research papers
of correction parameters in single-crystal structure determinations
aFaculty for Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany, bOlexSys Ltd, Chemistry Department, Durham University, Durham DH1 3LE, United Kingdom, cInstitute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, Dresden 01314, Germany, dRossendorf Beamline (BM20-CRG), European Synchrotron Radiation Facility (ESRF), 71, Avenue des Martyrs, Grenoble 38043, France, and eDepartment of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
*Correspondence e-mail: michael.bodensteiner@ur.de
Correcting for 6 at energies around the molybdenum K edge. The dispersive (f′) and absorptive (f′′) terms of the can be refined as independent parameters in the full-matrix least-squares This procedure has been implemented as a new feature in the well-established OLEX2 software suite. These refined parameters are in good agreement with the independently recorded X-ray The resulting crystallographic models show significant improvement compared to those employing tabulated values.
is part of any of an X-ray diffraction determination. The procedure takes the in the diffraction experiment into account. This X-ray absorption effect is specific to each chemical compound and is particularly sensitive to radiation energies in the region of the absorption edges of the elements in the compound. Therefore, the widely used tabulated values for these corrections can only be approximations as they are based on calculations for isolated atoms. Features of the unique spatial and electronic environment that are directly related to the are ignored, although these can be observed spectroscopically. This significantly affects the fit between the crystallographic model and the measured intensities when the excitation wavelength in an X-ray diffraction experiment is close to an element's Herein, we report on synchrotron multi-wavelength single-crystal X-ray diffraction, as well as X-ray absorption spectroscopy experiments which we performed on the molecular compound Mo(CO)Keywords: anomalous dispersion; resonant scattering; diffraction spectroscopy; correction of the crystallographic model; synchrotron.
1. Introduction
With the increasing capabilities of X-ray diffraction equipment, the deficiencies of the conventional crystallographic model become more and more apparent. This model is based on the measured intensities of each Bragg reflection according to Equations (1) and (2), where the F is calculated by a sum over N atoms in the with the respective atomic form factor fn and the anisotropic displacement parameters Tn.
Resonant scattering, i.e. discrete electron transitions in the form of photoabsorption of incident radiation, is treated with the parameters f′ and f′′ – the real (dispersive) and imaginary (absorptive) part of the dispersion correction. Those are added to the atomic form factor fn,0 according to Equation (3).
The impact of these parameters depends on the ), Cromer & Liberman (1970) and Hönl (1933). They have been improved over several decades and are in good agreement with the experimental data of isolated atoms (Cromer & Mann, 1968). However, the tabulated literature values only consider the and the atom type, completely ignoring the uniqueness of the atomic environment.
the type of atoms and their specific chemical bonding situation in the respective The original values for dispersion corrections commonly used so far are taken from tabulated libraries and based on calculations by Cromer (1965Fig. 1 shows an example of the effects of these correction terms for the atomic form factor of molybdenum at its K at 20 000 eV. The real part of the correction f′ can be understood as a direct and the imaginary part f′′ as a phase-shifted contribution to the scattering power, which is constant across the entire range of resolution [see Fig. 1(c)]. As shown in Fig. 1(a), the amplitude of the effective atomic form factor f is significantly diminished by these dispersion corrections. At the K of molybdenum (Z = 42), the resulting scattering power is reduced by as much as 9.6 electrons relative to a pure Thomson scattering model. At this energy, the corrected atomic form factor closely resembles the form factor of germanium [Z = 32; Fig. 1(b)]. In contrast to molybdenum, the germanium atomic form factor is only slightly affected by a dispersion correction at this energy. This effect even allows a wrongly assigned atom type to yield a similar or even better crystallographic model (Guss et al., 1989).
Since the et al. (1989) have demonstrated this remarkable effect by recording an experimental X-ray of a CuII metalloprotein; f′ was subsequently calculated based on the experimental f′′.
corrections are calculated for isolated non-interacting atoms, they differ significantly from those of atoms embedded in a particular chemical environment. GussEquation (4) describes the proportionality relationship between f′′ and the μ given by the frequency of the incident photon ω (Caticha-Ellis, 1981). The proportionality constants are the electron mass me, the speed of light c, the number of scatterers N in the and the elementary e. Equation (5) describes how f′ is obtained as a contour integral around the K edge frequency ωK (de Kronig, 1926; Kramers, 1927; Caticha-Ellis, 1981). These equations describe the link between an X-ray and the crystallographic model of an X-ray diffraction experiment.
The frequency of an ). Spatzal et al. (2016) applied their spatially resolved (SpReAD) to determine the individual oxidation states of the Fe atoms in nitrogenase from diffraction data (Einsle et al., 2007). To the best of our knowledge, such an experimental determination of parameters was practically never carried out in small molecule or solid-state crystallography.
is mostly determined by the given element. It has been shown that this frequency is further affected by the charge of the respective atom (Ankudinov, 1998The individual ). Measuring these spectral features is the subject of the X-ray absorption near-edge structure (XANES) technique, and also of extended X-ray absorption fine structure (EXAFS) spectroscopy. The spectral fine structure at excitation energies above the depends on the distances to neighbouring atoms and is therefore unique to each structure. None of these spectral features are considered in the tabulated dispersion values. Therefore, the application of these literature parameters is insufficient for X-ray crystallography, especially near absorption edges. Structures obtained with an incident photon energy near the of a given atom show artefacts and result in poor crystallographic models (Dittrich et al., 2015). This gave rise to a common practice of avoiding single-crystal diffraction measurements near absorption edges.
exhibits additional features around the which originate from electronic transitions into half-occupied and unoccupied orbitals, as well as into the continuum above the (Hennig, 20072. Results and discussion
Since the exact energy of the et al. (2015) who discuss effects in this context. In this case, even the wrong assignment of the atom type leads to apparently reliable structure models, which can even pass the common structure validation procedures (Spek, 2020). These authors also suggest difference electron-density plots relying on measurements above and below the to visualize the effect of In a later article, the same group reports on the opportunity to distinguish between neighbouring elements employing their different parameters even with laboratory sources in noncentrosymmetric space groups (Wandtke et al., 2017). However, it should be pointed out that this also applies to centrosymmetric structures, as we show herein using the example of Mo(CO)6, which crystallizes in the centrosymmetric Pnma. Recent improvements in X-ray crystallography, such as new X-ray sources and detector types, but also the routine use of models based on nonspherical atomic form factors, increasingly reveal how inaccurate are the currently applied dispersion corrections.
and the spectral features in the near vicinity to the edge are unique to the atom in its specific chemical environment, a simple approximation using calculations based on independent neutral atoms is always incorrect and leads to problems in the crystallographic model. Artefacts occur in the Fourier map and affect the overall scale factor. This effect was observed by DittrichTo determine the effect of the dispersion correction on the quality of a crystallographic model, the example compound Mo(CO)6 was chosen. The K of molybdenum occurs at exactly 20 000 eV, at which the Rossendorf beamline at the European Synchrotron Research Facility (ESRF) has excellent and suitable equipment to measure both the diffraction and the spectroscopic properties of single crystals and reference materials (Scheinost et al., 2021).
A K edge 6 was measured as a reference for the absorptive part of the scattering factors (f′′). The energy for this spectrum was calibrated against the first inflection point of a K edge spectrum of a molybdenum metal foil at 20 000 eV. The of Mo(CO)6 was determined at 20 012 eV with a pre-edge at 20 001 eV and additional fine-structure derivative extrema at 20 018, 20 029 and 20 041 eV (see Fig. S1 in the supporting information). f′ was derived from the X-ray according to Equation (5) using the program kkcalc (Watts, 2014).
of a crystal of Mo(CO)Single-crystal X-ray diffraction experiments were performed at these energies, as well as at 19 900 and 20 100 eV as reference data well below and above the ). Since μ depends on f′′ according to Equation (4), no reasonable additional face-indexed absorption correction can be applied. The crystallographic software OLEX2 was employed using SHELXT for the initial structure solution and olex2.refine as the engine (Dolomanov et al., 2009; Sheldrick, 2015; Bourhis et al., 2015). Nonspherical atomic form factors were calculated with NoSpherA2 (Kleemiss et al., 2021), performing Hirshfeld-Atom-Refinement (HAR) employing a level of theory of DKH2-PBE0/x2c-TZVP within ORCA (Version 5.0; Capelli et al., 2014; Jayatilaka & Dittrich, 2008; Neese et al., 2020). HAR uses tailor-made form factors f0 computed from electron densities after a single-point wavefunction calculation for the current model, partitioned by Hirshfeld stockholder partitioning (Hirshfeld, 1976, 1977). The obtained atomic form factors are subsequently used in the of the crystallographic model parameters, repeating form factor calculation and until all parameters reach a convergence threshold.
The diffraction data were corrected for absorption by employing the semi-empirical multi-scan routine, which is commonly applied for redundant synchrotron data (Blessing, 1995To compare the effects of different dispersion parameters on the structure et al. (1993) and Sasaki (1989) for the respective energies. The latter closely resemble the values computed according to Brennan & Cowan (1992) (see Fig. S13 in the supporting information).
models were created using the values for molybdenum from the tables of HenkeThe most commonly used source for dispersion correction parameters from the International Tables for Crystallography (Vol. C) are given for only a few energies used on standard laboratory diffractometers (Creagh & McAuley, 1992). The of the dispersion correction for molybdenum was performed by the olex2.refine engine, which introduces f′ and f′′ as independent scalar parameters in the matrix least-squares procedure (Bourhis et al., 2015). The results of these calculations around the K edge of molybdenum and the obtained quality indicators are compared to those using the tabulated values in Fig. 2.
At 19 900 eV, Sasaki's tabulated f′ and f′′ values agree well with both those obtained from the data and the refined ones. The strongest deviation between the literature values and the refined dispersion parameters is observed at 20 001 eV. At this energy, the K edge is already exceeded in the tabulated values, while this is not yet the case for Mo(CO)6 according to the X-ray Above the the refined values follow the observed spectral fine structure. These features are specific to the individual and cannot be captured by precalculated dispersion corrections. However, the values for f′ and f′′ can reliably be determined from the diffraction data. It is remarkable that here the smallest refined value of f′ is 3.75 electrons (e) above that of the tabulated values. The standard uncertainties of the dispersion values obtained by is in the range 0.03–0.06 e (see Tables S1–S7 in the supporting information). The correlation between f′ and f′′ is low although they are related via Equation (5). This is due to the fact that the mutual dependence of f′ and f′′ includes the integral of a wide energy range, whereas the is performed at a specific energy.
The large differences between f′ and f′′ are directly reflected in the structural models. The overall agreement factors vary between 1.30 < R1 < 3.62% and 3.62 < wR2 < 11.86% for the models with tabulated dispersion values. In contrast, the models obtained with refined dispersion corrections resulted in consistent agreement factors between 1.29 < R1 < 1.51% and 3.59 < wR2 < 4.03% (see Tables S1–S7 in the supporting information). Therefore, only the of dispersion values leads to a robust model within the energy range investigated.
Furthermore, the deviations of the agreement factors are strongly correlated with the disagreement of the applied dispersion values to the X-ray
This large deviation shows how drastically an incorrect dispersion correction can affect the crystallographic model if the incident energy is in the range of the of an element involved.The effect on the crystallographic models can also be observed in the atomic displacement parameters (ADPs). Fig. 3 shows the models and difference Fourier maps at 20 001 eV using Sasaki tabulated dispersion values for molybdenum and refined ones, respectively. The unreasonably small displacement parameters of the metal atom in Fig. 3(a) are caused by the inadequate dispersion treatment according to the Sasaki tables, since the effective scattering power is overestimated. As a result, the residual electron-density map shows excessive electron density around the molybdenum position and electron depletion around the carbonyl ligands. This showcases the impact of one incorrect atomic form factor on the entire structure model. The biggest effect, however, is observed in the proximity of the metal centre.
A similar observation regarding the ADP size is known when an atom type is assigned to a position that contains more electrons than the modelled atom type provides. In the case of insufficient dispersion treatment, such a wrong assignment of an atom type leads to more reasonable anisotropic displacement parameters and (b) shows none of these artefacts. The fractal dimension plots of the models (see Figs. S2 and S3 in the supporting information) according to Meindl & Henn (2008) also show a much better agreement. In addition, the precision of the C—O bond is best in all cases with the refined parameters (see Figs. S2 and S3). A more detailed discussion of the misassignment of atomic types in the Mo(CO)6 structure of this study and its implications for the atomic form factors is given in the supporting information.
indicators. In contrast, the model with refined dispersion values in Fig. 33. Conclusion
We have shown that better treatment of the anomalous dispersion correction is an important improvement to the conventional f′ and f′′ in the least-squares is simple and reliable, with low correlations and errors. The refined absorptive term f′′ follows the fine structure of the independently measured X-ray absorption of Mo(CO)6. The resulting crystallographic models are characterized by low R1 and wR2 values for the excitation energies chosen around the Mo K Conversely, the models using tabulated dispersion values are substantially worse. The atomic displacement parameters, as well as the residual electron densities, are strongly affected by the incorrect dispersion treatment. The resulting effective form factor is incorrect by up to 3.7 e at 20 001 eV for f′ and 1.3 e for f′′ relative to the literature values.
determination. The inclusion of dispersion parametersWe assume that the described method of dispersion Kα radiation containing late first-row d-block metals or lanthanides will be affected. The latter elements even have three L absorption edges that occur in a broad energy range of about 2000 eV. In addition, laboratory diffractometers are operated with mixed Kα1,2 radiation that differs by 20 eV for Cu, 105 eV for Mo and even 172 eV for Ag Kα radiation, respectively. These energy differences would require two sets of dispersion parameters, which are individual for a to perform a proper correction for this effect. Since the f′′ parameter of the correction is directly related to the μ, a resulting insufficient absorption correction can further worsen the results.
also influences crystal structures measured with laboratory diffractometers, especially when the available radiation falls near an of a heavy element present in the compound. For instance, X-ray diffraction experiments with CuTherefore, a reconsideration of
treatment will lead to a significant improvement of routine home source determinations containing heavy elements.4. Related literature
The following references are cited in the supporting information for this article: Dyadkin et al. (2016); Parsons et al. (2012); Ramseshan & Abrahams (1975).
Supporting information
https://doi.org/10.1107/S2052252522006844/lt5050sup1.cif
contains datablocks MoC6O6_19900_solution_henke_nosphera2, MoC6O6_19900_solution_refined_nosphera2, MoC6O6_19900_solution_nosphera2, MoC6O6_20001_solution_henke_nosphera2, MoC6O6_20001_solution_nosphera2, MoC6O6_20001_solution_refined_nosphera2, MoC6O6_20012_solution_henke_nosphera2, MoC6O6_20012_solution_nosphera2, MoC6O6_20012_solution_refined_nosphera2, MoC6O6_20018_solution_henke_nosphera2, MoC6O6_20018_solution_nosphera2, MoC6O6_20018_solution_refined_nosphera2, MoC6O6_20029_solution_henke_nosphera2, MoC6O6_20029_solution_nosphera2, MoC6O6_20029_solution_refined_nosphera2, MoC6O6_20040_solution_henke_nosphera2, MoC6O6_20040_solution_nosphera2, MoC6O6_20040_solution_refined_nosphera2, MoC6O6_20100_solution_henke_nosphera2, MoC6O6_20100_solution_nosphera2, MoC6O6_20100_solution_refined_nosphera2, global. DOI:laboratory diffractometer measurements. DOI: https://doi.org/10.1107/S2052252522006844/lt5050sup2.zip
leverage results. DOI: https://doi.org/10.1107/S2052252522006844/lt5050sup3.zip
Additional information. DOI: https://doi.org/10.1107/S2052252522006844/lt5050sup4.pdf
For all structures, data collection: CrysAlis PRO 1.171.42.24a (Rigaku OD, 2021); cell
CrysAlis PRO 1.171.42.24a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.42.24a (Rigaku OD, 2021); program(s) used to refine structure: olex2.refine 1.5-alpha (Bourhis et al., 2015); molecular graphics: Olex2 1.5-alpha (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5-alpha (Dolomanov et al., 2009).C6MoO6 | Dx = 2.096 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.62303 Å |
Orthorhombic, Pnma | Cell parameters from 3312 reflections |
a = 11.74147 (13) Å | θ = 3.2–27.1° |
b = 11.22116 (9) Å | µ = 1.09 mm−1 |
c = 6.35094 (5) Å | T = 110 K |
V = 836.76 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 471.048 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1407 independent reflections |
Radiation source: synchrotron | 1379 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.034 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.2°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.456, Tmax = 1.000 | l = −9→9 |
17051 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0583P)2 + 0.3886P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.080 | (Δ/σ)max = −0.001 |
S = 1.02 | Δρmax = 0.67 e Å−3 |
1407 reflections | Δρmin = −0.52 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-11-02 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373670 (14) | 0.75 | 0.43750 (3) | 0.01020 (11) | |
O002 | 0.53528 (10) | 0.94989 (10) | 0.2442 (2) | 0.0356 (3) | |
O003 | 0.52108 (15) | 0.75 | 0.8591 (3) | 0.0359 (4) | |
O004 | 0.22421 (15) | 0.75 | 0.0194 (3) | 0.0381 (4) | |
O005 | 0.21601 (10) | 0.54688 (11) | 0.6323 (2) | 0.0380 (3) | |
C006 | 0.47753 (12) | 0.87902 (12) | 0.3120 (2) | 0.0258 (3) | |
C007 | 0.46943 (17) | 0.75 | 0.7087 (3) | 0.0260 (4) | |
C008 | 0.27715 (17) | 0.75 | 0.1678 (3) | 0.0261 (4) | |
C009 | 0.27124 (13) | 0.61973 (13) | 0.5634 (2) | 0.0264 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01141 (16) | 0.00879 (14) | 0.01040 (15) | −0.000000 | 0.00006 (5) | 0.000000 |
O002 | 0.0373 (6) | 0.0310 (5) | 0.0385 (6) | −0.0096 (4) | 0.0049 (5) | 0.0035 (5) |
O003 | 0.0360 (8) | 0.0446 (9) | 0.0272 (7) | −0.000000 | −0.0071 (6) | 0.000000 |
O004 | 0.0371 (9) | 0.0500 (10) | 0.0273 (7) | −0.000000 | −0.0077 (7) | 0.000000 |
O005 | 0.0356 (6) | 0.0327 (6) | 0.0457 (7) | −0.0077 (5) | 0.0028 (5) | 0.0114 (5) |
C006 | 0.0269 (6) | 0.0230 (6) | 0.0275 (6) | −0.0027 (5) | 0.0010 (4) | 0.0004 (4) |
C007 | 0.0265 (9) | 0.0279 (9) | 0.0237 (9) | −0.000000 | −0.0025 (7) | 0.000000 |
C008 | 0.0264 (9) | 0.0284 (9) | 0.0235 (8) | −0.000000 | −0.0016 (7) | 0.000000 |
C009 | 0.0266 (7) | 0.0241 (6) | 0.0285 (7) | −0.0017 (5) | 0.0008 (4) | 0.0034 (4) |
Mo01—C006 | 2.0537 (14) | Mo01—C009i | 2.0549 (15) |
Mo01—C006i | 2.0537 (14) | O002—C006 | 1.1305 (17) |
Mo01—C007 | 2.0571 (19) | O003—C007 | 1.131 (2) |
Mo01—C008 | 2.054 (2) | O004—C008 | 1.129 (3) |
Mo01—C009 | 2.0549 (15) | O005—C009 | 1.1315 (18) |
C006i—Mo01—C006 | 89.65 (8) | C009—Mo01—C007 | 89.66 (5) |
C007—Mo01—C006i | 90.02 (5) | C009i—Mo01—C007 | 89.66 (5) |
C007—Mo01—C006 | 90.02 (5) | C009i—Mo01—C008 | 90.08 (5) |
C008—Mo01—C006 | 90.24 (5) | C009—Mo01—C008 | 90.08 (5) |
C008—Mo01—C006i | 90.24 (5) | C009i—Mo01—C009 | 90.70 (8) |
C008—Mo01—C007 | 179.64 (7) | O002—C006—Mo01 | 179.47 (12) |
C009i—Mo01—C006i | 179.39 (5) | O003—C007—Mo01 | 179.29 (17) |
C009—Mo01—C006i | 89.83 (6) | O004—C008—Mo01 | 179.91 (18) |
C009i—Mo01—C006 | 89.83 (6) | O005—C009—Mo01i | 179.05 (13) |
C009—Mo01—C006 | 179.39 (5) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.096 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.62303 Å |
Orthorhombic, Pnma | Cell parameters from 3312 reflections |
a = 11.74147 (13) Å | θ = 3.2–27.1° |
b = 11.22116 (9) Å | µ = 1.09 mm−1 |
c = 6.35094 (5) Å | T = 110 K |
V = 836.76 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 485.356 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1407 independent reflections |
Radiation source: synchrotron | 1379 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.034 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.2°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.456, Tmax = 1.000 | l = −9→9 |
17051 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.013 | w = 1/[σ2(Fo2) + (0.0244P)2 + 0.0559P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.036 | (Δ/σ)max = 0.0001 |
S = 1.04 | Δρmax = 0.60 e Å−3 |
1407 reflections | Δρmin = −0.46 e Å−3 |
70 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-26-41 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373686 (6) | 0.75 | 0.437481 (12) | 0.01551 (8) | |
O002 | 0.53535 (4) | 0.94991 (5) | 0.24405 (10) | 0.02978 (14) | |
O003 | 0.52104 (7) | 0.75 | 0.85915 (11) | 0.02999 (18) | |
O004 | 0.22408 (7) | 0.75 | 0.01941 (12) | 0.03190 (19) | |
O005 | 0.21595 (5) | 0.54698 (5) | 0.63280 (9) | 0.03168 (15) | |
C006 | 0.47746 (6) | 0.87898 (6) | 0.31211 (9) | 0.02086 (14) | |
C007 | 0.46921 (8) | 0.75 | 0.70851 (13) | 0.02095 (18) | |
C008 | 0.27739 (8) | 0.75 | 0.16806 (14) | 0.02095 (18) | |
C009 | 0.27126 (6) | 0.61957 (6) | 0.56345 (9) | 0.02121 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01685 (9) | 0.01399 (9) | 0.01569 (9) | −0.000000 | 0.00008 (2) | 0.000000 |
O002 | 0.0313 (3) | 0.0254 (3) | 0.0326 (3) | −0.00924 (18) | 0.0047 (2) | 0.0032 (2) |
O003 | 0.0299 (4) | 0.0387 (4) | 0.0214 (3) | −0.000000 | −0.0070 (3) | 0.000000 |
O004 | 0.0306 (4) | 0.0434 (4) | 0.0217 (3) | −0.000000 | −0.0075 (3) | 0.000000 |
O005 | 0.0297 (3) | 0.0266 (3) | 0.0387 (3) | −0.0074 (2) | 0.0024 (2) | 0.0105 (2) |
C006 | 0.0220 (3) | 0.0185 (3) | 0.0221 (3) | −0.0026 (2) | 0.0010 (2) | 0.0004 (2) |
C007 | 0.0216 (4) | 0.0229 (4) | 0.0183 (4) | −0.000000 | −0.0021 (3) | 0.000000 |
C008 | 0.0210 (4) | 0.0236 (4) | 0.0183 (4) | −0.000000 | −0.0010 (3) | 0.000000 |
C009 | 0.0216 (3) | 0.0190 (3) | 0.0231 (3) | −0.0018 (2) | 0.00070 (19) | 0.00327 (19) |
Mo01—C006 | 2.0527 (6) | Mo01—C009 | 2.0563 (7) |
Mo01—C006i | 2.0527 (6) | O002—C006 | 1.1324 (8) |
Mo01—C007 | 2.0544 (9) | O003—C007 | 1.1338 (11) |
Mo01—C008 | 2.0509 (9) | O004—C008 | 1.1327 (12) |
Mo01—C009i | 2.0563 (7) | O005—C009 | 1.1311 (8) |
C006i—Mo01—C006 | 89.67 (4) | C009—Mo01—C007 | 89.62 (2) |
C007—Mo01—C006i | 90.05 (2) | C009i—Mo01—C007 | 89.62 (2) |
C007—Mo01—C006 | 90.05 (2) | C009i—Mo01—C008 | 90.12 (2) |
C008—Mo01—C006 | 90.21 (3) | C009—Mo01—C008 | 90.12 (2) |
C008—Mo01—C006i | 90.21 (3) | C009i—Mo01—C009 | 90.76 (4) |
C008—Mo01—C007 | 179.63 (3) | O002—C006—Mo01 | 179.46 (6) |
C009i—Mo01—C006i | 179.37 (2) | O003—C007—Mo01 | 179.38 (8) |
C009—Mo01—C006i | 89.78 (3) | O004—C008—Mo01 | 179.91 (8) |
C009i—Mo01—C006 | 89.78 (3) | O005—C009—Mo01i | 179.22 (6) |
C009—Mo01—C006 | 179.37 (2) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.096 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.62303 Å |
Orthorhombic, Pnma | Cell parameters from 3312 reflections |
a = 11.74147 (13) Å | θ = 3.2–27.1° |
b = 11.22116 (9) Å | µ = 1.09 mm−1 |
c = 6.35094 (5) Å | T = 110 K |
V = 836.76 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 485.008 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1407 independent reflections |
Radiation source: synchrotron | 1379 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.034 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.2°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.456, Tmax = 1.000 | l = −9→9 |
17051 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.013 | w = 1/[σ2(Fo2) + (0.0239P)2 + 0.064P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.036 | (Δ/σ)max = 0.0002 |
S = 1.05 | Δρmax = 0.61 e Å−3 |
1407 reflections | Δρmin = −0.45 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-09-59 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373686 (7) | 0.75 | 0.437485 (12) | 0.01539 (5) | |
O002 | 0.53535 (4) | 0.94993 (5) | 0.24409 (10) | 0.02996 (12) | |
O003 | 0.52104 (7) | 0.75 | 0.85919 (12) | 0.03019 (16) | |
O004 | 0.22407 (7) | 0.75 | 0.01944 (13) | 0.03210 (17) | |
O005 | 0.21595 (5) | 0.54696 (5) | 0.63284 (10) | 0.03187 (13) | |
C006 | 0.47747 (6) | 0.87897 (6) | 0.31209 (10) | 0.02101 (12) | |
C007 | 0.46921 (8) | 0.75 | 0.70849 (14) | 0.02111 (17) | |
C008 | 0.27737 (8) | 0.75 | 0.16812 (14) | 0.02111 (17) | |
C009 | 0.27126 (6) | 0.61961 (6) | 0.56346 (9) | 0.02138 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01673 (7) | 0.01387 (7) | 0.01557 (7) | −0.000000 | 0.00008 (2) | 0.000000 |
O002 | 0.0315 (3) | 0.0256 (2) | 0.0328 (3) | −0.00926 (19) | 0.0047 (2) | 0.0032 (2) |
O003 | 0.0302 (4) | 0.0389 (4) | 0.0215 (3) | −0.000000 | −0.0070 (3) | 0.000000 |
O004 | 0.0308 (4) | 0.0437 (5) | 0.0218 (3) | −0.000000 | −0.0075 (3) | 0.000000 |
O005 | 0.0299 (3) | 0.0268 (3) | 0.0388 (3) | −0.0074 (2) | 0.0024 (2) | 0.0105 (2) |
C006 | 0.0222 (3) | 0.0186 (3) | 0.0222 (3) | −0.0026 (2) | 0.0010 (2) | 0.0004 (2) |
C007 | 0.0218 (4) | 0.0232 (4) | 0.0184 (4) | −0.000000 | −0.0021 (3) | 0.000000 |
C008 | 0.0212 (4) | 0.0238 (4) | 0.0184 (4) | −0.000000 | −0.0011 (3) | 0.000000 |
C009 | 0.0217 (3) | 0.0192 (3) | 0.0232 (3) | −0.0018 (2) | 0.0007 (2) | 0.00325 (19) |
Mo01—C006 | 2.0527 (7) | Mo01—C009i | 2.0560 (7) |
Mo01—C006i | 2.0527 (7) | O002—C006 | 1.1324 (8) |
Mo01—C007 | 2.0543 (9) | O003—C007 | 1.1342 (11) |
Mo01—C008 | 2.0507 (9) | O004—C008 | 1.1329 (12) |
Mo01—C009 | 2.0560 (7) | O005—C009 | 1.1315 (8) |
C006i—Mo01—C006 | 89.66 (4) | C009—Mo01—C007 | 89.62 (3) |
C007—Mo01—C006 | 90.06 (3) | C009i—Mo01—C007 | 89.62 (3) |
C007—Mo01—C006i | 90.06 (3) | C009i—Mo01—C008 | 90.12 (3) |
C008—Mo01—C006 | 90.21 (3) | C009—Mo01—C008 | 90.12 (3) |
C008—Mo01—C006i | 90.21 (3) | C009i—Mo01—C009 | 90.74 (4) |
C008—Mo01—C007 | 179.62 (3) | O002—C006—Mo01 | 179.45 (6) |
C009—Mo01—C006i | 89.80 (3) | O003—C007—Mo01 | 179.37 (8) |
C009i—Mo01—C006 | 89.80 (3) | O004—C008—Mo01 | 179.93 (8) |
C009i—Mo01—C006i | 179.37 (2) | O005—C009—Mo01i | 179.20 (6) |
C009—Mo01—C006 | 179.37 (2) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.073 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61988 Å |
Orthorhombic, Pnma | Cell parameters from 2554 reflections |
a = 11.78656 (17) Å | θ = 2.2–27.0° |
b = 11.26190 (12) Å | µ = 6.16 mm−1 |
c = 6.37330 (7) Å | T = 110 K |
V = 845.99 (2) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 459.440 |
Abstract diffractometer | 1424 independent reflections |
Radiation source: synchrotron | 1362 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.033 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.1°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.488, Tmax = 1.000 | l = −9→9 |
17206 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0733P)2 + 1.8694P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.115 | (Δ/σ)max = −0.002 |
S = 0.96 | Δρmax = 1.22 e Å−3 |
1424 reflections | Δρmin = −0.57 e Å−3 |
68 parameters |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.37371 (3) | 0.75 | 0.43732 (6) | 0.00891 (16) | |
O002 | 0.53542 (16) | 0.95012 (16) | 0.2434 (3) | 0.0322 (4) | |
O003 | 0.5213 (2) | 0.75 | 0.8594 (4) | 0.0324 (6) | |
O004 | 0.2241 (2) | 0.75 | 0.0192 (4) | 0.0345 (6) | |
O005 | 0.21588 (17) | 0.54698 (17) | 0.6326 (3) | 0.0339 (4) | |
C006 | 0.47768 (19) | 0.8793 (2) | 0.3114 (3) | 0.0224 (4) | |
C007 | 0.4696 (3) | 0.75 | 0.7088 (5) | 0.0231 (6) | |
C008 | 0.2772 (3) | 0.75 | 0.1679 (5) | 0.0227 (6) | |
C009 | 0.2713 (2) | 0.6193 (2) | 0.5639 (3) | 0.0228 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.0106 (2) | 0.0078 (2) | 0.0083 (2) | −0.000000 | 0.00011 (11) | 0.000000 |
O002 | 0.0348 (9) | 0.0280 (8) | 0.0337 (9) | −0.0076 (7) | 0.0037 (8) | 0.0018 (8) |
O003 | 0.0344 (14) | 0.0387 (14) | 0.0242 (12) | −0.000000 | −0.0055 (10) | 0.000000 |
O004 | 0.0348 (14) | 0.0441 (16) | 0.0245 (11) | −0.000000 | −0.0057 (11) | 0.000000 |
O005 | 0.0328 (9) | 0.0290 (9) | 0.0399 (10) | −0.0058 (7) | 0.0016 (8) | 0.0097 (8) |
C006 | 0.0244 (10) | 0.0205 (9) | 0.0223 (9) | 0.0001 (8) | −0.0002 (7) | −0.0016 (7) |
C007 | 0.0258 (14) | 0.0213 (13) | 0.0221 (14) | −0.000000 | 0.0011 (11) | 0.000000 |
C008 | 0.0244 (14) | 0.0205 (13) | 0.0233 (13) | −0.000000 | 0.0018 (11) | 0.000000 |
C009 | 0.0248 (10) | 0.0205 (10) | 0.0233 (10) | 0.0008 (8) | −0.0001 (7) | 0.0008 (7) |
Mo01—C006 | 2.065 (2) | Mo01—C009i | 2.067 (2) |
Mo01—C006i | 2.065 (2) | O002—C006 | 1.135 (3) |
Mo01—C007 | 2.067 (3) | O003—C007 | 1.137 (4) |
Mo01—C008 | 2.060 (3) | O004—C008 | 1.136 (4) |
Mo01—C009 | 2.067 (2) | O005—C009 | 1.132 (3) |
C006i—Mo01—C006 | 89.64 (12) | C009—Mo01—C007 | 89.57 (9) |
C007—Mo01—C006 | 90.05 (9) | C009i—Mo01—C007 | 89.57 (9) |
C007—Mo01—C006i | 90.05 (9) | C009i—Mo01—C008 | 90.16 (9) |
C008—Mo01—C006 | 90.22 (9) | C009—Mo01—C008 | 90.16 (9) |
C008—Mo01—C006i | 90.22 (9) | C009i—Mo01—C009 | 90.75 (13) |
C008—Mo01—C007 | 179.62 (12) | O002—C006—Mo01 | 179.5 (2) |
C009i—Mo01—C006 | 89.81 (9) | O003—C007—Mo01 | 179.3 (3) |
C009i—Mo01—C006i | 179.33 (9) | O004—C008—Mo01 | 179.9 (3) |
C009—Mo01—C006i | 89.81 (9) | O005—C009—Mo01i | 179.3 (2) |
C009—Mo01—C006 | 179.33 (9) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.073 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61988 Å |
Orthorhombic, Pnma | Cell parameters from 2554 reflections |
a = 11.78656 (17) Å | θ = 2.2–27.0° |
b = 11.26190 (12) Å | µ = 6.16 mm−1 |
c = 6.37330 (7) Å | T = 110 K |
V = 845.99 (2) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 459.814 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1424 independent reflections |
Radiation source: synchrotron | 1362 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.033 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.1°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.488, Tmax = 1.000 | l = −9→9 |
17206 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0829P)2 + 0.209P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max = −0.0003 |
S = 1.01 | Δρmax = 0.60 e Å−3 |
1424 reflections | Δρmin = −0.70 e Å−3 |
67 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: ORCA 5.0 PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: PBE0 BASIS SET: x2c-TZVP CHARGE: 0 MULTIPLICITY: 1 RELATIVISTIC: DKH2 DATE: 2021-11-03_17-37-09 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373724 (14) | 0.75 | 0.43731 (3) | 0.00570 (13) | |
O002 | 0.53540 (8) | 0.95026 (8) | 0.2437 (2) | 0.0323 (2) | |
O003 | 0.52118 (14) | 0.75 | 0.8594 (2) | 0.0326 (3) | |
O004 | 0.22410 (13) | 0.75 | 0.0192 (2) | 0.0343 (3) | |
O005 | 0.21589 (9) | 0.54675 (9) | 0.63319 (18) | 0.0341 (3) | |
C006 | 0.47775 (10) | 0.87905 (11) | 0.31175 (18) | 0.0228 (2) | |
C007 | 0.46958 (15) | 0.75 | 0.7089 (3) | 0.0234 (3) | |
C008 | 0.27720 (15) | 0.75 | 0.1675 (3) | 0.0231 (3) | |
C009 | 0.27116 (11) | 0.61948 (11) | 0.56369 (17) | 0.0231 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.00738 (18) | 0.00461 (17) | 0.00512 (17) | −0.000000 | 0.00011 (6) | 0.000000 |
O002 | 0.0342 (5) | 0.0286 (5) | 0.0342 (5) | −0.0094 (4) | 0.0045 (5) | 0.0029 (5) |
O003 | 0.0332 (8) | 0.0410 (8) | 0.0235 (6) | −0.000000 | −0.0066 (5) | 0.000000 |
O004 | 0.0338 (8) | 0.0457 (9) | 0.0233 (6) | −0.000000 | −0.0076 (6) | 0.000000 |
O005 | 0.0326 (6) | 0.0300 (5) | 0.0398 (6) | −0.0075 (4) | 0.0022 (4) | 0.0105 (4) |
C006 | 0.0238 (6) | 0.0206 (5) | 0.0240 (5) | −0.0024 (4) | 0.0011 (4) | 0.0004 (4) |
C007 | 0.0246 (8) | 0.0251 (8) | 0.0205 (8) | −0.000000 | −0.0018 (6) | 0.000000 |
C008 | 0.0244 (8) | 0.0250 (7) | 0.0199 (7) | −0.000000 | −0.0014 (6) | 0.000000 |
C009 | 0.0243 (6) | 0.0209 (6) | 0.0242 (6) | −0.0015 (4) | 0.0009 (4) | 0.0028 (4) |
Mo01—C006 | 2.0630 (12) | Mo01—C009 | 2.0666 (13) |
Mo01—C006i | 2.0630 (12) | O002—C006 | 1.1372 (15) |
Mo01—C007 | 2.0670 (17) | O003—C007 | 1.136 (2) |
Mo01—C008 | 2.0618 (18) | O004—C008 | 1.134 (2) |
Mo01—C009i | 2.0666 (13) | O005—C009 | 1.1364 (15) |
C006i—Mo01—C006 | 89.57 (7) | C009—Mo01—C007 | 89.62 (5) |
C007—Mo01—C006 | 90.00 (5) | C009i—Mo01—C007 | 89.62 (5) |
C007—Mo01—C006i | 90.00 (5) | C009i—Mo01—C008 | 90.13 (5) |
C008—Mo01—C006 | 90.26 (5) | C009—Mo01—C008 | 90.13 (5) |
C008—Mo01—C006i | 90.26 (5) | C009i—Mo01—C009 | 90.68 (7) |
C008—Mo01—C007 | 179.64 (6) | O002—C006—Mo01 | 179.58 (11) |
C009i—Mo01—C006 | 89.87 (5) | O003—C007—Mo01 | 179.25 (15) |
C009i—Mo01—C006i | 179.33 (4) | O004—C008—Mo01 | 179.99 (16) |
C009—Mo01—C006i | 89.87 (5) | O005—C009—Mo01i | 179.13 (11) |
C009—Mo01—C006 | 179.33 (4) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.073 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61988 Å |
Orthorhombic, Pnma | Cell parameters from 2554 reflections |
a = 11.78656 (17) Å | θ = 2.2–27.0° |
b = 11.26190 (12) Å | µ = 6.16 mm−1 |
c = 6.37330 (7) Å | T = 110 K |
V = 845.99 (2) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 473.575 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1424 independent reflections |
Radiation source: synchrotron | 1362 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.033 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.1°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.488, Tmax = 1.000 | l = −9→9 |
17206 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.014 | w = 1/[σ2(Fo2) + (0.0256P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.037 | (Δ/σ)max = 0.0001 |
S = 1.09 | Δρmax = 0.42 e Å−3 |
1424 reflections | Δρmin = −0.44 e Å−3 |
69 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_17-37-09 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373749 (6) | 0.75 | 0.437317 (11) | 0.01382 (8) | |
O002 | 0.53553 (3) | 0.95015 (3) | 0.24375 (7) | 0.02756 (11) | |
O003 | 0.52119 (5) | 0.75 | 0.85942 (8) | 0.02770 (14) | |
O004 | 0.22398 (5) | 0.75 | 0.01883 (9) | 0.02937 (14) | |
O005 | 0.21584 (4) | 0.54676 (4) | 0.63301 (7) | 0.02932 (12) | |
C006 | 0.47761 (4) | 0.87918 (4) | 0.31176 (7) | 0.01879 (11) | |
C007 | 0.46933 (6) | 0.75 | 0.70859 (10) | 0.01908 (14) | |
C008 | 0.27742 (6) | 0.75 | 0.16773 (10) | 0.01899 (14) | |
C009 | 0.27124 (5) | 0.61939 (5) | 0.56357 (7) | 0.01913 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01568 (10) | 0.01258 (9) | 0.01320 (9) | −0.000000 | 0.00010 (2) | 0.000000 |
O002 | 0.0296 (2) | 0.0233 (2) | 0.02976 (19) | −0.00898 (14) | 0.00424 (18) | 0.00313 (16) |
O003 | 0.0283 (3) | 0.0364 (3) | 0.0184 (3) | −0.000000 | −0.0066 (2) | 0.000000 |
O004 | 0.0287 (3) | 0.0407 (3) | 0.0188 (2) | −0.000000 | −0.0074 (2) | 0.000000 |
O005 | 0.0279 (2) | 0.0250 (2) | 0.0351 (2) | −0.00713 (15) | 0.00233 (16) | 0.01004 (16) |
C006 | 0.0201 (2) | 0.0172 (2) | 0.0192 (2) | −0.00252 (17) | 0.00110 (16) | 0.00042 (15) |
C007 | 0.0204 (3) | 0.0208 (3) | 0.0160 (3) | −0.000000 | −0.0015 (2) | 0.000000 |
C008 | 0.0199 (4) | 0.0212 (3) | 0.0158 (3) | −0.000000 | −0.0010 (2) | 0.000000 |
C009 | 0.0200 (3) | 0.0173 (2) | 0.0201 (2) | −0.00189 (19) | 0.00066 (15) | 0.00298 (14) |
Mo01—C006 | 2.0629 (5) | Mo01—C009 | 2.0666 (5) |
Mo01—C006i | 2.0629 (5) | O002—C006 | 1.1370 (6) |
Mo01—C007 | 2.0635 (7) | O003—C007 | 1.1391 (8) |
Mo01—C008 | 2.0594 (7) | O004—C008 | 1.1390 (8) |
Mo01—C009i | 2.0666 (5) | O005—C009 | 1.1363 (6) |
C006i—Mo01—C006 | 89.70 (3) | C009—Mo01—C007 | 89.596 (19) |
C007—Mo01—C006i | 90.061 (18) | C009i—Mo01—C007 | 89.596 (19) |
C007—Mo01—C006 | 90.061 (18) | C009i—Mo01—C008 | 90.145 (19) |
C008—Mo01—C006 | 90.201 (19) | C009—Mo01—C008 | 90.145 (19) |
C008—Mo01—C006i | 90.201 (19) | C009i—Mo01—C009 | 90.75 (3) |
C008—Mo01—C007 | 179.63 (2) | O002—C006—Mo01 | 179.43 (4) |
C009—Mo01—C006i | 89.77 (2) | O003—C007—Mo01 | 179.37 (6) |
C009i—Mo01—C006 | 89.77 (2) | O004—C008—Mo01 | 179.88 (6) |
C009i—Mo01—C006i | 179.370 (18) | O005—C009—Mo01i | 179.26 (5) |
C009—Mo01—C006 | 179.370 (18) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.067 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61954 Å |
Orthorhombic, Pnma | Cell parameters from 2638 reflections |
a = 11.7976 (2) Å | θ = 3.2–27.1° |
b = 11.2734 (1) Å | µ = 6.12 mm−1 |
c = 6.3799 (1) Å | T = 110 K |
V = 848.52 (2) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 462.646 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1428 independent reflections |
Radiation source: synchrotron | 1335 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.035 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.477, Tmax = 1.000 | l = −9→9 |
17325 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0408P)2 + 0.1521P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.058 | (Δ/σ)max = −0.0001 |
S = 1.01 | Δρmax = 0.52 e Å−3 |
1428 reflections | Δρmin = −0.32 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-32-18 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373729 (12) | 0.75 | 0.43736 (2) | 0.01161 (8) | |
O002 | 0.53549 (6) | 0.95020 (6) | 0.24363 (14) | 0.02992 (17) | |
O003 | 0.52126 (10) | 0.75 | 0.85931 (16) | 0.0304 (2) | |
O004 | 0.22406 (10) | 0.75 | 0.01909 (18) | 0.0317 (2) | |
O005 | 0.21585 (7) | 0.54687 (7) | 0.63296 (13) | 0.03147 (19) | |
C006 | 0.47762 (8) | 0.87916 (8) | 0.31170 (13) | 0.02038 (18) | |
C007 | 0.46949 (11) | 0.75 | 0.7086 (2) | 0.0211 (2) | |
C008 | 0.27740 (12) | 0.75 | 0.1679 (2) | 0.0207 (2) | |
C009 | 0.27128 (8) | 0.61944 (9) | 0.56357 (13) | 0.02085 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01345 (12) | 0.01021 (10) | 0.01116 (11) | −0.000000 | 0.00008 (5) | 0.000000 |
O002 | 0.0320 (4) | 0.0253 (4) | 0.0325 (4) | −0.0091 (3) | 0.0045 (3) | 0.0030 (3) |
O003 | 0.0317 (6) | 0.0384 (6) | 0.0210 (5) | −0.000000 | −0.0073 (4) | 0.000000 |
O004 | 0.0312 (6) | 0.0427 (6) | 0.0213 (5) | −0.000000 | −0.0075 (4) | 0.000000 |
O005 | 0.0300 (4) | 0.0267 (4) | 0.0376 (4) | −0.0072 (3) | 0.0024 (3) | 0.0105 (3) |
C006 | 0.0219 (4) | 0.0177 (4) | 0.0216 (4) | −0.0025 (3) | 0.0010 (3) | 0.0005 (3) |
C007 | 0.0227 (6) | 0.0227 (6) | 0.0179 (5) | −0.000000 | −0.0019 (4) | 0.000000 |
C008 | 0.0220 (6) | 0.0219 (6) | 0.0181 (5) | −0.000000 | −0.0009 (4) | 0.000000 |
C009 | 0.0220 (4) | 0.0184 (4) | 0.0222 (4) | −0.0018 (3) | 0.0007 (3) | 0.0029 (3) |
Mo01—C006 | 2.0653 (9) | Mo01—C009 | 2.0678 (10) |
Mo01—C006i | 2.0653 (9) | O002—C006 | 1.1384 (11) |
Mo01—C007 | 2.0664 (13) | O003—C007 | 1.1392 (16) |
Mo01—C008 | 2.0609 (13) | O004—C008 | 1.1390 (17) |
Mo01—C009i | 2.0678 (10) | O005—C009 | 1.1370 (12) |
C006i—Mo01—C006 | 89.66 (5) | C009—Mo01—C007 | 89.63 (4) |
C007—Mo01—C006i | 90.03 (4) | C009i—Mo01—C007 | 89.63 (4) |
C007—Mo01—C006 | 90.03 (4) | C009i—Mo01—C008 | 90.15 (4) |
C008—Mo01—C006 | 90.20 (4) | C009—Mo01—C008 | 90.15 (4) |
C008—Mo01—C006i | 90.20 (4) | C009i—Mo01—C009 | 90.77 (5) |
C008—Mo01—C007 | 179.68 (5) | O002—C006—Mo01 | 179.47 (8) |
C009—Mo01—C006i | 89.78 (4) | O003—C007—Mo01 | 179.28 (11) |
C009i—Mo01—C006 | 89.78 (4) | O004—C008—Mo01 | 179.92 (12) |
C009i—Mo01—C006i | 179.35 (3) | O005—C009—Mo01i | 179.31 (9) |
C009—Mo01—C006 | 179.35 (3) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.067 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61954 Å |
Orthorhombic, Pnma | Cell parameters from 2638 reflections |
a = 11.7976 (2) Å | θ = 3.2–27.1° |
b = 11.2734 (1) Å | µ = 6.12 mm−1 |
c = 6.3799 (1) Å | T = 110 K |
V = 848.52 (2) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 477.183 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1428 independent reflections |
Radiation source: synchrotron | 1335 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.035 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.477, Tmax = 1.000 | l = −9→9 |
17325 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.053P)2 + 0.171P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.069 | (Δ/σ)max = 0.0003 |
S = 1.01 | Δρmax = 0.55 e Å−3 |
1428 reflections | Δρmin = −0.65 e Å−3 |
67 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-32-43 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373761 (12) | 0.75 | 0.43735 (2) | 0.01749 (9) | |
O002 | 0.53563 (7) | 0.95014 (7) | 0.24380 (15) | 0.02488 (18) | |
O003 | 0.52123 (11) | 0.75 | 0.85941 (17) | 0.0250 (2) | |
O004 | 0.22394 (10) | 0.75 | 0.01898 (19) | 0.0264 (3) | |
O005 | 0.21580 (7) | 0.54684 (8) | 0.63326 (15) | 0.02631 (19) | |
C006 | 0.47752 (8) | 0.87910 (9) | 0.31181 (14) | 0.01616 (19) | |
C007 | 0.46926 (12) | 0.75 | 0.7083 (2) | 0.0165 (3) | |
C008 | 0.27762 (12) | 0.75 | 0.1680 (2) | 0.0164 (2) | |
C009 | 0.27127 (9) | 0.61948 (9) | 0.56341 (14) | 0.0166 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01949 (13) | 0.01596 (12) | 0.01701 (12) | −0.000000 | 0.00009 (5) | 0.000000 |
O002 | 0.0266 (4) | 0.0204 (4) | 0.0276 (4) | −0.0088 (3) | 0.0042 (3) | 0.0030 (3) |
O003 | 0.0251 (6) | 0.0338 (6) | 0.0161 (5) | −0.000000 | −0.0070 (4) | 0.000000 |
O004 | 0.0251 (6) | 0.0374 (7) | 0.0167 (5) | −0.000000 | −0.0075 (4) | 0.000000 |
O005 | 0.0247 (4) | 0.0222 (4) | 0.0321 (5) | −0.0071 (3) | 0.0024 (3) | 0.0101 (3) |
C006 | 0.0173 (4) | 0.0143 (4) | 0.0169 (4) | −0.0027 (3) | 0.0012 (3) | 0.0005 (3) |
C007 | 0.0174 (6) | 0.0188 (6) | 0.0133 (6) | −0.000000 | −0.0017 (4) | 0.000000 |
C008 | 0.0170 (6) | 0.0189 (6) | 0.0133 (5) | −0.000000 | −0.0007 (4) | 0.000000 |
C009 | 0.0173 (5) | 0.0149 (5) | 0.0176 (5) | −0.0019 (4) | 0.0004 (3) | 0.0031 (3) |
Mo01—C006i | 2.0635 (10) | Mo01—C009 | 2.0674 (10) |
Mo01—C006 | 2.0635 (10) | O002—C006 | 1.1401 (12) |
Mo01—C007 | 2.0633 (13) | O003—C007 | 1.1426 (17) |
Mo01—C008 | 2.0588 (14) | O004—C008 | 1.1425 (18) |
Mo01—C009i | 2.0674 (10) | O005—C009 | 1.1390 (13) |
C006i—Mo01—C006 | 89.71 (5) | C009—Mo01—C007 | 89.63 (4) |
C007—Mo01—C006i | 90.07 (4) | C009i—Mo01—C007 | 89.63 (4) |
C007—Mo01—C006 | 90.07 (4) | C009i—Mo01—C008 | 90.14 (4) |
C008—Mo01—C006 | 90.17 (4) | C009—Mo01—C008 | 90.14 (4) |
C008—Mo01—C006i | 90.17 (4) | C009i—Mo01—C009 | 90.75 (6) |
C008—Mo01—C007 | 179.66 (5) | O002—C006—Mo01 | 179.34 (9) |
C009—Mo01—C006i | 89.77 (4) | O003—C007—Mo01 | 179.36 (12) |
C009i—Mo01—C006 | 89.77 (4) | O004—C008—Mo01 | 179.78 (13) |
C009i—Mo01—C006i | 179.39 (4) | O005—C009—Mo01i | 179.26 (9) |
C009—Mo01—C006 | 179.39 (4) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.067 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61954 Å |
Orthorhombic, Pnma | Cell parameters from 2638 reflections |
a = 11.7976 (2) Å | θ = 3.2–27.1° |
b = 11.2734 (1) Å | µ = 6.12 mm−1 |
c = 6.3799 (1) Å | T = 110 K |
V = 848.52 (2) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 467.925 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1428 independent reflections |
Radiation source: synchrotron | 1335 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.035 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.477, Tmax = 1.000 | l = −9→9 |
17325 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.014 | w = 1/[σ2(Fo2) + (0.0263P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.037 | (Δ/σ)max = −0.001 |
S = 1.06 | Δρmax = 0.49 e Å−3 |
1428 reflections | Δρmin = −0.33 e Å−3 |
70 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-32-28 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373750 (6) | 0.75 | 0.437359 (13) | 0.01393 (10) | |
O002 | 0.53554 (3) | 0.95015 (4) | 0.24379 (8) | 0.02809 (13) | |
O003 | 0.52122 (6) | 0.75 | 0.85934 (8) | 0.02835 (16) | |
O004 | 0.22405 (5) | 0.75 | 0.01897 (9) | 0.02975 (16) | |
O005 | 0.21584 (4) | 0.54687 (4) | 0.63305 (7) | 0.02955 (14) | |
C006 | 0.47760 (5) | 0.87917 (5) | 0.31177 (7) | 0.01898 (12) | |
C007 | 0.46934 (6) | 0.75 | 0.70849 (11) | 0.01945 (16) | |
C008 | 0.27749 (7) | 0.75 | 0.16775 (11) | 0.01922 (16) | |
C009 | 0.27127 (5) | 0.61943 (5) | 0.56351 (7) | 0.01944 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01587 (12) | 0.01247 (11) | 0.01347 (11) | −0.000000 | 0.00009 (3) | 0.000000 |
O002 | 0.0302 (2) | 0.0234 (2) | 0.0307 (2) | −0.00903 (15) | 0.00439 (19) | 0.00311 (17) |
O003 | 0.0292 (4) | 0.0367 (4) | 0.0191 (3) | −0.000000 | −0.0069 (2) | 0.000000 |
O004 | 0.0289 (3) | 0.0407 (4) | 0.0197 (3) | −0.000000 | −0.0075 (2) | 0.000000 |
O005 | 0.0281 (3) | 0.0251 (2) | 0.0355 (3) | −0.00716 (16) | 0.00246 (17) | 0.01024 (17) |
C006 | 0.0203 (3) | 0.0168 (2) | 0.0199 (2) | −0.00256 (19) | 0.00106 (17) | 0.00052 (16) |
C007 | 0.0206 (4) | 0.0215 (3) | 0.0162 (3) | −0.000000 | −0.0017 (3) | 0.000000 |
C008 | 0.0201 (4) | 0.0212 (3) | 0.0164 (3) | −0.000000 | −0.0008 (2) | 0.000000 |
C009 | 0.0203 (3) | 0.0174 (3) | 0.0206 (3) | −0.0018 (2) | 0.00045 (17) | 0.00302 (15) |
Mo01—C006 | 2.0648 (5) | Mo01—C009 | 2.0679 (6) |
Mo01—C006i | 2.0648 (5) | O002—C006 | 1.1384 (7) |
Mo01—C007 | 2.0650 (7) | O003—C007 | 1.1405 (9) |
Mo01—C008 | 2.0612 (7) | O004—C008 | 1.1395 (9) |
Mo01—C009i | 2.0679 (6) | O005—C009 | 1.1373 (7) |
C006i—Mo01—C006 | 89.70 (3) | C009—Mo01—C007 | 89.62 (2) |
C007—Mo01—C006i | 90.06 (2) | C009i—Mo01—C007 | 89.62 (2) |
C007—Mo01—C006 | 90.06 (2) | C009i—Mo01—C008 | 90.15 (2) |
C008—Mo01—C006 | 90.18 (2) | C009—Mo01—C008 | 90.15 (2) |
C008—Mo01—C006i | 90.18 (2) | C009i—Mo01—C009 | 90.76 (3) |
C008—Mo01—C007 | 179.67 (3) | O002—C006—Mo01 | 179.41 (5) |
C009—Mo01—C006i | 89.77 (2) | O003—C007—Mo01 | 179.35 (6) |
C009i—Mo01—C006 | 89.77 (2) | O004—C008—Mo01 | 179.84 (7) |
C009i—Mo01—C006i | 179.37 (2) | O005—C009—Mo01i | 179.29 (5) |
C009—Mo01—C006 | 179.37 (2) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.065 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61936 Å |
Orthorhombic, Pnma | Cell parameters from 3774 reflections |
a = 11.80112 (14) Å | θ = 3.2–27.1° |
b = 11.27663 (9) Å | µ = 6.12 mm−1 |
c = 6.38185 (5) Å | T = 110 K |
V = 849.28 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 464.455 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1430 independent reflections |
Radiation source: synchrotron | 1342 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.037 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.376, Tmax = 1.000 | l = −9→9 |
17340 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0826P)2 + 0.0648P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.095 | (Δ/σ)max = 0.0001 |
S = 1.01 | Δρmax = 1.03 e Å−3 |
1430 reflections | Δρmin = −0.58 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-33-07 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373695 (12) | 0.75 | 0.43739 (2) | 0.00865 (13) | |
O002 | 0.53535 (8) | 0.95016 (8) | 0.2440 (2) | 0.0342 (2) | |
O003 | 0.52110 (13) | 0.75 | 0.8590 (2) | 0.0347 (3) | |
O004 | 0.22419 (12) | 0.75 | 0.0192 (2) | 0.0363 (3) | |
O005 | 0.21603 (9) | 0.54679 (9) | 0.63287 (18) | 0.0363 (3) | |
C006 | 0.47767 (10) | 0.87918 (11) | 0.31189 (17) | 0.0243 (3) | |
C007 | 0.46964 (15) | 0.75 | 0.7090 (3) | 0.0250 (4) | |
C008 | 0.27728 (15) | 0.75 | 0.1675 (3) | 0.0245 (3) | |
C009 | 0.27131 (11) | 0.61947 (12) | 0.56346 (17) | 0.0249 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01070 (18) | 0.00652 (17) | 0.00872 (18) | −0.000000 | 0.00015 (5) | 0.000000 |
O002 | 0.0365 (5) | 0.0291 (5) | 0.0370 (5) | −0.0094 (3) | 0.0045 (5) | 0.0028 (5) |
O003 | 0.0362 (8) | 0.0427 (9) | 0.0253 (6) | −0.000000 | −0.0069 (5) | 0.000000 |
O004 | 0.0362 (8) | 0.0468 (9) | 0.0260 (6) | −0.000000 | −0.0076 (6) | 0.000000 |
O005 | 0.0347 (6) | 0.0306 (6) | 0.0435 (6) | −0.0073 (4) | 0.0023 (4) | 0.0111 (4) |
C006 | 0.0256 (6) | 0.0214 (6) | 0.0260 (5) | −0.0025 (4) | 0.0007 (4) | 0.0005 (4) |
C007 | 0.0267 (8) | 0.0256 (8) | 0.0225 (8) | −0.000000 | −0.0022 (6) | 0.000000 |
C008 | 0.0259 (8) | 0.0257 (8) | 0.0220 (6) | −0.000000 | −0.0015 (6) | 0.000000 |
C009 | 0.0261 (6) | 0.0216 (6) | 0.0271 (6) | −0.0019 (5) | 0.0006 (4) | 0.0031 (4) |
Mo01—C006 | 2.0662 (13) | Mo01—C009i | 2.0673 (13) |
Mo01—C006i | 2.0662 (13) | O002—C006 | 1.1366 (15) |
Mo01—C007 | 2.0706 (16) | O003—C007 | 1.134 (2) |
Mo01—C008 | 2.0641 (17) | O004—C008 | 1.135 (2) |
Mo01—C009 | 2.0673 (13) | O005—C009 | 1.1374 (15) |
C006i—Mo01—C006 | 89.66 (7) | C009—Mo01—C007 | 89.64 (5) |
C007—Mo01—C006i | 89.99 (5) | C009i—Mo01—C007 | 89.64 (5) |
C007—Mo01—C006 | 89.99 (5) | C009i—Mo01—C008 | 90.14 (5) |
C008—Mo01—C006 | 90.23 (5) | C009—Mo01—C008 | 90.14 (5) |
C008—Mo01—C006i | 90.23 (5) | C009i—Mo01—C009 | 90.80 (7) |
C008—Mo01—C007 | 179.70 (6) | O002—C006—Mo01 | 179.54 (11) |
C009—Mo01—C006i | 89.77 (6) | O003—C007—Mo01 | 179.24 (15) |
C009i—Mo01—C006 | 89.77 (6) | O004—C008—Mo01 | 179.95 (15) |
C009i—Mo01—C006i | 179.32 (4) | O005—C009—Mo01i | 179.20 (11) |
C009—Mo01—C006 | 179.32 (4) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.065 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61936 Å |
Orthorhombic, Pnma | Cell parameters from 3774 reflections |
a = 11.80112 (14) Å | θ = 3.2–27.1° |
b = 11.27663 (9) Å | µ = 6.12 mm−1 |
c = 6.38185 (5) Å | T = 110 K |
V = 849.28 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 478.850 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1430 independent reflections |
Radiation source: synchrotron | 1342 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.037 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.376, Tmax = 1.000 | l = −9→9 |
17340 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.016 | w = 1/[σ2(Fo2) + (0.0297P)2 + 0.0723P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.043 | (Δ/σ)max = −0.0001 |
S = 1.04 | Δρmax = 0.60 e Å−3 |
1430 reflections | Δρmin = −0.43 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-33-25 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373733 (8) | 0.75 | 0.437395 (16) | 0.01424 (6) | |
O002 | 0.53548 (5) | 0.95006 (6) | 0.24404 (12) | 0.02927 (14) | |
O003 | 0.52108 (9) | 0.75 | 0.85932 (13) | 0.0297 (2) | |
O004 | 0.22399 (8) | 0.75 | 0.01905 (15) | 0.0312 (2) | |
O005 | 0.21592 (6) | 0.54688 (6) | 0.63292 (11) | 0.03115 (16) | |
C006 | 0.47758 (7) | 0.87913 (7) | 0.31190 (12) | 0.02025 (15) | |
C007 | 0.46928 (10) | 0.75 | 0.70871 (17) | 0.0206 (2) | |
C008 | 0.27743 (10) | 0.75 | 0.16782 (17) | 0.0203 (2) | |
C009 | 0.27124 (7) | 0.61956 (8) | 0.56338 (11) | 0.02062 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01643 (9) | 0.01191 (8) | 0.01438 (8) | −0.000000 | 0.00013 (3) | 0.000000 |
O002 | 0.0317 (3) | 0.0238 (3) | 0.0323 (3) | −0.0092 (2) | 0.0044 (3) | 0.0032 (3) |
O003 | 0.0310 (5) | 0.0378 (5) | 0.0204 (4) | −0.000000 | −0.0067 (3) | 0.000000 |
O004 | 0.0309 (5) | 0.0415 (6) | 0.0211 (4) | −0.000000 | −0.0074 (4) | 0.000000 |
O005 | 0.0301 (4) | 0.0256 (3) | 0.0378 (4) | −0.0072 (3) | 0.0024 (3) | 0.0103 (3) |
C006 | 0.0220 (4) | 0.0174 (3) | 0.0214 (3) | −0.0025 (3) | 0.0010 (3) | 0.0006 (3) |
C007 | 0.0222 (5) | 0.0215 (5) | 0.0180 (5) | −0.000000 | −0.0021 (4) | 0.000000 |
C008 | 0.0213 (5) | 0.0222 (5) | 0.0175 (4) | −0.000000 | −0.0012 (4) | 0.000000 |
C009 | 0.0216 (4) | 0.0176 (4) | 0.0227 (4) | −0.0018 (3) | 0.0005 (2) | 0.0031 (2) |
Mo01—C006 | 2.0649 (8) | Mo01—C009 | 2.0671 (9) |
Mo01—C006i | 2.0649 (8) | O002—C006 | 1.1376 (10) |
Mo01—C007 | 2.0663 (11) | O003—C007 | 1.1390 (14) |
Mo01—C008 | 2.0618 (11) | O004—C008 | 1.1398 (14) |
Mo01—C009i | 2.0671 (9) | O005—C009 | 1.1380 (10) |
C006i—Mo01—C006 | 89.69 (4) | C009—Mo01—C007 | 89.62 (3) |
C007—Mo01—C006i | 90.07 (3) | C009i—Mo01—C007 | 89.62 (3) |
C007—Mo01—C006 | 90.07 (3) | C009i—Mo01—C008 | 90.12 (3) |
C008—Mo01—C006 | 90.20 (3) | C009—Mo01—C008 | 90.12 (3) |
C008—Mo01—C006i | 90.20 (3) | C009i—Mo01—C009 | 90.72 (5) |
C008—Mo01—C007 | 179.62 (4) | O002—C006—Mo01 | 179.41 (7) |
C009—Mo01—C006i | 89.79 (3) | O003—C007—Mo01 | 179.38 (10) |
C009i—Mo01—C006 | 89.79 (3) | O004—C008—Mo01 | 179.85 (10) |
C009i—Mo01—C006i | 179.39 (3) | O005—C009—Mo01i | 179.17 (8) |
C009—Mo01—C006 | 179.39 (3) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.065 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61936 Å |
Orthorhombic, Pnma | Cell parameters from 3774 reflections |
a = 11.80112 (14) Å | θ = 3.2–27.1° |
b = 11.27663 (9) Å | µ = 6.12 mm−1 |
c = 6.38185 (5) Å | T = 110 K |
V = 849.28 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 479.543 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1430 independent reflections |
Radiation source: synchrotron | 1342 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.037 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.376, Tmax = 1.000 | l = −9→9 |
17340 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0293P)2 + 0.0122P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.040 | (Δ/σ)max = −0.0000 |
S = 1.06 | Δρmax = 0.59 e Å−3 |
1430 reflections | Δρmin = −0.43 e Å−3 |
70 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-33-15 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373731 (7) | 0.75 | 0.437393 (14) | 0.01475 (10) | |
O002 | 0.53548 (4) | 0.95008 (5) | 0.24398 (10) | 0.02857 (16) | |
O003 | 0.52110 (7) | 0.75 | 0.85935 (11) | 0.0290 (2) | |
O004 | 0.22404 (7) | 0.75 | 0.01904 (12) | 0.0305 (2) | |
O005 | 0.21593 (5) | 0.54685 (5) | 0.63288 (9) | 0.03045 (17) | |
C006 | 0.47760 (6) | 0.87914 (6) | 0.31192 (10) | 0.01964 (16) | |
C007 | 0.46932 (8) | 0.75 | 0.70863 (14) | 0.0199 (2) | |
C008 | 0.27746 (8) | 0.75 | 0.16782 (14) | 0.0198 (2) | |
C009 | 0.27128 (6) | 0.61954 (7) | 0.56346 (9) | 0.02005 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01692 (11) | 0.01242 (11) | 0.01490 (11) | −0.000000 | 0.00014 (3) | 0.000000 |
O002 | 0.0310 (3) | 0.0231 (3) | 0.0316 (3) | −0.00919 (19) | 0.0043 (2) | 0.0030 (2) |
O003 | 0.0301 (5) | 0.0372 (5) | 0.0196 (4) | −0.000000 | −0.0067 (3) | 0.000000 |
O004 | 0.0302 (4) | 0.0409 (5) | 0.0206 (3) | −0.000000 | −0.0076 (3) | 0.000000 |
O005 | 0.0293 (3) | 0.0249 (3) | 0.0372 (3) | −0.0071 (2) | 0.0025 (2) | 0.0103 (2) |
C006 | 0.0213 (3) | 0.0168 (3) | 0.0208 (3) | −0.0024 (2) | 0.0009 (2) | 0.0005 (2) |
C007 | 0.0214 (5) | 0.0209 (4) | 0.0174 (4) | −0.000000 | −0.0021 (3) | 0.000000 |
C008 | 0.0206 (5) | 0.0216 (4) | 0.0171 (4) | −0.000000 | −0.0010 (3) | 0.000000 |
C009 | 0.0210 (4) | 0.0171 (3) | 0.0221 (3) | −0.0019 (3) | 0.0005 (2) | 0.0030 (2) |
Mo01—C006 | 2.0651 (7) | Mo01—C009 | 2.0672 (7) |
Mo01—C006i | 2.0651 (7) | O002—C006 | 1.1378 (8) |
Mo01—C007 | 2.0662 (9) | O003—C007 | 1.1395 (11) |
Mo01—C008 | 2.0616 (10) | O004—C008 | 1.1397 (12) |
Mo01—C009i | 2.0672 (7) | O005—C009 | 1.1379 (9) |
C006i—Mo01—C006 | 89.69 (4) | C009—Mo01—C007 | 89.61 (3) |
C007—Mo01—C006i | 90.05 (2) | C009i—Mo01—C007 | 89.61 (3) |
C007—Mo01—C006 | 90.05 (2) | C009i—Mo01—C008 | 90.14 (3) |
C008—Mo01—C006 | 90.20 (3) | C009—Mo01—C008 | 90.14 (3) |
C008—Mo01—C006i | 90.20 (3) | C009i—Mo01—C009 | 90.74 (4) |
C008—Mo01—C007 | 179.65 (3) | O002—C006—Mo01 | 179.44 (6) |
C009—Mo01—C006i | 89.78 (3) | O003—C007—Mo01 | 179.33 (8) |
C009i—Mo01—C006 | 89.78 (3) | O004—C008—Mo01 | 179.86 (8) |
C009i—Mo01—C006i | 179.37 (3) | O005—C009—Mo01i | 179.20 (7) |
C009—Mo01—C006 | 179.37 (3) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.060 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61902 Å |
Orthorhombic, Pnma | Cell parameters from 4200 reflections |
a = 11.80973 (13) Å | θ = 3.0–27.1° |
b = 11.28599 (8) Å | µ = 6.09 mm−1 |
c = 6.38709 (5) Å | T = 110 K |
V = 851.30 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 467.879 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1430 independent reflections |
Radiation source: synchrotron | 1344 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.037 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.390, Tmax = 1.000 | l = −9→9 |
17449 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0523P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.064 | (Δ/σ)max = 0.0001 |
S = 1.06 | Δρmax = 0.59 e Å−3 |
1430 reflections | Δρmin = −0.41 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-33-45 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373703 (8) | 0.75 | 0.437419 (18) | 0.01164 (9) | |
O002 | 0.53542 (5) | 0.95002 (5) | 0.24405 (14) | 0.03248 (17) | |
O003 | 0.52104 (9) | 0.75 | 0.85908 (13) | 0.0330 (2) | |
O004 | 0.22419 (8) | 0.75 | 0.01926 (14) | 0.0346 (2) | |
O005 | 0.21596 (6) | 0.54689 (6) | 0.63289 (11) | 0.03459 (18) | |
C006 | 0.47758 (7) | 0.87909 (8) | 0.31199 (11) | 0.02314 (18) | |
C007 | 0.46943 (10) | 0.75 | 0.70885 (17) | 0.0236 (2) | |
C008 | 0.27740 (10) | 0.75 | 0.16755 (17) | 0.0232 (2) | |
C009 | 0.27134 (7) | 0.61946 (8) | 0.56349 (11) | 0.02358 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01363 (13) | 0.00978 (11) | 0.01153 (12) | −0.000000 | 0.00010 (3) | 0.000000 |
O002 | 0.0348 (4) | 0.0275 (3) | 0.0351 (3) | −0.0093 (2) | 0.0044 (3) | 0.0031 (3) |
O003 | 0.0342 (6) | 0.0412 (6) | 0.0238 (4) | −0.000000 | −0.0065 (3) | 0.000000 |
O004 | 0.0344 (5) | 0.0458 (6) | 0.0236 (4) | −0.000000 | −0.0076 (4) | 0.000000 |
O005 | 0.0329 (4) | 0.0294 (4) | 0.0414 (4) | −0.0071 (3) | 0.0023 (3) | 0.0108 (3) |
C006 | 0.0243 (4) | 0.0209 (4) | 0.0242 (4) | −0.0026 (3) | 0.0008 (3) | 0.0007 (3) |
C007 | 0.0252 (6) | 0.0252 (6) | 0.0205 (5) | −0.000000 | −0.0017 (4) | 0.000000 |
C008 | 0.0241 (6) | 0.0248 (6) | 0.0208 (4) | −0.000000 | −0.0013 (4) | 0.000000 |
C009 | 0.0244 (4) | 0.0214 (4) | 0.0249 (4) | −0.0023 (3) | 0.0007 (2) | 0.0034 (3) |
Mo01—C006 | 2.0662 (8) | Mo01—C009i | 2.0689 (9) |
Mo01—C006i | 2.0662 (8) | O002—C006 | 1.1383 (10) |
Mo01—C007 | 2.0697 (11) | O003—C007 | 1.1368 (13) |
Mo01—C008 | 2.0651 (12) | O004—C008 | 1.1366 (14) |
Mo01—C009 | 2.0689 (9) | O005—C009 | 1.1380 (10) |
C006i—Mo01—C006 | 89.68 (4) | C009—Mo01—C007 | 89.61 (3) |
C007—Mo01—C006i | 90.03 (3) | C009i—Mo01—C007 | 89.61 (3) |
C007—Mo01—C006 | 90.03 (3) | C009i—Mo01—C008 | 90.18 (3) |
C008—Mo01—C006 | 90.19 (3) | C009—Mo01—C008 | 90.18 (3) |
C008—Mo01—C006i | 90.19 (3) | C009i—Mo01—C009 | 90.82 (5) |
C008—Mo01—C007 | 179.69 (4) | O002—C006—Mo01 | 179.46 (7) |
C009—Mo01—C006i | 89.75 (4) | O003—C007—Mo01 | 179.32 (10) |
C009i—Mo01—C006 | 89.75 (4) | O004—C008—Mo01 | 179.86 (10) |
C009i—Mo01—C006i | 179.32 (3) | O005—C009—Mo01i | 179.30 (8) |
C009—Mo01—C006 | 179.32 (3) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.060 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61902 Å |
Orthorhombic, Pnma | Cell parameters from 4200 reflections |
a = 11.80973 (13) Å | θ = 3.0–27.1° |
b = 11.28599 (8) Å | µ = 6.09 mm−1 |
c = 6.38709 (5) Å | T = 110 K |
V = 851.30 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 480.844 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1430 independent reflections |
Radiation source: synchrotron | 1344 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.037 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.390, Tmax = 1.000 | l = −9→9 |
17449 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.017 | w = 1/[σ2(Fo2) + (0.0332P)2 + 0.1897P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.050 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.61 e Å−3 |
1430 reflections | Δρmin = −0.41 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-34-04 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373723 (10) | 0.75 | 0.43742 (2) | 0.01626 (7) | |
O002 | 0.53552 (6) | 0.94998 (7) | 0.24401 (14) | 0.02787 (17) | |
O003 | 0.52106 (10) | 0.75 | 0.85919 (17) | 0.0284 (2) | |
O004 | 0.22393 (10) | 0.75 | 0.01922 (18) | 0.0298 (2) | |
O005 | 0.21587 (7) | 0.54692 (7) | 0.63314 (14) | 0.02981 (18) | |
C006 | 0.47750 (8) | 0.87904 (8) | 0.31196 (14) | 0.01936 (17) | |
C007 | 0.46924 (11) | 0.75 | 0.7087 (2) | 0.0195 (2) | |
C008 | 0.27748 (12) | 0.75 | 0.1679 (2) | 0.0192 (2) | |
C009 | 0.27122 (9) | 0.61954 (9) | 0.56340 (13) | 0.01958 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01839 (10) | 0.01425 (9) | 0.01612 (9) | −0.000000 | 0.00008 (4) | 0.000000 |
O002 | 0.0300 (4) | 0.0229 (4) | 0.0308 (4) | −0.0092 (3) | 0.0044 (3) | 0.0032 (3) |
O003 | 0.0294 (6) | 0.0367 (6) | 0.0191 (5) | −0.000000 | −0.0065 (4) | 0.000000 |
O004 | 0.0293 (6) | 0.0409 (6) | 0.0194 (5) | −0.000000 | −0.0071 (4) | 0.000000 |
O005 | 0.0283 (4) | 0.0250 (4) | 0.0362 (4) | −0.0071 (3) | 0.0020 (3) | 0.0103 (3) |
C006 | 0.0210 (4) | 0.0170 (4) | 0.0201 (4) | −0.0026 (3) | 0.0012 (3) | 0.0006 (3) |
C007 | 0.0210 (6) | 0.0210 (6) | 0.0167 (5) | −0.000000 | −0.0018 (5) | 0.000000 |
C008 | 0.0196 (6) | 0.0214 (6) | 0.0166 (5) | −0.000000 | −0.0010 (4) | 0.000000 |
C009 | 0.0202 (4) | 0.0176 (4) | 0.0210 (4) | −0.0021 (3) | 0.0008 (3) | 0.0033 (3) |
Mo01—C006 | 2.0652 (9) | Mo01—C009 | 2.0690 (10) |
Mo01—C006i | 2.0652 (9) | O002—C006 | 1.1396 (12) |
Mo01—C007 | 2.0674 (13) | O003—C007 | 1.1396 (17) |
Mo01—C008 | 2.0629 (14) | O004—C008 | 1.1408 (17) |
Mo01—C009i | 2.0690 (10) | O005—C009 | 1.1390 (12) |
C006i—Mo01—C006 | 89.68 (5) | C009—Mo01—C007 | 89.62 (4) |
C007—Mo01—C006i | 90.08 (4) | C009i—Mo01—C007 | 89.62 (4) |
C007—Mo01—C006 | 90.08 (4) | C009i—Mo01—C008 | 90.13 (4) |
C008—Mo01—C006 | 90.18 (4) | C009—Mo01—C008 | 90.13 (4) |
C008—Mo01—C006i | 90.18 (4) | C009i—Mo01—C009 | 90.74 (6) |
C008—Mo01—C007 | 179.63 (5) | O002—C006—Mo01 | 179.38 (8) |
C009—Mo01—C006i | 89.79 (4) | O003—C007—Mo01 | 179.42 (12) |
C009i—Mo01—C006 | 89.79 (4) | O004—C008—Mo01 | 179.77 (12) |
C009i—Mo01—C006i | 179.39 (4) | O005—C009—Mo01i | 179.21 (9) |
C009—Mo01—C006 | 179.39 (4) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.060 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61902 Å |
Orthorhombic, Pnma | Cell parameters from 4200 reflections |
a = 11.80973 (13) Å | θ = 3.0–27.1° |
b = 11.28599 (8) Å | µ = 6.09 mm−1 |
c = 6.38709 (5) Å | T = 110 K |
V = 851.30 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 476.473 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1430 independent reflections |
Radiation source: synchrotron | 1344 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.037 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.390, Tmax = 1.000 | l = −9→9 |
17449 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0279P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.039 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.59 e Å−3 |
1430 reflections | Δρmin = −0.36 e Å−3 |
70 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-33-54 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373718 (6) | 0.75 | 0.437423 (13) | 0.01528 (10) | |
O002 | 0.53546 (4) | 0.94999 (4) | 0.24399 (9) | 0.02909 (15) | |
O003 | 0.52112 (7) | 0.75 | 0.85928 (10) | 0.02959 (19) | |
O004 | 0.22409 (6) | 0.75 | 0.01917 (11) | 0.03114 (19) | |
O005 | 0.21591 (4) | 0.54695 (5) | 0.63292 (8) | 0.03102 (16) | |
C006 | 0.47754 (5) | 0.87909 (6) | 0.31196 (9) | 0.02028 (15) | |
C007 | 0.46928 (7) | 0.75 | 0.70859 (13) | 0.02054 (19) | |
C008 | 0.27749 (8) | 0.75 | 0.16777 (13) | 0.02029 (19) | |
C009 | 0.27128 (6) | 0.61947 (6) | 0.56355 (8) | 0.02063 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01736 (11) | 0.01330 (10) | 0.01517 (11) | −0.000000 | 0.00010 (3) | 0.000000 |
O002 | 0.0314 (3) | 0.0239 (3) | 0.0320 (2) | −0.00921 (17) | 0.0043 (2) | 0.0031 (2) |
O003 | 0.0307 (4) | 0.0380 (4) | 0.0201 (3) | −0.000000 | −0.0066 (3) | 0.000000 |
O004 | 0.0308 (4) | 0.0422 (4) | 0.0204 (3) | −0.000000 | −0.0076 (3) | 0.000000 |
O005 | 0.0295 (3) | 0.0260 (3) | 0.0376 (3) | −0.00710 (19) | 0.0023 (2) | 0.0104 (2) |
C006 | 0.0217 (3) | 0.0180 (3) | 0.0211 (3) | −0.0026 (2) | 0.0010 (2) | 0.00049 (19) |
C007 | 0.0220 (4) | 0.0221 (4) | 0.0176 (4) | −0.000000 | −0.0018 (3) | 0.000000 |
C008 | 0.0209 (5) | 0.0221 (4) | 0.0179 (3) | −0.000000 | −0.0010 (3) | 0.000000 |
C009 | 0.0214 (3) | 0.0185 (3) | 0.0219 (3) | −0.0022 (2) | 0.00070 (19) | 0.00319 (18) |
Mo01—C006 | 2.0660 (6) | Mo01—C009 | 2.0695 (7) |
Mo01—C006i | 2.0660 (6) | O002—C006 | 1.1386 (8) |
Mo01—C007 | 2.0672 (8) | O003—C007 | 1.1407 (10) |
Mo01—C008 | 2.0634 (9) | O004—C008 | 1.1396 (11) |
Mo01—C009i | 2.0695 (7) | O005—C009 | 1.1374 (8) |
C006i—Mo01—C006 | 89.69 (3) | C009—Mo01—C007 | 89.60 (2) |
C007—Mo01—C006i | 90.06 (2) | C009i—Mo01—C007 | 89.60 (2) |
C007—Mo01—C006 | 90.06 (2) | C009i—Mo01—C008 | 90.17 (2) |
C008—Mo01—C006 | 90.18 (2) | C009—Mo01—C008 | 90.17 (2) |
C008—Mo01—C006i | 90.18 (2) | C009i—Mo01—C009 | 90.77 (4) |
C008—Mo01—C007 | 179.67 (3) | O002—C006—Mo01 | 179.42 (5) |
C009—Mo01—C006i | 89.77 (3) | O003—C007—Mo01 | 179.37 (7) |
C009i—Mo01—C006 | 89.77 (3) | O004—C008—Mo01 | 179.81 (8) |
C009i—Mo01—C006i | 179.36 (2) | O005—C009—Mo01i | 179.29 (6) |
C009—Mo01—C006 | 179.36 (2) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.053 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61868 Å |
Orthorhombic, Pnma | Cell parameters from 4464 reflections |
a = 11.82125 (12) Å | θ = 1.6–27.1° |
b = 11.29740 (8) Å | µ = 6.04 mm−1 |
c = 6.39402 (5) Å | T = 110 K |
V = 853.92 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 471.308 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1433 independent reflections |
Radiation source: synchrotron | 1347 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.038 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.379, Tmax = 1.000 | l = −9→9 |
17479 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0675P)2 + 0.082P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max = 0.0003 |
S = 1.02 | Δρmax = 0.79 e Å−3 |
1433 reflections | Δρmin = −0.53 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-35-24 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373676 (10) | 0.75 | 0.43745 (2) | 0.01054 (11) | |
O002 | 0.53529 (8) | 0.94990 (8) | 0.2443 (2) | 0.0352 (2) | |
O003 | 0.52099 (13) | 0.75 | 0.8589 (2) | 0.0358 (3) | |
O004 | 0.22430 (12) | 0.75 | 0.0193 (2) | 0.0379 (3) | |
O005 | 0.21606 (9) | 0.54694 (9) | 0.63256 (17) | 0.0376 (3) | |
C006 | 0.47764 (10) | 0.87910 (11) | 0.31197 (16) | 0.0254 (2) | |
C007 | 0.46943 (15) | 0.75 | 0.7089 (2) | 0.0260 (3) | |
C008 | 0.27723 (15) | 0.75 | 0.1673 (3) | 0.0261 (3) | |
C009 | 0.27117 (11) | 0.61950 (12) | 0.56337 (16) | 0.0260 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01247 (16) | 0.00830 (14) | 0.01087 (15) | −0.000000 | 0.00008 (4) | 0.000000 |
O002 | 0.0375 (5) | 0.0300 (5) | 0.0380 (5) | −0.0095 (3) | 0.0047 (5) | 0.0036 (5) |
O003 | 0.0368 (8) | 0.0437 (8) | 0.0268 (6) | −0.000000 | −0.0070 (5) | 0.000000 |
O004 | 0.0384 (8) | 0.0482 (9) | 0.0272 (6) | −0.000000 | −0.0079 (6) | 0.000000 |
O005 | 0.0358 (6) | 0.0315 (6) | 0.0454 (6) | −0.0072 (4) | 0.0027 (4) | 0.0111 (4) |
C006 | 0.0267 (6) | 0.0225 (5) | 0.0271 (5) | −0.0024 (4) | 0.0006 (4) | 0.0009 (4) |
C007 | 0.0284 (8) | 0.0272 (8) | 0.0225 (7) | −0.000000 | −0.0023 (6) | 0.000000 |
C008 | 0.0277 (8) | 0.0275 (8) | 0.0230 (6) | −0.000000 | −0.0014 (6) | 0.000000 |
C009 | 0.0270 (6) | 0.0228 (6) | 0.0282 (6) | −0.0016 (5) | 0.0005 (4) | 0.0036 (4) |
Mo01—C006 | 2.0691 (12) | Mo01—C009 | 2.0713 (13) |
Mo01—C006i | 2.0691 (12) | O002—C006 | 1.1365 (15) |
Mo01—C007 | 2.0723 (16) | O003—C007 | 1.136 (2) |
Mo01—C008 | 2.0699 (17) | O004—C008 | 1.134 (2) |
Mo01—C009i | 2.0713 (13) | O005—C009 | 1.1366 (15) |
C006i—Mo01—C006 | 89.64 (7) | C009—Mo01—C007 | 89.65 (5) |
C007—Mo01—C006 | 90.02 (4) | C009i—Mo01—C007 | 89.65 (5) |
C007—Mo01—C006i | 90.02 (4) | C009i—Mo01—C008 | 90.13 (5) |
C008—Mo01—C006 | 90.20 (5) | C009—Mo01—C008 | 90.13 (5) |
C008—Mo01—C006i | 90.20 (5) | C009i—Mo01—C009 | 90.76 (7) |
C008—Mo01—C007 | 179.69 (6) | O002—C006—Mo01 | 179.48 (11) |
C009i—Mo01—C006 | 89.80 (5) | O003—C007—Mo01 | 179.34 (15) |
C009i—Mo01—C006i | 179.35 (4) | O004—C008—Mo01 | 179.93 (15) |
C009—Mo01—C006i | 89.80 (5) | O005—C009—Mo01i | 179.13 (11) |
C009—Mo01—C006 | 179.35 (4) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.053 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61868 Å |
Orthorhombic, Pnma | Cell parameters from 4464 reflections |
a = 11.82125 (12) Å | θ = 1.6–27.1° |
b = 11.29740 (8) Å | µ = 6.04 mm−1 |
c = 6.39402 (5) Å | T = 110 K |
V = 853.92 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 482.175 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1433 independent reflections |
Radiation source: synchrotron | 1347 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.038 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.379, Tmax = 1.000 | l = −9→9 |
17479 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.016 | w = 1/[σ2(Fo2) + (0.0312P)2 + 0.1411P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.047 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.78 e Å−3 |
1433 reflections | Δρmin = −0.36 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-35-37 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373696 (9) | 0.75 | 0.437442 (18) | 0.01416 (7) | |
O002 | 0.53538 (6) | 0.94990 (7) | 0.24413 (15) | 0.03142 (17) | |
O003 | 0.52104 (10) | 0.75 | 0.85907 (17) | 0.0321 (2) | |
O004 | 0.22402 (10) | 0.75 | 0.01939 (18) | 0.0339 (3) | |
O005 | 0.21598 (7) | 0.54699 (7) | 0.63284 (14) | 0.03355 (19) | |
C006 | 0.47759 (8) | 0.87909 (8) | 0.31200 (14) | 0.02232 (18) | |
C007 | 0.46917 (12) | 0.75 | 0.7088 (2) | 0.0228 (3) | |
C008 | 0.27738 (12) | 0.75 | 0.1677 (2) | 0.0226 (2) | |
C009 | 0.27110 (9) | 0.61953 (9) | 0.56343 (13) | 0.02259 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01621 (9) | 0.01177 (8) | 0.01450 (9) | −0.000000 | 0.00009 (3) | 0.000000 |
O002 | 0.0338 (4) | 0.0260 (4) | 0.0345 (4) | −0.0095 (3) | 0.0046 (3) | 0.0035 (3) |
O003 | 0.0335 (6) | 0.0399 (6) | 0.0229 (5) | −0.000000 | −0.0071 (4) | 0.000000 |
O004 | 0.0342 (6) | 0.0442 (7) | 0.0233 (5) | −0.000000 | −0.0076 (5) | 0.000000 |
O005 | 0.0325 (4) | 0.0275 (4) | 0.0407 (5) | −0.0073 (3) | 0.0024 (3) | 0.0107 (3) |
C006 | 0.0236 (4) | 0.0193 (4) | 0.0240 (4) | −0.0024 (3) | 0.0010 (3) | 0.0007 (3) |
C007 | 0.0248 (6) | 0.0241 (6) | 0.0197 (6) | −0.000000 | −0.0024 (5) | 0.000000 |
C008 | 0.0238 (6) | 0.0242 (6) | 0.0198 (5) | −0.000000 | −0.0012 (5) | 0.000000 |
C009 | 0.0233 (5) | 0.0196 (4) | 0.0248 (5) | −0.0015 (4) | 0.0008 (3) | 0.0033 (3) |
Mo01—C006 | 2.0685 (10) | Mo01—C009 | 2.0719 (10) |
Mo01—C006i | 2.0685 (10) | O002—C006 | 1.1380 (12) |
Mo01—C007 | 2.0696 (13) | O003—C007 | 1.1401 (17) |
Mo01—C008 | 2.0665 (14) | O004—C008 | 1.1390 (17) |
Mo01—C009i | 2.0719 (10) | O005—C009 | 1.1371 (13) |
C006i—Mo01—C006 | 89.67 (5) | C009—Mo01—C007 | 89.62 (4) |
C007—Mo01—C006i | 90.07 (4) | C009i—Mo01—C007 | 89.62 (4) |
C007—Mo01—C006 | 90.07 (4) | C009i—Mo01—C008 | 90.11 (4) |
C008—Mo01—C006 | 90.20 (4) | C009—Mo01—C008 | 90.11 (4) |
C008—Mo01—C006i | 90.20 (4) | C009i—Mo01—C009 | 90.71 (6) |
C008—Mo01—C007 | 179.61 (5) | O002—C006—Mo01 | 179.46 (9) |
C009—Mo01—C006i | 89.81 (4) | O003—C007—Mo01 | 179.49 (12) |
C009i—Mo01—C006 | 89.81 (4) | O004—C008—Mo01 | 179.81 (12) |
C009i—Mo01—C006i | 179.39 (4) | O005—C009—Mo01i | 179.11 (9) |
C009—Mo01—C006 | 179.39 (4) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.053 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61868 Å |
Orthorhombic, Pnma | Cell parameters from 4464 reflections |
a = 11.82125 (12) Å | θ = 1.6–27.1° |
b = 11.29740 (8) Å | µ = 6.04 mm−1 |
c = 6.39402 (5) Å | T = 110 K |
V = 853.92 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 485.908 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1433 independent reflections |
Radiation source: synchrotron | 1347 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.038 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.379, Tmax = 1.000 | l = −9→9 |
17479 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0291P)2 + 0.0159P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.040 | (Δ/σ)max = −0.0002 |
S = 1.06 | Δρmax = 0.78 e Å−3 |
1433 reflections | Δρmin = −0.45 e Å−3 |
70 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-35-46 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373696 (7) | 0.75 | 0.437441 (14) | 0.01553 (9) | |
O002 | 0.53537 (5) | 0.94994 (5) | 0.24405 (12) | 0.02947 (16) | |
O003 | 0.52106 (8) | 0.75 | 0.85913 (12) | 0.0300 (2) | |
O004 | 0.22407 (7) | 0.75 | 0.01933 (13) | 0.0319 (2) | |
O005 | 0.21597 (5) | 0.54698 (6) | 0.63285 (10) | 0.03155 (18) | |
C006 | 0.47757 (6) | 0.87909 (7) | 0.31200 (10) | 0.02059 (16) | |
C007 | 0.46919 (9) | 0.75 | 0.70859 (15) | 0.0210 (2) | |
C008 | 0.27744 (9) | 0.75 | 0.16780 (16) | 0.0208 (2) | |
C009 | 0.27117 (7) | 0.61952 (7) | 0.56350 (10) | 0.02088 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01759 (11) | 0.01313 (10) | 0.01587 (10) | −0.000000 | 0.00009 (3) | 0.000000 |
O002 | 0.0317 (3) | 0.0240 (3) | 0.0327 (3) | −0.0093 (2) | 0.0044 (3) | 0.0032 (3) |
O003 | 0.0310 (5) | 0.0380 (5) | 0.0209 (4) | −0.000000 | −0.0071 (3) | 0.000000 |
O004 | 0.0319 (5) | 0.0421 (5) | 0.0217 (4) | −0.000000 | −0.0078 (3) | 0.000000 |
O005 | 0.0301 (3) | 0.0257 (3) | 0.0388 (4) | −0.0072 (2) | 0.0023 (2) | 0.0106 (2) |
C006 | 0.0218 (4) | 0.0177 (3) | 0.0222 (3) | −0.0023 (3) | 0.0009 (2) | 0.0006 (2) |
C007 | 0.0227 (5) | 0.0223 (5) | 0.0180 (4) | −0.000000 | −0.0023 (3) | 0.000000 |
C008 | 0.0218 (5) | 0.0226 (5) | 0.0182 (4) | −0.000000 | −0.0009 (3) | 0.000000 |
C009 | 0.0217 (4) | 0.0180 (4) | 0.0229 (4) | −0.0016 (3) | 0.0006 (2) | 0.0033 (2) |
Mo01—C006 | 2.0683 (7) | Mo01—C009 | 2.0715 (8) |
Mo01—C006i | 2.0683 (7) | O002—C006 | 1.1386 (9) |
Mo01—C007 | 2.0688 (10) | O003—C007 | 1.1413 (12) |
Mo01—C008 | 2.0657 (10) | O004—C008 | 1.1398 (13) |
Mo01—C009i | 2.0715 (8) | O005—C009 | 1.1376 (9) |
C006i—Mo01—C006 | 89.68 (4) | C009—Mo01—C007 | 89.61 (3) |
C007—Mo01—C006i | 90.06 (3) | C009i—Mo01—C007 | 89.61 (3) |
C007—Mo01—C006 | 90.06 (3) | C009i—Mo01—C008 | 90.14 (3) |
C008—Mo01—C006 | 90.19 (3) | C009—Mo01—C008 | 90.14 (3) |
C008—Mo01—C006i | 90.19 (3) | C009i—Mo01—C009 | 90.72 (4) |
C008—Mo01—C007 | 179.64 (4) | O002—C006—Mo01 | 179.47 (6) |
C009—Mo01—C006i | 89.80 (3) | O003—C007—Mo01 | 179.43 (9) |
C009i—Mo01—C006 | 89.80 (3) | O004—C008—Mo01 | 179.82 (9) |
C009i—Mo01—C006i | 179.38 (3) | O005—C009—Mo01i | 179.17 (7) |
C009—Mo01—C006 | 179.38 (3) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.032 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61683 Å |
Orthorhombic, Pnma | Cell parameters from 5081 reflections |
a = 11.86220 (11) Å | θ = 3.0–27.0° |
b = 11.33684 (8) Å | µ = 5.90 mm−1 |
c = 6.41647 (4) Å | T = 110 K |
V = 862.89 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 486.215 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1446 independent reflections |
Radiation source: synchrotron | 1367 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.037 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 26.9°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.388, Tmax = 1.000 | l = −9→9 |
17604 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.014 | w = 1/[σ2(Fo2) + (0.0279P)2 + 0.0287P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.039 | (Δ/σ)max = 0.0004 |
S = 1.06 | Δρmax = 0.69 e Å−3 |
1446 reflections | Δρmin = −0.35 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-36-14 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373697 (7) | 0.75 | 0.437459 (13) | 0.01552 (6) | |
O002 | 0.53532 (5) | 0.94997 (5) | 0.24412 (11) | 0.03064 (13) | |
O003 | 0.52100 (8) | 0.75 | 0.85908 (12) | 0.03119 (19) | |
O004 | 0.22412 (7) | 0.75 | 0.01941 (13) | 0.03302 (19) | |
O005 | 0.21597 (5) | 0.54698 (6) | 0.63282 (10) | 0.03279 (14) | |
C006 | 0.47754 (6) | 0.87903 (6) | 0.31204 (10) | 0.02151 (14) | |
C007 | 0.46917 (9) | 0.75 | 0.70845 (15) | 0.0218 (2) | |
C008 | 0.27746 (9) | 0.75 | 0.16797 (16) | 0.02178 (19) | |
C009 | 0.27120 (7) | 0.61956 (7) | 0.56335 (10) | 0.02190 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01721 (8) | 0.01308 (7) | 0.01628 (7) | −0.000000 | 0.00008 (3) | 0.000000 |
O002 | 0.0327 (3) | 0.0249 (3) | 0.0342 (3) | −0.0092 (2) | 0.0045 (3) | 0.0034 (3) |
O003 | 0.0317 (5) | 0.0393 (5) | 0.0226 (4) | −0.000000 | −0.0067 (3) | 0.000000 |
O004 | 0.0325 (5) | 0.0436 (5) | 0.0229 (4) | −0.000000 | −0.0078 (3) | 0.000000 |
O005 | 0.0308 (3) | 0.0272 (3) | 0.0403 (3) | −0.0075 (2) | 0.0022 (2) | 0.0110 (2) |
C006 | 0.0228 (3) | 0.0186 (3) | 0.0230 (3) | −0.0024 (3) | 0.0011 (2) | 0.0007 (2) |
C007 | 0.0231 (5) | 0.0227 (5) | 0.0195 (4) | −0.000000 | −0.0020 (3) | 0.000000 |
C008 | 0.0229 (5) | 0.0233 (5) | 0.0191 (4) | −0.000000 | −0.0009 (3) | 0.000000 |
C009 | 0.0227 (4) | 0.0189 (3) | 0.0241 (3) | −0.0017 (3) | 0.0005 (2) | 0.0033 (2) |
Mo01—C006 | 2.0748 (7) | Mo01—C009 | 2.0779 (8) |
Mo01—C006i | 2.0748 (7) | O002—C006 | 1.1430 (9) |
Mo01—C007 | 2.0752 (10) | O003—C007 | 1.1454 (12) |
Mo01—C008 | 2.0720 (10) | O004—C008 | 1.1442 (13) |
Mo01—C009i | 2.0779 (8) | O005—C009 | 1.1424 (9) |
C006i—Mo01—C006 | 89.66 (4) | C009—Mo01—C007 | 89.63 (3) |
C007—Mo01—C006i | 90.06 (3) | C009i—Mo01—C007 | 89.63 (3) |
C007—Mo01—C006 | 90.06 (3) | C009i—Mo01—C008 | 90.12 (3) |
C008—Mo01—C006 | 90.20 (3) | C009—Mo01—C008 | 90.12 (3) |
C008—Mo01—C006i | 90.20 (3) | C009i—Mo01—C009 | 90.74 (4) |
C008—Mo01—C007 | 179.65 (4) | O002—C006—Mo01 | 179.49 (6) |
C009—Mo01—C006i | 89.79 (3) | O003—C007—Mo01 | 179.38 (9) |
C009i—Mo01—C006 | 89.79 (3) | O004—C008—Mo01 | 179.86 (9) |
C009i—Mo01—C006i | 179.38 (3) | O005—C009—Mo01i | 179.17 (7) |
C009—Mo01—C006 | 179.38 (3) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.032 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61683 Å |
Orthorhombic, Pnma | Cell parameters from 5081 reflections |
a = 11.86220 (11) Å | θ = 3.0–27.0° |
b = 11.33684 (8) Å | µ = 5.90 mm−1 |
c = 6.41647 (4) Å | T = 110 K |
V = 862.89 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 485.961 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1446 independent reflections |
Radiation source: synchrotron | 1367 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.037 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 26.9°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.388, Tmax = 1.000 | l = −9→9 |
17604 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.014 | w = 1/[σ2(Fo2) + (0.0272P)2 + 0.0381P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.039 | (Δ/σ)max = −0.0005 |
S = 1.06 | Δρmax = 0.69 e Å−3 |
1446 reflections | Δρmin = −0.35 e Å−3 |
68 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-36-36 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373697 (7) | 0.75 | 0.437459 (14) | 0.01547 (5) | |
O002 | 0.53531 (5) | 0.94997 (5) | 0.24411 (12) | 0.03064 (13) | |
O003 | 0.52100 (8) | 0.75 | 0.85906 (12) | 0.03119 (19) | |
O004 | 0.22412 (8) | 0.75 | 0.01942 (14) | 0.03302 (19) | |
O005 | 0.21597 (5) | 0.54698 (6) | 0.63281 (10) | 0.03279 (15) | |
C006 | 0.47754 (6) | 0.87903 (6) | 0.31204 (11) | 0.02153 (14) | |
C007 | 0.46917 (9) | 0.75 | 0.70846 (15) | 0.0218 (2) | |
C008 | 0.27747 (9) | 0.75 | 0.16797 (16) | 0.02179 (19) | |
C009 | 0.27120 (7) | 0.61956 (7) | 0.56334 (10) | 0.02192 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01716 (8) | 0.01303 (7) | 0.01623 (7) | −0.000000 | 0.00008 (3) | 0.000000 |
O002 | 0.0327 (3) | 0.0250 (3) | 0.0342 (3) | −0.0092 (2) | 0.0045 (3) | 0.0034 (3) |
O003 | 0.0316 (5) | 0.0393 (5) | 0.0226 (4) | −0.000000 | −0.0068 (3) | 0.000000 |
O004 | 0.0325 (5) | 0.0436 (5) | 0.0229 (4) | −0.000000 | −0.0078 (3) | 0.000000 |
O005 | 0.0308 (3) | 0.0272 (3) | 0.0403 (3) | −0.0075 (2) | 0.0022 (3) | 0.0109 (2) |
C006 | 0.0229 (3) | 0.0186 (3) | 0.0231 (3) | −0.0024 (3) | 0.0011 (2) | 0.0007 (2) |
C007 | 0.0231 (5) | 0.0227 (5) | 0.0195 (4) | −0.000000 | −0.0021 (4) | 0.000000 |
C008 | 0.0229 (5) | 0.0233 (5) | 0.0192 (4) | −0.000000 | −0.0009 (4) | 0.000000 |
C009 | 0.0227 (4) | 0.0189 (3) | 0.0242 (4) | −0.0017 (3) | 0.0005 (2) | 0.0033 (2) |
Mo01—C006 | 2.0748 (7) | Mo01—C009 | 2.0779 (8) |
Mo01—C006i | 2.0748 (7) | O002—C006 | 1.1430 (9) |
Mo01—C007 | 2.0752 (10) | O003—C007 | 1.1453 (13) |
Mo01—C008 | 2.0720 (11) | O004—C008 | 1.1441 (13) |
Mo01—C009i | 2.0779 (8) | O005—C009 | 1.1424 (10) |
C006i—Mo01—C006 | 89.66 (4) | C009—Mo01—C007 | 89.63 (3) |
C007—Mo01—C006i | 90.06 (3) | C009i—Mo01—C007 | 89.63 (3) |
C007—Mo01—C006 | 90.06 (3) | C009i—Mo01—C008 | 90.12 (3) |
C008—Mo01—C006 | 90.19 (3) | C009—Mo01—C008 | 90.12 (3) |
C008—Mo01—C006i | 90.19 (3) | C009i—Mo01—C009 | 90.74 (4) |
C008—Mo01—C007 | 179.65 (4) | O002—C006—Mo01 | 179.49 (6) |
C009—Mo01—C006i | 89.80 (3) | O003—C007—Mo01 | 179.39 (9) |
C009i—Mo01—C006 | 89.80 (3) | O004—C008—Mo01 | 179.85 (9) |
C009i—Mo01—C006i | 179.38 (3) | O005—C009—Mo01i | 179.16 (7) |
C009—Mo01—C006 | 179.38 (3) |
Symmetry code: (i) x, −y+3/2, z. |
C6MoO6 | Dx = 2.032 Mg m−3 |
Mr = 264.00 | Synchrotron radiation, λ = 0.61683 Å |
Orthorhombic, Pnma | Cell parameters from 5081 reflections |
a = 11.86220 (11) Å | θ = 3.0–27.0° |
b = 11.33684 (8) Å | µ = 5.90 mm−1 |
c = 6.41647 (4) Å | T = 110 K |
V = 862.89 (1) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
F(000) = 487.217 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1446 independent reflections |
Radiation source: synchrotron | 1367 reflections with I ≥ 2u(I) |
Synchrotron monochromator | Rint = 0.037 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 26.9°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.24a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −16→16 |
Tmin = 0.388, Tmax = 1.000 | l = −9→9 |
17604 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.014 | w = 1/[σ2(Fo2) + (0.0274P)2 + 0.0097P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.038 | (Δ/σ)max = 0.0001 |
S = 1.07 | Δρmax = 0.68 e Å−3 |
1446 reflections | Δρmin = −0.37 e Å−3 |
70 parameters |
Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. Please cite: F. Kleemiss et al. Chem. Sci. DOI 10.1039/D0SC05526C - 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: 'Please Select' PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: B3LYP BASIS SET: def2-SVP CHARGE: 0 MULTIPLICITY: 0 DATE: 2021-11-03_14-36-06 |
x | y | z | Uiso*/Ueq | ||
Mo01 | 0.373696 (6) | 0.75 | 0.437459 (13) | 0.01591 (8) | |
O002 | 0.53533 (4) | 0.94996 (5) | 0.24408 (11) | 0.02995 (15) | |
O003 | 0.52102 (7) | 0.75 | 0.85910 (11) | 0.0304 (2) | |
O004 | 0.22414 (7) | 0.75 | 0.01935 (12) | 0.0323 (2) | |
O005 | 0.21595 (5) | 0.54699 (5) | 0.63278 (9) | 0.03210 (17) | |
C006 | 0.47754 (6) | 0.87904 (6) | 0.31205 (10) | 0.02091 (15) | |
C007 | 0.46920 (8) | 0.75 | 0.70842 (14) | 0.0211 (2) | |
C008 | 0.27751 (8) | 0.75 | 0.16795 (14) | 0.0212 (2) | |
C009 | 0.27121 (6) | 0.61954 (7) | 0.56337 (9) | 0.02133 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo01 | 0.01760 (10) | 0.01347 (9) | 0.01667 (9) | −0.000000 | 0.00009 (2) | 0.000000 |
O002 | 0.0321 (3) | 0.0242 (3) | 0.0336 (3) | −0.00916 (19) | 0.0044 (2) | 0.0034 (2) |
O003 | 0.0308 (5) | 0.0386 (5) | 0.0219 (4) | −0.000000 | −0.0068 (3) | 0.000000 |
O004 | 0.0318 (5) | 0.0428 (5) | 0.0223 (3) | −0.000000 | −0.0079 (3) | 0.000000 |
O005 | 0.0300 (3) | 0.0266 (3) | 0.0397 (3) | −0.0075 (2) | 0.0022 (2) | 0.0110 (2) |
C006 | 0.0221 (3) | 0.0181 (3) | 0.0225 (3) | −0.0024 (2) | 0.0010 (2) | 0.0006 (2) |
C007 | 0.0224 (5) | 0.0221 (4) | 0.0189 (4) | −0.000000 | −0.0020 (3) | 0.000000 |
C008 | 0.0221 (5) | 0.0228 (4) | 0.0187 (4) | −0.000000 | −0.0008 (3) | 0.000000 |
C009 | 0.0220 (4) | 0.0184 (3) | 0.0236 (3) | −0.0018 (3) | 0.0005 (2) | 0.0033 (2) |
Mo01—C006 | 2.0749 (7) | Mo01—C009i | 2.0780 (7) |
Mo01—C006i | 2.0749 (7) | O002—C006 | 1.1430 (8) |
Mo01—C007 | 2.0751 (9) | O003—C007 | 1.1457 (11) |
Mo01—C008 | 2.0718 (10) | O004—C008 | 1.1445 (12) |
Mo01—C009 | 2.0780 (7) | O005—C009 | 1.1421 (9) |
C006i—Mo01—C006 | 89.67 (4) | C009—Mo01—C007 | 89.64 (3) |
C007—Mo01—C006 | 90.05 (2) | C009i—Mo01—C007 | 89.64 (3) |
C007—Mo01—C006i | 90.05 (2) | C009i—Mo01—C008 | 90.13 (3) |
C008—Mo01—C006 | 90.19 (3) | C009—Mo01—C008 | 90.13 (3) |
C008—Mo01—C006i | 90.19 (3) | C009i—Mo01—C009 | 90.75 (4) |
C008—Mo01—C007 | 179.67 (3) | O002—C006—Mo01 | 179.49 (6) |
C009i—Mo01—C006 | 89.79 (3) | O003—C007—Mo01 | 179.36 (8) |
C009i—Mo01—C006i | 179.37 (3) | O004—C008—Mo01 | 179.84 (8) |
C009—Mo01—C006i | 89.79 (3) | O005—C009—Mo01i | 179.20 (7) |
C009—Mo01—C006 | 179.37 (3) |
Symmetry code: (i) x, −y+3/2, z. |
Acknowledgements
The authors thank Nikolaus Korber, John Lupton, Mathias Meyer, Volodymyr Svitlyk and Gábor Balázs for inspiring discussions, as well as Birgit Hischa for the measurements on the laboratory diffractometers. FK acknowledges funding by the DFG in the Walter Benjamin Scheme.
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. KL 3500/1-1).
References
Ankudinov, A. L., Ravel, B., Rehr, J. J. & Conradson, S. D. (1998). Phys. Rev. B, 58, 7565–7576. Web of Science CrossRef CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Brennan, S. & Cowan, P. L. (1992). Rev. Sci. Instrum. 63, 850–853. CrossRef Web of Science Google Scholar
Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361–379. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Caticha-Ellis, S. (1981). In Anomalous Dispersion of X-rays in Crystallography. https://www.iucr.org/education/pamphlets/8/full-text. Google Scholar
Creagh, D. C. & McAuley, W. (1992). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 206–222. Dordrecht: Kluwer Academic Publishers. Google Scholar
Cromer, D. T. (1965). Acta Cryst. 18, 17–23. CrossRef CAS IUCr Journals Web of Science Google Scholar
Cromer, D. T. & Liberman, D. (1970). J. Chem. Phys. 53, 1891–1898. CrossRef CAS Web of Science Google Scholar
Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321–324. CrossRef CAS IUCr Journals Web of Science Google Scholar
Dittrich, B., Wandtke, C. M., Meents, A., Pröpper, K., Mondal, K. C., Samuel, P. P., Amin SK, N., Singh, A. P., Roesky, H. W. & Sidhu, N. (2015). ChemPhysChem, 16, 412–419. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dyadkin, V., Pattison, P., Dmitriev, V. & Chernyshov, D. (2016). J. Synchrotron Rad. 23, 825–829. Web of Science CrossRef CAS IUCr Journals Google Scholar
Einsle, O., Andrade, S. L. A., Dobbek, H., Meyer, J. & Rees, D. C. (2007). J. Am. Chem. Soc. 129, 2210–2211. Web of Science CrossRef PubMed CAS Google Scholar
Guss, J. M., Merritt, E. A., Phizackerley, R. P., Hedman, B., Murata, M., Hodgson, K. O. & Freeman, H. C. (1988). Science, 241, 806–811. CrossRef CAS PubMed Web of Science Google Scholar
Henke, B. L., Gullikson, E. M. & Davis, J. C. (1993). At. Data Nucl. Data Tables, 54, 181–342. CrossRef CAS Web of Science Google Scholar
Hennig, C. (2007). Phys. Rev. B, 75, 035120. Web of Science CrossRef Google Scholar
Hirshfeld, F. L. (1976). Acta Cryst. A32, 239–244. CrossRef IUCr Journals Web of Science Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hönl, H. (1933). Z. Phys. 83, 1–16. Google Scholar
Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383–393. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. Web of Science CSD CrossRef CAS Google Scholar
Kramers, H. A. (1927). Atti Congr. Int. Fis. 2, 545–557. Google Scholar
Kronig, R. de L. (1926). J. Opt. Soc. Am. 12, 547–706. CAS Google Scholar
Meindl, K. & Henn, J. (2008). Acta Cryst. A64, 404–418. Web of Science CrossRef CAS IUCr Journals Google Scholar
Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108. Web of Science CrossRef PubMed Google Scholar
Parsons, S., Wagner, T., Presly, O., Wood, P. A. & Cooper, R. I. (2012). J. Appl. Cryst. 45, 417–429. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ramseshan, S. & Abrahams, S. C. (1975). Editors. Anomalous Scattering. Copenhagen: Munksgaard. Google Scholar
Sasaki, S. (1989). KEK Report 88–14, pp. 1–136. Ibaraki-keri, Japan: National Laboratory for High Energy Physics. Google Scholar
Scheinost, A. C., Claussner, J., Exner, J., Feig, M., Findeisen, S., Hennig, C., Kvashnina, K. O., Naudet, D., Prieur, D., Rossberg, A., Schmidt, M., Qiu, C., Colomp, P., Cohen, C., Dettona, E., Dyadkin, V. & Stumpf, T. (2021). J. Synchrotron Rad. 28, 333–349. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spatzal, T., Schlesier, J., Burger, E.-M., Sippel, D., Zhang, L., Andrade, S. L. A., Rees, D. C. & Einsle, O. (2016). Nat. Commun. 7, 10902. Web of Science CrossRef PubMed Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Wandtke, C. M., Weil, M., Simpson, J. & Dittrich, B. (2017). Acta Cryst. B73, 794–804. Web of Science CrossRef IUCr Journals Google Scholar
Watts, B. (2014). Opt. Express, 22, 23628–23639. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.