stability of kieserite on the martian surface. On the one hand, Chipera & Vaniman (2007[Chipera, S. J. & Vaniman, D. T. (2007). Geochim. Cosmochim. Acta, 71, 241-250.]) argue that the relative humidity should lead to its rehydration to starkeyite, MgSO4·4H2O, which is thermodynamically stable under the prevailing conditions. On the other hand, Wang et al. (2009[Wang, A., Freeman, J. J. & Jolliff, B. L. (2009). J. Geophys. Res. 114, E04010.]) found that the presence of Ca- and Fe-sulfates and Fe-oxides or Fe-hydroxides enhances the dehydration of higher Mg-sulfates down to the monohydrate. Smectite minerals were shown to have a stabilizing effect on the hydration states, allowing lower sulfate hydrates to exist well outside their stability range (Wilson & Bish, 2012[Wilson, S. A. & Bish, D. L. (2012). Geochim. Cosmochim. Acta, 96, 120-133.]). Furthermore, there is evidence that martian kieserite actually has an intermediate composition between the end members kieserite, MgSO4·H2O, and szomolnokite, FeSO4·H2O (Bishop et al., 2009[Bishop, J. L., Parente, M., Weitz, C. M., Noe Dobrea, E. Z., Roach, L. H., Murchie, S. L., McGuire, P. C., McKeown, N. K., Rossi, C. M., Brown, A. J., Calvin, W. M., Milliken, R. & Mustard, J. F. (2009). J. Geophys. Res. 114, E00D09.]). The respective synthetic materials used for the investigation of the given solid solution (Talla & Wildner, 2019[Talla, D. & Wildner, M. (2019). Am. Mineral. 104, 1732-1749.]) show no sign of rehydration even after several years under ambient conditions as soon as the Fe content exceeds 0.2 apfu.

A related debate concerns the existence and nature of a postulated second structural polytype of kieserite with a broader stability range but similar spectroscopic properties, the so-called low-humidity (LH) kieserite, presumed by several authors to prevail on Mars (Wang et al., 2009[Wang, A., Freeman, J. J. & Jolliff, B. L. (2009). J. Geophys. Res. 114, E04010.]; Jamieson et al., 2014[Jamieson, C. S., Noe Dobrea, E. Z., Dalton, J. B. III, Pitman, K. M. & Abbey, W. Z. (2014). J. Geophys. Res. Planets, 119, 1218-1237.]). While elucidation of the actual structure and properties of this enigmatic `LH phase' is still pending to date, it is one of the goals of the present study to provide reliable – hitherto missing – low-temperature reference data of `classical' MSO4·H2O compounds, to serve as a benchmark for comparison and as a basis for spectroscopic and thermodynamic modeling purposes.

Spectroscopic data recorded by orbiters reveal sulfate-rich regions to be present not only on the martian surface, but also appear to be an abundant feature on many other celestial bodies in our solar system, i.e. on the icy moons of Jupiter and Saturn (Kargel, 1991[Kargel, J. S. (1991). Icarus, 94, 368-390.]; McCord et al., 2001a[McCord, T. B., Hansen, G. B. & Hibbitts, C. A. (2001a). Science, 292, 1523-1525.]). Higher hydrated Mg-sulfates (n = 6–11) are assumed to be relevant non-ice mineral constituents on the surface but also in the ice mantles of the Galilean moons (e.g. McCord et al., 2001a[McCord, T. B., Hansen, G. B. & Hibbitts, C. A. (2001a). Science, 292, 1523-1525.]; Dalton et al., 2005[Dalton, J. B., Prieto-Ballesteros, O., Kargel, J. S., Jamieson, C. S., Jolivet, J. & Quinn, R. (2005). Icarus, 177, 472-490.], 2012[Dalton, J. B., Shirley, J. H. & Kamp, L. W. (2012). J. Geophys. Res. 117, E03003.]). While McCord et al. (2001b[McCord, T. B., Orlando, T. M., Teeter, G., Hansen, G. B., Sieger, M. T., Petrik, N. G. & Van Keulen, L. (2001b). J. Geophys. Res. 106, 3311-3319.]) did not find any indication of Mg-sulfate radiolysis when subjecting epsomite (n = 7) to a 100 eV electron beam, Tani et al. (2012[Tani, A., Hasegawa, N., Norizawa, K., Yada, T. & Ikeya, M. (2012). Radiat. Meas. 47, 890-893.]) determined the formation of hydrogen and sulfite radicals at 90 K by exposure to gamma radiation. More importantly, several studies have shown that the interaction of UV or other energetic radiation with highly hydrated sulfates significantly catalyzes and speeds up their dehydration. Under such influence, epsomite is converted to hexahydrite [the mineral name for the hexahydrate, MgSO4·6H2O (Cardell et al., 2007[Cardell, C., Sánchez-Navas, A., Olmo-Reyes, F. J. & Martín-Ramos, J. D. (2007). Anal. Chem. 79, 4455-4462.])], the further dehydration of which has also been proven to be catalyzed by UV radiation (Cloutis et al., 2007[Cloutis, E. A., Craig, M. A., Mustard, J. F., Kruzelecky, R. V., Jamroz, W. R., Scott, A., Bish, D. L., Poulet, F., Bibring, J.-P. & King, P. L. (2007). Geophys. Res. Lett. 34, L20202.]). This processes could lead to the formation of sulfate monohydrates on the icy surface of the Galilean moons.

Moreover, lower-hydrated or even anhydrous sulfates are also expected to be present within the deeper mantle and core of these planetary bodies (Kargel, 1991[Kargel, J. S. (1991). Icarus, 94, 368-390.]; Nakamura & Ohtani, 2011[Nakamura, R. & Ohtani, E. (2011). Icarus, 211, 648-654.]; Meusburger et al., 2020[Meusburger, J. M., Ende, M., Matzinger, P., Talla, D., Miletich, R. & Wildner, M. (2020). Icarus, 336, 113459.]). Depending on their thermodynamic stability, they play a key role for the formation of subsurface oceans, which could even contain extraterrestrial life, as discussed for the south-polar region of Saturn's moon Enceladus, where a subsurface body of liquid exists due to tidal heating (Solomonidou et al., 2011[Solomonidou, A., Coustenis, A., Bampasidis, G., Kyriakopoulos, K., Moussas, X., Bratsolis, E. & Hirtzig, M. (2011). J. Cosmol. 13, 4191-4211.]). However, no clear confirmation of the presence of sulfates on this latter object or in its hydro­thermal plumes exists, in part because of significant overlaps of rather broad bands and combination modes of various sulfate minerals in the standard <5 µm spectral range covered by orbiters (Bishop et al., 2004[Bishop, J. L., Darby Dyar, M., Lane, M. D. & Banfield, L. F. (2004). Int. J. Astrobiology, 3, 275-285.]). This problem becomes even more remarkable when the deposits are spatially restricted with other phases present, necessitating the use of complex spectral unmixing models (e.g. Combe et al., 2008[Combe, J.-P., Le Mouélic, S., Sotin, C., Gendrin, A., Mustard, J. F., Le Deit, L., Launeau, P., Bibring, J.-P., Gondet, B., Langevin, Y. & Pinet, P. (2008). Planet. Space Sci. 56, 951-975.]). However, it is most probable that the rocky core of the moon corresponds to C1/C2 chondritic composition (Kargel, 1991[Kargel, J. S. (1991). Icarus, 94, 368-390.]; Sekine et al., 2015[Sekine, Y., Shibuya, T., Postberg, F., Hsu, H.-W., Suzuki, K., Masaki, Y., Kuwatani, T., Mori, M., Hong, P. K., Yoshizaki, M., Tachibana, S. & Sirono, S. (2015). Nat. Commun. 6, 8604.]), where high sulfate contents are present in the soluble fraction (Fredriksson & Kerridge, 1988[Fredriksson, K. & Kerridge, J. F. (1988). Meteoritics, 23, 35-44.]; Burgess et al., 1991[Burgess, R., Wright, I. P. & Pillinger, P. T. (1991). Meteoritics, 26, 55-64.]), filling abundant brecciation cracks (Richardson, 1978[Richardson, S. M. (1978). Meteoritics, 13, 141-159.]); therefore the presence of sulfates also on Enceladus will probably be confirmed by future missions.

Following our investigations on the structural crystallography of kieserite-type solid solutions: M2+SO4·H2O (M2+ = Mg, Fe, Co, Ni), including the temperature-dependent behavior of the end members at temperatures prevailing at equatorial martian latitudes (Bechtold & Wildner, 2016[Bechtold, A. & Wildner, M. (2016). Eur. J. Mineral. 28, 43-52.]; Talla & Wildner, 2019[Talla, D. & Wildner, M. (2019). Am. Mineral. 104, 1732-1749.]; Talla et al., 2020[Talla, D., Balla, M., Aicher, C., Lengauer, C. L. & Wildner, M. (2020). Am. Mineral. 105, 1472-1489.]), we recently carried out investigations under high-pressure conditions relevant to the interior of individual icy moons (Meusburger et al., 2019[Meusburger, J. M., Ende, M., Talla, D., Wildner, M. & Miletich, R. (2019). J. Solid State Chem. 277, 240-252.], 2020[Meusburger, J. M., Ende, M., Matzinger, P., Talla, D., Miletich, R. & Wildner, M. (2020). Icarus, 336, 113459.]; Ende et al., 2020[Ende, M., Kirkkala, T., Loitzenbauer, M., Talla, D., Wildner, M. & Miletich, R. (2020). Inorg. Chem. 59, 6255-6266.]; Wildner et al., 2021[Wildner, M., Ende, M., Meusburger, J. M., Kunit, R., Matzinger, P., Talla, D. & Miletich, R. (2021). Z. Kristallogr. 236, 225-237.]). These experimental studies revealed a second-order phase transition from the monoclinic α-phase (space group C2/c) to a triclinic β-phase (space group P1) at critical transition pressures ranging from 2.40 (Co) to 6.15 GPa (Fe). The findings from high-pressure crystallography show a partial rearrangement of the hydrogen-bonding scheme as the most obvious structural change. Earlier studies down to 110 K (Talla & Wildner, 2019[Talla, D. & Wildner, M. (2019). Am. Mineral. 104, 1732-1749.], Talla et al., 2020[Talla, D., Balla, M., Aicher, C., Lengauer, C. L. & Wildner, M. (2020). Am. Mineral. 105, 1472-1489.]) gave no evidence of a comparable transition, however, it can not be ruled out to occur at temperatures even lower than the previously covered range. Although on Mars the temperatures in equatorial latitudes range between 280 and 170 K (Witzke et al., 2007[Witzke, A., Arnold, G. & Stöffler, D. (2007). Planet. Space Sci. 55, 429-440.]), significantly lower temperatures can be expected on the surface of the icy satellites. The temperature changes during the seasonal and diurnal cycles on some of the icy moons of Jupiter and Saturn have been modeled, such as for Europa (Ashkenazy, 2019[Ashkenazy, Y. (2019). Heliyon, 5, e01908.]), where the mean annual temperature range spans (depending on the assumed internal heating rate) from 94 to 98 K in equatorial latitudes and from 35 to 62 K on the poles. The measurements during the Rosetta mission to comet 67P showed evidence of SO2 in its plume and ammonium sulfate on its surface, suggesting the presence of sulfate on cometary bodies and asteroids (Poch et al., 2020[Poch, O., Istiqomah, I., Quirico, E., Beck, P., Schmitt, B., Theulé, P., Faure, A., Hilly Blant, P., Bonal, L., Raponi, A., Ciarniello, M., Rousseau, B., Potin, S., Brissaud, O., Flandinet, L., Filacchione, G., Pommerol, A., Thomas, N., Kappel, D., Mennella, V., Moroz, L., Vinogradoff, V., Arnold, G., Erard, S., Bockelée-Morvan, D., Leyrat, C., Capaccioni, F., De Sanctis, M. C., Longobardo, A., Mancarella, F., Palomba, E. & Tosi, F. (2020). Science, 367, eaaw7462.]). In such cases, they are exposed to temperatures as low as those of the cosmic vacuum, amounting to a mere 2.7 K.

Since the reliable knowledge of phase relations and structural details of relevant sulfate minerals at astrophysically significant conditions is of utmost importance for their identification and discrimination in remote-sensing spectroscopic data from orbiters, we extend our investigations on end-member monohydrate sulfates well down to temperatures as low as 15 K. To reveal the structural changes, in situ low-temperature X-ray crystallography was carried out at temperature conditions relevant to the icy moons of Jupiter and Saturn and comparable objects in the outer solar system, as well as the polar regions of Mars or dwarf planets and asteroids within the inner solar system. At the same time, this study aims to verify any potential structural phase transition equivalent to those reported earlier under compression of kieserite-type phases, following the analogy of `inverse thermal pressure' on cooling.

2. Experimental

2.1. Temperature-dependent single-crystal X-ray data collection

Single crystals of synthetic kieserite-type compounds M2+SO4·H2O (M2+ = Mg, Fe, Co, Ni) for the present data collections were extracted from the respective end-member batches prepared earlier (Bechtold & Wildner, 2016[Bechtold, A. & Wildner, M. (2016). Eur. J. Mineral. 28, 43-52.]; Talla & Wildner, 2019[Talla, D. & Wildner, M. (2019). Am. Mineral. 104, 1732-1749.]; Talla et al., 2020[Talla, D., Balla, M., Aicher, C., Lengauer, C. L. & Wildner, M. (2020). Am. Mineral. 105, 1472-1489.]). Data collections between 313 and 113 K were performed in steps of 40 K on a Bruker Apex II diffractometer equipped with a CCD area detector and an Incoatec Microfocus Source IµS (30 W, multilayer mirror, Mo Kα), in a dry stream of nitro­gen (Cryostream 800, Oxford Cryosystems). Several sets of φ- and ω-scans with a 2° scan width were measured at a crystal–detector distance of 40 mm up to 80° 2θ full sphere. Absorption was corrected by evaluation of multi-scans. Measurements and correction procedures were performed with the SAINT software package (Bruker AXS, 2012[Bruker (2012). APEX2 V1.0. and SADABS 2012/1, Bruker AXS Inc., Madison, Wisconsin, USA.]). Data collections between 75 and 15 K (and at room temperature) were performed in steps of 15 K with Mo Kα radiation on an Oxford Diffraction Gemini R Ultra diffractometer with a CCD detector. The open-flow helium cryostat Helijet from Oxford Diffraction with helium coaxial flow shielding was used to maintain low temperatures of the samples. Data collections and treatments were performed using CrysAlisPro software (Rigaku Oxford Diffraction, 2016[Rigaku Oxford Diffraction (2016). CrysAlis PRO. Rigaku Oxford Diffraction, The Woodlands, Texas, USA.]). During several of the scheduled measurements we encountered a problem of excessive formation of an 'ice'-cover on the sample crystals, composed from solidified air components, mainly O2 and N2, in the open-flow helium cryostat, leading to interference of sample reflections with the emergent multi-grain powder rings (see Zakharov et al., 2021[Zakharov, B. A., Miletich, R., Bogdanov, N. E. & Boldyreva, E. V. (2021). J. Appl. Cryst. 54, 1271-1275.]). These datasets were excluded from consideration: respective data collections were aborted and/or deleted from the further analyses. Data collection was resumed after the problem was fixed or, at least, partly solved by changing the crystal holder type and other preventive measures.

2.2. Crystal structure refinements

All structure refinements were performed on F2 with SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) in the `traditional' non-reduced kieserite cell setting (cf. Wildner & Giester, 1991[Wildner, M. & Giester, G. (1991). N. Jahrb. Min. Monatsh. 1991, 296-306.]) in the space group C2/c. Scattering curves for neutral atoms were used. Note that, for the purposes of data consistency and comparability, the cell axis parameters from the temperature-dependent measurements were corrected in such a way that respective values at 293 K (interpolated for Apex II measurements) match those from earlier room-temperature (RT) studies, obtained on a Nonius Kappa CCD diffractometer (see Bechtold & Wildner, 2016[Bechtold, A. & Wildner, M. (2016). Eur. J. Mineral. 28, 43-52.]; Talla & Wildner, 2019[Talla, D. & Wildner, M. (2019). Am. Mineral. 104, 1732-1749.]; Talla et al., 2020[Talla, D., Balla, M., Aicher, C., Lengauer, C. L. & Wildner, M. (2020). Am. Mineral. 105, 1472-1489.]), since the latter RT data proved to most closely match corresponding high-precision lattice parameters obtained with the 8-position centering mode (King & Finger, 1979[King, H. E. & Finger, L. W. (1979). J. Appl. Cryst. 12, 374-378.]) on a Stoe AED II diffractometer. The respective corrections were in the range ≤2‰. Further note that the structures of the Mg and Fe compounds at 193 and 113 K have already been published by Talla & Wildner (2019[Talla, D. & Wildner, M. (2019). Am. Mineral. 104, 1732-1749.]) and those of NiSO4·H2O at 273, 193 and 113 K by Talla et al. (2020[Talla, D., Balla, M., Aicher, C., Lengauer, C. L. & Wildner, M. (2020). Am. Mineral. 105, 1472-1489.]). Crystal structure drawings throughout the paper were prepared with the program VESTA3 (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

2.3. Thermal equation of state calculations

Due to the limited number of temperature-dependent unit-cell data points (8–10 at most) obtained from full single-crystal structure determinations, we preferred to keep the thermal equation of state (EoS) analyses as simple as possible and with a minimum of variable parameters. The unit-cell axes lengths and cell volumes between 15 and 313 K were fitted therefore to a Fei-type (Fei, 1995[Fei, V. (1995). Thermal expansion. In Mineral Physics & Crystallography: a Handbook of Physical Constants, edited by T. J. Ahrens. Washington DC: American Geophysical Union.]) thermal EoS using the EoSFit7c and EoSFit7-GUI programs by Angel and coworkers (Angel et al., 2014[Angel, R. J., Gonzalez-Platas, J. & Alvaro, M. (2014). Z. Kristallogr. 229, 405-419.]; Gonzalez-Platas et al., 2016[Gonzalez-Platas, J., Alvaro, M., Nestola, F. & Angel, R. (2016). J. Appl. Cryst. 49, 1377-1382.]). The reference temperature was chosen at Tref = 293 K; α2 was fixed at 0 (see also Angel et al., 2014[Angel, R. J., Gonzalez-Platas, J. & Alvaro, M. (2014). Z. Kristallogr. 229, 405-419.]), i.e. simplifying the thermal EoS to the linear approach with two coefficients following α = α0 + α1T. Strain and thermal expansion tensors were calculated from the thermal EoS with the Strain utility in the EoSFit7c program.

3. Results and discussion

3.1. General aspects

Selected crystal data and details of the data collections and structure refinements are summarized in Table S1 of the supporting information. Final atomic parameters are listed in Table S2, and results of the thermal EoS and strain calculations in Table 1[link]. The most relevant interatomic distances and angles are given in Table S3. Under ambient conditions, kieserite and isotypic compounds M2+SO4·H2O (M2+ = Mg, Fe, Co, Ni) crystallize with monoclinic symmetry in the space group C2/c (Hawthorne et al., 1987[Hawthorne, F. C., Groat, L. A., Raudsepp, M. & Ercit, T. S. (1987). N. Jahrb. Min. Abh. 157, 121-132.]; Wildner & Giester, 1991[Wildner, M. & Giester, G. (1991). N. Jahrb. Min. Monatsh. 1991, 296-306.]). The crystal structure of the Mg-representative kieserite is illustrated in Fig. 1[link] projected along the crystallographic c axis. The structures are built from kinked chains of O3(H2O)-corner-sharing MO4(H2O)2 octahedra (point symmetry 1), elongated along their O3–O3 axes, and nearly regular SO4 tetrahedra (point symmetry 2), intra-linking adjacent octahedra within the chains by common O2 corners. These octahedral–tetrahedral chains are aligned parallel to the c axis (i.e. along the viewing direction in Fig. 1[link]) and interlinked to a framework by sharing the remaining polyhedral O1 corners as well as by moderately strong O3–H⋯O2 hydrogen bonds.

Table 1
Results of Fei-type thermal EoS and strain tensor calculations for kieserite-type compounds M2+SO4·H2O (M2+ = Mg, Fe, Co, Ni) for Tref = 293 K using EoSFit7c (Angel et al., 2014[Angel, R. J., Gonzalez-Platas, J. & Alvaro, M. (2014). Z. Kristallogr. 229, 405-419.])

Values of α are given as α × 10−5 K−1, α0 × 105 K−1 and α1 × 108 K−2. The parameter α2 was fixed at α2 = 0. Strain tensor components eij (based on Cartesian axes X // a*, Y // b, Z // c) are given for 113 K.

  Mg Fe Co Ni
αV,293 3.41 (65) 4.66 (49) 3.34 (28) 3.55 (37)
V0 355.75 (5) 365.65 (6) 354.77 (3) 342.98 (3)
α0(V) 0.5 (7) 0.3 (5) 1.4 (3) −1.7 (4)
α1(V) 10 (3) 15 (3) 6.7 (15) 18 (2)
         
αa,293 5.89 (24) 4.49 (18) 4.28 (26) 2.76 (54)
a0 6.9146 (4) 7.0863 (3) 6.9699 (3) 6.8289 (6)
α0(a) –0.4 (5) 1.58 (18) 1.2 (3) 0.7 (5)
α1(a) 21.4 (12) 9.9 (9) 10.4 (13) 7(3)
         
αb,293 –4.36 (30) –1.71 (19) –2.68 (16) –0.79 (49)
b0 7.6285 (6) 7.5545 (3) 7.5947 (3) 7.6048 (7)
α0(b) 0.6 (3) –0.98 (19) –0.34 (16) –1.4 (5)
α1(b) –17.0 (15) –2.5 (10) –8.0 (8) 2(3)
         
αc,293 4.05 (21) 3.31 (16) 2.95 (24) 3.04 (40)
c0 7.6429 (4) 7.7802 (3) 7.6321 (4) 7.4625 (5)
α0(c) –0.3 (2) 0.76 (16) 1.8 (2) –1.3 (4)
α1(c) 14.8 (10) 8.7 (8) 4.0 (12) 15 (2)
         
e11 –0.00468 (6) –0.00416 (6) –0.00390 (7) –0.00216 (14)
e22 0.00522 (6) 0.00279 (6) 0.00339 (7) 0.00172 (13)
e33 –0.00491 (6) –0.00452 (7) –0.00446 (8) –0.00342 (14)
e13 0.00300 (3) 0.00266 (3) 0.00214 (3) 0.00155 (6)
[Figure 1]
Figure 1
Crystal structure of kieserite (MgSO4·H2O) at 15 K, projected along the c axis, i.e. along the octahedral–tetrahedral chains.

3.2. Thermal expansion of the unit cell

The lattice dimensions, depicted in Fig. 2[link], as well as the structural properties of the kieserite-group representatives deviate more or less from a linear fashion with decreasing temperature. While approximately linear shifts of lattice parameters are usually observed in high-temperature studies from RT upwards, the tendency to flatten below around 100 K towards absolute zero is well known for many crystalline solids (e.g. Drebushchak, 2020[Drebushchak, V. A. (2020). J. Therm. Anal. Calorim. 142, 1097-1113.]), and even an inversion of the trends leading to negative bulk volume expansion may be observed below ∼50 K; respective examples among sulfates are higher hydrates like meridianiite [MgSO4·11H2O (Fortes et al., 2008[Fortes, A. D., Wood, I. G. & Knight, K. S. (2008). Phys. Chem. Miner. 35, 207-221.])] or mirabilite [Na2SO4·10H2O (Brand et al., 2009[Brand, H. E. A., Fortes, A. D., Wood, I. G., Knight, K. S. & Vočadlo, L. (2009). Phys. Chem. Miner. 36, 29-46.])].

[Figure 2]
Figure 2
Unit-cell dimensions of kieserite-type compounds M2+SO4·H2O (M2+ = Mg, Fe, Co, Ni) in the temperature range 15–313 K with lines representing the Fei-type EoS results (Table 1[link]): (a) a and c axes; (b) b axes; (c) unit-cell volumes; and (d) monoclinic angle β. For errors see the underlying data in Tables 1[link], S1 and S2.

The thermal expansion parameters and Fei-type EoS coefficients of the title compounds are summarized in Table 1[link]. As expected, the cell volumes decrease on cooling [Fig. 2[link](c)], as do the a and c axes and the monoclinic angle β [Figs. 2[link](a) and 2(d)], whereas the b axes lengthen in all four compounds over the full investigated temperature range [Fig. 2[link](b)], showing a pronounced negative thermal expansion (NTE) effect. The present NTE behavior is even more remarkable since, with αb,293 ranging between −4.4 × 10−5 K−1 in kieserite (Mg) and −0.8 × 10−5 K−1 in NiSO4·H2O, it amounts to a magnitude comparable to the positive thermal expansion of the a and c axes, and it furthermore shows no sign of turning positive or at least flattenning towards higher temperatures. NTE behavior of single lattice axes in otherwise `thermally normal' compounds is not uncommon, but usually at a much lower rate. For example, in epsomite (MgSO4·7H2O) and meridianiite (MgSO4·11H2O) each one of their lattice axes shows NTE (in the former case with an already high α of at most −2 × 10−5 K−1), both turning positive at ∼250 K (Fortes et al., 2006[Fortes, A. D., Wood, I. G., Alfredsson, M., Vočadlo, L. & Knight, K. S. (2006). Eur. J. Mineral. 18, 449-462.], 2008[Fortes, A. D., Wood, I. G. & Knight, K. S. (2008). Phys. Chem. Miner. 35, 207-221.]); in chalcanthite, CuSO4·5H2O, a very weak axial NTE is observed which flattens towards ∼300 K (Schofield & Knight, 2000[Schofield, P. F. & Knight, K. S. (2000). Physica B, 276-278, 897-898.]). The strong NTE effect of the b axes in the title compounds is further discussed below (Section 3.4[link]).

Regarding the bulk volume thermal expansion αV [Table 1[link], Fig. 2[link](c)], the Fe compound with the largest cell volume also shows the strongest volume expansion (4.7 × 10−5 K−1), while, within limits of error, the Mg and Co compounds (similar cell volumes) but also the Ni phase with the smallest cell volume, all have the same smaller volume expansion (∼3.4 × 10−5 K−1). The flattening of the cell volumes towards low temperatures seems to be somewhat more pronounced in the Ni and Mg phases compared with those of Co and especially Fe. MgSO4·H2O consistently exhibits the strongest changes of the individual cell-edge lengths with temperature, especially concerning the excessive negative thermal expansion of the b axes, whereas NiSO4·H2O shows a significantly smaller average change of the axial lengths [Figs. 2[link](a) and 2(b)]. Among the four compounds, the a axes show a slightly higher expansion than the c axes, apart from the insignificant inversion in NiSO4·H2O (Table 1[link]).

The respective thermal expansion tensors depicted in Figs. 3[link](a) and 3(b) (derived from the strain components in Table 1[link]) exhibit pronounced anisotropy also in the plane perpendicular to the NTE-affected b axes, not evident from the more or less similar thermal expansion values αa,c of the a and c axes (Table 1[link]). As illustrated in Fig. 3[link](b), the respective smallest positive eigenvalues are oriented approximately parallel to the short cell diagonal in the ac plane, the largest ones approximately parallel to [201]. For the Ni compound, these directions deviate slightly (∼9°) from the quite consistent orientation in the other compounds. The relation between the anisotropy of thermal expansion and stereochemical changes with temperature is further discussed in Section 3.4[link].

[Figure 3]
Figure 3
(a) Thermal expansion tensor in MgSO4·H2O at 113 K (Tref = 293 K), with green indicating positive values, red indicating negative values; (b) cross sections of the thermal expansion tensors of kieserite-type compounds M2+SO4·H2O (M2+ = Mg, Fe, Co, Ni) at 113 K (Tref = 293 K) in the ac plane, superimposed on a respective projection of the structure of kieserite at 113 K. For increasing temperature, black arrows show the sense of tetrahedral rotations around the twofold axis, red arrows indicate the resulting opposing translations of neighboring octahedral–tetrahedral chains within the ac plane (see text). The tensor surface and cross sections were prepared with the program WinTensor (Kaminski, 2014[Kaminski, W. (2014). WinTensor.http://cad4.cpac.washington.edu/WinTensorhome/WinTensor.htm.]).

The volume thermal expansion αV of the investigated kieserite-type compounds compares well with that of anhydrous sulfates. For example, in α- and β-MgSO4 the values at 300 K are 3.7 × 10−5 and 4.1 × 10−5 K−1, respectively (Fortes et al., 2007[Fortes, A. D., Wood, I. G., Vočadlo, L., Brand, H. E. A. & Knight, K. S. (2007). J. Appl. Cryst. 40, 761-770.]), in anhydrite (CaSO4) it is 3.7 × 10−5 K−1 at RT (Evans, 1979[Evans, H. T. Jr (1979). Phys. Chem. Miner. 4, 77-82.]). Higher hydrated sulfates usually also exhibit larger thermal expansion coefficients at or close to RT: in gypsum [CaSO4·2H2O (Schofield et al., 1996[Schofield, P. F., Knight, K. S. & Stretton, I. C. (1996). Am. Mineral. 81, 847-851.])] αV is 7.0 × 10−5 K−1 (320 K), in epsomite [MgSO4·7H2O (Fortes et al., 2006[Fortes, A. D., Wood, I. G., Alfredsson, M., Vočadlo, L. & Knight, K. S. (2006). Eur. J. Mineral. 18, 449-462.])] it is 11 × 10−5 K−1 (300 K), in MgSO4·9H2O (Fortes et al., 2017b[Fortes, A. D., Knight, K. S. & Wood, I. G. (2017b). Acta Cryst. B73, 47-64.]) it is 11.3 × 10−5 K−1 (250 K), in mirabilite [Na2SO4·10H2O (Brand et al., 2009[Brand, H. E. A., Fortes, A. D., Wood, I. G., Knight, K. S. & Vočadlo, L. (2009). Phys. Chem. Miner. 36, 29-46.])] it is 11 × 10−5 K−1 (300 K) and in meridianiite [MgSO4·11H2O (Fortes et al., 2008[Fortes, A. D., Wood, I. G. & Knight, K. S. (2008). Phys. Chem. Miner. 35, 207-221.]] it is 7.2 × 10−5 K−1 (250 K).

As a major result of the present investigation, we observed no evidence suggesting a structural phase transition in any of the four investigated compounds within the studied temperature range, i.e. all four title compounds keep the monoclinic C2/c symmetry that the kieserite structure type features under ambient conditions. Note that a magnetic order–disorder transition was reported for FeSO4·H2O at 29.6 K using Mössbauer spectroscopy (Van Alboom et al., 2009[Alboom, A. V., De Resende, V. G., De Grave, E. & Gómez, J. A. M. (2009). J. Mol. Struct. 924-926, 448-456.]), which is, however, not expected to be detectable in X-ray diffraction studies. Bearing in mind that high-pressure phase transitions in the investigated compounds occur at critical pressures Pc ≥ 2.40 GPa (Meusburger et al., 2019[Meusburger, J. M., Ende, M., Talla, D., Wildner, M. & Miletich, R. (2019). J. Solid State Chem. 277, 240-252.], 2020[Meusburger, J. M., Ende, M., Matzinger, P., Talla, D., Miletich, R. & Wildner, M. (2020). Icarus, 336, 113459.]; Ende et al., 2020[Ende, M., Kirkkala, T., Loitzenbauer, M., Talla, D., Wildner, M. & Miletich, R. (2020). Inorg. Chem. 59, 6255-6266.]; Wildner et al., 2021[Wildner, M., Ende, M., Meusburger, J. M., Kunit, R., Matzinger, P., Talla, D. & Miletich, R. (2021). Z. Kristallogr. 236, 225-237.]), corresponding to cell volume ratios V/V0 ≤ 0.96, whereas the intrinsic `thermal pressure' (e.g. Anderson, 1995[Anderson, O. L. (1995). Equations of State of Solids for Geophysics and Ceramic Science. Oxford University Press.]) induced on cooling from RT to 15 K merely results in a volume decrease to roughly V/V0 ≃ 0.993 (Fig. S1 of the supporting information), it becomes clear that phase transitions corresponding to those at high pressures were not to be expected. This also means that kieserite-type compounds and very probably also their solid solutions will not undergo structural transitions at or close to the surface of sulfate-bearing celestial bodies. The relationships of changes in cell and crystal chemical parameters on cooling versus pressure increase are further discussed in detail in the respective sections below.

3.3. Unit-cell thermal expansion versus compressibility

Compared with the temperature-dependent changes in lattice dimensions discussed above, the high-pressure behavior of the title compounds, investigated recently by Meusburger et al. (2019[Meusburger, J. M., Ende, M., Talla, D., Wildner, M. & Miletich, R. (2019). J. Solid State Chem. 277, 240-252.], 2020[Meusburger, J. M., Ende, M., Matzinger, P., Talla, D., Miletich, R. & Wildner, M. (2020). Icarus, 336, 113459.]), Ende et al. (2020[Ende, M., Kirkkala, T., Loitzenbauer, M., Talla, D., Wildner, M. & Miletich, R. (2020). Inorg. Chem. 59, 6255-6266.]) and Wildner et al. (2021[Wildner, M., Ende, M., Meusburger, J. M., Kunit, R., Matzinger, P., Talla, D. & Miletich, R. (2021). Z. Kristallogr. 236, 225-237.]) is characterized by a continuous second-order ferroelastic phase transition from the present monoclinic α-phase (C2/c) to a triclinic β-phase (space group P1) at pressures of 2.72, 6.15, 2.40 and 2.47 GPa for M2+ = Mg, Fe, Co and Ni, respectively. Nevertheless, since the cells of the β-polymorphs are based on the respective reduced cells of the C2/c α-phase, a direct comparison of the lattice dimensions even across the phase transition is still feasible. However, such a comparison [see Tables S1, 1[link] and Figs. 2[link], S1 in the present work, and Table 2 in the work by Wildner et al. (2021[Wildner, M., Ende, M., Meusburger, J. M., Kunit, R., Matzinger, P., Talla, D. & Miletich, R. (2021). Z. Kristallogr. 236, 225-237.])] shows that the ideally expected inverse relationship between compression and thermal expansion (e.g. Hazen & Finger, 1982a[Hazen, R. M. & Finger, L. W. (1982a). Comparative Crystal Chemistry. New York: Wiley.]) is approximately fulfilled for selected aspects only (Fig. S1).

On the one hand, the Fe compound revealing the highest volume thermal expansion αV (Table 1[link]) shows, as expected, the highest compressibility and thus the smallest bulk modulus of K0 ≃ 45 GPa (Meusburger et al., 2019[Meusburger, J. M., Ende, M., Talla, D., Wildner, M. & Miletich, R. (2019). J. Solid State Chem. 277, 240-252.]), albeit close to K0 of the Mg and Co phases. The Ni compound with the clearly highest bulk modulus K0 ≃ 60 GPa (Ende et al., 2020[Ende, M., Kirkkala, T., Loitzenbauer, M., Talla, D., Wildner, M. & Miletich, R. (2020). Inorg. Chem. 59, 6255-6266.]) also exhibits the smallest thermal changes of the axial lengths (〈α|a,b,c|〉 ≃ 2.2 × 10−5 K−1) but a volume thermal expansion comparable to the Mg and Co phases (Table 1[link]). Among the individual cell axes, the softest c axis upon compression (〈Mc〉 ≃ 125 GPa) most closely follows the expectation of equal slopes in V/V0 versus l/l0 plots for pressure and temperature (〈αc〉 ≃ 3.3 × 10−5 K−1) in Fig. S1. On the other hand, in contrast to the expected inverse relationship, the clearly stiffest a axes upon compression (〈Ma〉 ≃ 395 GPa) exhibit the highest thermal expansion (〈αa〉 ≃ 4.4·10−5 K−1) and, finally, the NTE behavior (〈αb〉 ≃ −2.4 × 10−5 K−1) of the rather `soft' b axes (〈Mb〉 ≃ 145 GPa) is in harsh contradiction to all respective expectations.

The relationship referred to (Hazen & Finger, 1982a[Hazen, R. M. & Finger, L. W. (1982a). Comparative Crystal Chemistry. New York: Wiley.]) is primarily expected for high-temperature structural studies, but the trends in Fig. 2[link] can evidently be extrapolated also to moderately higher temperatures, presumably up to the decomposition temperatures [≥300°C under dry conditions (Chipera et al., 2006[Chipera, S. J., Vaniman, D. T. & Carey, J. W. (2006). Proceedings of the 37th Annual Lunar and Planetary Science Conference (LPSC06), 13-17 March 2006, League City, TX, USA. Abstract 1457.])]. Besides, the relationship is expected to fail for structures comprising polyhedra with grossly different ratios of expansivity versus compressibility (e.g. Sharp et al., 1987[Sharp, Z. D., Hazen, R. M. & Finger, L. W. (1987). Am. Mineral. 72, 748-755.]). While this is seemingly not the case in kieserite-type compounds with tetrahedral S—O bond lengths hardly responding to changes either in temperature (see below) or pressure (Wildner et al., 2021[Wildner, M., Ende, M., Meusburger, J. M., Kunit, R., Matzinger, P., Talla, D. & Miletich, R. (2021). Z. Kristallogr. 236, 225-237.]), the O—H⋯O hydrogen bonds in these compounds run within structural voids which in the topologically related structure of titanite, CaTiO(SiO4), are occupied by the Ca atoms (Hawthorne et al., 1987[Hawthorne, F. C., Groat, L. A., Raudsepp, M. & Ercit, T. S. (1987). N. Jahrb. Min. Abh. 157, 121-132.]). Hence, the hydrogen bonds in MSO4·H2O might play a major role for the clear deviation from respective expectations.

3.4. Polyhedral thermal expansion and crystal chemical changes

The octahedral volumes and mean M–O bond lengths decrease on cooling by reducing the two longest M–O3 bonds to the H2O molecules [Fig. 4[link](a) and Table S3]. For the Fe compound, the bonds to O1 and O2 also seem to show a faint trend to lengthen and shorten, respectively, with reduced temperature; thus, for the FeO6 octahedron the aberrant tendency towards a [2+2+2]-coordination (cf. Talla & Wildner, 2019[Talla, D. & Wildner, M. (2019). Am. Mineral. 104, 1732-1749.]; Wildner et al., 2021[Wildner, M., Ende, M., Meusburger, J. M., Kunit, R., Matzinger, P., Talla, D. & Miletich, R. (2021). Z. Kristallogr. 236, 225-237.]) still increases, compared with the clear and stable [4+2]-elongation of the other representatives. On average, the volumes of the MO6 octahedra shrink with an αVoct of roughly 2.9 × 10−5 K−1; in the Mg compound, for example, Voct decreases by 0.7% from 11.90 to 11.82 Å3 from RT to 15 K, a rate comparable in magnitude to the MgO6 octahedra in other magnesium sulfates, as listed by Fortes et al. (2008[Fortes, A. D., Wood, I. G. & Knight, K. S. (2008). Phys. Chem. Miner. 35, 207-221.]) – but excluding data from ultra-low T < 5 K. Along with the volume reduction, the octahedral bond length and angle distortions also decrease slightly with decreasing temperature for all four compounds.

[Figure 4]
Figure 4
Selected stereochemical parameters of kieserite-type compounds M2+SO4·H2O (M2+ = Mg, Fe, Co, Ni) in the temperature range 15–313 K with second-order regression lines. (a) Individual and mean M—O bond lengths, (b) O3—H⋯O2 hydrogen bond lengths, (c) M—O—S and M–O3–M angles at polyhedra-linking oxygen atoms, and (d) rotations of tetrahedral O1—O1′ and O2—O2′ edges relative to those in the Mg compound at 293 K. For errors see the underlying structural data in Tables S1, S2 and S3.

S—O bond lengths and the tetrahedral volume show an artificial increase on cooling owing to changes in thermal motion (Table S3), a phenomenon typically found for uncorrected bonds in small coordination polyhedra [e.g. data for sulfate groups listed by Fortes et al. (2008[Fortes, A. D., Wood, I. G. & Knight, K. S. (2008). Phys. Chem. Miner. 35, 207-221.])]. In the present kieserite-type compounds, a `simple rigid bond' correction according to Downs et al. (1992[Downs, R. T., Gibbs, G. V., Bartelmehs, K. L. & Boisen, M. B. (1992). Am. Mineral. 77, 751-757.]) reveals almost constant 〈S—O〉 bond lengths over the full temperature range. Anyway, the observed difference of around 0.004 Å in the 〈S—O〉 distances in the Mg compound (shorter S—O bonds) compared with the TM representatives (longer S—O bonds) is maintained over the investigated temperature range. In the same range the O3—H⋯O2 hydrogen bond lengths reduce by roughly 0.03 Å, in case of the Ni phase by half that value [Fig. 4[link](b) and Table S3]. Somewhat surprisingly, the two O3—H⋯O1 contacts (around 3.3 Å under ambient conditions), which shorten under pressure (one of them forming a new hydrogen bond in the high-pressure β-MSO4·H2O polymorphs), significantly lengthen when the temperature is reduced. Since the O3—H⋯O1 contacts run nearly parallel to the b axis, this unexpected finding can be attributed to a side-effect of the axial NTE behavior. Polyhedra-linking angles [Fig. 4[link](c) and Table S3] also show a parallel response to temperature in all four compounds, despite the fact that both M–O–S angles (but especially M–O1–S) are substantially larger in MgSO4·H2O than in the TM phases, leading to, among other things, a volume mismatch of octahedral versus cell volume, especially eye-catching when comparing the Mg and Co compounds [as discussed in detail by Bechtold & Wildner (2016[Bechtold, A. & Wildner, M. (2016). Eur. J. Mineral. 28, 43-52.])]. While the octahedral chain angle M–O3–M remains almost constant on cooling to 15 K, the M–O–S angles become smaller by 0.4–1.1°. The resulting rotation of the SO4 tetrahedron around its twofold symmetry axis [Figs. 4[link](d) and 5[link]] has the same direction as that found for increasing pressure (Wildner et al., 2021[Wildner, M., Ende, M., Meusburger, J. M., Kunit, R., Matzinger, P., Talla, D. & Miletich, R. (2021). Z. Kristallogr. 236, 225-237.]) or increasing xTM in (Mg,TM)SO4·H2O solid solutions (Bechtold & Wildner, 2016[Bechtold, A. & Wildner, M. (2016). Eur. J. Mineral. 28, 43-52.]; Talla & Wildner, 2019[Talla, D. & Wildner, M. (2019). Am. Mineral. 104, 1732-1749.]; Talla et al., 2020[Talla, D., Balla, M., Aicher, C., Lengauer, C. L. & Wildner, M. (2020). Am. Mineral. 105, 1472-1489.]). Within the studied temperature range, it amounts to roughly 1.1° for both O1—O1′ and O2—O2′ tetrahedral edges, but again clearly less in the Ni phase. Substantial edge tiltings or rotations of the four other tetrahedral (O1—O2) edges, identified as the most probable driving force of the high-pressure phase transition to triclinic symmetry (Wildner et al., 2021[Wildner, M., Ende, M., Meusburger, J. M., Kunit, R., Matzinger, P., Talla, D. & Miletich, R. (2021). Z. Kristallogr. 236, 225-237.]), are either forbidden or at least strongly hampered by the monoclinic symmetry prevailing also at very low temperatures [e.g. relative rotations of O1—O2 edges are <0.1° and therefore not shown in Fig. 4[link](d)].

[Figure 5]
Figure 5
Fragment of the crystal structure of kieserite (MgSO4·H2O) at 313 K, projected down the approximate c* direction, i.e. along [203]. On cooling, the black arrows show the direction of polyhedral rotations, red arrows indicate the components of the resulting positional shifts of the tetrahedral atoms in the plane of projection (see text).

The striking anisotropy of the thermal expansion tensor in the ac plane [Figs. 3[link](a) and 3(b)] can be correlated to the tetrahedral rotations described above. The sense of rotation on heating [indicated in Fig. 3[link](b) by black arrows] leads to, apart from comparable expansions of the a and c axes (Table 1[link]), an opposite shift of neighboring octahedral–tetrahedral chains along the c axes [red arrows in Fig. 3[link](b)], resulting in a widening of the cell angle β (Fig. 2[link]) and maximum expansion roughly along the long cell diagonal, while minimum expansion occurs near the [101] direction.

Although the anisotropy of thermal expansion in the ac plane can be readily explained, an attempt to elucidate reasons for the peculiar NTE behavior of the crystallographic b axis [Fig. 3[link](a), Table 1[link]] needs to consider the mutual interactions of the various temperature-dependent structural changes observed in the present study. It appears that only a complex, cooperative effect involving polyhedral rotations, changes of the interpolyhedral M–O–S angles and shortening of the O3—H⋯O2 hydrogen bond length, can provoke this clear trend in contrast to the decrease in cell volume and other lattice directions on cooling. Fig. 5[link] illustrates the main contributing factors: firstly, the sense of major polyhedral rotations on cooling is shown, i.e. on the one hand the rotation of the SO4 tetrahedron around its twofold symmetry axis [as discussed above; Figs. 3[link](b) and 4[link](d)], on the other hand a rotation of the MO6 octahedron (point symmetry 1) approximately around its O3—O3 axis; secondly, it indicates the most relevant components of resulting positional shifts of the tetrahedral atoms in the plane of projection. Altogether, the SO4 tetrahedron as a whole is shifted up along the b axis, thus involving an elongation of this axis on cooling, while at the same time the a axis, including the roughly parallel hydrogen bond, and to a lesser extent the c axis, are shortened. The comparatively weak NTE of the b axis in NiSO4·H2O (Table 1[link]) can then be correlated, at least qualitatively, with the respective smallest temperature-dependent changes of the hydrogen bond lengths [Fig. 4[link](b)], of both M–O–S angles [Fig. 4[link](c)] and of the tetrahedral rotations [Fig. 4[link](d)] among the four title compounds.

3.5. Polyhedral thermal expansion versus compressibility

In analogy with the present low-temperature results, the decrease of the octahedral volume on pressure increase is also dominated by shortening of the longest M–O3 bonds to the water molecules, to a lesser extent also the M–O2 distances, while the M–O1 bonds are the stiffest and shorten the least [thus contributing to the high axial 〈Ma〉 values (Wildner et al., 2021[Wildner, M., Ende, M., Meusburger, J. M., Kunit, R., Matzinger, P., Talla, D. & Miletich, R. (2021). Z. Kristallogr. 236, 225-237.], and references therein)]. When the octahedral volume thermal expansion values αV,oct (in the range 2.8–3.1 × 10−5 K−1) are compared with the respective octahedral volume compression values βV,oct (1.1–1.4 × 10−6 bar−1), we find a ratio αV,oct/βV,oct of ∼25 bar K−1, i.e. for the MO4(H2O)2 polyhedra a pressure change of approximately 25 bar offsets a temperature change of 1 K. Hence, judging from the influence of temperature and pressure on the octahedral units in kieserite-type compounds, cooling from RT to 15 K corresponds to a `thermal pressure effect' of ∼0.7 GPa, thus far below the magnitude of critical pressures mentioned earlier, and a further corroboration of the absence of structural phase transitions on cooling.

Across high-temperature and high-pressure studies on structure types of relevant rock-forming minerals, the ratio of αV,oct/βV,oct for most M2+O6 octahedra is about three times higher than in kieserite, scattering between 65 and 90 bar K−1 (e.g. Hazen & Prewitt, 1977[Hazen, R. M. & Prewitt, C. T. (1977). Am. Mineral. 62, 309-315.]; Hazen & Finger, 1982a[Hazen, R. M. & Finger, L. W. (1982a). Comparative Crystal Chemistry. New York: Wiley.],b[Hazen, R. M. & Finger, L. W. (1982b). High-temperature and High-Pressure Crystal Chemistry. In High-Pressure Researches in Geoscience, edited by W. Schreyer W. Stuttgart: Schweizerbart.]; Hazen et al., 2000[Hazen, R. M., Downs, R. T. & Prewitt, C. T. (2000). Rev. Min. Geochem. 41, 2-33.]). On the one hand, this difference can be attributed to the fact that αpoly increases with temperature: for high-temperature studies from RT up to 1000°C, Hazen & Prewitt (1977[Hazen, R. M. & Prewitt, C. T. (1977). Am. Mineral. 62, 309-315.]) found 〈αV,oct〉 ≃ 4.2 × 10−5 K−1 (from axial αoct ≃ 1.4 × 10−5 K−1) for MgO6 octahedra (and similar values for TM2+O6 units). On the other hand, the compressibility βV,oct of the MgO6 octahedron in kieserite (Meusburger et al., 2020[Meusburger, J. M., Ende, M., Matzinger, P., Talla, D., Miletich, R. & Wildner, M. (2020). Icarus, 336, 113459.]; Wildner et al., 2021[Wildner, M., Ende, M., Meusburger, J. M., Kunit, R., Matzinger, P., Talla, D. & Miletich, R. (2021). Z. Kristallogr. 236, 225-237.]) is approximately twice as large compared with the values usually found for MgO6 units in oxides and silicates [where the polyhedral modulus Koct ≃ 150 GPa (e.g. Hazen et al., 2000[Hazen, R. M., Downs, R. T. & Prewitt, C. T. (2000). Rev. Min. Geochem. 41, 2-33.])], a discrepancy which can be reasonably explained by the presence of H2O ligands and polyhedral connectivity through shared corners in the kieserite structure type.

4. Conclusions

The results for the in situ investigation of the crystal behavior of kieserite and three sulfate analog phases revealed that the structural topology remained unchanged within the experimental temperature range, i.e. down to 15 K. Neither the bond-length evolution nor the overall symmetry of the lattice is subject to a discontinuity that can be assigned to a phase transformation similar to that observed at high pressures for any of the four investigated M2+SO4·H2O (M2+ = Mg, Fe, Co, Ni) end-member phases. The monoclinic C2/c lattice of this so-called α-form shows a rather uniform volume expansivity with values for αV between 3.3 and 4.7 × 10−5 K−1, approximately following the inverse relationship to the molar volume and the size of the M2+ cation, respectively. On the other hand, the thermally induced lattice expansion is subject to a rather pronounced anisotropy, with an NTE along the [010] direction, and anisotropic positive eigenvalues for the strain tensor within the ac plane. The NTE effect can be related to cooperative polyhedral rotations associated with the chain motifs of tetrahedral SO4 groups and octahedrally coordinated M2+ cations, which has also been observed for other sulfates exhibiting equivalent topological octahedral chain units.

As a major result of the present investigations, there is no evidence for a structural transition for any of the four investigated end-member compounds. This suggests that, for the kieserite-type solid solution series known to exist, there is no evidence for the occurrence of a low-temperature polymorphic transformation or dissociation, and phase stabilities are not affected even by the effect of cation substitution on temperature variations at ≤1 bar `atmospheric' pressure. In the context of evaluating structural aspects of phase-stability issues with respect to potentially changing hydration states, the experiments clearly show that there is no evidence for any changes with respect to the amount of water per formula unit.

The knowledge of phase relations and structural details at astrophysically relevant temperature conditions is an important fundament to derive, model and analyze other physical properties, e.g. by using density functional theory calculations. Based on the low-temperature structural behavior presented, ab initio calculations allow us to determine key thermodynamic properties of the phase of interest, such as heat of formation, enthalpy, entropy and the heat capacity (e.g. Deffrennes et al., 2019[Deffrennes, G., Gardiola, B., Jeanneau, E., Mikaelian, G., Benigni, P., Pasturel, A., Pisch, A., Andrieux, J. & Dezellus, O. (2019). J. Solid State Chem. 273, 150-157.]; Dinsdale et al., 2019[Dinsdale, A., Fang, C., Que, Z. & Fan, Z. (2019). JOM, 71, 1731-1736.]; Bao et al., 2021[Bao, X., He, M., Zhang, Z. & Liu, X. (2021). Crystals, 11, 14.]). In turn, such as in the case of kieserite-type sulfate monohydrates, knowledge of these properties for end members allows us to extrapolate their values even for intermediate compositions, given the linear Vegard-type behavior along the solid solutions between kieserite and all isotypic TM end members investigated here (Bechtold & Wildner, 2016[Bechtold, A. & Wildner, M. (2016). Eur. J. Mineral. 28, 43-52.]; Talla & Wildner, 2019[Talla, D. & Wildner, M. (2019). Am. Mineral. 104, 1732-1749.]; Talla et al., 2020[Talla, D., Balla, M., Aicher, C., Lengauer, C. L. & Wildner, M. (2020). Am. Mineral. 105, 1472-1489.]). Knowledge of these parameters will contribute to future modeling of thermodynamic equilibria and stable surface mineral assemblages on various objects in our solar system even at very low temperatures. Last but not least, the absence of low-temperature structural phase transitions or dehydration effects on the one hand, and the smooth variation of stereochemical details with temperature on the other, also forms an important fundament to evaluate kieserite-related signals in remote-sensing spectroscopic data from orbiters at celestial bodies with lower surface temperatures than prevailing on Mars, e.g. on the surface on the icy Galilean moons.

Supporting information


Computing details top

Program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014) for MgSO4H2O_N2_233K. Program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2017) for MgSO4H2O_He_15K, MgSO4H2O_N2_113K, MgSO4H2O_N2_153K, MgSO4H2O_N2_193K, MgSO4H2O_N2_233K, MgSO4H2O_N2_273K, MgSO4H2O_N2_313K, FeSO4H2O_He_60K, FeSO4H2O_He_75K, FeSO4H2O_N2_113K, FeSO4H2O_N2_153K, FeSO4H2O_N2_193K, FeSO4H2O_N2_233K, FeSO4H2O_N2_273K, FeSO4H2O_N2_313K, CoSO4H2O_He_15K, CoSO4H2O_He_30K, CoSO4H2O_N2_113K, CoSO4H2O_N2_153K, CoSO4H2O_N2_193K, CoSO4H2O_N2_233K, CoSO4H2O_N2_273K, CoSO4H2O_N2_313K, NiSO4H2O_He_45K, NiSO4H2O_He_75K, NiSO4H2O_N2_113K, NiSO4H2O_N2_153K, NiSO4H2O_N2_193K, NiSO4H2O_N2_233K, NiSO4H2O_N2_273K, NiSO4H2O_N2_313K; SHELXL2018/3 (Sheldrick, 2018) for MgSO4H2O_He_30K, FeSO4H2O_He_45K, NiSO4H2O_He_15K.

(MgSO4H2O_He_15K) top
Crystal data top
H2MgO5SZ = 4
Mr = 138.39F(000) = 280
Monoclinic, C2/cDx = 2.597 Mg m3
a = 6.8611 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6716 (6) ŵ = 0.97 mm1
c = 7.6014 (7) ÅT = 15 K
β = 117.787 (12)°0.38 × 0.30 × 0.06 mm
V = 353.97 (6) Å3
Data collection top
1215 measured reflectionsθmax = 29.2°, θmin = 4.3°
422 independent reflectionsh = 79
381 reflections with I > 2σ(I)k = 89
Rint = 0.023l = 98
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.026P)2 + 0.470P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.41 e Å3
422 reflectionsΔρmin = 0.50 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.077 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.0000000.5000000.0000000.0038 (3)
S0.0000000.15743 (8)0.2500000.0030 (2)
O10.17523 (19)0.04823 (17)0.39724 (17)0.0049 (3)
O20.09598 (19)0.27005 (17)0.15141 (18)0.0048 (3)
O30.0000000.6334 (3)0.2500000.0049 (4)
H0.101 (4)0.700 (4)0.288 (4)0.021 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0035 (4)0.0038 (5)0.0049 (4)0.0000 (3)0.0025 (3)0.0005 (3)
S0.0030 (3)0.0029 (4)0.0037 (3)0.0000.0022 (2)0.000
O10.0040 (6)0.0042 (7)0.0062 (6)0.0010 (5)0.0022 (5)0.0011 (5)
O20.0042 (6)0.0041 (7)0.0069 (6)0.0000 (5)0.0034 (5)0.0012 (5)
O30.0037 (9)0.0040 (9)0.0065 (9)0.0000.0020 (7)0.000
Geometric parameters (Å, º) top
Mg—O1i2.0223 (12)O1—O22.3950 (17)
Mg—O1ii2.0223 (12)O1—O1v2.403 (2)
Mg—O2iii2.0405 (13)O1—O2v2.4194 (17)
Mg—O22.0405 (13)O1—O2vi2.7743 (17)
Mg—O32.1583 (9)O1—O3vii2.9199 (16)
Mg—O3iii2.1583 (9)O1—O2viii2.9681 (17)
Mg—O2i3.4855 (13)O1—O3ix2.9950 (13)
Mg—O2ii3.4855 (13)O1—O2x3.3121 (18)
Mg—O2iv3.4920 (12)O1—O2vii3.3402 (18)
Mg—O2v3.4920 (12)O1—O3xi3.402 (2)
Mg—O1iv3.8656 (13)O2—O2v2.413 (2)
Mg—O1v3.8656 (13)O2—O3ix2.7218 (14)
S—O1v1.4647 (13)O2—O3iii2.9016 (13)
S—O11.4647 (13)O2—O33.037 (2)
S—O21.4838 (12)O3—H0.80 (3)
S—O2v1.4839 (12)O3—Hv0.80 (3)
O1i—Mg—O1ii180.0S—O2—O3ix105.75 (7)
O1i—Mg—O2iii86.13 (5)Mg—O2—O3ix120.51 (6)
O1ii—Mg—O2iii93.87 (5)O1—O2—O3ix71.33 (5)
O1i—Mg—O293.87 (5)O2v—O2—O3ix127.57 (7)
O1ii—Mg—O286.13 (5)O1v—O2—O3ix112.53 (7)
O2iii—Mg—O2180.0S—O2—O1ii157.99 (8)
O1i—Mg—O388.54 (4)Mg—O2—O1ii46.66 (4)
O1ii—Mg—O391.46 (4)O1—O2—O1ii135.55 (5)
O2iii—Mg—O387.38 (6)O2v—O2—O1ii126.12 (4)
O2—Mg—O392.62 (6)O1v—O2—O1ii164.44 (8)
O1i—Mg—O3iii91.46 (4)O3ix—O2—O1ii76.47 (5)
O1ii—Mg—O3iii88.54 (4)S—O2—O3iii138.00 (7)
O2iii—Mg—O3iii92.62 (6)Mg—O2—O3iii47.99 (4)
O2—Mg—O3iii87.38 (6)O1—O2—O3iii149.27 (7)
O3—Mg—O3iii180.0O2v—O2—O3iii136.99 (7)
O1i—Mg—O2i41.84 (4)O1v—O2—O3iii103.74 (6)
O1ii—Mg—O2i138.16 (4)O3ix—O2—O3iii95.20 (4)
O2iii—Mg—O2i98.74 (2)O1ii—O2—O3iii61.87 (5)
O2—Mg—O2i81.26 (2)S—O2—O1i94.37 (6)
O3—Mg—O2i128.66 (3)Mg—O2—O1i42.83 (3)
O3iii—Mg—O2i51.34 (3)O1—O2—O1i129.77 (7)
O1i—Mg—O2ii138.16 (4)O2v—O2—O1i75.96 (5)
O1ii—Mg—O2ii41.84 (4)O1v—O2—O1i77.61 (5)
O2iii—Mg—O2ii81.26 (2)O3ix—O2—O1i156.46 (5)
O2—Mg—O2ii98.74 (2)O1ii—O2—O1i89.49 (5)
O3—Mg—O2ii51.34 (3)O3iii—O2—O1i61.35 (4)
O3iii—Mg—O2ii128.66 (3)S—O2—O3102.21 (6)
O2i—Mg—O2ii180.0Mg—O2—O345.23 (3)
O1i—Mg—O2iv111.28 (4)O1—O2—O3117.13 (5)
O1ii—Mg—O2iv68.72 (4)O2v—O2—O366.60 (3)
O2iii—Mg—O2iv42.33 (4)O1v—O2—O3116.33 (5)
O2—Mg—O2iv137.67 (4)O3ix—O2—O3126.56 (6)
O3—Mg—O2iv120.40 (5)O1ii—O2—O361.85 (4)
O3iii—Mg—O2iv59.60 (5)O3iii—O2—O393.22 (4)
O2i—Mg—O2iv95.04 (3)O1i—O2—O358.17 (3)
O2ii—Mg—O2iv84.96 (3)S—O2—O1xii95.60 (6)
O1i—Mg—O2v68.72 (4)Mg—O2—O1xii113.95 (5)
O1ii—Mg—O2v111.28 (4)O1—O2—O1xii83.80 (4)
O2iii—Mg—O2v137.67 (4)O2v—O2—O1xii130.39 (4)
O2—Mg—O2v42.33 (4)O1v—O2—O1xii73.50 (5)
O3—Mg—O2v59.60 (5)O3ix—O2—O1xii56.88 (4)
O3iii—Mg—O2v120.40 (5)O1ii—O2—O1xii103.44 (5)
O2i—Mg—O2v84.96 (3)O3iii—O2—O1xii66.00 (5)
O2ii—Mg—O2v95.04 (3)O1i—O2—O1xii109.93 (5)
O2iv—Mg—O2v180.0O3—O2—O1xii159.06 (5)
O1i—Mg—O1iv118.46 (5)S—O2—O1vii80.27 (5)
O1ii—Mg—O1iv61.54 (5)Mg—O2—O1vii95.28 (5)
O2iii—Mg—O1iv32.85 (4)O1—O2—O1vii70.62 (5)
O2—Mg—O1iv147.15 (4)O2v—O2—O1vii59.55 (5)
O3—Mg—O1iv83.14 (5)O1v—O2—O1vii114.22 (6)
O3iii—Mg—O1iv96.86 (5)O3ix—O2—O1vii86.98 (4)
O2i—Mg—O1iv126.25 (3)O1ii—O2—O1vii77.98 (4)
O2ii—Mg—O1iv53.75 (3)O3iii—O2—O1vii137.83 (6)
O2iv—Mg—O1iv37.56 (3)O1i—O2—O1vii108.74 (5)
O2v—Mg—O1iv142.44 (3)O3—O2—O1vii54.25 (3)
O1i—Mg—O1v61.54 (5)O1xii—O2—O1vii141.31 (4)
O1ii—Mg—O1v118.46 (5)Mg—O3—Mgv123.40 (9)
O2iii—Mg—O1v147.15 (4)Mg—O3—O2xiii110.99 (3)
O2—Mg—O1v32.85 (4)Mgv—O3—O2xiii90.40 (3)
O3—Mg—O1v96.86 (5)Mg—O3—O2ii90.40 (3)
O3iii—Mg—O1v83.14 (5)Mgv—O3—O2ii110.99 (3)
O2i—Mg—O1v53.75 (3)O2xiii—O3—O2ii134.69 (9)
O2ii—Mg—O1v126.25 (3)Mg—O3—O2xiv162.51 (7)
O2iv—Mg—O1v142.44 (3)Mgv—O3—O2xiv44.63 (3)
O2v—Mg—O1v37.56 (3)O2xiii—O3—O2xiv83.91 (4)
O1iv—Mg—O1v180.0O2ii—O3—O2xiv84.80 (4)
O1v—S—O1110.23 (11)Mg—O3—O2iii44.63 (3)
O1v—S—O2110.27 (6)Mgv—O3—O2iii162.51 (7)
O1—S—O2108.63 (7)O2xiii—O3—O2iii84.80 (4)
O1v—S—O2v108.63 (6)O2ii—O3—O2iii83.91 (4)
O1—S—O2v110.27 (6)O2xiv—O3—O2iii150.42 (9)
O2—S—O2v108.78 (10)Mg—O3—O1i43.82 (3)
S—O1—Mgvi139.81 (8)Mgv—O3—O1i105.61 (6)
S—O1—O235.95 (4)O2xiii—O3—O1i71.80 (4)
Mgvi—O1—O2103.88 (6)O2ii—O3—O1i132.84 (4)
S—O1—O1v34.88 (5)O2xiv—O3—O1i142.13 (4)
Mgvi—O1—O1v143.48 (8)O2iii—O3—O1i56.92 (3)
O2—O1—O1v60.56 (5)Mg—O3—O1vii105.61 (6)
S—O1—O2v35.12 (4)Mgv—O3—O1vii43.82 (3)
Mgvi—O1—O2v144.90 (7)O2xiii—O3—O1vii132.84 (4)
O2—O1—O2v60.15 (6)O2ii—O3—O1vii71.80 (4)
O1v—O1—O2v59.56 (5)O2xiv—O3—O1vii56.92 (3)
S—O1—O2vi130.69 (7)O2iii—O3—O1vii142.13 (4)
Mgvi—O1—O2vi47.21 (4)O1i—O3—O1vii123.00 (9)
O2—O1—O2vi112.29 (5)Mg—O3—O1xiii122.07 (6)
O1v—O1—O2vi104.98 (5)Mgv—O3—O1xiii42.45 (3)
O2v—O1—O2vi164.44 (8)O2xiii—O3—O1xiii49.25 (3)
S—O1—O3vii167.91 (7)O2ii—O3—O1xiii145.16 (4)
Mgvi—O1—O3vii47.64 (3)O2xiv—O3—O1xiii60.42 (3)
O2—O1—O3vii148.65 (6)O2iii—O3—O1xiii127.23 (3)
O1v—O1—O3vii149.24 (5)O1i—O3—O1xiii81.77 (4)
O2v—O1—O3vii132.79 (6)O1vii—O3—O1xiii86.27 (4)
O2vi—O1—O3vii61.21 (4)Mg—O3—O1ii42.45 (3)
S—O1—O2viii115.57 (7)Mgv—O3—O1ii122.07 (6)
Mgvi—O1—O2viii43.31 (4)O2xiii—O3—O1ii145.16 (4)
O2—O1—O2viii88.41 (5)O2ii—O3—O1ii49.25 (3)
O1v—O1—O2viii148.60 (5)O2xiv—O3—O1ii127.23 (3)
O2v—O1—O2viii102.39 (5)O2iii—O3—O1ii60.42 (3)
O2vi—O1—O2viii90.52 (5)O1i—O3—O1ii86.27 (4)
O3vii—O1—O2viii62.10 (5)O1vii—O3—O1ii81.77 (4)
S—O1—O3ix94.49 (6)O1xiii—O3—O1ii154.80 (9)
Mgvi—O1—O3ix46.09 (3)Mg—O3—O242.15 (4)
O2—O1—O3ix59.42 (5)Mgv—O3—O282.60 (6)
O1v—O1—O3ix104.33 (6)O2xiii—O3—O2126.56 (6)
O2v—O1—O3ix116.27 (6)O2ii—O3—O296.39 (3)
O2vi—O1—O3ix63.40 (5)O2xiv—O3—O2121.65 (6)
O3vii—O1—O3ix93.73 (4)O2iii—O3—O286.78 (4)
O2viii—O1—O3ix58.23 (4)O1i—O3—O259.73 (5)
S—O1—O2x124.60 (7)O1vii—O3—O268.18 (5)
Mgvi—O1—O2x95.21 (5)O1xiii—O3—O2100.18 (6)
O2—O1—O2x159.99 (7)O1ii—O3—O254.76 (4)
O1v—O1—O2x100.27 (5)Mg—O3—O2v82.60 (6)
O2v—O1—O2x106.50 (5)Mgv—O3—O2v42.15 (4)
O2vi—O1—O2x76.56 (5)O2xiii—O3—O2v96.39 (3)
O3vii—O1—O2x51.32 (4)O2ii—O3—O2v126.56 (6)
O2viii—O1—O2x109.93 (5)O2xiv—O3—O2v86.78 (4)
O3ix—O1—O2x137.04 (6)O2iii—O3—O2v121.65 (6)
S—O1—O2vii111.81 (7)O1i—O3—O2v68.18 (5)
Mgvi—O1—O2vii76.94 (4)O1vii—O3—O2v59.73 (5)
O2—O1—O2vii109.38 (5)O1xiii—O3—O2v54.76 (4)
O1v—O1—O2vii138.06 (6)O1ii—O3—O2v100.18 (6)
O2v—O1—O2vii79.81 (4)O2—O3—O2v46.81 (5)
O2vi—O1—O2vii115.71 (6)Mg—O3—H105.6 (18)
O3vii—O1—O2vii57.58 (5)Mgv—O3—H109.7 (19)
O2viii—O1—O2vii44.49 (4)O2xiii—O3—H117.0 (19)
O3ix—O1—O2vii102.56 (4)O2ii—O3—H18.9 (19)
O2x—O1—O2vii80.50 (3)O2xiv—O3—H73.7 (18)
S—O1—O3xi104.20 (6)O2iii—O3—H87.4 (19)
Mgvi—O1—O3xi96.47 (5)O1i—O3—H143.3 (18)
O2—O1—O3xi119.42 (5)O1vii—O3—H79.0 (19)
O1v—O1—O3xi69.32 (2)O1xiii—O3—H132.3 (18)
O2v—O1—O3xi118.62 (5)O1ii—O3—H66.8 (19)
O2vi—O1—O3xi51.07 (3)O2—O3—H115.2 (19)
O3vii—O1—O3xi81.78 (4)O2v—O3—H138.4 (19)
O2viii—O1—O3xi137.81 (5)Mg—O3—Hv109.7 (19)
O3ix—O1—O3xi106.95 (5)Mgv—O3—Hv105.6 (18)
O2x—O1—O3xi51.19 (3)O2xiii—O3—Hv18.9 (19)
O2vii—O1—O3xi130.78 (5)O2ii—O3—Hv117.0 (19)
S—O2—Mg133.30 (7)O2xiv—O3—Hv87.4 (19)
S—O2—O135.42 (4)O2iii—O3—Hv73.7 (18)
Mg—O2—O1161.91 (7)O1i—O3—Hv79.0 (19)
S—O2—O2v35.61 (5)O1vii—O3—Hv143.3 (18)
Mg—O2—O2v102.96 (4)O1xiii—O3—Hv66.8 (19)
O1—O2—O2v60.43 (5)O1ii—O3—Hv132.3 (18)
S—O2—O1v34.60 (4)O2—O3—Hv138.4 (19)
Mg—O2—O1v119.93 (6)O2v—O3—Hv115.2 (19)
O1—O2—O1v59.88 (6)H—O3—Hv101 (4)
O2v—O2—O1v59.42 (4)
O1v—S—O1—Mgvi118.67 (13)O1v—S—O2—Mg80.87 (11)
O2—S—O1—Mgvi2.26 (14)O1—S—O2—Mg158.22 (9)
O2v—S—O1—Mgvi121.39 (12)O2v—S—O2—Mg38.16 (7)
O1v—S—O1—O2120.93 (6)O1v—S—O2—O1120.90 (11)
O2v—S—O1—O2119.13 (10)O2v—S—O2—O1120.06 (6)
O2—S—O1—O1v120.93 (6)O1v—S—O2—O2v119.04 (6)
O2v—S—O1—O1v119.94 (6)O1—S—O2—O2v120.06 (6)
O1v—S—O1—O2v119.94 (6)O1—S—O2—O1v120.90 (11)
O2—S—O1—O2v119.13 (10)O2v—S—O2—O1v119.04 (6)
O1v—S—O1—O2vi50.41 (7)O1v—S—O2—O3ix106.99 (7)
O2—S—O1—O2vi70.52 (10)O1—S—O2—O3ix13.91 (8)
O2v—S—O1—O2vi170.36 (10)O2v—S—O2—O3ix133.97 (7)
O1v—S—O1—O3vii118.5 (4)O1v—S—O2—O1ii160.2 (2)
O2—S—O1—O3vii120.5 (4)O1—S—O2—O1ii78.9 (2)
O2v—S—O1—O3vii1.4 (4)O2v—S—O2—O1ii41.15 (17)
O1v—S—O1—O2viii165.53 (8)O1v—S—O2—O3iii10.00 (13)
O2—S—O1—O2viii44.60 (8)O1—S—O2—O3iii130.91 (10)
O2v—S—O1—O2viii74.52 (9)O2v—S—O2—O3iii109.03 (11)
O1v—S—O1—O3ix108.75 (6)O1v—S—O2—O1i60.68 (8)
O2—S—O1—O3ix12.18 (8)O1—S—O2—O1i178.42 (6)
O2v—S—O1—O3ix131.30 (7)O2v—S—O2—O1i58.36 (4)
O1v—S—O1—O2x52.35 (6)O1v—S—O2—O3119.04 (6)
O2—S—O1—O2x173.28 (7)O1—S—O2—O3120.06 (6)
O2v—S—O1—O2x67.59 (10)O2v—S—O2—O30.000 (1)
O1v—S—O1—O2vii145.79 (7)O1v—S—O2—O1xii49.87 (8)
O2—S—O1—O2vii93.28 (7)O1—S—O2—O1xii71.03 (6)
O2v—S—O1—O2vii25.85 (8)O2v—S—O2—O1xii168.91 (6)
O1v—S—O1—O3xi0.002 (1)O1v—S—O2—O1vii168.97 (6)
O2—S—O1—O3xi120.93 (6)O1—S—O2—O1vii70.13 (7)
O2v—S—O1—O3xi119.94 (6)O2v—S—O2—O1vii49.94 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y, z+1/2; (xi) x, y1, z; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2ii0.80 (3)1.99 (2)2.7218 (14)154 (3)
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
(MgSO4H2O_He_30K) top
Crystal data top
H2MgO5SV = 353.38 (9) Å3
Mr = 138.39Z = 4
Monoclinic, C2/cF(000) = 280
a = 6.8560 (9) ÅDx = 2.601 Mg m3
b = 7.6675 (8) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.6008 (10) ŵ = 0.97 mm1
β = 117.821 (17)°T = 30 K
Data collection top
1031 measured reflectionsθmax = 29.2°, θmin = 4.3°
410 independent reflectionsh = 79
352 reflections with I > 2σ(I)k = 89
Rint = 0.071l = 98
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.82 e Å3
410 reflectionsΔρmin = 0.96 e Å3
40 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.133 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.0000000.5000000.0000000.0057 (5)
S0.0000000.15735 (13)0.2500000.0046 (5)
O10.1756 (3)0.0480 (3)0.3969 (3)0.0073 (6)
O20.0959 (3)0.2699 (3)0.1514 (3)0.0070 (6)
O30.0000000.6338 (4)0.2500000.0062 (8)
H0.094 (7)0.690 (7)0.284 (6)0.013 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0047 (8)0.0041 (9)0.0093 (8)0.0002 (5)0.0042 (6)0.0002 (5)
S0.0037 (7)0.0021 (7)0.0084 (7)0.0000.0032 (5)0.000
O10.0060 (11)0.0068 (13)0.0096 (11)0.0001 (8)0.0040 (9)0.0012 (8)
O20.0049 (11)0.0047 (12)0.0123 (10)0.0005 (8)0.0047 (9)0.0010 (8)
O30.0039 (16)0.0050 (16)0.0087 (16)0.0000.0023 (13)0.000
Geometric parameters (Å, º) top
Mg—O1i2.017 (2)S—O11.465 (2)
Mg—O1ii2.017 (2)S—O1iv1.465 (2)
Mg—O22.040 (2)S—O21.483 (2)
Mg—O2iii2.040 (2)S—O2iv1.483 (2)
Mg—O3iii2.1596 (17)O3—H0.72 (4)
Mg—O32.1596 (17)O3—Hiv0.72 (4)
O1i—Mg—O1ii180.0O1—S—O1iv110.13 (19)
O1i—Mg—O293.90 (8)O1—S—O2108.54 (11)
O1ii—Mg—O286.10 (8)O1iv—S—O2110.41 (11)
O1i—Mg—O2iii86.10 (8)O1—S—O2iv110.41 (11)
O1ii—Mg—O2iii93.90 (8)O1iv—S—O2iv108.54 (11)
O2—Mg—O2iii180.00 (12)O2—S—O2iv108.79 (18)
O1i—Mg—O3iii91.40 (7)S—O1—Mgv139.96 (14)
O1ii—Mg—O3iii88.60 (7)S—O2—Mg133.34 (12)
O2—Mg—O3iii87.32 (10)Mg—O3—Mgiv123.26 (16)
O2iii—Mg—O3iii92.68 (10)Mg—O3—H103 (3)
O1i—Mg—O388.60 (7)Mgiv—O3—H110 (3)
O1ii—Mg—O391.40 (7)Mg—O3—Hiv110 (3)
O2—Mg—O392.68 (10)Mgiv—O3—Hiv103 (3)
O2iii—Mg—O387.32 (10)H—O3—Hiv106 (8)
O3iii—Mg—O3180.0
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x+1/2, y1/2, z+1/2.
(MgSO4H2O_N2_113K) top
Crystal data top
Fe0H2MgO5SV = 354.18 (9) Å3
Mr = 138.39Z = 4
Monoclinic, C2/cF(000) = 280
a = 6.8648 (10) ÅDx = 2.595 Mg m3
b = 7.6684 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.6055 (10) ŵ = 0.97 mm1
β = 117.792 (10)°T = 113 K
Data collection top
Absorption correction: multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
Rint = 0.018
Tmin = 0.691, Tmax = 0.748θmax = 40.0°, θmin = 4.3°
9851 measured reflectionsh = 1212
1097 independent reflectionsk = 1313
1054 reflections with I > 2σ(I)l = 1313
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.018P)2 + 0.210P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 1.21Δρmax = 0.46 e Å3
1097 reflectionsΔρmin = 0.40 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0059 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.0000000.5000000.0000000.00431 (6)
S0.0000000.15710 (2)0.2500000.00337 (5)
O10.17522 (7)0.04770 (6)0.39686 (6)0.00648 (7)
O20.09574 (7)0.26975 (5)0.15109 (6)0.00597 (7)
O30.0000000.63384 (8)0.2500000.00572 (9)
H0.106 (2)0.6987 (18)0.290 (2)0.019 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.00388 (11)0.00445 (11)0.00431 (10)0.00022 (8)0.00167 (8)0.00014 (8)
S0.00268 (7)0.00342 (7)0.00377 (7)0.0000.00131 (5)0.000
O10.00418 (14)0.00732 (15)0.00704 (14)0.00193 (11)0.00186 (11)0.00289 (11)
O20.00588 (15)0.00573 (14)0.00753 (14)0.00023 (11)0.00417 (12)0.00206 (11)
O30.0051 (2)0.00623 (19)0.00593 (19)0.0000.00259 (16)0.000
Geometric parameters (Å, º) top
Mg—O1i2.0222 (5)O1—O22.3958 (6)
Mg—O1ii2.0222 (5)O1—O1v2.4013 (9)
Mg—O22.0410 (5)O1—O2v2.4206 (6)
Mg—O2iii2.0410 (5)O1—O2vi2.7719 (6)
Mg—O3iii2.1607 (4)O1—O3vii2.9220 (6)
Mg—O32.1607 (4)O1—O2viii2.9710 (7)
Mg—O2i3.4864 (6)O1—O3ix2.9962 (6)
Mg—O2ii3.4864 (6)O1—O2x3.3084 (7)
Mg—O2iv3.4954 (5)O1—O2vii3.3483 (7)
Mg—O2v3.4954 (5)O1—O3xi3.3932 (8)
Mg—O1iv3.8693 (6)O2—O2v2.4156 (9)
Mg—O1v3.8693 (6)O2—O3ix2.7216 (6)
S—O1v1.4647 (5)O2—O3iii2.9008 (6)
S—O11.4647 (5)O2—O33.0420 (8)
S—O2v1.4849 (4)O3—H0.817 (13)
S—O21.4849 (4)O3—Hv0.817 (13)
O1i—Mg—O1ii180.0S—O2—O3ix105.80 (2)
O1i—Mg—O293.971 (18)Mg—O2—O3ix120.40 (2)
O1ii—Mg—O286.029 (18)O1—O2—O3ix71.352 (18)
O1i—Mg—O2iii86.029 (18)O2v—O2—O3ix127.49 (2)
O1ii—Mg—O2iii93.971 (18)O1v—O2—O3ix112.65 (2)
O2—Mg—O2iii180.0S—O2—O1ii157.85 (3)
O1i—Mg—O3iii91.440 (16)Mg—O2—O1ii46.701 (14)
O1ii—Mg—O3iii88.560 (16)O1—O2—O1ii135.43 (2)
O2—Mg—O3iii87.27 (2)O2v—O2—O1ii126.067 (15)
O2iii—Mg—O3iii92.73 (2)O1v—O2—O1ii164.64 (3)
O1i—Mg—O388.560 (15)O3ix—O2—O1ii76.29 (2)
O1ii—Mg—O391.440 (15)S—O2—O3iii138.09 (2)
O2—Mg—O392.73 (2)Mg—O2—O3iii48.074 (14)
O2iii—Mg—O387.27 (2)O1—O2—O3iii149.22 (2)
O3iii—Mg—O3180.0O2v—O2—O3iii137.11 (3)
O1i—Mg—O2i41.844 (15)O1v—O2—O3iii103.85 (2)
O1ii—Mg—O2i138.156 (15)O3ix—O2—O3iii95.170 (17)
O2—Mg—O2i81.277 (12)O1ii—O2—O3iii61.959 (16)
O2iii—Mg—O2i98.724 (12)S—O2—O1i94.51 (2)
O3iii—Mg—O2i51.318 (12)Mg—O2—O1i42.766 (12)
O3—Mg—O2i128.682 (12)O1—O2—O1i129.89 (2)
O1i—Mg—O2ii138.156 (15)O2v—O2—O1i76.09 (2)
O1ii—Mg—O2ii41.844 (15)O1v—O2—O1i77.77 (2)
O2—Mg—O2ii98.723 (13)O3ix—O2—O1i156.416 (19)
O2iii—Mg—O2ii81.276 (13)O1ii—O2—O1i89.467 (19)
O3iii—Mg—O2ii128.683 (12)O3iii—O2—O1i61.350 (15)
O3—Mg—O2ii51.317 (12)S—O2—O3102.18 (2)
O2i—Mg—O2ii180.0Mg—O2—O345.192 (11)
O1i—Mg—O2iv111.129 (17)O1—O2—O3117.14 (2)
O1ii—Mg—O2iv68.871 (17)O2v—O2—O366.607 (9)
O2—Mg—O2iv137.670 (16)O1v—O2—O3116.32 (2)
O2iii—Mg—O2iv42.330 (16)O3ix—O2—O3126.38 (2)
O3iii—Mg—O2iv59.650 (17)O1ii—O2—O361.836 (15)
O3—Mg—O2iv120.350 (18)O3iii—O2—O393.266 (15)
O2i—Mg—O2iv94.967 (14)O1i—O2—O358.135 (12)
O2ii—Mg—O2iv85.033 (15)S—O2—O1xii95.77 (2)
O1i—Mg—O2v68.871 (17)Mg—O2—O1xii113.89 (2)
O1ii—Mg—O2v111.129 (17)O1—O2—O1xii83.881 (16)
O2—Mg—O2v42.330 (16)O2v—O2—O1xii130.533 (13)
O2iii—Mg—O2v137.670 (16)O1v—O2—O1xii73.67 (2)
O3iii—Mg—O2v120.350 (18)O3ix—O2—O1xii56.975 (15)
O3—Mg—O2v59.650 (17)O1ii—O2—O1xii103.335 (18)
O2i—Mg—O2v85.033 (14)O3iii—O2—O1xii65.870 (17)
O2ii—Mg—O2v94.967 (15)O1i—O2—O1xii109.96 (2)
O2iv—Mg—O2v180.000 (14)O3—O2—O1xii158.960 (17)
O1i—Mg—O1iv118.310 (17)S—O2—O1vii80.21 (2)
O1ii—Mg—O1iv61.690 (17)Mg—O2—O1vii95.174 (19)
O2—Mg—O1iv147.210 (14)O1—O2—O1vii70.67 (2)
O2iii—Mg—O1iv32.789 (14)O2v—O2—O1vii59.462 (19)
O3iii—Mg—O1iv96.883 (17)O1v—O2—O1vii114.13 (2)
O3—Mg—O1iv83.117 (17)O3ix—O2—O1vii86.913 (17)
O2i—Mg—O1iv126.151 (12)O1ii—O2—O1vii77.877 (15)
O2ii—Mg—O1iv53.849 (12)O3iii—O2—O1vii137.81 (2)
O2iv—Mg—O1iv37.536 (9)O1i—O2—O1vii108.65 (2)
O2v—Mg—O1iv142.464 (9)O3—O2—O1vii54.164 (11)
O1i—Mg—O1v61.690 (17)O1xii—O2—O1vii141.376 (16)
O1ii—Mg—O1v118.310 (17)Mg—O3—Mgv123.28 (3)
O2—Mg—O1v32.790 (14)Mg—O3—O2ii90.386 (12)
O2iii—Mg—O1v147.211 (15)Mgv—O3—O2ii110.919 (14)
O3iii—Mg—O1v83.117 (17)Mg—O3—O2xiii110.920 (14)
O3—Mg—O1v96.883 (17)Mgv—O3—O2xiii90.386 (13)
O2i—Mg—O1v53.849 (12)O2ii—O3—O2xiii134.97 (3)
O2ii—Mg—O1v126.151 (11)Mg—O3—O2xiv162.46 (2)
O2iv—Mg—O1v142.464 (9)Mgv—O3—O2xiv44.653 (11)
O2v—Mg—O1v37.536 (9)O2ii—O3—O2xiv84.830 (17)
O1iv—Mg—O1v180.0O2xiii—O3—O2xiv83.966 (16)
O1v—S—O1110.12 (4)Mg—O3—O2iii44.653 (11)
O1v—S—O2v108.63 (2)Mgv—O3—O2iii162.46 (2)
O1—S—O2v110.30 (3)O2ii—O3—O2iii83.967 (16)
O1v—S—O2110.30 (3)O2xiii—O3—O2iii84.831 (17)
O1—S—O2108.63 (2)O2xiv—O3—O2iii150.47 (3)
O2v—S—O2108.85 (4)Mg—O3—O1i43.775 (13)
S—O1—Mgvi139.84 (3)Mgv—O3—O1i105.63 (2)
S—O1—O235.967 (15)O2ii—O3—O1i132.782 (14)
Mgvi—O1—O2103.89 (2)O2xiii—O3—O1i71.680 (16)
S—O1—O1v34.942 (19)O2xiv—O3—O1i142.154 (15)
Mgvi—O1—O1v143.71 (3)O2iii—O3—O1i56.853 (14)
O2—O1—O1v60.609 (18)Mg—O3—O1vii105.63 (2)
S—O1—O2v35.123 (15)Mgv—O3—O1vii43.775 (12)
Mgvi—O1—O2v144.73 (2)O2ii—O3—O1vii71.680 (16)
O2—O1—O2v60.20 (2)O2xiii—O3—O1vii132.781 (14)
O1v—O1—O2v59.583 (18)O2xiv—O3—O1vii56.853 (15)
S—O1—O2vi130.89 (3)O2iii—O3—O1vii142.153 (15)
Mgvi—O1—O2vi47.271 (13)O1i—O3—O1vii123.10 (3)
O2—O1—O2vi112.375 (18)Mg—O3—O1xiii121.92 (2)
O1v—O1—O2vi105.15 (2)Mgv—O3—O1xiii42.431 (10)
O2v—O1—O2vi164.64 (3)O2ii—O3—O1xiii145.237 (15)
S—O1—O3vii167.73 (3)O2xiii—O3—O1xiii49.256 (14)
Mgvi—O1—O3vii47.665 (12)O2xiv—O3—O1xiii60.479 (15)
O2—O1—O3vii148.68 (2)O2iii—O3—O1xiii127.238 (15)
O1v—O1—O3vii149.226 (17)O1i—O3—O1xiii81.727 (16)
O2v—O1—O3vii132.61 (2)O1vii—O3—O1xiii86.206 (18)
O2vi—O1—O3vii61.189 (16)Mg—O3—O1ii42.431 (10)
S—O1—O2viii115.45 (3)Mgv—O3—O1ii121.92 (2)
Mgvi—O1—O2viii43.263 (14)O2ii—O3—O1ii49.257 (14)
O2—O1—O2viii88.372 (19)O2xiii—O3—O1ii145.237 (15)
O1v—O1—O2viii148.583 (17)O2xiv—O3—O1ii127.238 (15)
O2v—O1—O2viii102.23 (2)O2iii—O3—O1ii60.479 (14)
O2vi—O1—O2viii90.534 (19)O1i—O3—O1ii86.206 (18)
O3vii—O1—O2viii62.151 (18)O1vii—O3—O1ii81.727 (16)
S—O1—O3ix94.51 (2)O1xiii—O3—O1ii154.53 (3)
Mgvi—O1—O3ix46.130 (13)Mg—O3—O242.081 (13)
O2—O1—O3ix59.391 (17)Mgv—O3—O282.55 (2)
O1v—O1—O3ix104.48 (3)O2ii—O3—O296.303 (13)
O2v—O1—O3ix116.22 (2)O2xiii—O3—O2126.38 (2)
O2vi—O1—O3ix63.519 (18)O2xiv—O3—O2121.658 (18)
O3vii—O1—O3ix93.795 (18)O2iii—O3—O286.734 (15)
O2viii—O1—O3ix58.171 (15)O1i—O3—O259.714 (16)
S—O1—O2x124.51 (2)O1vii—O3—O268.272 (17)
Mgvi—O1—O2x95.318 (18)O1xiii—O3—O2100.02 (2)
O2—O1—O2x159.93 (2)O1ii—O3—O254.646 (13)
O1v—O1—O2x100.196 (19)Mg—O3—O2v82.55 (2)
O2v—O1—O2x106.33 (2)Mgv—O3—O2v42.081 (13)
O2vi—O1—O2x76.666 (18)O2ii—O3—O2v126.38 (2)
O3vii—O1—O2x51.346 (14)O2xiii—O3—O2v96.303 (13)
O2viii—O1—O2x109.96 (2)O2xiv—O3—O2v86.734 (15)
O3ix—O1—O2x137.244 (19)O2iii—O3—O2v121.658 (18)
S—O1—O2vii111.66 (2)O1i—O3—O2v68.272 (18)
Mgvi—O1—O2vii76.842 (18)O1vii—O3—O2v59.714 (16)
O2—O1—O2vii109.33 (2)O1xiii—O3—O2v54.646 (13)
O1v—O1—O2vii137.93 (2)O1ii—O3—O2v100.02 (2)
O2v—O1—O2vii79.664 (17)O2—O3—O2v46.786 (19)
O2vi—O1—O2vii115.66 (2)Mg—O3—H104.3 (10)
O3vii—O1—O2vii57.564 (17)Mgv—O3—H109.3 (10)
O2viii—O1—O2vii44.450 (16)O2ii—O3—H16.9 (10)
O3ix—O1—O2vii102.462 (18)O2xiii—O3—H119.4 (10)
O2x—O1—O2vii80.445 (14)O2xiv—O3—H74.4 (10)
S—O1—O3xi104.22 (2)O2iii—O3—H87.6 (10)
Mgvi—O1—O3xi96.663 (16)O1i—O3—H142.9 (10)
O2—O1—O3xi119.41 (2)O1vii—O3—H77.4 (10)
O1v—O1—O3xi69.278 (9)O1xiii—O3—H133.6 (10)
O2v—O1—O3xi118.61 (2)O1ii—O3—H65.1 (10)
O2vi—O1—O3xi51.189 (14)O2—O3—H113.0 (10)
O3vii—O1—O3xi81.862 (15)O2v—O3—H136.6 (10)
O2viii—O1—O3xi137.961 (16)Mg—O3—Hv109.3 (10)
O3ix—O1—O3xi107.138 (17)Mgv—O3—Hv104.3 (10)
O2x—O1—O3xi51.278 (12)O2ii—O3—Hv119.4 (10)
O2vii—O1—O3xi130.824 (15)O2xiii—O3—Hv16.9 (10)
S—O2—Mg133.32 (3)O2xiv—O3—Hv87.6 (10)
S—O2—O135.403 (15)O2iii—O3—Hv74.4 (10)
Mg—O2—O1161.90 (2)O1i—O3—Hv77.4 (10)
S—O2—O2v35.573 (18)O1vii—O3—Hv142.9 (10)
Mg—O2—O2v102.990 (16)O1xiii—O3—Hv65.1 (10)
O1—O2—O2v60.409 (17)O1ii—O3—Hv133.6 (10)
S—O2—O1v34.577 (15)O2—O3—Hv136.6 (10)
Mg—O2—O1v120.04 (2)O2v—O3—Hv113.0 (10)
O1—O2—O1v59.81 (2)H—O3—Hv104.9 (19)
O2v—O2—O1v59.391 (17)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y, z+1/2; (xi) x, y1, z; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2ii0.817 (13)1.955 (13)2.7216 (6)156.1 (13)
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
(MgSO4H2O_N2_153K) top
Crystal data top
Fe0H2MgO5SV = 354.35 (9) Å3
Mr = 138.39Z = 4
Monoclinic, C2/cF(000) = 280
a = 6.8717 (10) ÅDx = 2.594 Mg m3
b = 7.6629 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.6098 (10) ŵ = 0.97 mm1
β = 117.833 (10)°T = 153 K
Data collection top
Absorption correction: multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
Rint = 0.019
Tmin = 0.691, Tmax = 0.748θmax = 40.0°, θmin = 4.2°
9918 measured reflectionsh = 1212
1098 independent reflectionsk = 1313
1049 reflections with I > 2σ(I)l = 1313
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.019P)2 + 0.180P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.044(Δ/σ)max < 0.001
S = 1.23Δρmax = 0.48 e Å3
1098 reflectionsΔρmin = 0.41 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.005 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.0000000.5000000.0000000.00490 (6)
S0.0000000.15678 (2)0.2500000.00394 (5)
O10.17528 (7)0.04724 (6)0.39649 (6)0.00764 (7)
O20.09519 (7)0.26939 (5)0.15082 (6)0.00695 (7)
O30.0000000.63402 (8)0.2500000.00651 (9)
H0.105 (2)0.6999 (18)0.290 (2)0.019 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.00441 (11)0.00511 (11)0.00489 (11)0.00030 (8)0.00194 (8)0.00018 (8)
S0.00310 (7)0.00392 (7)0.00449 (7)0.0000.00152 (5)0.000
O10.00485 (14)0.00865 (15)0.00845 (15)0.00234 (11)0.00228 (12)0.00359 (12)
O20.00680 (15)0.00652 (14)0.00900 (15)0.00050 (11)0.00491 (12)0.00257 (11)
O30.0059 (2)0.0072 (2)0.0065 (2)0.0000.00297 (16)0.000
Geometric parameters (Å, º) top
Mg—O1i2.0222 (5)O1—O22.3948 (6)
Mg—O1ii2.0222 (5)O1—O1v2.3997 (9)
Mg—O2iii2.0413 (5)O1—O2v2.4201 (6)
Mg—O22.0413 (5)O1—O2vi2.7714 (6)
Mg—O3iii2.1619 (4)O1—O3vii2.9223 (6)
Mg—O32.1619 (4)O1—O2viii2.9717 (7)
Mg—O2ii3.4868 (6)O1—O3ix2.9978 (6)
Mg—O2i3.4868 (6)O1—O2x3.3061 (7)
Mg—O2iv3.4978 (5)O1—O2vii3.3549 (8)
Mg—O2v3.4978 (5)O1—O3xi3.3862 (8)
Mg—O1iv3.8722 (6)O2—O2v2.4154 (9)
Mg—O1v3.8722 (6)O2—O3ix2.7246 (6)
S—O11.4643 (5)O2—O3iii2.9011 (6)
S—O1v1.4643 (5)O2—O33.0439 (8)
S—O21.4843 (4)O3—H0.817 (13)
S—O2v1.4843 (4)O3—Hv0.817 (13)
O1i—Mg—O1ii180.0S—O2—O3ix105.85 (2)
O1i—Mg—O2iii86.004 (19)Mg—O2—O3ix120.20 (2)
O1ii—Mg—O2iii93.996 (19)O1—O2—O3ix71.357 (19)
O1i—Mg—O293.996 (19)O2v—O2—O3ix127.43 (3)
O1ii—Mg—O286.004 (19)O1v—O2—O3ix112.78 (2)
O2iii—Mg—O2180.0S—O2—O1ii157.72 (3)
O1i—Mg—O3iii91.465 (16)Mg—O2—O1ii46.710 (15)
O1ii—Mg—O3iii88.535 (16)O1—O2—O1ii135.25 (2)
O2iii—Mg—O3iii92.76 (2)O2v—O2—O1ii126.040 (16)
O2—Mg—O3iii87.24 (2)O1v—O2—O1ii164.83 (3)
O1i—Mg—O388.535 (16)O3ix—O2—O1ii76.06 (2)
O1ii—Mg—O391.465 (16)S—O2—O3iii138.28 (3)
O2iii—Mg—O387.24 (2)Mg—O2—O3iii48.104 (14)
O2—Mg—O392.76 (2)O1—O2—O3iii149.20 (2)
O3iii—Mg—O3180.0O2v—O2—O3iii137.31 (3)
O1i—Mg—O2ii138.196 (15)O1v—O2—O3iii104.04 (2)
O1ii—Mg—O2ii41.804 (15)O3ix—O2—O3iii95.062 (17)
O2iii—Mg—O2ii81.266 (13)O1ii—O2—O3iii61.968 (17)
O2—Mg—O2ii98.734 (12)S—O2—O1i94.68 (2)
O3iii—Mg—O2ii128.613 (12)Mg—O2—O1i42.751 (12)
O3—Mg—O2ii51.387 (12)O1—O2—O1i130.08 (2)
O1i—Mg—O2i41.805 (15)O2v—O2—O1i76.26 (2)
O1ii—Mg—O2i138.195 (15)O1v—O2—O1i77.93 (2)
O2iii—Mg—O2i98.734 (13)O3ix—O2—O1i156.311 (19)
O2—Mg—O2i81.266 (13)O1ii—O2—O1i89.461 (19)
O3iii—Mg—O2i51.387 (12)O3iii—O2—O1i61.374 (15)
O3—Mg—O2i128.614 (12)S—O2—O3102.17 (2)
O2ii—Mg—O2i180.0Mg—O2—O345.188 (12)
O1i—Mg—O2iv110.994 (18)O1—O2—O3117.17 (2)
O1ii—Mg—O2iv69.006 (17)O2v—O2—O366.625 (10)
O2iii—Mg—O2iv42.269 (16)O1v—O2—O3116.33 (2)
O2—Mg—O2iv137.731 (17)O3ix—O2—O3126.20 (2)
O3iii—Mg—O2iv59.645 (18)O1ii—O2—O361.851 (16)
O3—Mg—O2iv120.354 (18)O3iii—O2—O393.292 (15)
O2ii—Mg—O2iv85.078 (15)O1i—O2—O358.112 (13)
O2i—Mg—O2iv94.922 (14)S—O2—O1xii95.99 (2)
O1i—Mg—O2v69.006 (18)Mg—O2—O1xii113.79 (2)
O1ii—Mg—O2v110.994 (17)O1—O2—O1xii83.969 (16)
O2iii—Mg—O2v137.731 (16)O2v—O2—O1xii130.739 (13)
O2—Mg—O2v42.269 (16)O1v—O2—O1xii73.91 (2)
O3iii—Mg—O2v120.355 (17)O3ix—O2—O1xii56.993 (15)
O3—Mg—O2v59.646 (18)O1ii—O2—O1xii103.143 (19)
O2ii—Mg—O2v94.922 (15)O3iii—O2—O1xii65.745 (18)
O2i—Mg—O2v85.078 (15)O1i—O2—O1xii110.01 (2)
O2iv—Mg—O2v180.0O3—O2—O1xii158.842 (17)
O1i—Mg—O1iv118.204 (17)S—O2—O1vii80.15 (2)
O1ii—Mg—O1iv61.796 (17)Mg—O2—O1vii95.069 (19)
O2iii—Mg—O1iv32.694 (15)O1—O2—O1vii70.71 (2)
O2—Mg—O1iv147.306 (15)O2v—O2—O1vii59.37 (2)
O3iii—Mg—O1iv96.824 (17)O1v—O2—O1vii114.05 (2)
O3—Mg—O1iv83.176 (17)O3ix—O2—O1vii86.865 (18)
O2ii—Mg—O1iv53.936 (12)O1ii—O2—O1vii77.784 (15)
O2i—Mg—O1iv126.064 (12)O3iii—O2—O1vii137.72 (2)
O2iv—Mg—O1iv37.491 (9)O1i—O2—O1vii108.59 (2)
O2v—Mg—O1iv142.509 (9)O3—O2—O1vii54.083 (11)
O1i—Mg—O1v61.796 (17)O1xii—O2—O1vii141.399 (17)
O1ii—Mg—O1v118.204 (17)Mg—O3—Mgv123.28 (3)
O2iii—Mg—O1v147.306 (15)Mg—O3—O2xiii110.889 (14)
O2—Mg—O1v32.694 (15)Mgv—O3—O2xiii90.296 (12)
O3iii—Mg—O1v83.176 (17)Mg—O3—O2ii90.295 (13)
O3—Mg—O1v96.824 (17)Mgv—O3—O2ii110.890 (14)
O2ii—Mg—O1v126.064 (12)O2xiii—O3—O2ii135.24 (3)
O2i—Mg—O1v53.936 (12)Mg—O3—O2xiv162.51 (2)
O2iv—Mg—O1v142.509 (9)Mgv—O3—O2xiv44.654 (11)
O2v—Mg—O1v37.491 (9)O2xiii—O3—O2xiv83.914 (17)
O1iv—Mg—O1v180.0O2ii—O3—O2xiv84.938 (17)
O1—S—O1v110.05 (4)Mg—O3—O2iii44.654 (11)
O1—S—O2108.62 (3)Mgv—O3—O2iii162.51 (2)
O1v—S—O2110.32 (3)O2xiii—O3—O2iii84.937 (18)
O1—S—O2v110.32 (3)O2ii—O3—O2iii83.914 (16)
O1v—S—O2v108.62 (3)O2xiv—O3—O2iii150.44 (3)
O2—S—O2v108.91 (4)Mg—O3—O1i43.770 (13)
S—O1—Mgvi139.91 (3)Mgv—O3—O1i105.70 (2)
S—O1—O235.971 (16)O2xiii—O3—O1i71.575 (17)
Mgvi—O1—O2103.94 (2)O2ii—O3—O1i132.687 (14)
S—O1—O1v34.976 (19)O2xiv—O3—O1i142.144 (16)
Mgvi—O1—O1v143.94 (3)O2iii—O3—O1i56.837 (15)
O2—O1—O1v60.632 (19)Mg—O3—O1vii105.70 (2)
S—O1—O2v35.110 (16)Mgv—O3—O1vii43.770 (13)
Mgvi—O1—O2v144.59 (2)O2xiii—O3—O1vii132.687 (15)
O2—O1—O2v60.22 (2)O2ii—O3—O1vii71.575 (16)
O1v—O1—O2v59.584 (18)O2xiv—O3—O1vii56.837 (15)
S—O1—O2vi131.09 (3)O2iii—O3—O1vii142.144 (16)
Mgvi—O1—O2vi47.286 (13)O1i—O3—O1vii123.24 (3)
O2—O1—O2vi112.457 (19)Mg—O3—O1xiii121.85 (2)
O1v—O1—O2vi105.34 (2)Mgv—O3—O1xiii42.403 (10)
O2v—O1—O2vi164.83 (3)O2xiii—O3—O1xiii49.196 (14)
S—O1—O3vii167.53 (3)O2ii—O3—O1xiii145.326 (15)
Mgvi—O1—O3vii47.694 (12)O2xiv—O3—O1xiii60.476 (15)
O2—O1—O3vii148.75 (2)O2iii—O3—O1xiii127.299 (15)
O1v—O1—O3vii149.214 (17)O1i—O3—O1xiii81.713 (16)
O2v—O1—O3vii132.42 (2)O1vii—O3—O1xiii86.173 (18)
O2vi—O1—O3vii61.195 (16)Mg—O3—O1ii42.403 (10)
S—O1—O2viii115.35 (3)Mgv—O3—O1ii121.85 (2)
Mgvi—O1—O2viii43.253 (14)O2xiii—O3—O1ii145.325 (15)
O2—O1—O2viii88.377 (19)O2ii—O3—O1ii49.195 (14)
O1v—O1—O2viii148.579 (17)O2xiv—O3—O1ii127.299 (15)
O2v—O1—O2viii102.07 (2)O2iii—O3—O1ii60.476 (15)
O2vi—O1—O2viii90.539 (19)O1i—O3—O1ii86.173 (18)
O3vii—O1—O2viii62.181 (19)O1vii—O3—O1ii81.713 (16)
S—O1—O3ix94.60 (2)O1xiii—O3—O1ii154.37 (3)
Mgvi—O1—O3ix46.133 (13)Mg—O3—O2v82.56 (2)
O2—O1—O3ix59.449 (18)Mgv—O3—O2v42.053 (13)
O1v—O1—O3ix104.66 (3)O2xiii—O3—O2v96.221 (13)
O2v—O1—O3ix116.23 (2)O2ii—O3—O2v126.20 (2)
O2vi—O1—O3ix63.547 (19)O2xiv—O3—O2v86.707 (15)
O3vii—O1—O3ix93.827 (18)O2iii—O3—O2v121.723 (19)
O2viii—O1—O3ix58.151 (16)O1i—O3—O2v68.398 (18)
S—O1—O2x124.32 (3)O1vii—O3—O2v59.707 (17)
Mgvi—O1—O2x95.485 (18)O1xiii—O3—O2v54.601 (13)
O2—O1—O2x159.76 (2)O1ii—O3—O2v99.91 (2)
O1v—O1—O2x100.06 (2)Mg—O3—O242.054 (13)
O2v—O1—O2x106.09 (2)Mgv—O3—O282.56 (2)
O2vi—O1—O2x76.856 (18)O2xiii—O3—O2126.20 (2)
O3vii—O1—O2x51.431 (14)O2ii—O3—O296.221 (13)
O2viii—O1—O2x110.01 (2)O2xiv—O3—O2121.723 (19)
O3ix—O1—O2x137.453 (19)O2iii—O3—O286.707 (15)
S—O1—O2vii111.52 (3)O1i—O3—O259.707 (16)
Mgvi—O1—O2vii76.748 (18)O1vii—O3—O268.397 (18)
O2—O1—O2vii109.29 (2)O1xiii—O3—O299.91 (2)
O1v—O1—O2vii137.80 (2)O1ii—O3—O254.602 (13)
O2v—O1—O2vii79.535 (18)O2v—O3—O246.751 (19)
O2vi—O1—O2vii115.59 (2)Mg—O3—H104.9 (10)
O3vii—O1—O2vii57.519 (17)Mgv—O3—H109.2 (10)
O2viii—O1—O2vii44.376 (17)O2xiii—O3—H118.8 (10)
O3ix—O1—O2vii102.370 (18)O2ii—O3—H17.8 (10)
O2x—O1—O2vii80.400 (14)O2xiv—O3—H74.0 (10)
S—O1—O3xi104.22 (2)O2iii—O3—H87.7 (10)
Mgvi—O1—O3xi96.836 (17)O1i—O3—H143.2 (10)
O2—O1—O3xi119.40 (2)O1vii—O3—H77.7 (9)
O1v—O1—O3xi69.247 (9)O1xiii—O3—H133.1 (10)
O2v—O1—O3xi118.58 (2)O1ii—O3—H65.9 (10)
O2vi—O1—O3xi51.344 (15)O2v—O3—H137.0 (9)
O3vii—O1—O3xi81.949 (15)O2—O3—H113.8 (10)
O2viii—O1—O3xi138.117 (17)Mg—O3—Hv109.2 (10)
O3ix—O1—O3xi107.284 (18)Mgv—O3—Hv104.9 (10)
O2x—O1—O3xi51.361 (12)O2xiii—O3—Hv17.8 (10)
O2vii—O1—O3xi130.852 (15)O2ii—O3—Hv118.8 (10)
S—O2—Mg133.44 (3)O2xiv—O3—Hv87.7 (10)
S—O2—O135.413 (16)O2iii—O3—Hv74.0 (10)
Mg—O2—O1161.95 (2)O1i—O3—Hv77.7 (10)
S—O2—O2v35.547 (18)O1vii—O3—Hv143.2 (10)
Mg—O2—O2v103.091 (17)O1xiii—O3—Hv65.9 (10)
O1—O2—O2v60.413 (18)O1ii—O3—Hv133.1 (10)
S—O2—O1v34.569 (15)O2v—O3—Hv113.8 (10)
Mg—O2—O1v120.20 (2)O2—O3—Hv137.0 (10)
O1—O2—O1v59.78 (2)H—O3—Hv103.6 (19)
O2v—O2—O1v59.374 (18)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y, z+1/2; (xi) x, y1, z; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2ii0.817 (13)1.963 (13)2.7246 (6)154.9 (13)
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
(MgSO4H2O_N2_193K) top
Crystal data top
Fe0H2MgO5SV = 354.60 (9) Å3
Mr = 138.39Z = 4
Monoclinic, C2/cF(000) = 280
a = 6.8815 (10) ÅDx = 2.592 Mg m3
b = 7.6534 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.6172 (10) ŵ = 0.97 mm1
β = 117.884 (10)°T = 193 K
Data collection top
Absorption correction: multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
Rint = 0.020
Tmin = 0.686, Tmax = 0.748θmax = 39.9°, θmin = 4.2°
9924 measured reflectionsh = 1212
1098 independent reflectionsk = 1313
1047 reflections with I > 2σ(I)l = 1313
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.020P)2 + 0.180P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.49 e Å3
1098 reflectionsΔρmin = 0.37 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.004 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.0000000.5000000.0000000.00566 (6)
S0.0000000.15635 (2)0.2500000.00461 (5)
O10.17541 (7)0.04664 (6)0.39602 (7)0.00910 (8)
O20.09440 (7)0.26900 (6)0.15044 (7)0.00824 (7)
O30.0000000.63431 (8)0.2500000.00757 (9)
H0.104 (2)0.7003 (18)0.291 (2)0.022 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.00494 (11)0.00595 (11)0.00571 (11)0.00034 (8)0.00217 (9)0.00024 (8)
S0.00351 (7)0.00455 (7)0.00540 (7)0.0000.00177 (5)0.000
O10.00578 (15)0.01021 (16)0.01016 (16)0.00271 (12)0.00276 (13)0.00436 (13)
O20.00810 (16)0.00758 (15)0.01082 (16)0.00065 (12)0.00592 (13)0.00323 (12)
O30.0070 (2)0.0083 (2)0.0075 (2)0.0000.00343 (17)0.000
Geometric parameters (Å, º) top
Mg—O1i2.0222 (5)O1—O22.3939 (6)
Mg—O1ii2.0222 (5)O1—O1v2.3986 (10)
Mg—O2iii2.0407 (5)O1—O2v2.4195 (7)
Mg—O22.0407 (5)O1—O2vi2.7702 (7)
Mg—O32.1640 (4)O1—O3vii2.9230 (7)
Mg—O3iii2.1640 (4)O1—O2viii2.9721 (8)
Mg—O2ii3.4882 (6)O1—O3ix3.0001 (6)
Mg—O2i3.4882 (6)O1—O2x3.3035 (7)
Mg—O2iv3.5007 (6)O1—O2vii3.3640 (8)
Mg—O2v3.5007 (6)O1—O3xi3.3759 (9)
Mg—O1iv3.8753 (6)O2—O2v2.4148 (9)
Mg—O1v3.8753 (6)O2—O3ix2.7292 (6)
S—O1v1.4640 (5)O2—O3iii2.9018 (6)
S—O11.4640 (5)O2—O33.0454 (8)
S—O2v1.4837 (5)O3—H0.807 (14)
S—O21.4837 (5)O3—Hv0.807 (14)
O1i—Mg—O1ii180.0S—O2—O3ix105.89 (2)
O1i—Mg—O2iii85.97 (2)Mg—O2—O3ix119.93 (2)
O1ii—Mg—O2iii94.03 (2)O1—O2—O3ix71.349 (19)
O1i—Mg—O294.03 (2)O2v—O2—O3ix127.31 (3)
O1ii—Mg—O285.97 (2)O1v—O2—O3ix112.96 (3)
O2iii—Mg—O2180.0S—O2—O1ii157.56 (3)
O1i—Mg—O388.505 (16)Mg—O2—O1ii46.734 (16)
O1ii—Mg—O391.495 (16)O1—O2—O1ii134.99 (2)
O2iii—Mg—O387.23 (2)O2v—O2—O1ii126.015 (17)
O2—Mg—O392.77 (2)O1v—O2—O1ii165.10 (3)
O1i—Mg—O3iii91.495 (16)O3ix—O2—O1ii75.74 (2)
O1ii—Mg—O3iii88.505 (16)S—O2—O3iii138.52 (3)
O2iii—Mg—O3iii92.77 (2)Mg—O2—O3iii48.149 (15)
O2—Mg—O3iii87.23 (2)O1—O2—O3iii149.15 (3)
O3—Mg—O3iii180.0O2v—O2—O3iii137.60 (3)
O1i—Mg—O2ii138.255 (16)O1v—O2—O3iii104.26 (2)
O1ii—Mg—O2ii41.745 (16)O3ix—O2—O3iii94.904 (18)
O2iii—Mg—O2ii81.272 (13)O1ii—O2—O3iii61.990 (17)
O2—Mg—O2ii98.728 (13)S—O2—O1i94.94 (2)
O3—Mg—O2ii51.482 (13)Mg—O2—O1i42.743 (13)
O3iii—Mg—O2ii128.518 (12)O1—O2—O1i130.34 (3)
O1i—Mg—O2i41.745 (16)O2v—O2—O1i76.51 (2)
O1ii—Mg—O2i138.255 (16)O1v—O2—O1i78.14 (2)
O2iii—Mg—O2i98.728 (13)O3ix—O2—O1i156.16 (2)
O2—Mg—O2i81.272 (13)O1ii—O2—O1i89.48 (2)
O3—Mg—O2i128.518 (12)O3iii—O2—O1i61.414 (16)
O3iii—Mg—O2i51.482 (12)S—O2—O3102.17 (2)
O2ii—Mg—O2i180.0Mg—O2—O345.215 (12)
O1i—Mg—O2iv110.802 (18)O1—O2—O3117.19 (2)
O1ii—Mg—O2iv69.198 (19)O2v—O2—O366.642 (10)
O2iii—Mg—O2iv42.178 (17)O1v—O2—O3116.34 (2)
O2—Mg—O2iv137.821 (17)O3ix—O2—O3125.95 (2)
O3—Mg—O2iv120.385 (18)O1ii—O2—O361.898 (16)
O3iii—Mg—O2iv59.615 (18)O3iii—O2—O393.364 (15)
O2ii—Mg—O2iv85.161 (15)O1i—O2—O358.108 (13)
O2i—Mg—O2iv94.839 (15)S—O2—O1xii96.27 (2)
O1i—Mg—O2v69.198 (19)Mg—O2—O1xii113.63 (2)
O1ii—Mg—O2v110.802 (18)O1—O2—O1xii84.090 (17)
O2iii—Mg—O2v137.822 (17)O2v—O2—O1xii131.029 (14)
O2—Mg—O2v42.179 (17)O1v—O2—O1xii74.24 (2)
O3—Mg—O2v59.615 (18)O3ix—O2—O1xii57.012 (16)
O3iii—Mg—O2v120.385 (18)O1ii—O2—O1xii102.856 (19)
O2ii—Mg—O2v94.839 (15)O3iii—O2—O1xii65.547 (19)
O2i—Mg—O2v85.161 (15)O1i—O2—O1xii110.06 (2)
O2iv—Mg—O2v180.0O3—O2—O1xii158.686 (18)
O1i—Mg—O1iv118.071 (18)S—O2—O1vii80.05 (2)
O1ii—Mg—O1iv61.929 (18)Mg—O2—O1vii94.97 (2)
O2iii—Mg—O1iv32.577 (15)O1—O2—O1vii70.73 (2)
O2—Mg—O1iv147.423 (15)O2v—O2—O1vii59.22 (2)
O3—Mg—O1iv83.267 (18)O1v—O2—O1vii113.94 (2)
O3iii—Mg—O1iv96.733 (17)O3ix—O2—O1vii86.783 (18)
O2ii—Mg—O1iv54.058 (12)O1ii—O2—O1vii77.685 (16)
O2i—Mg—O1iv125.943 (12)O3iii—O2—O1vii137.64 (2)
O2iv—Mg—O1iv37.443 (10)O1i—O2—O1vii108.53 (2)
O2v—Mg—O1iv142.557 (10)O3—O2—O1vii53.988 (12)
O1i—Mg—O1v61.929 (18)O1xii—O2—O1vii141.406 (17)
O1ii—Mg—O1v118.071 (18)Mg—O3—Mgv123.28 (3)
O2iii—Mg—O1v147.423 (15)Mg—O3—O2ii90.174 (13)
O2—Mg—O1v32.577 (15)Mgv—O3—O2ii110.842 (14)
O3—Mg—O1v96.733 (17)Mg—O3—O2xiii110.843 (14)
O3iii—Mg—O1v83.267 (17)Mgv—O3—O2xiii90.174 (13)
O2ii—Mg—O1v125.942 (12)O2ii—O3—O2xiii135.61 (3)
O2i—Mg—O1v54.057 (12)Mg—O3—O2xiv162.56 (2)
O2iv—Mg—O1v142.557 (10)Mgv—O3—O2xiv44.622 (11)
O2v—Mg—O1v37.443 (10)O2ii—O3—O2xiv85.096 (18)
O1iv—Mg—O1v180.0O2xiii—O3—O2xiv83.848 (17)
O1v—S—O1110.01 (4)Mg—O3—O2iii44.622 (11)
O1v—S—O2v108.61 (3)Mgv—O3—O2iii162.56 (2)
O1—S—O2v110.33 (3)O2ii—O3—O2iii83.848 (17)
O1v—S—O2110.33 (3)O2xiii—O3—O2iii85.096 (18)
O1—S—O2108.61 (3)O2xiv—O3—O2iii150.45 (3)
O2v—S—O2108.94 (4)Mg—O3—O1i43.756 (13)
S—O1—Mgvi140.00 (3)Mgv—O3—O1i105.80 (2)
S—O1—O235.970 (17)O2ii—O3—O1i132.554 (15)
Mgvi—O1—O2104.03 (2)O2xiii—O3—O1i71.436 (17)
S—O1—O1v35.00 (2)O2xiv—O3—O1i142.120 (16)
Mgvi—O1—O1v144.24 (3)O2iii—O3—O1i56.794 (16)
O2—O1—O1v60.64 (2)Mg—O3—O1vii105.80 (2)
S—O1—O2v35.099 (16)Mgv—O3—O1vii43.756 (13)
Mgvi—O1—O2v144.38 (3)O2ii—O3—O1vii71.436 (17)
O2—O1—O2v60.22 (2)O2xiii—O3—O1vii132.554 (15)
O1v—O1—O2v59.582 (19)O2xiv—O3—O1vii56.794 (16)
S—O1—O2vi131.33 (3)O2iii—O3—O1vii142.120 (16)
Mgvi—O1—O2vi47.294 (14)O1i—O3—O1vii123.44 (3)
O2—O1—O2vi112.55 (2)Mg—O3—O1xiii121.77 (2)
O1v—O1—O2vi105.61 (2)Mgv—O3—O1xiii42.362 (11)
O2v—O1—O2vi165.10 (3)O2ii—O3—O1xiii145.434 (16)
S—O1—O3vii167.26 (3)O2xiii—O3—O1xiii49.117 (14)
Mgvi—O1—O3vii47.739 (12)O2xiv—O3—O1xiii60.448 (15)
O2—O1—O3vii148.85 (2)O2iii—O3—O1xiii127.393 (15)
O1v—O1—O3vii149.200 (18)O1i—O3—O1xiii81.708 (17)
O2v—O1—O3vii132.16 (2)O1vii—O3—O1xiii86.118 (19)
O2vi—O1—O3vii61.217 (17)Mg—O3—O1ii42.362 (11)
S—O1—O2viii115.27 (3)Mgv—O3—O1ii121.77 (2)
Mgvi—O1—O2viii43.229 (15)O2ii—O3—O1ii49.117 (14)
O2—O1—O2viii88.419 (19)O2xiii—O3—O1ii145.434 (15)
O1v—O1—O2viii148.586 (18)O2xiv—O3—O1ii127.393 (15)
O2v—O1—O2viii101.86 (2)O2iii—O3—O1ii60.448 (15)
O2vi—O1—O2viii90.52 (2)O1i—O3—O1ii86.118 (19)
O3vii—O1—O2viii62.202 (19)O1vii—O3—O1ii81.708 (17)
S—O1—O3ix94.72 (2)O1xiii—O3—O1ii154.15 (3)
Mgvi—O1—O3ix46.143 (13)Mg—O3—O2v82.58 (2)
O2—O1—O3ix59.534 (18)Mgv—O3—O2v42.014 (13)
O1v—O1—O3ix104.90 (3)O2ii—O3—O2v125.95 (2)
O2v—O1—O3ix116.23 (2)O2xiii—O3—O2v96.110 (13)
O2vi—O1—O3ix63.564 (19)O2xiv—O3—O2v86.636 (15)
O3vii—O1—O3ix93.882 (19)O2iii—O3—O2v121.80 (2)
O2viii—O1—O3ix58.138 (16)O1i—O3—O2v68.579 (19)
S—O1—O2x124.04 (3)O1vii—O3—O2v59.690 (17)
Mgvi—O1—O2x95.721 (19)O1xiii—O3—O2v54.539 (14)
O2—O1—O2x159.51 (3)O1ii—O3—O2v99.76 (2)
O1v—O1—O2x99.86 (2)Mg—O3—O242.013 (13)
O2v—O1—O2x105.76 (2)Mgv—O3—O282.58 (2)
O2vi—O1—O2x77.145 (19)O2ii—O3—O296.110 (13)
O3vii—O1—O2x51.552 (15)O2xiii—O3—O2125.95 (2)
O2viii—O1—O2x110.06 (2)O2xiv—O3—O2121.80 (2)
O3ix—O1—O2x137.75 (2)O2iii—O3—O286.636 (15)
S—O1—O2vii111.38 (3)O1i—O3—O259.690 (17)
Mgvi—O1—O2vii76.611 (19)O1vii—O3—O268.579 (19)
O2—O1—O2vii109.27 (2)O1xiii—O3—O299.76 (2)
O1v—O1—O2vii137.62 (2)O1ii—O3—O254.539 (14)
O2v—O1—O2vii79.384 (19)O2v—O3—O246.72 (2)
O2vi—O1—O2vii115.48 (2)Mg—O3—H105.8 (10)
O3vii—O1—O2vii57.433 (18)Mgv—O3—H108.8 (10)
O2viii—O1—O2vii44.270 (18)O2ii—O3—H18.8 (10)
O3ix—O1—O2vii102.256 (19)O2xiii—O3—H118.3 (10)
O2x—O1—O2vii80.320 (15)O2xiv—O3—H73.3 (10)
S—O1—O3xi104.19 (2)O2iii—O3—H88.2 (10)
Mgvi—O1—O3xi97.082 (18)O1i—O3—H143.8 (10)
O2—O1—O3xi119.37 (2)O1vii—O3—H77.6 (10)
O1v—O1—O3xi69.191 (9)O1xiii—O3—H132.3 (10)
O2v—O1—O3xi118.53 (2)O1ii—O3—H66.8 (10)
O2vi—O1—O3xi51.582 (15)O2v—O3—H137.0 (10)
O3vii—O1—O3xi82.084 (16)O2—O3—H114.7 (10)
O2viii—O1—O3xi138.327 (17)Mg—O3—Hv108.8 (10)
O3ix—O1—O3xi107.482 (19)Mgv—O3—Hv105.8 (10)
O2x—O1—O3xi51.485 (13)O2ii—O3—Hv118.3 (10)
O2vii—O1—O3xi130.882 (16)O2xiii—O3—Hv18.8 (10)
S—O2—Mg133.63 (3)O2xiv—O3—Hv88.2 (10)
S—O2—O135.421 (16)O2iii—O3—Hv73.3 (10)
Mg—O2—O1162.05 (3)O1i—O3—Hv77.6 (10)
S—O2—O2v35.530 (19)O1vii—O3—Hv143.8 (10)
Mg—O2—O2v103.251 (17)O1xiii—O3—Hv66.8 (10)
O1—O2—O2v60.416 (19)O1ii—O3—Hv132.3 (10)
S—O2—O1v34.567 (16)O2v—O3—Hv114.7 (10)
Mg—O2—O1v120.41 (2)O2—O3—Hv137.0 (10)
O1—O2—O1v59.77 (3)H—O3—Hv103 (2)
O2v—O2—O1v59.364 (18)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y, z+1/2; (xi) x, y1, z; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2ii0.807 (14)1.982 (14)2.7292 (6)153.7 (14)
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
(MgSO4H2O_N2_233K) top
Crystal data top
Fe0H2MgO5SV = 355.20 (9) Å3
Mr = 138.39Z = 4
Monoclinic, C2/cF(000) = 280
a = 6.8937 (10) ÅDx = 2.588 Mg m3
b = 7.6466 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.6275 (10) ŵ = 0.97 mm1
β = 117.943 (10)°T = 233 K
Data collection top
9888 measured reflectionsθmax = 40.0°, θmin = 4.2°
1100 independent reflectionsh = 1212
1050 reflections with I > 2σ(I)k = 1313
Rint = 0.019l = 1313
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.019P)2 + 0.190P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.52 e Å3
1100 reflectionsΔρmin = 0.41 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0051 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.0000000.5000000.0000000.00652 (6)
S0.0000000.15586 (2)0.2500000.00530 (5)
O10.17551 (7)0.04607 (6)0.39547 (7)0.01054 (8)
O20.09346 (7)0.26857 (6)0.15003 (7)0.00955 (8)
O30.0000000.63464 (8)0.2500000.00867 (10)
H0.103 (2)0.7020 (18)0.291 (2)0.024 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.00574 (11)0.00680 (11)0.00652 (11)0.00039 (8)0.00244 (9)0.00034 (8)
S0.00400 (7)0.00518 (7)0.00623 (7)0.0000.00198 (5)0.000
O10.00642 (15)0.01185 (17)0.01192 (17)0.00311 (13)0.00312 (13)0.00518 (13)
O20.00931 (17)0.00875 (16)0.01258 (17)0.00087 (12)0.00678 (14)0.00375 (12)
O30.0082 (2)0.0095 (2)0.0084 (2)0.0000.00396 (18)0.000
Geometric parameters (Å, º) top
Mg—O1i2.0229 (6)O1—O22.3931 (7)
Mg—O1ii2.0229 (6)O1—O1v2.3974 (10)
Mg—O2iii2.0409 (5)O1—O2v2.4187 (7)
Mg—O22.0409 (5)O1—O2vi2.7709 (7)
Mg—O32.1671 (4)O1—O3vii2.9252 (7)
Mg—O3iii2.1671 (4)O1—O2viii2.9728 (8)
Mg—O2ii3.4909 (6)O1—O3ix3.0033 (6)
Mg—O2i3.4909 (6)O1—O2x3.3027 (7)
Mg—O2iv3.5049 (6)O1—O3xi3.3667 (9)
Mg—O2v3.5049 (6)O1—O2vii3.3747 (8)
Mg—O1iv3.8796 (6)O2—O2v2.4141 (9)
Mg—O1v3.8796 (6)O2—O3ix2.7353 (6)
S—O1v1.4634 (5)O2—O3iii2.9035 (6)
S—O11.4634 (5)O2—O33.0483 (8)
S—O2v1.4832 (5)O3—H0.813 (14)
S—O21.4832 (5)O3—Hv0.813 (14)
O1i—Mg—O1ii180.0S—O2—O3ix105.92 (3)
O1i—Mg—O2iii85.97 (2)Mg—O2—O3ix119.60 (2)
O1ii—Mg—O2iii94.03 (2)O1—O2—O3ix71.340 (19)
O1i—Mg—O294.03 (2)O2v—O2—O3ix127.18 (3)
O1ii—Mg—O285.97 (2)O1v—O2—O3ix113.15 (3)
O2iii—Mg—O2180.0S—O2—O1ii157.38 (3)
O1i—Mg—O388.488 (17)Mg—O2—O1ii46.741 (16)
O1ii—Mg—O391.512 (17)O1—O2—O1ii134.70 (2)
O2iii—Mg—O387.21 (2)O2v—O2—O1ii125.973 (17)
O2—Mg—O392.79 (2)O1v—O2—O1ii165.40 (3)
O1i—Mg—O3iii91.512 (16)O3ix—O2—O1ii75.38 (2)
O1ii—Mg—O3iii88.488 (17)S—O2—O3iii138.80 (3)
O2iii—Mg—O3iii92.79 (2)Mg—O2—O3iii48.199 (15)
O2—Mg—O3iii87.21 (2)O1—O2—O3iii149.09 (3)
O3—Mg—O3iii180.0O2v—O2—O3iii137.95 (3)
O1i—Mg—O2ii138.340 (16)O1v—O2—O3iii104.53 (2)
O1ii—Mg—O2ii41.660 (16)O3ix—O2—O3iii94.715 (18)
O2iii—Mg—O2ii81.260 (13)O1ii—O2—O3iii62.011 (17)
O2—Mg—O2ii98.740 (13)S—O2—O1i95.24 (2)
O3—Mg—O2ii51.587 (12)Mg—O2—O1i42.749 (13)
O3iii—Mg—O2ii128.413 (12)O1—O2—O1i130.64 (3)
O1i—Mg—O2i41.660 (16)O2v—O2—O1i76.81 (2)
O1ii—Mg—O2i138.340 (16)O1v—O2—O1i78.37 (2)
O2iii—Mg—O2i98.740 (13)O3ix—O2—O1i155.98 (2)
O2—Mg—O2i81.261 (13)O1ii—O2—O1i89.49 (2)
O3—Mg—O2i128.413 (12)O3iii—O2—O1i61.458 (16)
O3iii—Mg—O2i51.587 (12)S—O2—O3102.20 (2)
O2ii—Mg—O2i180.0Mg—O2—O345.239 (12)
O1i—Mg—O2iv110.592 (19)O1—O2—O3117.22 (2)
O1ii—Mg—O2iv69.408 (19)O2v—O2—O366.674 (10)
O2iii—Mg—O2iv42.059 (17)O1v—O2—O3116.37 (2)
O2—Mg—O2iv137.941 (17)O3ix—O2—O3125.67 (2)
O3—Mg—O2iv120.404 (18)O1ii—O2—O361.925 (16)
O3iii—Mg—O2iv59.596 (19)O3iii—O2—O393.438 (16)
O2ii—Mg—O2iv85.246 (15)O1i—O2—O358.117 (13)
O2i—Mg—O2iv94.754 (15)S—O2—O1xii96.56 (2)
O1i—Mg—O2v69.408 (19)Mg—O2—O1xii113.46 (2)
O1ii—Mg—O2v110.592 (19)O1—O2—O1xii84.214 (17)
O2iii—Mg—O2v137.941 (17)O2v—O2—O1xii131.342 (14)
O2—Mg—O2v42.059 (17)O1v—O2—O1xii74.59 (2)
O3—Mg—O2v59.596 (18)O3ix—O2—O1xii57.028 (16)
O3iii—Mg—O2v120.404 (19)O1ii—O2—O1xii102.56 (2)
O2ii—Mg—O2v94.754 (15)O3iii—O2—O1xii65.334 (19)
O2i—Mg—O2v85.246 (16)O1i—O2—O1xii110.11 (2)
O2iv—Mg—O2v180.0O3—O2—O1xii158.511 (18)
O1i—Mg—O1iv117.942 (19)S—O2—O1vii79.95 (2)
O1ii—Mg—O1iv62.058 (19)Mg—O2—O1vii94.87 (2)
O2iii—Mg—O1iv32.427 (15)O1—O2—O1vii70.74 (2)
O2—Mg—O1iv147.572 (15)O2v—O2—O1vii59.05 (2)
O3—Mg—O1iv83.361 (18)O1v—O2—O1vii113.82 (2)
O3iii—Mg—O1iv96.640 (18)O3ix—O2—O1vii86.687 (19)
O2ii—Mg—O1iv54.188 (12)O1ii—O2—O1vii77.571 (16)
O2i—Mg—O1iv125.811 (12)O3iii—O2—O1vii137.56 (2)
O2iv—Mg—O1iv37.384 (10)O1i—O2—O1vii108.49 (2)
O2v—Mg—O1iv142.616 (10)O3—O2—O1vii53.894 (12)
O1i—Mg—O1v62.058 (19)O1xii—O2—O1vii141.396 (18)
O1ii—Mg—O1v117.942 (19)Mg—O3—Mgv123.27 (3)
O2iii—Mg—O1v147.573 (15)Mg—O3—O2ii90.040 (13)
O2—Mg—O1v32.428 (16)Mgv—O3—O2ii110.797 (14)
O3—Mg—O1v96.639 (18)Mg—O3—O2xiii110.797 (14)
O3iii—Mg—O1v83.360 (18)Mgv—O3—O2xiii90.040 (13)
O2ii—Mg—O1v125.812 (12)O2ii—O3—O2xiii136.02 (3)
O2i—Mg—O1v54.189 (12)Mg—O3—O2xiv162.61 (2)
O2iv—Mg—O1v142.616 (10)Mgv—O3—O2xiv44.594 (12)
O2v—Mg—O1v37.384 (10)O2ii—O3—O2xiv85.285 (18)
O1iv—Mg—O1v180.0O2xiii—O3—O2xiv83.762 (17)
O1v—S—O1109.99 (4)Mg—O3—O2iii44.594 (12)
O1v—S—O2v108.61 (3)Mgv—O3—O2iii162.61 (2)
O1—S—O2v110.34 (3)O2ii—O3—O2iii83.762 (17)
O1v—S—O2110.34 (3)O2xiii—O3—O2iii85.284 (18)
O1—S—O2108.61 (3)O2xiv—O3—O2iii150.46 (3)
O2v—S—O2108.94 (4)Mg—O3—O1i43.733 (13)
S—O1—Mgvi140.12 (3)Mgv—O3—O1i105.89 (2)
S—O1—O235.970 (17)O2ii—O3—O1i132.403 (15)
Mgvi—O1—O2104.15 (2)O2xiii—O3—O1i71.300 (17)
S—O1—O1v35.00 (2)O2xiv—O3—O1i142.081 (17)
Mgvi—O1—O1v144.58 (3)O2iii—O3—O1i56.766 (16)
O2—O1—O1v60.65 (2)Mg—O3—O1vii105.89 (2)
S—O1—O2v35.099 (17)Mgv—O3—O1vii43.733 (13)
Mgvi—O1—O2v144.18 (3)O2ii—O3—O1vii71.300 (17)
O2—O1—O2v60.22 (2)O2xiii—O3—O1vii132.403 (15)
O1v—O1—O2v59.587 (19)O2xiv—O3—O1vii56.766 (16)
S—O1—O2vi131.59 (3)O2iii—O3—O1vii142.081 (17)
Mgvi—O1—O2vi47.286 (14)O1i—O3—O1vii123.62 (3)
O2—O1—O2vi112.67 (2)Mg—O3—O1xiii121.67 (2)
O1v—O1—O2vi105.91 (2)Mgv—O3—O1xiii42.325 (12)
O2v—O1—O2vi165.40 (3)O2ii—O3—O1xiii145.555 (16)
S—O1—O3vii166.98 (3)O2xiii—O3—O1xiii49.019 (15)
Mgvi—O1—O3vii47.780 (12)O2xiv—O3—O1xiii60.406 (16)
O2—O1—O3vii148.99 (2)O2iii—O3—O1xiii127.504 (15)
O1v—O1—O3vii149.163 (18)O1i—O3—O1xiii81.704 (17)
O2v—O1—O3vii131.89 (2)O1vii—O3—O1xiii86.057 (19)
O2vi—O1—O3vii61.222 (17)Mg—O3—O1ii42.325 (11)
S—O1—O2viii115.19 (3)Mgv—O3—O1ii121.67 (2)
Mgvi—O1—O2viii43.223 (15)O2ii—O3—O1ii49.019 (15)
O2—O1—O2viii88.48 (2)O2xiii—O3—O1ii145.554 (16)
O1v—O1—O2viii148.599 (18)O2xiv—O3—O1ii127.504 (15)
O2v—O1—O2viii101.63 (2)O2iii—O3—O1ii60.406 (15)
O2vi—O1—O2viii90.51 (2)O1i—O3—O1ii86.057 (18)
O3vii—O1—O2viii62.236 (19)O1vii—O3—O1ii81.704 (17)
S—O1—O3ix94.87 (2)O1xiii—O3—O1ii153.94 (3)
Mgvi—O1—O3ix46.163 (14)Mg—O3—O241.969 (14)
O2—O1—O3ix59.641 (19)Mgv—O3—O282.59 (2)
O1v—O1—O3ix105.16 (3)O2ii—O3—O295.998 (14)
O2v—O1—O3ix116.23 (2)O2xiii—O3—O2125.67 (2)
O2vi—O1—O3ix63.58 (2)O2xiv—O3—O2121.88 (2)
O3vii—O1—O3ix93.943 (19)O2iii—O3—O286.562 (16)
O2viii—O1—O3ix58.135 (16)O1i—O3—O259.648 (18)
S—O1—O2x123.72 (3)O1vii—O3—O268.761 (19)
Mgvi—O1—O2x95.958 (19)O1xiii—O3—O299.59 (2)
O2—O1—O2x159.23 (3)O1ii—O3—O254.493 (14)
O1v—O1—O2x99.64 (2)Mg—O3—O2v82.59 (2)
O2v—O1—O2x105.42 (2)Mgv—O3—O2v41.969 (14)
O2vi—O1—O2x77.444 (19)O2ii—O3—O2v125.67 (2)
O3vii—O1—O2x51.672 (15)O2xiii—O3—O2v95.998 (13)
O2viii—O1—O2x110.12 (2)O2xiv—O3—O2v86.562 (16)
O3ix—O1—O2x138.06 (2)O2iii—O3—O2v121.88 (2)
S—O1—O3xi104.15 (3)O1i—O3—O2v68.762 (19)
Mgvi—O1—O3xi97.320 (18)O1vii—O3—O2v59.647 (18)
O2—O1—O3xi119.33 (2)O1xiii—O3—O2v54.493 (14)
O1v—O1—O3xi69.142 (9)O1ii—O3—O2v99.59 (2)
O2v—O1—O3xi118.49 (2)O2—O3—O2v46.65 (2)
O2vi—O1—O3xi51.829 (15)Mg—O3—H106.2 (10)
O3vii—O1—O3xi82.200 (16)Mgv—O3—H108.8 (10)
O2viii—O1—O3xi138.542 (18)O2ii—O3—H19.6 (10)
O3ix—O1—O3xi107.688 (19)O2xiii—O3—H117.9 (10)
O2x—O1—O3xi51.605 (13)O2xiv—O3—H73.2 (10)
S—O1—O2vii111.25 (3)O2iii—O3—H88.1 (10)
Mgvi—O1—O2vii76.459 (19)O1i—O3—H143.9 (10)
O2—O1—O2vii109.26 (2)O1vii—O3—H77.9 (10)
O1v—O1—O2vii137.45 (3)O1xiii—O3—H132.0 (10)
O2v—O1—O2vii79.224 (19)O1ii—O3—H67.4 (10)
O2vi—O1—O2vii115.34 (2)O2—O3—H115.4 (10)
O3vii—O1—O2vii57.346 (18)O2v—O3—H137.3 (10)
O2viii—O1—O2vii44.143 (18)Mg—O3—Hv108.8 (10)
O3ix—O1—O2vii102.130 (19)Mgv—O3—Hv106.2 (10)
O2x—O1—O2vii80.237 (15)O2ii—O3—Hv117.9 (10)
O3xi—O1—O2vii130.901 (16)O2xiii—O3—Hv19.6 (10)
S—O2—Mg133.87 (3)O2xiv—O3—Hv88.1 (10)
S—O2—O135.419 (16)O2iii—O3—Hv73.2 (10)
Mg—O2—O1162.15 (3)O1i—O3—Hv77.9 (10)
S—O2—O2v35.528 (19)O1vii—O3—Hv143.9 (10)
Mg—O2—O2v103.444 (17)O1xiii—O3—Hv67.4 (10)
O1—O2—O2v60.414 (19)O1ii—O3—Hv132.0 (10)
S—O2—O1v34.564 (17)O2—O3—Hv137.3 (10)
Mg—O2—O1v120.67 (3)O2v—O3—Hv115.4 (10)
O1—O2—O1v59.76 (3)H—O3—Hv101 (2)
O2v—O2—O1v59.362 (19)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y, z+1/2; (xi) x, y1, z; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2ii0.813 (14)1.988 (14)2.7353 (6)152.5 (14)
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
(MgSO4H2O_N2_273K) top
Crystal data top
Fe0H2MgO5SV = 355.57 (9) Å3
Mr = 138.39Z = 4
Monoclinic, C2/cF(000) = 280
a = 6.907 (1) ÅDx = 2.585 Mg m3
b = 7.6356 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.6373 (10) ŵ = 0.97 mm1
β = 118.021 (10)°T = 273 K
Data collection top
Absorption correction: multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
Rint = 0.019
Tmin = 0.691, Tmax = 0.748θmax = 40.0°, θmin = 4.2°
9929 measured reflectionsh = 1212
1101 independent reflectionsk = 1313
1058 reflections with I > 2σ(I)l = 1313
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.020P)2 + 0.170P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max < 0.001
S = 1.21Δρmax = 0.52 e Å3
1101 reflectionsΔρmin = 0.37 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.005 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.0000000.5000000.0000000.00746 (6)
S0.0000000.15529 (2)0.2500000.00604 (5)
O10.17569 (7)0.04536 (7)0.39486 (7)0.01209 (8)
O20.09235 (8)0.26806 (6)0.14957 (7)0.01101 (8)
O30.0000000.63497 (9)0.2500000.00991 (10)
H0.104 (2)0.7024 (18)0.293 (2)0.025 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.00655 (12)0.00777 (12)0.00747 (11)0.00039 (8)0.00280 (9)0.00049 (8)
S0.00453 (7)0.00592 (7)0.00710 (7)0.0000.00226 (5)0.000
O10.00720 (16)0.01384 (18)0.01366 (17)0.00361 (13)0.00358 (13)0.00604 (14)
O20.01084 (17)0.01001 (16)0.01447 (17)0.00112 (12)0.00785 (14)0.00436 (13)
O30.0095 (2)0.0108 (2)0.0096 (2)0.0000.00462 (18)0.000
Geometric parameters (Å, º) top
Mg—O1i2.0230 (6)O1—O22.3914 (7)
Mg—O1ii2.0230 (6)O1—O1v2.3959 (10)
Mg—O2iii2.0405 (5)O1—O2v2.4174 (7)
Mg—O22.0405 (5)O1—O2vi2.7706 (7)
Mg—O3iii2.1697 (4)O1—O3vii2.9260 (7)
Mg—O32.1697 (4)O1—O2viii2.9725 (8)
Mg—O2i3.4928 (6)O1—O3ix3.0063 (6)
Mg—O2ii3.4928 (6)O1—O2x3.3007 (7)
Mg—O2iv3.5086 (6)O1—O3xi3.3548 (9)
Mg—O2v3.5086 (6)O1—O2vii3.3859 (8)
Mg—O1iv3.8838 (7)O2—O2v2.4123 (10)
Mg—O1v3.8838 (7)O2—O3ix2.7422 (6)
S—O11.4628 (5)O2—O3iii2.9050 (6)
S—O1v1.4628 (5)O2—O33.0502 (8)
S—O21.4820 (5)O3—H0.816 (14)
S—O2v1.4820 (5)O3—Hv0.816 (14)
O1i—Mg—O1ii180.0S—O2—O3ix105.96 (3)
O1i—Mg—O2iii85.97 (2)Mg—O2—O3ix119.21 (2)
O1ii—Mg—O2iii94.03 (2)O1—O2—O3ix71.32 (2)
O1i—Mg—O294.03 (2)O2v—O2—O3ix127.04 (3)
O1ii—Mg—O285.97 (2)O1v—O2—O3ix113.36 (3)
O2iii—Mg—O2179.999 (12)S—O2—O1ii157.18 (3)
O1i—Mg—O3iii91.556 (17)Mg—O2—O1ii46.749 (16)
O1ii—Mg—O3iii88.444 (18)O1—O2—O1ii134.36 (2)
O2iii—Mg—O3iii92.80 (2)O2v—O2—O1ii125.936 (18)
O2—Mg—O3iii87.20 (2)O1v—O2—O1ii165.74 (3)
O1i—Mg—O388.444 (17)O3ix—O2—O1ii74.97 (2)
O1ii—Mg—O391.556 (17)S—O2—O3iii139.14 (3)
O2iii—Mg—O387.20 (2)Mg—O2—O3iii48.244 (16)
O2—Mg—O392.80 (2)O1—O2—O3iii149.03 (3)
O3iii—Mg—O3180.0O2v—O2—O3iii138.35 (3)
O1i—Mg—O2i41.568 (16)O1v—O2—O3iii104.84 (2)
O1ii—Mg—O2i138.432 (17)O3ix—O2—O3iii94.482 (19)
O2iii—Mg—O2i98.754 (13)O1ii—O2—O3iii62.014 (18)
O2—Mg—O2i81.246 (13)S—O2—O1i95.59 (3)
O3iii—Mg—O2i51.730 (13)Mg—O2—O1i42.755 (13)
O3—Mg—O2i128.270 (13)O1—O2—O1i131.01 (3)
O1i—Mg—O2ii138.432 (16)O2v—O2—O1i77.14 (2)
O1ii—Mg—O2ii41.568 (16)O1v—O2—O1i78.65 (2)
O2iii—Mg—O2ii81.246 (13)O3ix—O2—O1i155.76 (2)
O2—Mg—O2ii98.754 (13)O1ii—O2—O1i89.50 (2)
O3iii—Mg—O2ii128.269 (13)O3iii—O2—O1i61.515 (17)
O3—Mg—O2ii51.731 (13)S—O2—O3102.23 (2)
O2i—Mg—O2ii180.0Mg—O2—O345.274 (13)
O1i—Mg—O2iv110.36 (2)O1—O2—O3117.25 (2)
O1ii—Mg—O2iv69.64 (2)O2v—O2—O366.707 (10)
O2iii—Mg—O2iv41.919 (18)O1v—O2—O3116.39 (2)
O2—Mg—O2iv138.082 (18)O3ix—O2—O3125.35 (2)
O3iii—Mg—O2iv59.558 (19)O1ii—O2—O361.975 (17)
O3—Mg—O2iv120.442 (19)O3iii—O2—O393.519 (16)
O2i—Mg—O2iv94.664 (16)O1i—O2—O358.116 (14)
O2ii—Mg—O2iv85.336 (15)S—O2—O1xii96.92 (3)
O1i—Mg—O2v69.64 (2)Mg—O2—O1xii113.24 (2)
O1ii—Mg—O2v110.36 (2)O1—O2—O1xii84.359 (17)
O2iii—Mg—O2v138.081 (18)O2v—O2—O1xii131.723 (15)
O2—Mg—O2v41.918 (18)O1v—O2—O1xii75.01 (2)
O3iii—Mg—O2v120.442 (19)O3ix—O2—O1xii57.024 (17)
O3—Mg—O2v59.558 (19)O1ii—O2—O1xii102.18 (2)
O2i—Mg—O2v85.336 (16)O3iii—O2—O1xii65.08 (2)
O2ii—Mg—O2v94.664 (15)O1i—O2—O1xii110.19 (2)
O2iv—Mg—O2v180.0O3—O2—O1xii158.295 (19)
O1i—Mg—O1iv117.79 (2)S—O2—O1vii79.84 (2)
O1ii—Mg—O1iv62.21 (2)Mg—O2—O1vii94.74 (2)
O2iii—Mg—O1iv32.257 (16)O1—O2—O1vii70.77 (2)
O2—Mg—O1iv147.744 (16)O2v—O2—O1vii58.86 (2)
O3iii—Mg—O1iv96.513 (18)O1v—O2—O1vii113.68 (2)
O3—Mg—O1iv83.487 (18)O3ix—O2—O1vii86.591 (19)
O2i—Mg—O1iv125.667 (13)O1ii—O2—O1vii77.444 (16)
O2ii—Mg—O1iv54.333 (13)O3iii—O2—O1vii137.44 (2)
O2iv—Mg—O1iv37.315 (10)O1i—O2—O1vii108.43 (2)
O2v—Mg—O1iv142.685 (10)O3—O2—O1vii53.774 (12)
O1i—Mg—O1v62.21 (2)O1xii—O2—O1vii141.384 (18)
O1ii—Mg—O1v117.79 (2)Mg—O3—Mgv123.28 (3)
O2iii—Mg—O1v147.743 (16)Mg—O3—O2xiii110.755 (15)
O2—Mg—O1v32.256 (16)Mgv—O3—O2xiii89.866 (13)
O3iii—Mg—O1v83.487 (18)Mg—O3—O2ii89.866 (13)
O3—Mg—O1v96.513 (18)Mgv—O3—O2ii110.755 (15)
O2i—Mg—O1v54.333 (13)O2xiii—O3—O2ii136.50 (3)
O2ii—Mg—O1v125.667 (13)Mg—O3—O2xiv162.69 (2)
O2iv—Mg—O1v142.685 (10)Mgv—O3—O2xiv44.554 (12)
O2v—Mg—O1v37.315 (10)O2xiii—O3—O2xiv83.641 (17)
O1iv—Mg—O1v180.0O2ii—O3—O2xiv85.517 (19)
O1—S—O1v109.96 (4)Mg—O3—O2iii44.554 (12)
O1—S—O2108.60 (3)Mgv—O3—O2iii162.69 (2)
O1v—S—O2110.35 (3)O2xiii—O3—O2iii85.517 (19)
O1—S—O2v110.35 (3)O2ii—O3—O2iii83.641 (17)
O1v—S—O2v108.60 (3)O2xiv—O3—O2iii150.47 (3)
O2—S—O2v108.95 (4)Mg—O3—O1i43.718 (13)
S—O1—Mgvi140.26 (3)Mgv—O3—O1i106.01 (2)
S—O1—O235.968 (17)O2xiii—O3—O1i71.144 (18)
Mgvi—O1—O2104.29 (2)O2ii—O3—O1i132.219 (16)
S—O1—O1v35.02 (2)O2xiv—O3—O1i142.035 (17)
Mgvi—O1—O1v144.98 (4)O2iii—O3—O1i56.736 (16)
O2—O1—O1v60.66 (2)Mg—O3—O1vii106.01 (2)
S—O1—O2v35.083 (17)Mgv—O3—O1vii43.718 (13)
Mgvi—O1—O2v143.93 (3)O2xiii—O3—O1vii132.219 (16)
O2—O1—O2v60.21 (3)O2ii—O3—O1vii71.144 (18)
O1v—O1—O2v59.58 (2)O2xiv—O3—O1vii56.736 (16)
S—O1—O2vi131.90 (3)O2iii—O3—O1vii142.035 (17)
Mgvi—O1—O2vi47.280 (15)O1i—O3—O1vii123.86 (3)
O2—O1—O2vi112.81 (2)Mg—O3—O1xiii121.59 (2)
O1v—O1—O2vi106.26 (2)Mgv—O3—O1xiii42.271 (11)
O2v—O1—O2vi165.74 (3)O2xiii—O3—O1xiii48.900 (14)
S—O1—O3vii166.64 (3)O2ii—O3—O1xiii145.696 (16)
Mgvi—O1—O3vii47.837 (12)O2xiv—O3—O1xiii60.349 (16)
O2—O1—O3vii149.14 (2)O2iii—O3—O1xiii127.643 (15)
O1v—O1—O3vii149.12 (2)O1i—O3—O1xiii81.706 (17)
O2v—O1—O3vii131.56 (3)O1vii—O3—O1xiii85.990 (19)
O2vi—O1—O3vii61.249 (17)Mg—O3—O1ii42.271 (11)
S—O1—O2viii115.09 (3)Mgv—O3—O1ii121.59 (2)
Mgvi—O1—O2viii43.216 (15)O2xiii—O3—O1ii145.696 (16)
O2—O1—O2viii88.54 (2)O2ii—O3—O1ii48.900 (14)
O1v—O1—O2viii148.607 (18)O2xiv—O3—O1ii127.643 (15)
O2v—O1—O2viii101.36 (2)O2iii—O3—O1ii60.349 (16)
O2vi—O1—O2viii90.50 (2)O1i—O3—O1ii85.990 (19)
O3vii—O1—O2viii62.27 (2)O1vii—O3—O1ii81.706 (17)
S—O1—O3ix95.04 (3)O1xiii—O3—O1ii153.69 (3)
Mgvi—O1—O3ix46.173 (14)Mg—O3—O241.927 (14)
O2—O1—O3ix59.780 (19)Mgv—O3—O282.62 (2)
O1v—O1—O3ix105.47 (3)O2xiii—O3—O2125.35 (2)
O2v—O1—O3ix116.24 (2)O2ii—O3—O295.864 (14)
O2vi—O1—O3ix63.59 (2)O2xiv—O3—O2121.98 (2)
O3vii—O1—O3ix94.010 (19)O2iii—O3—O286.481 (16)
O2viii—O1—O3ix58.136 (17)O1i—O3—O259.613 (18)
S—O1—O2x123.32 (3)O1vii—O3—O268.99 (2)
Mgvi—O1—O2x96.263 (19)O1xiii—O3—O299.41 (2)
O2—O1—O2x158.87 (3)O1ii—O3—O254.439 (15)
O1v—O1—O2x99.37 (2)Mg—O3—O2v82.62 (2)
O2v—O1—O2x104.99 (2)Mgv—O3—O2v41.927 (14)
O2vi—O1—O2x77.82 (2)O2xiii—O3—O2v95.864 (14)
O3vii—O1—O2x51.832 (15)O2ii—O3—O2v125.35 (2)
O2viii—O1—O2x110.19 (2)O2xiv—O3—O2v86.481 (16)
O3ix—O1—O2x138.44 (2)O2iii—O3—O2v121.98 (2)
S—O1—O3xi104.10 (3)O1i—O3—O2v68.99 (2)
Mgvi—O1—O3xi97.615 (19)O1vii—O3—O2v59.613 (18)
O2—O1—O3xi119.29 (2)O1xiii—O3—O2v54.439 (15)
O1v—O1—O3xi69.078 (10)O1ii—O3—O2v99.41 (2)
O2v—O1—O3xi118.44 (2)O2—O3—O2v46.59 (2)
O2vi—O1—O3xi52.132 (16)Mg—O3—H107.0 (10)
O3vii—O1—O3xi82.353 (17)Mgv—O3—H107.9 (10)
O2viii—O1—O3xi138.807 (18)O2xiii—O3—H118.1 (10)
O3ix—O1—O3xi107.93 (2)O2ii—O3—H20.2 (10)
O2x—O1—O3xi51.750 (13)O2xiv—O3—H72.3 (10)
S—O1—O2vii111.08 (3)O2iii—O3—H88.9 (10)
Mgvi—O1—O2vii76.290 (19)O1i—O3—H144.7 (10)
O2—O1—O2vii109.23 (2)O1vii—O3—H77.2 (10)
O1v—O1—O2vii137.22 (3)O1xiii—O3—H131.3 (10)
O2v—O1—O2vii79.032 (19)O1ii—O3—H68.1 (10)
O2vi—O1—O2vii115.20 (2)O2—O3—H115.7 (10)
O3vii—O1—O2vii57.239 (18)O2v—O3—H136.5 (10)
O2viii—O1—O2vii43.996 (18)Mg—O3—Hv107.9 (10)
O3ix—O1—O2vii101.989 (19)Mgv—O3—Hv107.0 (10)
O2x—O1—O2vii80.142 (15)O2xiii—O3—Hv20.2 (10)
O3xi—O1—O2vii130.929 (17)O2ii—O3—Hv118.1 (10)
S—O2—Mg134.16 (3)O2xiv—O3—Hv88.9 (10)
S—O2—O135.430 (17)O2iii—O3—Hv72.3 (10)
Mg—O2—O1162.29 (3)O1i—O3—Hv77.2 (10)
S—O2—O2v35.52 (2)O1vii—O3—Hv144.7 (10)
Mg—O2—O2v103.673 (18)O1xiii—O3—Hv68.1 (10)
O1—O2—O2v60.43 (2)O1ii—O3—Hv131.3 (10)
S—O2—O1v34.563 (17)O2—O3—Hv136.5 (10)
Mg—O2—O1v120.97 (3)O2v—O3—Hv115.7 (10)
O1—O2—O1v59.76 (3)H—O3—Hv102 (2)
O2v—O2—O1v59.359 (19)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y, z+1/2; (xi) x, y1, z; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2ii0.816 (14)1.996 (14)2.7422 (6)151.7 (14)
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
(MgSO4H2O_N2_313K) top
Crystal data top
Fe0H2MgO5SV = 355.94 (9) Å3
Mr = 138.39Z = 4
Monoclinic, C2/cF(000) = 280
a = 6.9227 (10) ÅDx = 2.582 Mg m3
b = 7.6212 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.6488 (10) ŵ = 0.97 mm1
β = 118.112 (10)°T = 313 K
Data collection top
Absorption correction: multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
Rint = 0.021
Tmin = 0.685, Tmax = 0.748θmax = 40.0°, θmin = 4.2°
9957 measured reflectionsh = 1212
1103 independent reflectionsk = 1313
1049 reflections with I > 2σ(I)l = 1313
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.020P)2 + 0.220P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max < 0.001
S = 1.18Δρmax = 0.47 e Å3
1103 reflectionsΔρmin = 0.37 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.004 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.0000000.5000000.0000000.00852 (7)
S0.0000000.15461 (3)0.2500000.00684 (5)
O10.17585 (8)0.04442 (7)0.39411 (8)0.01380 (9)
O20.09120 (9)0.26743 (7)0.14908 (8)0.01257 (9)
O30.0000000.63534 (10)0.2500000.01125 (11)
H0.103 (2)0.703 (2)0.293 (2)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.00750 (13)0.00876 (13)0.00858 (13)0.00057 (9)0.00319 (10)0.00055 (9)
S0.00519 (8)0.00655 (8)0.00819 (8)0.0000.00267 (6)0.000
O10.00842 (18)0.0155 (2)0.0157 (2)0.00412 (15)0.00418 (15)0.00690 (16)
O20.0126 (2)0.01123 (18)0.0167 (2)0.00131 (14)0.00915 (17)0.00498 (15)
O30.0110 (3)0.0123 (3)0.0110 (2)0.0000.0056 (2)0.000
Geometric parameters (Å, º) top
Mg—O1i2.0232 (6)O1—O22.3895 (8)
Mg—O1ii2.0232 (6)O1—O1v2.3937 (11)
Mg—O22.0401 (5)O1—O2v2.4166 (8)
Mg—O2iii2.0401 (5)O1—O2vi2.7691 (8)
Mg—O32.1726 (4)O1—O3vii2.9267 (7)
Mg—O3iii2.1726 (4)O1—O2viii2.9736 (9)
Mg—O2i3.4941 (7)O1—O3ix3.0103 (7)
Mg—O2ii3.4942 (7)O1—O2x3.2973 (8)
Mg—O2iv3.5131 (6)O1—O3xi3.3395 (10)
Mg—O2v3.5131 (6)O1—O2vii3.3993 (9)
Mg—O1iv3.8888 (7)O2—O2v2.4115 (11)
Mg—O1v3.8888 (7)O2—O3ix2.7495 (7)
S—O1v1.4621 (5)O2—O3iii2.9067 (7)
S—O11.4621 (5)O2—O33.0521 (9)
S—O2v1.4809 (5)O3—H0.812 (15)
S—O21.4809 (5)O3—Hv0.812 (15)
O1i—Mg—O1ii180.0S—O2—O3ix106.04 (3)
O1i—Mg—O294.08 (2)Mg—O2—O3ix118.79 (2)
O1ii—Mg—O285.92 (2)O1—O2—O3ix71.32 (2)
O1i—Mg—O2iii85.92 (2)O2v—O2—O3ix126.90 (3)
O1ii—Mg—O2iii94.08 (2)O1v—O2—O3ix113.63 (3)
O2—Mg—O2iii180.0S—O2—O1ii156.94 (3)
O1i—Mg—O388.384 (18)Mg—O2—O1ii46.784 (17)
O1ii—Mg—O391.616 (18)O1—O2—O1ii133.98 (2)
O2—Mg—O392.80 (2)O2v—O2—O1ii125.90 (2)
O2iii—Mg—O387.20 (2)O1v—O2—O1ii166.13 (3)
O1i—Mg—O3iii91.616 (18)O3ix—O2—O1ii74.48 (2)
O1ii—Mg—O3iii88.384 (18)S—O2—O3iii139.50 (3)
O2—Mg—O3iii87.20 (2)Mg—O2—O3iii48.294 (18)
O2iii—Mg—O3iii92.80 (2)O1—O2—O3iii148.94 (3)
O3—Mg—O3iii180.0O2v—O2—O3iii138.78 (3)
O1i—Mg—O2i41.480 (18)O1v—O2—O3iii105.20 (3)
O1ii—Mg—O2i138.520 (18)O3ix—O2—O3iii94.23 (2)
O2—Mg—O2i81.251 (14)O1ii—O2—O3iii62.03 (2)
O2iii—Mg—O2i98.748 (14)S—O2—O1i95.96 (3)
O3—Mg—O2i128.107 (13)Mg—O2—O1i42.738 (15)
O3iii—Mg—O2i51.893 (13)O1—O2—O1i131.40 (3)
O1i—Mg—O2ii138.520 (18)O2v—O2—O1i77.51 (3)
O1ii—Mg—O2ii41.480 (18)O1v—O2—O1i78.96 (3)
O2—Mg—O2ii98.749 (13)O3ix—O2—O1i155.50 (2)
O2iii—Mg—O2ii81.252 (14)O1ii—O2—O1i89.52 (2)
O3—Mg—O2ii51.893 (14)O3iii—O2—O1i61.571 (18)
O3iii—Mg—O2ii128.107 (13)S—O2—O3102.22 (3)
O2i—Mg—O2ii180.0Mg—O2—O345.316 (14)
O1i—Mg—O2iv110.08 (2)O1—O2—O3117.29 (3)
O1ii—Mg—O2iv69.92 (2)O2v—O2—O366.731 (11)
O2—Mg—O2iv138.22 (2)O1v—O2—O3116.40 (2)
O2iii—Mg—O2iv41.78 (2)O3ix—O2—O3125.00 (2)
O3—Mg—O2iv120.50 (2)O1ii—O2—O362.053 (18)
O3iii—Mg—O2iv59.51 (2)O3iii—O2—O393.609 (18)
O2i—Mg—O2iv94.558 (17)O1i—O2—O358.099 (15)
O2ii—Mg—O2iv85.443 (17)S—O2—O1xii97.36 (3)
O1i—Mg—O2v69.92 (2)Mg—O2—O1xii112.96 (2)
O1ii—Mg—O2v110.08 (2)O1—O2—O1xii84.547 (18)
O2—Mg—O2v41.783 (19)O2v—O2—O1xii132.165 (16)
O2iii—Mg—O2v138.217 (19)O1v—O2—O1xii75.52 (2)
O3—Mg—O2v59.50 (2)O3ix—O2—O1xii57.035 (18)
O3iii—Mg—O2v120.49 (2)O1ii—O2—O1xii101.72 (2)
O2i—Mg—O2v85.442 (17)O3iii—O2—O1xii64.78 (2)
O2ii—Mg—O2v94.557 (17)O1i—O2—O1xii110.25 (2)
O2iv—Mg—O2v180.000 (11)O3—O2—O1xii158.03 (2)
O1i—Mg—O1iv117.58 (2)S—O2—O1vii79.71 (3)
O1ii—Mg—O1iv62.42 (2)Mg—O2—O1vii94.59 (2)
O2—Mg—O1iv147.922 (18)O1—O2—O1vii70.83 (3)
O2iii—Mg—O1iv32.079 (18)O2v—O2—O1vii58.66 (2)
O3—Mg—O1iv83.64 (2)O1v—O2—O1vii113.52 (3)
O3iii—Mg—O1iv96.36 (2)O3ix—O2—O1vii86.49 (2)
O2i—Mg—O1iv125.488 (14)O1ii—O2—O1vii77.300 (18)
O2ii—Mg—O1iv54.512 (14)O3iii—O2—O1vii137.31 (2)
O2iv—Mg—O1iv37.232 (12)O1i—O2—O1vii108.33 (2)
O2v—Mg—O1iv142.768 (12)O3—O2—O1vii53.629 (14)
O1i—Mg—O1v62.42 (2)O1xii—O2—O1vii141.40 (2)
O1ii—Mg—O1v117.58 (2)Mg—O3—Mgv123.32 (4)
O2—Mg—O1v32.078 (18)Mg—O3—O2xiii110.707 (16)
O2iii—Mg—O1v147.921 (18)Mgv—O3—O2xiii89.660 (14)
O3—Mg—O1v96.36 (2)Mg—O3—O2ii89.660 (14)
O3iii—Mg—O1v83.64 (2)Mgv—O3—O2ii110.706 (16)
O2i—Mg—O1v54.512 (14)O2xiii—O3—O2ii137.04 (4)
O2ii—Mg—O1v125.488 (14)Mg—O3—O2xiv162.78 (3)
O2iv—Mg—O1v142.768 (12)Mgv—O3—O2xiv44.508 (13)
O2v—Mg—O1v37.232 (12)O2xiii—O3—O2xiv83.512 (18)
O1iv—Mg—O1v180.0O2ii—O3—O2xiv85.77 (2)
O1v—S—O1109.89 (5)Mg—O3—O2iii44.508 (13)
O1v—S—O2v108.57 (3)Mgv—O3—O2iii162.78 (3)
O1—S—O2v110.40 (3)O2xiii—O3—O2iii85.77 (2)
O1v—S—O2110.40 (3)O2ii—O3—O2iii83.513 (18)
O1—S—O2108.57 (3)O2xiv—O3—O2iii150.46 (4)
O2v—S—O2109.01 (4)Mg—O3—O1i43.710 (14)
S—O1—Mgvi140.38 (4)Mgv—O3—O1i106.17 (3)
S—O1—O235.979 (19)O2xiii—O3—O1i70.950 (19)
Mgvi—O1—O2104.41 (3)O2ii—O3—O1i132.004 (17)
S—O1—O1v35.06 (2)O2xiv—O3—O1i142.000 (19)
Mgvi—O1—O1v145.45 (4)O2iii—O3—O1i56.677 (18)
O2—O1—O1v60.69 (2)Mg—O3—O1vii106.17 (3)
S—O1—O2v35.06 (2)Mgv—O3—O1vii43.710 (14)
Mgvi—O1—O2v143.63 (3)O2xiii—O3—O1vii132.004 (17)
O2—O1—O2v60.23 (3)O2ii—O3—O1vii70.949 (19)
O1v—O1—O2v59.57 (2)O2xiv—O3—O1vii56.677 (18)
S—O1—O2vi132.28 (4)O2iii—O3—O1vii142.000 (19)
Mgvi—O1—O2vi47.296 (16)O1i—O3—O1vii124.18 (4)
O2—O1—O2vi112.96 (2)Mg—O3—O1xiii121.48 (2)
O1v—O1—O2vi106.67 (3)Mgv—O3—O1xiii42.209 (12)
O2v—O1—O2vi166.13 (3)O2xiii—O3—O1xiii48.763 (16)
S—O1—O3vii166.21 (4)O2ii—O3—O1xiii145.867 (18)
Mgvi—O1—O3vii47.907 (13)O2xiv—O3—O1xiii60.309 (17)
O2—O1—O3vii149.28 (3)O2iii—O3—O1xiii127.784 (17)
O1v—O1—O3vii149.09 (2)O1i—O3—O1xiii81.702 (18)
O2v—O1—O3vii131.17 (3)O1vii—O3—O1xiii85.92 (2)
O2vi—O1—O3vii61.297 (19)Mg—O3—O1ii42.209 (12)
S—O1—O2viii114.95 (3)Mgv—O3—O1ii121.48 (2)
Mgvi—O1—O2viii43.182 (16)O2xiii—O3—O1ii145.867 (18)
O2—O1—O2viii88.59 (2)O2ii—O3—O1ii48.764 (16)
O1v—O1—O2viii148.61 (2)O2xiv—O3—O1ii127.784 (17)
O2v—O1—O2viii101.04 (3)O2iii—O3—O1ii60.309 (17)
O2vi—O1—O2viii90.48 (2)O1i—O3—O1ii85.92 (2)
O3vii—O1—O2viii62.29 (2)O1vii—O3—O1ii81.702 (18)
S—O1—O3ix95.24 (3)O1xiii—O3—O1ii153.38 (4)
Mgvi—O1—O3ix46.175 (15)Mg—O3—O2v82.66 (2)
O2—O1—O3ix59.91 (2)Mgv—O3—O2v41.883 (16)
O1v—O1—O3ix105.84 (3)O2xiii—O3—O2v95.691 (15)
O2v—O1—O3ix116.25 (3)O2ii—O3—O2v125.00 (2)
O2vi—O1—O3ix63.59 (2)O2xiv—O3—O2v86.391 (18)
O3vii—O1—O3ix94.08 (2)O2iii—O3—O2v122.10 (2)
O2viii—O1—O3ix58.121 (18)O1i—O3—O2v69.26 (2)
S—O1—O2x122.89 (3)O1vii—O3—O2v59.61 (2)
Mgvi—O1—O2x96.62 (2)O1xiii—O3—O2v54.352 (16)
O2—O1—O2x158.49 (3)O1ii—O3—O2v99.20 (2)
O1v—O1—O2x99.07 (2)Mg—O3—O241.883 (16)
O2v—O1—O2x104.48 (2)Mgv—O3—O282.66 (2)
O2vi—O1—O2x78.28 (2)O2xiii—O3—O2125.00 (3)
O3vii—O1—O2x52.016 (17)O2ii—O3—O295.691 (15)
O2viii—O1—O2x110.25 (2)O2xiv—O3—O2122.10 (2)
O3ix—O1—O2x138.88 (2)O2iii—O3—O286.391 (18)
S—O1—O3xi104.05 (3)O1i—O3—O259.61 (2)
Mgvi—O1—O3xi97.99 (2)O1vii—O3—O269.26 (2)
O2—O1—O3xi119.25 (3)O1xiii—O3—O299.20 (2)
O1v—O1—O3xi68.998 (11)O1ii—O3—O254.352 (16)
O2v—O1—O3xi118.36 (2)O2v—O3—O246.54 (2)
O2vi—O1—O3xi52.493 (17)Mg—O3—H106.9 (11)
O3vii—O1—O3xi82.559 (18)Mgv—O3—H107.9 (11)
O2viii—O1—O3xi139.12 (2)O2xiii—O3—H118.4 (11)
O3ix—O1—O3xi108.22 (2)O2ii—O3—H20.4 (11)
O2x—O1—O3xi51.944 (14)O2xiv—O3—H72.5 (11)
S—O1—O2vii110.85 (3)O2iii—O3—H88.8 (11)
Mgvi—O1—O2vii76.09 (2)O1i—O3—H144.6 (11)
O2—O1—O2vii109.17 (3)O1vii—O3—H77.0 (11)
O1v—O1—O2vii136.95 (3)O1xiii—O3—H131.4 (11)
O2v—O1—O2vii78.80 (2)O1ii—O3—H68.2 (11)
O2vi—O1—O2vii115.04 (3)O2v—O3—H136.4 (11)
O3vii—O1—O2vii57.11 (2)O2—O3—H115.8 (11)
O2viii—O1—O2vii43.84 (2)Mg—O3—Hv107.9 (11)
O3ix—O1—O2vii101.82 (2)Mgv—O3—Hv106.9 (11)
O2x—O1—O2vii80.012 (17)O2xiii—O3—Hv20.4 (11)
O3xi—O1—O2vii130.971 (19)O2ii—O3—Hv118.4 (11)
S—O2—Mg134.44 (3)O2xiv—O3—Hv88.8 (11)
S—O2—O135.452 (19)O2iii—O3—Hv72.5 (11)
Mg—O2—O1162.42 (3)O1i—O3—Hv77.0 (11)
S—O2—O2v35.49 (2)O1vii—O3—Hv144.6 (11)
Mg—O2—O2v103.91 (2)O1xiii—O3—Hv68.2 (11)
O1—O2—O2v60.44 (2)O1ii—O3—Hv131.4 (11)
S—O2—O1v34.546 (19)O2v—O3—Hv115.8 (11)
Mg—O2—O1v121.29 (3)O2—O3—Hv136.4 (11)
O1—O2—O1v59.74 (3)H—O3—Hv102 (2)
O2v—O2—O1v59.33 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y, z+1/2; (xi) x, y1, z; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2ii0.812 (15)2.008 (15)2.7495 (7)151.5 (15)
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
(FeSO4H2O_He_45K) top
Crystal data top
FeH2O5SZ = 4
Mr = 169.93F(000) = 336
Monoclinic, C2/cDx = 3.110 Mg m3
a = 7.0304 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5789 (6) ŵ = 4.61 mm1
c = 7.7374 (8) ÅT = 45 K
β = 118.314 (14)°0.32 × 0.29 × 0.07 mm
V = 362.94 (8) Å3
Data collection top
1187 measured reflectionsθmax = 29.4°, θmin = 4.2°
442 independent reflectionsh = 99
425 reflections with I > 2σ(I)k = 99
Rint = 0.020l = 710
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.021P)2 + 0.040P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.54 e Å3
442 reflectionsΔρmin = 0.46 e Å3
40 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0346 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.0000000.5000000.0000000.00235 (16)
S0.0000000.15535 (7)0.2500000.00229 (17)
O10.1683 (2)0.04564 (17)0.40068 (17)0.0046 (3)
O20.10045 (19)0.27064 (15)0.15967 (16)0.0044 (3)
O30.0000000.6435 (2)0.2500000.0045 (4)
H0.101 (4)0.715 (3)0.290 (3)0.020 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0025 (2)0.0022 (2)0.0022 (2)0.00025 (12)0.00098 (16)0.00075 (11)
S0.0019 (3)0.0024 (3)0.0026 (3)0.0000.0011 (2)0.000
O10.0036 (7)0.0049 (6)0.0045 (5)0.0010 (5)0.0013 (5)0.0008 (5)
O20.0038 (7)0.0042 (6)0.0052 (5)0.0002 (5)0.0023 (5)0.0017 (4)
O30.0036 (10)0.0045 (9)0.0056 (8)0.0000.0024 (7)0.000
Geometric parameters (Å, º) top
Fe—O2i2.0540 (11)O1—O1iv2.409 (3)
Fe—O22.0540 (11)O1—O2iv2.4204 (17)
Fe—O1ii2.1093 (13)O1—O2vi2.8153 (17)
Fe—O1iii2.1093 (13)O1—O3vii2.9699 (15)
Fe—O3i2.2193 (9)O1—O2viii3.0676 (18)
Fe—O32.2193 (9)O1—O3ix3.1509 (13)
Fe—O2iii3.4663 (13)O1—O3x3.277 (2)
Fe—O2ii3.4663 (13)O1—O2xi3.3008 (16)
Fe—O2iv3.4955 (11)O1—O2vii3.3026 (17)
Fe—O2v3.4955 (11)O2—O2iv2.413 (2)
S—O1iv1.4635 (13)O2—O3ix2.7285 (14)
S—O11.4635 (13)O2—O3i2.9742 (12)
S—O21.4896 (11)O2—O33.0729 (19)
S—O2iv1.4896 (11)O3—H0.82 (2)
O1—O22.4019 (17)O3—Hiv0.82 (2)
O2i—Fe—O2180.0O3ix—O2—O1iii72.45 (5)
O2i—Fe—O1ii85.09 (5)S—O2—O3i134.63 (7)
O2—Fe—O1ii94.91 (5)Fe—O2—O3i48.23 (4)
O2i—Fe—O1iii94.91 (5)O1—O2—O3i147.36 (7)
O2—Fe—O1iii85.09 (5)O2iv—O2—O3i135.16 (7)
O1ii—Fe—O1iii180.00 (7)O1iv—O2—O3i100.34 (5)
O2i—Fe—O3i91.87 (5)O3ix—O2—O3i92.60 (4)
O2—Fe—O3i88.13 (5)O1iii—O2—O3i61.65 (4)
O1ii—Fe—O3i93.39 (3)S—O2—O1ii91.70 (6)
O1iii—Fe—O3i86.61 (3)Fe—O2—O1ii43.24 (3)
O2i—Fe—O388.12 (5)O1—O2—O1ii126.85 (7)
O2—Fe—O391.88 (5)O2iv—O2—O1ii73.01 (5)
O1ii—Fe—O386.61 (3)O1iv—O2—O1ii75.71 (6)
O1iii—Fe—O393.39 (3)O3ix—O2—O1ii155.23 (5)
O3i—Fe—O3180.0O1iii—O2—O1ii91.53 (5)
O2i—Fe—O2iii83.09 (2)O3i—O2—O1ii62.85 (4)
O2—Fe—O2iii96.91 (2)S—O2—O3102.80 (6)
O1ii—Fe—O2iii137.00 (4)Fe—O2—O346.21 (2)
O1iii—Fe—O2iii43.00 (4)O1—O2—O3117.31 (5)
O3i—Fe—O2iii128.11 (3)O2iv—O2—O366.88 (2)
O3—Fe—O2iii51.89 (3)O1iv—O2—O3116.70 (5)
O2i—Fe—O2ii96.91 (2)O3ix—O2—O3125.89 (6)
O2—Fe—O2ii83.09 (2)O1iii—O2—O364.53 (4)
O1ii—Fe—O2ii43.00 (4)O3i—O2—O394.43 (4)
O1iii—Fe—O2ii137.00 (4)O1ii—O2—O357.85 (3)
O3i—Fe—O2ii51.89 (3)S—O2—O1xii95.51 (6)
O3—Fe—O2ii128.11 (3)Fe—O2—O1xii110.91 (5)
O2iii—Fe—O2ii180.0O1—O2—O1xii85.59 (3)
O2i—Fe—O2iv137.67 (4)O2iv—O2—O1xii130.13 (4)
O2—Fe—O2iv42.33 (4)O1iv—O2—O1xii72.27 (5)
O1ii—Fe—O2iv67.01 (4)O3ix—O2—O1xii58.10 (4)
O1iii—Fe—O2iv112.99 (4)O1iii—O2—O1xii100.13 (4)
O3i—Fe—O2iv119.76 (4)O3i—O2—O1xii62.71 (4)
O3—Fe—O2iv60.24 (4)O1ii—O2—O1xii108.45 (5)
O2iii—Fe—O2iv95.88 (3)O3—O2—O1xii157.06 (4)
O2ii—Fe—O2iv84.12 (3)S—O2—O1vii82.84 (5)
O2i—Fe—O2v42.33 (4)Fe—O2—O1vii97.10 (4)
O2—Fe—O2v137.67 (4)O1—O2—O1vii71.35 (5)
O1ii—Fe—O2v112.99 (4)O2iv—O2—O1vii62.66 (5)
O1iii—Fe—O2v67.01 (4)O1iv—O2—O1vii116.98 (5)
O3i—Fe—O2v60.24 (4)O3ix—O2—O1vii86.61 (4)
O3—Fe—O2v119.76 (4)O1iii—O2—O1vii79.50 (4)
O2iii—Fe—O2v84.12 (3)O3i—O2—O1vii139.25 (5)
O2ii—Fe—O2v95.88 (3)O1ii—O2—O1vii109.43 (5)
O2iv—Fe—O2v180.00 (3)O3—O2—O1vii55.39 (3)
O1iv—S—O1110.76 (11)O1xii—O2—O1vii142.11 (4)
O1iv—S—O2110.09 (6)Fe—O3—Feiv121.29 (8)
O1—S—O2108.85 (7)Fe—O3—O2iii88.32 (2)
O1iv—S—O2iv108.85 (7)Feiv—O3—O2iii112.05 (3)
O1—S—O2iv110.09 (6)Fe—O3—O2xiii112.05 (3)
O2—S—O2iv108.17 (9)Feiv—O3—O2xiii88.32 (3)
S—O1—Fevi136.03 (7)O2iii—O3—O2xiii138.65 (8)
S—O1—O235.94 (4)Fe—O3—O1ii45.15 (3)
Fevi—O1—O2100.21 (6)Feiv—O3—O1ii103.41 (6)
S—O1—O1iv34.62 (5)O2iii—O3—O1ii132.24 (4)
Fevi—O1—O1iv139.58 (8)O2xiii—O3—O1ii70.65 (4)
O2—O1—O1iv60.41 (5)Fe—O3—O1vii103.41 (6)
S—O1—O2iv35.31 (4)Feiv—O3—O1vii45.15 (3)
Fevi—O1—O2iv144.37 (7)O2iii—O3—O1vii70.65 (4)
O2—O1—O2iv60.04 (6)O2xiii—O3—O1vii132.24 (4)
O1iv—O1—O2iv59.66 (5)O1ii—O3—O1vii122.27 (8)
S—O1—O2vi126.92 (7)Fe—O3—O2xiv159.71 (6)
Fevi—O1—O2vi46.63 (3)Feiv—O3—O2xiv43.65 (2)
O2—O1—O2vi108.32 (4)O2iii—O3—O2xiv87.40 (4)
O1iv—O1—O2vi102.64 (5)O2xiii—O3—O2xiv83.74 (4)
O2iv—O1—O2vi161.61 (7)O1ii—O3—O2xiv139.68 (4)
S—O1—O3vii171.27 (7)O1vii—O3—O2xiv56.54 (3)
Fevi—O1—O3vii48.24 (3)Fe—O3—O2i43.65 (2)
O2—O1—O3vii146.13 (6)Feiv—O3—O2i159.71 (6)
O1iv—O1—O3vii150.20 (4)O2iii—O3—O2i83.74 (3)
O2iv—O1—O3vii136.04 (5)O2xiii—O3—O2i87.40 (4)
O2vi—O1—O3vii61.81 (4)O1ii—O3—O2i56.54 (3)
S—O1—O2viii116.01 (7)O1vii—O3—O2i139.68 (4)
Fevi—O1—O2viii41.84 (3)O2xiv—O3—O2i154.74 (8)
O2—O1—O2viii87.44 (5)Fe—O3—O2iv80.93 (6)
O1iv—O1—O2viii147.80 (5)Feiv—O3—O2iv41.92 (3)
O2iv—O1—O2viii104.29 (6)O2iii—O3—O2iv125.89 (6)
O2vi—O1—O2viii88.47 (5)O2xiii—O3—O2iv93.63 (3)
O3vii—O1—O2viii61.16 (4)O1ii—O3—O2iv66.23 (5)
S—O1—O3ix91.83 (5)O1vii—O3—O2iv60.99 (4)
Fevi—O1—O3ix44.68 (3)O2xiv—O3—O2iv85.57 (4)
O2—O1—O3ix56.96 (4)O2i—O3—O2iv118.65 (5)
O1iv—O1—O3ix101.62 (6)Fe—O3—O241.92 (3)
O2iv—O1—O3ix114.18 (6)Feiv—O3—O280.93 (6)
O2vi—O1—O3ix61.70 (4)O2iii—O3—O293.62 (3)
O3vii—O1—O3ix92.92 (4)O2xiii—O3—O2125.89 (6)
O2viii—O1—O3ix57.13 (3)O1ii—O3—O260.99 (4)
S—O1—O3x103.06 (6)O1vii—O3—O266.23 (5)
Fevi—O1—O3x97.31 (4)O2xiv—O3—O2118.65 (5)
O2—O1—O3x118.61 (5)O2i—O3—O285.57 (4)
O1iv—O1—O3x68.44 (3)O2iv—O3—O246.23 (5)
O2iv—O1—O3x118.01 (6)Fe—O3—O1xiii120.87 (5)
O2vi—O1—O3x52.55 (4)Feiv—O3—O1xiii41.93 (2)
O3vii—O1—O3x82.53 (4)O2iii—O3—O1xiii147.26 (3)
O2viii—O1—O3x137.15 (5)O2xiii—O3—O1xiii47.56 (3)
O3ix—O1—O3x107.04 (5)O1ii—O3—O1xiii79.83 (4)
S—O1—O2xi126.96 (7)O1vii—O3—O1xiii87.09 (4)
Fevi—O1—O2xi96.48 (5)O2xiv—O3—O1xiii60.03 (3)
O2—O1—O2xi162.61 (7)O2i—O3—O1xiii127.05 (3)
O1iv—O1—O2xi103.26 (5)O2iv—O3—O1xiii53.77 (4)
O2iv—O1—O2xi107.73 (5)O2—O3—O1xiii99.08 (5)
O2vi—O1—O2xi79.87 (4)Fe—O3—O1iii41.93 (2)
O3vii—O1—O2xi51.25 (3)Feiv—O3—O1iii120.87 (5)
O2viii—O1—O2xi108.46 (5)O2iii—O3—O1iii47.56 (3)
O3ix—O1—O2xi137.82 (5)O2xiii—O3—O1iii147.26 (3)
O3x—O1—O2xi53.76 (3)O1ii—O3—O1iii87.09 (4)
S—O1—O2vii113.46 (6)O1vii—O3—O1iii79.83 (4)
Fevi—O1—O2vii76.98 (4)O2xiv—O3—O1iii127.05 (3)
O2—O1—O2vii108.65 (5)O2i—O3—O1iii60.03 (3)
O1iv—O1—O2vii140.79 (6)O2iv—O3—O1iii99.08 (5)
O2iv—O1—O2vii81.93 (4)O2—O3—O1iii53.77 (4)
O2vi—O1—O2vii116.23 (6)O1xiii—O3—O1iii152.76 (8)
O3vii—O1—O2vii58.38 (4)Fe—O3—H107.0 (15)
O2viii—O1—O2vii44.32 (4)Feiv—O3—H110.3 (15)
O3ix—O1—O2vii101.11 (4)O2iii—O3—H22.5 (16)
O3x—O1—O2vii132.60 (4)O2xiii—O3—H117.5 (16)
O2xi—O1—O2vii79.81 (3)O1ii—O3—H145.2 (15)
S—O2—Fe132.41 (7)O1vii—O3—H79.0 (16)
S—O2—O135.21 (4)O2xiv—O3—H74.3 (15)
Fe—O2—O1162.33 (7)O2i—O3—H89.2 (15)
S—O2—O2iv35.92 (5)O2iv—O3—H139.8 (16)
Fe—O2—O2iv102.69 (5)O2—O3—H115.9 (16)
O1—O2—O2iv60.36 (5)O1xiii—O3—H132.0 (15)
S—O2—O1iv34.60 (4)O1iii—O3—H68.8 (16)
Fe—O2—O1iv117.77 (6)Fe—O3—Hiv110.3 (15)
O1—O2—O1iv59.93 (7)Feiv—O3—Hiv107.0 (15)
O2iv—O2—O1iv59.60 (5)O2iii—O3—Hiv117.5 (16)
S—O2—O3ix109.41 (6)O2xiii—O3—Hiv22.5 (16)
Fe—O2—O3ix118.12 (6)O1ii—O3—Hiv79.0 (16)
O1—O2—O3ix75.48 (5)O1vii—O3—Hiv145.2 (15)
O2iv—O2—O3ix131.76 (6)O2xiv—O3—Hiv89.2 (15)
O1iv—O2—O3ix114.53 (6)O2i—O3—Hiv74.3 (15)
S—O2—O1iii162.12 (7)O2iv—O3—Hiv115.9 (16)
Fe—O2—O1iii48.29 (4)O2—O3—Hiv139.8 (16)
O1—O2—O1iii137.46 (5)O1xiii—O3—Hiv68.8 (16)
O2iv—O2—O1iii129.71 (4)O1iii—O3—Hiv132.0 (15)
O1iv—O2—O1iii161.61 (7)H—O3—Hiv98 (3)
O1iv—S—O1—Fevi115.38 (11)O2iv—S—O2—Fe41.09 (6)
O2—S—O1—Fevi5.78 (13)O1iv—S—O2—O1121.57 (10)
O2iv—S—O1—Fevi124.19 (10)O2iv—S—O2—O1119.60 (6)
O1iv—S—O1—O2121.17 (6)O1iv—S—O2—O2iv118.82 (6)
O2iv—S—O1—O2118.40 (9)O1—S—O2—O2iv119.60 (6)
O2—S—O1—O1iv121.17 (6)O1—S—O2—O1iv121.57 (10)
O2iv—S—O1—O1iv120.43 (6)O2iv—S—O2—O1iv118.82 (6)
O1iv—S—O1—O2iv120.43 (6)O1iv—S—O2—O3ix105.34 (7)
O2—S—O1—O2iv118.40 (9)O1—S—O2—O3ix16.24 (8)
O1iv—S—O1—O2vi52.66 (7)O2iv—S—O2—O3ix135.84 (7)
O2—S—O1—O2vi68.50 (9)O1iv—S—O2—O1iii161.8 (3)
O2iv—S—O1—O2vi173.10 (10)O1—S—O2—O1iii76.7 (2)
O1iv—S—O1—O2viii161.90 (8)O2iv—S—O2—O1iii42.9 (2)
O2—S—O1—O2viii40.73 (8)O1iv—S—O2—O3i9.21 (12)
O2iv—S—O1—O2viii77.67 (8)O1—S—O2—O3i130.78 (10)
O1iv—S—O1—O3ix107.96 (5)O2iv—S—O2—O3i109.61 (10)
O2—S—O1—O3ix13.21 (7)O1iv—S—O2—O1ii61.45 (8)
O2iv—S—O1—O3ix131.61 (6)O1—S—O2—O1ii176.97 (6)
O1iv—S—O1—O3x0.000 (1)O2iv—S—O2—O1ii57.37 (4)
O2—S—O1—O3x121.17 (6)O1iv—S—O2—O3118.82 (6)
O2iv—S—O1—O3x120.43 (6)O1—S—O2—O3119.60 (6)
O1iv—S—O1—O2xi54.20 (6)O2iv—S—O2—O30.0
O2—S—O1—O2xi175.37 (7)O1iv—S—O2—O1xii47.27 (8)
O2iv—S—O1—O2xi66.23 (10)O1—S—O2—O1xii74.30 (6)
O1iv—S—O1—O2vii149.10 (7)O2iv—S—O2—O1xii166.10 (6)
O2—S—O1—O2vii89.74 (7)O1iv—S—O2—O1vii170.83 (6)
O2iv—S—O1—O2vii28.67 (8)O1—S—O2—O1vii67.60 (7)
O1iv—S—O2—Fe77.73 (10)O2iv—S—O2—O1vii52.00 (3)
O1—S—O2—Fe160.70 (9)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z+1/2; (v) x, y+1, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y1, z; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2iii0.82 (2)1.99 (2)2.7285 (14)148 (2)
Symmetry code: (iii) x+1/2, y+1/2, z+1/2.
(FeSO4H2O_He_60K) top
Crystal data top
FeH2O5SZ = 4
Mr = 169.93F(000) = 336
Monoclinic, C2/cDx = 3.109 Mg m3
a = 7.0320 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5783 (6) ŵ = 4.61 mm1
c = 7.7396 (8) ÅT = 60 K
β = 118.328 (14)°0.32 × 0.29 × 0.07 mm
V = 363.06 (8) Å3
Data collection top
1189 measured reflectionsθmax = 29.4°, θmin = 4.2°
442 independent reflectionsh = 99
423 reflections with I > 2σ(I)k = 99
Rint = 0.021l = 107
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.020P)2 + 0.310P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.044(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.51 e Å3
442 reflectionsΔρmin = 0.44 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0330 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.0000000.5000000.0000000.00233 (16)
S0.0000000.15520 (8)0.2500000.00232 (18)
O10.1684 (2)0.04575 (18)0.40074 (19)0.0050 (3)
O20.1003 (2)0.27048 (16)0.15946 (17)0.0043 (3)
O30.0000000.6434 (3)0.2500000.0043 (4)
H0.102 (4)0.711 (3)0.294 (3)0.012 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0024 (2)0.0018 (2)0.0024 (2)0.00016 (13)0.00083 (17)0.00064 (12)
S0.0020 (3)0.0020 (3)0.0030 (3)0.0000.0012 (2)0.000
O10.0038 (7)0.0051 (6)0.0055 (6)0.0007 (5)0.0018 (5)0.0012 (5)
O20.0037 (7)0.0041 (7)0.0056 (6)0.0005 (5)0.0028 (5)0.0020 (5)
O30.0034 (10)0.0044 (9)0.0046 (9)0.0000.0015 (8)0.000
Geometric parameters (Å, º) top
Fe—O22.0542 (12)O1—O1v2.410 (3)
Fe—O2i2.0543 (12)O1—O2v2.4192 (18)
Fe—O1ii2.1090 (14)O1—O2vi2.8166 (18)
Fe—O1iii2.1090 (14)O1—O3vii2.9693 (17)
Fe—O32.2192 (10)O1—O2viii3.0663 (19)
Fe—O3i2.2192 (10)O1—O3ix3.1509 (14)
Fe—O2ii3.4666 (14)O1—O3x3.279 (2)
Fe—O2iii3.4666 (14)O1—O2xi3.3002 (17)
Fe—O2iv3.4977 (12)O1—O2vii3.3041 (18)
Fe—O2v3.4977 (12)O2—O2v2.415 (2)
S—O1v1.4630 (14)O2—O3ix2.7292 (15)
S—O11.4630 (14)O2—O3i2.9740 (12)
S—O2v1.4903 (12)O2—O33.073 (2)
S—O21.4903 (12)O3—H0.81 (2)
O1—O22.4018 (18)O3—Hv0.81 (2)
O2—Fe—O2i180.0O3ix—O2—O1iii72.47 (6)
O2—Fe—O1ii94.86 (5)S—O2—O3i134.73 (7)
O2i—Fe—O1ii85.14 (5)Fe—O2—O3i48.23 (4)
O2—Fe—O1iii85.14 (5)O1—O2—O3i147.47 (7)
O2i—Fe—O1iii94.86 (5)O2v—O2—O3i135.23 (8)
O1ii—Fe—O1iii180.0O1v—O2—O3i100.41 (6)
O2—Fe—O391.88 (5)O3ix—O2—O3i92.62 (4)
O2i—Fe—O388.12 (5)O1iii—O2—O3i61.63 (4)
O1ii—Fe—O386.60 (4)S—O2—O1ii91.72 (6)
O1iii—Fe—O393.40 (4)Fe—O2—O1ii43.26 (3)
O2—Fe—O3i88.12 (5)O1—O2—O1ii126.87 (7)
O2i—Fe—O3i91.88 (5)O2v—O2—O1ii73.05 (6)
O1ii—Fe—O3i93.40 (4)O1v—O2—O1ii75.69 (6)
O1iii—Fe—O3i86.60 (4)O3ix—O2—O1ii155.26 (5)
O3—Fe—O3i180.0O1iii—O2—O1ii91.51 (5)
O2—Fe—O2ii83.08 (2)O3i—O2—O1ii62.86 (4)
O2i—Fe—O2ii96.92 (2)S—O2—O3102.75 (6)
O1ii—Fe—O2ii42.98 (4)Fe—O2—O346.20 (3)
O1iii—Fe—O2ii137.02 (4)O1—O2—O3117.22 (5)
O3—Fe—O2ii128.10 (3)O2v—O2—O366.87 (3)
O3i—Fe—O2ii51.90 (3)O1v—O2—O3116.64 (6)
O2—Fe—O2iii96.92 (2)O3ix—O2—O3125.86 (6)
O2i—Fe—O2iii83.08 (2)O1iii—O2—O364.51 (4)
O1ii—Fe—O2iii137.02 (4)O3i—O2—O394.42 (4)
O1iii—Fe—O2iii42.98 (4)O1ii—O2—O357.85 (3)
O3—Fe—O2iii51.90 (3)S—O2—O1xii95.56 (6)
O3i—Fe—O2iii128.10 (3)Fe—O2—O1xii110.96 (5)
O2ii—Fe—O2iii180.0O1—O2—O1xii85.64 (4)
O2—Fe—O2iv137.66 (5)O2v—O2—O1xii130.17 (4)
O2i—Fe—O2iv42.34 (5)O1v—O2—O1xii72.35 (5)
O1ii—Fe—O2iv113.00 (4)O3ix—O2—O1xii58.09 (4)
O1iii—Fe—O2iv67.00 (4)O1iii—O2—O1xii100.14 (5)
O3—Fe—O2iv119.80 (5)O3i—O2—O1xii62.75 (5)
O3i—Fe—O2iv60.20 (5)O1ii—O2—O1xii108.51 (5)
O2ii—Fe—O2iv95.84 (3)O3—O2—O1xii157.10 (5)
O2iii—Fe—O2iv84.16 (3)S—O2—O1vii82.77 (5)
O2—Fe—O2v42.34 (5)Fe—O2—O1vii97.06 (5)
O2i—Fe—O2v137.66 (5)O1—O2—O1vii71.27 (6)
O1ii—Fe—O2v67.00 (4)O2v—O2—O1vii62.59 (5)
O1iii—Fe—O2v113.00 (4)O1v—O2—O1vii116.92 (6)
O3—Fe—O2v60.20 (5)O3ix—O2—O1vii86.60 (5)
O3i—Fe—O2v119.80 (5)O1iii—O2—O1vii79.49 (4)
O2ii—Fe—O2v84.16 (3)O3i—O2—O1vii139.21 (6)
O2iii—Fe—O2v95.84 (3)O1ii—O2—O1vii109.40 (5)
O2iv—Fe—O2v180.00 (2)O3—O2—O1vii55.36 (3)
O1v—S—O1110.92 (12)O1xii—O2—O1vii142.09 (5)
O1v—S—O2v108.83 (7)Fe—O3—Fev121.36 (9)
O1—S—O2v110.00 (7)Fe—O3—O2iii88.32 (3)
O1v—S—O2110.00 (7)Fev—O3—O2iii112.02 (3)
O1—S—O2108.83 (7)Fe—O3—O2xiii112.02 (3)
O2v—S—O2108.22 (10)Fev—O3—O2xiii88.32 (3)
S—O1—Fevi136.08 (8)O2iii—O3—O2xiii138.67 (9)
S—O1—O235.97 (5)Fe—O3—O1ii45.15 (3)
Fevi—O1—O2100.24 (6)Fev—O3—O1ii103.44 (6)
S—O1—O1v34.54 (6)O2iii—O3—O1ii132.24 (4)
Fevi—O1—O1v139.58 (9)O2xiii—O3—O1ii70.64 (4)
O2—O1—O1v60.36 (5)Fe—O3—O1vii103.44 (6)
S—O1—O2v35.37 (4)Fev—O3—O1vii45.15 (3)
Fevi—O1—O2v144.43 (8)O2iii—O3—O1vii70.64 (4)
O2—O1—O2v60.12 (6)O2xiii—O3—O1vii132.24 (4)
O1v—O1—O2v59.64 (5)O1ii—O3—O1vii122.27 (9)
S—O1—O2vi126.90 (7)Fe—O3—O2xiv159.79 (7)
Fevi—O1—O2vi46.61 (4)Fev—O3—O2xiv43.66 (3)
O2—O1—O2vi108.32 (5)O2iii—O3—O2xiv87.38 (4)
O1v—O1—O2vi102.66 (6)O2xiii—O3—O2xiv83.73 (4)
O2v—O1—O2vi161.64 (8)O1ii—O3—O2xiv139.70 (4)
S—O1—O3vii171.30 (8)O1vii—O3—O2xiv56.58 (4)
Fevi—O1—O3vii48.25 (3)Fe—O3—O2i43.66 (3)
O2—O1—O3vii146.18 (7)Fev—O3—O2i159.79 (7)
O1v—O1—O3vii150.20 (5)O2iii—O3—O2i83.73 (4)
O2v—O1—O3vii136.00 (6)O2xiii—O3—O2i87.38 (4)
O2vi—O1—O3vii61.80 (4)O1ii—O3—O2i56.58 (4)
S—O1—O2viii116.06 (8)O1vii—O3—O2i139.70 (4)
Fevi—O1—O2viii41.88 (4)O2xiv—O3—O2i154.64 (9)
O2—O1—O2viii87.47 (5)Fe—O3—O241.92 (4)
O1v—O1—O2viii147.78 (5)Fev—O3—O281.00 (6)
O2v—O1—O2viii104.31 (6)O2iii—O3—O293.62 (3)
O2vi—O1—O2viii88.49 (5)O2xiii—O3—O2125.86 (6)
O3vii—O1—O2viii61.19 (5)O1ii—O3—O260.96 (5)
S—O1—O3ix91.88 (6)O1vii—O3—O266.27 (5)
Fevi—O1—O3ix44.67 (3)O2xiv—O3—O2118.73 (6)
O2—O1—O3ix56.98 (5)O2i—O3—O285.58 (4)
O1v—O1—O3ix101.62 (7)Fe—O3—O2v80.99 (6)
O2v—O1—O3ix114.27 (6)Fev—O3—O2v41.92 (4)
O2vi—O1—O3ix61.69 (5)O2iii—O3—O2v125.86 (6)
O3vii—O1—O3ix92.92 (5)O2xiii—O3—O2v93.62 (3)
O2viii—O1—O3ix57.14 (4)O1ii—O3—O2v66.27 (5)
S—O1—O3x102.97 (7)O1vii—O3—O2v60.96 (5)
Fevi—O1—O3x97.29 (5)O2xiv—O3—O2v85.58 (4)
O2—O1—O3x118.54 (6)O2i—O3—O2v118.73 (6)
O1v—O1—O3x68.43 (3)O2—O3—O2v46.27 (5)
O2v—O1—O3x117.97 (6)Fe—O3—O1xiii120.93 (6)
O2vi—O1—O3x52.54 (4)Fev—O3—O1xiii41.92 (3)
O3vii—O1—O3x82.53 (4)O2iii—O3—O1xiii147.21 (4)
O2viii—O1—O3x137.17 (5)O2xiii—O3—O1xiii47.55 (4)
O3ix—O1—O3x107.00 (5)O1ii—O3—O1xiii79.88 (4)
S—O1—O2xi126.87 (8)O1vii—O3—O1xiii87.08 (5)
Fevi—O1—O2xi96.50 (5)O2xiv—O3—O1xiii60.00 (4)
O2—O1—O2xi162.53 (8)O2i—O3—O1xiii127.09 (4)
O1v—O1—O2xi103.21 (6)O2—O3—O1xiii99.13 (6)
O2v—O1—O2xi107.65 (5)O2v—O3—O1xiii53.79 (4)
O2vi—O1—O2xi79.86 (5)Fe—O3—O1iii41.92 (3)
O3vii—O1—O2xi51.28 (4)Fev—O3—O1iii120.93 (6)
O2viii—O1—O2xi108.51 (5)O2iii—O3—O1iii47.55 (4)
O3ix—O1—O2xi137.83 (6)O2xiii—O3—O1iii147.21 (4)
O3x—O1—O2xi53.75 (3)O1ii—O3—O1iii87.08 (5)
S—O1—O2vii113.52 (7)O1vii—O3—O1iii79.88 (4)
Fevi—O1—O2vii77.02 (5)O2xiv—O3—O1iii127.09 (4)
O2—O1—O2vii108.73 (5)O2i—O3—O1iii60.00 (4)
O1v—O1—O2vii140.76 (7)O2—O3—O1iii53.79 (4)
O2v—O1—O2vii81.91 (4)O2v—O3—O1iii99.13 (6)
O2vi—O1—O2vii116.23 (6)O1xiii—O3—O1iii152.83 (8)
O3vii—O1—O2vii58.37 (5)Fe—O3—H107.7 (16)
O2viii—O1—O2vii44.36 (5)Fev—O3—H108.1 (16)
O3ix—O1—O2vii101.16 (5)O2iii—O3—H21.8 (17)
O3x—O1—O2vii132.59 (5)O2xiii—O3—H119.1 (18)
O2xi—O1—O2vii79.82 (3)O1ii—O3—H147.0 (16)
S—O2—Fe132.42 (8)O1vii—O3—H76.4 (17)
S—O2—O135.21 (5)O2xiv—O3—H72.8 (16)
Fe—O2—O1162.26 (7)O2i—O3—H91.2 (16)
S—O2—O2v35.89 (5)O2—O3—H114.7 (17)
Fe—O2—O2v102.71 (5)O2v—O3—H137.3 (17)
O1—O2—O2v60.30 (5)O1xiii—O3—H131.1 (16)
S—O2—O1v34.63 (4)O1iii—O3—H68.7 (17)
Fe—O2—O1v117.79 (7)Fe—O3—Hv108.1 (16)
O1—O2—O1v59.99 (7)Fev—O3—Hv107.7 (16)
O2v—O2—O1v59.58 (5)O2iii—O3—Hv119.1 (18)
S—O2—O3ix109.39 (7)O2xiii—O3—Hv21.8 (17)
Fe—O2—O3ix118.12 (6)O1ii—O3—Hv76.4 (17)
O1—O2—O3ix75.47 (5)O1vii—O3—Hv147.0 (16)
O2v—O2—O3ix131.69 (7)O2xiv—O3—Hv91.2 (16)
O1v—O2—O3ix114.59 (7)O2i—O3—Hv72.8 (16)
S—O2—O1iii162.04 (8)O2—O3—Hv137.3 (17)
Fe—O2—O1iii48.25 (4)O2v—O3—Hv114.7 (17)
O1—O2—O1iii137.40 (6)O1xiii—O3—Hv68.7 (17)
O2v—O2—O1iii129.66 (4)O1iii—O3—Hv131.1 (16)
O1v—O2—O1iii161.64 (8)H—O3—Hv102 (3)
O1v—S—O1—Fevi115.28 (12)O2v—S—O2—Fe41.01 (7)
O2v—S—O1—Fevi124.27 (11)O1v—S—O2—O1121.71 (11)
O2—S—O1—Fevi5.86 (14)O2v—S—O2—O1119.52 (7)
O1v—S—O1—O2121.14 (6)O1v—S—O2—O2v118.78 (7)
O2v—S—O1—O2118.41 (10)O1—S—O2—O2v119.52 (7)
O2v—S—O1—O1v120.45 (6)O1—S—O2—O1v121.71 (11)
O2—S—O1—O1v121.14 (6)O2v—S—O2—O1v118.78 (7)
O1v—S—O1—O2v120.45 (6)O1v—S—O2—O3ix105.47 (8)
O2—S—O1—O2v118.41 (10)O1—S—O2—O3ix16.24 (9)
O1v—S—O1—O2vi52.59 (7)O2v—S—O2—O3ix135.76 (8)
O2v—S—O1—O2vi173.04 (10)O1v—S—O2—O1iii161.7 (3)
O2—S—O1—O2vi68.56 (10)O1—S—O2—O1iii76.6 (3)
O1v—S—O1—O2viii161.89 (9)O2v—S—O2—O1iii42.9 (2)
O2v—S—O1—O2viii77.66 (9)O1v—S—O2—O3i9.17 (13)
O2—S—O1—O2viii40.74 (8)O1—S—O2—O3i130.88 (10)
O1v—S—O1—O3ix107.93 (6)O2v—S—O2—O3i109.61 (11)
O2v—S—O1—O3ix131.62 (7)O1v—S—O2—O1ii61.40 (8)
O2—S—O1—O3ix13.22 (7)O1—S—O2—O1ii176.90 (6)
O1v—S—O1—O3x0.0O2v—S—O2—O1ii57.38 (4)
O2v—S—O1—O3x120.45 (6)O1v—S—O2—O3118.78 (7)
O2—S—O1—O3x121.14 (6)O1—S—O2—O3119.52 (7)
O1v—S—O1—O2xi54.15 (6)O2v—S—O2—O30.0
O2v—S—O1—O2xi66.30 (11)O1v—S—O2—O1xii47.39 (9)
O2—S—O1—O2xi175.29 (8)O1—S—O2—O1xii74.31 (6)
O1v—S—O1—O2vii149.05 (8)O2v—S—O2—O1xii166.17 (7)
O2v—S—O1—O2vii28.60 (9)O1v—S—O2—O1vii170.73 (7)
O2—S—O1—O2vii89.81 (7)O1—S—O2—O1vii67.56 (8)
O1v—S—O2—Fe77.76 (11)O2v—S—O2—O1vii51.96 (4)
O1—S—O2—Fe160.53 (9)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y1, z; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2iii0.81 (2)2.00 (2)2.7292 (15)150 (2)
Symmetry code: (iii) x+1/2, y+1/2, z+1/2.
(FeSO4H2O_He_75K) top
Crystal data top
FeH2O5SZ = 4
Mr = 169.93F(000) = 336
Monoclinic, C2/cDx = 3.107 Mg m3
a = 7.0337 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5789 (7) ŵ = 4.61 mm1
c = 7.7406 (9) ÅT = 75 K
β = 118.325 (16)°0.32 × 0.29 × 0.07 mm
V = 363.23 (9) Å3
Data collection top
1202 measured reflectionsθmax = 29.4°, θmin = 4.2°
445 independent reflectionsh = 99
425 reflections with I > 2σ(I)k = 99
Rint = 0.019l = 107
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.029P)2 + 0.140P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.62 e Å3
445 reflectionsΔρmin = 0.55 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.035 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.0000000.5000000.0000000.00280 (18)
S0.0000000.15532 (8)0.2500000.0027 (2)
O10.1686 (2)0.0458 (2)0.40091 (19)0.0052 (3)
O20.1002 (2)0.27064 (17)0.15934 (18)0.0049 (3)
O30.0000000.6434 (3)0.2500000.0046 (4)
H0.098 (4)0.712 (3)0.291 (3)0.011 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0025 (3)0.0027 (3)0.0028 (2)0.00005 (13)0.00097 (18)0.00058 (12)
S0.0021 (4)0.0026 (3)0.0030 (3)0.0000.0010 (3)0.000
O10.0039 (7)0.0047 (7)0.0060 (6)0.0012 (6)0.0016 (5)0.0018 (5)
O20.0041 (7)0.0047 (7)0.0062 (6)0.0005 (5)0.0027 (5)0.0020 (5)
O30.0039 (10)0.0050 (10)0.0046 (9)0.0000.0017 (8)0.000
Geometric parameters (Å, º) top
Fe—O22.0530 (13)O1—O1v2.414 (3)
Fe—O2i2.0530 (13)O1—O2v2.4204 (19)
Fe—O1ii2.1085 (15)O1—O2vi2.8163 (19)
Fe—O1iii2.1085 (15)O1—O3vii2.9691 (18)
Fe—O32.2195 (10)O1—O2viii3.064 (2)
Fe—O3i2.2195 (10)O1—O3ix3.1510 (15)
Fe—O2ii3.4686 (14)O1—O3x3.280 (2)
Fe—O2iii3.4686 (14)O1—O2xi3.3014 (18)
Fe—O2iv3.4979 (13)O1—O2vii3.3035 (19)
Fe—O2v3.4979 (13)O2—O2v2.415 (2)
S—O1v1.4645 (15)O2—O3ix2.7307 (15)
S—O11.4645 (15)O2—O3i2.9735 (13)
S—O21.4908 (13)O2—O33.073 (2)
S—O2v1.4908 (13)O3—H0.80 (3)
O1—O22.4036 (19)O3—Hv0.80 (2)
O2—Fe—O2i180.00 (8)O3ix—O2—O1iii72.48 (6)
O2—Fe—O1ii94.83 (5)S—O2—O3i134.75 (7)
O2i—Fe—O1ii85.17 (5)Fe—O2—O3i48.25 (4)
O2—Fe—O1iii85.17 (5)O1—O2—O3i147.46 (8)
O2i—Fe—O1iii94.83 (5)O2v—O2—O3i135.28 (8)
O1ii—Fe—O1iii180.0O1v—O2—O3i100.39 (6)
O2—Fe—O391.88 (5)O3ix—O2—O3i92.62 (5)
O2i—Fe—O388.12 (5)O1iii—O2—O3i61.63 (5)
O1ii—Fe—O386.59 (4)S—O2—O1ii91.73 (7)
O1iii—Fe—O393.41 (4)Fe—O2—O1ii43.29 (4)
O2—Fe—O3i88.12 (5)O1—O2—O1ii126.89 (8)
O2i—Fe—O3i91.88 (5)O2v—O2—O1ii73.07 (6)
O1ii—Fe—O3i93.41 (4)O1v—O2—O1ii75.66 (6)
O1iii—Fe—O3i86.59 (4)O3ix—O2—O1ii155.29 (6)
O3—Fe—O3i180.0O1iii—O2—O1ii91.53 (5)
O2—Fe—O2ii83.07 (2)O3i—O2—O1ii62.90 (4)
O2i—Fe—O2ii96.93 (2)S—O2—O3102.75 (6)
O1ii—Fe—O2ii42.99 (4)Fe—O2—O346.22 (3)
O1iii—Fe—O2ii137.01 (4)O1—O2—O3117.20 (6)
O3—Fe—O2ii128.10 (3)O2v—O2—O366.86 (3)
O3i—Fe—O2ii51.90 (3)O1v—O2—O3116.64 (6)
O2—Fe—O2iii96.93 (2)O3ix—O2—O3125.86 (6)
O2i—Fe—O2iii83.07 (2)O1iii—O2—O364.53 (4)
O1ii—Fe—O2iii137.01 (4)O3i—O2—O394.47 (4)
O1iii—Fe—O2iii42.99 (4)O1ii—O2—O357.87 (4)
O3—Fe—O2iii51.90 (3)S—O2—O1xii95.55 (6)
O3i—Fe—O2iii128.10 (3)Fe—O2—O1xii111.00 (5)
O2ii—Fe—O2iii180.0O1—O2—O1xii85.61 (4)
O2—Fe—O2iv137.66 (5)O2v—O2—O1xii130.17 (4)
O2i—Fe—O2iv42.34 (5)O1v—O2—O1xii72.36 (6)
O1ii—Fe—O2iv113.02 (5)O3ix—O2—O1xii58.05 (4)
O1iii—Fe—O2iv66.98 (5)O1iii—O2—O1xii100.14 (5)
O3—Fe—O2iv119.82 (5)O3i—O2—O1xii62.77 (5)
O3i—Fe—O2iv60.18 (5)O1ii—O2—O1xii108.56 (5)
O2ii—Fe—O2iv95.82 (3)O3—O2—O1xii157.16 (5)
O2iii—Fe—O2iv84.18 (3)S—O2—O1vii82.72 (6)
O2—Fe—O2v42.34 (5)Fe—O2—O1vii97.09 (5)
O2i—Fe—O2v137.66 (5)O1—O2—O1vii71.21 (6)
O1ii—Fe—O2v66.98 (5)O2v—O2—O1vii62.55 (5)
O1iii—Fe—O2v113.02 (5)O1v—O2—O1vii116.91 (6)
O3—Fe—O2v60.18 (5)O3ix—O2—O1vii86.58 (5)
O3i—Fe—O2v119.82 (5)O1iii—O2—O1vii79.53 (4)
O2ii—Fe—O2v84.18 (3)O3i—O2—O1vii139.26 (6)
O2iii—Fe—O2v95.82 (3)O1ii—O2—O1vii109.42 (6)
O2iv—Fe—O2v180.00 (2)O3—O2—O1vii55.36 (3)
O1v—S—O1110.98 (12)O1xii—O2—O1vii142.02 (5)
O1v—S—O2109.96 (7)Fe—O3—Fev121.35 (9)
O1—S—O2108.84 (8)Fe—O3—O2xiii112.01 (3)
O1v—S—O2v108.84 (8)Fev—O3—O2xiii88.34 (3)
O1—S—O2v109.96 (7)Fe—O3—O2iii88.34 (3)
O2—S—O2v108.21 (11)Fev—O3—O2iii112.02 (3)
S—O1—Fevi136.10 (8)O2xiii—O3—O2iii138.65 (10)
S—O1—O235.95 (5)Fe—O3—O1ii45.15 (3)
Fevi—O1—O2100.28 (6)Fev—O3—O1ii103.42 (6)
S—O1—O1v34.51 (6)O2xiii—O3—O1ii70.65 (4)
Fevi—O1—O1v139.56 (9)O2iii—O3—O1ii132.26 (4)
O2—O1—O1v60.32 (5)Fe—O3—O1vii103.42 (6)
S—O1—O2v35.37 (5)Fev—O3—O1vii45.15 (3)
Fevi—O1—O2v144.46 (8)O2xiii—O3—O1vii132.26 (4)
O2—O1—O2v60.09 (7)O2iii—O3—O1vii70.65 (4)
O1v—O1—O2v59.63 (5)O1ii—O3—O1vii122.22 (9)
S—O1—O2vi126.88 (8)Fe—O3—O2xiv159.77 (7)
Fevi—O1—O2vi46.58 (4)Fev—O3—O2xiv43.64 (3)
O2—O1—O2vi108.32 (5)O2xiii—O3—O2xiv83.74 (4)
O1v—O1—O2vi102.66 (6)O2iii—O3—O2xiv87.38 (5)
O2v—O1—O2vi161.63 (8)O1ii—O3—O2xiv139.68 (5)
S—O1—O3vii171.33 (8)O1vii—O3—O2xiv56.58 (4)
Fevi—O1—O3vii48.26 (3)Fe—O3—O2i43.64 (3)
O2—O1—O3vii146.24 (7)Fev—O3—O2i159.77 (7)
O1v—O1—O3vii150.17 (5)O2xiii—O3—O2i87.38 (5)
O2v—O1—O3vii136.02 (6)O2iii—O3—O2i83.74 (4)
O2vi—O1—O3vii61.79 (4)O1ii—O3—O2i56.58 (4)
S—O1—O2viii116.10 (8)O1vii—O3—O2i139.68 (5)
Fevi—O1—O2viii41.88 (4)O2xiv—O3—O2i154.69 (9)
O2—O1—O2viii87.52 (5)Fe—O3—O241.90 (4)
O1v—O1—O2viii147.79 (5)Fev—O3—O281.01 (6)
O2v—O1—O2viii104.34 (6)O2xiii—O3—O2125.86 (6)
O2vi—O1—O2viii88.47 (5)O2iii—O3—O293.64 (4)
O3vii—O1—O2viii61.21 (5)O1ii—O3—O260.92 (5)
S—O1—O3ix91.88 (6)O1vii—O3—O266.27 (5)
Fevi—O1—O3ix44.68 (3)O2xiv—O3—O2118.73 (6)
O2—O1—O3ix57.00 (5)O2i—O3—O285.53 (4)
O1v—O1—O3ix101.61 (7)Fe—O3—O2v81.01 (6)
O2v—O1—O3ix114.26 (7)Fev—O3—O2v41.90 (4)
O2vi—O1—O3ix61.68 (5)O2xiii—O3—O2v93.64 (4)
O3vii—O1—O3ix92.94 (5)O2iii—O3—O2v125.86 (6)
O2viii—O1—O3ix57.14 (4)O1ii—O3—O2v66.27 (5)
S—O1—O3x102.92 (7)O1vii—O3—O2v60.92 (5)
Fevi—O1—O3x97.29 (5)O2xiv—O3—O2v85.53 (4)
O2—O1—O3x118.49 (6)O2i—O3—O2v118.73 (6)
O1v—O1—O3x68.41 (3)O2—O3—O2v46.29 (6)
O2v—O1—O3x117.94 (6)Fe—O3—O1xiii120.95 (6)
O2vi—O1—O3x52.56 (4)Fev—O3—O1xiii41.91 (3)
O3vii—O1—O3x82.53 (4)O2xiii—O3—O1xiii47.58 (4)
O2viii—O1—O3x137.17 (6)O2iii—O3—O1xiii147.17 (4)
O3ix—O1—O3x106.99 (5)O1ii—O3—O1xiii79.90 (4)
S—O1—O2xi126.82 (8)O1vii—O3—O1xiii87.06 (5)
Fevi—O1—O2xi96.53 (5)O2xiv—O3—O1xiii59.96 (4)
O2—O1—O2xi162.45 (8)O2i—O3—O1xiii127.12 (4)
O1v—O1—O2xi103.17 (6)O2—O3—O1xiii99.15 (6)
O2v—O1—O2xi107.64 (6)O2v—O3—O1xiii53.79 (4)
O2vi—O1—O2xi79.86 (5)Fe—O3—O1iii41.91 (3)
O3vii—O1—O2xi51.30 (4)Fev—O3—O1iii120.95 (6)
O2viii—O1—O2xi108.56 (5)O2xiii—O3—O1iii147.17 (4)
O3ix—O1—O2xi137.84 (6)O2iii—O3—O1iii47.58 (4)
O3x—O1—O2xi53.72 (3)O1ii—O3—O1iii87.06 (5)
S—O1—O2vii113.56 (8)O1vii—O3—O1iii79.90 (4)
Fevi—O1—O2vii77.04 (5)O2xiv—O3—O1iii127.12 (4)
O2—O1—O2vii108.79 (6)O2i—O3—O1iii59.96 (4)
O1v—O1—O2vii140.77 (7)O2—O3—O1iii53.79 (4)
O2v—O1—O2vii81.94 (5)O2v—O3—O1iii99.15 (6)
O2vi—O1—O2vii116.22 (6)O1xiii—O3—O1iii152.85 (9)
O3vii—O1—O2vii58.37 (5)Fe—O3—H107.8 (17)
O2viii—O1—O2vii44.39 (5)Fev—O3—H109.5 (17)
O3ix—O1—O2vii101.19 (5)O2xiii—O3—H117.4 (18)
O3x—O1—O2vii132.57 (5)O2iii—O3—H22.9 (18)
O2xi—O1—O2vii79.84 (3)O1ii—O3—H146.1 (17)
S—O2—Fe132.45 (8)O1vii—O3—H78.5 (17)
S—O2—O135.22 (5)O2xiv—O3—H73.4 (17)
Fe—O2—O1162.27 (7)O2i—O3—H90.0 (17)
S—O2—O2v35.89 (5)O2—O3—H116.2 (18)
Fe—O2—O2v102.74 (5)O2v—O3—H139.3 (17)
O1—O2—O2v60.30 (5)O1xiii—O3—H131.2 (17)
S—O2—O1v34.66 (4)O1iii—O3—H69.4 (17)
Fe—O2—O1v117.78 (7)Fe—O3—Hv109.5 (17)
O1—O2—O1v60.04 (7)Fev—O3—Hv107.8 (17)
O2v—O2—O1v59.61 (5)O2xiii—O3—Hv22.9 (18)
S—O2—O3ix109.34 (7)O2iii—O3—Hv117.4 (18)
Fe—O2—O3ix118.13 (6)O1ii—O3—Hv78.5 (17)
O1—O2—O3ix75.42 (6)O1vii—O3—Hv146.1 (17)
O2v—O2—O3ix131.64 (7)O2xiv—O3—Hv90.0 (17)
O1v—O2—O3ix114.58 (7)O2i—O3—Hv73.4 (17)
S—O2—O1iii162.03 (8)O2—O3—Hv139.3 (17)
Fe—O2—O1iii48.25 (4)O2v—O3—Hv116.2 (18)
O1—O2—O1iii137.36 (6)O1xiii—O3—Hv69.4 (17)
O2v—O2—O1iii129.66 (4)O1iii—O3—Hv131.2 (17)
O1v—O2—O1iii161.63 (8)H—O3—Hv99 (4)
O1v—S—O1—Fevi115.22 (13)O2v—S—O2—Fe41.02 (7)
O2—S—O1—Fevi5.92 (15)O1v—S—O2—O1121.76 (12)
O2v—S—O1—Fevi124.30 (12)O2v—S—O2—O1119.48 (7)
O1v—S—O1—O2121.14 (6)O1v—S—O2—O2v118.76 (7)
O2v—S—O1—O2118.38 (11)O1—S—O2—O2v119.48 (7)
O2—S—O1—O1v121.14 (6)O1—S—O2—O1v121.76 (12)
O2v—S—O1—O1v120.48 (7)O2v—S—O2—O1v118.76 (7)
O1v—S—O1—O2v120.48 (7)O1v—S—O2—O3ix105.51 (8)
O2—S—O1—O2v118.38 (11)O1—S—O2—O3ix16.24 (9)
O1v—S—O1—O2vi52.58 (8)O2v—S—O2—O3ix135.72 (8)
O2—S—O1—O2vi68.56 (11)O1v—S—O2—O1iii161.7 (3)
O2v—S—O1—O2vi173.05 (11)O1—S—O2—O1iii76.5 (3)
O1v—S—O1—O2viii161.87 (9)O2v—S—O2—O1iii43.0 (2)
O2—S—O1—O2viii40.72 (9)O1v—S—O2—O3i9.08 (13)
O2v—S—O1—O2viii77.66 (9)O1—S—O2—O3i130.84 (11)
O1v—S—O1—O3ix107.91 (6)O2v—S—O2—O3i109.68 (12)
O2—S—O1—O3ix13.23 (8)O1v—S—O2—O1ii61.36 (9)
O2v—S—O1—O3ix131.61 (7)O1—S—O2—O1ii176.88 (7)
O1v—S—O1—O3x0.0O2v—S—O2—O1ii57.40 (4)
O2—S—O1—O3x121.14 (6)O1v—S—O2—O3118.76 (7)
O2v—S—O1—O3x120.48 (7)O1—S—O2—O3119.48 (7)
O1v—S—O1—O2xi54.08 (7)O2v—S—O2—O30.0
O2—S—O1—O2xi175.22 (8)O1v—S—O2—O1xii47.48 (9)
O2v—S—O1—O2xi66.39 (11)O1—S—O2—O1xii74.28 (7)
O1v—S—O1—O2vii149.02 (8)O2v—S—O2—O1xii166.24 (7)
O2—S—O1—O2vii89.84 (8)O1v—S—O2—O1vii170.71 (7)
O2v—S—O1—O2vii28.54 (9)O1—S—O2—O1vii67.53 (8)
O1v—S—O2—Fe77.75 (12)O2v—S—O2—O1vii51.95 (4)
O1—S—O2—Fe160.49 (10)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y1, z; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2iii0.80 (3)2.02 (2)2.7307 (15)148 (2)
Symmetry code: (iii) x+1/2, y+1/2, z+1/2.
(FeSO4H2O_N2_113K) top
Crystal data top
FeH2Mg0O5SV = 363.48 (9) Å3
Mr = 169.93Z = 4
Monoclinic, C2/cF(000) = 336
a = 7.0404 (10) ÅDx = 3.105 Mg m3
b = 7.5756 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.745 (1) ŵ = 4.61 mm1
β = 118.368 (10)°T = 113 K
Data collection top
Absorption correction: multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
Rint = 0.023
Tmin = 0.581, Tmax = 0.748θmax = 40.0°, θmin = 4.2°
10314 measured reflectionsh = 1212
1128 independent reflectionsk = 1313
1118 reflections with I > 2σ(I)l = 1414
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.013P)2 + 0.240P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.032(Δ/σ)max < 0.001
S = 1.19Δρmax = 0.68 e Å3
1128 reflectionsΔρmin = 0.44 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0419 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.0000000.5000000.0000000.00387 (4)
S0.0000000.15512 (2)0.2500000.00351 (4)
O10.16853 (7)0.04497 (6)0.40047 (7)0.00700 (7)
O20.09991 (7)0.27015 (6)0.15910 (6)0.00624 (7)
O30.0000000.64381 (8)0.2500000.00616 (9)
H0.109 (2)0.712 (2)0.292 (2)0.021 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.00364 (5)0.00378 (5)0.00416 (5)0.00003 (3)0.00182 (4)0.00046 (3)
S0.00283 (7)0.00326 (7)0.00436 (7)0.0000.00162 (5)0.000
O10.00455 (14)0.00773 (16)0.00792 (15)0.00210 (12)0.00231 (12)0.00347 (12)
O20.00607 (15)0.00564 (15)0.00832 (15)0.00030 (11)0.00450 (13)0.00221 (12)
O30.0060 (2)0.0064 (2)0.0064 (2)0.0000.00316 (17)0.000
Geometric parameters (Å, º) top
Fe—O22.0546 (5)O1—O1v2.4099 (10)
Fe—O2i2.0546 (5)O1—O2v2.4220 (7)
Fe—O1ii2.1088 (5)O1—O2vi2.8142 (7)
Fe—O1iii2.1088 (5)O1—O3vii2.9693 (7)
Fe—O3i2.2217 (4)O1—O2viii3.0687 (8)
Fe—O32.2217 (4)O1—O3ix3.1542 (6)
Fe—O2ii3.4679 (6)O1—O3x3.2692 (8)
Fe—O2iii3.4679 (6)O1—O2xi3.2961 (7)
Fe—O2iv3.5018 (6)O1—O2vii3.3122 (8)
Fe—O2v3.5018 (6)O2—O2v2.4174 (9)
S—O1v1.4657 (5)O2—O3ix2.7316 (6)
S—O11.4657 (5)O2—O3i2.9734 (6)
S—O21.4901 (5)O2—O33.0780 (8)
S—O2v1.4901 (4)O3—H0.850 (15)
O1—O22.4041 (7)O3—Hv0.850 (15)
O2—Fe—O2i180.0O3ix—O2—O1iii72.23 (2)
O2—Fe—O1ii94.955 (19)S—O2—O3i134.90 (3)
O2i—Fe—O1ii85.045 (19)Fe—O2—O3i48.309 (15)
O2—Fe—O1iii85.045 (19)O1—O2—O3i147.41 (3)
O2i—Fe—O1iii94.955 (19)O2v—O2—O3i135.41 (3)
O1ii—Fe—O1iii180.0O1v—O2—O3i100.56 (2)
O2—Fe—O3i88.01 (2)O3ix—O2—O3i92.541 (17)
O2i—Fe—O3i91.99 (2)O1iii—O2—O3i61.660 (16)
O1ii—Fe—O3i93.465 (16)S—O2—O1ii91.85 (2)
O1iii—Fe—O3i86.535 (16)Fe—O2—O1ii43.206 (12)
O2—Fe—O391.99 (2)O1—O2—O1ii127.04 (2)
O2i—Fe—O388.01 (2)O2v—O2—O1ii73.19 (2)
O1ii—Fe—O386.535 (16)O1v—O2—O1ii75.90 (2)
O1iii—Fe—O393.465 (16)O3ix—O2—O1ii155.19 (2)
O3i—Fe—O3180.0O1iii—O2—O1ii91.50 (2)
O2—Fe—O2ii83.065 (13)O3i—O2—O1ii62.915 (16)
O2i—Fe—O2ii96.935 (13)S—O2—O3102.67 (2)
O1ii—Fe—O2ii43.018 (15)Fe—O2—O346.168 (12)
O1iii—Fe—O2ii136.982 (15)O1—O2—O3117.26 (2)
O3i—Fe—O2ii51.934 (12)O2v—O2—O366.877 (10)
O3—Fe—O2ii128.066 (12)O1v—O2—O3116.67 (2)
O2—Fe—O2iii96.935 (13)O3ix—O2—O3125.66 (2)
O2i—Fe—O2iii83.065 (13)O1iii—O2—O364.550 (16)
O1ii—Fe—O2iii136.982 (15)O3i—O2—O394.477 (15)
O1iii—Fe—O2iii43.018 (15)O1ii—O2—O357.772 (13)
O3i—Fe—O2iii128.066 (12)S—O2—O1xii95.85 (2)
O3—Fe—O2iii51.934 (12)Fe—O2—O1xii110.89 (2)
O2ii—Fe—O2iii180.000 (15)O1—O2—O1xii85.717 (17)
O2—Fe—O2iv137.682 (17)O2v—O2—O1xii130.379 (14)
O2i—Fe—O2iv42.319 (17)O1v—O2—O1xii72.57 (2)
O1ii—Fe—O2iv112.866 (18)O3ix—O2—O1xii58.124 (16)
O1iii—Fe—O2iv67.134 (18)O1iii—O2—O1xii99.938 (19)
O3i—Fe—O2iv60.234 (18)O3i—O2—O1xii62.610 (18)
O3—Fe—O2iv119.765 (18)O1ii—O2—O1xii108.62 (2)
O2ii—Fe—O2iv95.790 (15)O3—O2—O1xii156.998 (18)
O2iii—Fe—O2iv84.210 (15)S—O2—O1vii82.68 (2)
O2—Fe—O2v42.318 (17)Fe—O2—O1vii96.89 (2)
O2i—Fe—O2v137.681 (17)O1—O2—O1vii71.37 (2)
O1ii—Fe—O2v67.134 (18)O2v—O2—O1vii62.49 (2)
O1iii—Fe—O2v112.866 (18)O1v—O2—O1vii116.85 (2)
O3i—Fe—O2v119.766 (18)O3ix—O2—O1vii86.562 (18)
O3—Fe—O2v60.235 (18)O1iii—O2—O1vii79.398 (16)
O2ii—Fe—O2v84.210 (15)O3i—O2—O1vii139.13 (2)
O2iii—Fe—O2v95.790 (15)O1ii—O2—O1vii109.24 (2)
O2iv—Fe—O2v180.000 (12)O3—O2—O1vii55.230 (12)
O1v—S—O1110.59 (4)O1xii—O2—O1vii142.146 (17)
O1v—S—O2110.05 (3)Fe—O3—Fev121.27 (3)
O1—S—O2108.85 (3)Fe—O3—O2xiii111.975 (14)
O1v—S—O2v108.85 (3)Fev—O3—O2xiii88.248 (13)
O1—S—O2v110.05 (3)Fe—O3—O2iii88.248 (13)
O2—S—O2v108.42 (4)Fev—O3—O2iii111.975 (14)
S—O1—Fevi136.04 (3)O2xiii—O3—O2iii138.98 (3)
S—O1—O235.914 (16)Fe—O3—O1ii45.146 (13)
Fevi—O1—O2100.22 (2)Fev—O3—O1ii103.47 (2)
S—O1—O1v34.70 (2)O2xiii—O3—O1ii70.504 (17)
Fevi—O1—O1v139.79 (3)O2iii—O3—O1ii132.165 (15)
O2—O1—O1v60.412 (19)Fe—O3—O1vii103.47 (2)
S—O1—O2v35.306 (17)Fev—O3—O1vii45.146 (13)
Fevi—O1—O2v144.22 (3)O2xiii—O3—O1vii132.164 (15)
O2—O1—O2v60.12 (2)O2iii—O3—O1vii70.504 (16)
O1v—O1—O2v59.675 (19)O1ii—O3—O1vii122.41 (3)
S—O1—O2vi127.16 (3)Fe—O3—O2xiv159.76 (2)
Fevi—O1—O2vi46.666 (13)Fev—O3—O2xiv43.677 (11)
O2—O1—O2vi108.390 (19)O2xiii—O3—O2xiv83.726 (16)
O1v—O1—O2vi102.85 (2)O2iii—O3—O2xiv87.459 (18)
O2v—O1—O2vi161.84 (3)O1ii—O3—O2xiv139.698 (16)
S—O1—O3vii171.03 (3)O1vii—O3—O2xiv56.532 (15)
Fevi—O1—O3vii48.319 (12)Fe—O3—O2i43.677 (11)
O2—O1—O3vii146.22 (2)Fev—O3—O2i159.76 (2)
O1v—O1—O3vii150.223 (16)O2xiii—O3—O2i87.459 (18)
O2v—O1—O3vii135.81 (2)O2iii—O3—O2i83.726 (16)
O2vi—O1—O3vii61.808 (17)O1ii—O3—O2i56.532 (15)
S—O1—O2viii115.81 (3)O1vii—O3—O2i139.698 (16)
Fevi—O1—O2viii41.839 (14)O2xiv—O3—O2i154.67 (3)
O2—O1—O2viii87.400 (19)Fe—O3—O241.846 (13)
O1v—O1—O2viii147.744 (19)Fev—O3—O280.97 (2)
O2v—O1—O2viii104.10 (2)O2xiii—O3—O2125.66 (2)
O2vi—O1—O2viii88.50 (2)O2iii—O3—O293.523 (13)
O3vii—O1—O2viii61.270 (19)O1ii—O3—O260.958 (17)
S—O1—O3ix91.87 (2)O1vii—O3—O266.393 (18)
Fevi—O1—O3ix44.674 (13)O2xiv—O3—O2118.768 (19)
O2—O1—O3ix56.968 (17)O2i—O3—O285.523 (16)
O1v—O1—O3ix101.78 (3)Fe—O3—O2v80.97 (2)
O2v—O1—O3ix114.19 (2)Fev—O3—O2v41.846 (13)
O2vi—O1—O3ix61.779 (18)O2xiii—O3—O2v93.522 (13)
O3vii—O1—O3ix92.993 (18)O2iii—O3—O2v125.66 (2)
O2viii—O1—O3ix57.065 (16)O1ii—O3—O2v66.393 (19)
S—O1—O3x103.08 (3)O1vii—O3—O2v60.958 (17)
Fevi—O1—O3x97.544 (17)O2xiv—O3—O2v85.523 (15)
O2—O1—O3x118.53 (2)O2i—O3—O2v118.768 (19)
O1v—O1—O3x68.373 (10)O2—O3—O2v46.25 (2)
O2v—O1—O3x117.95 (2)Fe—O3—O1xiii120.79 (2)
O2vi—O1—O3x52.717 (15)Fev—O3—O1xiii41.862 (10)
O3vii—O1—O3x82.656 (16)O2xiii—O3—O1xiii47.548 (14)
O2viii—O1—O3x137.388 (17)O2iii—O3—O1xiii147.279 (15)
O3ix—O1—O3x107.210 (18)O1ii—O3—O1xiii79.837 (16)
S—O1—O2xi126.76 (3)O1vii—O3—O1xiii87.008 (18)
Fevi—O1—O2xi96.725 (18)O2xiv—O3—O1xiii60.020 (15)
O2—O1—O2xi162.39 (3)O2i—O3—O1xiii127.141 (14)
O1v—O1—O2xi103.09 (2)O2—O3—O1xiii98.96 (2)
O2v—O1—O2xi107.42 (2)O2v—O3—O1xiii53.671 (13)
O2vi—O1—O2xi80.062 (19)Fe—O3—O1iii41.862 (10)
O3vii—O1—O2xi51.372 (14)Fev—O3—O1iii120.79 (2)
O2viii—O1—O2xi108.62 (2)O2xiii—O3—O1iii147.279 (15)
O3ix—O1—O2xi138.094 (19)O2iii—O3—O1iii47.548 (14)
O3x—O1—O2xi53.857 (13)O1ii—O3—O1iii87.008 (18)
S—O1—O2vii113.23 (3)O1vii—O3—O1iii79.837 (16)
Fevi—O1—O2vii76.947 (19)O2xiv—O3—O1iii127.141 (14)
O2—O1—O2vii108.63 (2)O2i—O3—O1iii60.020 (15)
O1v—O1—O2vii140.60 (2)O2—O3—O1iii53.672 (13)
O2v—O1—O2vii81.724 (19)O2v—O3—O1iii98.96 (2)
O2vi—O1—O2vii116.21 (2)O1xiii—O3—O1iii152.54 (3)
O3vii—O1—O2vii58.376 (18)Fe—O3—H104.9 (10)
O2viii—O1—O2vii44.321 (17)Fev—O3—H109.8 (10)
O3ix—O1—O2vii101.046 (18)O2xiii—O3—H121.2 (10)
O3x—O1—O2vii132.677 (16)O2iii—O3—H19.4 (10)
O2xi—O1—O2vii79.800 (15)O1ii—O3—H144.7 (10)
S—O2—Fe132.45 (3)O1vii—O3—H76.7 (10)
S—O2—O135.238 (16)O2xiv—O3—H75.3 (10)
Fe—O2—O1162.31 (3)O2i—O3—H89.3 (10)
S—O2—O2v35.789 (19)O2—O3—H112.6 (10)
Fe—O2—O2v102.777 (17)O2v—O3—H137.2 (10)
O1—O2—O2v60.307 (18)O1xiii—O3—H133.9 (10)
S—O2—O1v34.645 (16)O1iii—O3—H66.1 (10)
Fe—O2—O1v117.96 (2)Fe—O3—Hv109.8 (10)
O1—O2—O1v59.91 (3)Fev—O3—Hv104.9 (10)
O2v—O2—O1v59.573 (18)O2xiii—O3—Hv19.4 (10)
S—O2—O3ix109.50 (3)O2iii—O3—Hv121.2 (10)
Fe—O2—O3ix117.96 (2)O1ii—O3—Hv76.7 (10)
O1—O2—O3ix75.48 (2)O1vii—O3—Hv144.7 (10)
O2v—O2—O3ix131.61 (3)O2xiv—O3—Hv89.3 (10)
O1v—O2—O3ix114.71 (3)O2i—O3—Hv75.3 (10)
S—O2—O1iii161.87 (3)O2—O3—Hv137.2 (10)
Fe—O2—O1iii48.290 (15)O2v—O3—Hv112.6 (10)
O1—O2—O1iii137.25 (2)O1xiii—O3—Hv66.1 (10)
O2v—O2—O1iii129.661 (16)O1iii—O3—Hv133.9 (10)
O1v—O2—O1iii161.84 (3)H—O3—Hv105 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y1, z; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2iii0.850 (15)1.950 (15)2.7316 (6)152.3 (14)
Symmetry code: (iii) x+1/2, y+1/2, z+1/2.
(FeSO4H2O_N2_153K) top
Crystal data top
FeH2Mg0O5SV = 363.74 (9) Å3
Mr = 169.93Z = 4
Monoclinic, C2/cF(000) = 336
a = 7.0482 (10) ÅDx = 3.103 Mg m3
b = 7.5706 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.7498 (10) ŵ = 4.60 mm1
β = 118.404 (10)°T = 153 K
Data collection top
Absorption correction: multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
Rint = 0.023
Tmin = 0.577, Tmax = 0.748θmax = 40.0°, θmin = 4.2°
10375 measured reflectionsh = 1212
1130 independent reflectionsk = 1313
1118 reflections with I > 2σ(I)l = 1414
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.014P)2 + 0.240P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max < 0.001
S = 1.18Δρmax = 0.55 e Å3
1130 reflectionsΔρmin = 0.50 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0219 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.0000000.5000000.0000000.00477 (4)
S0.0000000.15482 (2)0.2500000.00421 (4)
O10.16858 (7)0.04450 (7)0.40013 (7)0.00847 (7)
O20.09931 (7)0.26982 (6)0.15882 (7)0.00747 (7)
O30.0000000.64402 (9)0.2500000.00722 (9)
H0.107 (2)0.716 (2)0.294 (2)0.025 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.00440 (5)0.00465 (5)0.00517 (5)0.00000 (3)0.00221 (4)0.00056 (3)
S0.00323 (7)0.00388 (7)0.00537 (7)0.0000.00192 (5)0.000
O10.00528 (15)0.00941 (17)0.00988 (16)0.00255 (13)0.00292 (13)0.00441 (13)
O20.00714 (15)0.00668 (15)0.01017 (16)0.00053 (12)0.00539 (13)0.00284 (12)
O30.0070 (2)0.0074 (2)0.0076 (2)0.0000.00373 (18)0.000
Geometric parameters (Å, º) top
Fe—O22.0547 (5)O1—O1v2.4086 (10)
Fe—O2i2.0547 (5)O1—O2v2.4214 (7)
Fe—O1ii2.1093 (6)O1—O2vi2.8143 (7)
Fe—O1iii2.1093 (6)O1—O3vii2.9698 (7)
Fe—O3i2.2232 (4)O1—O2viii3.0694 (8)
Fe—O32.2232 (4)O1—O3ix3.1565 (6)
Fe—O2ii3.4692 (6)O1—O3x3.2623 (9)
Fe—O2iii3.4692 (6)O1—O2xi3.2941 (7)
Fe—O2iv3.5041 (6)O1—O2vii3.3189 (8)
Fe—O2v3.5041 (6)O2—O2v2.4165 (9)
S—O1v1.4655 (5)O2—O3ix2.7356 (6)
S—O11.4656 (5)O2—O3i2.9738 (6)
S—O2v1.4892 (5)O2—O33.0798 (8)
S—O21.4892 (5)O3—H0.856 (16)
O1—O22.4035 (7)O3—Hv0.856 (16)
O2—Fe—O2i180.0O3ix—O2—O1iii71.99 (2)
O2—Fe—O1ii94.97 (2)S—O2—O3i135.09 (3)
O2i—Fe—O1ii85.03 (2)Fe—O2—O3i48.342 (16)
O2—Fe—O1iii85.03 (2)O1—O2—O3i147.39 (3)
O2i—Fe—O1iii94.97 (2)O2v—O2—O3i135.63 (3)
O1ii—Fe—O1iii180.0O1v—O2—O3i100.73 (2)
O2—Fe—O3i87.99 (2)O3ix—O2—O3i92.432 (18)
O2i—Fe—O3i92.01 (2)O1iii—O2—O3i61.666 (17)
O1ii—Fe—O3i93.496 (16)S—O2—O1ii92.04 (2)
O1iii—Fe—O3i86.504 (16)Fe—O2—O1ii43.205 (13)
O2—Fe—O392.01 (2)O1—O2—O1ii127.22 (3)
O2i—Fe—O387.99 (2)O2v—O2—O1ii73.37 (2)
O1ii—Fe—O386.504 (16)O1v—O2—O1ii76.06 (2)
O1iii—Fe—O393.496 (16)O3ix—O2—O1ii155.09 (2)
O3i—Fe—O3180.0O1iii—O2—O1ii91.51 (2)
O2—Fe—O2ii83.052 (13)O3i—O2—O1ii62.952 (16)
O2i—Fe—O2ii96.948 (14)S—O2—O3102.68 (2)
O1ii—Fe—O2ii42.975 (16)Fe—O2—O346.171 (13)
O1iii—Fe—O2ii137.025 (16)O1—O2—O3117.29 (2)
O3i—Fe—O2ii52.011 (12)O2v—O2—O366.902 (10)
O3—Fe—O2ii127.989 (12)O1v—O2—O3116.70 (2)
O2—Fe—O2iii96.948 (13)O3ix—O2—O3125.48 (2)
O2i—Fe—O2iii83.052 (14)O1iii—O2—O364.576 (17)
O1ii—Fe—O2iii137.025 (16)O3i—O2—O394.513 (16)
O1iii—Fe—O2iii42.975 (16)O1ii—O2—O357.757 (13)
O3i—Fe—O2iii127.989 (13)S—O2—O1xii96.06 (2)
O3—Fe—O2iii52.011 (12)Fe—O2—O1xii110.79 (2)
O2ii—Fe—O2iii180.0O1—O2—O1xii85.802 (17)
O2—Fe—O2iv137.762 (17)O2v—O2—O1xii130.597 (15)
O2i—Fe—O2iv42.238 (17)O1v—O2—O1xii72.80 (2)
O1ii—Fe—O2iv112.732 (19)O3ix—O2—O1xii58.133 (17)
O1iii—Fe—O2iv67.268 (19)O1iii—O2—O1xii99.735 (19)
O3i—Fe—O2iv60.231 (18)O3i—O2—O1xii62.482 (19)
O3—Fe—O2iv119.769 (18)O1ii—O2—O1xii108.67 (2)
O2ii—Fe—O2iv95.746 (16)O3—O2—O1xii156.891 (19)
O2iii—Fe—O2iv84.254 (16)S—O2—O1vii82.62 (2)
O2—Fe—O2v42.238 (17)Fe—O2—O1vii96.79 (2)
O2i—Fe—O2v137.762 (17)O1—O2—O1vii71.40 (2)
O1ii—Fe—O2v67.268 (19)O2v—O2—O1vii62.39 (2)
O1iii—Fe—O2v112.732 (19)O1v—O2—O1vii116.80 (2)
O3i—Fe—O2v119.769 (18)O3ix—O2—O1vii86.496 (19)
O3—Fe—O2v60.231 (18)O1iii—O2—O1vii79.305 (16)
O2ii—Fe—O2v84.254 (16)O3i—O2—O1vii139.04 (2)
O2iii—Fe—O2v95.746 (15)O1ii—O2—O1vii109.18 (2)
O2iv—Fe—O2v180.0O3—O2—O1vii55.154 (13)
O1v—S—O1110.52 (4)O1xii—O2—O1vii142.145 (18)
O1v—S—O2v108.86 (3)Fe—O3—Fev121.26 (3)
O1—S—O2v110.06 (3)Fe—O3—O2xiii111.938 (14)
O1v—S—O2110.06 (3)Fev—O3—O2xiii88.160 (13)
O1—S—O2108.86 (3)Fe—O3—O2iii88.160 (13)
O2v—S—O2108.45 (4)Fev—O3—O2iii111.938 (14)
S—O1—Fevi136.09 (3)O2xiii—O3—O2iii139.25 (3)
S—O1—O235.897 (16)Fe—O3—O1ii45.147 (13)
Fevi—O1—O2100.28 (2)Fev—O3—O1ii103.53 (2)
S—O1—O1v34.74 (2)O2xiii—O3—O1ii70.395 (17)
Fevi—O1—O1v139.99 (3)O2iii—O3—O1ii132.079 (16)
O2—O1—O1v60.42 (2)Fe—O3—O1vii103.53 (2)
S—O1—O2v35.291 (17)Fev—O3—O1vii45.147 (13)
Fevi—O1—O2v144.08 (3)O2xiii—O3—O1vii132.079 (15)
O2—O1—O2v60.11 (2)O2iii—O3—O1vii70.395 (17)
O1v—O1—O2v59.685 (19)O1ii—O3—O1vii122.55 (3)
S—O1—O2vi127.34 (3)Fe—O3—O2xiv159.79 (2)
Fevi—O1—O2vi46.665 (14)Fev—O3—O2xiv43.671 (11)
O2—O1—O2vi108.46 (2)O2xiii—O3—O2xiv83.668 (17)
O1v—O1—O2vi103.05 (2)O2iii—O3—O2xiv87.568 (18)
O2v—O1—O2vi162.03 (3)O1ii—O3—O2xiv139.677 (17)
S—O1—O3vii170.84 (3)O1vii—O3—O2xiv56.524 (15)
Fevi—O1—O3vii48.349 (12)Fe—O3—O2i43.671 (11)
O2—O1—O3vii146.29 (2)Fev—O3—O2i159.79 (2)
O1v—O1—O3vii150.245 (17)O2xiii—O3—O2i87.568 (18)
O2v—O1—O3vii135.64 (2)O2iii—O3—O2i83.668 (17)
O2vi—O1—O3vii61.811 (17)O1ii—O3—O2i56.524 (15)
S—O1—O2viii115.72 (3)O1vii—O3—O2i139.677 (17)
Fevi—O1—O2viii41.828 (14)O2xiv—O3—O2i154.66 (3)
O2—O1—O2viii87.41 (2)Fe—O3—O241.817 (14)
O1v—O1—O2viii147.76 (2)Fev—O3—O280.97 (2)
O2v—O1—O2viii103.94 (2)O2xiii—O3—O2125.48 (2)
O2vi—O1—O2viii88.49 (2)O2iii—O3—O293.447 (14)
O3vii—O1—O2viii61.297 (19)O1ii—O3—O260.947 (18)
S—O1—O3ix91.95 (2)O1vii—O3—O266.516 (19)
Fevi—O1—O3ix44.668 (13)O2xiv—O3—O2118.83 (2)
O2—O1—O3ix57.032 (18)O2i—O3—O285.487 (16)
O1v—O1—O3ix101.94 (3)Fe—O3—O2v80.97 (2)
O2v—O1—O3ix114.18 (2)Fev—O3—O2v41.817 (14)
O2vi—O1—O3ix61.789 (18)O2xiii—O3—O2v93.447 (14)
O3vii—O1—O3ix93.018 (18)O2iii—O3—O2v125.48 (2)
O2viii—O1—O3ix57.043 (16)O1ii—O3—O2v66.516 (19)
S—O1—O3x103.08 (3)O1vii—O3—O2v60.947 (18)
Fevi—O1—O3x97.719 (18)O2xiv—O3—O2v85.487 (16)
O2—O1—O3x118.51 (2)O2i—O3—O2v118.83 (2)
O1v—O1—O3x68.337 (10)O2—O3—O2v46.20 (2)
O2v—O1—O3x117.93 (2)Fe—O3—O1xiii120.73 (2)
O2vi—O1—O3x52.887 (15)Fev—O3—O1xiii41.835 (11)
O3vii—O1—O3x82.752 (17)O2xiii—O3—O1xiii47.487 (15)
O2viii—O1—O3x137.548 (18)O2iii—O3—O1xiii147.347 (15)
O3ix—O1—O3x107.350 (18)O1ii—O3—O1xiii79.818 (16)
S—O1—O2xi126.58 (3)O1vii—O3—O1xiii86.983 (18)
Fevi—O1—O2xi96.903 (19)O2xiv—O3—O1xiii60.004 (15)
O2—O1—O2xi162.21 (3)O2i—O3—O1xiii127.203 (15)
O1v—O1—O2xi102.96 (2)O2—O3—O1xiii98.85 (2)
O2v—O1—O2xi107.20 (2)O2v—O3—O1xiii53.635 (14)
O2vi—O1—O2xi80.27 (2)Fe—O3—O1iii41.835 (11)
O3vii—O1—O2xi51.472 (15)Fev—O3—O1iii120.73 (2)
O2viii—O1—O2xi108.68 (2)O2xiii—O3—O1iii147.347 (15)
O3ix—O1—O2xi138.30 (2)O2iii—O3—O1iii47.487 (14)
O3x—O1—O2xi53.944 (14)O1ii—O3—O1iii86.983 (18)
S—O1—O2vii113.11 (3)O1vii—O3—O1iii79.818 (16)
Fevi—O1—O2vii76.848 (19)O2xiv—O3—O1iii127.203 (15)
O2—O1—O2vii108.60 (2)O2i—O3—O1iii60.004 (15)
O1v—O1—O2vii140.48 (2)O2—O3—O1iii53.635 (14)
O2v—O1—O2vii81.609 (19)O2v—O3—O1iii98.85 (2)
O2vi—O1—O2vii116.12 (2)O1xiii—O3—O1iii152.38 (3)
O3vii—O1—O2vii58.331 (18)Fe—O3—H107.0 (11)
O2viii—O1—O2vii44.237 (17)Fev—O3—H109.3 (10)
O3ix—O1—O2vii100.944 (19)O2xiii—O3—H119.0 (11)
O3x—O1—O2vii132.719 (17)O2iii—O3—H22.0 (11)
O2xi—O1—O2vii79.767 (16)O1ii—O3—H145.9 (10)
S—O2—Fe132.61 (3)O1vii—O3—H77.5 (10)
S—O2—O135.240 (16)O2xiv—O3—H73.8 (10)
Fe—O2—O1162.41 (3)O2i—O3—H90.0 (10)
S—O2—O2v35.776 (19)O2—O3—H115.0 (11)
Fe—O2—O2v102.902 (18)O2v—O3—H138.3 (11)
O1—O2—O2v60.312 (19)O1xiii—O3—H132.1 (10)
S—O2—O1v34.648 (17)O1iii—O3—H68.5 (11)
Fe—O2—O1v118.14 (3)Fe—O3—Hv109.3 (10)
O1—O2—O1v59.89 (3)Fev—O3—Hv107.0 (11)
O2v—O2—O1v59.579 (18)O2xiii—O3—Hv22.0 (11)
S—O2—O3ix109.54 (3)O2iii—O3—Hv119.0 (11)
Fe—O2—O3ix117.75 (2)O1ii—O3—Hv77.5 (10)
O1—O2—O3ix75.48 (2)O1vii—O3—Hv145.9 (10)
O2v—O2—O3ix131.53 (3)O2xiv—O3—Hv90.0 (10)
O1v—O2—O3ix114.84 (3)O2i—O3—Hv73.8 (10)
S—O2—O1iii161.75 (3)O2—O3—Hv138.3 (11)
Fe—O2—O1iii48.302 (16)O2v—O3—Hv115.0 (11)
O1—O2—O1iii137.06 (2)O1xiii—O3—Hv68.5 (11)
O2v—O2—O1iii129.655 (16)O1iii—O3—Hv132.1 (11)
O1v—O2—O1iii162.03 (3)H—O3—Hv101 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y1, z; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2iii0.856 (16)1.968 (15)2.7356 (6)148.6 (15)
Symmetry code: (iii) x+1/2, y+1/2, z+1/2.
(FeSO4H2O_N2_193K) top
Crystal data top
FeH2Mg0O5SV = 364.23 (9) Å3
Mr = 169.93Z = 4
Monoclinic, C2/cF(000) = 336
a = 7.058 (1) ÅDx = 3.099 Mg m3
b = 7.5663 (10) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.7576 (10) ŵ = 4.60 mm1
β = 118.454 (10)°T = 193 K
Data collection top
Absorption correction: multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
Rint = 0.026
Tmin = 0.572, Tmax = 0.748θmax = 40.0°, θmin = 4.2°
10377 measured reflectionsh = 1212
1131 independent reflectionsk = 1313
1112 reflections with I > 2σ(I)l = 1414
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.015P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.034(Δ/σ)max < 0.001
S = 1.17Δρmax = 0.49 e Å3
1131 reflectionsΔρmin = 0.51 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0331 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.0000000.5000000.0000000.00582 (4)
S0.0000000.15447 (2)0.2500000.00507 (4)
O10.16874 (7)0.04405 (7)0.39968 (7)0.01016 (8)
O20.09854 (7)0.26941 (6)0.15838 (7)0.00889 (7)
O30.0000000.64418 (9)0.2500000.00850 (9)
H0.108 (2)0.716 (2)0.294 (2)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.00531 (5)0.00572 (5)0.00630 (5)0.00003 (3)0.00266 (4)0.00064 (3)
S0.00382 (7)0.00462 (7)0.00651 (7)0.0000.00225 (5)0.000
O10.00629 (15)0.01111 (17)0.01199 (17)0.00299 (13)0.00347 (13)0.00538 (14)
O20.00832 (15)0.00798 (15)0.01216 (17)0.00074 (12)0.00633 (13)0.00344 (13)
O30.0084 (2)0.0088 (2)0.0087 (2)0.0000.00439 (18)0.000
Geometric parameters (Å, º) top
Fe—O22.0550 (5)O1—O1v2.4074 (10)
Fe—O2i2.0551 (5)O1—O2v2.4206 (7)
Fe—O1ii2.1093 (6)O1—O2vi2.8150 (7)
Fe—O1iii2.1093 (6)O1—O3vii2.9708 (7)
Fe—O3i2.2252 (4)O1—O2viii3.0694 (8)
Fe—O32.2252 (4)O1—O3ix3.1584 (6)
Fe—O2ii3.4715 (6)O1—O3x3.2562 (9)
Fe—O2iii3.4715 (6)O1—O2xi3.2932 (7)
Fe—O2iv3.5082 (6)O1—O2vii3.3284 (8)
Fe—O2v3.5082 (6)O2—O2v2.4166 (9)
S—O11.4652 (5)O2—O3ix2.7409 (6)
S—O1v1.4652 (5)O2—O3i2.9745 (6)
S—O2v1.4887 (5)O2—O33.0824 (8)
S—O21.4887 (5)O3—H0.865 (16)
O1—O22.4027 (7)O3—Hv0.865 (16)
O2—Fe—O2i180.0O3ix—O2—O1iii71.74 (2)
O2—Fe—O1ii94.95 (2)S—O2—O3i135.36 (3)
O2i—Fe—O1ii85.05 (2)Fe—O2—O3i48.382 (16)
O2—Fe—O1iii85.05 (2)O1—O2—O3i147.41 (3)
O2i—Fe—O1iii94.95 (2)O2v—O2—O3i135.93 (3)
O1ii—Fe—O1iii180.0O1v—O2—O3i100.99 (2)
O2—Fe—O3i87.95 (2)O3ix—O2—O3i92.317 (18)
O2i—Fe—O3i92.05 (2)O1iii—O2—O3i61.674 (17)
O1ii—Fe—O3i93.511 (16)S—O2—O1ii92.28 (2)
O1iii—Fe—O3i86.489 (16)Fe—O2—O1ii43.208 (13)
O2—Fe—O392.05 (2)O1—O2—O1ii127.48 (3)
O2i—Fe—O387.95 (2)O2v—O2—O1ii73.62 (2)
O1ii—Fe—O386.489 (16)O1v—O2—O1ii76.26 (2)
O1iii—Fe—O393.511 (17)O3ix—O2—O1ii154.97 (2)
O3i—Fe—O3180.0O1iii—O2—O1ii91.50 (2)
O2—Fe—O2ii83.023 (13)O3i—O2—O1ii62.987 (16)
O2i—Fe—O2ii96.977 (14)S—O2—O3102.66 (2)
O1ii—Fe—O2ii42.903 (16)Fe—O2—O346.173 (13)
O1iii—Fe—O2ii137.097 (16)O1—O2—O3117.30 (2)
O3i—Fe—O2ii52.100 (12)O2v—O2—O366.921 (10)
O3—Fe—O2ii127.900 (12)O1v—O2—O3116.71 (2)
O2—Fe—O2iii96.977 (13)O3ix—O2—O3125.25 (2)
O2i—Fe—O2iii83.023 (13)O1iii—O2—O364.579 (16)
O1ii—Fe—O2iii137.097 (16)O3i—O2—O394.555 (16)
O1iii—Fe—O2iii42.903 (16)O1ii—O2—O357.752 (13)
O3i—Fe—O2iii127.900 (12)S—O2—O1xii96.34 (3)
O3—Fe—O2iii52.099 (12)Fe—O2—O1xii110.70 (2)
O2ii—Fe—O2iii180.0O1—O2—O1xii85.909 (17)
O2—Fe—O2iv137.854 (17)O2v—O2—O1xii130.871 (15)
O2i—Fe—O2iv42.145 (17)O1v—O2—O1xii73.11 (2)
O1ii—Fe—O2iv112.562 (19)O3ix—O2—O1xii58.129 (17)
O1iii—Fe—O2iv67.438 (19)O1iii—O2—O1xii99.52 (2)
O3i—Fe—O2iv60.205 (18)O3i—O2—O1xii62.354 (19)
O3—Fe—O2iv119.795 (18)O1ii—O2—O1xii108.75 (2)
O2ii—Fe—O2iv95.671 (16)O3—O2—O1xii156.786 (19)
O2iii—Fe—O2iv84.329 (15)S—O2—O1vii82.50 (2)
O2—Fe—O2v42.146 (17)Fe—O2—O1vii96.67 (2)
O2i—Fe—O2v137.855 (17)O1—O2—O1vii71.40 (2)
O1ii—Fe—O2v67.438 (19)O2v—O2—O1vii62.22 (2)
O1iii—Fe—O2v112.562 (19)O1v—O2—O1vii116.66 (2)
O3i—Fe—O2v119.795 (18)O3ix—O2—O1vii86.425 (19)
O3—Fe—O2v60.205 (18)O1iii—O2—O1vii79.195 (16)
O2ii—Fe—O2v84.329 (16)O3i—O2—O1vii138.94 (2)
O2iii—Fe—O2v95.671 (15)O1ii—O2—O1vii109.11 (2)
O2iv—Fe—O2v180.0O3—O2—O1vii55.052 (13)
O1—S—O1v110.47 (4)O1xii—O2—O1vii142.132 (18)
O1—S—O2v110.06 (3)Fe—O3—Fev121.28 (3)
O1v—S—O2v108.86 (3)Fe—O3—O2iii88.063 (13)
O1—S—O2108.86 (3)Fev—O3—O2iii111.885 (14)
O1v—S—O2110.06 (3)Fe—O3—O2xiii111.885 (14)
O2v—S—O2108.52 (4)Fev—O3—O2xiii88.063 (13)
S—O1—Fevi136.22 (3)O2iii—O3—O2xiii139.55 (3)
S—O1—O235.897 (16)Fe—O3—O1ii45.128 (13)
Fevi—O1—O2100.40 (2)Fev—O3—O1ii103.62 (2)
S—O1—O1v34.77 (2)O2iii—O3—O1ii131.968 (16)
Fevi—O1—O1v140.29 (3)O2xiii—O3—O1ii70.288 (17)
O2—O1—O1v60.43 (2)Fe—O3—O1vii103.62 (2)
S—O1—O2v35.289 (17)Fev—O3—O1vii45.128 (13)
Fevi—O1—O2v143.95 (3)O2iii—O3—O1vii70.289 (17)
O2—O1—O2v60.13 (2)O2xiii—O3—O1vii131.967 (16)
O1v—O1—O2v59.691 (19)O1ii—O3—O1vii122.71 (3)
S—O1—O2vi127.60 (3)Fe—O3—O2xiv159.87 (2)
Fevi—O1—O2vi46.662 (14)Fev—O3—O2xiv43.664 (11)
O2—O1—O2vi108.58 (2)O2iii—O3—O2xiv87.684 (18)
O1v—O1—O2vi103.31 (2)O2xiii—O3—O2xiv83.595 (17)
O2v—O1—O2vi162.30 (3)O1ii—O3—O2xiv139.678 (17)
S—O1—O3vii170.59 (3)O1vii—O3—O2xiv56.519 (16)
Fevi—O1—O3vii48.383 (12)Fe—O3—O2i43.664 (11)
O2—O1—O3vii146.43 (2)Fev—O3—O2i159.87 (2)
O1v—O1—O3vii150.246 (17)O2iii—O3—O2i83.595 (17)
O2v—O1—O3vii135.38 (2)O2xiii—O3—O2i87.684 (18)
O2vi—O1—O3vii61.808 (17)O1ii—O3—O2i56.519 (16)
S—O1—O2viii115.65 (3)O1vii—O3—O2i139.678 (17)
Fevi—O1—O2viii41.839 (14)O2xiv—O3—O2i154.60 (3)
O2—O1—O2viii87.46 (2)Fe—O3—O241.780 (14)
O1v—O1—O2viii147.79 (2)Fev—O3—O281.00 (2)
O2v—O1—O2viii103.74 (2)O2iii—O3—O293.374 (13)
O2vi—O1—O2viii88.50 (2)O2xiii—O3—O2125.25 (2)
O3vii—O1—O2viii61.344 (19)O1ii—O3—O260.904 (18)
S—O1—O3ix92.09 (2)O1vii—O3—O266.686 (19)
Fevi—O1—O3ix44.684 (12)O2xiv—O3—O2118.94 (2)
O2—O1—O3ix57.135 (18)O2i—O3—O285.444 (16)
O1v—O1—O3ix102.17 (3)Fe—O3—O2v81.00 (2)
O2v—O1—O3ix114.23 (2)Fev—O3—O2v41.780 (14)
O2vi—O1—O3ix61.815 (19)O2iii—O3—O2v125.25 (2)
O3vii—O1—O3ix93.067 (18)O2xiii—O3—O2v93.373 (14)
O2viii—O1—O3ix57.040 (16)O1ii—O3—O2v66.685 (19)
S—O1—O3x103.07 (3)O1vii—O3—O2v60.904 (18)
Fevi—O1—O3x97.906 (18)O2xiv—O3—O2v85.445 (16)
O2—O1—O3x118.49 (2)O2i—O3—O2v118.94 (2)
O1v—O1—O3x68.305 (10)O2—O3—O2v46.16 (2)
O2v—O1—O3x117.90 (2)Fe—O3—O1xiii120.68 (2)
O2vi—O1—O3x53.072 (16)Fev—O3—O1xiii41.805 (11)
O3vii—O1—O3x82.848 (17)O2iii—O3—O1xiii147.402 (15)
O2viii—O1—O3x137.737 (18)O2xiii—O3—O1xiii47.419 (14)
O3ix—O1—O3x107.508 (19)O1ii—O3—O1xiii79.835 (16)
S—O1—O2xi126.31 (3)O1vii—O3—O1xiii86.932 (18)
Fevi—O1—O2xi97.095 (19)O2xiv—O3—O1xiii59.973 (15)
O2—O1—O2xi161.95 (3)O2i—O3—O1xiii127.291 (15)
O1v—O1—O2xi102.76 (2)O2—O3—O1xiii98.74 (2)
O2v—O1—O2xi106.89 (2)O2v—O3—O1xiii53.606 (14)
O2vi—O1—O2xi80.476 (19)Fe—O3—O1iii41.805 (11)
O3vii—O1—O2xi51.583 (15)Fev—O3—O1iii120.68 (2)
O2viii—O1—O2xi108.75 (2)O2iii—O3—O1iii47.420 (14)
O3ix—O1—O2xi138.54 (2)O2xiii—O3—O1iii147.403 (15)
O3x—O1—O2xi54.020 (14)O1ii—O3—O1iii86.932 (18)
S—O1—O2vii112.98 (3)O1vii—O3—O1iii79.835 (17)
Fevi—O1—O2vii76.743 (19)O2xiv—O3—O1iii127.291 (15)
O2—O1—O2vii108.60 (2)O2i—O3—O1iii59.973 (15)
O1v—O1—O2vii140.31 (2)O2—O3—O1iii53.605 (14)
O2v—O1—O2vii81.45 (2)O2v—O3—O1iii98.74 (2)
O2vi—O1—O2vii116.02 (2)O1xiii—O3—O1iii152.24 (3)
O3vii—O1—O2vii58.262 (18)Fe—O3—H106.8 (10)
O2viii—O1—O2vii44.154 (18)Fev—O3—H109.4 (10)
O3ix—O1—O2vii100.865 (19)O2iii—O3—H21.9 (10)
O3x—O1—O2vii132.726 (17)O2xiii—O3—H119.4 (11)
O2xi—O1—O2vii79.711 (15)O1ii—O3—H145.7 (10)
S—O2—Fe132.79 (3)O1vii—O3—H77.3 (10)
S—O2—O135.246 (16)O2xiv—O3—H74.1 (10)
Fe—O2—O1162.50 (3)O2i—O3—H89.8 (10)
S—O2—O2v35.742 (19)O2—O3—H114.8 (11)
Fe—O2—O2v103.061 (17)O2v—O3—H138.1 (10)
O1—O2—O2v60.299 (19)O1xiii—O3—H132.3 (10)
S—O2—O1v34.652 (17)O1iii—O3—H68.3 (10)
Fe—O2—O1v118.36 (3)Fe—O3—Hv109.4 (10)
O1—O2—O1v59.88 (3)Fev—O3—Hv106.8 (10)
O2v—O2—O1v59.565 (18)O2iii—O3—Hv119.4 (11)
S—O2—O3ix109.55 (3)O2xiii—O3—Hv21.9 (11)
Fe—O2—O3ix117.52 (2)O1ii—O3—Hv77.3 (10)
O1—O2—O3ix75.45 (2)O1vii—O3—Hv145.7 (10)
O2v—O2—O3ix131.39 (3)O2xiv—O3—Hv89.8 (10)
O1v—O2—O3ix114.99 (3)O2i—O3—Hv74.1 (10)
S—O2—O1iii161.54 (3)O2—O3—Hv138.1 (10)
Fe—O2—O1iii48.292 (16)O2v—O3—Hv114.8 (11)
O1—O2—O1iii136.81 (2)O1xiii—O3—Hv68.3 (10)
O2v—O2—O1iii129.598 (17)O1iii—O3—Hv132.3 (10)
O1v—O2—O1iii162.30 (3)H—O3—Hv102 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x, y1, z; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O2iii0.865 (16)1.965 (15)2.7409 (6)148.7 (15)
Symmetry code: (iii) x+1/2, y+1/2, z+1/2.
(FeSO4H2O_N2_233K) top
Crystal data top
FeH2Mg0O5SV = 364.85 (9) Å3
Mr = 169.93Z = 4
Monoclinic, C2/cF(000) = 336
a = 7.0696 (10) ÅDx = 3.094 Mg m3
b = 7.562 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 7.7669 (10) ŵ = 4.59 mm1
β = 118.515 (10)°T = 233 K
Data collection top
Absorption correction: multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
Rint = 0.031
Tmin = 0.561, Tmax = 0.748θmax = 40.0°, θmin = 4.2°
10393 measured reflectionsh = 1212
1133 independent reflectionsk = 1313
1117 reflections with I > 2σ(I)l = 1414
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.017P)2 + 0.170P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.035(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.55 e Å3
1133 reflectionsΔρmin = 0.54 e Å3
40 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.079 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.0000000.5000000.0000000.00700 (4)
S0.0000000.15406 (2)0.2500000.00601 (4)
O10.16893 (7)0.04355 (7)0.39918 (7)0.01200 (8)
O20.09766 (7)0.26893 (6)0.15794 (7)0.01060 (8)
O30.0000000.64450 (9)0.2500000.00989 (10)
H0.105 (3)0.718 (2)0.295 (2)0.034 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.00634 (5)0.00685 (6)0.00754 (6)0.00004 (3)0.00310 (4)0.00074 (3)
S0.00456 (7)0.00540 (7)0.00768 (7)0.0000.00260 (5)0.000
O10.00723 (15)0.01321 (18)0.01418 (18)0.00356 (14)0.00400 (13)0.00646 (15)
O20.01009 (16)0.00930 (16)0.01444 (18)0.00102 (12)0.00749 (14)0.00417 (13)
O30.0099 (2)0.0102 (2)0.0099 (2)0.0000.00501 (18)0.000
Geometric parameters (Å, º) top
Fe—O22.0557 (5)O1—O1v2.4063 (10)
Fe—O2i2.0558 (5)O1—O2v2.4197 (7)
Fe—O1ii2.1095 (6)O1—O2vi2.8163 (7)
Fe—O1iii2.1095 (6)O1—O3vii2.9725 (7)
Fe—O32.2281 (4)O1—O2viii3.0693 (8)
Fe—O3i2.2281 (4)O1—O3ix3.1611 (6)
Fe—O2ii3.4741 (6)O1—O3x3.2486 (9)
Fe—O2iii3.4741 (6)O1—O2xi3.2930 (7)
Fe—O2iv3.5127 (6)O1—O2vii3.3386 (9)
Fe—O2v3.5127 (6)O2—O2v2.4159 (9)
S—O1v1.4649 (5)O2—O3ix2.7469 (6)
S—O11.4649 (5)O2—O3i2.9758 (6)
S—O2v1.4879 (5)O2—O33.0863 (8)
S—O21.4879 (5)O3—H0.857 (17)
O1—O22.4017 (7)O3—Hv0.857 (17)
O2—Fe—O2i180.0O3ix—O2—O1iii71.45 (2)
O2—Fe—O1ii94.93 (2)S—O2—O3i135.65 (3)
O2i—Fe—O1ii85.07 (2)Fe—O2—O3i48.437 (16)
O2—Fe—O1iii85.07 (2)O1—O2—O3i147.39 (3)
O2i—Fe—O1iii94.93 (2)O2v—O2—O3i136.27 (3)
O1ii—Fe—O1iii180.0O1v—O2—O3i101.26 (2)
O2—Fe—O392.09 (2)O3ix—O2—O3i92.154 (18)
O2i—Fe—O387.91 (2)O1iii—O2—O3i61.682 (18)
O1ii—Fe—O386.472 (16)S—O2—O1ii92.56 (2)
O1iii—Fe—O393.528 (17)Fe—O2—O1ii43.215 (13)
O2—Fe—O3i87.91 (2)O1—O2—O1ii127.77 (3)
O2i—Fe—O3i92.09 (2)O2v—O2—O1ii73.91 (2)
O1ii—Fe—O3i93.528 (16)O1v—O2—O1ii76.47 (2)
O1iii—Fe—O3i86.472 (16)O3ix—O2—O1ii154.80 (2)
O3—Fe—O3i180.0O1iii—O2—O1ii91.48 (2)
O2—Fe—O2ii82.987 (13)O3i—O2—O1ii63.034 (17)
O2i—Fe—O2ii97.013 (14)S—O2—O3102.68 (2)
O1ii—Fe—O2ii42.816 (16)Fe—O2—O346.174 (12)
O1iii—Fe—O2ii137.184 (16)O1—O2—O3117.33 (2)
O3—Fe—O2ii127.799 (12)O2v—O2—O366.958 (10)
O3i—Fe—O2ii52.201 (12)O1v—O2—O3116.73 (2)
O2—Fe—O2iii97.013 (13)O3ix—O2—O3124.98 (2)
O2i—Fe—O2iii82.987 (13)O1iii—O2—O364.573 (17)
O1ii—Fe—O2iii137.183 (16)O3i—O2—O394.611 (16)
O1iii—Fe—O2iii42.817 (16)O1ii—O2—O357.748 (13)
O3—Fe—O2iii52.200 (12)S—O2—O1xii96.64 (3)
O3i—Fe—O2iii127.800 (12)Fe