research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 10| Part 2| March 2023| Pages 210-219
ISSN: 2052-2525

Formation of ibrutinib solvates: so similar, yet so different

crossmark logo

aChemical Engineering, University of Chemistry and Technology in Prague, Technická 3, Praha, Czech Republic, bZentiva, k.s., U kabelovny 130, Prague 10 10237, Czech Republic, cInstitute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 182 00, Czech Republic, and dInstitute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, Prague 6, Czech Republic
*Correspondence e-mail: jirata@vscht.cz

Edited by L. R. MacGillivray, University of Iowa, USA (Received 14 July 2022; accepted 8 February 2023; online 24 February 2023)

The transformation processes of non-solvated ibrutinib into a series of halogenated benzene solvates are explored in detail here. The transformation was studied in real time by X-ray powder diffraction in a glass capillary. Crystal structures of chloro­benzene, bromo­benzene and iodo­benzene solvates are isostructural, whereas the structure of fluoro­benzene solvate is different. Four different mechanisms for transformation were discovered despite the similarity in the chemical nature of the solvents and crystal structures of the solvates formed. These mechanisms include direct transformations and transformations with either a crystalline or an amorphous intermediate phase. The binding preference of each solvate in the crystal structure of the solvates was examined in competitive slurry experiments and further confirmed by interaction strength calculations. Overall, the presented system and online X-ray powder diffraction measurement provide unique insights into the formation of solvates.

1. Introduction

Multicomponent crystals, i.e. salts, cocrystals and solvates, have been actively researched for several decades in academia as well as in industry. Academic researchers discovered new multicomponent crystals and have studied the intermolecular interactions within the crystal structures. The arrangement of molecules in crystal structures determines the crystal properties (Aguiar & Zelmer, 1969[Aguiar, A. J. & Zelmer, J. E. (1969). J. Pharm. Sci. 58, 983-987.]; Matsuda et al., 2011[Matsuda, Y., Akazawa, R., Teraoka, R. & Otsuka, M. (2011). J. Pharm. Pharmacol. 46, 162-167.]; Zvoníček et al., 2018[Zvoníček, V., Skořepová, E., Dušek, M., Žvátora, P. & Šoóš, M. (2018). Cryst. Growth Des. 18, 1315-1326.]; Sun & Grant, 2001[Sun, C. & Grant, D. J. W. (2001). Pharm. Res. 18, 274-280.]; Kokubo et al., 1987[Kokubo, H., Morimoto, K., Ishida, T., Inoue, M. & Morisaka, K. (1987). Int. J. Pharm. 35, 181-183.]; Pandit et al., 1984[Pandit, J. K., Gupta, S. K., Gode, K. D. & Mishra, B. (1984). Int. J. Pharm. 21, 129-132.]). Therefore, approaches that can shed new light on molecular interactions within these crystals and their properties have received a lot of attention in recent years. These include both computational and experimental efforts, such as structure–property relations (Suresh et al., 2015[Suresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E., Nangia, A. & Boldyreva, E. V. (2015). Cryst. Growth Des. 15, 3498-3510.]; Stanton & Bak, 2008[Stanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856-3862.]; de Moraes et al., 2017[S. de Moraes, L., Edwards, D., Florence, A. J., Johnston, A., Johnston, B. F., Morrison, C. A. & Kennedy, A. R. (2017). Cryst. Growth Des. 17, 3277-3286.]; Arlin et al., 2011[Arlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318-1327.]; Collier et al., 2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]), crystal structure prediction (Price, 2014[Price, S. L. (2014). Chem. Soc. Rev. 43, 2098-2111.]; Reilly et al., 2016[Reilly, A. M., Cooper, R. I., Adjiman, C. S., Bhattacharya, S., Boese, A. D., Brandenburg, J. G., Bygrave, P. J., Bylsma, R., Campbell, J. E., Car, R., Case, D. H., Chadha, R., Cole, J. C., Cosburn, K., Cuppen, H. M., Curtis, F., Day, G. M., DiStasio, R. A. Jr, Dzyabchenko, A., van Eijck, B. P., Elking, D. M., van den Ende, J. A., Facelli, J. C., Ferraro, M. B., Fusti-Molnar, L., Gatsiou, C.-A., Gee, T. S., de Gelder, R., Ghiringhelli, L. M., Goto, H., Grimme, S., Guo, R., Hofmann, D. W. M., Hoja, J., Hylton, R. K., Iuzzolino, L., Jankiewicz, W., de Jong, D. T., Kendrick, J., de Klerk, N. J. J., Ko, H.-Y., Kuleshova, L. N., Li, X., Lohani, S., Leusen, F. J. J., Lund, A. M., Lv, J., Ma, Y., Marom, N., Masunov, A. E., McCabe, P., McMahon, D. P., Meekes, H., Metz, M. P., Misquitta, A. J., Mohamed, S., Monserrat, B., Needs, R. J., Neumann, M. A., Nyman, J., Obata, S., Oberhofer, H., Oganov, A. R., Orendt, A. M., Pagola, G. I., Pantelides, C. C., Pickard, C. J., Podeszwa, R., Price, L. S., Price, S. L., Pulido, A., Read, M. G., Reuter, K., Schneider, E., Schober, C., Shields, G. P., Singh, P., Sugden, I. J., Szalewicz, K., Taylor, C. R., Tkatchenko, A., Tuckerman, M. E., Vacarro, F., Vasileiadis, M., Vazquez-Mayagoitia, A., Vogt, L., Wang, Y., Watson, R. E., de Wijs, G. A., Yang, J., Zhu, Q. & Groom, C. R. (2016). Acta Cryst. B72, 439-459.]), intermolecular energy calculations and other types of calculations (Dash & Thakur, 2021[Dash, S. G. & Thakur, T. S. (2021). Cryst. Growth Des. 21, 449-461.]; Musumeci et al., 2011[Musumeci, D., Hunter, C. A., Prohens, R., Scuderi, S. & McCabe, J. F. (2011). Chem. Sci. 2, 883-890.]; Issa et al., 2009[Issa, N., Karamertzanis, P. G., Welch, G. W. A. & Price, S. L. (2009). Cryst. Growth Des. 9, 442-453.]; Karamertzanis et al., 2009[Karamertzanis, P. G., Kazantsev, A. V., Issa, N., Welch, G. W. A., Adjiman, C. S., Pantelides, C. C. & Price, S. L. (2009). J. Chem. Theory Comput. 5, 1432-1448.]), or systematic screening and rational design of multicomponent crystals with desired properties (Aakeröy & Salmon, 2005[Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439-448.]; Sládková et al., 2015[Sládková, V., Skalická, T., Skořepová, E., Čejka, J., Eigner, V. & Kratochvíl, B. (2015). CrystEngComm, 17, 4712-4721.]; Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]; Amrutha et al., 2020[Amrutha, S., Giri, L., SeethaLekshmi, S. & Varughese, S. (2020). Cryst. Growth Des. 20, 5086-5096.]). Various industrial fields also contribute to the fast development of multicomponent crystals. Improvement of physical properties of high-value chemical products has been demonstrated for agrochemicals (Nauha & Nissinen, 2011[Nauha, E. & Nissinen, M. (2011). J. Mol. Struct. 1006, 566-569.]), solid explosives (Bolton et al., 2012[Bolton, O., Simke, L. R., Pagoria, P. F. & Matzger, A. J. (2012). Cryst. Growth Des. 12, 4311-4314.]) and in particular for pharmaceuticals (Zvoníček et al., 2017[Zvoníček, V., Skořepová, E., Dušek, M., Babor, M., Žvátora, P. & Šoóš, M. (2017). Cryst. Growth Des. 17, 3116-3127.]; Billot et al., 2013[Billot, P., Hosek, P. & Perrin, M.-A. (2013). Org. Process Res. Dev. 17, 505-511.]; Stanton & Bak, 2008[Stanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856-3862.]; Schultheiss & Newman, 2009[Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950-2967.]).

Tens of thousands of new multicomponent crystals were discovered since the first reported organic:organic cocrystal (quinhydrone) back in 1884 by Wöhler (1844[Wöhler, F. (1844). Annalen Chem. Pharm. 51, 145-163.]). The majority of their crystal structures were solved over time [the crystal structure of quinhydrone was solved in 1958, long after its discovery (Matsuda et al., 1958[Matsuda, H., Osaki, K. & Nitta, I. (1958). Bull. Chem. Soc. Jpn, 31, 611-620.])]. Chemical and physical properties of new multicomponent crystals are routinely characterized during the screening process in both academia and industry, thus quickly epanding the knowledge and applicability of multicomponent solids.

Despite fast progress in the crystal engineering field and the ever-growing datasets, the process of multicomponent crystal formation itself remains inadequately understood. Commonly used methods for characterization of crystalline materials, such as powder X-ray diffraction (PXRD), single-crystal X-ray diffraction (SCXRD), infrared or Raman spectroscopy struggle to capture the formation and transformation of multicomponent crystals. The amount of solvent used during the crystal formation processes poses an obstacle for the sensitivity of these measurement methods. In addition, the design of some devices does not allow for online measurement methods. Furthermore, in cases of fast formation/transformation processes it can be difficult to obtain data with sufficient resolution to interpret the results. A flow-through glass capillary for X-ray measurements was recently introduced (Rohlíček et al., 2020[Rohlíček, J., Zvoníček, V., Skořepová, E. & Šoóš, M. (2020). Powder Diffr. 35, 160-165.]) to overcome some of the above mentioned limitations. The main advantage of this setup is that the transformation period can be captured by methods commonly used to characterize crystalline samples, such as X-ray diffraction. In this work, the flow-through capillary was used to study the process of transformation of the pharmaceutical ingredient ibrutinib (FDA, 2018[FDA (2018). FDA Drug Approval Package: Imbruvica (ibrutinib), https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210563s000lbl.pdf.]; Rozovski et al., 2014[Rozovski, U., Hazan-Halevy, I., Keating, M. J. & Estrov, Z. (2014). Cancer Lett. 352, 4-14.]; Young & Staudt, 2014[Young, R. M. & Staudt, L. M. (2014). Cancer Cell, 26, 11-13.]; Puig de la Bellacasa et al., 2014[Puig de la Bellacasa, R., Roué, G., Balsas, P., Pérez-Galán, P., Teixidó, J., Colomer, D. & Borrell, J. I. (2014). Eur. J. Med. Chem. 86, 664-675.]; Veeraraghavan et al., 2015[Veeraraghavan, S., Viswanadha, S., Thappali, S., Govindarajulu, B., Vakkalanka, S. & Rangasamy, M. (2015). J. Pharm. Biomed. Anal. 107, 151-158.]) into solvates with a series of halogenated benzenes (Fig. 1[link]) [fluoro­benzene (FBZ), chloro­benzene (CBZ), bromo­benzene (BBZ) and iodo­benzene (IBZ)]. This series was explored due to the similarity in chemical nature of the guest molecules and their ability to form multicomponent crystal solvates.

[Figure 1]
Figure 1
Molecules of ibrutinib and the solvents used (FBZ, CBZ, BBZ and IBZ).

2. Methods and materials

The non-solvated form of Ibrutinib C (Zvoníček et al., 2017[Zvoníček, V., Skořepová, E., Dušek, M., Babor, M., Žvátora, P. & Šoóš, M. (2017). Cryst. Growth Des. 17, 3116-3127.], 2018[Zvoníček, V., Skořepová, E., Dušek, M., Žvátora, P. & Šoóš, M. (2018). Cryst. Growth Des. 18, 1315-1326.]; Purro & David, 2013[Purro, N., Smyth, M. S. Goldman E. & Wirth D. D. (2013). Patent US 10294232 B2.]) was provided by Zentiva k.s. and used as a starting material in all experiments performed. Solvents were obtained from various suppliers and used as received.

2.1. Single-crystal X-ray diffraction

SCXRD of BBZ and IBZ ibrutinib solvates was performed at 95 K using a SuperNova diffractometer with a micro-focus sealed tube, mirror-collimated Cu Kα radiation (λ = 1.54184 Å) and CCD detector Atlas S2. The X-ray diffraction measurements of the structures of apremilast with phthalic acid and o-xylene were carried out at 120 K on an Xcalibur, Gemini ultra diffractometer using Cu Kα radiation (λ = 1.54178 Å) from a fine-focus sealed X-ray tube with a graphite monochromator and CCD detector Atlas S2.

The data reduction and absorption correction were carried out using the CrysAlisPro software (Rigaku Oxford Diffraction, 2019[Rigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.]). The structure was solved by charge-flipping methods using the Superflip software (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]) and refined by full matrix least squares on the F squared value using the Crystals software (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]). MCE software (Rohlíček & Hušák, 2007[Rohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600-601.]) was used for visualization of residual electron density maps. According to common practice, the hydrogen atoms attached to carbon atoms were placed geometrically with Uiso(H) in the range 1.2–1.5 Ueq of the parent atom (C). The structures have been deposited in the Cambridge Structural Database (CCDC nos. 2166306, 2166307 and 2164831).

2.2. Powder X-ray diffraction

Diffraction patterns of the sample in the flow-through capillary were collected with the powder diffractometer device Empyrean of PANalytical, with a Cu Kα X-ray beam (λ = 1.542 Å, focusing mirror, voltage: 45 kV, current: 40 mA). The fast scans were measured in the range 5–9° 2θ with a step size of 0.013° 2θ and an overall measurement time of 5 min. The measurement for the structure determination was performed on a flat sample at 3–80° 2θ with a step size of 0.013° 2θ and an overall measurement time of 20 h.

The diffraction patterns of resulting solid samples from competitive slurries were collected with the Bruker AXS D8 powder diffractometer, a Cu Kα X-ray beam (λ = 1.7903 Å), 5–40° 2θ measured range, 34 kV excitation voltage, 30 mA anodic current and 0.0196° 2θ step size. The measurement was performed on a flat sample with an area/thickness ratio equal to 10/0.5 mm. The HighScore Plus (Degen et al., 2014[Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. (2014). Powder Diffr. 29, S13-S18.]) software was used to process the diffraction patterns.

2.3. Differential scanning calorimetry

Samples for differential scanning calorimetry (DSC) measurements were weighed in an aluminium pan (5–10 mg). The pan was covered and the measurement was carried out under a nitro­gen gas flow of 50 ml min−1. All the measurements were performed on the DSC 822e, Mettler Toledo instrument. The range of investigated temperatures was 0 to 300°C at a heating rate of 10°C min−1 (amplitude = 0.8°C, period = 60 s).

2.4. Thermogravimetric analysis

Thermogravimetric analysis (TGA) was performed on a TG 209, Netzsch instrument. Approximately 10 mg of the sample was weighed into a ceramic pan and measured under a nitro­gen atmosphere. The TGA measurement was performed in the approximate temperature range 20–300°C. A heating rate of 10°C min−1 was used in all experiments.

2.5. Raman spectroscopy

Samples for Raman spectroscopy were measured in HPLC glass vials in an FT-Raman RFS100/S spectrometer device with a germanium detector (Bruker Optics, Germany). The wavelength of the Nd:YAG laser was 1064 nm. The measurement range was 4000 to 0 cm−1, with a spectral resolution of 4.0 cm−1. Data were obtained at either 64 or 128 accumulations of the measured spectra. The software OPUS and OMNIC were used to process the Raman spectra.

2.6. Competitive slurry

All combinations of solvents were mixed in equimolar ratios in HPLC vials. Approximately 150 µl of each solvent was used. A mass of 100 mg of ibrutinib C was subsequently mixed with all possible combinations of the solvents. Vials were placed in a ThermoMixer C shaker at room temperature and mixed at 600 rev min−1. Vials were slurried for 48 h. The slurry was filtered and dried for 24 h at 40°C and 150 mbar. The prepared samples were analyzed using PXRD to confirm solvate structure formation and NMR to determine the ratio of solvents in the solid samples.

2.7. Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) spectra were obtained using a Bruker Advance 500 (Bruker Biospin, Germany) at 500.13 MHz with a 5 mm Prodigy probe. Liquid NMR experiments were performed in di­methyl­sulfoxide or deuterated. The measurement temperature was 298 K.

2.8. Interaction energy calculations

Several approaches were chosen to estimate the interaction energy within the crystal structures. Solved solvate structures and ibrutinib polymorph C were optimized in the CASTEP program (Clark et al., 2005[Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K. & Payne, M. C. (2005). Z. Kristallogr. Cryst. Mater. 220, 567-570.]). Final enthalpies of all optimized structures were then used to obtain the interaction energies of the solvates: Eint = Esolvate − (Eibrutinib + Esolvent). A different approach was based on isolated molecules and unit cells using the Gaussian16 software (Frisch, et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian16, Revision B. 01, Gaussian, Inc., Wallingford CT.]). The interaction energy was obtained with 2Eint = Esolvate − (Eibrutinib + Esolvent). Finally, crystal elongation energies were estimated using structures containing optimized unit cells in different directions (i.e. 2 × 1 × 1, 1 × 2 × 1, 1 × 1 × 2). Crystal elongation energies in each direction were established according to the formula Eelongation = E2 × 1 × 1 − 2E1 × 1 × 1.

3. Results and discussion

The ibrutinib solvates used to explore solid-state transformations were firstly characterized from a crystallographic point of view. The mechanism and kinetics of the transformations were studied using X-ray diffraction and complemented by thermodynamic experiments. Furthermore, the interaction energies of the crystal structures were calculated and compared with the experimental results.

3.1. Crystallography

To obtain insight into the crystal packing and intermolecular interactions, single crystals of all solvates were analyzed by SCXRD and their structures were solved. Crystal structures of the CBZ and FBZ solvates have been already reported in the literature as well as their comprehensive crystallographic analyses (Zvoníček et al., 2017[Zvoníček, V., Skořepová, E., Dušek, M., Babor, M., Žvátora, P. & Šoóš, M. (2017). Cryst. Growth Des. 17, 3116-3127.]; Vasilopoulos et al., 2022[Vasilopoulos, Y., Heyda, J., Rohlíček, J., Skořepová, E., Zvoníček, V. & Šoóš, M. (2022). J. Phys. Chem. B, 126, 503-512.]; Rohlíček et al., 2020[Rohlíček, J., Zvoníček, V., Skořepová, E. & Šoóš, M. (2020). Powder Diffr. 35, 160-165.]). The packing similarities of the solvate crystal structures were explored using CrystalCMP (Rohlíček et al., 2016[Rohlíček, J., Skořepová, E., Babor, M. & Čejka, J. (2016). J. Appl. Cryst. 49, 2172-2183.]) and further crystallographic details of the structures are listed in the supporting information.

All four solvates crystallize in the triclinic system in the space group P1, with two molecules of ibrutinib and two molecules of the respective solvent in the unit cell. When compared from the point of view of molecular packing and unit-cell parameters, three of the solvates are isostructural (CBZ, BBZ and IBZ) and one is different (FBZ). The unit cells of the isostructural solvates (CBZ, BBZ and IBZ) contain two molecules of ibrutinib and two molecules of the respective solvent. Their cell parameters are very similar: a ≃ 11 Å, b ≃ 12 Å, c ≃ 12 Å, α ≃ 80°, β ≃ 69°, γ ≃ 69°. The unit-cell parameters of the FBZ solvate are a ≃ 9.6 Å, b ≃ 11.1 Å, c ≃ 14.2 Å, α ≃ 73.2°, β ≃ 82.1°, γ ≃ 66.0°. Fig. 2[link](a) shows the overlay of the conformations of ibrutinib and the positions of the solvent molecule. The FBZ solvate crystal structure differs due to the rotation of the outer parts of the ibrutinib molecule. FBZ also occupies a different spot in the FBZ solvate structure compared with the other solvents.

[Figure 2]
Figure 2
(a) Comparison of the solvate crystal structures (red – FBZ solvate, green – CBZ solvate, blue – BBZ solvate, orange – IBZ solvate). (b) Packing similarity dendrogram generated by CrystalCMP.

Fig. 2[link](b) shows the molecular packing similarity tree diagram calculated by CrystalCMP. It indicates that the molecular packing of ibrutinib molecules is almost identical in the three isostructural solvates. CBZ, BBZ and IBZ form isostructural cavity solvates with ibrutinib, whereas FBZ forms a channel solvate (see Fig. S4 of the supporting information).

3.2. Mechanism and kinetics of transformation

The transformations from ibrutinib C to halogen benzene solvates were studied using a flow-through capillary. We filled the glass capillary with ibrutinib C and mounted it in the PXRD device. We then initiated the measurement sequence of PXRD patterns, and the solvent was pumped through the glass capillary. Polymorph C of ibrutinib transformed into the solvated form following contact of the solid and liquid phases. We obtained a time series of diffraction patterns to monitor the phase transition. Fig. 3[link](a) depicts a scheme of the glass capillary.

[Figure 3]
Figure 3
(a) Scheme of the glass flow-through capillary. (b) Diffraction patterns of ibrutinib polymorph C and of the prepared ibrutinib solvates. (c) Time series of diffraction patterns observed during the transformation of ibrutinib C to the FBZ solvate.

Due to isostructural crystal packing, there is a certain degree of similarity in the diffraction patterns of CBZ, BBZ and IBZ solvates [see Fig. 3[link](b)]. However, the diffraction patterns of ibrutinib C and the ibrutinib solvates are significantly different between 5 and 9° [Fig. 3[link](a)]. The fact that each form has well defined, intensive peaks (at approximately 6.4° for the FBZ solvate and 7° for ibrutinib C) in this region helps to easily distinguish their diffraction patterns. The diffraction patterns of the CBZ, BBZ and IBZ solvates in this region also exhibit two characteristic peaks at approximately 8°. Therefore, we conveniently selected the region of 5–9° to monitor the transformations in all experiments performed. A certain degree of similarity in the diffraction patterns of CBZ, BBZ and IBZ can be observed owing to isostructural crystal packing. Fig. 3[link](c) shows the time evolution of the diffraction patterns after filling the flow-through capillary with FBZ. The changes in diffraction patterns reflect the transformation of non-solvated polymorph C to the FBZ solvate. Only ibrutinib C is present in the sample at the start of the measurement (the only peak present is at 7°). The gradual transformation of the sample is reflected by the extinction of the ibrutinib peak at ∼7° and progressive evolution of the FBZ solvate peak at 6.4°. The sample underwent full transformation to the FBZ solvate after complete extinction of the ibrutinib C peak at 7°. This entire transformation process takes approximately 130 s. We can describe the FBZ transformation as a direct (without any intermediate phases) and fast transformation that results in a channel solvate structure

A larger range (5–30°) was measured only before and after completion of the transformation. We measured only several degrees (5–9°) to minimize the required measurement time, which allows more frequent measurements during the transformation and therefore results in more accurate observation of the transformation process. Nevertheless, an optimal balance needs to be found between the quality of the measured data and the time required for the measurement. The transformation of ibrutinib C to the FBZ solvate was measured at 10 s intervals. In some cases, the 10 s time resolution between measurements was too low. Therefore, the diffraction patterns were then measured every 3 s, which resulted in more frequent, but also noisy data. Measuring the entire diffraction pattern would not provide any useful information, because the transformation would finish much faster than the measurement of a single diffraction pattern. However, the entire diffraction pattern was measured before and after the transformation process to confirm the complete transformation of the sample.

We performed the same procedure and evaluation for the three remaining solvents. The time evolution of the diffraction patterns for all four transformations is shown in Fig. 4[link]. The observed noise in a number of the diffraction patterns can be attributed to the very short measurement time required to capture the fast transformation. It is interesting that the time evolution of diffraction patterns is different for each of the transformations, despite the similarity in chemical nature of the solvents and the similarity in the crystal packing (with the exception of the FBZ solvate).

[Figure 4]
Figure 4
Transformation of ibrutinib form C to all four solvates illustrated by the evolution of diffraction patterns.

As discussed above, the FBZ solvate transformation is fast (approximately 130 s) and direct. In contrast, the transformation of ibrutinib C to the CBZ solvate is more complex as indicated by the PXRD measurement of the transformation. A new peak at 6.5° appears in the diffraction patterns during the CBZ solvate transformation. This peak (marked by a gray circle in Fig. 4[link]) does not correspond to ibrutinib C, or any other ibrutinib polymorph, nor the CBZ solvate. This indicates the formation of a new crystalline phase during the transformation period. The low-intensity and rapid extinction of the peak once we filled the capillary with CBZ led us to the conclusion that an intermediate crystalline form has a vital role in the formation of the CBZ solvate. This peak formed and was consistently present in experiments where only half of the capillary was filled with CBZ (PXRD measured both dry ibrutinib, wet ibrutinib and the interface between the two). Therefore, we assumed that the new intermediate phase forms at the interface of the solvated and non-solvated sample. After the interface is supplied with more solvent, the intermediate phase transforms into the CBZ solvate structure and the peak at 6.5° is no longer present. We successfully isolated the intermediate phase with further experiments (a detailed description is provided in the supporting information) and measured its diffraction pattern, which confirms the formation of the intermediate crystalline phase during the CBZ solvent transformation (Fig. 5[link]).

[Figure 5]
Figure 5
Measured diffraction patterns of the empty capillary (ibrutinib form C), half-filled capillary (ibrutinib form C + CBZ solvate + intermediate crystalline phase), full capillary (CBZ solvate) and intermediate crystalline phase.

The peak with low intensity at 6.5° in the half-filled capillary experiment corresponds well to the peak at 6.5° of the intermediate crystalline phase (highlighted by the gray area in Fig. 5[link]). Only a very small amount of the intermediate phase is present in the half-filled capillary experiment, located at the interface of the solvated and non-solvated samples. This causes very low intensity of the peak, since the interface is only a small part of the measured area. The intermediate crystalline phase was further studied, and its crystal structure was successfully solved from PXRD data (CCDC no. 2164831). We discovered that the intermediate phase contains only one molecule of CBZ and two molecules of ibrutinib in the asymmetric unit. It is a CBZ hemisolvate with unit-cell parameters of a ≃ 14.0 Å, b ≃ 10.2 Å, c ≃ 10.4 Å, α ≃ 116.4°, β ≃ 85.6°, γ ≃ 79.3°, and the space group of the hemisolvate was determined to be P1.

This is in line with the assumption of the intermediate phase formation at the interface. A hemisolvate is formed at the interface, where there is an insufficient amount of CBZ molecules. After additional CBZ is supplied, the transformation continues further from the CBZ hemisolvate form to the final CBZ solvate (1:1) form.

Overall, the transformation of the CBZ solvate is more complex than in the case of the FBZ solvate. It is a fast transformation with a crystalline intermediate phase, where the first step is the transformation of ibrutinib C to the crystalline intermediate CBZ hemisolvate, which in a very short time can transform further into the CBZ (1:1) solvate after additional supply of CBZ.

The BBZ solvate transformation is much simpler (see Fig. 4[link]). It is a fast and direct transformation, as in the case of the FBZ transformation. Nevertheless, the difference between the BBZ and FBZ transformations is in their final forms. The BBZ solvate is a cavity solvate with a different crystal structure compared with the FBZ channel solvate.

The mechanism of the IBZ solvate transformation is vastly different compared with the rest of the solvates. The sample becomes amorphous after the ibrutinib C makes contact with IBZ. This is confirmed by the diffraction patterns with no peaks. As long as the sample was in contact with the solvent, it remained amorphous. Visual inspection confirmed that the sample had not dissolved. The peaks in the diffraction pattern of the IBZ solvate began to evolve after the sample started to dry out and the excess IBZ evaporated. The evolution of the peaks, and the transformation itself, progressed continuously as the sample dried. The sample completely transformed after all the excess solvent evaporated. The sample changes to the amorphous form instantly on contact with the solvent. Therefore, the rate of transformation is entirely dependent on the slower phenomenon, the rate of drying.

Thus, we observed four different mechanisms of the transformation: FBZ – fast and direct transformation to the channel solvate structure, CBZ – fast transformation with a crystalline intermediate phase resulting in the cavity solvate structure, BBZ – fast and direct transformation to the cavity solvate structure, IBZ – fast transformation with an amorphous intermediate phase resulting in the cavity solvate structure. We compared experimental diffraction patterns of the samples after transformation with patterns generated from obtained crystal structures to ensure the consistency of the transformation process (Fig. S2).

3.3. Thermodynamics

We investigated the thermodynamic preference of the solvate structure formation to complement the results of the solvate transformations. For this purpose, we performed competitive slurry experiments. First, we created all possible pairs of our solvents and mixed them in the same molar ratios. Thus, as an example, a binary mixture of FBZ and CBZ in the molar ratio 1:1 was prepared. Analogously, all possible triplets and quartets of FBZ, CBZ, BBZ and IBZ were mixed in equimolar ratios. All prepared combinations of two, three and four solvents were slurred with ibrutinib C. Solvate structure formation was confirmed by PXRD and the content of each solvent in the solid sample was examined by liquid nuclear magnetic resonance spectroscopy (1H NMR). Table 1[link] lists the solvent contents in the solid samples for all competitive slurry experiments. We expected that the strongest-binding solvent in the solvate structures would be the most abundant in the final solvate sample. For example, a binary mixture of IBZ and FBZ (sample J in Table 1[link]) contains almost exclusively IBZ solvent in the resulting solvate structure. This suggests stronger interactions of IBZ molecules in the solvate structure compared with FBZ molecules.

Table 1
Solvent content in slurry experiments (A: 4 solvents, B–E: 3 solvents, F–K: 2 solvents) as estimated by lH NMR

  Solvent
Ibrutinib C FBZ CBZ BBZ IBZ
A 0 0.3 0.33 0.5
B 0 0.3 0.5
C 0 0.33 0.72
D 0 0.26 0.85
E 0 0.33 0.65
F 0.4 0.69
G 0.2 0.85
H 0.07 0.9
I 0.35 0.75
J 0 0.98
K 0 0.4

The sum of the analyzed solvent content is not always equal to one, despite following identical experimental procedure. In some cases, it was difficult to accurately evaluate the lH NMR spectra, due to many overlapping bands, but the phenomenon of the preferential solvate formation is clear. Different rates of solvent drying from a solid sample may also contribute to the imperfect molar ratio. For instance, sample A is a mixture of all four solvents but the total content is higher than one. The observed ratios from that sample suggest the strongest preference for IBZ, while BBZ and CBZ behave similarly, and FBZ exhibits the lowest preference. We further explored the similarity of CBZ and BBZ in sample I, where in the binary system of the two solvents, BBZ had higher preference compared with CBZ. We observed the same trend of higher preference of BBZ over CBZ in triplet samples B and E. After a complete evaluation of Table 1[link], we suggest a preference sequence. Ibrutinib has the strongest preference to form the IBZ solvate and the least preferable is the FBZ channel solvate. The sequence of preference is as follows: IBZ > BBZ > CBZ > FBZ. This reflects the strength of interactions between ibrutinib and the respective solvents. We performed a set of DFT-based calculations to shed more light on the deep nature of interactions within the solvate structures which control their formation.

3.4. Calculations

We applied two basic DFT-based approaches to explain the increasing tendency of ibrutinib to form a halogen benzene solvate with increasing halogen atomic number. Both approaches focused on estimations of interaction energies (Eint) of a solvate unit cell associated with the formation of the cell from individual components. For more details, see the Methods in the supporting information. The first approach calculates Eint using the periodic conditions in CASTEP (Clark et al., 2005[Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K. & Payne, M. C. (2005). Z. Kristallogr. Cryst. Mater. 220, 567-570.]), whereas the second treats a solvate or its components as isolated systems (i.e. as single unit cells or isolated molecules). To test the sensitivity of Eint (or trends in Eint) to structural parameters of a solvent, we tested two modifications of the CASTEP approach. One variation [labeled CASTEP(2)] used the chosen unit cell of the solvent containing two molecules of solvent. In the second variation [labeled CASTEP(1)] we placed only one molecule of the solvent in the unit cell. The unit cell for a solvent was arbitrarily created from the corresponding solvate unit cell as described in the Methods. Fig. 6[link](a) graphically summarizes Eint estimated by all three methods. Table S2 of the supporting information then shows individual values. In general, a lower Eint means a stronger interaction among moieties in a solvate and hence the higher preference for its formation. We can see that all approaches reproduced the trend of increased preference of formation effectively (i.e. FBZ < CBZ < BBZ < IBZ) as the energy increased in the same series. Nevertheless, neglecting environmental effects in the isolated system approach is obviously too crude, as it estimated a positive Eint for FBZ and CBZ. This would suggest that they will not form, which does not agree with the experiment. Both CASTEP approaches correctly estimated negative Eint values for all solvates with increasing absolute values in the FBZ < CBZ < BBZ < IBZ series (Fig. 7[link]). The CASTEP(1) approach provides a larger Eint by about ∼5.2 kcal mol−1. The decrease of absolute values in the CASTEP(2) approach can be attributed to the mutual interaction of two solvent molecules in the optimized unit cell. This leads to the lower energy of the solvent that results in slightly higher Eint. Nevertheless, we cannot decide whether the mutual interaction of solvent molecules in pure solvent (according to our model) is not excessive. Therefore, our predictions have a more qualitative than quantitative value. Similarly, we also estimated Eint of the CBZ intermediate. Fig. 6[link](b) shows the values relative to the CBZ solvate, clearly showing the formation course: IBR → intermediate → solvate. Optimized parameters of unit cells for all solvates are gathered in Table S3.

[Figure 6]
Figure 6
Different mechanisms of the transformation for FBZ, CBZ, BBZ and IBZ.
[Figure 7]
Figure 7
(a) Eint estimated using two CASTEP-based approaches and for the isolated system. (b) Relative Eint for the ibrutinib–CBZ solvate formation.

To identify a possible source of interactions between IBR and solvents, we also calculated Eelongation for all solvates to predict the energy associated with elongation of a crystal in a certain direction. For computational details, see the Methods. Table S4 summarizes Eelongation estimated for all solvates at two theoretical levels. The lower level (PBE/3-21G) provides likely overestimated values, as Eelongation decreases with increased basis set. We can see that elongation in one particular direction applies to all solvents associated with substantially larger Eelongation. This corresponds to elongation in the direction with the highest contribution of parallel-displaced ππ interactions. Different directions with the strongest Eelongation for different solvates can be attributed to different unit-cell orientations. We observe a slight increase of Eelongation in the FBZ < CBZ < BBZ series, which could indicate a slight increase of crystal strength in the same order. Energies for IBZ seem unreliably low due to the low-level of theory or the neglect of relativistic contributions.

Thermal behavior of the solvates is consistent with the results obtained from the competitive slurry experiment and the interaction energy calculations. The melting temperatures of the prepared solvates were evaluated and the IBZ solvate shows the highest melting temperature at 125°C. The melting temperature of the BBZ solvate was 110°C, the CBZ solvate was 96°C and the FBZ solvate was around 99°C. The calculated interaction strength as well as the preferred formation of the IBZ solvate correlate well with its higher thermal stability. The descending melting temperatures of BBZ and CBZ solvates follow equal logic. The FBZ solvate cannot be easily compared with the rest of the solvates since its crystal structure is different. Even though the descending order of melting temperatures cannot be considered direct proof of interaction strength, it provides additional insight and information about the solvate series.

4. Conclusions

The mechanism of solvate structure formation, thermodynamics and calculations form a coherent set of results. The calculated interaction energies of the solvent and ibrutinib molecules agree well with the increasing tendency of ibrutinib to form a halogen benzene solvate with increasing halogen atomic number, determined from competitive slurry experiments. The calculated interaction energy was lowest for the IBZ solvate, followed by the BBZ, CBZ and FBZ solvates which have increasingly higher interaction energies. The preference of solvate formation reflects the interaction energies well as the IBZ solvate forms more easily than the other solvates, followed by BBZ, CBZ and FBZ, which form in lower amounts, respectively, in the presence of other solvents. Further, we propose a hypothesis based on the observed results about how the interaction strength impacts the mechanism of solvate formation. During the formation of the IBZ solvate the sample becomes amorphous on contact with the IBZ solvent. We attribute this phenomenon to the strength of the IBZ and ibrutinib interaction (higher than the other solvates) which disrupts the crystalline structure of ibrutinib in excess IBZ. The crystalline order is restored after evaporation of the excess molecules of solvent and the cavity solvate is formed. In the case of the BBZ solvate, the interaction is weaker, and the mechanism of transformation is direct, without the amorphous intermediate phase. The resulting crystal structure is also the cavity solvate, which is isostructural with the IBZ solvate. The interaction strength of CBZ and ibrutinib is slightly weaker again. The mechanism of the CBZ solvate transformation requires a crystalline intermediate phase (hemi-CBZ solvate) that is more like the channel FBZ solvate, which has the weakest interaction strength. After a supply of additional CBZ the crystal structure transforms to the final cavity CBZ solvate. The FBZ solvate transforms directly, but the FBZ solvate is not isostructural with the rest of the solvates; it forms the channel solvate as opposed to a cavity solvate.

Overall, the system is fully characterized from the crystal structure and mechanism of transformation to the interaction energies and provides deep insight into the formation of ibrutinib solvates.

5. Related literature

The following references are cited in the supporting information: Macrae et al. (2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]); Perdew et al. (1996[Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett., 77, 3865-3868.]); Grimme (2006[Grimme, S. (2006). J. Comput. Chem. 27, 1787-1799.]); Monkhorst & Pack (1976[Monkhorst, H. J. & Pack, J. D. (1976). Phys. Rev. B, 13, 5188-5192.]).

Supporting information


Computing details top

Data collection: SuperNova, (Oxford Diffraction, 2010) for bromo, iodo. Cell refinement: CrysAlis PRO, (Agilent, 2011) for bromo, iodo. Data reduction: CrysAlis PRO, (Agilent, 2011) for bromo, iodo. Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for bromo, iodo. Program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003) for bromo, iodo. Molecular graphics: CAMERON (Watkin et al., 1996) for bromo, iodo. Software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) for bromo, iodo.

(bromo) top
Crystal data top
C62H58Br2N12O4Z = 1
Mr = 1195.03F(000) = 616
Triclinic, P1Dx = 1.435 Mg m3
a = 11.0298 (4) ÅCu Kα radiation, λ = 1.54180 Å
b = 11.9154 (4) ÅCell parameters from 11881 reflections
c = 11.9588 (4) Åθ = 4–71°
α = 80.855 (3)°µ = 2.35 mm1
β = 71.713 (3)°T = 95 K
γ = 68.106 (3)°Prism, colorless
V = 1383.10 (5) Å30.37 × 0.12 × 0.08 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
9901 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 71.2°, θmin = 3.9°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 1312
Tmin = 0.51, Tmax = 0.82k = 1414
17859 measured reflectionsl = 1414
9964 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.97P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.84 e Å3
9964 reflectionsΔρmin = 0.66 e Å3
734 parametersAbsolute structure: Flack (1983), 4649 Friedel-pairs
11 restraintsAbsolute structure parameter: 0.034 (9)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69574 (5)0.86188 (4)0.53079 (4)0.0384
C20.6496 (3)0.8385 (3)0.3974 (3)0.0254
C30.5272 (3)0.8240 (2)0.4152 (3)0.0276
C40.4891 (3)0.8150 (3)0.3176 (3)0.0331
C50.5739 (4)0.8190 (3)0.2056 (3)0.0395
C60.6980 (4)0.8302 (4)0.1906 (3)0.0484
C70.7385 (3)0.8400 (3)0.2857 (3)0.0394
Br80.33165 (5)1.17960 (5)0.95128 (4)0.0491
C90.2852 (3)1.1835 (3)1.0907 (3)0.0295
C100.1799 (3)1.2242 (3)1.0802 (3)0.0324
C110.1418 (3)1.2237 (3)1.1805 (3)0.0350
C120.2090 (3)1.1803 (3)1.2885 (3)0.0390
C130.3105 (4)1.1424 (3)1.2968 (3)0.0429
C140.3524 (3)1.1425 (3)1.1978 (3)0.0388
O150.5309 (2)0.75081 (17)0.96581 (19)0.0266
C160.5555 (3)0.6477 (2)0.9406 (2)0.0219
N170.4988 (2)0.62367 (19)0.8648 (2)0.0220
C180.5719 (3)0.5215 (3)0.7873 (3)0.0270
C190.4745 (3)0.4738 (2)0.7626 (3)0.0295
C200.3687 (3)0.5762 (2)0.7110 (2)0.0242
C210.2984 (3)0.6823 (2)0.7924 (2)0.0196
C220.4013 (3)0.7257 (2)0.8173 (2)0.0210
N230.2057 (2)0.7829 (2)0.7399 (2)0.0189
N240.2555 (2)0.8578 (2)0.6537 (2)0.0205
C250.1524 (3)0.9346 (2)0.6168 (2)0.0183
C260.0298 (3)0.9110 (2)0.6791 (2)0.0172
C270.0703 (3)0.8117 (2)0.7555 (2)0.0189
N280.0098 (2)0.75447 (19)0.83263 (19)0.0193
C290.1369 (3)0.8040 (2)0.8268 (2)0.0193
N300.1925 (2)0.90124 (19)0.7623 (2)0.0202
C310.1113 (3)0.9609 (2)0.6890 (2)0.0189
N320.1727 (2)1.0620 (2)0.6337 (2)0.0205
C330.1805 (3)1.0210 (2)0.5175 (2)0.0190
C340.1164 (3)1.0480 (2)0.4282 (2)0.0212
C350.1531 (3)1.1194 (2)0.3287 (2)0.0242
C360.2561 (3)1.1634 (2)0.3191 (2)0.0245
O370.3060 (2)1.2256 (2)0.21751 (19)0.0349
C380.2161 (3)1.3138 (2)0.1632 (3)0.0240
C390.0971 (3)1.3962 (3)0.2276 (2)0.0269
C400.0190 (3)1.4906 (3)0.1679 (3)0.0305
C410.0587 (3)1.5010 (3)0.0457 (3)0.0336
C420.1756 (3)1.4158 (3)0.0165 (3)0.0336
C430.2549 (3)1.3217 (3)0.0419 (3)0.0275
C440.3192 (3)1.1398 (2)0.4072 (3)0.0236
C450.2825 (3)1.0685 (2)0.5061 (2)0.0201
C460.6422 (3)0.5396 (3)0.9973 (3)0.0278
C470.7260 (4)0.5504 (3)1.0483 (3)0.0377
O480.1818 (2)1.30480 (17)0.52487 (19)0.0258
C490.1743 (3)1.4071 (2)0.5089 (2)0.0207
N500.0793 (2)1.43393 (18)0.53744 (19)0.0213
C510.0207 (3)1.3394 (2)0.5886 (2)0.0240
C520.0180 (3)1.3795 (2)0.7053 (2)0.0216
N530.1189 (2)1.2841 (2)0.7541 (2)0.0221
N540.0742 (2)1.2070 (2)0.8412 (2)0.0213
C550.1829 (3)1.1249 (2)0.8663 (2)0.0195
C560.1643 (3)1.0273 (2)0.9564 (2)0.0194
C570.0674 (3)0.9768 (2)0.9569 (2)0.0218
C580.0465 (3)0.8850 (3)1.0386 (2)0.0248
C590.1206 (3)0.8427 (2)1.1196 (2)0.0244
O600.0913 (2)0.7503 (2)1.1956 (2)0.0373
C610.1776 (3)0.6860 (3)1.2661 (3)0.0280
C620.2776 (3)0.5775 (3)1.2288 (3)0.0358
C630.3517 (4)0.5077 (3)1.3052 (3)0.0404
C640.3265 (3)0.5471 (3)1.4157 (3)0.0336
C650.2273 (3)0.6582 (3)1.4504 (3)0.0332
C660.1510 (3)0.7275 (3)1.3755 (3)0.0316
C670.2155 (3)0.8922 (2)1.1221 (2)0.0230
C680.2363 (3)0.9853 (2)1.0399 (2)0.0211
C690.3038 (3)1.1466 (2)0.7941 (2)0.0185
C700.2567 (3)1.2492 (2)0.7229 (2)0.0186
N710.3346 (2)1.30204 (19)0.6359 (2)0.0212
C720.4662 (3)1.2436 (2)0.6269 (2)0.0208
N730.5258 (2)1.14529 (19)0.6883 (2)0.0204
C740.4474 (3)1.0917 (2)0.7722 (2)0.0195
N750.5095 (2)0.9917 (2)0.8268 (2)0.0214
C760.0378 (3)1.5016 (2)0.6913 (2)0.0245
C770.0651 (3)1.5951 (2)0.6312 (2)0.0225
C780.0552 (3)1.5496 (2)0.5152 (2)0.0225
C790.2733 (3)1.5079 (3)0.4562 (3)0.0252
C800.3365 (3)1.4874 (3)0.3907 (3)0.0322
H310.46790.82290.49160.0367*
H410.40330.80520.32860.0422*
H510.54760.81520.13970.0459*
H610.75620.83190.11510.0564*
H710.82300.84830.27610.0483*
H1010.13671.25351.00680.0400*
H1110.07171.25401.17470.0428*
H1210.18221.17891.35480.0495*
H1310.35221.11351.36950.0506*
H1410.42421.11521.20260.0492*
H1810.63220.45740.82640.0338*
H1820.62530.54910.71140.0343*
H1920.42450.44440.83710.0373*
H1910.52530.40940.70700.0366*
H2010.41590.60340.63330.0324*
H2020.30060.54750.70130.0322*
H2110.24320.65650.86770.0241*
H2210.35550.78820.87500.0268*
H2220.44930.75980.74590.0269*
H2910.19720.76330.87560.0239*
H3410.04591.01570.43530.0267*
H3510.11031.13780.26790.0302*
H3910.07051.38800.31010.0342*
H4010.06031.54720.21080.0378*
H4110.00921.56540.00450.0425*
H4210.20191.42170.10080.0411*
H4310.33561.26150.00030.0339*
H4410.38771.17270.39930.0288*
H4510.32561.05270.56520.0261*
H4610.63790.46180.99460.0340*
H4710.72990.62691.05200.0475*
H4720.78380.48021.07960.0483*
H5110.11161.32520.53390.0309*
H5120.00361.26640.60190.0316*
H5210.07081.38670.76340.0271*
H5710.01781.00480.89960.0284*
H5810.01870.84961.03830.0310*
H6210.29360.55291.15280.0451*
H6310.41890.43321.28220.0499*
H6410.37670.49801.46840.0430*
H6510.21080.68571.52500.0418*
H6610.08240.80291.39660.0400*
H6710.26480.86231.17750.0283*
H6810.29901.02021.04320.0267*
H7210.52631.27710.56930.0251*
H7610.02221.52990.76830.0328*
H7620.13071.49320.64240.0325*
H7720.04621.67020.61530.0237*
H7710.15671.60950.68350.0252*
H7810.12131.61040.47850.0267*
H7820.03661.53470.46220.0275*
H7910.28781.58900.46990.0331*
H8010.39431.55410.35610.0394*
H8020.32371.40640.37740.0396*
H7520.466 (2)0.953 (2)0.879 (3)0.0271*
H3220.134 (2)1.112 (2)0.599 (3)0.0275*
H7510.5944 (19)0.957 (2)0.801 (2)0.0271*
H3210.2560 (19)1.082 (2)0.643 (3)0.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0485 (2)0.02661 (14)0.03474 (17)0.00400 (13)0.02200 (14)0.00784 (11)
C20.0288 (15)0.0233 (13)0.0232 (14)0.0017 (11)0.0126 (11)0.0056 (10)
C30.0245 (14)0.0192 (13)0.0259 (14)0.0029 (11)0.0021 (11)0.0003 (10)
C40.0235 (15)0.0313 (16)0.0427 (19)0.0086 (12)0.0068 (13)0.0034 (13)
C50.0394 (19)0.051 (2)0.0324 (17)0.0184 (16)0.0093 (14)0.0086 (14)
C60.045 (2)0.081 (3)0.0256 (16)0.037 (2)0.0064 (14)0.0155 (17)
C70.0309 (17)0.053 (2)0.0362 (17)0.0210 (15)0.0027 (13)0.0152 (15)
Br80.0428 (2)0.0607 (2)0.03903 (19)0.00337 (17)0.01585 (15)0.01604 (17)
C90.0268 (15)0.0317 (15)0.0263 (15)0.0011 (12)0.0114 (12)0.0104 (12)
C100.0262 (15)0.0265 (14)0.0325 (15)0.0001 (12)0.0034 (12)0.0004 (12)
C110.0261 (16)0.0257 (15)0.049 (2)0.0001 (12)0.0145 (14)0.0028 (13)
C120.0333 (18)0.0419 (18)0.0259 (15)0.0123 (14)0.0147 (13)0.0072 (13)
C130.050 (2)0.0381 (17)0.0252 (15)0.0061 (15)0.0007 (14)0.0004 (13)
C140.0283 (16)0.0412 (18)0.0417 (18)0.0083 (13)0.0043 (13)0.0081 (14)
O150.0298 (11)0.0202 (10)0.0312 (11)0.0048 (8)0.0159 (9)0.0009 (8)
C160.0186 (12)0.0224 (12)0.0210 (12)0.0035 (10)0.0063 (10)0.0020 (10)
N170.0192 (11)0.0190 (10)0.0254 (11)0.0002 (8)0.0106 (9)0.0024 (8)
C180.0204 (13)0.0249 (13)0.0309 (14)0.0024 (11)0.0100 (11)0.0075 (11)
C190.0275 (15)0.0190 (12)0.0395 (16)0.0016 (11)0.0150 (12)0.0070 (11)
C200.0232 (13)0.0214 (12)0.0275 (13)0.0035 (10)0.0107 (11)0.0023 (10)
C210.0158 (12)0.0198 (12)0.0189 (12)0.0025 (10)0.0060 (10)0.0044 (9)
C220.0205 (13)0.0174 (11)0.0209 (12)0.0022 (10)0.0066 (10)0.0015 (9)
N230.0152 (11)0.0188 (10)0.0186 (10)0.0029 (8)0.0058 (8)0.0051 (8)
N240.0190 (11)0.0215 (11)0.0168 (10)0.0051 (9)0.0034 (8)0.0031 (8)
C250.0145 (12)0.0174 (11)0.0197 (12)0.0010 (9)0.0061 (10)0.0000 (9)
C260.0189 (13)0.0152 (11)0.0150 (11)0.0046 (9)0.0039 (9)0.0016 (9)
C270.0153 (12)0.0189 (11)0.0186 (12)0.0013 (10)0.0047 (10)0.0017 (9)
N280.0197 (11)0.0189 (10)0.0166 (10)0.0045 (9)0.0051 (8)0.0015 (8)
C290.0191 (13)0.0183 (11)0.0175 (12)0.0044 (10)0.0043 (10)0.0008 (9)
N300.0175 (10)0.0169 (10)0.0230 (11)0.0036 (8)0.0046 (8)0.0001 (8)
C310.0196 (13)0.0156 (11)0.0180 (12)0.0035 (10)0.0031 (10)0.0018 (9)
N320.0154 (11)0.0176 (10)0.0246 (11)0.0033 (8)0.0057 (9)0.0040 (8)
C330.0163 (12)0.0148 (11)0.0194 (12)0.0016 (9)0.0015 (10)0.0006 (9)
C340.0194 (13)0.0175 (11)0.0206 (13)0.0004 (9)0.0046 (10)0.0005 (9)
C350.0219 (13)0.0235 (13)0.0202 (13)0.0012 (10)0.0064 (10)0.0034 (10)
C360.0207 (13)0.0221 (12)0.0193 (12)0.0014 (10)0.0006 (10)0.0059 (10)
O370.0228 (10)0.0413 (12)0.0281 (10)0.0075 (9)0.0044 (8)0.0182 (9)
C380.0223 (13)0.0215 (12)0.0249 (14)0.0071 (10)0.0062 (11)0.0065 (10)
C390.0287 (15)0.0283 (14)0.0187 (12)0.0083 (11)0.0023 (11)0.0008 (10)
C400.0260 (15)0.0261 (14)0.0325 (15)0.0064 (12)0.0044 (12)0.0036 (11)
C410.0296 (16)0.0344 (16)0.0349 (17)0.0091 (13)0.0154 (13)0.0123 (13)
C420.0336 (16)0.0447 (18)0.0201 (13)0.0130 (14)0.0097 (12)0.0090 (12)
C430.0263 (14)0.0265 (13)0.0251 (14)0.0076 (11)0.0037 (11)0.0005 (11)
C440.0162 (12)0.0188 (12)0.0299 (14)0.0041 (10)0.0021 (10)0.0017 (10)
C450.0171 (13)0.0175 (12)0.0201 (13)0.0000 (10)0.0053 (10)0.0002 (9)
C460.0308 (15)0.0218 (13)0.0309 (15)0.0048 (12)0.0163 (12)0.0037 (11)
C470.0386 (18)0.0296 (15)0.048 (2)0.0061 (13)0.0272 (16)0.0071 (14)
O480.0280 (11)0.0171 (9)0.0315 (11)0.0056 (8)0.0123 (8)0.0037 (7)
C490.0195 (13)0.0189 (12)0.0194 (12)0.0032 (10)0.0036 (10)0.0010 (9)
N500.0208 (11)0.0138 (9)0.0268 (11)0.0020 (8)0.0092 (9)0.0011 (8)
C510.0227 (13)0.0167 (12)0.0300 (14)0.0013 (10)0.0122 (11)0.0027 (10)
C520.0163 (12)0.0184 (12)0.0244 (13)0.0007 (10)0.0069 (10)0.0043 (10)
N530.0161 (11)0.0213 (11)0.0236 (11)0.0032 (9)0.0058 (9)0.0062 (9)
N540.0191 (11)0.0169 (10)0.0225 (11)0.0036 (8)0.0051 (9)0.0058 (8)
C550.0196 (13)0.0174 (12)0.0177 (12)0.0033 (10)0.0050 (10)0.0018 (9)
C560.0164 (12)0.0177 (12)0.0179 (12)0.0013 (9)0.0024 (10)0.0003 (10)
C570.0205 (13)0.0217 (13)0.0197 (12)0.0044 (10)0.0058 (10)0.0018 (10)
C580.0228 (13)0.0228 (12)0.0266 (14)0.0082 (10)0.0050 (11)0.0016 (10)
C590.0218 (13)0.0219 (12)0.0242 (13)0.0068 (10)0.0028 (10)0.0045 (10)
O600.0367 (12)0.0408 (12)0.0418 (12)0.0235 (10)0.0211 (10)0.0241 (10)
C610.0307 (15)0.0259 (14)0.0305 (14)0.0155 (12)0.0127 (12)0.0127 (11)
C620.0324 (16)0.0436 (18)0.0317 (15)0.0162 (14)0.0063 (13)0.0001 (13)
C630.0311 (17)0.0350 (17)0.0482 (19)0.0062 (13)0.0099 (14)0.0024 (14)
C640.0301 (16)0.0308 (15)0.0394 (17)0.0120 (13)0.0146 (13)0.0132 (13)
C650.0388 (17)0.0362 (16)0.0302 (15)0.0209 (14)0.0107 (13)0.0046 (12)
C660.0341 (17)0.0215 (13)0.0386 (17)0.0126 (12)0.0101 (13)0.0076 (12)
C670.0212 (13)0.0254 (13)0.0199 (12)0.0051 (10)0.0092 (10)0.0054 (10)
C680.0174 (12)0.0192 (12)0.0212 (13)0.0032 (10)0.0019 (10)0.0009 (10)
C690.0145 (12)0.0178 (11)0.0205 (12)0.0025 (10)0.0047 (10)0.0017 (9)
C700.0193 (13)0.0157 (11)0.0189 (12)0.0042 (10)0.0062 (10)0.0015 (9)
N710.0192 (11)0.0169 (10)0.0229 (11)0.0031 (9)0.0055 (9)0.0034 (8)
C720.0214 (13)0.0177 (11)0.0201 (12)0.0072 (10)0.0019 (10)0.0008 (9)
N730.0156 (11)0.0166 (10)0.0250 (11)0.0033 (8)0.0024 (9)0.0021 (8)
C740.0199 (13)0.0172 (11)0.0181 (12)0.0029 (10)0.0041 (10)0.0029 (9)
N750.0137 (10)0.0189 (10)0.0260 (11)0.0016 (8)0.0054 (9)0.0038 (9)
C760.0239 (13)0.0189 (12)0.0285 (13)0.0024 (10)0.0121 (11)0.0024 (10)
C770.0222 (13)0.0152 (11)0.0262 (13)0.0003 (9)0.0101 (11)0.0012 (9)
C780.0232 (13)0.0161 (11)0.0259 (13)0.0043 (10)0.0086 (10)0.0027 (9)
C790.0232 (14)0.0180 (12)0.0293 (14)0.0033 (10)0.0071 (11)0.0034 (10)
C800.0319 (17)0.0253 (14)0.0366 (17)0.0015 (12)0.0164 (13)0.0006 (12)
Geometric parameters (Å, º) top
Br1—C21.907 (3)C41—C421.381 (5)
C2—C31.371 (5)C41—H4110.931
C2—C71.389 (4)C42—C431.384 (4)
C3—C41.389 (5)C42—H4210.956
C3—H310.943C43—H4310.959
C4—C51.378 (5)C44—C451.386 (4)
C4—H410.963C44—H4410.947
C5—C61.377 (5)C45—H4510.928
C5—H510.934C46—C471.308 (5)
C6—C71.382 (5)C46—H4610.952
C6—H610.931C47—H4710.937
C7—H710.943C47—H4720.947
Br8—C91.903 (3)O48—C491.234 (3)
C9—C101.382 (5)C49—N501.350 (4)
C9—C141.379 (5)C49—C791.499 (4)
C10—C111.389 (5)N50—C511.462 (3)
C10—H1010.939N50—C781.467 (3)
C11—C121.399 (5)C51—C521.533 (4)
C11—H1110.947C51—H5110.979
C12—C131.327 (6)C51—H5120.979
C12—H1210.925C52—N531.458 (3)
C13—C141.398 (5)C52—C761.526 (4)
C13—H1310.927C52—H5210.989
C14—H1410.946N53—N541.373 (3)
O15—C161.221 (3)N53—C701.358 (3)
C16—N171.367 (4)N54—C551.320 (4)
C16—C461.498 (4)C55—C561.482 (3)
N17—C181.466 (3)C55—C691.433 (4)
N17—C221.465 (3)C56—C571.406 (4)
C18—C191.507 (4)C56—C681.386 (4)
C18—H1810.974C57—C581.383 (4)
C18—H1820.997C57—H5710.953
C19—C201.543 (4)C58—C591.376 (4)
C19—H1920.978C58—H5810.960
C19—H1910.976C59—O601.379 (3)
C20—C211.527 (4)C59—C671.391 (4)
C20—H2010.983O60—C611.400 (4)
C20—H2020.976C61—C621.378 (5)
C21—C221.531 (4)C61—C661.377 (5)
C21—N231.459 (3)C62—C631.384 (5)
C21—H2110.992C62—H6210.943
C22—H2210.974C63—C641.384 (5)
C22—H2220.969C63—H6310.934
N23—N241.371 (3)C64—C651.390 (5)
N23—C271.358 (3)C64—H6410.952
N24—C251.317 (3)C65—C661.383 (5)
C25—C261.431 (3)C65—H6510.939
C25—C331.478 (3)C66—H6610.943
C26—C271.397 (4)C67—C681.397 (4)
C26—C311.417 (4)C67—H6710.932
C27—N281.355 (3)C68—H6810.942
N28—C291.322 (4)C69—C701.401 (4)
C29—N301.340 (3)C69—C741.424 (4)
C29—H2910.962C70—N711.361 (3)
N30—C311.363 (3)N71—C721.332 (4)
C31—N321.329 (3)C72—N731.341 (3)
N32—H3220.843 (18)C72—H7210.948
N32—H3210.833 (18)N73—C741.351 (3)
C33—C341.393 (4)C74—N751.319 (3)
C33—C451.400 (4)N75—H7520.850 (18)
C34—C351.391 (4)N75—H7510.844 (18)
C34—H3410.964C76—C771.536 (4)
C35—C361.387 (4)C76—H7610.973
C35—H3510.942C76—H7620.984
C36—O371.388 (3)C77—C781.527 (4)
C36—C441.375 (4)C77—H7720.970
O37—C381.386 (3)C77—H7710.974
C38—C391.388 (4)C78—H7810.977
C38—C431.375 (4)C78—H7820.979
C39—C401.388 (4)C79—C801.300 (5)
C39—H3910.937C79—H7910.950
C40—C411.386 (4)C80—H8010.945
C40—H4010.934C80—H8020.953
Br1—C2—C3118.4 (2)C41—C42—C43120.6 (3)
Br1—C2—C7119.3 (2)C41—C42—H421119.8
C3—C2—C7122.2 (3)C43—C42—H421119.6
C2—C3—C4118.6 (3)C42—C43—C38119.2 (3)
C2—C3—H31121.3C42—C43—H431121.4
C4—C3—H31120.1C38—C43—H431119.4
C3—C4—C5120.4 (3)C36—C44—C45120.1 (3)
C3—C4—H41119.6C36—C44—H441119.3
C5—C4—H41120.0C45—C44—H441120.7
C4—C5—C6119.7 (3)C33—C45—C44120.3 (3)
C4—C5—H51120.6C33—C45—H451120.0
C6—C5—H51119.7C44—C45—H451119.8
C5—C6—C7121.3 (3)C16—C46—C47120.7 (3)
C5—C6—H61120.1C16—C46—H461119.7
C7—C6—H61118.6C47—C46—H461119.5
C2—C7—C6117.7 (3)C46—C47—H471119.8
C2—C7—H71120.5C46—C47—H472119.4
C6—C7—H71121.8H471—C47—H472120.7
Br8—C9—C10118.0 (2)O48—C49—N50122.7 (2)
Br8—C9—C14120.4 (3)O48—C49—C79120.0 (3)
C10—C9—C14121.6 (3)N50—C49—C79117.3 (2)
C9—C10—C11118.7 (3)C49—N50—C51119.9 (2)
C9—C10—H101120.4C49—N50—C78127.3 (2)
C11—C10—H101120.9C51—N50—C78112.6 (2)
C10—C11—C12119.3 (3)N50—C51—C52110.0 (2)
C10—C11—H111119.3N50—C51—H511109.3
C12—C11—H111121.3C52—C51—H511108.9
C11—C12—C13121.0 (3)N50—C51—H512107.4
C11—C12—H121119.0C52—C51—H512110.4
C13—C12—H121120.0H511—C51—H512110.9
C12—C13—C14121.3 (3)C51—C52—N53108.9 (2)
C12—C13—H131118.7C51—C52—C76112.2 (2)
C14—C13—H131120.0N53—C52—C76112.4 (2)
C13—C14—C9118.1 (3)C51—C52—H521109.3
C13—C14—H141122.0N53—C52—H521105.5
C9—C14—H141119.9C76—C52—H521108.2
O15—C16—N17122.1 (3)C52—N53—N54117.8 (2)
O15—C16—C46121.9 (3)C52—N53—C70131.3 (2)
N17—C16—C46115.9 (2)N54—N53—C70110.7 (2)
C16—N17—C18121.7 (2)N53—N54—C55107.0 (2)
C16—N17—C22118.0 (2)N54—C55—C56118.5 (2)
C18—N17—C22113.8 (2)N54—C55—C69110.5 (2)
N17—C18—C19111.1 (2)C56—C55—C69131.0 (2)
N17—C18—H181108.2C55—C56—C57117.7 (2)
C19—C18—H181109.1C55—C56—C68123.1 (2)
N17—C18—H182108.9C57—C56—C68119.1 (2)
C19—C18—H182109.1C56—C57—C58120.2 (3)
H181—C18—H182110.4C56—C57—H571119.7
C18—C19—C20110.5 (2)C58—C57—H571120.1
C18—C19—H192108.7C57—C58—C59120.0 (3)
C20—C19—H192107.1C57—C58—H581120.2
C18—C19—H191109.4C59—C58—H581119.7
C20—C19—H191109.7C58—C59—O60114.6 (2)
H192—C19—H191111.4C58—C59—C67121.0 (2)
C19—C20—C21109.9 (2)O60—C59—C67124.5 (3)
C19—C20—H201108.6C59—O60—C61118.9 (2)
C21—C20—H201109.4O60—C61—C62118.8 (3)
C19—C20—H202110.9O60—C61—C66118.6 (3)
C21—C20—H202109.4C62—C61—C66122.2 (3)
H201—C20—H202108.6C61—C62—C63118.4 (3)
C20—C21—C22111.7 (2)C61—C62—H621119.6
C20—C21—N23110.2 (2)C63—C62—H621122.0
C22—C21—N23109.1 (2)C62—C63—C64120.5 (3)
C20—C21—H211108.9C62—C63—H631119.8
C22—C21—H211109.4C64—C63—H631119.8
N23—C21—H211107.4C63—C64—C65120.1 (3)
C21—C22—N17109.4 (2)C63—C64—H641120.1
C21—C22—H221110.7C65—C64—H641119.8
N17—C22—H221108.5C64—C65—C66119.7 (3)
C21—C22—H222110.7C64—C65—H651120.3
N17—C22—H222109.7C66—C65—H651120.0
H221—C22—H222107.8C65—C66—C61119.0 (3)
C21—N23—N24119.9 (2)C65—C66—H661121.8
C21—N23—C27129.4 (2)C61—C66—H661119.1
N24—N23—C27110.4 (2)C59—C67—C68119.0 (3)
N23—N24—C25107.2 (2)C59—C67—H671119.7
N24—C25—C26110.4 (2)C68—C67—H671121.3
N24—C25—C33118.2 (2)C67—C68—C56120.7 (3)
C26—C25—C33131.2 (2)C67—C68—H681118.7
C25—C26—C27104.3 (2)C56—C68—H681120.6
C25—C26—C31139.5 (2)C55—C69—C70104.3 (2)
C27—C26—C31116.1 (2)C55—C69—C74138.9 (2)
C26—C27—N23107.6 (2)C70—C69—C74116.6 (2)
C26—C27—N28126.8 (2)C69—C70—N53107.4 (2)
N23—C27—N28125.6 (2)C69—C70—N71126.4 (2)
C27—N28—C29111.0 (2)N53—C70—N71126.2 (2)
N28—C29—N30129.4 (2)C70—N71—C72110.7 (2)
N28—C29—H291114.7N71—C72—N73129.5 (2)
N30—C29—H291116.0N71—C72—H721115.1
C29—N30—C31118.7 (2)N73—C72—H721115.4
C26—C31—N30117.7 (2)C72—N73—C74119.2 (2)
C26—C31—N32125.7 (2)C69—C74—N73117.5 (2)
N30—C31—N32116.6 (2)C69—C74—N75124.8 (2)
C31—N32—H322122.5 (15)N73—C74—N75117.7 (2)
C31—N32—H321118.1 (15)C74—N75—H752121.8 (15)
H322—N32—H321119 (2)C74—N75—H751120.1 (15)
C25—C33—C34121.3 (2)H752—N75—H751117 (2)
C25—C33—C45119.8 (2)C52—C76—C77109.5 (2)
C34—C33—C45118.6 (2)C52—C76—H761110.1
C33—C34—C35121.2 (3)C77—C76—H761108.3
C33—C34—H341119.2C52—C76—H762109.4
C35—C34—H341119.6C77—C76—H762109.3
C34—C35—C36118.8 (3)H761—C76—H762110.2
C34—C35—H351121.7C76—C77—C78110.7 (2)
C36—C35—H351119.5C76—C77—H772109.2
C35—C36—O37121.6 (3)C78—C77—H772109.0
C35—C36—C44121.0 (2)C76—C77—H771109.2
O37—C36—C44117.3 (3)C78—C77—H771109.2
C36—O37—C38119.6 (2)H772—C77—H771109.5
O37—C38—C39121.7 (3)C77—C78—N50109.7 (2)
O37—C38—C43116.9 (3)C77—C78—H781109.3
C39—C38—C43121.3 (3)N50—C78—H781111.1
C38—C39—C40118.9 (3)C77—C78—H782109.7
C38—C39—H391120.3N50—C78—H782107.3
C40—C39—H391120.9H781—C78—H782109.7
C39—C40—C41120.3 (3)C49—C79—C80121.9 (3)
C39—C40—H401119.3C49—C79—H791118.4
C41—C40—H401120.4C80—C79—H791119.7
C40—C41—C42119.6 (3)C79—C80—H801118.8
C40—C41—H411121.3C79—C80—H802120.4
C42—C41—H411119.0H801—C80—H802120.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H31···N240.942.473.373 (4)160 (1)
C5—H51···O15i0.932.413.316 (4)164 (1)
C10—H101···N540.942.483.285 (4)144 (1)
C76—H762···N710.982.533.185 (4)124 (1)
N75—H752···O150.852.403.047 (4)133 (2)
N75—H752···C680.852.593.298 (4)142 (2)
N32—H322···O480.842.262.957 (4)141 (2)
N75—H751···N30ii0.842.112.931 (4)166 (3)
N32—H321···N73iii0.832.152.976 (4)172 (3)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y, z.
(iodo) top
Crystal data top
C31H29.00IN6O2Z = 2
Mr = 644.51F(000) = 651.996
Triclinic, P1Dx = 1.526 Mg m3
a = 11.0044 (2) ÅCu Kα radiation, λ = 1.54180 Å
b = 11.9170 (2) ÅCell parameters from 20836 reflections
c = 12.1547 (1) Åθ = 4–75°
α = 79.7701 (11)°µ = 9.29 mm1
β = 71.2027 (13)°T = 95 K
γ = 68.7521 (15)°Prism, colorless
V = 1403.02 (1) Å30.26 × 0.11 × 0.08 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
10563 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 74.8°, θmin = 3.9°
Absorption correction: multi-scan
CrysAlisPro, (Agilent, 2011)
h = 1213
Tmin = 0.20, Tmax = 0.50k = 1414
24897 measured reflectionsl = 1515
10634 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.03P)2 + 2.72P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.001
S = 1.00Δρmax = 1.56 e Å3
10634 reflectionsΔρmin = 1.01 e Å3
734 parametersAbsolute structure: Flack (1983), 4967 Friedel-pairs
109 restraintsAbsolute structure parameter: 0.000 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5000 (5)0.5000 (4)1.5000 (4)0.0266
C20.4371 (4)0.4820 (4)1.4321 (4)0.0204
C30.3397 (4)0.5849 (3)1.3811 (3)0.0166
O40.3497 (3)0.6867 (2)1.3653 (3)0.0201
N50.2422 (3)0.5608 (2)1.3542 (2)0.0166
C60.2149 (3)0.4453 (3)1.3760 (3)0.0164
C70.2255 (3)0.4034 (3)1.2609 (3)0.0172
C80.1241 (4)0.4982 (3)1.2020 (3)0.0185
C90.1452 (4)0.6197 (3)1.1892 (3)0.0168
C100.1427 (4)0.6566 (3)1.3046 (3)0.0188
N110.0440 (3)0.7155 (3)1.1417 (3)0.0162
C120.0929 (4)0.7474 (3)1.1702 (3)0.0140
N130.1728 (3)0.6930 (3)1.2545 (3)0.0166
C140.3023 (4)0.7477 (3)1.2601 (3)0.0166
N150.3613 (3)0.8460 (3)1.1975 (3)0.0140
C160.2804 (4)0.9012 (3)1.1165 (3)0.0143
N170.3421 (3)1.0013 (3)1.0602 (3)0.0156
C180.1386 (4)0.8499 (3)1.0970 (3)0.0136
C190.0173 (4)0.8741 (3)1.0274 (3)0.0148
N200.0907 (3)0.7943 (3)1.0553 (3)0.0168
C210.0028 (4)0.9716 (3)0.9362 (3)0.0139
C220.0970 (4)1.0261 (3)0.9344 (3)0.0155
C230.1189 (4)1.1173 (3)0.8513 (3)0.0183
C240.0481 (4)1.1539 (3)0.7682 (3)0.0181
C250.0430 (4)1.0997 (3)0.7664 (3)0.0192
C260.0653 (4)1.0082 (3)0.8517 (3)0.0160
O270.0785 (3)1.2448 (3)0.6884 (3)0.0293
C280.0085 (4)1.3056 (3)0.6187 (3)0.0221
C290.1110 (4)1.4112 (4)0.6554 (4)0.0303
C300.1873 (5)1.4792 (4)0.5799 (4)0.0331
C310.1618 (5)1.4388 (4)0.4716 (4)0.0268
C320.0611 (4)1.3314 (4)0.4385 (3)0.0263
C330.0181 (4)1.2635 (3)0.5127 (4)0.0229
C340.5437 (5)1.4395 (4)0.8358 (5)0.0338
C350.4697 (5)1.4510 (4)0.8932 (4)0.0210
C360.3821 (4)1.3439 (3)0.9499 (3)0.0164
O370.3551 (3)1.2413 (2)0.9243 (3)0.0227
N380.3291 (3)1.3681 (2)1.0272 (2)0.0165
C390.4032 (3)1.4690 (3)1.1032 (3)0.0201
C400.3073 (4)1.5173 (3)1.1280 (3)0.0246
C410.2025 (4)1.4171 (3)1.1793 (3)0.0199
C420.1301 (4)1.3117 (3)1.0996 (3)0.0142
C430.2310 (3)1.2674 (3)1.0741 (3)0.0162
N440.0384 (3)1.2110 (3)1.1533 (3)0.0135
C450.0962 (4)1.1838 (3)1.1377 (3)0.0137
N460.1770 (3)1.2425 (3)1.0608 (3)0.0139
C470.3044 (4)1.1929 (3)1.0660 (3)0.0150
N480.3591 (3)1.0952 (3)1.1307 (3)0.0145
C490.2763 (4)1.0343 (3)1.2034 (3)0.0121
N500.3366 (3)0.9319 (3)1.2580 (3)0.0150
C510.1354 (4)1.0840 (3)1.2142 (3)0.0126
C520.0130 (4)1.0592 (3)1.2766 (3)0.0136
N530.0905 (3)1.1370 (3)1.2397 (3)0.0152
C540.0165 (4)0.9722 (3)1.3747 (3)0.0152
C550.0493 (4)0.9431 (3)1.4629 (3)0.0151
C560.0132 (4)0.8689 (3)1.5601 (3)0.0197
C570.0894 (4)0.8233 (3)1.5705 (3)0.0202
C580.1547 (4)0.8493 (3)1.4837 (3)0.0188
C590.1185 (4)0.9239 (3)1.3866 (3)0.0168
O600.1379 (3)0.7564 (3)1.6689 (2)0.0318
C610.0463 (4)0.6744 (3)1.7264 (3)0.0185
C620.0701 (4)0.5900 (4)1.6662 (3)0.0232
C630.1501 (5)0.5017 (4)1.7276 (4)0.0270
C640.1114 (5)0.4990 (4)1.8484 (4)0.0303
C650.0022 (4)0.5854 (4)1.9070 (3)0.0308
C660.0830 (4)0.6743 (4)1.8454 (3)0.0223
C670.4737 (5)1.1461 (4)1.5069 (4)0.0233
C680.3551 (5)1.1680 (4)1.4910 (4)0.0240
C690.3159 (5)1.1729 (4)1.5879 (4)0.0247
C700.3995 (4)1.1610 (4)1.7005 (4)0.0247
C710.5214 (4)1.1405 (4)1.7137 (4)0.0280
C720.5599 (4)1.1360 (4)1.6164 (4)0.0268
I730.52205 (5)1.12546 (4)1.35928 (4)0.0256
C740.4447 (5)0.8038 (5)0.7980 (4)0.0293
C750.3330 (5)0.7684 (4)0.8125 (4)0.0281
C760.2982 (5)0.7644 (4)0.7124 (4)0.0284
C770.3742 (5)0.8036 (4)0.6035 (4)0.0303
C780.4754 (5)0.8356 (4)0.5922 (4)0.0325
C790.5183 (5)0.8384 (4)0.6891 (4)0.0314
I800.49236 (5)0.81685 (4)0.94919 (5)0.0350
H110.48560.57911.51640.0328*
H120.55920.43321.53200.0320*
H210.45160.40341.41650.0252*
H610.27740.38391.41440.0214*
H620.12340.45971.42730.0214*
H720.31690.39461.21060.0186*
H710.21040.32701.27320.0182*
H810.13940.47421.12450.0235*
H820.03250.50561.24880.0239*
H910.23490.61301.13400.0222*
H1010.16610.72971.28980.0232*
H1020.05160.67121.35870.0233*
H1410.36130.71231.31570.0195*
H2210.14661.00130.98950.0214*
H2310.18191.15310.85050.0242*
H2510.08601.12360.70880.0210*
H2610.12490.97050.85200.0194*
H2910.12881.43510.72960.0374*
H3010.25511.55190.60290.0392*
H3110.21381.48300.42080.0307*
H3210.04471.30290.36650.0302*
H3310.08711.19100.49110.0276*
H3410.59791.50720.80110.0409*
H3420.54571.36310.82780.0406*
H3510.47251.52710.90150.0245*
H3920.46441.53341.06730.0248*
H3910.45441.43821.17710.0247*
H4020.35711.58061.18260.0298*
H4010.25681.54791.05360.0299*
H4110.13471.44711.18710.0260*
H4120.25081.38951.25420.0260*
H4210.07661.33881.02600.0181*
H4310.27861.23081.14360.0212*
H4320.18361.20801.01630.0210*
H4710.36511.23141.01650.0188*
H5510.12170.97471.45410.0197*
H5610.06020.84951.61770.0263*
H5810.22010.81491.49090.0250*
H5910.16170.94291.32740.0199*
H6210.09280.59251.58510.0282*
H6310.22930.44581.68770.0304*
H6410.16020.43681.88870.0366*
H6510.02370.58451.98840.0383*
H6610.16320.73341.88330.0267*
H6810.30071.17881.41560.0303*
H6910.23201.18501.57730.0350*
H7010.37661.16821.76420.0261*
H7110.57381.12671.78920.0472*
H7210.64141.12391.62620.0401*
H7510.28150.74800.88690.0286*
H7610.22770.73690.71790.0328*
H7910.59470.86140.68090.0420*
H1720.297 (3)1.044 (3)1.016 (3)0.0193*
H7710.34970.80480.53920.0364*
H5010.423 (2)0.909 (3)1.244 (3)0.0202*
H5020.290 (3)0.889 (3)1.299 (4)0.0206*
H7810.52320.85820.51980.0512*
H1710.427 (2)1.038 (3)1.086 (3)0.0187*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (2)0.0234 (19)0.033 (2)0.0002 (16)0.0198 (18)0.0044 (16)
C20.019 (2)0.0184 (18)0.0235 (19)0.0027 (15)0.0102 (16)0.0006 (15)
C30.0194 (18)0.0162 (16)0.0137 (16)0.0049 (14)0.0061 (14)0.0004 (12)
O40.0222 (14)0.0151 (12)0.0257 (14)0.0072 (10)0.0117 (11)0.0033 (10)
N50.0192 (14)0.0107 (12)0.0222 (14)0.0024 (11)0.0138 (12)0.0021 (10)
C60.0212 (17)0.0099 (13)0.0194 (15)0.0046 (12)0.0102 (13)0.0037 (11)
C70.0170 (16)0.0119 (14)0.0233 (16)0.0009 (12)0.0112 (14)0.0003 (12)
C80.0201 (17)0.0162 (15)0.0215 (16)0.0035 (13)0.0132 (14)0.0018 (12)
C90.0097 (16)0.0163 (15)0.0197 (17)0.0002 (13)0.0063 (13)0.0060 (13)
C100.0187 (17)0.0110 (14)0.0279 (18)0.0007 (12)0.0148 (14)0.0023 (12)
N110.0108 (15)0.0167 (14)0.0188 (14)0.0027 (11)0.0063 (11)0.0048 (11)
C120.0153 (18)0.0122 (15)0.0132 (16)0.0022 (13)0.0071 (13)0.0030 (12)
N130.0151 (15)0.0156 (13)0.0180 (14)0.0046 (12)0.0053 (12)0.0017 (11)
C140.0178 (18)0.0152 (15)0.0159 (16)0.0078 (14)0.0026 (13)0.0021 (12)
N150.0099 (14)0.0140 (13)0.0190 (14)0.0049 (11)0.0035 (11)0.0019 (11)
C160.0166 (18)0.0118 (14)0.0147 (16)0.0031 (13)0.0068 (13)0.0003 (12)
N170.0076 (14)0.0144 (14)0.0217 (15)0.0015 (11)0.0043 (12)0.0025 (12)
C180.0120 (17)0.0151 (15)0.0133 (16)0.0019 (13)0.0067 (13)0.0005 (12)
C190.0118 (17)0.0162 (16)0.0148 (16)0.0024 (13)0.0053 (13)0.0012 (13)
N200.0143 (15)0.0172 (15)0.0173 (15)0.0045 (12)0.0074 (12)0.0074 (11)
C210.0106 (17)0.0152 (16)0.0113 (16)0.0011 (13)0.0018 (13)0.0012 (13)
C220.0110 (17)0.0209 (17)0.0144 (16)0.0039 (14)0.0051 (13)0.0008 (13)
C230.0162 (18)0.0192 (17)0.0215 (18)0.0067 (14)0.0085 (14)0.0018 (14)
C240.0166 (17)0.0206 (17)0.0175 (17)0.0100 (14)0.0039 (14)0.0049 (13)
C250.0212 (19)0.0235 (18)0.0147 (16)0.0067 (15)0.0117 (14)0.0055 (13)
C260.0124 (17)0.0188 (17)0.0186 (18)0.0071 (14)0.0048 (14)0.0009 (13)
O270.0287 (15)0.0381 (15)0.0328 (14)0.0244 (12)0.0218 (12)0.0225 (12)
C280.027 (2)0.028 (2)0.0217 (18)0.0203 (17)0.0161 (16)0.0153 (15)
C290.028 (2)0.041 (2)0.0245 (19)0.0168 (19)0.0068 (16)0.0003 (17)
C300.023 (2)0.033 (2)0.039 (2)0.0065 (18)0.0101 (18)0.0030 (19)
C310.024 (2)0.030 (2)0.031 (2)0.0130 (17)0.0157 (17)0.0123 (17)
C320.037 (2)0.032 (2)0.0208 (19)0.0235 (18)0.0137 (17)0.0080 (15)
C330.025 (2)0.0183 (16)0.029 (2)0.0129 (15)0.0111 (17)0.0080 (15)
C340.044 (3)0.024 (2)0.040 (3)0.0050 (19)0.027 (2)0.0006 (18)
C350.027 (2)0.0138 (17)0.025 (2)0.0034 (15)0.0156 (17)0.0011 (14)
C360.0127 (17)0.0176 (17)0.0188 (17)0.0019 (13)0.0087 (13)0.0008 (13)
O370.0291 (15)0.0167 (12)0.0270 (14)0.0045 (11)0.0186 (12)0.0001 (10)
N380.0149 (14)0.0164 (13)0.0197 (14)0.0001 (11)0.0113 (11)0.0033 (11)
C390.0147 (16)0.0189 (16)0.0263 (17)0.0001 (13)0.0088 (14)0.0069 (13)
C400.0261 (19)0.0187 (16)0.033 (2)0.0007 (14)0.0179 (16)0.0066 (14)
C410.0214 (18)0.0188 (15)0.0225 (17)0.0040 (14)0.0125 (14)0.0022 (13)
C420.0117 (17)0.0155 (15)0.0150 (15)0.0033 (13)0.0068 (13)0.0032 (12)
C430.0153 (16)0.0144 (15)0.0192 (15)0.0017 (12)0.0100 (13)0.0012 (12)
N440.0118 (15)0.0142 (13)0.0127 (13)0.0024 (11)0.0068 (11)0.0056 (10)
C450.0116 (17)0.0167 (15)0.0144 (16)0.0032 (13)0.0064 (13)0.0033 (12)
N460.0137 (15)0.0143 (13)0.0130 (13)0.0043 (12)0.0046 (11)0.0019 (10)
C470.0107 (16)0.0154 (15)0.0176 (16)0.0029 (13)0.0032 (13)0.0026 (12)
N480.0128 (14)0.0144 (13)0.0169 (14)0.0044 (11)0.0057 (11)0.0004 (10)
C490.0108 (17)0.0158 (15)0.0112 (15)0.0043 (13)0.0038 (12)0.0034 (12)
N500.0125 (15)0.0123 (13)0.0191 (15)0.0022 (11)0.0073 (12)0.0028 (11)
C510.0142 (18)0.0121 (15)0.0119 (15)0.0047 (13)0.0045 (13)0.0004 (12)
C520.0138 (17)0.0143 (15)0.0139 (16)0.0029 (13)0.0083 (13)0.0006 (13)
N530.0136 (15)0.0174 (14)0.0143 (14)0.0067 (12)0.0040 (11)0.0030 (11)
C540.0126 (18)0.0141 (16)0.0175 (18)0.0029 (14)0.0043 (14)0.0003 (13)
C550.0132 (17)0.0169 (16)0.0149 (16)0.0036 (14)0.0060 (13)0.0011 (13)
C560.0135 (17)0.0254 (18)0.0187 (17)0.0037 (14)0.0075 (14)0.0025 (14)
C570.0146 (17)0.0203 (17)0.0169 (17)0.0025 (13)0.0018 (13)0.0087 (13)
C580.0095 (16)0.0215 (17)0.0236 (18)0.0058 (13)0.0032 (13)0.0015 (14)
C590.0161 (18)0.0151 (16)0.0173 (17)0.0013 (14)0.0080 (14)0.0015 (13)
O600.0177 (13)0.0438 (16)0.0249 (14)0.0102 (12)0.0071 (11)0.0223 (12)
C610.0201 (18)0.0226 (17)0.0156 (17)0.0109 (14)0.0091 (14)0.0079 (13)
C620.025 (2)0.031 (2)0.0137 (16)0.0114 (17)0.0048 (14)0.0008 (14)
C630.024 (2)0.0226 (19)0.031 (2)0.0078 (16)0.0043 (16)0.0005 (16)
C640.027 (2)0.033 (2)0.029 (2)0.0091 (18)0.0138 (18)0.0138 (18)
C650.030 (2)0.043 (2)0.0160 (18)0.0106 (18)0.0084 (16)0.0090 (16)
C660.0216 (19)0.0272 (18)0.0163 (18)0.0079 (15)0.0045 (15)0.0010 (14)
C670.0251 (7)0.0248 (7)0.0238 (7)0.0059 (6)0.0120 (6)0.0063 (6)
C680.0243 (9)0.0246 (9)0.0246 (9)0.0068 (8)0.0098 (8)0.0023 (8)
C690.0244 (10)0.0271 (9)0.0258 (9)0.0088 (8)0.0103 (8)0.0027 (8)
C700.0258 (10)0.0308 (10)0.0226 (9)0.0093 (8)0.0117 (8)0.0053 (8)
C710.0265 (10)0.0345 (10)0.0254 (9)0.0099 (8)0.0082 (8)0.0061 (8)
C720.0256 (9)0.0316 (9)0.0262 (8)0.0092 (8)0.0088 (7)0.0068 (8)
I730.02995 (14)0.02291 (11)0.02524 (13)0.00066 (9)0.01539 (10)0.00772 (9)
C740.0269 (7)0.0339 (7)0.0263 (7)0.0010 (7)0.0121 (6)0.0107 (7)
C750.0252 (9)0.0307 (9)0.0253 (9)0.0005 (8)0.0106 (8)0.0065 (8)
C760.0252 (10)0.0312 (10)0.0255 (9)0.0004 (9)0.0117 (8)0.0059 (9)
C770.0277 (10)0.0346 (10)0.0209 (9)0.0049 (9)0.0122 (8)0.0054 (9)
C780.0315 (10)0.0341 (10)0.0237 (9)0.0014 (9)0.0084 (8)0.0070 (9)
C790.0288 (9)0.0343 (9)0.0271 (9)0.0013 (8)0.0091 (8)0.0090 (8)
I800.03165 (15)0.04183 (16)0.03126 (16)0.00053 (12)0.01593 (12)0.01534 (13)
Geometric parameters (Å, º) top
C1—C21.321 (6)C40—C411.531 (5)
C1—H110.944C40—H4020.977
C1—H120.941C40—H4010.983
C2—C31.497 (5)C41—C421.535 (5)
C2—H210.935C41—H4110.972
C3—O41.234 (5)C41—H4120.963
C3—N51.350 (5)C42—C431.520 (5)
N5—C61.474 (4)C42—N441.467 (4)
N5—C101.464 (4)C42—H4210.974
C6—C71.524 (4)C43—H4310.964
C6—H610.973C43—H4320.970
C6—H620.970N44—C451.352 (5)
C7—C81.533 (4)N44—N531.364 (4)
C7—H720.973C45—N461.355 (5)
C7—H710.961C45—C511.399 (5)
C8—C91.521 (5)N46—C471.327 (5)
C8—H810.978C47—N481.345 (5)
C8—H820.966C47—H4710.940
C9—C101.532 (5)N48—C491.368 (5)
C9—N111.462 (4)C49—N501.334 (5)
C9—H910.983C49—C511.415 (5)
C10—H1010.967N50—H5010.857 (19)
C10—H1020.977N50—H5020.842 (19)
N11—C121.352 (5)C51—C521.424 (5)
N11—N201.379 (4)C52—N531.332 (5)
C12—N131.356 (5)C52—C541.468 (5)
C12—C181.412 (5)C54—C551.406 (5)
N13—C141.319 (5)C54—C591.396 (6)
C14—N151.350 (5)C55—C561.385 (5)
C14—H1410.933C55—H5510.968
N15—C161.351 (5)C56—C571.384 (6)
C16—N171.332 (5)C56—H5610.948
C16—C181.409 (5)C57—C581.392 (5)
N17—H1720.835 (19)C57—O601.381 (4)
N17—H1710.851 (19)C58—C591.387 (5)
C18—C191.431 (5)C58—H5810.924
C19—N201.326 (5)C59—H5910.938
C19—C211.483 (5)O60—C611.399 (4)
C21—C221.401 (6)C61—C621.382 (5)
C21—C261.382 (5)C61—C661.371 (5)
C22—C231.380 (5)C62—C631.383 (6)
C22—H2210.939C62—H6210.934
C23—C241.387 (5)C63—C641.389 (7)
C23—H2310.934C63—H6310.928
C24—C251.382 (6)C64—C651.373 (7)
C24—O271.380 (4)C64—H6410.911
C25—C261.398 (5)C65—C661.392 (5)
C25—H2510.916C65—H6510.939
C26—H2610.918C66—H6610.943
O27—C281.401 (4)C67—C681.369 (7)
C28—C291.379 (6)C67—C721.377 (6)
C28—C331.370 (6)C67—I732.105 (4)
C29—C301.394 (6)C68—C691.395 (6)
C29—H2910.932C68—H6810.935
C30—C311.390 (7)C69—C701.397 (6)
C30—H3010.932C69—H6910.951
C31—C321.377 (7)C70—C711.404 (6)
C31—H3110.938C70—H7010.914
C32—C331.401 (6)C71—C721.394 (6)
C32—H3210.935C71—H7110.936
C33—H3310.932C72—H7210.926
C34—C351.284 (7)C74—C751.388 (8)
C34—H3410.937C74—C791.391 (7)
C34—H3420.942C74—I802.112 (5)
C35—C361.503 (5)C75—C761.402 (6)
C35—H3510.919C75—H7510.943
C36—O371.222 (5)C76—C771.421 (7)
C36—N381.370 (5)C76—H7610.925
N38—C391.471 (4)C77—C781.262 (7)
N38—C431.465 (4)C77—H7710.902
C39—C401.497 (5)C78—C791.413 (6)
C39—H3920.964C78—H7810.918
C39—H3910.982C79—H7910.945
C2—C1—H11120.3C39—C40—C41111.1 (3)
C2—C1—H12119.4C39—C40—H402110.4
H11—C1—H12120.3C41—C40—H402109.1
C1—C2—C3121.5 (4)C39—C40—H401107.9
C1—C2—H21119.8C41—C40—H401106.9
C3—C2—H21118.7H402—C40—H401111.3
C2—C3—O4120.5 (4)C40—C41—C42110.2 (3)
C2—C3—N5117.2 (3)C40—C41—H411110.6
O4—C3—N5122.4 (3)C42—C41—H411108.5
C3—N5—C6127.2 (3)C40—C41—H412107.4
C3—N5—C10120.5 (3)C42—C41—H412109.4
C6—N5—C10112.2 (3)H411—C41—H412110.7
N5—C6—C7109.3 (3)C41—C42—C43111.6 (3)
N5—C6—H61111.5C41—C42—N44110.5 (3)
C7—C6—H61110.3C43—C42—N44109.1 (3)
N5—C6—H62107.3C41—C42—H421108.9
C7—C6—H62110.0C43—C42—H421108.2
H61—C6—H62108.3N44—C42—H421108.5
C6—C7—C8110.5 (3)C42—C43—N38110.1 (3)
C6—C7—H72107.4C42—C43—H431110.9
C8—C7—H72108.4N38—C43—H431109.5
C6—C7—H71110.4C42—C43—H432109.9
C8—C7—H71110.7N38—C43—H432108.0
H72—C7—H71109.4H431—C43—H432108.5
C7—C8—C9109.7 (3)C42—N44—C45129.1 (3)
C7—C8—H81109.3C42—N44—N53119.5 (3)
C9—C8—H81108.8C45—N44—N53111.1 (3)
C7—C8—H82109.7N44—C45—N46125.6 (3)
C9—C8—H82109.0N44—C45—C51107.3 (3)
H81—C8—H82110.3N46—C45—C51127.0 (3)
C8—C9—C10112.5 (3)C45—N46—C47110.9 (3)
C8—C9—N11111.9 (3)N46—C47—N48129.4 (3)
C10—C9—N11108.9 (3)N46—C47—H471115.1
C8—C9—H91107.9N48—C47—H471115.5
C10—C9—H91108.0C47—N48—C49118.3 (3)
N11—C9—H91107.5N48—C49—N50116.4 (3)
C9—C10—N5109.6 (3)N48—C49—C51117.9 (3)
C9—C10—H101108.8N50—C49—C51125.7 (3)
N5—C10—H101109.2C49—N50—H501117.9 (17)
C9—C10—H102109.5C49—N50—H502119.1 (17)
N5—C10—H102110.2H501—N50—H502123 (2)
H101—C10—H102109.6C49—C51—C45116.0 (3)
C9—N11—C12132.0 (3)C49—C51—C52139.2 (3)
C9—N11—N20116.9 (3)C45—C51—C52104.7 (3)
C12—N11—N20111.1 (3)C51—C52—N53110.1 (3)
N11—C12—N13126.8 (3)C51—C52—C54131.7 (3)
N11—C12—C18107.3 (3)N53—C52—C54118.0 (3)
N13—C12—C18125.9 (3)N44—N53—C52106.8 (3)
C12—N13—C14111.2 (3)C52—C54—C55121.1 (4)
N13—C14—N15129.8 (3)C52—C54—C59120.1 (4)
N13—C14—H141114.5C55—C54—C59118.6 (4)
N15—C14—H141115.7C54—C55—C56120.9 (4)
C14—N15—C16118.1 (3)C54—C55—H551119.0
N15—C16—N17116.7 (3)C56—C55—H551120.1
N15—C16—C18118.6 (3)C55—C56—C57119.3 (4)
N17—C16—C18124.8 (4)C55—C56—H561119.3
C16—N17—H172120.0 (17)C57—C56—H561121.4
C16—N17—H171120.6 (17)C56—C57—C58120.9 (3)
H172—N17—H171115 (3)C56—C57—O60122.5 (3)
C12—C18—C16116.3 (3)C58—C57—O60116.5 (3)
C12—C18—C19104.2 (3)C57—C58—C59119.7 (4)
C16—C18—C19139.2 (3)C57—C58—H581119.3
C18—C19—N20110.8 (3)C59—C58—H581121.0
C18—C19—C21130.8 (3)C54—C59—C58120.6 (4)
N20—C19—C21118.5 (3)C54—C59—H591118.5
N11—N20—C19106.6 (3)C58—C59—H591120.9
C19—C21—C22118.5 (3)C57—O60—C61118.9 (3)
C19—C21—C26122.3 (4)O60—C61—C62121.0 (3)
C22—C21—C26119.1 (3)O60—C61—C66117.2 (4)
C21—C22—C23120.6 (4)C62—C61—C66121.6 (3)
C21—C22—H221120.8C61—C62—C63119.3 (4)
C23—C22—H221118.6C61—C62—H621119.8
C22—C23—C24119.4 (4)C63—C62—H621120.9
C22—C23—H231120.1C62—C63—C64119.4 (4)
C24—C23—H231120.5C62—C63—H631119.8
C23—C24—C25121.2 (3)C64—C63—H631120.9
C23—C24—O27114.8 (3)C63—C64—C65120.8 (4)
C25—C24—O27124.0 (3)C63—C64—H641119.0
C24—C25—C26118.9 (3)C65—C64—H641120.1
C24—C25—H251119.4C64—C65—C66119.9 (4)
C26—C25—H251121.7C64—C65—H651119.4
C25—C26—C21120.8 (4)C66—C65—H651120.7
C25—C26—H261120.5C65—C66—C61119.0 (4)
C21—C26—H261118.7C65—C66—H661121.9
C24—O27—C28118.4 (3)C61—C66—H661119.1
O27—C28—C29118.4 (4)C68—C67—C72121.7 (4)
O27—C28—C33118.9 (4)C68—C67—I73118.5 (3)
C29—C28—C33122.5 (4)C72—C67—I73119.9 (3)
C28—C29—C30118.4 (4)C67—C68—C69119.4 (4)
C28—C29—H291120.1C67—C68—H681120.0
C30—C29—H291121.5C69—C68—H681120.6
C29—C30—C31120.1 (4)C68—C69—C70120.6 (4)
C29—C30—H301119.2C68—C69—H691119.7
C31—C30—H301120.7C70—C69—H691119.7
C30—C31—C32120.1 (4)C69—C70—C71118.4 (4)
C30—C31—H311120.8C69—C70—H701121.0
C32—C31—H311119.0C71—C70—H701120.5
C31—C32—C33120.2 (4)C70—C71—C72120.6 (4)
C31—C32—H321120.6C70—C71—H711118.2
C33—C32—H321119.2C72—C71—H711121.2
C32—C33—C28118.5 (4)C71—C72—C67119.1 (4)
C32—C33—H331121.1C71—C72—H721119.8
C28—C33—H331120.4C67—C72—H721121.1
C35—C34—H341120.8C75—C74—C79122.2 (5)
C35—C34—H342121.2C75—C74—I80117.8 (4)
H341—C34—H342117.9C79—C74—I80119.9 (4)
C34—C35—C36121.9 (4)C74—C75—C76117.7 (5)
C34—C35—H351118.9C74—C75—H751121.7
C36—C35—H351119.2C76—C75—H751120.6
C35—C36—O37121.4 (4)C75—C76—C77118.0 (5)
C35—C36—N38116.4 (3)C75—C76—H761120.4
O37—C36—N38122.1 (3)C77—C76—H761121.7
C36—N38—C39122.5 (3)C76—C77—C78123.2 (4)
C36—N38—C43118.0 (3)C76—C77—H771118.4
C39—N38—C43114.0 (3)C78—C77—H771118.4
N38—C39—C40111.1 (3)C77—C78—C79121.7 (4)
N38—C39—H392110.4C77—C78—H781120.3
C40—C39—H392108.8C79—C78—H781118.0
N38—C39—H391107.7C78—C79—C74117.2 (5)
C40—C39—H391108.6C78—C79—H791121.9
H392—C39—H391110.1C74—C79—H791120.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H82···N130.972.533.187 (6)126 (1)
C68—H681···N530.942.563.440 (6)158 (1)
C70—H701···O37i0.912.383.266 (6)165 (1)
C75—H751···N200.942.393.251 (6)152 (1)
N17—H172···O370.842.373.017 (6)134 (2)
N50—H501···N15ii0.862.122.977 (6)175 (4)
N50—H502···O40.842.322.953 (6)132 (2)
N17—H171···N48iii0.852.112.941 (6)167 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z.
(chloro) top
Crystal data top
C56H53ClN12O4γ = 79.3096 (9)°
Mr = 993.6V = 1289.11 (4) Å3
Triclinic, P1Z = 1
Hall symbol: P 1F(000) = 522
a = 14.0474 (3) ÅDx = 1.280 Mg m3
b = 10.21941 (15) ÅCu Kα radiation, λ = 1.54059 Å
c = 10.37318 (18) ŵ = 1.11 mm1
α = 116.4028 (10)°T = 293 K
β = 85.6175 (14)°white
Data collection top
Empyrean of PANalytical
diffractometer
Data collection mode: transmission
Radiation source: Sealed Cu X-ray tubeScan method: continuous
None monochromator2θmin = 4.556°, 2θmax = 79.989°, 2θstep = 0.013°
Specimen mounting: capillary
Refinement top
Rp = 0.018193 restraints
Rwp = 0.024287 constraints
Rexp = 0.007H-atom parameters constrained
R(F) = 0.057Weighting scheme based on measured s.u.'s
5864 data points(Δ/σ)max = 0.043
Excluded region(s): from 3.007 to 4.547Background function: 30 Legendre polynoms
Profile function: Pseudo-VoigtPreferred orientation correction: none
268 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.1405 (12)0.6649 (11)0.5843 (14)0.0620 (15)*
C20.1486 (7)0.7744 (11)0.5608 (10)0.0620 (15)*
N30.1387 (7)0.9082 (10)0.6633 (9)0.0620 (15)*
C40.1770 (11)0.7651 (16)0.4224 (10)0.0620 (15)*
C50.0945 (6)0.9184 (11)0.7881 (8)0.0620 (15)*
C60.1627 (7)1.0538 (10)0.6597 (10)0.0620 (15)*
C70.2601 (10)0.736 (5)0.3854 (16)0.0620 (15)*
C80.0012 (5)0.9724 (7)0.7890 (6)0.0620 (15)*
C90.0696 (10)1.1115 (12)0.6577 (12)0.0620 (15)*
N100.0434 (5)0.9763 (7)0.9128 (6)0.0620 (15)*
C110.0186 (9)1.1210 (10)0.7861 (13)0.0620 (15)*
N120.1307 (7)0.8724 (10)0.8830 (7)0.0620 (15)*
C130.0207 (5)1.0757 (11)1.0565 (6)0.0620 (15)*
C140.1651 (5)0.9128 (8)1.0075 (7)0.0620 (15)*
C150.0959 (5)1.0395 (9)1.1235 (6)0.0620 (15)*
N160.0636 (8)1.1884 (17)1.1246 (8)0.0620 (15)*
C170.2586 (6)0.8186 (7)1.0068 (10)0.0620 (15)*
C180.0827 (7)1.1252 (14)1.2790 (6)0.0620 (15)*
C190.0647 (8)1.2613 (13)1.2668 (8)0.0620 (15)*
C200.3263 (7)0.8769 (9)1.0911 (14)0.0620 (15)*
C210.2817 (9)0.6635 (8)0.9098 (17)0.0620 (15)*
N220.0014 (11)1.2371 (18)1.3473 (7)0.0620 (15)*
N230.1430 (16)1.101 (3)1.3618 (8)0.0620 (15)*
C240.4184 (7)0.7862 (9)1.0755 (17)0.0620 (15)*
C250.3693 (8)0.5726 (7)0.9001 (18)0.0620 (15)*
C260.4375 (6)0.6324 (8)0.9790 (12)0.0620 (15)*
O270.5282 (6)0.5294 (11)0.9456 (9)0.0620 (15)*
C280.5637 (5)0.5053 (11)1.0574 (9)0.0620 (15)*
C290.6540 (10)0.399 (2)1.0139 (16)0.0620 (15)*
C300.5075 (9)0.5662 (18)1.1889 (10)0.0620 (15)*
C310.6888 (13)0.363 (2)1.1163 (19)0.0620 (15)*
C320.5471 (12)0.531 (2)1.2992 (12)0.0620 (15)*
C330.6336 (14)0.431 (2)1.2561 (17)0.0620 (15)*
O1a1.2817 (11)0.8826 (15)0.4235 (17)0.0620 (15)*
C2a1.2724 (8)0.8012 (11)0.4806 (11)0.0620 (15)*
N3a1.2044 (6)0.7192 (9)0.4499 (7)0.0620 (15)*
C4a1.3387 (10)0.7866 (19)0.5807 (15)0.0620 (15)*
C5a1.1473 (6)0.7124 (7)0.3376 (7)0.0620 (15)*
C6a1.1856 (8)0.6185 (16)0.5108 (9)0.0620 (15)*
C7a1.3893 (12)0.886 (2)0.6442 (14)0.0620 (15)*
C8a1.1693 (4)0.5530 (6)0.2124 (7)0.0620 (15)*
C9a1.2098 (11)0.4552 (14)0.3887 (15)0.0620 (15)*
N10a1.1125 (4)0.5505 (6)0.0995 (6)0.0620 (15)*
C11a1.1531 (10)0.4405 (11)0.2641 (13)0.0620 (15)*
N12a1.0270 (8)0.6614 (13)0.1414 (8)0.0620 (15)*
C13a1.1228 (6)0.4486 (8)0.0421 (6)0.0620 (15)*
C14a0.9861 (4)0.6315 (8)0.0227 (8)0.0620 (15)*
C15a1.0468 (5)0.4995 (8)0.0996 (6)0.0620 (15)*
N16a1.1979 (10)0.3220 (14)0.1175 (9)0.0620 (15)*
C17a0.8879 (5)0.7270 (7)0.0393 (11)0.0620 (15)*
C18a1.0523 (7)0.4199 (12)0.2542 (6)0.0620 (15)*
C19a1.1915 (14)0.2550 (18)0.2578 (9)0.0620 (15)*
C20a0.8674 (7)0.8818 (8)0.104 (2)0.0620 (15)*
C21a0.8119 (6)0.6554 (8)0.0116 (18)0.0620 (15)*
N22a1.1267 (13)0.2928 (19)0.3298 (8)0.0620 (15)*
N23a0.9959 (17)0.464 (2)0.3302 (9)0.0620 (15)*
C24a0.7726 (8)0.9677 (8)0.122 (2)0.0620 (15)*
C25a0.7209 (6)0.7380 (10)0.0010 (18)0.0620 (15)*
C26a0.7001 (5)0.8915 (10)0.0691 (14)0.0620 (15)*
O27a0.6002 (5)0.9620 (14)0.0921 (13)0.0620 (15)*
C28a0.5689 (6)1.0211 (12)0.0005 (12)0.0620 (15)*
C29a0.4771 (11)1.125 (3)0.053 (2)0.0620 (15)*
C30a0.6296 (9)0.992 (2)0.1201 (14)0.0620 (15)*
C31a0.4461 (13)1.195 (2)0.028 (2)0.0620 (15)*
C32a0.5942 (13)1.063 (3)0.2086 (19)0.0620 (15)*
C33a0.5054 (16)1.158 (2)0.1581 (19)0.0620 (15)*
H1c40.13280.7809350.3584550.0744*
H1c50.0795710.8212410.7846830.0744*
H2c50.140520.9869830.8766720.0744*
H1c60.2106671.1263130.7445280.0744*
H2c60.1898131.0403740.5736740.0744*
H1c70.3096610.7363720.4547890.0744*
H2c70.2719430.7142450.288850.0744*
H1c80.0444970.9021250.7006580.0744*
H1c90.0866811.209360.6628730.0744*
H2c90.0248261.0451480.5671570.0744*
H1c110.0432821.1456160.775680.0744*
H2c110.0593631.1986630.8762150.0744*
H1c190.1203781.3456781.3208280.0744*
H1c200.3098470.9817061.1617710.0744*
H1c210.2354960.6211130.8497850.0744*
H1c240.4671180.8283561.1295770.0744*
H1c250.3829360.4659020.8373410.0744*
H1c290.6900630.3533780.9157480.0744*
H1c300.4431420.6310441.2105310.0744*
H1c310.7507930.2914331.0916810.0744*
H1c320.5122840.5783831.3981670.0744*
H1c330.6592870.4040971.3265450.0744*
H1c4a1.3446870.7018760.5995820.0744*
H1c5a1.1625820.7788950.3011040.0744*
H2c5a1.0784260.745810.3790980.0744*
H1c6a1.117570.6485790.555960.0744*
H2c6a1.2257980.6258870.5833330.0744*
H1c7a1.4432330.8934180.5870640.0744*
H2c7a1.3723630.9519570.747710.0744*
H1c8a1.2379540.522070.1701850.0744*
H1c9a1.1932460.3915480.428120.0744*
H2c9a1.2792770.4214360.3508860.0744*
H1c11a1.1756070.3402860.1841240.0744*
H2c11a1.0840570.4588910.2982490.0744*
H1c19a1.2419040.1643630.3173040.0744*
H1c20a0.9188650.931650.1375180.0744*
H1c21a0.8244040.5476740.0539510.0744*
H1c24a0.7579951.0758310.169890.0744*
H1c25a0.671170.6878450.0430610.0744*
H1c29a0.4373391.1463790.1425760.0744*
H1c30a0.6944240.9268260.1473710.0744*
H1c31a0.384051.2679460.0049830.0744*
H1c32a0.6332321.0414490.298950.0744*
H1c33a0.4809171.2046560.2156030.0744*
H1n230.197411.0305621.3217520.0744*
H2n230.1284821.1558761.4563880.0744*
H1n23a0.9477320.5446440.2855060.0744*
H2n23a1.0067490.4125930.4252170.0744*
Cl1a0.4412 (13)0.2218 (18)0.480 (3)0.106 (9)*0.721 (14)
C51a0.5362 (15)0.311 (2)0.536 (3)0.0620 (15)*0.721 (14)
C52a0.515 (2)0.465 (2)0.602 (5)0.0620 (15)*0.721 (14)
C53a0.590 (2)0.536 (3)0.632 (5)0.0620 (15)*0.721 (14)
C54a0.686 (2)0.455 (4)0.606 (7)0.0620 (15)*0.721 (14)
C55a0.7045 (18)0.299 (4)0.545 (6)0.0620 (15)*0.721 (14)
C56a0.6308 (15)0.227 (3)0.507 (5)0.0620 (15)*0.721 (14)
H1c52a0.4477940.5224470.6282050.0744*0.721 (14)
H1c53a0.5764270.6430180.6707830.0744*0.721 (14)
H1c54a0.7380260.5049270.6290710.0744*0.721 (14)
H1c55a0.770530.2418340.5285340.0744*0.721 (14)
H1c56a0.6448640.1186420.4612120.0744*0.721 (14)
Cl1b0.755 (4)0.412 (8)0.593 (9)0.106 (9)*0.279 (14)
C51b0.661 (3)0.318 (6)0.551 (7)0.0620 (15)*0.279 (14)
C52b0.686 (5)0.164 (7)0.479 (9)0.0620 (15)*0.279 (14)
C53b0.614 (7)0.090 (8)0.431 (9)0.0620 (15)*0.279 (14)
C54b0.517 (5)0.167 (9)0.463 (12)0.0620 (15)*0.279 (14)
C55b0.493 (4)0.322 (9)0.543 (12)0.0620 (15)*0.279 (14)
C56b0.565 (4)0.399 (7)0.585 (9)0.0620 (15)*0.279 (14)
H1c52b0.7525570.1094080.4629720.0744*0.279 (14)
H1c53b0.6314840.0180630.3731480.0744*0.279 (14)
H1c54b0.4665450.1137660.4320510.0744*0.279 (14)
H1c55b0.4257710.3773910.5688220.0744*0.279 (14)
H1c56b0.5484070.5071030.636040.0744*0.279 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
???????
Geometric parameters (Å, º) top
O1—C21.234 (19)C4a—H1c4a0.96
C2—N31.350 (13)C5a—C8a1.519 (7)
C2—C41.487 (17)C5a—H1c5a0.96
N3—C51.448 (14)C5a—H2c5a0.96
N3—C61.481 (16)C6a—C9a1.533 (16)
C4—C71.30 (2)C6a—H1c6a0.96
C4—H1c40.96C6a—H2c6a0.96
C5—C81.513 (13)C7a—H1c7a0.96
C5—H1c50.96C7a—H2c7a0.96
C5—H2c50.96C8a—N10a1.460 (10)
C6—C91.535 (18)C8a—C11a1.513 (17)
C6—H1c60.96C8a—H1c8a0.96
C6—H2c60.96C9a—C11a1.54 (2)
C7—H1c70.96C9a—H1c9a0.96
C7—H2c70.96C9a—H2c9a0.96
C8—N101.460 (10)N10a—N12a1.376 (11)
C8—C111.507 (15)N10a—C13a1.347 (7)
C8—H1c80.96C11a—H1c11a0.96
C9—C111.533 (19)C11a—H2c11a0.96
C9—H1c90.96N12a—C14a1.332 (12)
C9—H2c90.96C13a—C15a1.390 (11)
N10—N121.376 (11)C13a—N16a1.367 (13)
N10—C131.348 (7)C14a—C15a1.429 (7)
C11—H1c110.96C14a—C17a1.483 (9)
C11—H2c110.96C15a—C18a1.427 (8)
N12—C141.330 (11)N16a—C19a1.324 (13)
C13—C151.390 (11)C17a—C20a1.376 (10)
C13—N161.367 (13)C17a—C21a1.409 (12)
C14—C151.428 (8)C18a—N22a1.363 (17)
C14—C171.475 (11)C18a—N23a1.32 (2)
C15—C181.428 (8)C19a—N22a1.33 (2)
N16—C191.322 (10)C19a—H1c19a0.96
C17—C201.378 (14)C20a—C24a1.400 (15)
C17—C211.404 (9)C20a—H1c20a0.96
C18—N221.362 (16)C21a—C25a1.362 (13)
C18—N231.32 (2)C21a—H1c21a0.96
C19—N221.328 (17)N23a—H1n23a0.87
C19—H1c190.96N23a—H2n23a0.87
C20—C241.396 (14)C24a—C26a1.396 (14)
C20—H1c200.96C24a—H1c24a0.96
C21—C251.365 (16)C25a—C26a1.363 (13)
C21—H1c210.96C25a—H1c25a0.96
N23—H1n230.87C26a—O27a1.401 (11)
N23—H2n230.87O27a—C28a1.40 (2)
C24—C261.396 (11)C28a—C29a1.398 (18)
C24—H1c240.96C28a—C30a1.331 (18)
C25—C261.361 (16)C29a—C31a1.37 (4)
C25—H1c250.96C29a—H1c29a0.96
C26—O271.401 (11)C30a—C32a1.46 (3)
O27—C281.397 (15)C30a—H1c30a0.96
C28—C291.398 (17)C31a—C33a1.39 (3)
C28—C301.330 (13)C31a—H1c31a0.96
C29—C311.37 (3)C32a—C33a1.33 (3)
C29—H1c290.96C32a—H1c32a0.96
C30—C321.46 (2)C33a—H1c33a0.96
C30—H1c300.96C51a—C52a1.36 (3)
C31—C331.39 (2)C51a—C56a1.37 (3)
C31—H1c310.96C52a—C53a1.37 (5)
C32—C331.33 (2)C52a—H1c52a0.96
C32—H1c320.96C53a—C54a1.37 (5)
C33—H1c330.96C53a—H1c53a0.96
O1a—C2a1.23 (2)C54a—C55a1.38 (5)
C2a—N3a1.350 (15)C54a—H1c54a0.96
C2a—C4a1.48 (2)C55a—C56a1.37 (4)
N3a—C5a1.447 (11)C55a—H1c55a0.96
N3a—C6a1.48 (2)C56a—H1c56a0.96
C4a—C7a1.31 (3)
O1—C2—N3121.2 (12)C7a—C4a—H1c4a119.08
O1—C2—C4120.5 (11)N3a—C5a—C8a110.9 (6)
N3—C2—C4118.1 (12)N3a—C5a—H1c5a109.47
C2—N3—C5120.5 (10)N3a—C5a—H2c5a109.47
C2—N3—C6126.6 (10)C8a—C5a—H1c5a109.47
C5—N3—C6112.7 (8)C8a—C5a—H2c5a109.47
C2—C4—C7121.8 (18)H1c5a—C5a—H2c5a107.97
C2—C4—H1c4119.09N3a—C6a—C9a110.1 (9)
C7—C4—H1c4119.09N3a—C6a—H1c6a109.47
N3—C5—C8110.9 (9)N3a—C6a—H2c6a109.47
N3—C5—H1c5109.47C9a—C6a—H1c6a109.47
N3—C5—H2c5109.47C9a—C6a—H2c6a109.47
C8—C5—H1c5109.47H1c6a—C6a—H2c6a108.88
C8—C5—H2c5109.47C4a—C7a—H1c7a120
H1c5—C5—H2c5107.98C4a—C7a—H2c7a120
N3—C6—C9110.1 (9)H1c7a—C7a—H2c7a120
N3—C6—H1c6109.47C5a—C8a—N10a109.7 (5)
N3—C6—H2c6109.47C5a—C8a—C11a112.2 (7)
C9—C6—H1c6109.47C5a—C8a—H1c8a108.64
C9—C6—H2c6109.47N10a—C8a—C11a112.7 (7)
H1c6—C6—H2c6108.86N10a—C8a—H1c8a108.1
C4—C7—H1c7120C11a—C8a—H1c8a105.33
C4—C7—H2c7120C6a—C9a—C11a111.2 (11)
H1c7—C7—H2c7120C6a—C9a—H1c9a109.47
C5—C8—N10109.7 (7)C6a—C9a—H2c9a109.47
C5—C8—C11112.2 (8)C11a—C9a—H1c9a109.47
C5—C8—H1c8108.65C11a—C9a—H2c9a109.47
N10—C8—C11112.7 (7)H1c9a—C9a—H2c9a107.66
N10—C8—H1c8108.08C8a—N10a—N12a117.7 (5)
C11—C8—H1c8105.33C8a—N10a—C13a131.5 (5)
C6—C9—C11111.2 (11)N12a—N10a—C13a110.5 (6)
C6—C9—H1c9109.47C8a—C11a—C9a110.1 (10)
C6—C9—H2c9109.47C8a—C11a—H1c11a109.47
C11—C9—H1c9109.47C8a—C11a—H2c11a109.47
C11—C9—H2c9109.47C9a—C11a—H1c11a109.47
H1c9—C9—H2c9107.66C9a—C11a—H2c11a109.47
C8—N10—N12117.7 (5)H1c11a—C11a—H2c11a108.81
C8—N10—C13131.5 (6)N10a—N12a—C14a106.8 (6)
N12—N10—C13110.5 (6)N10a—C13a—C15a107.9 (5)
C8—C11—C9110.1 (8)N10a—C13a—N16a125.7 (8)
C8—C11—H1c11109.47C15a—C13a—N16a126.3 (7)
C8—C11—H2c11109.47N12a—C14a—C15a109.8 (7)
C9—C11—H1c11109.47N12a—C14a—C17a118.3 (7)
C9—C11—H2c11109.47C15a—C14a—C17a131.8 (7)
H1c11—C11—H2c11108.82C13a—C15a—C14a104.7 (5)
N10—N12—C14106.8 (5)C13a—C15a—C18a117.0 (6)
N10—C13—C15108.0 (6)C14a—C15a—C18a138.1 (8)
N10—C13—N16125.7 (7)C13a—N16a—C19a110.3 (12)
C15—C13—N16126.3 (6)C14a—C17a—C20a123.1 (8)
N12—C14—C15109.8 (7)C14a—C17a—C21a118.2 (6)
N12—C14—C17118.2 (6)C20a—C17a—C21a118.7 (7)
C15—C14—C17131.7 (7)C15a—C18a—N22a116.8 (9)
C13—C15—C14104.8 (5)C15a—C18a—N23a125.5 (9)
C13—C15—C18117.0 (6)N22a—C18a—N23a117.6 (8)
C14—C15—C18138.1 (8)N16a—C19a—N22a130.5 (13)
C13—N16—C19110.3 (10)N16a—C19a—H1c19a114.73
C14—C17—C20123.0 (6)N22a—C19a—H1c19a114.73
C14—C17—C21118.2 (9)C17a—C20a—C24a121.1 (9)
C20—C17—C21118.7 (8)C17a—C20a—H1c20a119.44
C15—C18—N22116.9 (8)C24a—C20a—H1c20a119.44
C15—C18—N23125.5 (10)C17a—C21a—C25a120.4 (7)
N22—C18—N23117.6 (8)C17a—C21a—H1c21a119.79
N16—C19—N22130.6 (10)C25a—C21a—H1c21a119.79
N16—C19—H1c19114.72C18a—N22a—C19a118.8 (8)
N22—C19—H1c19114.72C18a—N23a—H1n23a120
C17—C20—C24121.1 (7)C18a—N23a—H2n23a120
C17—C20—H1c20119.44H1n23a—N23a—H2n23a120
C24—C20—H1c20119.44C20a—C24a—C26a118.0 (7)
C17—C21—C25120.4 (11)C20a—C24a—H1c24a121.01
C17—C21—H1c21119.78C26a—C24a—H1c24a121.01
C25—C21—H1c21119.78C21a—C25a—C26a120.3 (9)
C18—N22—C19118.9 (6)C21a—C25a—H1c25a119.83
C18—N23—H1n23120C26a—C25a—H1c25a119.83
C18—N23—H2n23120C24a—C26a—C25a121.2 (8)
H1n23—N23—H2n23120C24a—C26a—O27a124.3 (9)
C20—C24—C26118.0 (10)C25a—C26a—O27a114.3 (9)
C20—C24—H1c24121.01C26a—O27a—C28a118.8 (11)
C26—C24—H1c24121.01O27a—C28a—C29a115.0 (14)
C21—C25—C26120.4 (7)O27a—C28a—C30a120.3 (10)
C21—C25—H1c25119.82C29a—C28a—C30a124.2 (17)
C26—C25—H1c25119.82C28a—C29a—C31a117.5 (18)
C24—C26—C25121.2 (8)C28a—C29a—H1c29a121.26
C24—C26—O27124.3 (9)C31a—C29a—H1c29a121.26
C25—C26—O27114.3 (7)C28a—C30a—C32a117.8 (12)
C26—O27—C28118.8 (8)C28a—C30a—H1c30a121.11
O27—C28—C29115.0 (10)C32a—C30a—H1c30a121.11
O27—C28—C30120.3 (9)C29a—C31a—C33a119.1 (16)
C29—C28—C30124.1 (13)C29a—C31a—H1c31a120.43
C28—C29—C31117.5 (13)C33a—C31a—H1c31a120.43
C28—C29—H1c29121.26C30a—C32a—C33a117.0 (18)
C31—C29—H1c29121.26C30a—C32a—H1c32a121.51
C28—C30—C32117.8 (11)C33a—C32a—H1c32a121.51
C28—C30—H1c30121.11C31a—C33a—C32a124 (2)
C32—C30—H1c30121.11C31a—C33a—H1c33a117.89
C29—C31—C33119.1 (17)C32a—C33a—H1c33a117.89
C29—C31—H1c31120.43C52a—C51a—C56a121 (2)
C33—C31—H1c31120.43C51a—C52a—C53a119 (2)
C30—C32—C33117.0 (12)C51a—C52a—H1c52a120.43
C30—C32—H1c32121.52C53a—C52a—H1c52a120.43
C33—C32—H1c32121.52C52a—C53a—C54a121 (3)
C31—C33—C32124 (2)C52a—C53a—H1c53a119.57
C31—C33—H1c33117.89C54a—C53a—H1c53a119.57
C32—C33—H1c33117.89C53a—C54a—C55a119 (3)
O1a—C2a—N3a121.2 (13)C53a—C54a—H1c54a120.69
O1a—C2a—C4a120.6 (14)C55a—C54a—H1c54a120.69
N3a—C2a—C4a118.2 (13)C54a—C55a—C56a121 (3)
C2a—N3a—C5a120.5 (10)C54a—C55a—H1c55a119.43
C2a—N3a—C6a126.6 (9)C56a—C55a—H1c55a119.43
C5a—N3a—C6a112.7 (8)C51a—C56a—C55a119 (3)
C2a—C4a—C7a121.8 (19)C51a—C56a—H1c56a120.67
C2a—C4a—H1c4a119.08C55a—C56a—H1c56a120.67
 

Funding information

This work received financial support from specific university research grants (grant no. A1_FCHI_2022_006). Computational resources were supplied by project `e-Infrastruktura CZ' (grant no. e-INFRA LM2018140) provided within the program Projects of Large Research, Development and Innovations Infrastructures. JK also acknowledges the European Regional Development Fund OP RDE (grant no. CZ.02.1.01/0.0/0.0/16_019/0000729) for additional computational resources. We would like to also acknowledge the Pharmaceutical Applied Research Center (PARC) for support in various parts of this project. There are no conflicts of interest to declare.

References

First citationAakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448.  Web of Science CrossRef Google Scholar
First citationAguiar, A. J. & Zelmer, J. E. (1969). J. Pharm. Sci. 58, 983–987.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAmrutha, S., Giri, L., SeethaLekshmi, S. & Varughese, S. (2020). Cryst. Growth Des. 20, 5086–5096.  CSD CrossRef CAS Google Scholar
First citationArlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318–1327.  Web of Science CSD CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBillot, P., Hosek, P. & Perrin, M.-A. (2013). Org. Process Res. Dev. 17, 505–511.  CrossRef CAS Google Scholar
First citationBolton, O., Simke, L. R., Pagoria, P. F. & Matzger, A. J. (2012). Cryst. Growth Des. 12, 4311–4314.  Web of Science CSD CrossRef CAS Google Scholar
First citationClark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K. & Payne, M. C. (2005). Z. Kristallogr. Cryst. Mater. 220, 567–570.  Web of Science CrossRef CAS Google Scholar
First citationCollier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498–505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDash, S. G. & Thakur, T. S. (2021). Cryst. Growth Des. 21, 449–461.  CSD CrossRef CAS Google Scholar
First citationDegen, T., Sadki, M., Bron, E., König, U. & Nénert, G. (2014). Powder Diffr. 29, S13–S18.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationFDA (2018). FDA Drug Approval Package: Imbruvica (ibrutinib), https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210563s000lbl.pdfGoogle Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian16, Revision B. 01, Gaussian, Inc., Wallingford CT.  Google Scholar
First citationGrimme, S. (2006). J. Comput. Chem. 27, 1787–1799.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIssa, N., Karamertzanis, P. G., Welch, G. W. A. & Price, S. L. (2009). Cryst. Growth Des. 9, 442–453.  Web of Science CrossRef CAS Google Scholar
First citationKaramertzanis, P. G., Kazantsev, A. V., Issa, N., Welch, G. W. A., Adjiman, C. S., Pantelides, C. C. & Price, S. L. (2009). J. Chem. Theory Comput. 5, 1432–1448.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKokubo, H., Morimoto, K., Ishida, T., Inoue, M. & Morisaka, K. (1987). Int. J. Pharm. 35, 181–183.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsuda, H., Osaki, K. & Nitta, I. (1958). Bull. Chem. Soc. Jpn, 31, 611–620.  CSD CrossRef CAS Web of Science Google Scholar
First citationMatsuda, Y., Akazawa, R., Teraoka, R. & Otsuka, M. (2011). J. Pharm. Pharmacol. 46, 162–167.  CrossRef Google Scholar
First citationMonkhorst, H. J. & Pack, J. D. (1976). Phys. Rev. B, 13, 5188–5192.  CrossRef Web of Science Google Scholar
First citationS. de Moraes, L., Edwards, D., Florence, A. J., Johnston, A., Johnston, B. F., Morrison, C. A. & Kennedy, A. R. (2017). Cryst. Growth Des. 17, 3277–3286.  Google Scholar
First citationMusumeci, D., Hunter, C. A., Prohens, R., Scuderi, S. & McCabe, J. F. (2011). Chem. Sci. 2, 883–890.  Web of Science CrossRef CAS Google Scholar
First citationNauha, E. & Nissinen, M. (2011). J. Mol. Struct. 1006, 566–569.  Web of Science CSD CrossRef CAS Google Scholar
First citationPurro, N., Smyth, M. S. Goldman E. & Wirth D. D. (2013). Patent US 10294232 B2.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPandit, J. K., Gupta, S. K., Gode, K. D. & Mishra, B. (1984). Int. J. Pharm. 21, 129–132.  CrossRef CAS Google Scholar
First citationPerdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett., 77, 3865–3868.  CrossRef PubMed CAS Google Scholar
First citationPrice, S. L. (2014). Chem. Soc. Rev. 43, 2098–2111.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPuig de la Bellacasa, R., Roué, G., Balsas, P., Pérez-Galán, P., Teixidó, J., Colomer, D. & Borrell, J. I. (2014). Eur. J. Med. Chem. 86, 664–675.  CrossRef CAS PubMed Google Scholar
First citationReilly, A. M., Cooper, R. I., Adjiman, C. S., Bhattacharya, S., Boese, A. D., Brandenburg, J. G., Bygrave, P. J., Bylsma, R., Campbell, J. E., Car, R., Case, D. H., Chadha, R., Cole, J. C., Cosburn, K., Cuppen, H. M., Curtis, F., Day, G. M., DiStasio, R. A. Jr, Dzyabchenko, A., van Eijck, B. P., Elking, D. M., van den Ende, J. A., Facelli, J. C., Ferraro, M. B., Fusti-Molnar, L., Gatsiou, C.-A., Gee, T. S., de Gelder, R., Ghiringhelli, L. M., Goto, H., Grimme, S., Guo, R., Hofmann, D. W. M., Hoja, J., Hylton, R. K., Iuzzolino, L., Jankiewicz, W., de Jong, D. T., Kendrick, J., de Klerk, N. J. J., Ko, H.-Y., Kuleshova, L. N., Li, X., Lohani, S., Leusen, F. J. J., Lund, A. M., Lv, J., Ma, Y., Marom, N., Masunov, A. E., McCabe, P., McMahon, D. P., Meekes, H., Metz, M. P., Misquitta, A. J., Mohamed, S., Monserrat, B., Needs, R. J., Neumann, M. A., Nyman, J., Obata, S., Oberhofer, H., Oganov, A. R., Orendt, A. M., Pagola, G. I., Pantelides, C. C., Pickard, C. J., Podeszwa, R., Price, L. S., Price, S. L., Pulido, A., Read, M. G., Reuter, K., Schneider, E., Schober, C., Shields, G. P., Singh, P., Sugden, I. J., Szalewicz, K., Taylor, C. R., Tkatchenko, A., Tuckerman, M. E., Vacarro, F., Vasileiadis, M., Vazquez-Mayagoitia, A., Vogt, L., Wang, Y., Watson, R. E., de Wijs, G. A., Yang, J., Zhu, Q. & Groom, C. R. (2016). Acta Cryst. B72, 439–459.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationRohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600–601.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRohlíček, J., Skořepová, E., Babor, M. & Čejka, J. (2016). J. Appl. Cryst. 49, 2172–2183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRohlíček, J., Zvoníček, V., Skořepová, E. & Šoóš, M. (2020). Powder Diffr. 35, 160–165.  Google Scholar
First citationRozovski, U., Hazan-Halevy, I., Keating, M. J. & Estrov, Z. (2014). Cancer Lett. 352, 4–14.  CrossRef CAS PubMed Google Scholar
First citationSchultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSládková, V., Skalická, T., Skořepová, E., Čejka, J., Eigner, V. & Kratochvíl, B. (2015). CrystEngComm, 17, 4712–4721.  Google Scholar
First citationStanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856–3862.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, C. & Grant, D. J. W. (2001). Pharm. Res. 18, 274–280.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E., Nangia, A. & Boldyreva, E. V. (2015). Cryst. Growth Des. 15, 3498–3510.  Web of Science CSD CrossRef CAS Google Scholar
First citationVasilopoulos, Y., Heyda, J., Rohlíček, J., Skořepová, E., Zvoníček, V. & Šoóš, M. (2022). J. Phys. Chem. B, 126, 503–512.  CrossRef CAS PubMed Google Scholar
First citationVeeraraghavan, S., Viswanadha, S., Thappali, S., Govindarajulu, B., Vakkalanka, S. & Rangasamy, M. (2015). J. Pharm. Biomed. Anal. 107, 151–158.  CrossRef CAS PubMed Google Scholar
First citationWöhler, F. (1844). Annalen Chem. Pharm. 51, 145–163.  Google Scholar
First citationYoung, R. M. & Staudt, L. M. (2014). Cancer Cell, 26, 11–13.  CrossRef CAS PubMed Google Scholar
First citationZvoníček, V., Skořepová, E., Dušek, M., Babor, M., Žvátora, P. & Šoóš, M. (2017). Cryst. Growth Des. 17, 3116–3127.  Google Scholar
First citationZvoníček, V., Skořepová, E., Dušek, M., Žvátora, P. & Šoóš, M. (2018). Cryst. Growth Des. 18, 1315–1326.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 10| Part 2| March 2023| Pages 210-219
ISSN: 2052-2525