research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 10| Part 3| May 2023| Pages 329-340
ISSN: 2052-2525

Crystal engineering of ionic cocrystals comprising Na/K salts of hesperetin with hesperetin molecules and solubility modulation

crossmark logo

aDepartment of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
*Correspondence e-mail: xtal@ul.ie

Edited by L. R. MacGillivray, University of Iowa, USA (Received 7 February 2023; accepted 20 March 2023; online 21 April 2023)

Hesperetin (HES) is a weakly acidic flavonoid of topical interest owing to its antiviral properties. Despite the presence of HES in many dietary supplements, its bioavailability is hindered by poor aqueous solubility (1.35 µg ml−1) and rapid first-pass metabolism. Cocrystallization has evolved as a promising approach to generate novel crystal forms of biologically active compounds and enhance the physicochemical properties without covalent modification. In this work, crystal engineering principles were employed to prepare and characterize various crystal forms of HES. Specifically, two salts and six new ionic cocrystals (ICCs) of HES involving sodium or potassium salts of HES were studied using single-crystal X-ray diffraction (SCXRD) or powder X-ray diffraction and thermal measurements. Structures of seven of the new crystalline forms were elucidated by SCXRD, which revealed two families of isostructural ICCs in terms of their crystal packing and confirmed the presence of phenol⋯phenolate (PhOH⋯PhO) supramolecular heterosynthons. Diverse HES conformations were observed amongst these structures, including unfolded and folded (previously unreported) conformations. One ICC, HES with the sodium salt of HES (NESNAH), was scalable to the gram scale and found to be stable after accelerated stability testing (exposure to elevated heat and humidity). HESNAH reached Cmax after 10 min in PBS buffer 6.8 compared with 240 min in pure HES. In addition, relative solubility was observed to be 5.5 times greater, offering the possibility of improved HES bioavailability.

1. Introduction

Flavonoids feature a polyphenolic backbone and are widely distributed in plants, fruits and vegetables (Panche et al., 2016[Panche, A. N., Diwan, A. D. & Chandra, S. R. (2016). J. Nutr. Sci. 5, e47.]). They are widely studied for their beneficial health effects as highlighted in epidemiological studies (Hertog, 1996[Hertog, M. G. L. (1996). Proc. Nutr. Soc. 55, 385-397.]; Arts, 2008[Arts, I. C. W. (2008). J. Nutr. 138, 1561S-1566S.]). Hesperetin (HES, Fig. 1[link]), a bioactive flavonoid, is naturally available in citrus fruits and has been formulated into dietary supplements as it possesses potent antioxidant and anti-inflammatory properties (Parhiz et al., 2015[Parhiz, H., Roohbakhsh, A., Soltani, F., Rezaee, R. & Iranshahi, M. (2015). Phytother. Res. 29, 323-331.]). HES can also play an important protective role in the prevention of various diseases associated with inflammation and oxidative stress, including cancer [e.g. carcinoid tumours (Zarebczan et al., 2011[Zarebczan, B., Pinchot, S. N., Kunnimalaiyaan, M. & Chen, H. (2011). Am. J. Surg. 201, 329-333.]; Sohel et al., 2022[Sohel, M., Sultana, H., Sultana, T., Al Amin, M., Aktar, S., Ali, M. C., Rahim, Z. B., Hossain, M. A., Al Mamun, A., Amin, M. N. & Dash, R. (2022). Heliyon, 8, E08815.])], neurodegenerative diseases [e.g. Alzheimer's disease (Ikram et al., 2019[Ikram, M., Muhammad, T., Rehman, S. U., Khan, A., Jo, M. G., Ali, T. & Kim, M. O. (2019). Mol. Neurobiol. 56, 6293-6309.]; kheradmand et al., 2018[kheradmand, E., Hajizadeh Moghaddam, A. & Zare, M. (2018). Biomed. Pharmacother. 97, 1096-1101.])] and cardiovascular diseases (Roohbakhsh et al., 2015[Roohbakhsh, A., Parhiz, H., Soltani, F., Rezaee, R. & Iranshahi, M. (2015). Life Sci. 124, 64-74.]; Wang et al., 2017[Wang, B., Li, L., Jin, P., Li, M. & Li, J. (2017). Exp. Ther. Med. 14, 2255-2260.]). Most recently, arising from the COVID-19 pandemic, HES has attracted attention because of its ability to bind to multiple regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), suppressing entry into host cells and subsequent replication of viral particles (Khezri et al., 2022[Khezri, M. R., Ghasemnejad-Berenji, M. & Moloodsouri, D. (2022). J. Food Biochem. 46, e14212.]; Agrawal et al., 2021[Agrawal, P. K., Agrawal, C. & Blunden, G. (2021). Nat. Prod. Commun. 16, 1-12.]). Unfortunately, HES suffers from poor aqueous solubility (1.35 µg ml−1, 25°C) (Liu & Chen, 2008[Liu, L. & Chen, J. (2008). J. Chem. Eng. Data, 53, 1649-1650.]) and undergoes rapid first-pass metabolism (Kanaze et al., 2007[Kanaze, F. I., Bounartzi, M. I., Georgarakis, M. & Niopas, I. (2007). Eur. J. Clin. Nutr. 61, 472-477.]), two factors that can severely limit bioavailability and efficacy. Therefore, improving the solubility and bioavailability of HES is a practical concern for potential pharmacological utility.

[Figure 1]
Figure 1
Graphical representation of the salts and ICCs of HES obtained in the study.

In pharmaceutical science, solid-state screening of active pharmaceutical ingredients (APIs), including salts (Berge et al., 1977[Berge, S. M., Bighley, L. D. & Monkhouse, D. C. (1977). J. Pharm. Sci. 66, 1-19.]; Gould, 1986[Gould, P. L. (1986). Int. J. Pharm. 33, 201-217.]; Morris et al., 1994[Morris, K. R., Fakes, M. G., Thakur, A. B., Newman, A. W., Singh, A. K., Venit, J. J., Spagnuolo, C. J. & Serajuddin, A. T. M. (1994). Int. J. Pharm. 105, 209-217.]; Stahl & Wermuth, 2002[Stahl, P. H. & Wermuth, C. G. (2002). Handbook of pharmaceutical salts: Properties, selection and use. Weinheim: Wiley-VCH.]), polymorphs (Haleblian & Mccrone, 1969[Haleblian, J. & McCrone, W. (1969). J. Pharm. Sci. 58, 911-929.]; Miller et al., 2005[Miller, J. M., Collman, B. M., Greene, L. R., Grant, D. J. & Blackburn, A. C. (2005). Pharm. Dev. Technol. 10, 291-297.]), hydrates/solvates (Healy et al., 2017[Healy, A. M., Worku, Z. A., Kumar, D. & Madi, A. M. (2017). Adv. Drug Deliv. Rev. 117, 25-46.]; Khankari & Grant, 1995[Khankari, R. K. & Grant, D. J. W. (1995). Thermochim. Acta, 248, 61-79.]) and cocrystals (Aitipamula et al., 2012[Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147-2152.]) is employed to counter undesirable physicochemical properties, enabling the development of bioactive molecules as drug products. Generally, salt formation is the most common and effective way to enhance the solubility of ionizable molecules, with approximately 50% of marketed drug products being in salt form (Byrn et al., 2017[Byrn, S. R., Zografi, G. & Chen, X. S. (2017). Solid-state profiles of pharmaceutical materials. Hoboken, NJ: Wiley.]). For weakly ionizable or non-ionizable molecules, where polymorphs and hydrates/solvates tend to not have a significant impact on solubility (Pudipeddi & Serajuddin, 2005[Pudipeddi, M. & Serajuddin, A. T. M. (2005). J. Pharm. Sci. 94, 929-939.]), crystal engineering of pharmaceutical cocrystals has become widely used over the last two decades. Pharmaceutical cocrystals offer an opportunity to control the physicochemical properties of drug molecules (Bolla et al., 2022[Bolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514-11603.]), including solubility (Thakuria et al., 2013[Thakuria, R., Delori, A., Jones, W., Lipert, M. P., Roy, L. & Rodríguez-Hornedo, N. (2013). Int. J. Pharm. 453, 101-125.]; Babu & Nangia, 2011[Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 2662-2679.]), hydrolytic stability (Duggirala et al., 2014[Duggirala, N. K., Smith, A. J., Wojtas, Ł., Shytle, R. D. & Zaworotko, M. J. (2014). Cryst. Growth Des. 14, 6135-6142.]) and bioavailability (Nangia & Desiraju, 2022[Nangia, A. K. & Desiraju, G. R. (2022). Angew. Chem. 134, e202207484.]; Shan et al., 2014[Shan, N., Perry, M. L., Weyna, D. R. & Zaworotko, M. J. (2014). Expert Opin. Drug Metab. Toxicol. 10, 1255-1271.]), without changing the molecular structure of an API and thereby compromising its intrinsic biological activities. Indeed, the US Food and Drug Administration (2018[US Food and Drug Administration (2018). Guidance for industry: Regulatory classification of pharmaceutical co-crystals guideline for industry. https://www.fda.gov/files/drugs/published/Regulatory-Classification-of-Pharmaceutical-Co-Crystals.pdf]) and European Medicines Agency (2015[European Medicines Agency (2015). Reflection paper on the use of cocrystals of active substances in medicinal products. London: European Medicines Agency. https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-cocrystals-active-substances-medicinal-products_en.pdf]) have released regulatory guidelines for industrial use of pharmaceutical cocrystals, i.e. cocrystals in which at least one of the coformers is a drug molecule (Almarsson & Zaworotko, 2004[Almarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889-1896.]). To date, at least ten drug products whereby pharmaceutical cocrystals serve as drug substances have been approved and brought to market (Kavanagh et al., 2019[Kavanagh, O. N., Croker, D. M., Walker, G. M. & Zaworotko, M. J. (2019). Drug Discovery Today, 24, 796-804.]; Almansa et al., 2017[Almansa, C., Mercè, R., Tesson, N., Farran, J., Tomàs, J. & Plata-Salamán, C. R. (2017). Cryst. Growth Des. 17, 1884-1892.]).

Cocrystals can be classified as molecular cocrystals (MCCs) comprising two or more molecular compounds (A and B), or ionic cocrystals (ICCs) (Braga et al., 2010[Braga, D., Grepioni, F., Maini, L., Prosperi, S., Gobetto, R. & Chierotti, M. R. (2010). Chem. Commun. 46, 7715-7717.]) comprising at least one salt (A+BC, where A+ = cation, B = anion and C = neutral molecule or another salt). Since ICCs include no fewer than three components, at least two components can be changed if one of the coformers is an API or an ionic form of an API, thereby providing more opportunities to modulate the physicochemical properties compared with MCCs, which typically offer only one variable component in addition to the API. Additionally, ICCs comprising the API with its conjugate salt would offer the possibility to increase the drug loading mass, potentially reducing the drug dosage. Cocrystals are typically sustained by hydrogen bonds (Aakeröy & Seddon, 1993[Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]; Bhattacharya & Zaworotko, 2018[Bhattacharya, S. P. K. S. & Zaworotko, M. J. (2018). The role of hydrogen bonding in co-crystals. Cambridge: Royal Society of Chemistry.]) and halogen bonds (Mukherjee et al., 2014[Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514-2524.]). In the case of ICCs containing metal ions, coordination bonds are likely to be established between organic moieties and metals (Braga et al., 2018[Braga, D., Grepioni, F. & Shemchuk, O. (2018). CrystEngComm, 20, 2212-2220.]; Grepioni et al., 2022[Grepioni, F., Casali, L., Fiore, C., Mazzei, L., Sun, R., Shemchuk, O. & Braga, D. (2022). Dalton Trans. 51, 7390-7400.]). Given that coordination bonds are typically stronger than hydrogen bonds, these organic–inorganic assemblies can potentially enhance the relevant properties. Indeed, a particularly relevant example is the marketed drug product Depakote. It is an ICC-containing valproic acid and sodium valproate, which exhibits non-hygroscopicity compared with its parent salt (Petruševski et al., 2008[Petruševski, G., Naumov, P., Jovanovski, G. & Ng, S. W. (2008). Inorg. Chem. Commun. 11, 81-84.]; Kavanagh et al., 2019[Kavanagh, O. N., Croker, D. M., Walker, G. M. & Zaworotko, M. J. (2019). Drug Discovery Today, 24, 796-804.]). Likewise, our group demonstrated how ICCs of lithium salicylate with L-proline and lithium halides (Cl, Br) with glucose improve hygroscopicity and can also modulate the pharmacokinetics of parent lithium salts (Duggirala et al., 2014[Duggirala, N. K., Smith, A. J., Wojtas, Ł., Shytle, R. D. & Zaworotko, M. J. (2014). Cryst. Growth Des. 14, 6135-6142.]; Smith et al., 2013[Smith, A. J., Kim, S. H., Duggirala, N. K., Jin, J., Wojtas, L., Ehrhart, J., Giunta, B., Tan, J., Zaworotko, M. J. & Shytle, R. D. (2013). Mol. Pharm. 10, 4728-4738.]). These `organic–inorganic' ICCs can also be used for solid-state chiral resolution, whereby the lithium cation or zinc cation that favour tetrahedral coordination exhibit homochiral preference when LiX (X = Cl, Br, I) or ZnCl2 are cocrystallized with racemic coformers (Shemchuk et al., 2021[Shemchuk, O., Spoletti, E., Braga, D. & Grepioni, F. (2021). Cryst. Growth Des. 21, 3438-3448.], 2020[Shemchuk, O., Grepioni, F. & Braga, D. (2020). CrystEngComm, 22, 5613-5619.], 2018[Shemchuk, O., Song, L., Robeyns, K., Braga, D., Grepioni, F. & Leyssens, T. (2018). Chem. Commun. 54, 10890-10892.]).

Cocrystals can be rationally designed by crystal engineering based on the exploitation of supramolecular synthons (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]). Supramolecular heterosynthons (Walsh et al., 2003[Walsh, R. D. B., Bradner, M. W., Fleischman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186-187.]) between two different but complementary functional groups are particularly valuable to facilitate cocrystal design once the relevant hierarchies are established, e.g. if a supramolecular heterosynthon is favoured over a competing supramolecular homosynthon between two identical self-complementary functional groups or versus other heterosynthons that might form between coformers (Jin, Sanii et al., 2022[Jin, S., Sanii, R., Song, B.-Q. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 4582-4591.]; Haskins et al., 2022[Haskins, M. M., Lusi, M. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 3333-3342.]; Duggirala et al., 2015[Duggirala, N. K., Wood, G. P. F., Fischer, A., Wojtas, Ł., Perry, M. L. & Zaworotko, M. J. (2015). Cryst. Growth Des. 15, 4341-4354.]; Kavuru et al., 2010[Kavuru, P., Aboarayes, D., Arora, K. K., Clarke, H. D., Kennedy, A., Marshall, L., Ong, T. T., Perman, J., Pujari, T., Wojtas, Ł. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 3568-3584.]; Shattock et al., 2008[Shattock, A. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533-4545.]; Bis et al., 2007[Bis, J. A., Vishweshwar, P., Weyna, D. & Zaworotko, M. J. (2007). Mol. Pharm. 4, 401-416.]). In our previous work, we demonstrated that the phenol–phenolate supramolecular heterosynthon (PhOH⋯PhO) is reliable and robust enough to be exploited for the design of ICCs of phenolic compounds (Jin, Sanii et al., 2022[Jin, S., Sanii, R., Song, B.-Q. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 4582-4591.]). In this contribution, we report a crystal engineering approach to address the solubility issue of HES through cocrystallization. HES would be expected to form both salts and cocrystals owing to its weakly acidic nature (pKa = 6.67) and hydrogen-bonding capabilities, respectively. To date, molecular cocrystals and an ICC of HES with palmatine chloride have been reported (Wang et al., 2021[Wang, J., Dai, X.-L., Lu, T.-B. & Chen, J.-M. (2021). Cryst. Growth Des. 21, 838-846.]; Zhang, Yang et al., 2021[Zhang, Y., Yang, R., Yin, H.-M., Zhou, B., Hong, M., Zhu, B., Qi, M.-H. & Ren, G.-B. (2021). J. Mol. Struct. 1252, 132150-132161.]; Liu et al., 2022[Liu, Y., Yang, F., Zhao, X., Wang, S., Yang, Q. & Zhang, X. (2022). Pharmaceutics, 14, 94-107.]; Zhang, Zhu et al., 2021[Zhang, Y., Zhu, B., Ji, W.-J., Guo, C.-Y., Hong, M., Qi, M.-H. & Ren, G.-B. (2021). Cryst. Growth Des. 21, 2720-2733.]; Zhang et al., 2022[Zhang, Y., Li, Y., Liu, L., Guo, Q., Sa, R., Zhang, M. & Lou, B. (2022). Cryst. Growth Des. 22, 1073-1082.]; Chadha et al., 2017[Chadha, K., Karan, M., Bhalla, Y., Chadha, R., Khullar, S., Mandal, S. & Vasisht, K. (2017). Cryst. Growth Des. 17, 2386-2405.]; Kavuru et al., 2010[Kavuru, P., Aboarayes, D., Arora, K. K., Clarke, H. D., Kennedy, A., Marshall, L., Ong, T. T., Perman, J., Pujari, T., Wojtas, Ł. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 3568-3584.]). A survey of the Cambridge Structural Database using ConQuest (version 2020.3.0 with June 2022 update) revealed no salt forms of HES. By introducing pharmaceutically acceptable metal cations, i.e. potassium (K+) and sodium (Na+), here we report the synthesis and characterization of K+ and Na+ salts of HES as well as ICCs comprising HES and these conjugate salts. We also report the dissolution profiles of scalable ICCs in PBS buffer solution.

2. Experimental

2.1. Reagents and materials

HES (>97%) and sodium methoxide (ca 5 mol l−1 in MeOH) were purchased from Tokyo Chemical Industry Co. Ltd. Potassium hydroxide (>85%) was purchased from Sigma–Aldrich. All solvents were purchased from Sigma–Aldrich or Alfa Aesar and used without further purification.

2.2. Synthesis

All cocrystallization experiments to isolate single crystals were conducted via slow evaporation, heating–cooling or liquid/vapour diffusion, either at room temperature or in a refrigerator at 5.4°C. Scale-up experiments were conducted by slurrying. Experimental details are as follows.

2.2.1. Hydrated sodium salt of HES, HESNA·H2O

Single crystals: HES (30 mg, 0.1 mmol) and 1 M sodium methoxide in MeOH (50 µl, 0.05 mmol) were dissolved in 2.3 ml of MeOH in a test tube; 2.5 ml of n-hexane was layered on top. The tube was sealed using parafilm and allowed to stand at room temperature. Colourless block crystals of HESNA·H2O were isolated after 7 days.

2.2.2. 1:1 ICC of HES and HESNA, HESNAH

Single crystals: HES (30 mg, 0.1 mmol) and 1 M sodium methoxide in MeOH (50 µl, 0.05 mmol) were dissolved in 2.3 ml of EtOH in a test tube; 2.5 ml of n-hexane was layered on top. The tube was sealed using parafilm and allowed to stand at room temperature. Colourless block crystals of HESNAH were harvested after 2 days.

Scale-up: bulk powder of HESNAH was obtained by slurrying HES (2.0 g, 6.6 mmol) and 5 M sodium methoxide in MeOH (700 µl, 3.5 mmol) in 6 ml MeOH (or H2O, or EtOH) under ambient conditions for 48 h. The resulting powder was filtered and dried in an oven at 50°C overnight.

2.2.3. Ethanol solvate of HESNAH, HESNAH·2EtOH

Single crystals: HES (30 mg, 0.1 mmol) and 1 M sodium methoxide in MeOH (50 µl, 0.05 mmol) were dissolved in 2.5 ml of EtOH in a vial. The vial was uncapped and put in a beaker containing 2.5 ml of n-hexane. The beaker was sealed and left at room temperature. After about 6 h, yellowish block crystals of HESNAH·2EtOH were harvested.

2.2.4. Hydrated potassium salt of HES, HESK·3H2O

Single crystals: HES (15 mg, 0.05 mmol) and 1 M KOH in H2O (100 µl, 0.1 mmol) were dissolved in 0.5 ml H2O and heated to 120°C for ca 15 min in a capped vial on a hot plate. The hot plate was turned off and the vial was allowed to cool on the hot plate. Colourless block crystals of HESK·3H2O were harvested after 12 h.

2.2.5. Hydrated 1:1 ICC of HES and HESK, HESKHE·2H2O

Single crystals: HES (30 mg, 0.1 mmol) and 1 M KOH in H2O (100 µl, 0.1 mmol) were dissolved in a vial containing 2.3 ml of an EtOH/H2O mixture with a volume ratio of 1:1. The vial was sealed with pierced parafilm to allow the solvent to slowly evaporate at room temperature. Colourless block crystals of HESKHE·2H2O were harvested after 3 days.

2.2.6. HESKHE anhydrate

Powder: the powder of HESKHE·2H2O was placed in an oven at 160°C for 30 min.

2.2.7. Ethanol solvate of HESKHE, HESKHE·xEtOH

Single crystals: HES (30 mg, 0.1 mmol) and 1 M KOH in H2O (50 µl, 0.05 mmol) were dissolved in 2 ml EtOH in a vial. The vial was sealed with pierced parafilm and left in the fridge at 5.4°C. Colourless block crystals of HESKHE·xEtOH were harvested after 3 days.

Scale-up: a bulk sample of HESKHE·xEtOH was obtained by slurrying HES (1.5 g, 5 mmol) and solid KOH (151.1 mg, 2.7 mmol) in 6.5 ml EtOH under ambient conditions for 48 h. The resulting powder was filtered and dried in an oven at 50°C overnight.

2.2.8. Methanol solvate of HESKHE, HESKHE·xMeOH

HES (30 mg, 0.1 mmol) and 1 M KOH in H2O (50 µl, 0.05 mmol) were dissolved in 2 ml of MeOH in a test tube; 2.5 ml of n-hexane was layered on top. The tube was sealed using parafilm and allowed to stand at room temperature. After 2 days, colourless block crystals of HESKHE·xMeOH were harvested.

2.3. Thermogravimetric analysis

Thermogravimetric analysis (TGA) was performed on a TA Instruments Q50 TG from room temperature to 350°C at a 10°C min−1 heating rate under an N2 purge of 60 ml min−1.

2.4. Differential scanning calorimetry

Thermal analysis was carried out by employing a TA Instruments DSC Q20. Samples were heated in a differential scanning calorimetry (DSC) pan with a pierced lid at a 10°C min−1 heating rate under an N2 atmosphere.

2.5. Powder X-ray diffraction

All powder X-ray diffraction (PXRD) patterns were collected on an Empyrean diffractometer (PANalytical) with the following experimental parameters: Cu Kα radiation (λ = 1.54056 Å), 40 kV and 40 mA, scan speed 8° min−1, step size 0.05°, angle range 5–40° 2θ.

2.6. Variable-temperature powder X-ray diffraction

Variable-temperature powder X-ray diffraction (vt-PXRD) was carried out and diffraction patterns were collected using a PANalytical X'Pert Pro-MPD diffractometer equipped with a PIXcel3D detector operating in scanning line detector mode. The diffractometer is outfitted with an Empyrean Cu LFF (long fine-focus) HR (9430 033 7300x) tube operated at 40 kV and 40 mA, and Cu Kα radiation (λα = 1.54056 Å). An Anton Paar TTK 450 stage coupled with the Anton Paar TCU 110 Temperature Control Unit was used. Measurements were in continuous scanning mode with the goniometer in the theta–theta orientation. HESNAH and HESKHE·xEtOH powders were loaded on a zero-background sample holder made for the Anton Paar TTK 450 chamber. The data were collected in the range 5–40° (2θ) at designated temperature points with a step size of 0.0334225 and a scan time of 50.165 s per step under an N2 atmosphere.

2.7. Single-crystal X-ray diffraction and structure determination

Single-crystal structures of HESNA·H2O, HESNAH, HESK·3H2O, HESKHE·2H2O and HESKHE·xMeOH were determined using either Mo Kα (λ = 0.71073 Å) or Cu Kα (λ = 1.5418 Å) radiation on a Bruker D8 Quest fixed-chi diffractometer equipped with a Bruker APEX-II CCD detector and a nitro­gen-flow Oxford Cryosystem attachment. Data were indexed, integrated and scaled in APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]). Absorption corrections were performed by the multi-scan method using SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]). Space groups were determined using XPREP as implemented in APEX3. Single-crystal structures of HESNAH·2EtOH and HESKHE·xEtOH were collected using Mo Kα radiation (λ = 0.71073 Å) on a Rigaku mm007 Oxford diffractrometer equipped with an R-axis IV++ image plate detector and an Oxford cryosystem 800. All crystal structures were solved using the intrinsic phasing method in SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and refined with SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]b) using the least-squares method implemented in Olex2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms of alkyl groups were placed in geometrically calculated positions and included in the refinement process using a riding model (AFIX 137, AFIX 23 or AFIX 13) with isotropic thermal parameters: Uiso (H) = −1.5Ueq (–CH3), Uiso (H) = −1.2Ueq (–CH2) and Uiso (H) = −1.2Ueq (–CH). Hydrogen atoms on benzene rings were placed in geometric positions via AFIX 43 restriction with the isotropic thermal parameter Uiso (H) = −1.2Ueq (–CH) and refined in a riding model. Hydrogen atoms on the hydroxyl groups of phenolic moieties were found via difference Fourier map inspection and refined with the distance restraint (DFIX O—H 0.84 Å) and with the thermal parameters Uiso (H) = −1.2Ueq (–OH). Hydrogen atoms on H2O molecules were located via AFIX 7 and refined in a riding model with the isotropic thermal parameters Uiso (H) = −1.5Ueq (–OH). Hydrogen atoms on the hydroxyl groups of EtOH and MeOH molecules were located via AFIX 147 and refined in a riding model with the isotropic thermal parameters Uiso (H) = −1.2Ueq (–OH). H6 in HESNAH and HESKHE·2H2O were refined without any restraint or constraint. A distance restraint DFIX is applied on H1WB and H5, and H1WA and H9A in HESKHE·2H2O.

Chiral carbon atoms and neighbouring carbon atoms of HES moieties were modelled for disorder in HESNA·H2O without any restraints and constraints applied to C9; in HESNAH·2EtOH with RIGU restraint applied to C8 and C9; in HESK·3H2O with distance (SADI) and ADP (ISOR and DELU) restraints applied to C8 and C9; in HESKHE·xEtOH with ADP restraints (SIMU, DELU and ISOR) applied to C9, C24 and C25, and with the distance restraint SADI applied on related covalent bonds. One phenolic ring (C26–C31) was modelled for disorder in HESKHE·xMeOH. Due to the disordered solvent molecules, HESKHE·xMeOH and HESKHE·xEtOH were treated by SQUEEZE in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), leaving 10.4 and 7.9% void volumes, respectively.

Crystal data have been deposited with the Cambridge Crystallographic Data Centre (CCDC codes 2208281–2208287). Selected crystallographic data and refinement parameters for the crystal structures are given in Table 1[link].

Table 1
Crystallographic data and structure refinement parameters

Hydrogen atoms were treated by a mixture of independent and constrained refinement.

  HESNA·H2O HESNAH HESNAH·2EtOH HESK·3H2O HESKHE·2H2O HESKHE·xMeOH HESKHE·xEtOH
Crystal data
Chemical formula C16H13O6Na·H2O C32H27O12Na C32H27O12Na·2C2H6O C16H13O6K·3H2O C32H27O12K·2H2O C32H27O12xCH4O C32H27O12xC2H6O
Mr 342.27 313.26 718.66 394.41 678.67 674.68 688.70
Crystal system Monoclinic Monoclinic Triclinic Orthorhombic Monoclinic Monoclinic Monoclinic
Space group P21/c P2/n P1 Pbca P2/n C2/c C2/c
T (K) 150 150 150 113 116 113 113
a (Å) 11.0666 (4) 10.7741 (6) 10.8865 (5) 19.9343 (3) 11.2185 (2) 19.6211 (3) 19.4072 (8)
b (Å) 13.2714 (4) 9.6357 (6) 10.9884 (6) 7.8657 (2) 10.2204 (2) 20.3628 (3) 20.4384 (8)
c (Å) 10.0412 (3) 13.8452 (9) 16.1451 (8) 31.4425 (7) 13.5244 (2) 17.2684 (3) 17.3645 (11)
α (°) 90 90 81.871 (4) 90 90 90 90
β (°) 94.430 (1) 107.103 (2) 74.681 (5) 90 106.427 (1) 104.282 (1) 104.006 (5)
γ (°) 90 90 68.049 (5) 90 90 90 90
V3) 1470.34 (8) 1373.79 (15) 1725.73 (17) 3446.19 (14) 1487.38 (5) 6686.19 (19) 6682.9 (6)
Z, Z 4, 1 2, 0.5 2, 1 8, 1 2, 0.5 8, 1 8, 1
Radiation type Mo Kα Mo Kα Mo Kα Cu Kα Cu Kα Cu Kα Mo Kα
μ (mm−1) 0.15 0.13 0.12 3.15 2.23 1.96 0.23
Diffractometer Bruker APEX-II CCD Bruker APEX-II CCD Rigaku mm007 Oxford Bruker APEX-II CCD Bruker APEX-II CCD Bruker APEX-II CCD Rigaku mm007 Oxford
Tmin, Tmax 0.710, 0.746 0.715, 0.746 0.904, 1.000 0.542, 0.753 0.509, 0.753 0.594, 0.753 0.373, 1.000
Measured [I > 2σ(I)] reflections 14984 13484 18542 29419 14054 39471 26486
Independent [I > 2σ(I)] reflections 3368 3173 7061 3040 2610 5880 6841
Observed [I > 2σ(I)] reflections 2734 2484 5100 2903 2414 5781 5112
Rint 0.024 0.045 0.047 0.071 0.049 0.040 0.062
 
Refinement
R[F2 > 2σ(F2)] 0.048 0.043 0.061 0.045 0.054 0.055 0.080
wR(F2) 0.124 0.117 0.165 0.117 0.161 0.147 0.205
S 1.04 1.07 1.05 1.08 1.07 1.13 1.02
Reflections 3368 3173 7061 3040 2610 5880 6841
Parameters 234 212 501 267 222 541 485
Restraints 2 2 11 19 4 405 52

2.8. Cambridge Structural Database analysis

A Cambridge Structural Database (CSD) survey using ConQuest was conducted to search for the distribution of Na/K—O bond lengths with the following constraints: R1 ≤ 0.05; only organics with 3D coordinates determined from SCXRD; without errors and disorder; Na+ or K+ cations coordinated to oxygen atoms only; excluding F, Cl, Br, I, S, As, N, P, C, Si and H atoms; coordination number unspecified; bond type between sodium or potassium and oxygen atoms set to `any'.

2.9. Accelerated stability test

Two scalable ICCs of HES (HESNAH and HESKHE·xEtOH) were subjected to an accelerated stability test in a humidity chamber at 40°C and 75% relative humidity (RH) (Huynh-Ba, 2008[Huynh-Ba, K. (2008). Handbook of stability testing in pharmaceutical development: Regulations, methodologies, and best practices. Springer: New York.]). Samples were removed after 14 days and PXRD and TGA data were then collected.

2.10. Powder dissolution tests

The dissolution experiments for pure HES and HESNAH were performed in 500 ml of pH 6.8 phosphate buffer solution (PBS) at 37°C under non-sink conditions. A mass of 60 mg equivalent of HES was sieved to 80–106 µm using a standard-mesh sieve and added to 500 ml PBS solution with stirring at 100 rpm. 1 ml aliquots were taken at 2, 4, 6, 8, 10, 15, 30, 40, 60, 90, 120, 150, 180, 210, 240, 270 and 300 min. Each aliquot was filtered through a 0.45 µm Corning syringe filter. 500 µl of filtered aliquot and 500 µl MeOH were added to a vial and injected into the high-performance liquid chromatography (HPLC) instrument. The remaining undissolved solid was analysed by PXRD and TGA. All dissolution experiments were carried out in triplicate.

2.11. High-performance liquid chromatography

The dissolution aliquots were analysed using a Shimadzu (LC-20A) HPLC instrument with the Gemini C18 (250 × 4.6 × 5 µm) column. The wavelength was set to 235 nm, the injection volume was set to 5 µl with a flow rate of 1 ml min−1 and the oven was set at 40°C. The mobile phase started with a composition of 25%:75% of 0.1% orthophospho­ric acid in aceto­nitrile and 0.1% orthophospho­ric acid in H2O with a gradient increase to 100% of 0.1% orthophospho­ric acid in aceto­nitrile from 0 to 13 min, and was then held at 100% for 2 min and afterwards reduced back to 25%:75% over a 2 min gradient. This composition was held constant for a further 3 min.

3. Results and discussion

3.1. Solid form screening of HES

Fig. 1[link] illustrates the crystalline forms of HES reported here. With respect to reactions of HES with sodium methoxide, one salt (HESNA·H2O) and two ICCs (HESNAH and HESNAH·2EtOH) were isolated as single crystals suitable for characterization by SCXRD. Attempts were made to scale up all three solid forms. HESNA·H2O was isolated from MeOH/n-hexane liquid diffusion while attempting to synthesize ICCs. Subsequent attempts to repeat the experiment or to prepare the bulk powder were unsuccessful, affording HESNAH according to PXRD and SCXRD characterization. The same issue was also encountered for scale-up of HESNAH·2EtOH. HESNAH was the only form that could be readily scaled up. This was achieved via slurrying using H2O, MeOH or EtOH. In addition, no phase transformation was observed when HESNAH was exposed to accelerated stability testing conditions (75% RH, 40°C) for 14 days as advised by PXRD and TGA (Fig. S1 of the supporting information). Vt-PXRD suggested HESNAH retained its structure up to 280°C (Fig. S2). Therefore, only HESNAH was deemed suitable for dissolution studies.

With respect to reactions of HES with potassium hydroxide, one salt (HESK·3H2O) and three ICCs (HESKHE·2H2O, HESKHE·xMeOH and HESKHE·xEtOH) were isolated as single crystals suitable for characterization by SCXRD. One ICC (HESKHE) was obtained as a microcrystalline powder by dehydration of HESKHE·2H2O at 160°C (dehydration evidenced by TGA and DSC data; Fig. S3). PXRD patterns [Fig. S4(a)] of HESKHE and HESKHE·2H2O are different. HESKHE was observed to transform back to HESKHE·2H2O after exposure to humidity for one day as supported by TGA [Fig. S4(b)], which revealed that transformations between HESKHE and HESKHE·2H2O are reversible. Attempts were made to scale up the salt and ICCs. Single crystals of HESK·3H2O were isolated in H2O using a heating–cooling method but this could not be reproduced. For the ICCs, only bulk preparation of HESKHE·xEtOH was successful via EtOH slurry. Unfortunately, HESKHE·xEtOH exhibited different TGA features after exposure to humidity for 14 days, likely due to water absorption on the sample surface and EtOH removal from the structure (Fig. S1). In addition, multiple phase changes were observed in vt-PXRD (Fig. S2) after heating to 160°C, which could be attributed to desolvation and/or dissociation of HESKHE·xEtOH. Therefore, HESKHE·xEtOH was deemed to be unsuitable for dissolution studies.

3.2. Crystal structure description

HESNA·H2O (C16H13O6·Na+·H2O) is a hydrated salt that crystallizes in the space group P21/c with one Na+ cation, one HES anion and one H2O molecule in the asymmetric unit. Each Na+ cation is five coordinated to —OH, —OCH3, —O— and PhO groups from three HES anions and by one H2O molecule which acts as terminal aqua ligand (for Na—O bond lengths see Table S1 of the supporting information). Na+ cations cross-link HES anions into a 2D coordination network along the bc crystallographic plane [Fig. 2[link](a)], which comprises side-by-side enclosed `squares' when viewed down the c axis, as illustrated in Fig. 2[link](b), revealing a bilayer 2D coordination network. Along the a axis, adjacent 2D polymeric sheets are stacked and interact via hydrogen bonds between H2O molecules and HES anions [Fig. 2[link](b)]. Hydrogen bonds between HES anions sustain the 2D coordination networks. HES anions were found to organize in cyclic dimers through pairs of charge-assisted PhOH⋯PhO hydrogen bonds (O2⋯O6: 2.526 (2) Å) [Fig. 2[link](c)], termed `motif I' herein. Further discussion about the interactions between HES anions is presented below.

[Figure 2]
Figure 2
Crystal structure of HESNA·H2O. (a) and (b) Bilayered 2D coordination networks propagate along the crystallographic bc plane and are cross-linked by hydrogen bonds between H2O molecules and HES anions along the a axis. (c) Cyclic dimers of HES form through pairs of PhOH⋯PhO hydrogen bonds (motif I) which exist throughout the 2D coordination networks. HES anions are shown in red.

HESNAH (C16H14O6·C16H13O6·Na+) is an anhydrous ICC that crystallizes in the space group P2/n. The asymmetric unit contains half the chemical formula (Z′ = 0.5) since Na+ cations and the protons between HES moieties are located on a crystallographic twofold axis. A symmetric or close-to-symmetric charge-assisted [PhO⋯H⋯PhO] hydrogen bond is formed with a short O6⋯O6′ distance of 2.4618 (18) Å, the proton was located via difference Fourier map inspection (Kreevoy et al., 1998[Kreevoy, M. M., Marimanikkuppam, S., Young, V. G., Baran, J., Szafran, M., Schultz, A. J. & Trouw, F. (1998). Ber. Bunsenges. Phys. Chem. 102, 370-376.]). Each Na+ cation is six-coordinate through two —OH, two —OCH3 and two —C=O groups from four HES moieties (for Na—O bond lengths see Table S1), forming coordination polymer chains that propagate along the b axis and stack along the a and c axes [Figs. 3[link](a) and 3(b)]. The resulting 3D network is sustained by hydrogen bonds. Like HESNA·H2O, motif I cyclic dimers form through pairs of hydrogen bonds between phenolate groups (partly deprotonated in HESNAH) and phenolic groups of HES moieties (O2⋯O6 2.636 (2) Å). A chain of cyclic dimers connected by [PhO⋯H⋯PhO] hydrogen bonds [Fig. 3[link](c)] is thereby generated. Fig. 3[link](c) reveals that HES moieties in HESNAH are folded into a `V' shape with a dihedral angle between the benzopyrone rings and phenolic rings of 89.89°. A conformational comparison of HES is addressed below.

[Figure 3]
Figure 3
Crystal structure of HESNAH. (a) Coordination polymer chains propagate along the b axis, giving rise to a 2D network through [PhO⋯H⋯PhO] hydrogen bonds along the crystallographic bc plane. (b) Packing of 2D hydrogen-bonding networks in a way that (c) HES moieties self-assemble into cyclic dimers through pairs of PhOH⋯PhO hydrogen bonds (motif I).

HESNAH·2EtOH (C16H14O6·C16H13O6·Na+·2EtOH) crystallizes in the space group P1, with HES anions, Na+ cations and HES molecules in a 1:1:1 ratio and two EtOH solvate molecules. Na+ cations are seven-coordinate through bonding to HES and HES via two —OH, two —OCH3, two —C=O groups and an EtOH molecule (EtOH1) which acts as a terminal ligand (for Na—O bond lengths see Table S1), resulting in infinite polymer chains propagating along the b axis [Fig. 4[link](a)]. HES molecules and HES anions arrange on each side of the polymer chains. PhOH⋯PhOH hydrogen bonds (O5⋯O2: 2.945 (3) Å) between HES molecules are present in the polymer chains. Along the c axis, adjacent chains are related to each other by PhOH⋯PhO hydrogen bonds (O6⋯O7: 2.566 (3) Å) between HES molecules and HES anions [Fig. 4[link](a)]. Along the a axis, free EtOH molecules (EtOH2) lie between adjacent chains through EtOH⋯PhO and EtOH⋯PhOH hydrogen bonds [Fig. 4[link](b)]. Cyclic dimers formed through pairs of PhOH⋯PhOH hydrogen bonds (O11⋯O8: 2.853 (3) Å) between HES anions (termed `motif II' herein) from adjacent chains [Fig. 4[link](b) and 4(c)] were observed. Further discussion concerning the interactions between HES anions is presented below.

[Figure 4]
Figure 4
Crystal structure of HESNAH·2EtOH. (a) Coordination polymer chains propagate along the b axis with HES and HES arranged on each side and linked to neighbouring chains along the c axis via PhOH⋯PhO hydrogen bonds. (b) Adjacent chains along the a axis are connected by EtOH molecules and by (c) cyclic dimers of HES anions through pairs of PhOH⋯PhOH hydrogen bonds (motif II). HES molecules and HES anions are show in green and red, respectively.

HESK·3H2O (C16H13O6·K+·3H2O) is a salt hydrate that crystallizes in the space group Pbca with one HES anion, one K+ cation and three H2O molecules in the asymmetric unit. Each K+ cation is coordinated to six neighbouring oxygen atoms from three HES anions, including —OH and —OCH3 groups on the phenolic rings of one HES, the —OH group on the benzopyrone ring of the second HES, —O— moieties of the third HES and two H2O molecules [H2O(1), H2O(2)] (for K—O bond lengths see Table S1). K+ cations cross-link HES anions into a 2D coordination network along the ac crystallographic plane. When viewed down the b axis, all phenolate and phenolic groups of HES and coordinated H2O molecules are positioned on the same side, the Aside, whereas the Bside is occupied by alkyl and —C=O groups, indicating that the Aside is rich in hydrogen-bond acceptors and donors whereas the Bside is deficient [Fig. 5[link](a)]. Adjacent coordinated polymer layers stack alternately in an `Aside-to-Aside' and `Bside-to-Bside' fashion along the c axis [Fig. 5[link](b)]. It is not surprising that only weak hydrogen bonds (e.g. C1—H⋯O4) were observed between `Bside-to-Bside' layers given the deficiency of hydrogen-bonding points of the Bside. On the contrary, the `Aside-to-Aside' stacking and the presence of free H2O molecules between layers facilitate a complex hydrogen-bonding network comprised of two kinds of charge-assisted hydrogen-bonded ring motifs, R55(12) and R44(12) (Fig. 6[link]). PhOH⋯PhO hydrogen bonds were not observed in HESK·3H2O. Rather, phenolate groups interact with three H2O molecules simultaneously.

[Figure 5]
Figure 5
Crystal structure of HESK·3H2O. (a) 2D coordination network with different functional groups located on two sides, i.e. the Aside and Bside. (b) Packing of the coordination polymer layers alternating in an `Aside-to-Aside' and `Bside-to-Bside' fashion; non-coordinated H2O molecules (space-filling mode, oxygen atoms are orange) lie between layers in the `Aside-to-Aside' region. HES anions are shown in red.
[Figure 6]
Figure 6
A portion of the hydrogen-bonding network comprised of R55(12) and R44(12) hydrogen-bonded motifs in HESK·3H2O. Red and green indicate different layers; non-coordinated H2O molecules are shown in black.

HESKHE·2H2O (C16H14O6·C16H13O6·K+·2H2O) is a hydrated ICC that crystallizes in the space group P2/n with half of the formula unit (Z′ = 0.5) in the asymmetric unit. Like HESNAH, as a consequence of K+ and the proton sitting on a twofold axis, symmetric or close-to-symmetric charge-assisted [PhO⋯H⋯PhO] hydrogen bonds [O6⋯O6′: 2.451 (2) Å] were observed between HES moieties. Eight coordination is observed around the K+ cation, involving oxygen atoms of four HES moieties and two H2O molecules which act as terminal aqua ligands (for K—O bond lengths see Table S1). The HES moieties fold perpendicularly between the phenolic ring and benzopyrone ring with a dihedral angle of 86.58°, which is slightly smaller than the 89.89° value found in HESNAH. Therefore, similar coordination polymer chains to those observed in HESNAH propagate along the b axis and give rise to a 3D network through hydrogen bonds [Figs. S5(a) and S5(b)]. The crystal packing is sustained via [PhO⋯H⋯PhO] and PhOH⋯PhO hydrogen bonds [O2⋯O6: 2.660 (3) Å] that form cyclic dimers between HES moieties like in HESNAH, and hydrogen bonds between H2O molecules and phenolic groups of HES moieties that form R22(8) hydrogen-bonded motifs [Figs. S5(c) and S5(d)]. The similar packing patterns in HESKHE·2H2O and HESNAH mean that they can be classified as isostructural (Kálmán et al., 1993[Kálmán, A., Párkányi, L. & Argay, G. (1993). Acta Cryst. B49, 1039-1049.]; Wood et al., 2012[Wood, P. A., Oliveira, M. A., Zink, A. & Hickey, M. B. (2012). CrystEngComm, 14, 2413-2421.]) despite the incorporation of H2O molecules in HESKHE·2H2O and cation substitution. The presence of H2O molecules contributes to the larger unit-cell volume [1487.38 (5) Å3 HESKHE·2H2O; 1373.79 (15) Å3 HESNAH]. Despite structural similarities, HESKHE·2H2O and HESNAH have distinct PXRD patterns (Fig. S6).

HESKHE·xEtOH (C16H14O6·C16H13O6·K+·xEtOH) crystallizes in the space group C2/c. The asymmetric unit contains two half K+ cations, one HES molecule, one HES anion and a non-stoichiometric quantity of EtOH molecules. One K+ cation (K1+) is coordinated to four —OH and two —OCH3 groups of four HES anions. The second K+ cation (K2+) is coordinated to four neutral and two anionic HES moieties via four —OH, two —OCH3 and two —C=O groups (for K—O bond lengths see Table S1). Their coordination numbers are 6 and 8, respectively. The resulting structure is a `double-wall' square grid propagating in the ab crystallographic plane. The square grid is sustained by PhOH⋯PhO [O6⋯O7: 2.482 (4) Å] and PhOH⋯PhOH hydrogen bonds [O6⋯O11: 2.947 (7) Å] and its cavities are filled with EtOH molecules (Fig. 7[link]). EtOH molecules interact with HES through EtOH⋯PhO hydrogen bonds and with HES though EtOH⋯PhOH hydrogen bonds.

[Figure 7]
Figure 7
`Double-wall' square grid filled with EtOH molecules in the crystal structure of HESKHE·xEtOH. HES molecules and HES anions are shown in green and red, respectively.

HESKHE·xMeOH (C16H14O6·C16H13O6·K+·xMeOH) and HESKHE·xEtOH are isostructural with the same unit-cell parameters and space group except for the replacement of EtOH with MeOH (Fig. S7). The two crystals have PXRD patterns that are substantially the same (Fig. S6).

3.3. CSD survey for distribution of Na/K—O bond lengths

A CSD survey resulted in a sample size of 5145 Na—O bond lengths in 666 coordination structures containing sodium. The distribution of Na—O bond distances is presented in Fig. 8[link](a). Most bond lengths fall in the range 2.1–3.1 Å with a mean value of 2.431 ± 0.127 Å. The CSD survey of K—O bonds resulted in 3692 bond lengths in 462 structures of potassium complexes. The K—O bond length distribution is shown in Fig. 8[link](b). The majority of K—O bonds exhibit lengths from 2.4 to 3.4 Å, averaging at 2.835 ± 0.137 Å. Na—O and K—O bond lengths extracted from the structures of HES reported here were in the ranges 2.2610 (16) to 2.6371 (15) Å and 2.6450 (19) to 2.8714 (24) Å, respectively (Table S1 and orange bars in Fig. 8[link]). The bond lengths observed in the structures reported here are therefore in good accordance with the literature values, with Na—O bonds consistently shorter than K—O bonds.

[Figure 8]
Figure 8
Histograms of (a) Na—O and (b) K—O bond length distributions. Purple and blue bars represent the bond distances retrieved from the CSD. Orange bars represent the bond distances observed in structures reported here.

3.4. Hydrogen-bonding analysis

In the crystal structures reported here, there are two hydrogen-bond acceptors, i.e. C=O and PhOH, that compete with PhO to form a supramolecular synthon with the hydrogen-bond donor PhOH. According to our CSD analysis, the PhOH⋯PhO supramolecular synthon occurs in 58.8% of crystal structures that contain PhOH, C=O and PhO in the absence of COOH or COO moieties, whereas PhOH⋯PhOH and PhOH⋯O=C synthons occur in 11.8 and 23.5% of related structures, respectively (CSD survey parameters are presented in Table S2). These results indicate that PhOH⋯PhO supramolecular synthons are generally preferred versus the relevant competing supramolecular synthons. The CSD data are consistent with the results obtained. We note that the structure of HES inherently favours this situation as six-membered-ring intramolecular hydrogen bonds persist between –OH and C=O moieties on the benzopyrone rings of HES, meaning that C=O is less likely to form intermolecular hydrogen bonds with additional PhOH moieties from neighbouring molecules. PhOH⋯PhOH synthons were observed in only three structures: HESNAH·2EtOH, HESKHE·xEtOH, HESKHE·xMeOH. In contrast, six of the seven crystal structures (except for HESK·3H2O) are sustained by PhOH⋯PhO synthons which exhibit shorter distances [2.451 (2) Å to 2.660 (3) Å] than PhOH⋯PhOH [2.853 (3) Å to 2.947 (7) Å] hydrogen bonds. Table 2[link] details the geometric parameters of PhOH⋯PhO and PhOH⋯PhOH hydrogen bonds observed in the structures reported. PhOH⋯PhO hydrogen bonds are expected to be stronger as they are charge-assisted as explained through energy decomposition analysis in our previous work (Jin, Sanii et al., 2022[Jin, S., Sanii, R., Song, B.-Q. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 4582-4591.]). It has been suggested that symmetric [PhO⋯H⋯PhO] hydrogen bonds can be classified as quasi-covalent bonds in nature due to incomplete proton transfer (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). The [PhO⋯H⋯PhO] hydrogen bonds observed in HESNAH [2.4618 (18) Å] and HESKHE·2H2O [2.451 (2) Å], reported here, HESTEA-γ [2.4256 (19) Å] reported by us recently (Jin, Haskins et al., 2022[Jin, S., Haskins, M. M., Andaloussi, Y. H., Ouyang, R., Gong, J. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 6390-6397.]), and bis­(4-Nitro­phenoxide) dihydrate [2.434 (6) Å] reported by Kreevoy et al. (1998[Kreevoy, M. M., Marimanikkuppam, S., Young, V. G., Baran, J., Szafran, M., Schultz, A. J. & Trouw, F. (1998). Ber. Bunsenges. Phys. Chem. 102, 370-376.]), are shorter than other PhOH⋯PhO hydrogen bonds [2.479 (3) Å to 2.660 (3) Å] observed in this work.

Table 2
PhOH⋯PhO and PhOH⋯PhOH hydrogen-bond parameters observed in the salt and ICC structures of HES reported here

Solid forms d (D—H) (Å) d (H⋯A) (Å) D (DA) (Å) θ (°)
PhOH⋯PhO hydrogen bonds
HESNA·H2O 0.852 (19) 1.674 (19) 2.526 (2) 180 (3)
HESNAH 0.86 (2) 1.79 (2) 2.636 (2) 165 (2)
1.2312 (13) 1.2312 (13) 2.4618 (18) 178 (2)
HESNAH·2EtOH 0.87 (2) 1.70 (2) 2.566 (3) 173 (3)
HESKHE·2H2O 0.82 (2) 1.84 (2) 2.660 (3) 174 (3)
1.225 (2) 1.225 (2) 2.451 (2) 180 (5)
HESKHE·xMeOH 0.84 1.65 2.479 (3) 169
HESKHE·xEtOH 0.84 (4) 1.66 (4) 2.482 (4) 164 (5)
 
PhOH⋯PhOH hydrogen bonds
HESNAH·2EtOH 0.85 (2) 2.47 (3) 2.945 (3) 116 (3)
0.83 (3) 2.04 (3) 2.853 (3) 165 (3)
HESKHE·xMeOH 0.85 (6) 2.02 (6) 2.872 (4) 178 (10)
HESKHE·xEtOH 0.87 (6) 2.21 (6) 2.947 (7) 143 (4)

HES features multiple phenolic moieties that can participate in hydrogen bonding. Twelve HES entries in the CSD contain HES molecules that form infinite chains via supramolecular homosynthons (PhOH⋯PhOH, five structures) or other supramolecular heterosynthons (PhOH⋯O=C, four structures). The refcodes are summarized in Table S3. No cyclic dimers were found between HES molecules. When HES is deprotonated, the results reported here and in our previous study on polymorphic ICCs of HES with its tetra­ethyl­ammonium salt (Jin, Haskins et al., 2022[Jin, S., Haskins, M. M., Andaloussi, Y. H., Ouyang, R., Gong, J. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 6390-6397.]) reveal that HES anions may form infinite chains with (in HESTEA-β) or without (in HESTEA-α, HESTEA-γ) HES molecules. They may also self-assemble into cyclic dimers which were found in four out of the seven structures reported in this work. Motif I cyclic dimers formed by pairs of PhOH⋯PhO hydrogen bonds exist in HESNA·H2O, HESNAH and HESKHE·2H2O. Motif II cyclic dimers generated by pairs of PhOH⋯PhOH hydrogen bonds between HES anions are present in HESNAH·2EtOH. No dimers comprising HES and HES were observed. It is therefore possible that HES anions and HES molecules are prone to form infinite chains, while HES anions can self-assemble into cyclic dimers.

3.5. HES conformation analysis

HES can exhibit flexibility around its chiral carbon atom, which is evident when the conformations of HES moieties extracted from the structures of HES reported here are overlaid by aligning the phenolic rings (Fig. 9[link]). Since the torsional angles cannot be determined due to the disorder of the chiral carbon atoms, in general, the conformational variability of HES moieties can be readily assessed through the analysis of dihedral angles between the benzopyrone rings (chiral carbons excluded) and phenolic rings. In HESNA·H2O, HESNAH·2EtOH, HESK·3H2O, HESKHE·xMeOH and HESKHE·xEtOH, HES moieties were found to exist in various conformations in such a manner that the benzopyrone rings and phenolic rings are unfolded [Fig. 9[link](a)]. The dihedral angles in these five structures are given in Table S4 and range from 55.83 to 89.13°. Interestingly, in HESNAH and HESKHE·2H2O, HES moieties exhibit conformations in which the benzopyrone and phenolic rings are folded with dihedral angles of 89.89 and 86.58°, respectively [Fig. 9[link](b)]. By inspection of HES conformations in all structures deposited in the CSD, we found that all HES moieties in the CSD are unfolded as shown in Fig. 9[link](a); the folded conformation has not been previously reported.

[Figure 9]
Figure 9
Overlay of (a) unfolded conformations of HES moieties found in HESNA·H2O (cyan), HESNAH·2EtOH (green for HES, blue for HES), HESK·3H2O (orange), HESKHE·xMeOH (magenta for HES), HESKHE·xEtOH (purple for HES, yellow for HES); and (b) folded conformations found in HESNAH (red) and HESKHE·2H2O (olive). HES in HESKHE·xMeOH is not included due to phenolic ring disorder. Hydrogen atoms have been omitted for clarity.

3.6. Powder dissolution analysis

Powder dissolution tests were performed for pure HES and HESNAH. The dissolution profiles are presented in Fig. 10[link]. Pure HES produced a dissolution profile typical of a poorly soluble molecular compound, demonstrating a slower rate of dissolution before reaching a maximum concentration (Cmax) of 27.71 ± 0.30 µg ml−1 after 240 min. The residue after dissolution was identified as the anhydrous form of HES (Fig. S8). For HESNAH, an improvement in the HES Cmax was achieved, known as a `spring' effect (Babu & Nangia, 2011[Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 2662-2679.]), reaching 44.43 ± 4.74 µg ml−1 within 10 min, i.e. 5.5 times more than pure HES at 10 min. Subsequently, the concentration dropped to 23.8 ± 0.65 µg ml−1, lower than HES bulk solubility, which we attribute to transformation of HESNAH to the hydrated form of HES as indicated by PXRD and TGA (Fig. S8). The fact that HESNAH dissolved at a faster rate compared with pure HES could be beneficial for absorption in the body (Hörter & Dressman, 1997[Hörter, D. & Dressman, J. B. (1997). Adv. Drug Deliv. Rev. 25, 3-14.]).

[Figure 10]
Figure 10
Dissolution profiles of HES and HESNAH in pH 6.8 PBS buffer.

4. Conclusions

The present study demonstrates that crystal engineering based on PhOH⋯PhO supramolecular heterosynthons can be utilized to isolate two new sodium/potassium salts of HES and six ICCs of HES with its conjugate salts. From the structural analysis, we found, as expected, that charge-assisted PhOH⋯PhO hydrogen bonds are shorter and more linear than the neutral PhOH⋯PhOH hydrogen bonds. Notably, symmetric or close-to-symmetric [PhO⋯H⋯PhO] hydrogen bonds were observed with short distances. HES moieties were found to exhibit various conformations: unfolded conformations in most structures and folded conformations, we believe for the first time in HES structures, in HESNAH and HESKHE·2H2O. Issues relating to scale-up and stability were encountered for both salts and five of the ICCs. HESNAH, however, was found to be scalable and showed a modest improvement in dissolution with respect to pure HES. The improved in vitro performance of HESNAH offers the possibility to enhance the pharmacokinetics of HES but requires further study. Overall, the results indicate that, for weakly ionizable compounds such as HES, salt formation may be not an effective route for modulation of physicochemical properties, especially solubility, which is supported by the difficulties we encountered in reproducing the formation of HESNA·H2O and HESK·3H2O. In addition, the results further support the robustness and reliability of PhOH⋯PhO supramolecular heterosynthons for crystal engineering of ICCs of phenolic compounds. This is potentially relevant to a broad range of biologically active compounds such as flavonoids and polyphenols.

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for HESKHE_xEtOH, HESNAH_2EtOH. Cell refinement: SAINT V8.40B (?, 2016) for HESKHE_2H2O, HESKHE_xMeOH, HESK_3H2O; CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for HESKHE_xEtOH, HESNAH_2EtOH; SAINT V8.38A (Bruker, 2018) for HESNAH, HESNA_H2O. Data reduction: SAINT V8.40B (?, 2016) for HESKHE_2H2O, HESKHE_xMeOH, HESK_3H2O; CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for HESKHE_xEtOH, HESNAH_2EtOH; SAINT V8.38A (Bruker, 2018) for HESNAH, HESNA_H2O. Program(s) used to solve structure: SHELXT 2018/2 (Sheldrick, 2018) for HESKHE_2H2O, HESKHE_xEtOH, HESKHE_xMeOH, HESK_3H2O; XT (Sheldrick, 2015) for HESNAH; SHELXT 2014/5 (Sheldrick, 2014) for HESNAH_2EtOH, HESNA_H2O. For all structures, program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

(HESKHE_2H2O) top
Crystal data top
C32H31KO14F(000) = 708
Mr = 678.67Dx = 1.515 Mg m3
Monoclinic, P2/nCu Kα radiation, λ = 1.54178 Å
a = 11.2185 (2) ÅCell parameters from 8622 reflections
b = 10.2204 (2) Åθ = 4.3–66.7°
c = 13.5244 (2) ŵ = 2.23 mm1
β = 106.427 (1)°T = 116 K
V = 1487.38 (5) Å3Block, clear light colourless
Z = 20.02 × 0.02 × 0.02 mm
Data collection top
Bruker APEX-II CCD
diffractometer
2414 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.1000 before and 0.0781 after correction. The Ratio of minimum to maximum transmission is 0.6764. The λ/2 correction factor is Not present.
θmax = 66.7°, θmin = 4.3°
Tmin = 0.509, Tmax = 0.753h = 1213
14054 measured reflectionsk = 119
2610 independent reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0982P)2 + 1.649P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2610 reflectionsΔρmax = 0.33 e Å3
222 parametersΔρmin = 0.89 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.2500000.75764 (7)0.7500000.0239 (3)
O60.34801 (16)0.12888 (17)0.31911 (12)0.0222 (4)
O50.17356 (17)0.47456 (18)0.46430 (14)0.0261 (4)
O10.33577 (18)0.04043 (18)0.89289 (14)0.0277 (4)
O30.58768 (16)0.31726 (17)0.62889 (13)0.0238 (4)
O20.46977 (18)0.09896 (18)0.76907 (15)0.0284 (4)
H50.209 (2)0.524 (3)0.510 (2)0.034*
H20.526 (2)0.114 (3)0.743 (2)0.034*
H60.2500000.129 (5)0.2500000.034*
O40.31528 (19)0.58194 (19)0.63047 (15)0.0341 (5)
C120.4788 (2)0.3143 (2)0.55095 (18)0.0209 (5)
C130.4682 (2)0.2247 (2)0.47334 (19)0.0208 (5)
H130.5355800.1679170.4741980.025*
C150.2580 (2)0.3018 (2)0.39118 (18)0.0209 (5)
H150.1823650.2958440.3375040.025*
C50.5012 (2)0.2599 (2)0.76954 (19)0.0218 (5)
C20.3854 (2)0.0636 (3)0.85365 (19)0.0225 (5)
C140.3576 (2)0.2172 (2)0.39267 (18)0.0195 (5)
C160.2714 (2)0.3935 (2)0.46839 (18)0.0205 (5)
C30.4590 (2)0.0312 (2)0.78894 (18)0.0210 (5)
C100.3965 (3)0.4995 (3)0.6301 (2)0.0266 (6)
C40.5166 (2)0.1286 (3)0.74894 (18)0.0215 (5)
H40.5678000.1056470.7064400.026*
O1W0.0569 (2)0.6674 (3)0.5811 (2)0.0555 (7)
H1WA0.0146510.6653850.5974580.083*
H1WB0.0695700.5840980.5674770.083*
C110.3812 (2)0.4027 (2)0.55030 (18)0.0207 (5)
C80.5730 (2)0.3620 (3)0.72751 (19)0.0247 (6)
H80.6579080.3688180.7770700.030*
C90.5174 (3)0.4982 (3)0.7132 (2)0.0283 (6)
H9A0.5038730.5283460.7787080.034*
H9B0.5762230.5593810.6948180.034*
C60.4252 (3)0.2920 (3)0.8306 (2)0.0299 (6)
H6A0.4120000.3813580.8438740.036*
C70.3676 (3)0.1943 (3)0.8729 (2)0.0302 (6)
H70.3161280.2175500.9151440.036*
C10.2768 (3)0.0130 (3)0.9714 (2)0.0303 (6)
H1A0.2008140.0376470.9419680.045*
H1B0.3334020.0376181.0266740.045*
H1C0.2556300.0953320.9995600.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0326 (5)0.0194 (4)0.0237 (4)0.0000.0143 (3)0.000
O60.0287 (9)0.0202 (9)0.0195 (8)0.0039 (7)0.0100 (7)0.0026 (7)
O50.0319 (10)0.0224 (9)0.0246 (9)0.0087 (7)0.0091 (8)0.0042 (7)
O10.0376 (10)0.0245 (10)0.0294 (10)0.0039 (8)0.0231 (8)0.0036 (7)
O30.0232 (9)0.0281 (10)0.0217 (9)0.0038 (7)0.0087 (7)0.0007 (7)
O20.0365 (10)0.0201 (9)0.0380 (11)0.0023 (8)0.0259 (9)0.0027 (8)
O40.0470 (12)0.0251 (10)0.0310 (10)0.0053 (9)0.0125 (9)0.0067 (8)
C120.0254 (12)0.0199 (12)0.0202 (12)0.0036 (9)0.0112 (10)0.0034 (9)
C130.0243 (13)0.0199 (12)0.0223 (12)0.0028 (9)0.0133 (10)0.0020 (9)
C150.0278 (13)0.0187 (12)0.0175 (11)0.0028 (10)0.0085 (10)0.0018 (9)
C50.0239 (12)0.0234 (13)0.0177 (12)0.0010 (9)0.0052 (10)0.0007 (9)
C20.0262 (12)0.0226 (13)0.0207 (12)0.0014 (10)0.0102 (10)0.0023 (9)
C140.0280 (13)0.0172 (11)0.0177 (11)0.0001 (9)0.0137 (10)0.0036 (9)
C160.0289 (13)0.0156 (12)0.0208 (12)0.0035 (9)0.0132 (10)0.0025 (9)
C30.0227 (12)0.0211 (12)0.0205 (11)0.0020 (9)0.0081 (10)0.0015 (9)
C100.0407 (15)0.0173 (12)0.0252 (13)0.0023 (11)0.0149 (11)0.0005 (10)
C40.0214 (12)0.0256 (13)0.0192 (11)0.0015 (9)0.0087 (9)0.0008 (9)
O1W0.0519 (15)0.0586 (16)0.0559 (15)0.0063 (12)0.0149 (12)0.0019 (12)
C110.0298 (13)0.0166 (12)0.0196 (12)0.0019 (10)0.0130 (10)0.0007 (9)
C80.0272 (13)0.0273 (14)0.0195 (12)0.0067 (10)0.0063 (10)0.0046 (10)
C90.0375 (15)0.0216 (13)0.0268 (13)0.0099 (11)0.0106 (11)0.0033 (10)
C60.0401 (16)0.0237 (13)0.0316 (14)0.0017 (11)0.0193 (12)0.0062 (11)
C70.0404 (16)0.0263 (15)0.0316 (14)0.0009 (11)0.0228 (12)0.0049 (11)
C10.0354 (15)0.0353 (15)0.0277 (14)0.0038 (12)0.0210 (12)0.0032 (11)
Geometric parameters (Å, º) top
K1—O1i2.8050 (19)C15—C141.409 (3)
K1—O1ii2.8050 (19)C15—C161.379 (3)
K1—O2i2.817 (2)C5—C41.391 (4)
K1—O2ii2.817 (2)C5—C81.524 (3)
K1—O4iii2.6540 (19)C5—C61.384 (4)
K1—O42.6540 (19)C2—C31.402 (3)
K1—O1Wiii2.821 (3)C2—C71.386 (4)
K1—O1W2.821 (3)C16—C111.407 (4)
O6—H61.2253 (17)C3—C41.378 (4)
O6—C141.325 (3)C10—C111.438 (3)
O5—H50.810 (18)C10—C91.497 (4)
O5—C161.364 (3)C4—H40.9500
O1—C21.375 (3)O1W—H1WA0.8913
O1—C11.430 (3)O1W—H1WB0.8913
O3—C121.369 (3)C8—H81.0000
O3—C81.463 (3)C8—C91.515 (4)
O2—H20.819 (18)C9—H9A0.9900
O2—C31.369 (3)C9—H9B0.9900
O4—C101.242 (3)C6—H6A0.9500
C12—C131.373 (4)C6—C71.396 (4)
C12—C111.418 (4)C7—H70.9500
C13—H130.9500C1—H1A0.9800
C13—C141.404 (4)C1—H1B0.9800
C15—H150.9500C1—H1C0.9800
O1i—K1—O1ii85.26 (8)C6—C5—C8122.7 (2)
O1ii—K1—O2i78.53 (6)O1—C2—C3115.6 (2)
O1ii—K1—O2ii55.47 (5)O1—C2—C7125.3 (2)
O1i—K1—O2i55.47 (5)C7—C2—C3119.1 (2)
O1i—K1—O2ii78.53 (6)O6—C14—C13119.1 (2)
O1i—K1—O1Wiii69.36 (7)O6—C14—C15120.8 (2)
O1i—K1—O1W146.45 (7)C13—C14—C15120.1 (2)
O1ii—K1—O1Wiii146.45 (7)O5—C16—C15117.9 (2)
O1ii—K1—O1W69.36 (7)O5—C16—C11120.4 (2)
O2i—K1—O2ii117.29 (8)C15—C16—C11121.7 (2)
O2ii—K1—O1Wiii134.10 (7)O2—C3—C2116.9 (2)
O2i—K1—O1Wiii69.15 (7)O2—C3—C4123.2 (2)
O2i—K1—O1W134.10 (7)C4—C3—C2119.9 (2)
O2ii—K1—O1W69.15 (7)O4—C10—C11122.6 (3)
O4iii—K1—O1ii144.83 (6)O4—C10—C9120.8 (2)
O4—K1—O1ii100.26 (6)C11—C10—C9116.6 (2)
O4—K1—O1i144.83 (6)C5—C4—H4119.3
O4iii—K1—O1i100.26 (6)C3—C4—C5121.3 (2)
O4—K1—O2i91.30 (6)C3—C4—H4119.3
O4—K1—O2ii132.96 (6)K1—O1W—H1WA110.3
O4iii—K1—O2ii91.30 (6)K1—O1W—H1WB110.4
O4iii—K1—O2i132.96 (6)H1WA—O1W—H1WB103.7
O4iii—K1—O494.84 (9)C12—C11—C10120.4 (2)
O4iii—K1—O1W89.49 (7)C16—C11—C12117.7 (2)
O4—K1—O1W64.33 (7)C16—C11—C10121.9 (2)
O4iii—K1—O1Wiii64.33 (7)O3—C8—C5109.49 (19)
O4—K1—O1Wiii89.49 (7)O3—C8—H8107.5
O1Wiii—K1—O1W141.86 (12)O3—C8—C9108.6 (2)
C14—O6—H6116.1 (17)C5—C8—H8107.5
C16—O5—H597.7 (18)C9—C8—C5115.8 (2)
C2—O1—K1iv113.62 (14)C9—C8—H8107.5
C2—O1—C1117.3 (2)C10—C9—C8110.9 (2)
C1—O1—K1iv121.05 (15)C10—C9—H9A109.5
C12—O3—C8113.77 (18)C10—C9—H9B109.5
K1iv—O2—H2129 (2)C8—C9—H9A109.5
C3—O2—K1iv113.60 (14)C8—C9—H9B109.5
C3—O2—H2113 (2)H9A—C9—H9B108.0
C10—O4—K1142.26 (18)C5—C6—H6A119.7
O3—C12—C13118.0 (2)C5—C6—C7120.6 (3)
O3—C12—C11120.6 (2)C7—C6—H6A119.7
C13—C12—C11121.4 (2)C2—C7—C6120.3 (2)
C12—C13—H13120.1C2—C7—H7119.9
C12—C13—C14119.8 (2)C6—C7—H7119.9
C14—C13—H13120.1O1—C1—H1A109.5
C14—C15—H15120.3O1—C1—H1B109.5
C16—C15—H15120.3O1—C1—H1C109.5
C16—C15—C14119.4 (2)H1A—C1—H1B109.5
C4—C5—C8118.5 (2)H1A—C1—H1C109.5
C6—C5—C4118.7 (2)H1B—C1—H1C109.5
K1iv—O1—C2—C340.4 (3)C5—C8—C9—C1066.7 (3)
K1iv—O1—C2—C7139.4 (2)C5—C6—C7—C20.4 (4)
K1iv—O2—C3—C236.7 (3)C2—C3—C4—C51.4 (4)
K1iv—O2—C3—C4143.5 (2)C14—C15—C16—O5179.5 (2)
K1—O4—C10—C11166.72 (19)C14—C15—C16—C111.6 (4)
K1—O4—C10—C914.4 (4)C16—C15—C14—O6179.4 (2)
O5—C16—C11—C12179.1 (2)C16—C15—C14—C131.3 (3)
O5—C16—C11—C102.2 (4)C3—C2—C7—C61.7 (4)
O1—C2—C3—O22.3 (3)C4—C5—C8—O332.8 (3)
O1—C2—C3—C4177.6 (2)C4—C5—C8—C9156.0 (2)
O1—C2—C7—C6178.5 (3)C4—C5—C6—C71.7 (4)
O3—C12—C13—C14179.2 (2)C11—C12—C13—C141.7 (4)
O3—C12—C11—C16179.4 (2)C11—C10—C9—C827.9 (3)
O3—C12—C11—C101.8 (3)C8—O3—C12—C13151.3 (2)
O3—C8—C9—C1056.9 (3)C8—O3—C12—C1129.5 (3)
O2—C3—C4—C5178.7 (2)C8—C5—C4—C3176.8 (2)
O4—C10—C11—C12177.2 (2)C8—C5—C6—C7175.7 (3)
O4—C10—C11—C161.5 (4)C9—C10—C11—C121.7 (3)
O4—C10—C9—C8153.2 (2)C9—C10—C11—C16179.6 (2)
C12—O3—C8—C568.7 (3)C6—C5—C4—C30.7 (4)
C12—O3—C8—C958.6 (3)C6—C5—C8—O3149.8 (2)
C12—C13—C14—O6179.0 (2)C6—C5—C8—C926.6 (3)
C12—C13—C14—C150.3 (3)C7—C2—C3—O2177.5 (2)
C13—C12—C11—C161.5 (3)C7—C2—C3—C42.6 (4)
C13—C12—C11—C10177.3 (2)C1—O1—C2—C3170.4 (2)
C15—C16—C11—C120.2 (3)C1—O1—C2—C79.8 (4)
C15—C16—C11—C10178.9 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1, z+3/2; (iii) x+1/2, y, z+3/2; (iv) x, y1, z.
(HESKHE_xEtOH) top
Crystal data top
C32H27KO12·C2H6OF(000) = 2880
Mr = 688.70Dx = 1.369 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.4072 (8) ÅCell parameters from 11675 reflections
b = 20.4384 (8) Åθ = 2.0–33.6°
c = 17.3645 (11) ŵ = 0.23 mm1
β = 104.006 (5)°T = 113 K
V = 6682.9 (6) Å3Prism, clear light colourless
Z = 80.16 × 0.14 × 0.13 mm
Data collection top
Dtrek-CrysAlisPro-abstract goniometer imported rigaku-d*trek images
diffractometer
6841 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 2424
Tmin = 0.373, Tmax = 1.000k = 2525
26486 measured reflectionsl = 1621
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.080 w = 1/[σ2(Fo2) + (0.0733P)2 + 29.3626P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.205(Δ/σ)max < 0.001
S = 1.02Δρmax = 1.05 e Å3
6841 reflectionsΔρmin = 0.99 e Å3
485 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
52 restraintsExtinction coefficient: 0.0018 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.5000000.15403 (8)0.7500000.0693 (5)
K20.5000000.46138 (5)0.7500000.0332 (3)
O80.58381 (13)0.23949 (13)0.8501 (3)0.0684 (11)
O70.79833 (12)0.12037 (11)0.91463 (16)0.0381 (6)
O100.80946 (11)0.34955 (10)0.90355 (15)0.0326 (6)
O90.59176 (12)0.36479 (12)0.8379 (2)0.0555 (9)
O110.8964 (4)0.5615 (3)0.7650 (3)0.161 (3)
O120.97181 (15)0.61359 (13)0.8975 (2)0.0539 (8)
O50.56619 (13)0.40942 (12)0.6470 (2)0.0481 (7)
O60.77600 (14)0.52304 (12)0.6339 (2)0.0506 (8)
O30.78010 (12)0.29340 (11)0.64322 (18)0.0426 (7)
O40.57229 (15)0.28430 (14)0.6578 (3)0.0834 (14)
O20.92370 (14)0.06740 (12)0.76338 (17)0.0424 (6)
O10.92256 (11)0.02309 (10)0.62261 (15)0.0337 (6)
O1E0.93408 (14)0.11566 (13)0.90669 (18)0.0469 (7)
H1E0.8941070.1233680.9153270.070*
C190.65568 (18)0.23849 (17)0.8695 (3)0.0435 (10)
C180.68961 (17)0.17944 (16)0.8828 (3)0.0402 (9)
H180.6627670.1401720.8786060.048*
C170.76421 (17)0.17684 (15)0.9028 (2)0.0305 (7)
C220.80315 (16)0.23571 (15)0.9107 (2)0.0312 (7)
H220.8535790.2346670.9256420.037*
C210.76817 (16)0.29466 (15)0.8968 (2)0.0290 (7)
C200.69368 (17)0.29842 (15)0.8758 (2)0.0350 (8)
C250.65758 (18)0.35938 (17)0.8575 (3)0.0415 (9)
C240.70529 (19)0.41792 (17)0.8601 (3)0.0515 (12)
H24A0.7124230.4256540.8062670.062*0.657 (14)
H24B0.6813820.4569440.8752660.062*0.657 (14)
H24C0.6848450.4454650.8132270.062*0.343 (14)
H24D0.7035830.4438520.9077410.062*0.343 (14)
C23B0.7740 (3)0.4105 (2)0.9152 (5)0.0302 (16)0.657 (14)
H23B0.7679010.4120420.9707380.036*0.657 (14)
C260.8273 (2)0.46430 (18)0.9048 (4)0.0607 (14)
C310.8611 (3)0.4936 (3)0.9738 (4)0.0818 (17)
H310.8518870.4798101.0226230.098*
C300.9095 (3)0.5441 (3)0.9727 (3)0.0769 (16)
H300.9327030.5646601.0211330.092*
C290.92419 (19)0.56453 (17)0.9033 (3)0.0429 (9)
C280.8876 (4)0.5369 (2)0.8348 (3)0.0782 (17)
C270.8393 (3)0.4865 (2)0.8378 (4)0.0844 (19)
H270.8140370.4673700.7893460.101*
C321.0073 (3)0.6441 (3)0.9698 (4)0.0860 (19)
H32A1.0455330.6720280.9603710.129*
H32B1.0274250.6105411.0090490.129*
H32C0.9734450.6708830.9896660.129*
C160.63568 (17)0.40894 (16)0.6463 (2)0.0366 (8)
C150.66960 (18)0.46724 (16)0.6418 (2)0.0376 (8)
H150.6446570.5073110.6411140.045*
C140.74092 (18)0.46777 (16)0.6382 (2)0.0390 (9)
C130.77758 (18)0.40802 (17)0.6399 (3)0.0411 (9)
H130.8260520.4077810.6378140.049*
C120.74278 (17)0.35014 (16)0.6446 (2)0.0361 (8)
C110.67096 (17)0.34810 (16)0.6487 (2)0.0371 (8)
C100.6351 (2)0.28742 (19)0.6536 (4)0.0639 (15)
C9B0.6755 (3)0.2285 (4)0.6322 (8)0.035 (2)0.54 (2)
H9BA0.6582320.1877860.6521080.042*0.54 (2)
H9BB0.6674180.2250840.5738640.042*0.54 (2)
C8B0.7502 (3)0.2369 (3)0.6678 (7)0.0359 (19)0.661 (19)
H8B0.7578140.2378320.7268240.043*0.661 (19)
C50.7925 (2)0.17909 (18)0.6447 (3)0.0539 (12)
C40.83720 (19)0.15049 (16)0.7106 (3)0.0435 (10)
H40.8385810.1670240.7620650.052*
C30.87984 (18)0.09800 (15)0.7019 (2)0.0355 (8)
C20.87766 (16)0.07443 (15)0.6258 (2)0.0330 (8)
C70.8329 (2)0.10241 (19)0.5607 (3)0.0464 (10)
H70.8308830.0857900.5091010.056*
C60.7904 (2)0.1552 (2)0.5703 (3)0.0610 (13)
H6A0.7597060.1747210.5251760.073*
C10.92094 (19)0.00422 (18)0.5466 (2)0.0398 (9)
H1A0.9523530.0424100.5529360.060*
H1B0.9370490.0285890.5136550.060*
H1C0.8723200.0175950.5208810.060*
C2E1.0038 (3)0.2104 (2)0.8935 (4)0.0787 (17)
H2EA1.0199850.1873170.8515940.118*
H2EB1.0419530.2386380.9229370.118*
H2EC0.9621980.2371260.8695740.118*
C1E0.9844 (2)0.1620 (2)0.9485 (3)0.0551 (11)
H1EA1.0277050.1386740.9774580.066*
H1EB0.9641570.1851470.9879920.066*
H20.927 (3)0.085 (2)0.8086 (14)0.066*
H50.553 (2)0.3703 (9)0.651 (3)0.066*
H80.569 (2)0.2785 (12)0.844 (3)0.066*
H60.752 (2)0.5540 (18)0.609 (3)0.066*
C23A0.7776 (4)0.4066 (4)0.8615 (10)0.039 (4)0.343 (14)
H23A0.7822890.4036630.8055630.046*0.343 (14)
C9A0.6847 (6)0.2260 (4)0.6777 (12)0.042 (4)0.46 (2)
H9AA0.7089090.2267370.7348510.051*0.46 (2)
H9AB0.6576560.1846650.6652930.051*0.46 (2)
C8A0.7365 (6)0.2342 (4)0.6270 (10)0.025 (3)0.339 (19)
H8A0.7107710.2330440.5696930.030*0.339 (19)
H110.878 (2)0.548 (8)0.717 (3)0.33 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0848 (11)0.0557 (9)0.0748 (11)0.0000.0337 (9)0.000
K20.0217 (5)0.0164 (5)0.0597 (7)0.0000.0062 (4)0.000
O80.0229 (13)0.0230 (14)0.153 (3)0.0007 (10)0.0085 (16)0.0206 (17)
O70.0324 (12)0.0145 (11)0.0661 (18)0.0061 (9)0.0096 (11)0.0047 (11)
O100.0239 (11)0.0152 (11)0.0578 (16)0.0005 (8)0.0080 (10)0.0019 (10)
O90.0233 (12)0.0198 (12)0.118 (3)0.0037 (9)0.0074 (14)0.0138 (14)
O110.308 (9)0.104 (4)0.077 (3)0.115 (5)0.061 (4)0.013 (3)
O120.0511 (16)0.0306 (14)0.082 (2)0.0176 (12)0.0208 (15)0.0067 (14)
O50.0275 (12)0.0245 (13)0.093 (2)0.0055 (10)0.0159 (13)0.0119 (14)
O60.0382 (15)0.0243 (14)0.091 (2)0.0040 (10)0.0192 (14)0.0111 (14)
O30.0264 (12)0.0226 (12)0.079 (2)0.0096 (9)0.0138 (12)0.0028 (12)
O40.0322 (15)0.0258 (14)0.199 (4)0.0035 (11)0.041 (2)0.029 (2)
O20.0452 (15)0.0278 (13)0.0548 (17)0.0092 (11)0.0134 (13)0.0064 (12)
O10.0271 (11)0.0185 (11)0.0545 (16)0.0091 (9)0.0079 (10)0.0035 (10)
O1E0.0388 (14)0.0340 (14)0.071 (2)0.0004 (11)0.0199 (13)0.0112 (13)
C190.0263 (17)0.0222 (17)0.081 (3)0.0013 (13)0.0107 (17)0.0122 (18)
C180.0280 (17)0.0158 (15)0.076 (3)0.0026 (12)0.0109 (17)0.0093 (16)
C170.0284 (16)0.0163 (15)0.047 (2)0.0029 (12)0.0085 (14)0.0051 (14)
C220.0230 (15)0.0178 (15)0.052 (2)0.0027 (12)0.0073 (14)0.0015 (14)
C210.0252 (15)0.0166 (15)0.046 (2)0.0005 (11)0.0100 (14)0.0029 (13)
C200.0255 (16)0.0182 (16)0.060 (2)0.0021 (12)0.0082 (15)0.0078 (15)
C250.0292 (17)0.0213 (17)0.074 (3)0.0035 (13)0.0118 (17)0.0088 (17)
C240.0293 (18)0.0177 (17)0.105 (4)0.0037 (13)0.012 (2)0.0130 (19)
C23B0.029 (2)0.018 (2)0.044 (4)0.0027 (17)0.010 (2)0.003 (2)
C260.0307 (19)0.0189 (18)0.122 (4)0.0001 (15)0.002 (2)0.018 (2)
C310.079 (4)0.061 (3)0.118 (5)0.031 (3)0.048 (4)0.005 (3)
C300.090 (4)0.066 (3)0.079 (4)0.044 (3)0.028 (3)0.018 (3)
C290.0378 (19)0.0217 (17)0.069 (3)0.0074 (14)0.0132 (18)0.0013 (17)
C280.133 (5)0.037 (3)0.062 (3)0.030 (3)0.019 (3)0.002 (2)
C270.107 (5)0.040 (3)0.084 (4)0.031 (3)0.020 (3)0.008 (3)
C320.083 (4)0.065 (3)0.100 (4)0.049 (3)0.003 (3)0.012 (3)
C160.0239 (16)0.0245 (17)0.060 (2)0.0061 (13)0.0077 (15)0.0065 (16)
C150.0326 (17)0.0207 (16)0.058 (2)0.0074 (13)0.0089 (16)0.0055 (15)
C140.0314 (17)0.0224 (17)0.062 (2)0.0021 (13)0.0087 (16)0.0020 (16)
C130.0261 (16)0.0263 (18)0.071 (3)0.0056 (13)0.0125 (17)0.0008 (17)
C120.0276 (16)0.0218 (16)0.058 (2)0.0094 (13)0.0084 (15)0.0030 (15)
C110.0268 (16)0.0218 (17)0.062 (2)0.0036 (13)0.0082 (16)0.0082 (16)
C100.034 (2)0.0254 (19)0.136 (5)0.0021 (16)0.028 (2)0.021 (2)
C9B0.039 (3)0.025 (3)0.045 (4)0.008 (2)0.014 (3)0.002 (3)
C8B0.038 (3)0.024 (3)0.046 (4)0.012 (2)0.011 (3)0.003 (3)
C50.045 (2)0.0218 (18)0.106 (4)0.0128 (16)0.039 (2)0.009 (2)
C40.040 (2)0.0172 (16)0.083 (3)0.0015 (14)0.034 (2)0.0046 (17)
C30.0315 (17)0.0158 (15)0.064 (2)0.0001 (12)0.0206 (16)0.0022 (15)
C20.0253 (15)0.0130 (14)0.063 (2)0.0054 (11)0.0162 (15)0.0027 (15)
C70.038 (2)0.036 (2)0.068 (3)0.0140 (16)0.0177 (19)0.0105 (19)
C60.048 (2)0.044 (2)0.094 (4)0.0271 (19)0.023 (2)0.027 (2)
C10.0358 (18)0.0300 (18)0.053 (2)0.0106 (14)0.0098 (16)0.0067 (16)
C2E0.078 (4)0.042 (3)0.130 (5)0.002 (2)0.052 (4)0.004 (3)
C1E0.042 (2)0.037 (2)0.087 (3)0.0054 (17)0.016 (2)0.010 (2)
C23A0.027 (5)0.017 (5)0.069 (11)0.002 (4)0.005 (5)0.014 (5)
C9A0.048 (5)0.016 (4)0.075 (10)0.006 (3)0.038 (6)0.007 (5)
C8A0.033 (6)0.020 (5)0.024 (7)0.010 (4)0.010 (5)0.000 (5)
Geometric parameters (Å, º) top
K1—O8i2.711 (3)C23B—H23B1.0000
K1—O82.711 (4)C23B—C261.550 (6)
K1—O11ii2.817 (5)C26—C311.358 (8)
K1—O11iii2.817 (5)C26—C271.320 (8)
K1—O12iii2.867 (3)C26—C23A1.592 (11)
K1—O12ii2.867 (3)C31—H310.9500
K2—O92.843 (3)C31—C301.400 (6)
K2—O9i2.843 (3)C30—H300.9500
K2—O52.663 (3)C30—C291.369 (7)
K2—O5i2.663 (3)C29—C281.352 (6)
K2—O2iv2.666 (2)C28—C271.401 (7)
K2—O2v2.666 (2)C27—H270.9500
K2—O1iv2.671 (2)C32—H32A0.9800
K2—O1v2.671 (2)C32—H32B0.9800
K2—H52.89 (4)C32—H32C0.9800
O8—C191.353 (4)C16—C151.373 (5)
O8—H80.844 (19)C16—C111.415 (4)
O7—C171.322 (4)C15—H150.9500
O10—C211.367 (4)C15—C141.401 (5)
O10—C23B1.462 (5)C14—C131.410 (5)
O10—C23A1.434 (9)C13—H130.9500
O9—C251.245 (4)C13—C121.374 (5)
O11—C281.361 (7)C12—C111.414 (5)
O11—H110.87 (2)C11—C101.434 (5)
O12—C291.384 (4)C10—C9B1.530 (8)
O12—C321.422 (6)C10—C9A1.576 (10)
O5—C161.351 (4)C9B—H9BA0.9900
O5—H50.848 (9)C9B—H9BB0.9900
O6—C141.330 (4)C9B—C8B1.441 (5)
O6—H60.845 (19)C8B—H8B1.0000
O3—C121.370 (4)C8B—C51.546 (7)
O3—C8B1.405 (7)C5—C41.387 (6)
O3—C8A1.464 (10)C5—C61.371 (7)
O4—C101.241 (5)C5—C8A1.544 (10)
O2—C31.348 (5)C4—H40.9500
O2—H20.848 (9)C4—C31.385 (4)
O1—C21.374 (3)C3—C21.397 (5)
O1—C11.427 (4)C2—C71.373 (5)
O1E—H1E0.8400C7—H70.9500
O1E—C1E1.426 (5)C7—C61.392 (5)
C19—C181.368 (5)C6—H6A0.9500
C19—C201.420 (5)C1—H1A0.9800
C18—H180.9500C1—H1B0.9800
C18—C171.406 (4)C1—H1C0.9800
C17—C221.410 (4)C2E—H2EA0.9800
C22—H220.9500C2E—H2EB0.9800
C22—C211.375 (4)C2E—H2EC0.9800
C21—C201.405 (4)C2E—C1E1.486 (7)
C20—C251.427 (4)C1E—H1EA0.9900
C25—C241.507 (5)C1E—H1EB0.9900
C24—H24A0.9900C23A—H23A1.0000
C24—H24B0.9900C9A—H9AA0.9900
C24—H24C0.9900C9A—H9AB0.9900
C24—H24D0.9900C9A—C8A1.497 (12)
C24—C23B1.449 (7)C8A—H8A1.0000
C24—C23A1.416 (10)
O8i—K1—O899.78 (13)C31—C26—C23A148.2 (7)
O8—K1—O11ii134.73 (13)C27—C26—C23B127.7 (5)
O8—K1—O11iii99.27 (18)C27—C26—C31118.4 (4)
O8i—K1—O11ii99.27 (18)C27—C26—C23A93.2 (7)
O8i—K1—O11iii134.73 (13)C26—C31—H31120.2
O8i—K1—O12iii80.07 (10)C26—C31—C30119.7 (5)
O8—K1—O12ii80.07 (10)C30—C31—H31120.2
O8—K1—O12iii122.95 (10)C31—C30—H30119.3
O8i—K1—O12ii122.95 (10)C29—C30—C31121.3 (5)
O11ii—K1—O11iii95.7 (3)C29—C30—H30119.3
O11ii—K1—O12iii100.60 (13)C30—C29—O12124.7 (4)
O11iii—K1—O12iii55.18 (12)C28—C29—O12117.2 (4)
O11iii—K1—O12ii100.60 (13)C28—C29—C30118.0 (4)
O11ii—K1—O12ii55.18 (12)O11—C28—C27122.3 (5)
O12iii—K1—O12ii146.48 (13)C29—C28—O11118.4 (5)
O9i—K2—O992.05 (11)C29—C28—C27119.2 (5)
O9i—K2—H560.0 (7)C26—C27—C28123.2 (5)
O9—K2—H566.7 (9)C26—C27—H27118.4
O5i—K2—O9i75.09 (10)C28—C27—H27118.4
O5i—K2—O972.75 (8)O12—C32—H32A109.5
O5—K2—O975.09 (10)O12—C32—H32B109.5
O5—K2—O9i72.75 (8)O12—C32—H32C109.5
O5—K2—O5i132.99 (12)H32A—C32—H32B109.5
O5—K2—O2v138.68 (9)H32A—C32—H32C109.5
O5i—K2—O2v84.10 (8)H32B—C32—H32C109.5
O5—K2—O2iv84.10 (8)O5—C16—C15119.2 (3)
O5i—K2—O2iv138.68 (9)O5—C16—C11118.9 (3)
O5—K2—O1v84.15 (8)C15—C16—C11121.9 (3)
O5—K2—O1iv118.59 (8)C16—C15—H15119.9
O5i—K2—O1iv84.15 (8)C16—C15—C14120.1 (3)
O5i—K2—O1v118.59 (8)C14—C15—H15119.9
O5—K2—H517.0 (4)O6—C14—C15122.3 (3)
O5i—K2—H5116.2 (5)O6—C14—C13118.3 (3)
O2v—K2—O9143.74 (9)C15—C14—C13119.4 (3)
O2iv—K2—O9108.80 (8)C14—C13—H13120.2
O2v—K2—O9i108.80 (8)C12—C13—C14119.6 (3)
O2iv—K2—O9i143.74 (9)C12—C13—H13120.2
O2iv—K2—O2v71.28 (12)O3—C12—C13117.3 (3)
O2iv—K2—O1v75.95 (8)O3—C12—C11120.5 (3)
O2v—K2—O1v58.36 (8)C13—C12—C11122.2 (3)
O2v—K2—O1iv75.95 (8)C16—C11—C10121.6 (3)
O2iv—K2—O1iv58.36 (8)C12—C11—C16116.7 (3)
O2v—K2—H5149.5 (9)C12—C11—C10121.8 (3)
O2iv—K2—H5100.8 (5)O4—C10—C11123.0 (3)
O1iv—K2—O9i157.89 (9)O4—C10—C9B122.8 (4)
O1v—K2—O9157.89 (9)O4—C10—C9A119.3 (5)
O1iv—K2—O974.29 (8)C11—C10—C9B112.5 (4)
O1v—K2—O9i74.29 (8)C11—C10—C9A115.5 (4)
O1iv—K2—O1v123.65 (10)C10—C9B—H9BA109.9
O1iv—K2—H5126.0 (9)C10—C9B—H9BB109.9
O1v—K2—H591.2 (9)H9BA—C9B—H9BB108.3
K1—O8—H8113 (3)C8B—C9B—C10108.9 (5)
C19—O8—K1124.9 (3)C8B—C9B—H9BA109.9
C19—O8—H8110 (3)C8B—C9B—H9BB109.9
C21—O10—C23B115.2 (3)O3—C8B—C9B114.5 (6)
C21—O10—C23A116.9 (4)O3—C8B—H8B109.0
C25—O9—K2132.5 (2)O3—C8B—C5105.4 (5)
K1vi—O11—H11105 (8)C9B—C8B—H8B109.0
C28—O11—K1vi125.3 (4)C9B—C8B—C5109.9 (6)
C28—O11—H11129 (9)C5—C8B—H8B109.0
C29—O12—K1vi123.3 (3)C4—C5—C8B111.9 (5)
C29—O12—C32116.3 (4)C4—C5—C8A137.8 (7)
C32—O12—K1vi120.4 (3)C6—C5—C8B128.3 (5)
K2—O5—H597 (3)C6—C5—C4119.8 (3)
C16—O5—K2130.8 (2)C6—C5—C8A102.4 (7)
C16—O5—H5108 (3)C5—C4—H4119.8
C14—O6—H6116 (3)C3—C4—C5120.5 (4)
C12—O3—C8B115.6 (3)C3—C4—H4119.8
C12—O3—C8A114.8 (4)O2—C3—C4123.5 (4)
K2vii—O2—H2120 (3)O2—C3—C2117.3 (3)
C3—O2—K2vii124.5 (2)C4—C3—C2119.2 (4)
C3—O2—H2116 (3)O1—C2—C3115.3 (3)
C2—O1—K2vii124.2 (2)C7—C2—O1124.5 (3)
C2—O1—C1117.6 (3)C7—C2—C3120.2 (3)
C1—O1—K2vii117.62 (18)C2—C7—H7120.0
C1E—O1E—H1E109.5C2—C7—C6119.9 (4)
O8—C19—C18118.7 (3)C6—C7—H7120.0
O8—C19—C20119.4 (3)C5—C6—C7120.4 (4)
C18—C19—C20121.9 (3)C5—C6—H6A119.8
C19—C18—H18120.0C7—C6—H6A119.8
C19—C18—C17120.0 (3)O1—C1—H1A109.5
C17—C18—H18120.0O1—C1—H1B109.5
O7—C17—C18121.2 (3)O1—C1—H1C109.5
O7—C17—C22119.6 (3)H1A—C1—H1B109.5
C18—C17—C22119.2 (3)H1A—C1—H1C109.5
C17—C22—H22120.0H1B—C1—H1C109.5
C21—C22—C17120.0 (3)H2EA—C2E—H2EB109.5
C21—C22—H22120.0H2EA—C2E—H2EC109.5
O10—C21—C22116.7 (3)H2EB—C2E—H2EC109.5
O10—C21—C20121.5 (3)C1E—C2E—H2EA109.5
C22—C21—C20121.8 (3)C1E—C2E—H2EB109.5
C19—C20—C25121.2 (3)C1E—C2E—H2EC109.5
C21—C20—C19117.1 (3)O1E—C1E—C2E111.3 (4)
C21—C20—C25121.6 (3)O1E—C1E—H1EA109.4
O9—C25—C20123.7 (3)O1E—C1E—H1EB109.4
O9—C25—C24121.3 (3)C2E—C1E—H1EA109.4
C20—C25—C24114.9 (3)C2E—C1E—H1EB109.4
C25—C24—H24A108.9H1EA—C1E—H1EB108.0
C25—C24—H24B108.9O10—C23A—C26103.0 (7)
C25—C24—H24C107.8O10—C23A—H23A108.4
C25—C24—H24D107.8C24—C23A—O10116.4 (8)
H24A—C24—H24B107.7C24—C23A—C26111.9 (8)
H24C—C24—H24D107.1C24—C23A—H23A108.4
C23B—C24—C25113.4 (3)C26—C23A—H23A108.4
C23B—C24—H24A108.9C10—C9A—H9AA111.4
C23B—C24—H24B108.9C10—C9A—H9AB111.4
C23A—C24—C25118.0 (4)H9AA—C9A—H9AB109.2
C23A—C24—H24C107.8C8A—C9A—C10102.0 (8)
C23A—C24—H24D107.8C8A—C9A—H9AA111.4
O10—C23B—H23B109.2C8A—C9A—H9AB111.4
O10—C23B—C26103.8 (4)O3—C8A—C5102.6 (7)
C24—C23B—O10112.7 (4)O3—C8A—C9A114.8 (9)
C24—C23B—H23B109.2O3—C8A—H8A109.7
C24—C23B—C26112.5 (4)C5—C8A—H8A109.7
C26—C23B—H23B109.2C9A—C8A—C5110.0 (8)
C31—C26—C23B113.7 (5)C9A—C8A—H8A109.7
K1—O8—C19—C1840.8 (6)C23B—C26—C27—C28178.1 (5)
K1—O8—C19—C20139.6 (3)C26—C31—C30—C290.5 (9)
K1vi—O11—C28—C299.5 (10)C31—C26—C27—C282.9 (9)
K1vi—O11—C28—C27173.9 (5)C31—C26—C23A—O1048.7 (14)
K1vi—O12—C29—C30180.0 (4)C31—C26—C23A—C2477.1 (12)
K1vi—O12—C29—C282.8 (5)C31—C30—C29—O12179.3 (5)
K2—O9—C25—C20156.2 (3)C31—C30—C29—C283.5 (8)
K2—O9—C25—C2421.3 (6)C30—C29—C28—O11173.3 (6)
K2—O5—C16—C1562.1 (5)C30—C29—C28—C273.4 (8)
K2—O5—C16—C11119.2 (3)C29—C28—C27—C260.2 (10)
K2vii—O2—C3—C4175.7 (2)C27—C26—C31—C302.7 (8)
K2vii—O2—C3—C23.8 (4)C27—C26—C23A—O10125.8 (8)
K2vii—O1—C2—C36.4 (4)C27—C26—C23A—C24108.4 (9)
K2vii—O1—C2—C7173.7 (3)C32—O12—C29—C300.0 (7)
O8—C19—C18—C17179.8 (4)C32—O12—C29—C28177.2 (5)
O8—C19—C20—C21179.4 (4)C16—C15—C14—O6179.9 (4)
O8—C19—C20—C253.9 (7)C16—C15—C14—C130.5 (6)
O7—C17—C22—C21178.6 (3)C16—C11—C10—O41.6 (8)
O10—C21—C20—C19179.2 (4)C16—C11—C10—C9B163.9 (6)
O10—C21—C20—C252.5 (6)C16—C11—C10—C9A164.9 (8)
O10—C23B—C26—C31106.9 (5)C15—C16—C11—C121.3 (6)
O10—C23B—C26—C2777.7 (6)C15—C16—C11—C10179.9 (4)
O9—C25—C24—C23B153.6 (5)C15—C14—C13—C120.4 (6)
O9—C25—C24—C23A163.3 (8)C14—C13—C12—O3177.8 (4)
O11—C28—C27—C26176.4 (7)C14—C13—C12—C110.8 (6)
O12—C29—C28—O114.0 (8)C13—C12—C11—C161.2 (6)
O12—C29—C28—C27179.3 (5)C13—C12—C11—C10180.0 (4)
O5—C16—C15—C14177.7 (4)C12—O3—C8B—C9B47.7 (9)
O5—C16—C11—C12177.4 (4)C12—O3—C8B—C5168.6 (4)
O5—C16—C11—C101.5 (6)C12—O3—C8A—C5169.9 (5)
O6—C14—C13—C12179.8 (4)C12—O3—C8A—C9A50.6 (12)
O3—C12—C11—C16177.3 (4)C12—C11—C10—O4179.6 (5)
O3—C12—C11—C101.5 (6)C12—C11—C10—C9B14.9 (8)
O3—C8B—C5—C4108.0 (6)C12—C11—C10—C9A16.3 (10)
O3—C8B—C5—C671.8 (7)C11—C16—C15—C141.0 (6)
O4—C10—C9B—C8B152.7 (8)C11—C10—C9B—C8B41.8 (10)
O4—C10—C9A—C8A151.2 (8)C11—C10—C9A—C8A44.8 (12)
O2—C3—C2—O11.6 (4)C10—C9B—C8B—O359.7 (11)
O2—C3—C2—C7178.5 (3)C10—C9B—C8B—C5178.1 (7)
O1—C2—C7—C6178.8 (3)C10—C9A—C8A—O362.7 (13)
C19—C18—C17—O7178.8 (4)C10—C9A—C8A—C5177.8 (9)
C19—C18—C17—C221.5 (6)C9B—C8B—C5—C4128.2 (7)
C19—C20—C25—O92.8 (7)C9B—C8B—C5—C652.0 (9)
C19—C20—C25—C24174.8 (4)C8B—O3—C12—C13164.6 (6)
C18—C19—C20—C210.2 (6)C8B—O3—C12—C1116.8 (7)
C18—C19—C20—C25176.5 (4)C8B—C5—C4—C3179.7 (4)
C18—C17—C22—C211.7 (5)C8B—C5—C6—C7179.7 (4)
C17—C22—C21—O10178.3 (3)C5—C4—C3—O2179.1 (3)
C17—C22—C21—C201.0 (6)C5—C4—C3—C20.4 (5)
C22—C21—C20—C190.0 (6)C4—C5—C6—C70.1 (6)
C22—C21—C20—C25176.7 (4)C4—C5—C8A—O373.2 (10)
C21—O10—C23B—C2447.7 (6)C4—C5—C8A—C9A49.4 (13)
C21—O10—C23B—C26169.7 (4)C4—C3—C2—O1178.9 (3)
C21—O10—C23A—C2438.3 (13)C4—C3—C2—C71.0 (5)
C21—O10—C23A—C26161.1 (5)C3—C2—C7—C61.1 (6)
C21—C20—C25—O9179.4 (4)C2—C7—C6—C50.5 (6)
C21—C20—C25—C241.7 (6)C6—C5—C4—C30.1 (6)
C20—C19—C18—C170.6 (7)C6—C5—C8A—O3109.2 (8)
C20—C25—C24—C23B28.7 (6)C6—C5—C8A—C9A128.2 (10)
C20—C25—C24—C23A14.4 (10)C1—O1—C2—C3178.1 (3)
C25—C24—C23B—O1051.3 (6)C1—O1—C2—C71.9 (5)
C25—C24—C23B—C26168.3 (4)C23A—O10—C21—C22156.8 (8)
C25—C24—C23A—O1034.2 (14)C23A—O10—C21—C2022.4 (9)
C25—C24—C23A—C26152.3 (6)C23A—C26—C31—C30171.0 (8)
C24—C23B—C26—C31130.9 (5)C23A—C26—C27—C28173.8 (7)
C24—C23B—C26—C2744.5 (7)C8A—O3—C12—C13164.4 (8)
C23B—O10—C21—C22160.2 (4)C8A—O3—C12—C1114.2 (8)
C23B—O10—C21—C2020.5 (5)C8A—C5—C4—C3177.5 (6)
C23B—C26—C31—C30178.5 (5)C8A—C5—C6—C7178.2 (5)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x1/2, y1/2, z; (iii) x+3/2, y1/2, z+3/2; (iv) x+3/2, y+1/2, z+3/2; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y1/2, z.
(HESKHE_xMeOH) top
Crystal data top
C32H27KO12·CH4OF(000) = 2816
Mr = 674.68Dx = 1.340 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 19.6211 (3) ÅCell parameters from 9446 reflections
b = 20.3628 (3) Åθ = 4.3–66.6°
c = 17.2684 (3) ŵ = 1.96 mm1
β = 104.282 (1)°T = 113 K
V = 6686.19 (19) Å3Block, clear light colourless
Z = 80.24 × 0.13 × 0.13 mm
Data collection top
Bruker APEX-II CCD
diffractometer
5781 reflections with I > 2σ(I)
φ and ω scansRint = 0.040
Absorption correction: multi-scan
SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.1062 before and 0.0742 after correction. The Ratio of minimum to maximum transmission is 0.7893. The λ/2 correction factor is Not present.
θmax = 66.6°, θmin = 3.2°
Tmin = 0.594, Tmax = 0.753h = 2323
39471 measured reflectionsk = 2424
5880 independent reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0587P)2 + 17.3819P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
5880 reflectionsΔρmax = 0.47 e Å3
541 parametersΔρmin = 0.50 e Å3
405 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.42442 (8)0.47142 (8)0.62350 (10)0.0246 (4)
O100.69240 (8)0.14689 (8)0.59480 (11)0.0265 (4)
O31.27722 (9)0.20547 (8)0.64512 (12)0.0338 (4)
O70.70178 (9)0.37713 (8)0.58598 (11)0.0271 (4)
O51.06624 (9)0.08771 (9)0.64779 (12)0.0326 (4)
O61.27497 (10)0.02504 (9)0.63484 (13)0.0374 (5)
H61.2463940.0547550.6146620.056*
O21.42580 (10)0.42775 (9)0.76558 (12)0.0353 (4)
O90.90812 (9)0.13203 (9)0.66018 (13)0.0383 (5)
O120.52976 (11)0.11595 (9)0.60134 (12)0.0400 (5)
O1M0.56731 (10)0.37986 (10)0.59010 (13)0.0399 (5)
H1M0.6080770.3749370.5837140.060*
O80.91560 (9)0.25886 (10)0.64986 (15)0.0420 (5)
O41.07156 (11)0.21337 (10)0.65880 (18)0.0562 (7)
C220.69791 (12)0.26133 (11)0.58905 (15)0.0240 (5)
C210.73284 (12)0.20190 (11)0.60201 (14)0.0221 (5)
C21.37831 (12)0.42160 (11)0.62669 (16)0.0263 (5)
C200.80714 (12)0.19892 (11)0.62340 (15)0.0242 (5)
C161.13538 (13)0.08834 (12)0.64758 (15)0.0262 (5)
C180.81021 (13)0.31884 (12)0.61718 (16)0.0268 (5)
C31.37987 (14)0.39830 (12)0.70372 (17)0.0297 (5)
C151.16916 (13)0.02995 (12)0.64302 (15)0.0269 (5)
H151.1448640.0104840.6422980.032*
C190.84449 (13)0.25927 (12)0.62973 (16)0.0279 (5)
C121.24092 (13)0.14854 (12)0.64645 (16)0.0283 (5)
C11.42343 (14)0.49823 (13)0.54639 (15)0.0311 (6)
H1A1.3764690.5155720.5219130.047*
H1B1.4350910.4636980.5122670.047*
H1C1.4580700.5337220.5523250.047*
C141.23995 (13)0.03042 (12)0.63942 (16)0.0292 (5)
C250.84279 (13)0.13730 (12)0.64089 (16)0.0292 (5)
C29A0.5788 (3)0.0682 (2)0.5912 (3)0.0298 (10)0.702 (4)
C111.16978 (13)0.14985 (12)0.65045 (16)0.0280 (5)
C131.27552 (13)0.09058 (13)0.64125 (17)0.0323 (6)
H131.3233780.0911870.6388920.039*
C71.33188 (15)0.39512 (14)0.56097 (19)0.0394 (7)
H71.3297590.4116650.5089900.047*
C41.33603 (16)0.34748 (13)0.7133 (2)0.0410 (7)
O11A0.61667 (17)0.07199 (16)0.73298 (18)0.0461 (8)0.702 (4)
C51.29001 (16)0.31962 (14)0.6472 (2)0.0484 (8)
C240.79637 (15)0.07845 (13)0.6386 (2)0.0413 (7)
H24A0.8202210.0395060.6231780.050*0.702 (4)
H24B0.7899480.0705670.6929160.050*0.702 (4)
H24C0.7972700.0524600.5904010.050*0.298 (4)
H24D0.8168430.0507530.6857030.050*0.298 (4)
C61.28791 (17)0.34364 (15)0.5716 (2)0.0531 (9)
H6A1.2561840.3248980.5264130.064*
C26A0.6756 (2)0.0308 (2)0.5847 (3)0.0276 (9)0.702 (4)
C101.13376 (15)0.21052 (14)0.6547 (2)0.0448 (7)
C320.4924 (2)0.14647 (18)0.5292 (2)0.0580 (10)
H32A0.4588110.1782330.5410610.087*
H32B0.5256290.1692060.5044560.087*
H32C0.4669490.1129930.4924520.087*
C1M0.52138 (16)0.33525 (16)0.5411 (2)0.0537 (9)
H1MA0.5292790.2911270.5642000.080*
H1MB0.5302350.3350640.4876360.080*
H1MC0.4726310.3484770.5371770.080*
C23A0.72675 (18)0.08530 (15)0.5826 (2)0.0245 (8)0.702 (4)
H23A0.7342470.0865170.5274220.029*0.702 (4)
C28A0.6228 (2)0.04504 (19)0.6621 (2)0.0333 (9)0.702 (4)
C30A0.5852 (3)0.0430 (2)0.5186 (3)0.0366 (10)0.702 (4)
H30A0.5557110.0591360.4702330.044*0.702 (4)
C31A0.6343 (2)0.0058 (2)0.5160 (3)0.0353 (9)0.702 (4)
H31A0.6390190.0217670.4658890.042*0.702 (4)
C8B1.2480 (2)0.2624 (2)0.6706 (4)0.0375 (10)0.702 (4)
H8B1.2578230.2611470.7302140.045*0.702 (4)
C27A0.6704 (2)0.0045 (2)0.6583 (3)0.0356 (9)0.702 (4)
H27A0.7000700.0210380.7063420.043*0.702 (4)
C9B1.1717 (2)0.2709 (2)0.6383 (4)0.0413 (10)0.702 (4)
H9BA1.1613450.2787800.5800220.050*0.702 (4)
H9BB1.1552740.3094740.6635950.050*0.702 (4)
C23B0.7241 (5)0.0916 (4)0.6378 (7)0.0327 (17)0.298 (4)
H23B0.7252100.1020400.6946520.039*0.298 (4)
C8A1.2344 (5)0.2650 (4)0.6242 (7)0.0244 (17)0.298 (4)
H8A1.2078460.2664890.5668200.029*0.298 (4)
C9A1.1859 (5)0.2734 (4)0.6844 (6)0.0222 (16)0.298 (4)
H9AA1.1601010.3156110.6767390.027*0.298 (4)
H9AB1.2126830.2690520.7407900.027*0.298 (4)
O11B0.5509 (6)0.0353 (5)0.7266 (6)0.066 (3)0.298 (4)
C30B0.6085 (5)0.0573 (4)0.5430 (5)0.042 (2)0.298 (4)
H30B0.5993770.0853880.4976620.050*0.298 (4)
C31B0.6575 (4)0.0069 (4)0.5498 (5)0.0439 (19)0.298 (4)
H31B0.6818110.0006330.5091680.053*0.298 (4)
C26B0.6708 (4)0.0342 (4)0.6161 (5)0.0308 (19)0.298 (4)
C27B0.6352 (4)0.0249 (3)0.6756 (4)0.0451 (19)0.298 (4)
H27B0.6443400.0530230.7208820.054*0.298 (4)
C28B0.5862 (5)0.0254 (4)0.6687 (5)0.0421 (19)0.298 (4)
C29B0.5729 (5)0.0665 (4)0.6024 (6)0.034 (3)0.298 (4)
H21.4273 (18)0.4075 (17)0.808 (2)0.045 (9)*
H80.926 (2)0.222 (2)0.658 (3)0.070 (13)*
H41.3356 (16)0.3299 (16)0.767 (2)0.039 (8)*
K11.0000000.03538 (3)0.7500000.02226 (18)
K21.0000000.34682 (5)0.7500000.0462 (2)
C170.73600 (12)0.32064 (11)0.59701 (14)0.0227 (5)
H180.8364 (14)0.3618 (14)0.6230 (16)0.024 (7)*
H220.6474 (16)0.2626 (14)0.5733 (17)0.029 (7)*
H51.0576 (19)0.127 (2)0.659 (2)0.052 (10)*
H11A0.648 (3)0.057 (3)0.773 (3)0.09 (2)*0.7053
H11B0.546 (9)0.002 (4)0.747 (9)0.09 (6)*0.2947
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (8)0.0195 (8)0.0311 (9)0.0082 (6)0.0074 (7)0.0010 (6)
O100.0209 (8)0.0151 (8)0.0423 (10)0.0012 (6)0.0052 (7)0.0006 (7)
O30.0252 (9)0.0214 (9)0.0562 (12)0.0096 (7)0.0130 (8)0.0005 (8)
O70.0239 (8)0.0145 (8)0.0423 (10)0.0022 (6)0.0069 (7)0.0014 (7)
O50.0225 (9)0.0223 (9)0.0548 (12)0.0046 (7)0.0132 (8)0.0059 (8)
O60.0278 (9)0.0254 (9)0.0591 (13)0.0043 (7)0.0108 (9)0.0123 (9)
O20.0415 (11)0.0310 (10)0.0363 (11)0.0096 (8)0.0152 (9)0.0057 (8)
O90.0215 (9)0.0221 (9)0.0678 (14)0.0040 (7)0.0045 (9)0.0084 (9)
O120.0430 (11)0.0276 (10)0.0489 (12)0.0167 (8)0.0102 (9)0.0030 (8)
O1M0.0330 (10)0.0396 (11)0.0503 (12)0.0025 (9)0.0162 (9)0.0141 (9)
O80.0180 (9)0.0202 (9)0.0845 (16)0.0001 (7)0.0063 (9)0.0097 (10)
O40.0304 (11)0.0256 (10)0.119 (2)0.0016 (8)0.0318 (12)0.0173 (12)
C220.0181 (12)0.0192 (11)0.0338 (13)0.0006 (9)0.0047 (9)0.0006 (9)
C210.0216 (11)0.0168 (11)0.0273 (12)0.0021 (9)0.0051 (9)0.0007 (9)
C20.0218 (11)0.0148 (11)0.0458 (14)0.0045 (9)0.0147 (10)0.0044 (10)
C200.0219 (12)0.0168 (11)0.0336 (13)0.0005 (9)0.0061 (10)0.0031 (9)
C160.0224 (12)0.0236 (12)0.0318 (13)0.0060 (9)0.0048 (10)0.0039 (10)
C180.0238 (12)0.0172 (11)0.0384 (14)0.0028 (9)0.0058 (10)0.0051 (10)
C30.0290 (13)0.0191 (11)0.0464 (15)0.0024 (10)0.0198 (11)0.0003 (10)
C150.0264 (12)0.0209 (12)0.0331 (13)0.0071 (9)0.0068 (10)0.0010 (9)
C190.0205 (12)0.0211 (12)0.0410 (14)0.0018 (9)0.0055 (10)0.0051 (10)
C120.0244 (12)0.0219 (12)0.0376 (14)0.0090 (9)0.0057 (10)0.0006 (10)
C10.0325 (13)0.0315 (13)0.0303 (13)0.0088 (11)0.0095 (11)0.0035 (10)
C140.0275 (13)0.0228 (12)0.0365 (14)0.0026 (10)0.0062 (10)0.0032 (10)
C250.0254 (13)0.0191 (12)0.0424 (14)0.0017 (10)0.0070 (11)0.0041 (10)
C29A0.028 (2)0.0168 (19)0.045 (2)0.0066 (16)0.0111 (18)0.0014 (17)
C110.0243 (12)0.0222 (12)0.0372 (13)0.0049 (9)0.0073 (10)0.0044 (10)
C130.0218 (12)0.0270 (13)0.0481 (15)0.0052 (10)0.0086 (11)0.0027 (11)
C70.0334 (14)0.0323 (14)0.0533 (17)0.0114 (12)0.0127 (13)0.0139 (13)
C40.0395 (15)0.0215 (13)0.071 (2)0.0050 (11)0.0315 (15)0.0035 (13)
O11A0.0488 (19)0.0454 (18)0.0402 (17)0.0186 (14)0.0035 (14)0.0062 (14)
C50.0385 (16)0.0229 (13)0.092 (2)0.0099 (12)0.0324 (16)0.0046 (14)
C240.0295 (14)0.0175 (12)0.075 (2)0.0013 (10)0.0083 (13)0.0082 (12)
C60.0366 (16)0.0350 (16)0.088 (2)0.0183 (13)0.0159 (16)0.0263 (16)
C26A0.0318 (18)0.0195 (17)0.033 (2)0.0001 (14)0.0107 (16)0.0046 (17)
C100.0318 (15)0.0232 (13)0.083 (2)0.0039 (11)0.0211 (14)0.0101 (14)
C320.063 (2)0.058 (2)0.053 (2)0.0366 (18)0.0151 (17)0.0145 (16)
C1M0.0326 (16)0.0380 (17)0.083 (2)0.0034 (13)0.0004 (16)0.0148 (16)
C23A0.0258 (17)0.0131 (15)0.034 (2)0.0001 (12)0.0066 (14)0.0038 (13)
C28A0.035 (2)0.0228 (18)0.0408 (19)0.0029 (15)0.0080 (17)0.0057 (15)
C30A0.032 (2)0.039 (2)0.035 (2)0.0081 (17)0.0010 (17)0.0011 (17)
C31A0.035 (2)0.038 (2)0.031 (2)0.0062 (17)0.0037 (16)0.0087 (17)
C8B0.037 (2)0.0208 (18)0.058 (3)0.0111 (16)0.018 (2)0.005 (2)
C27A0.039 (2)0.0250 (18)0.039 (2)0.0079 (16)0.0032 (17)0.0044 (16)
C9B0.038 (2)0.0221 (19)0.067 (3)0.0052 (16)0.019 (2)0.003 (2)
C23B0.030 (3)0.020 (3)0.047 (4)0.002 (3)0.006 (3)0.004 (3)
C8A0.028 (4)0.017 (3)0.033 (4)0.005 (3)0.017 (3)0.002 (3)
C9A0.025 (3)0.013 (3)0.033 (4)0.006 (3)0.015 (3)0.001 (3)
O11B0.083 (7)0.057 (6)0.064 (6)0.028 (5)0.029 (5)0.015 (4)
C30B0.037 (4)0.037 (4)0.052 (4)0.006 (4)0.014 (4)0.005 (4)
C31B0.040 (4)0.040 (4)0.054 (4)0.008 (3)0.017 (3)0.004 (4)
C26B0.030 (3)0.015 (3)0.046 (4)0.005 (3)0.005 (3)0.008 (3)
C27B0.039 (4)0.032 (4)0.059 (4)0.011 (3)0.003 (4)0.000 (3)
C28B0.037 (4)0.029 (4)0.057 (4)0.010 (3)0.006 (3)0.001 (3)
C29B0.030 (4)0.025 (4)0.049 (4)0.003 (4)0.013 (4)0.004 (4)
K10.0177 (3)0.0167 (3)0.0319 (4)0.0000.0052 (3)0.000
K20.0560 (6)0.0426 (5)0.0388 (5)0.0000.0093 (4)0.000
C170.0243 (12)0.0179 (11)0.0265 (12)0.0015 (9)0.0070 (9)0.0025 (9)
Geometric parameters (Å, º) top
O1—C21.369 (3)C7—H70.9500
O1—C11.435 (3)C7—C61.398 (4)
O1—K1i2.6587 (16)C4—C51.390 (5)
O10—C211.361 (3)C4—H41.00 (3)
O10—C23A1.463 (4)O11A—C28A1.374 (5)
O10—C23B1.406 (9)O11A—K2ii2.897 (3)
O3—C121.364 (3)O11A—H11A0.85 (2)
O3—C8B1.410 (5)C5—C61.385 (5)
O3—C8A1.467 (10)C5—C8B1.537 (5)
O7—C171.322 (3)C5—C8A1.540 (9)
O5—C161.357 (3)C24—H24A0.9900
O5—K12.6594 (18)C24—H24B0.9900
O5—H50.85 (4)C24—H24C0.9900
O6—H60.8400C24—H24D0.9900
O6—C141.334 (3)C24—C23A1.473 (5)
O2—C31.356 (3)C24—C23B1.440 (10)
O2—H20.83 (4)C6—H6A0.9500
O2—K1i2.6810 (19)C26A—C23A1.502 (5)
O9—C251.247 (3)C26A—C31A1.359 (6)
O9—K12.8548 (18)C26A—C27A1.406 (6)
O12—C29A1.410 (5)C10—C9B1.499 (5)
O12—C321.423 (4)C10—C9A1.640 (9)
O12—C29B1.312 (6)C32—H32A0.9800
O12—K2ii2.871 (2)C32—H32B0.9800
O1M—H1M0.8400C32—H32C0.9800
O1M—C1M1.406 (4)C1M—H1MA0.9800
O8—C191.352 (3)C1M—H1MB0.9800
O8—H80.79 (4)C1M—H1MC0.9800
O8—K22.744 (2)C23A—H23A1.0000
O4—C101.241 (4)C28A—C27A1.388 (6)
C22—C211.382 (3)C30A—H30A0.9500
C22—C171.409 (3)C30A—C31A1.393 (6)
C22—H220.96 (3)C31A—H31A0.9500
C21—C201.414 (3)C8B—H8B1.0000
C2—C31.405 (4)C8B—C9B1.474 (7)
C2—C71.378 (4)C27A—H27A0.9500
C20—C191.421 (3)C9B—H9BA0.9900
C20—C251.432 (3)C9B—H9BB0.9900
C16—C151.373 (4)C23B—H23B1.0000
C16—C111.418 (3)C23B—C26B1.551 (10)
C18—C191.378 (3)C8A—H8A1.0000
C18—C171.412 (3)C8A—C9A1.582 (13)
C18—H181.01 (3)C9A—H9AA0.9900
C3—C41.381 (4)C9A—H9AB0.9900
C15—H150.9500O11B—C28B1.364 (11)
C15—C141.405 (4)O11B—K2ii2.669 (9)
C12—C111.415 (4)O11B—H11B0.85 (2)
C12—C131.376 (4)C30B—H30B0.9500
C1—H1A0.9800C30B—C31B1.3900
C1—H1B0.9800C30B—C29B1.3900
C1—H1C0.9800C31B—H31B0.9500
C14—C131.406 (3)C31B—C26B1.3900
C25—C241.500 (4)C26B—C27B1.3900
C29A—C28A1.395 (6)C27B—H27B0.9500
C29A—C30A1.387 (7)C27B—C28B1.3900
C11—C101.434 (4)C28B—C29B1.3900
C13—H130.9500K1—H52.85 (4)
C2—O1—C1117.48 (19)O10—C23A—C26A107.2 (3)
C2—O1—K1i124.75 (15)O10—C23A—H23A107.3
C1—O1—K1i116.95 (13)C24—C23A—C26A115.6 (3)
C21—O10—C23A116.1 (2)C24—C23A—H23A107.3
C21—O10—C23B116.0 (4)C26A—C23A—H23A107.3
C12—O3—C8B116.1 (2)O11A—C28A—C29A118.5 (4)
C12—O3—C8A115.9 (4)O11A—C28A—C27A122.7 (4)
C16—O5—K1131.14 (15)C27A—C28A—C29A118.8 (4)
C16—O5—H5104 (2)C29A—C30A—H30A119.7
K1—O5—H594 (2)C29A—C30A—C31A120.7 (4)
C14—O6—H6109.5C31A—C30A—H30A119.7
C3—O2—H2110 (2)C26A—C31A—C30A120.5 (4)
C3—O2—K1i123.67 (15)C26A—C31A—H31A119.7
K1i—O2—H2126 (2)C30A—C31A—H31A119.7
C25—O9—K1132.39 (16)O3—C8B—C5104.8 (3)
C29A—O12—C32114.4 (3)O3—C8B—H8B108.1
C29A—O12—K2ii126.1 (3)O3—C8B—C9B115.6 (4)
C32—O12—K2ii119.52 (17)C5—C8B—H8B108.1
C29B—O12—C32122.6 (5)C9B—C8B—C5111.8 (4)
C29B—O12—K2ii117.5 (4)C9B—C8B—H8B108.1
C1M—O1M—H1M109.5C26A—C27A—H27A119.3
C19—O8—H8105 (3)C28A—C27A—C26A121.3 (4)
C19—O8—K2125.60 (17)C28A—C27A—H27A119.3
K2—O8—H8115 (3)C10—C9B—H9BA109.7
C21—C22—C17120.3 (2)C10—C9B—H9BB109.7
C21—C22—H22120.4 (17)C8B—C9B—C10109.7 (4)
C17—C22—H22119.3 (17)C8B—C9B—H9BA109.7
O10—C21—C22116.8 (2)C8B—C9B—H9BB109.7
O10—C21—C20121.9 (2)H9BA—C9B—H9BB108.2
C22—C21—C20121.2 (2)O10—C23B—C24117.4 (7)
O1—C2—C3115.3 (2)O10—C23B—H23B104.3
O1—C2—C7124.5 (2)O10—C23B—C26B107.0 (7)
C7—C2—C3120.2 (2)C24—C23B—H23B104.3
C21—C20—C19117.5 (2)C24—C23B—C26B117.8 (7)
C21—C20—C25120.7 (2)C26B—C23B—H23B104.3
C19—C20—C25121.7 (2)O3—C8A—C5102.0 (6)
O5—C16—C15119.3 (2)O3—C8A—H8A113.3
O5—C16—C11118.4 (2)O3—C8A—C9A109.2 (7)
C15—C16—C11122.3 (2)C5—C8A—H8A113.3
C19—C18—C17119.7 (2)C5—C8A—C9A104.8 (7)
C19—C18—H18122.1 (15)C9A—C8A—H8A113.3
C17—C18—H18118.2 (15)C10—C9A—H9AA112.2
O2—C3—C2116.8 (2)C10—C9A—H9AB112.2
O2—C3—C4123.4 (3)C8A—C9A—C1098.0 (6)
C4—C3—C2119.8 (3)C8A—C9A—H9AA112.2
C16—C15—H15120.2C8A—C9A—H9AB112.2
C16—C15—C14119.5 (2)H9AA—C9A—H9AB109.8
C14—C15—H15120.2C28B—O11B—K2ii121.4 (6)
O8—C19—C20119.6 (2)C28B—O11B—H11B107 (10)
O8—C19—C18118.6 (2)K2ii—O11B—H11B131 (10)
C18—C19—C20121.8 (2)C31B—C30B—H30B120.0
O3—C12—C11120.7 (2)C31B—C30B—C29B120.0
O3—C12—C13117.4 (2)C29B—C30B—H30B120.0
C13—C12—C11121.9 (2)C30B—C31B—H31B120.0
O1—C1—H1A109.5C30B—C31B—C26B120.0
O1—C1—H1B109.5C26B—C31B—H31B120.0
O1—C1—H1C109.5C31B—C26B—C23B129.2 (6)
H1A—C1—H1B109.5C27B—C26B—C23B110.8 (6)
H1A—C1—H1C109.5C27B—C26B—C31B120.0
H1B—C1—H1C109.5C26B—C27B—H27B120.0
O6—C14—C15121.7 (2)C26B—C27B—C28B120.0
O6—C14—C13118.6 (2)C28B—C27B—H27B120.0
C15—C14—C13119.7 (2)O11B—C28B—C27B120.8 (6)
O9—C25—C20123.2 (2)O11B—C28B—C29B119.2 (6)
O9—C25—C24121.1 (2)C29B—C28B—C27B120.0
C20—C25—C24115.6 (2)O12—C29B—C30B122.2 (6)
C28A—C29A—O12114.6 (4)O12—C29B—C28B117.6 (6)
C30A—C29A—O12125.7 (4)C28B—C29B—C30B120.0
C30A—C29A—C28A119.6 (4)O1ii—K1—O1iii121.34 (7)
C16—C11—C10121.8 (2)O1iii—K1—O5iv85.17 (5)
C12—C11—C16116.6 (2)O1iii—K1—O5118.47 (5)
C12—C11—C10121.5 (2)O1ii—K1—O585.17 (5)
C12—C13—C14119.9 (2)O1ii—K1—O5iv118.47 (5)
C12—C13—H13120.0O1iii—K1—O2ii73.97 (6)
C14—C13—H13120.0O1ii—K1—O2iii73.97 (6)
C2—C7—H7120.4O1iii—K1—O2iii58.36 (6)
C2—C7—C6119.3 (3)O1ii—K1—O2ii58.36 (6)
C6—C7—H7120.4O1iii—K1—O9159.00 (6)
C3—C4—C5120.4 (3)O1iii—K1—O9iv75.04 (5)
C3—C4—H4121.9 (19)O1ii—K1—O975.04 (5)
C5—C4—H4117.7 (19)O1ii—K1—O9iv159.00 (6)
C28A—O11A—K2ii124.3 (2)O1ii—K1—H594.8 (7)
C28A—O11A—H11A112 (5)O1iii—K1—H5124.0 (7)
K2ii—O11A—H11A123 (5)O5iv—K1—O5132.76 (9)
C4—C5—C8B112.0 (4)O5iv—K1—O2iii139.51 (6)
C4—C5—C8A141.4 (5)O5—K1—O2ii139.51 (6)
C6—C5—C4119.5 (3)O5—K1—O2iii83.95 (6)
C6—C5—C8B128.5 (4)O5iv—K1—O2ii83.95 (6)
C6—C5—C8A99.1 (5)O5iv—K1—O974.80 (6)
C25—C24—H24A108.8O5—K1—O9iv74.80 (6)
C25—C24—H24B108.8O5iv—K1—O9iv73.12 (6)
C25—C24—H24C108.2O5—K1—O973.12 (6)
C25—C24—H24D108.2O5iv—K1—H5115.5 (8)
H24A—C24—H24B107.7O5—K1—H517.3 (8)
H24C—C24—H24D107.4O2ii—K1—O2iii70.34 (9)
C23A—C24—C25113.6 (2)O2ii—K1—O9iv142.64 (6)
C23A—C24—H24A108.8O2ii—K1—O9109.41 (6)
C23A—C24—H24B108.8O2iii—K1—O9iv109.41 (6)
C23B—C24—C25116.2 (4)O2iii—K1—O9142.64 (6)
C23B—C24—H24C108.2O2ii—K1—H5152.8 (8)
C23B—C24—H24D108.2O2iii—K1—H5100.4 (8)
C7—C6—H6A119.6O9iv—K1—O992.83 (8)
C5—C6—C7120.8 (3)O9iv—K1—H564.3 (7)
C5—C6—H6A119.6O9—K1—H562.1 (8)
C31A—C26A—C23A120.9 (4)O12v—K2—O12i149.39 (8)
C31A—C26A—C27A119.0 (4)O12i—K2—O11Av106.27 (8)
C27A—C26A—C23A120.0 (4)O12i—K2—O11Ai54.45 (7)
O4—C10—C11123.2 (2)O12v—K2—O11Av54.45 (7)
O4—C10—C9B120.9 (3)O12v—K2—O11Ai106.27 (8)
O4—C10—C9A119.5 (4)O8iv—K2—O12i120.77 (6)
C11—C10—C9B115.1 (3)O8—K2—O12i80.39 (6)
C11—C10—C9A114.3 (4)O8iv—K2—O12v80.39 (6)
O12—C32—H32A109.5O8—K2—O12v120.77 (6)
O12—C32—H32B109.5O8—K2—O8iv98.49 (9)
O12—C32—H32C109.5O8iv—K2—O11Av132.67 (8)
H32A—C32—H32B109.5O8—K2—O11Av93.86 (8)
H32A—C32—H32C109.5O8—K2—O11Ai132.67 (8)
H32B—C32—H32C109.5O8iv—K2—O11Ai93.86 (8)
O1M—C1M—H1MA109.5O11Ai—K2—O11Av110.41 (14)
O1M—C1M—H1MB109.5O11Bv—K2—O8119.5 (2)
O1M—C1M—H1MC109.5O11Bi—K2—O8133.0 (2)
H1MA—C1M—H1MB109.5O7—C17—C22119.6 (2)
H1MA—C1M—H1MC109.5O7—C17—C18121.0 (2)
H1MB—C1M—H1MC109.5C22—C17—C18119.5 (2)
O10—C23A—C24111.9 (3)
O1—C2—C3—O20.6 (3)C13—C12—C11—C10179.0 (3)
O1—C2—C3—C4179.1 (2)C7—C2—C3—O2178.5 (2)
O1—C2—C7—C6179.1 (2)C7—C2—C3—C41.8 (4)
O10—C21—C20—C19179.7 (2)C4—C5—C6—C70.5 (5)
O10—C21—C20—C252.0 (4)C4—C5—C8B—O3107.1 (4)
O10—C23B—C26B—C31B81.8 (9)C4—C5—C8B—C9B126.9 (4)
O10—C23B—C26B—C27B100.1 (8)C4—C5—C8A—O366.5 (8)
O3—C12—C11—C16177.0 (2)C4—C5—C8A—C9A47.3 (10)
O3—C12—C11—C101.1 (4)O11A—C28A—C27A—C26A179.7 (4)
O3—C12—C13—C14177.7 (2)C5—C8B—C9B—C10173.5 (4)
O3—C8B—C9B—C1053.7 (6)C5—C8A—C9A—C10177.4 (6)
O3—C8A—C9A—C1068.8 (8)C24—C23B—C26B—C31B53.0 (11)
O5—C16—C15—C14177.4 (2)C24—C23B—C26B—C27B125.1 (8)
O5—C16—C11—C12177.2 (2)C6—C5—C8B—O371.3 (5)
O5—C16—C11—C100.9 (4)C6—C5—C8B—C9B54.7 (6)
O6—C14—C13—C12179.6 (2)C6—C5—C8A—O3112.7 (5)
O2—C3—C4—C5179.8 (3)C6—C5—C8A—C9A133.5 (7)
O9—C25—C24—C23A153.6 (3)C32—O12—C29A—C28A171.0 (4)
O9—C25—C24—C23B163.2 (6)C32—O12—C29A—C30A10.1 (7)
O12—C29A—C28A—O11A2.7 (7)C32—O12—C29B—C30B27.8 (9)
O12—C29A—C28A—C27A176.7 (4)C32—O12—C29B—C28B156.8 (5)
O12—C29A—C30A—C31A177.9 (4)C23A—O10—C21—C22160.7 (2)
O4—C10—C9B—C8B155.0 (4)C23A—O10—C21—C2020.6 (3)
O4—C10—C9A—C8A148.3 (6)C23A—C26A—C31A—C30A177.6 (4)
C22—C21—C20—C191.0 (4)C23A—C26A—C27A—C28A178.9 (4)
C22—C21—C20—C25176.6 (2)C28A—C29A—C30A—C31A0.9 (9)
C21—O10—C23A—C2446.7 (4)C30A—C29A—C28A—O11A178.4 (5)
C21—O10—C23A—C26A174.4 (3)C30A—C29A—C28A—C27A2.2 (8)
C21—O10—C23B—C2441.1 (9)C31A—C26A—C23A—O1096.9 (5)
C21—O10—C23B—C26B176.1 (5)C31A—C26A—C23A—C24137.7 (4)
C21—C22—C17—O7178.6 (2)C31A—C26A—C27A—C28A1.7 (7)
C21—C22—C17—C181.0 (4)C8B—O3—C12—C1117.6 (4)
C21—C20—C19—O8179.9 (2)C8B—O3—C12—C13164.4 (3)
C21—C20—C19—C181.2 (4)C8B—C5—C6—C7177.8 (3)
C21—C20—C25—O9179.8 (3)C27A—C26A—C23A—O1083.7 (5)
C21—C20—C25—C242.7 (4)C27A—C26A—C23A—C2441.7 (6)
C2—C3—C4—C50.5 (4)C27A—C26A—C31A—C30A3.0 (7)
C2—C7—C6—C50.7 (5)C23B—O10—C21—C22154.9 (6)
C20—C25—C24—C23A29.3 (4)C23B—O10—C21—C2023.8 (6)
C20—C25—C24—C23B14.0 (6)C23B—C26B—C27B—C28B178.3 (8)
C16—C15—C14—O6179.9 (2)C8A—O3—C12—C1117.5 (6)
C16—C15—C14—C130.6 (4)C8A—O3—C12—C13160.5 (5)
C16—C11—C10—O42.5 (5)C8A—C5—C6—C7178.9 (4)
C16—C11—C10—C9B166.5 (4)O11B—C28B—C29B—O124.3 (9)
C16—C11—C10—C9A162.4 (4)O11B—C28B—C29B—C30B179.8 (10)
C3—C2—C7—C61.9 (4)C30B—C31B—C26B—C23B178.0 (10)
C3—C4—C5—C60.6 (4)C30B—C31B—C26B—C27B0.0
C3—C4—C5—C8B177.9 (3)C31B—C30B—C29B—O12175.3 (10)
C3—C4—C5—C8A178.4 (6)C31B—C30B—C29B—C28B0.0
C15—C16—C11—C121.5 (4)C31B—C26B—C27B—C28B0.0
C15—C16—C11—C10179.6 (3)C26B—C27B—C28B—O11B179.8 (10)
C15—C14—C13—C120.1 (4)C26B—C27B—C28B—C29B0.0
C19—C20—C25—O92.3 (4)C27B—C28B—C29B—O12175.5 (10)
C19—C20—C25—C24174.8 (3)C27B—C28B—C29B—C30B0.0
C19—C18—C17—O7178.8 (2)C29B—C30B—C31B—C26B0.0
C19—C18—C17—C220.8 (4)K1i—O1—C2—C39.0 (3)
C12—O3—C8B—C5168.9 (3)K1i—O1—C2—C7170.07 (19)
C12—O3—C8B—C9B45.3 (6)K1—O5—C16—C1562.0 (3)
C12—O3—C8A—C5167.4 (4)K1—O5—C16—C11119.3 (2)
C12—O3—C8A—C9A56.9 (8)K1i—O2—C3—C27.9 (3)
C12—C11—C10—O4179.5 (3)K1i—O2—C3—C4172.43 (19)
C12—C11—C10—C9B11.5 (5)K1—O9—C25—C20154.88 (19)
C12—C11—C10—C9A19.6 (6)K1—O9—C25—C2422.1 (4)
C1—O1—C2—C3178.2 (2)K2ii—O12—C29A—C28A9.8 (7)
C1—O1—C2—C70.8 (3)K2ii—O12—C29A—C30A169.1 (4)
C25—C20—C19—O82.5 (4)K2ii—O12—C29B—C30B158.9 (4)
C25—C20—C19—C18176.4 (3)K2ii—O12—C29B—C28B16.5 (8)
C25—C24—C23A—O1050.6 (4)K2—O8—C19—C20140.4 (2)
C25—C24—C23A—C26A173.6 (3)K2—O8—C19—C1838.5 (3)
C25—C24—C23B—O1036.2 (10)K2ii—O11A—C28A—C29A13.8 (6)
C25—C24—C23B—C26B166.4 (6)K2ii—O11A—C28A—C27A165.6 (3)
C29A—C28A—C27A—C26A0.9 (7)K2ii—O11B—C28B—C27B154.3 (5)
C29A—C30A—C31A—C26A1.8 (8)K2ii—O11B—C28B—C29B25.6 (10)
C11—C16—C15—C141.3 (4)C17—C22—C21—O10178.7 (2)
C11—C12—C13—C140.3 (4)C17—C22—C21—C200.0 (4)
C11—C10—C9B—C8B35.7 (6)C17—C18—C19—O8179.3 (2)
C11—C10—C9A—C8A51.0 (8)C17—C18—C19—C200.4 (4)
C13—C12—C11—C161.0 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x+5/2, y1/2, z+3/2; (iv) x+2, y, z+3/2; (v) x+3/2, y+1/2, z+3/2.
(HESK_3H2O) top
Crystal data top
C16H17KO8·H2ODx = 1.520 Mg m3
Mr = 394.41Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9265 reflections
a = 13.9343 (3) Åθ = 4.2–66.5°
b = 7.8657 (2) ŵ = 3.15 mm1
c = 31.4425 (7) ÅT = 113 K
V = 3446.19 (14) Å3Plate, clear light colourless
Z = 80.02 × 0.02 × 0.02 mm
F(000) = 1648
Data collection top
Bruker APEX-II CCD
diffractometer
2903 reflections with I > 2σ(I)
φ and ω scansRint = 0.071
Absorption correction: multi-scan
SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0900 before and 0.0719 after correction. The Ratio of minimum to maximum transmission is 0.7197. The λ/2 correction factor is Not present.
θmax = 66.6°, θmin = 2.8°
Tmin = 0.542, Tmax = 0.753h = 1416
29419 measured reflectionsk = 99
3040 independent reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0493P)2 + 5.4499P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3040 reflectionsΔρmax = 0.48 e Å3
267 parametersΔρmin = 0.35 e Å3
19 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.93794 (3)0.42338 (7)0.34963 (2)0.02174 (17)
O30.41452 (11)0.7079 (2)0.37317 (5)0.0192 (4)
O10.83514 (11)0.5921 (2)0.42278 (5)0.0238 (4)
O2W0.92288 (12)0.1826 (2)0.28438 (5)0.0242 (4)
H2WA0.8836940.2200250.2649400.036*
H2WB0.8953210.0913280.2941680.036*
O60.19745 (11)0.8684 (2)0.26554 (5)0.0214 (4)
O1W0.93277 (12)0.5825 (2)0.27032 (5)0.0234 (4)
H1WA0.8979810.5226200.2528770.035*
H1WB0.9899350.5813690.2591470.035*
O50.07517 (12)0.6221 (2)0.39138 (5)0.0247 (4)
O3W0.66364 (12)0.3677 (2)0.28966 (5)0.0243 (4)
H3WA0.7075350.3739230.2700530.036*
H3WB0.6333670.2734060.2842950.036*
O20.74982 (13)0.4384 (2)0.36021 (5)0.0265 (4)
O40.19469 (14)0.5509 (3)0.45062 (6)0.0407 (5)
C120.32182 (16)0.7183 (3)0.35877 (7)0.0170 (5)
C130.30729 (16)0.7879 (3)0.31957 (7)0.0181 (5)
H130.3605100.8251920.3031510.022*
C140.21237 (16)0.8047 (3)0.30317 (7)0.0184 (5)
C160.15099 (16)0.6770 (3)0.36762 (7)0.0190 (5)
C110.24496 (16)0.6618 (3)0.38489 (7)0.0180 (5)
C20.73726 (17)0.5971 (3)0.42350 (7)0.0210 (5)
C30.69204 (17)0.5147 (3)0.38907 (7)0.0218 (5)
C150.13460 (16)0.7472 (3)0.32850 (7)0.0197 (5)
H150.0707580.7575410.3182260.024*
C40.59346 (18)0.5147 (4)0.38606 (8)0.0294 (6)
H40.5635620.4576140.3629740.035*
C100.26110 (19)0.5975 (4)0.42632 (8)0.0288 (6)
C70.68115 (19)0.6758 (3)0.45401 (8)0.0284 (6)
H70.7104780.7301360.4776570.034*
C10.88317 (19)0.6626 (4)0.45878 (8)0.0308 (6)
H1A0.9525940.6473450.4555580.046*
H1B0.8614790.6047680.4846540.046*
H1C0.8684320.7841640.4608420.046*
C50.53695 (19)0.5965 (5)0.41605 (9)0.0392 (8)
C60.5809 (2)0.6751 (4)0.44997 (9)0.0384 (7)
H60.5427250.7297800.4709540.046*
C9A0.3609 (3)0.6124 (10)0.44287 (14)0.0195 (13)0.675 (18)
H9AA0.3719690.5277460.4656500.023*0.675 (18)
H9AB0.3717380.7273530.4547290.023*0.675 (18)
C8A0.4285 (2)0.5802 (5)0.40576 (10)0.0189 (11)0.724 (10)
H8A0.4154080.4650620.3935610.023*0.724 (10)
C9B0.3708 (6)0.539 (2)0.4357 (4)0.018 (3)0.325 (18)
H9BA0.3814060.5261690.4666470.021*0.325 (18)
H9BB0.3842120.4284050.4217740.021*0.325 (18)
C8B0.4367 (6)0.6770 (14)0.4176 (3)0.016 (2)0.276 (10)
H8B0.4352540.7835590.4349880.019*0.276 (10)
H50.0997 (19)0.580 (3)0.4141 (7)0.019*
H20.7176 (18)0.409 (3)0.3383 (7)0.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0159 (3)0.0274 (3)0.0220 (3)0.00165 (19)0.00217 (18)0.0022 (2)
O30.0148 (7)0.0265 (9)0.0164 (7)0.0031 (7)0.0019 (6)0.0046 (6)
O10.0162 (8)0.0347 (10)0.0206 (8)0.0030 (7)0.0005 (6)0.0025 (7)
O2W0.0234 (8)0.0247 (9)0.0245 (9)0.0002 (7)0.0038 (7)0.0021 (7)
O60.0180 (8)0.0263 (9)0.0200 (8)0.0028 (7)0.0027 (6)0.0016 (7)
O1W0.0204 (8)0.0263 (9)0.0237 (8)0.0024 (7)0.0029 (7)0.0025 (7)
O50.0159 (8)0.0330 (10)0.0251 (9)0.0036 (7)0.0055 (7)0.0004 (8)
O3W0.0223 (9)0.0271 (9)0.0234 (9)0.0009 (7)0.0004 (7)0.0034 (7)
O20.0182 (8)0.0379 (10)0.0234 (8)0.0014 (8)0.0043 (7)0.0047 (8)
O40.0262 (10)0.0728 (15)0.0232 (9)0.0178 (10)0.0010 (7)0.0124 (10)
C120.0137 (10)0.0184 (11)0.0189 (11)0.0002 (9)0.0000 (8)0.0039 (9)
C130.0148 (10)0.0216 (12)0.0179 (11)0.0015 (9)0.0015 (8)0.0009 (9)
C140.0187 (11)0.0175 (11)0.0191 (11)0.0009 (9)0.0008 (9)0.0040 (9)
C160.0160 (11)0.0179 (11)0.0231 (11)0.0027 (9)0.0053 (9)0.0060 (9)
C110.0173 (11)0.0189 (11)0.0179 (10)0.0016 (9)0.0030 (9)0.0037 (9)
C20.0170 (11)0.0238 (12)0.0222 (12)0.0015 (10)0.0019 (9)0.0068 (9)
C30.0170 (11)0.0264 (13)0.0220 (11)0.0005 (10)0.0009 (9)0.0065 (10)
C150.0129 (10)0.0206 (12)0.0257 (12)0.0020 (9)0.0003 (9)0.0037 (9)
C40.0186 (12)0.0444 (16)0.0251 (12)0.0017 (11)0.0032 (10)0.0148 (12)
C100.0216 (13)0.0436 (16)0.0211 (12)0.0111 (11)0.0011 (10)0.0028 (11)
C70.0317 (14)0.0309 (14)0.0226 (12)0.0056 (11)0.0058 (10)0.0056 (11)
C10.0267 (13)0.0459 (17)0.0198 (12)0.0103 (12)0.0016 (10)0.0001 (11)
C50.0181 (13)0.075 (2)0.0246 (13)0.0125 (14)0.0053 (10)0.0278 (14)
C60.0321 (14)0.0544 (19)0.0287 (14)0.0229 (14)0.0153 (12)0.0181 (13)
C9A0.022 (2)0.020 (3)0.017 (2)0.0011 (19)0.0011 (14)0.0009 (18)
C8A0.0169 (17)0.022 (2)0.0178 (17)0.0003 (13)0.0004 (12)0.0052 (14)
C9B0.015 (3)0.022 (4)0.016 (4)0.007 (3)0.007 (3)0.001 (3)
C8B0.016 (3)0.016 (3)0.016 (3)0.0000 (10)0.0001 (10)0.0004 (10)
Geometric parameters (Å, º) top
K1—O3i2.7653 (16)C14—C151.419 (3)
K1—O13.0170 (17)C16—C111.422 (3)
K1—O2W2.7999 (18)C16—C151.367 (3)
K1—O1W2.7911 (18)C11—C101.415 (3)
K1—O5ii2.7970 (18)C2—C31.410 (4)
K1—O22.6451 (18)C2—C71.384 (4)
K1—C4i3.440 (3)C3—C41.377 (3)
K1—C5i3.331 (3)C15—H150.9500
K1—C8Bi3.373 (8)C4—H40.9500
O3—C121.371 (3)C4—C51.387 (4)
O3—C8A1.448 (3)C10—C9A1.489 (5)
O3—C8B1.452 (8)C10—C9B1.624 (10)
O1—C21.365 (3)C7—H70.9500
O1—C11.427 (3)C7—C61.403 (4)
O2W—H2WA0.8709C1—H1A0.9800
O2W—H2WB0.8705C1—H1B0.9800
O6—C141.302 (3)C1—H1C0.9800
O1W—H1WA0.8702C5—C61.376 (5)
O1W—H1WB0.8706C5—C8A1.551 (4)
O5—C161.364 (3)C5—C8B1.535 (9)
O5—H50.859 (17)C6—H60.9500
O3W—H3WA0.8699C9A—H9AA0.9900
O3W—H3WB0.8698C9A—H9AB0.9900
O2—C31.353 (3)C9A—C8A1.521 (6)
O2—H20.854 (17)C8A—H8A1.0000
O4—C101.255 (3)C9B—H9BA0.9900
C12—C131.364 (3)C9B—H9BB0.9900
C12—C111.421 (3)C9B—C8B1.531 (11)
C13—H130.9500C8B—H8B1.0000
C13—C141.426 (3)
O3i—K1—O1114.75 (5)C12—C11—C16116.5 (2)
O3i—K1—O2W80.64 (5)C10—C11—C12121.6 (2)
O3i—K1—O1W122.22 (5)C10—C11—C16121.9 (2)
O3i—K1—O5ii73.07 (5)O1—C2—C3114.9 (2)
O3i—K1—C4i55.44 (5)O1—C2—C7126.1 (2)
O3i—K1—C5i44.03 (6)C7—C2—C3119.0 (2)
O3i—K1—C8Bi24.93 (15)O2—C3—C2116.9 (2)
O1—K1—C4i95.55 (6)O2—C3—C4123.2 (2)
O1—K1—C5i84.92 (7)C4—C3—C2119.9 (2)
O1—K1—C8Bi90.88 (17)C14—C15—H15119.8
O2W—K1—O1145.13 (5)C16—C15—C14120.4 (2)
O2W—K1—C4i66.58 (6)C16—C15—H15119.8
O2W—K1—C5i86.86 (7)K1iii—C4—H497.6
O2W—K1—C8Bi96.59 (19)C3—C4—K1iii98.63 (17)
O1W—K1—O1118.14 (5)C3—C4—H4119.3
O1W—K1—O2W69.30 (5)C3—C4—C5121.3 (3)
O1W—K1—O5ii100.74 (5)C5—C4—K1iii73.79 (17)
O1W—K1—C4i135.49 (6)C5—C4—H4119.3
O1W—K1—C5i155.37 (7)O4—C10—C11123.2 (2)
O1W—K1—C8Bi146.85 (15)O4—C10—C9A119.9 (3)
O5ii—K1—O173.80 (5)O4—C10—C9B120.1 (4)
O5ii—K1—O2W140.64 (5)C11—C10—C9A116.2 (3)
O5ii—K1—C4i116.93 (6)C11—C10—C9B114.7 (4)
O5ii—K1—C5i93.75 (7)C2—C7—H7120.1
O5ii—K1—C8Bi70.70 (18)C2—C7—C6119.9 (3)
O2—K1—O3i136.93 (6)C6—C7—H7120.1
O2—K1—O154.12 (5)O1—C1—H1A109.5
O2—K1—O2W92.76 (5)O1—C1—H1B109.5
O2—K1—O1W93.83 (5)O1—C1—H1C109.5
O2—K1—O5ii126.41 (6)H1A—C1—H1B109.5
O2—K1—C4i82.75 (6)H1A—C1—H1C109.5
O2—K1—C5i93.43 (6)H1B—C1—H1C109.5
O2—K1—C8Bi117.34 (14)C4—C5—K1iii82.64 (16)
C5i—K1—C4i23.56 (7)C4—C5—C8A111.9 (3)
C5i—K1—C8Bi26.46 (15)C4—C5—C8B136.9 (4)
C12—O3—K1iii125.12 (13)C6—C5—K1iii95.3 (2)
C12—O3—C8A113.68 (19)C6—C5—C4118.9 (2)
C12—O3—C8B121.9 (3)C6—C5—C8A129.2 (3)
C8A—O3—K1iii120.99 (15)C6—C5—C8B101.2 (4)
C2—O1—K1119.99 (14)C8A—C5—K1iii92.03 (16)
C2—O1—C1116.39 (19)C7—C6—H6119.5
C1—O1—K1123.56 (14)C5—C6—C7121.0 (3)
K1—O2W—H2WA109.4C5—C6—H6119.5
K1—O2W—H2WB109.4C10—C9A—H9AA110.3
H2WA—O2W—H2WB104.5C10—C9A—H9AB110.3
K1—O1W—H1WA109.6C10—C9A—C8A107.3 (3)
K1—O1W—H1WB109.4H9AA—C9A—H9AB108.5
H1WA—O1W—H1WB104.5C8A—C9A—H9AA110.3
K1iv—O5—H5116.5 (19)C8A—C9A—H9AB110.3
C16—O5—K1iv116.70 (13)O3—C8A—C5102.8 (2)
C16—O5—H5105.7 (19)O3—C8A—C9A110.1 (3)
H3WA—O3W—H3WB104.6O3—C8A—H8A109.4
K1—O2—H2114.1 (18)C5—C8A—H8A109.4
C3—O2—K1133.92 (15)C9A—C8A—C5115.5 (3)
C3—O2—H2110.3 (18)C9A—C8A—H8A109.4
O3—C12—C11120.0 (2)C10—C9B—H9BA110.3
C13—C12—O3117.5 (2)C10—C9B—H9BB110.3
C13—C12—C11122.4 (2)H9BA—C9B—H9BB108.5
C12—C13—H13119.9C8B—C9B—C10107.2 (8)
C12—C13—C14120.1 (2)C8B—C9B—H9BA110.3
C14—C13—H13119.9C8B—C9B—H9BB110.3
O6—C14—C13120.8 (2)O3—C8B—C5103.4 (5)
O6—C14—C15120.7 (2)O3—C8B—C9B110.4 (7)
C15—C14—C13118.4 (2)O3—C8B—H8B112.4
O5—C16—C11118.5 (2)C5—C8B—H8B112.4
O5—C16—C15119.4 (2)C9B—C8B—C5105.3 (7)
C15—C16—C11122.1 (2)C9B—C8B—H8B112.4
K1iii—O3—C12—C1327.5 (3)C13—C12—C11—C161.6 (3)
K1iii—O3—C12—C11150.93 (16)C13—C12—C11—C10176.9 (2)
K1iii—O3—C8A—C54.8 (3)C13—C14—C15—C160.2 (3)
K1iii—O3—C8A—C9A118.7 (3)C16—C11—C10—O40.4 (4)
K1iii—O3—C8B—C559.8 (6)C16—C11—C10—C9A171.2 (4)
K1iii—O3—C8B—C9B172.0 (8)C16—C11—C10—C9B163.3 (6)
K1—O1—C2—C31.9 (3)C11—C12—C13—C140.6 (3)
K1—O1—C2—C7177.24 (19)C11—C16—C15—C141.3 (4)
K1iv—O5—C16—C11134.15 (17)C11—C10—C9A—C8A37.5 (6)
K1iv—O5—C16—C1547.0 (3)C11—C10—C9B—C8B44.2 (11)
K1—O2—C3—C25.1 (3)C2—C3—C4—K1iii77.1 (2)
K1—O2—C3—C4174.84 (18)C2—C3—C4—C50.9 (4)
K1iii—C4—C5—C692.0 (3)C2—C7—C6—C50.3 (4)
K1iii—C4—C5—C8A89.2 (2)C3—C2—C7—C61.1 (4)
K1iii—C4—C5—C8B64.1 (6)C3—C4—C5—K1iii90.3 (2)
K1iii—C5—C6—C783.4 (3)C3—C4—C5—C61.7 (4)
K1iii—C5—C8A—O33.4 (2)C3—C4—C5—C8A179.6 (3)
K1iii—C5—C8A—C9A116.5 (4)C3—C4—C5—C8B154.4 (6)
K1iii—C5—C8B—O345.9 (5)C15—C16—C11—C122.0 (3)
K1iii—C5—C8B—C9B161.7 (7)C15—C16—C11—C10176.5 (2)
O3—C12—C13—C14179.0 (2)C4—C5—C6—C71.1 (4)
O3—C12—C11—C16180.0 (2)C4—C5—C8A—O379.4 (3)
O3—C12—C11—C101.5 (3)C4—C5—C8A—C9A160.6 (4)
O1—C2—C3—O21.3 (3)C4—C5—C8B—O319.8 (10)
O1—C2—C3—C4178.7 (2)C4—C5—C8B—C9B96.1 (8)
O1—C2—C7—C6178.0 (2)C10—C9A—C8A—O362.0 (5)
O6—C14—C15—C16178.6 (2)C10—C9A—C8A—C5177.8 (4)
O5—C16—C11—C12179.1 (2)C10—C9B—C8B—O354.2 (11)
O5—C16—C11—C102.4 (3)C10—C9B—C8B—C5165.1 (7)
O5—C16—C15—C14179.8 (2)C7—C2—C3—O2179.5 (2)
O2—C3—C4—K1iii102.9 (2)C7—C2—C3—C40.5 (4)
O2—C3—C4—C5179.1 (2)C1—O1—C2—C3175.3 (2)
O4—C10—C9A—C8A151.4 (4)C1—O1—C2—C75.6 (4)
O4—C10—C9B—C8B151.5 (6)C6—C5—C8A—O3102.0 (3)
C12—O3—C8A—C5179.7 (2)C6—C5—C8A—C9A18.0 (6)
C12—O3—C8A—C9A56.2 (4)C6—C5—C8B—O3139.0 (5)
C12—O3—C8B—C5155.1 (3)C6—C5—C8B—C9B105.1 (7)
C12—O3—C8B—C9B42.9 (10)C8A—O3—C12—C13157.9 (2)
C12—C13—C14—O6178.9 (2)C8A—O3—C12—C1123.7 (3)
C12—C13—C14—C150.2 (3)C8A—C5—C6—C7179.6 (3)
C12—C11—C10—O4178.0 (3)C8B—O3—C12—C13164.2 (5)
C12—C11—C10—C9A7.3 (5)C8B—O3—C12—C1114.2 (6)
C12—C11—C10—C9B18.3 (7)C8B—C5—C6—C7162.5 (4)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z; (iv) x1, y, z.
(HESNAH) top
Crystal data top
C16H13.5Na0.5O6F(000) = 652
Mr = 313.26Dx = 1.515 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 10.7741 (6) ÅCell parameters from 5911 reflections
b = 9.6357 (6) Åθ = 2.8–27.6°
c = 13.8452 (9) ŵ = 0.13 mm1
β = 107.103 (2)°T = 150 K
V = 1373.79 (15) Å3Block, clear colourless
Z = 40.02 × 0.02 × 0.02 mm
Data collection top
Bruker APEX-II CCD
diffractometer
3173 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs2484 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.045
Detector resolution: 7.9 pixels mm-1θmax = 27.7°, θmin = 2.6°
φ and ω scansh = 1313
Absorption correction: multi-scan
SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0810 before and 0.0699 after correction. The Ratio of minimum to maximum transmission is 0.9583. The λ/2 correction factor is Not present.
k = 1212
Tmin = 0.715, Tmax = 0.746l = 1618
13484 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.593P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3173 reflectionsΔρmax = 0.33 e Å3
212 parametersΔρmin = 0.29 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.2500000.75989 (9)0.7500000.0247 (2)
O10.33446 (12)0.08033 (12)0.88695 (9)0.0258 (3)
O20.45167 (13)0.12475 (12)0.75021 (10)0.0264 (3)
O30.57590 (12)0.33155 (13)0.63723 (9)0.0261 (3)
O60.34877 (12)0.14363 (13)0.32268 (9)0.0260 (3)
H60.2500000.141 (3)0.2500000.031*
O40.27316 (14)0.58852 (13)0.63720 (10)0.0309 (3)
O50.14106 (14)0.48226 (14)0.46522 (10)0.0327 (3)
H50.169 (2)0.537 (2)0.5173 (14)0.039*
H20.507 (2)0.135 (2)0.7167 (16)0.039*
C120.46482 (17)0.32694 (17)0.55863 (13)0.0226 (4)
C30.44804 (16)0.00986 (17)0.78075 (12)0.0202 (3)
C110.35754 (17)0.41238 (17)0.55670 (13)0.0222 (4)
C20.38462 (16)0.03521 (17)0.85353 (13)0.0214 (3)
C160.24605 (17)0.40247 (17)0.47150 (13)0.0235 (4)
C100.36363 (19)0.50769 (17)0.63716 (13)0.0253 (4)
C40.50247 (16)0.11853 (17)0.74204 (13)0.0214 (3)
H40.5470800.1005070.6935070.026*
C140.34982 (17)0.23002 (17)0.39756 (12)0.0220 (4)
C130.46217 (17)0.23847 (18)0.48064 (13)0.0241 (4)
H130.5358530.1831020.4826820.029*
C50.49240 (16)0.25427 (17)0.77366 (13)0.0219 (4)
C150.24167 (18)0.31135 (18)0.39458 (13)0.0243 (4)
H150.1650160.3035890.3392450.029*
C70.37540 (18)0.16898 (19)0.88575 (14)0.0272 (4)
H70.3324520.1868050.9353700.033*
C80.55832 (18)0.37140 (18)0.73314 (13)0.0254 (4)
H80.6464990.3851140.7820250.030*
C60.42901 (18)0.27799 (19)0.84560 (14)0.0280 (4)
H6A0.4219520.3700700.8679360.034*
C90.48818 (19)0.50961 (18)0.72127 (14)0.0279 (4)
H9A0.4696080.5329880.7852600.034*
H9B0.5454140.5828300.7078300.034*
C10.28267 (19)0.0624 (2)0.96956 (14)0.0307 (4)
H1A0.2045700.0044810.9483410.046*
H1B0.3474920.0171991.0255720.046*
H1C0.2602650.1531830.9916510.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0342 (6)0.0165 (4)0.0261 (5)0.0000.0129 (4)0.000
O10.0298 (7)0.0250 (6)0.0265 (6)0.0033 (5)0.0144 (5)0.0005 (5)
O20.0325 (7)0.0193 (6)0.0328 (7)0.0013 (5)0.0180 (6)0.0028 (5)
O30.0233 (6)0.0297 (6)0.0264 (6)0.0033 (5)0.0090 (5)0.0008 (5)
O60.0302 (7)0.0265 (6)0.0245 (6)0.0040 (5)0.0128 (5)0.0042 (5)
O40.0439 (8)0.0203 (6)0.0300 (7)0.0059 (6)0.0133 (6)0.0033 (5)
O50.0368 (8)0.0324 (7)0.0276 (7)0.0150 (6)0.0074 (6)0.0053 (6)
C120.0244 (9)0.0216 (8)0.0236 (8)0.0034 (7)0.0097 (7)0.0041 (7)
C30.0187 (8)0.0199 (8)0.0213 (8)0.0031 (6)0.0048 (7)0.0006 (6)
C110.0282 (9)0.0174 (7)0.0231 (8)0.0009 (7)0.0108 (7)0.0009 (6)
C20.0192 (8)0.0230 (8)0.0219 (8)0.0006 (6)0.0061 (7)0.0003 (7)
C160.0283 (9)0.0201 (8)0.0245 (8)0.0049 (7)0.0114 (7)0.0035 (7)
C100.0367 (10)0.0163 (7)0.0251 (9)0.0034 (7)0.0129 (8)0.0018 (6)
C40.0201 (8)0.0233 (8)0.0213 (8)0.0018 (7)0.0068 (7)0.0001 (7)
C140.0294 (9)0.0194 (8)0.0208 (8)0.0008 (7)0.0130 (7)0.0017 (6)
C130.0239 (9)0.0249 (8)0.0274 (9)0.0031 (7)0.0134 (7)0.0031 (7)
C50.0199 (8)0.0225 (8)0.0219 (8)0.0019 (7)0.0039 (7)0.0009 (7)
C150.0278 (9)0.0237 (8)0.0217 (8)0.0031 (7)0.0077 (7)0.0009 (7)
C70.0287 (9)0.0286 (9)0.0283 (9)0.0024 (7)0.0144 (8)0.0074 (7)
C80.0268 (9)0.0252 (9)0.0238 (8)0.0057 (7)0.0068 (7)0.0026 (7)
C60.0315 (10)0.0220 (8)0.0326 (9)0.0030 (7)0.0125 (8)0.0069 (7)
C90.0369 (11)0.0203 (8)0.0263 (9)0.0074 (7)0.0090 (8)0.0034 (7)
C10.0307 (10)0.0387 (10)0.0269 (9)0.0023 (8)0.0151 (8)0.0009 (8)
Geometric parameters (Å, º) top
Na1—O1i2.4038 (14)C11—C101.430 (2)
Na1—O1ii2.4038 (14)C2—C71.377 (2)
Na1—O2ii2.4399 (13)C16—C151.370 (2)
Na1—O2i2.4399 (14)C10—C91.496 (3)
Na1—O42.3361 (14)C4—H40.9500
Na1—O4iii2.3362 (14)C4—C51.394 (2)
O1—C21.376 (2)C14—C131.406 (3)
O1—C11.423 (2)C14—C151.395 (2)
O2—H20.860 (16)C13—H130.9500
O2—C31.368 (2)C5—C81.526 (2)
O3—C121.361 (2)C5—C61.382 (2)
O3—C81.447 (2)C15—H150.9500
O6—H61.2312 (14)C7—H70.9500
O6—C141.327 (2)C7—C61.391 (3)
O4—C101.248 (2)C8—H81.0000
O5—H50.873 (16)C8—C91.516 (3)
O5—C161.349 (2)C6—H6A0.9500
C12—C111.413 (2)C9—H9A0.9900
C12—C131.369 (2)C9—H9B0.9900
C3—C21.395 (2)C1—H1A0.9800
C3—C41.383 (2)C1—H1B0.9800
C11—C161.418 (2)C1—H1C0.9800
O1i—Na1—O1ii100.35 (7)O4—C10—C9120.93 (16)
O1i—Na1—O2i64.97 (4)C11—C10—C9116.06 (16)
O1i—Na1—O2ii80.77 (5)C3—C4—H4119.7
O1ii—Na1—O2ii64.97 (4)C3—C4—C5120.51 (16)
O1ii—Na1—O2i80.77 (5)C5—C4—H4119.7
O2i—Na1—O2ii125.80 (7)O6—C14—C13118.89 (15)
O4iii—Na1—O1ii152.87 (5)O6—C14—C15120.94 (16)
O4—Na1—O1ii90.89 (4)C15—C14—C13120.17 (15)
O4—Na1—O1i152.87 (5)C12—C13—C14119.64 (16)
O4iii—Na1—O1i90.89 (4)C12—C13—H13120.2
O4—Na1—O2ii126.26 (5)C14—C13—H13120.2
O4iii—Na1—O2ii93.02 (4)C4—C5—C8119.41 (15)
O4—Na1—O2i93.02 (4)C6—C5—C4118.83 (16)
O4iii—Na1—O2i126.26 (5)C6—C5—C8121.65 (15)
O4—Na1—O4iii90.04 (7)C16—C15—C14119.96 (16)
C2—O1—Na1iv110.37 (10)C16—C15—H15120.0
C2—O1—C1117.24 (14)C14—C15—H15120.0
C1—O1—Na1iv124.39 (11)C2—C7—H7120.0
Na1iv—O2—H2134.4 (15)C2—C7—C6119.96 (16)
C3—O2—Na1iv109.01 (10)C6—C7—H7120.0
C3—O2—H2111.5 (16)O3—C8—C5109.99 (14)
C12—O3—C8114.87 (13)O3—C8—H8107.5
C14—O6—H6117.2 (10)O3—C8—C9109.21 (14)
C10—O4—Na1132.72 (12)C5—C8—H8107.5
C16—O5—H5102.1 (15)C9—C8—C5114.75 (15)
O3—C12—C11121.21 (15)C9—C8—H8107.5
O3—C12—C13117.40 (16)C5—C6—C7120.95 (16)
C13—C12—C11121.38 (16)C5—C6—H6A119.5
O2—C3—C2116.98 (15)C7—C6—H6A119.5
O2—C3—C4122.95 (15)C10—C9—C8112.21 (14)
C4—C3—C2120.06 (15)C10—C9—H9A109.2
C12—C11—C16117.69 (15)C10—C9—H9B109.2
C12—C11—C10120.63 (16)C8—C9—H9A109.2
C16—C11—C10121.66 (16)C8—C9—H9B109.2
O1—C2—C3115.18 (14)H9A—C9—H9B107.9
O1—C2—C7125.14 (15)O1—C1—H1A109.5
C7—C2—C3119.68 (16)O1—C1—H1B109.5
O5—C16—C11120.29 (15)O1—C1—H1C109.5
O5—C16—C15118.58 (16)H1A—C1—H1B109.5
C15—C16—C11121.13 (16)H1A—C1—H1C109.5
O4—C10—C11122.97 (17)H1B—C1—H1C109.5
Na1iv—O1—C2—C336.99 (17)C11—C12—C13—C141.2 (3)
Na1iv—O1—C2—C7142.48 (16)C11—C16—C15—C142.3 (3)
Na1iv—O2—C3—C234.75 (17)C11—C10—C9—C827.4 (2)
Na1iv—O2—C3—C4144.55 (14)C2—C3—C4—C51.3 (3)
Na1—O4—C10—C11177.89 (12)C2—C7—C6—C50.3 (3)
Na1—O4—C10—C90.2 (2)C16—C11—C10—O40.9 (3)
O1—C2—C7—C6179.34 (17)C16—C11—C10—C9178.65 (15)
O2—C3—C2—O10.9 (2)C10—C11—C16—O51.1 (3)
O2—C3—C2—C7178.65 (16)C10—C11—C16—C15179.59 (16)
O2—C3—C4—C5178.00 (16)C4—C3—C2—O1179.83 (15)
O3—C12—C11—C16179.25 (15)C4—C3—C2—C70.7 (3)
O3—C12—C11—C100.8 (2)C4—C5—C8—O323.9 (2)
O3—C12—C13—C14179.87 (14)C4—C5—C8—C9147.49 (16)
O3—C8—C9—C1054.13 (19)C4—C5—C6—C70.3 (3)
O6—C14—C13—C12179.91 (15)C13—C12—C11—C160.6 (2)
O6—C14—C15—C16178.33 (16)C13—C12—C11—C10177.81 (16)
O4—C10—C9—C8154.78 (16)C13—C14—C15—C161.7 (3)
O5—C16—C15—C14178.34 (15)C5—C8—C9—C1069.9 (2)
C12—O3—C8—C571.61 (18)C15—C14—C13—C120.0 (2)
C12—O3—C8—C955.16 (18)C8—O3—C12—C1128.4 (2)
C12—C11—C16—O5179.53 (15)C8—O3—C12—C13152.89 (15)
C12—C11—C16—C151.2 (2)C8—C5—C6—C7176.52 (17)
C12—C11—C10—O4177.50 (16)C6—C5—C8—O3159.91 (16)
C12—C11—C10—C90.3 (2)C6—C5—C8—C936.3 (2)
C3—C2—C7—C60.1 (3)C1—O1—C2—C3172.69 (15)
C3—C4—C5—C8177.39 (15)C1—O1—C2—C77.8 (3)
C3—C4—C5—C61.1 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1, z+3/2; (iii) x+1/2, y, z+3/2; (iv) x, y1, z.
(HESNAH_2EtOH) top
Crystal data top
C34H33NaO13·C2H6OZ = 2
Mr = 718.66F(000) = 756
Triclinic, P1Dx = 1.383 Mg m3
a = 10.8865 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9884 (6) ÅCell parameters from 8177 reflections
c = 16.1451 (8) Åθ = 2.0–31.9°
α = 81.871 (4)°µ = 0.12 mm1
β = 74.681 (5)°T = 150 K
γ = 68.049 (5)°Block, dull colourless
V = 1725.73 (17) Å30.02 × 0.02 × 0.02 mm
Data collection top
Dtrek-CrysAlisPro-abstract goniometer imported rigaku-d*trek images
diffractometer
7061 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1313
Tmin = 0.904, Tmax = 1.000k = 1313
18542 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0697P)2 + 1.0094P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
7061 reflectionsΔρmax = 0.71 e Å3
501 parametersΔρmin = 0.45 e Å3
11 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O70.04258 (17)0.26213 (17)0.74313 (10)0.0247 (4)
O30.75675 (17)0.76579 (16)0.02451 (10)0.0257 (4)
O10.52567 (18)1.31872 (16)0.17003 (11)0.0265 (4)
O80.32193 (18)0.41001 (17)0.50684 (11)0.0264 (4)
H80.372 (3)0.382 (3)0.4591 (13)0.032*
O100.25517 (18)0.00032 (17)0.50246 (10)0.0267 (4)
O120.36238 (17)0.49372 (16)0.31498 (11)0.0254 (4)
O110.53428 (18)0.47891 (17)0.39399 (11)0.0255 (4)
O20.74320 (17)1.14463 (17)0.21207 (11)0.0257 (4)
O90.46429 (19)0.24371 (17)0.38522 (11)0.0299 (4)
O60.98875 (18)0.49207 (18)0.20727 (11)0.0284 (4)
H61.006 (3)0.4119 (19)0.2200 (18)0.034*
O50.8307 (2)0.30159 (18)0.06049 (11)0.0311 (4)
H50.794 (3)0.321 (3)0.1127 (12)0.037*
O2E0.99635 (18)0.96881 (18)0.19390 (11)0.0319 (4)
H2E0.9962810.8926700.2098280.048*
O40.7094 (2)0.45887 (18)0.19025 (11)0.0335 (5)
O1E0.7667 (2)0.2411 (2)0.38340 (13)0.0413 (5)
H1E0.7660680.1776970.4191420.062*
C200.2965 (2)0.2028 (2)0.49924 (14)0.0203 (5)
C210.2318 (2)0.1131 (2)0.54138 (15)0.0205 (5)
C290.3429 (2)0.3697 (2)0.33503 (15)0.0222 (5)
C170.1209 (2)0.2448 (2)0.66573 (14)0.0218 (5)
C140.9241 (2)0.5038 (2)0.12412 (14)0.0210 (5)
C190.2646 (2)0.3179 (2)0.54371 (15)0.0207 (5)
C280.4358 (2)0.3627 (2)0.37810 (14)0.0210 (5)
C110.7869 (2)0.5346 (2)0.04949 (15)0.0207 (5)
C20.5531 (2)1.1908 (2)0.15394 (15)0.0227 (5)
C160.8418 (2)0.4095 (2)0.01326 (15)0.0212 (5)
C150.9070 (2)0.3947 (2)0.07246 (15)0.0233 (5)
H150.9401720.3110620.0963700.028*
C120.8054 (2)0.6422 (2)0.00538 (15)0.0204 (5)
C130.8736 (2)0.6279 (2)0.09042 (15)0.0223 (5)
H130.8861800.7012950.1255720.027*
C220.1484 (2)0.1315 (2)0.62190 (15)0.0228 (5)
H220.1086980.0678750.6485230.027*
C250.3970 (3)0.1728 (2)0.41962 (15)0.0253 (5)
C30.6700 (2)1.0987 (2)0.17623 (14)0.0214 (5)
C180.1806 (2)0.3383 (2)0.62381 (15)0.0233 (5)
H180.1620310.4158650.6517100.028*
C270.4236 (3)0.2417 (3)0.40091 (15)0.0268 (6)
H270.4863070.2359030.4300310.032*
C300.2406 (3)0.2568 (3)0.31622 (17)0.0302 (6)
H300.1772830.2621610.2874070.036*
C100.7227 (3)0.5512 (3)0.13938 (16)0.0285 (6)
C260.3203 (3)0.1274 (3)0.38189 (16)0.0290 (6)
C40.7042 (3)0.9673 (2)0.16161 (16)0.0298 (6)
H40.7835280.9036240.1764840.036*
C310.2301 (3)0.1358 (3)0.33929 (17)0.0322 (6)
H310.1602950.0584540.3255740.039*
C70.4712 (3)1.1510 (3)0.12012 (16)0.0319 (6)
H70.3903911.2139570.1067550.038*
C320.2484 (3)0.5110 (3)0.2961 (2)0.0360 (7)
H32A0.1693580.4829680.3445030.054*
H32B0.2709110.6038560.2868550.054*
H32C0.2272010.4580020.2441540.054*
C230.3035 (3)0.0035 (3)0.41005 (17)0.0337 (7)
H230.2282970.0707450.3860790.040*
C240.4225 (3)0.0459 (3)0.38120 (17)0.0338 (7)
H24A0.4437710.0574450.3177190.041*
H24B0.5023900.0233670.3980140.041*
C10.4758 (3)1.4149 (3)0.10571 (19)0.0380 (7)
H1A0.5371481.3904590.0493390.057*
H1B0.4714761.5009530.1189580.057*
H1C0.3846161.4191950.1047930.057*
C60.5059 (3)1.0207 (3)0.10563 (18)0.0394 (7)
H6A0.4491110.9942240.0820340.047*
C50.6228 (3)0.9281 (3)0.12513 (16)0.0397 (8)
C4E1.0678 (3)0.9704 (3)0.10491 (18)0.0407 (7)
H4EA1.0569241.0621970.0841490.049*
H4EB1.0269060.9355530.0701260.049*
C3E1.2162 (3)0.8902 (4)0.0924 (2)0.0530 (9)
H3EA1.2615400.8964490.0316540.080*
H3EB1.2275300.7982150.1098050.080*
H3EC1.2567370.9233910.1275170.080*
C8A0.6480 (8)0.7922 (4)0.1014 (3)0.0201 (13)0.693 (17)
H8A0.5640090.7905690.0880060.024*0.693 (17)
C2E0.9006 (4)0.2526 (4)0.3622 (3)0.0563 (9)
H2EA0.9010260.3269050.3197610.068*
H2EB0.9691480.1714270.3354700.068*
C1E0.9382 (4)0.2737 (4)0.4382 (3)0.0710 (11)
H1EA1.0221200.2938190.4202560.107*
H1EB0.9527090.1941990.4760740.107*
H1EC0.8648960.3473960.4689680.107*
Na10.60941 (10)0.33906 (9)0.29742 (6)0.0230 (2)
C9A0.6871 (10)0.6882 (5)0.1723 (4)0.0229 (14)0.68 (2)
H9AA0.6104100.7040400.2236100.028*0.68 (2)
H9AB0.7664480.6928650.1889470.028*0.68 (2)
C8B0.718 (2)0.7708 (11)0.1141 (6)0.026 (3)0.307 (17)
H8B0.7996820.7501280.1378480.031*0.307 (17)
C9B0.635 (2)0.6898 (11)0.1620 (10)0.029 (3)0.32 (2)
H9BA0.5486010.7162360.1438450.035*0.32 (2)
H9BB0.6150400.6995390.2247110.035*0.32 (2)
H110.577 (3)0.472 (3)0.4278 (16)0.035*
H20.820 (2)1.089 (2)0.2100 (19)0.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0264 (9)0.0260 (9)0.0163 (8)0.0069 (7)0.0026 (7)0.0047 (7)
O30.0301 (10)0.0195 (9)0.0210 (8)0.0064 (7)0.0028 (7)0.0039 (7)
O10.0329 (10)0.0165 (9)0.0265 (9)0.0019 (7)0.0104 (8)0.0025 (7)
O80.0356 (10)0.0229 (9)0.0218 (9)0.0159 (8)0.0020 (7)0.0057 (7)
O100.0415 (11)0.0240 (10)0.0170 (8)0.0186 (8)0.0027 (7)0.0073 (7)
O120.0273 (10)0.0213 (9)0.0324 (9)0.0088 (7)0.0100 (8)0.0098 (7)
O110.0268 (10)0.0259 (10)0.0264 (9)0.0091 (8)0.0081 (7)0.0061 (7)
O20.0213 (9)0.0225 (10)0.0299 (9)0.0021 (7)0.0060 (7)0.0059 (7)
O90.0397 (11)0.0242 (10)0.0250 (9)0.0184 (8)0.0061 (8)0.0044 (7)
O60.0329 (10)0.0307 (10)0.0196 (8)0.0136 (8)0.0050 (7)0.0093 (7)
O50.0449 (12)0.0244 (10)0.0221 (9)0.0154 (9)0.0014 (8)0.0033 (7)
O2E0.0275 (10)0.0282 (10)0.0290 (9)0.0044 (8)0.0012 (8)0.0030 (8)
O40.0492 (12)0.0265 (10)0.0225 (9)0.0181 (9)0.0027 (8)0.0010 (7)
O1E0.0395 (12)0.0476 (14)0.0413 (12)0.0193 (10)0.0152 (9)0.0057 (10)
C200.0237 (13)0.0211 (13)0.0163 (11)0.0095 (10)0.0009 (9)0.0043 (9)
C210.0248 (13)0.0184 (12)0.0196 (11)0.0088 (10)0.0042 (9)0.0034 (9)
C290.0279 (13)0.0174 (12)0.0209 (11)0.0092 (10)0.0003 (10)0.0065 (9)
C170.0217 (12)0.0225 (13)0.0175 (11)0.0041 (10)0.0035 (9)0.0020 (9)
C140.0188 (12)0.0260 (13)0.0183 (11)0.0084 (10)0.0016 (9)0.0052 (9)
C190.0225 (12)0.0191 (12)0.0214 (12)0.0091 (10)0.0032 (9)0.0021 (9)
C280.0234 (13)0.0222 (13)0.0171 (11)0.0098 (10)0.0013 (9)0.0071 (9)
C110.0203 (12)0.0204 (12)0.0212 (12)0.0070 (10)0.0039 (9)0.0026 (9)
C20.0266 (13)0.0205 (13)0.0190 (11)0.0079 (10)0.0002 (10)0.0053 (9)
C160.0216 (12)0.0222 (13)0.0222 (12)0.0112 (10)0.0043 (9)0.0006 (9)
C150.0250 (13)0.0230 (13)0.0224 (12)0.0088 (10)0.0021 (10)0.0079 (10)
C120.0186 (12)0.0194 (12)0.0229 (12)0.0055 (9)0.0032 (9)0.0059 (9)
C130.0216 (12)0.0234 (13)0.0208 (12)0.0081 (10)0.0018 (9)0.0032 (10)
C220.0254 (13)0.0239 (13)0.0204 (12)0.0129 (10)0.0001 (10)0.0036 (10)
C250.0320 (14)0.0220 (13)0.0230 (12)0.0126 (11)0.0024 (10)0.0031 (10)
C30.0245 (13)0.0199 (12)0.0169 (11)0.0071 (10)0.0004 (9)0.0040 (9)
C180.0286 (13)0.0199 (13)0.0208 (12)0.0082 (10)0.0026 (10)0.0058 (9)
C270.0296 (14)0.0330 (15)0.0219 (12)0.0178 (12)0.0020 (10)0.0102 (10)
C300.0329 (15)0.0240 (14)0.0323 (14)0.0068 (11)0.0076 (11)0.0059 (11)
C100.0320 (14)0.0243 (13)0.0249 (13)0.0101 (11)0.0020 (11)0.0034 (10)
C260.0333 (15)0.0230 (14)0.0254 (13)0.0120 (11)0.0092 (11)0.0094 (10)
C40.0351 (15)0.0201 (13)0.0230 (12)0.0048 (11)0.0060 (11)0.0032 (10)
C310.0346 (15)0.0216 (14)0.0349 (14)0.0063 (11)0.0017 (12)0.0067 (11)
C70.0336 (15)0.0425 (17)0.0241 (13)0.0181 (13)0.0045 (11)0.0071 (12)
C320.0282 (15)0.0310 (16)0.0557 (18)0.0106 (12)0.0139 (13)0.0148 (13)
C230.0434 (17)0.0292 (15)0.0266 (13)0.0181 (13)0.0077 (12)0.0105 (11)
C240.0464 (17)0.0313 (15)0.0233 (13)0.0214 (13)0.0083 (12)0.0095 (11)
C10.0452 (18)0.0298 (16)0.0384 (16)0.0100 (13)0.0182 (13)0.0078 (12)
C60.057 (2)0.0471 (19)0.0276 (14)0.0359 (16)0.0028 (13)0.0078 (13)
C50.070 (2)0.0307 (16)0.0197 (13)0.0307 (16)0.0124 (13)0.0129 (11)
C4E0.0477 (18)0.0415 (18)0.0267 (14)0.0153 (14)0.0030 (13)0.0065 (12)
C3E0.0381 (18)0.080 (3)0.0385 (17)0.0291 (18)0.0119 (14)0.0098 (17)
C8A0.016 (3)0.025 (2)0.0182 (19)0.0079 (19)0.0010 (17)0.0063 (15)
C2E0.051 (2)0.042 (2)0.078 (3)0.0082 (16)0.0214 (19)0.0163 (18)
C1E0.054 (2)0.070 (3)0.086 (3)0.010 (2)0.025 (2)0.010 (2)
Na10.0273 (5)0.0225 (5)0.0187 (5)0.0112 (4)0.0003 (4)0.0027 (4)
C9A0.022 (3)0.0248 (18)0.020 (2)0.009 (2)0.001 (2)0.0044 (14)
C8B0.034 (9)0.026 (5)0.024 (5)0.016 (5)0.006 (5)0.002 (4)
C9B0.028 (7)0.025 (2)0.031 (6)0.011 (3)0.005 (5)0.006 (3)
Geometric parameters (Å, º) top
O7—C171.307 (3)C13—H130.9500
O3—C121.368 (3)C22—H220.9500
O3—C8A1.448 (4)C25—C241.507 (3)
O3—C8B1.399 (9)C3—C41.388 (3)
O1—C21.372 (3)C18—H180.9500
O1—C11.431 (3)C27—H270.9500
O1—Na1i2.5267 (19)C27—C261.397 (4)
O8—H80.838 (17)C30—H300.9500
O8—C191.369 (3)C30—C311.387 (4)
O10—C211.376 (3)C10—C9A1.543 (6)
O10—C231.445 (3)C10—C9B1.500 (11)
O12—C291.371 (3)C26—C311.374 (4)
O12—C321.435 (3)C26—C231.501 (4)
O12—Na1ii2.5960 (19)C4—H40.9500
O11—C281.369 (3)C4—C51.397 (4)
O11—Na1ii2.4669 (19)C31—H310.9500
O11—H110.830 (17)C7—H70.9500
O2—C31.361 (3)C7—C61.376 (4)
O2—Na1i2.4557 (19)C32—H32A0.9800
O2—H20.829 (17)C32—H32B0.9800
O9—C251.242 (3)C32—H32C0.9800
O9—Na12.2885 (18)C23—H231.0000
O6—H60.871 (17)C23—C241.477 (4)
O6—C141.340 (3)C24—H24A0.9900
O5—H50.850 (17)C24—H24B0.9900
O5—C161.343 (3)C1—H1A0.9800
O2E—H2E0.8400C1—H1B0.9800
O2E—C4E1.443 (3)C1—H1C0.9800
O4—C101.240 (3)C6—H6A0.9500
O4—Na12.3117 (19)C6—C51.381 (5)
O1E—H1E0.8400C5—C8A1.500 (5)
O1E—C2E1.456 (4)C5—C8B1.655 (13)
O1E—Na12.339 (2)C4E—H4EA0.9900
C20—C211.416 (3)C4E—H4EB0.9900
C20—C191.426 (3)C4E—C3E1.497 (4)
C20—C251.437 (3)C3E—H3EA0.9800
C21—C221.367 (3)C3E—H3EB0.9800
C29—C281.399 (3)C3E—H3EC0.9800
C29—C301.382 (4)C8A—H8A1.0000
C17—C221.414 (3)C8A—C9A1.524 (9)
C17—C181.416 (3)C2E—H2EA0.9900
C14—C151.403 (3)C2E—H2EB0.9900
C14—C131.397 (3)C2E—C1E1.463 (5)
C19—C181.365 (3)C1E—H1EA0.9800
C28—C271.379 (3)C1E—H1EB0.9800
C11—C161.420 (3)C1E—H1EC0.9800
C11—C121.418 (3)C9A—H9AA0.9900
C11—C101.439 (3)C9A—H9AB0.9900
C2—C31.396 (3)C8B—H8B1.0000
C2—C71.379 (4)C8B—C9B1.49 (2)
C16—C151.380 (3)C9B—H9BA0.9900
C15—H150.9500C9B—H9BB0.9900
C12—C131.377 (3)
C12—O3—C8A116.9 (2)O12—C32—H32C109.5
C12—O3—C8B114.6 (4)H32A—C32—H32B109.5
C2—O1—C1115.7 (2)H32A—C32—H32C109.5
C2—O1—Na1i112.87 (14)H32B—C32—H32C109.5
C1—O1—Na1i130.53 (16)O10—C23—C26106.3 (2)
C19—O8—H8106 (2)O10—C23—H23106.8
C21—O10—C23115.54 (18)O10—C23—C24112.8 (2)
C29—O12—C32116.16 (19)C26—C23—H23106.8
C29—O12—Na1ii115.71 (14)C24—C23—C26116.8 (2)
C32—O12—Na1ii127.66 (14)C24—C23—H23106.8
C28—O11—Na1ii119.48 (14)C25—C24—H24A109.3
C28—O11—H11112 (2)C25—C24—H24B109.3
Na1ii—O11—H11126 (2)C23—C24—C25111.7 (2)
C3—O2—Na1i115.11 (14)C23—C24—H24A109.3
C3—O2—H2110 (2)C23—C24—H24B109.3
Na1i—O2—H2133 (2)H24A—C24—H24B107.9
C25—O9—Na1166.55 (17)O1—C1—H1A109.5
C14—O6—H6107.3 (19)O1—C1—H1B109.5
C16—O5—H5110 (2)O1—C1—H1C109.5
C4E—O2E—H2E109.5H1A—C1—H1B109.5
C10—O4—Na1160.17 (18)H1A—C1—H1C109.5
C2E—O1E—H1E109.5H1B—C1—H1C109.5
C2E—O1E—Na1122.6 (2)C7—C6—H6A119.8
Na1—O1E—H1E125.1C7—C6—C5120.5 (3)
C21—C20—C19116.3 (2)C5—C6—H6A119.8
C21—C20—C25121.1 (2)C4—C5—C8A127.3 (4)
C19—C20—C25122.4 (2)C4—C5—C8B99.3 (7)
O10—C21—C20120.1 (2)C6—C5—C4119.5 (3)
C22—C21—O10117.4 (2)C6—C5—C8A113.2 (4)
C22—C21—C20122.4 (2)C6—C5—C8B141.0 (7)
O12—C29—C28115.0 (2)O2E—C4E—H4EA109.2
O12—C29—C30124.8 (2)O2E—C4E—H4EB109.2
C30—C29—C28120.2 (2)O2E—C4E—C3E112.0 (2)
O7—C17—C22120.5 (2)H4EA—C4E—H4EB107.9
O7—C17—C18121.1 (2)C3E—C4E—H4EA109.2
C22—C17—C18118.4 (2)C3E—C4E—H4EB109.2
O6—C14—C15121.1 (2)C4E—C3E—H3EA109.5
O6—C14—C13118.0 (2)C4E—C3E—H3EB109.5
C13—C14—C15120.9 (2)C4E—C3E—H3EC109.5
O8—C19—C20119.8 (2)H3EA—C3E—H3EB109.5
C18—C19—O8118.3 (2)H3EA—C3E—H3EC109.5
C18—C19—C20121.9 (2)H3EB—C3E—H3EC109.5
O11—C28—C29116.5 (2)O3—C8A—C5106.3 (3)
O11—C28—C27124.7 (2)O3—C8A—H8A109.1
C27—C28—C29118.8 (2)O3—C8A—C9A110.3 (5)
C16—C11—C10121.8 (2)C5—C8A—H8A109.1
C12—C11—C16117.3 (2)C5—C8A—C9A112.9 (5)
C12—C11—C10120.8 (2)C9A—C8A—H8A109.1
O1—C2—C3115.9 (2)O1E—C2E—H2EA109.2
O1—C2—C7123.8 (2)O1E—C2E—H2EB109.2
C7—C2—C3120.3 (2)O1E—C2E—C1E112.0 (3)
O5—C16—C11121.5 (2)H2EA—C2E—H2EB107.9
O5—C16—C15117.4 (2)C1E—C2E—H2EA109.2
C15—C16—C11121.0 (2)C1E—C2E—H2EB109.2
C14—C15—H15120.2C2E—C1E—H1EA109.5
C16—C15—C14119.7 (2)C2E—C1E—H1EB109.5
C16—C15—H15120.2C2E—C1E—H1EC109.5
O3—C12—C11121.0 (2)H1EA—C1E—H1EB109.5
O3—C12—C13116.8 (2)H1EA—C1E—H1EC109.5
C13—C12—C11122.2 (2)H1EB—C1E—H1EC109.5
C14—C13—H13120.6O1ii—Na1—O12i73.11 (6)
C12—C13—C14118.9 (2)O11i—Na1—O1ii130.93 (7)
C12—C13—H13120.6O11i—Na1—O12i61.45 (6)
C21—C22—C17120.3 (2)O2ii—Na1—O1ii63.22 (6)
C21—C22—H22119.9O2ii—Na1—O12i134.15 (7)
C17—C22—H22119.9O2ii—Na1—O11i164.37 (7)
O9—C25—C20122.6 (2)O9—Na1—O1ii89.75 (7)
O9—C25—C24120.8 (2)O9—Na1—O12i71.40 (7)
C20—C25—C24116.5 (2)O9—Na1—O11i92.45 (7)
O2—C3—C2117.0 (2)O9—Na1—O2ii94.37 (7)
O2—C3—C4124.0 (2)O9—Na1—O4164.81 (8)
C4—C3—C2119.0 (2)O9—Na1—O1E90.03 (8)
C17—C18—H18119.7O4—Na1—O1ii77.84 (7)
C19—C18—C17120.6 (2)O4—Na1—O12i96.32 (7)
C19—C18—H18119.7O4—Na1—O11i89.20 (7)
C28—C27—H27119.5O4—Na1—O2ii87.89 (7)
C28—C27—C26121.1 (2)O4—Na1—O1E105.15 (8)
C26—C27—H27119.5O1E—Na1—O1ii146.81 (8)
C29—C30—H30119.9O1E—Na1—O12i137.42 (7)
C29—C30—C31120.2 (3)O1E—Na1—O11i82.24 (7)
C31—C30—H30119.9O1E—Na1—O2ii83.71 (7)
O4—C10—C11122.9 (2)C10—C9A—H9AA109.9
O4—C10—C9A120.6 (3)C10—C9A—H9AB109.9
O4—C10—C9B119.9 (5)C8A—C9A—C10109.1 (5)
C11—C10—C9A116.0 (3)C8A—C9A—H9AA109.9
C11—C10—C9B114.6 (6)C8A—C9A—H9AB109.9
C27—C26—C23121.0 (3)H9AA—C9A—H9AB108.3
C31—C26—C27119.4 (2)O3—C8B—C5100.9 (8)
C31—C26—C23119.6 (3)O3—C8B—H8B109.7
C3—C4—H4119.8O3—C8B—C9B117.6 (12)
C3—C4—C5120.4 (3)C5—C8B—H8B109.7
C5—C4—H4119.8C9B—C8B—C5108.8 (12)
C30—C31—H31119.9C9B—C8B—H8B109.7
C26—C31—C30120.3 (3)C10—C9B—H9BA110.8
C26—C31—H31119.9C10—C9B—H9BB110.8
C2—C7—H7119.8C8B—C9B—C10104.9 (11)
C6—C7—C2120.3 (3)C8B—C9B—H9BA110.8
C6—C7—H7119.8C8B—C9B—H9BB110.8
O12—C32—H32A109.5H9BA—C9B—H9BB108.8
O12—C32—H32B109.5
O7—C17—C22—C21179.1 (2)C22—C17—C18—C191.2 (4)
O7—C17—C18—C19178.6 (2)C25—C20—C21—O106.1 (4)
O3—C12—C13—C14179.4 (2)C25—C20—C21—C22171.9 (2)
O3—C8A—C9A—C1056.4 (8)C25—C20—C19—O85.8 (4)
O3—C8B—C9B—C1059 (2)C25—C20—C19—C18172.4 (2)
O1—C2—C3—O20.6 (3)C3—C2—C7—C61.9 (4)
O1—C2—C3—C4179.9 (2)C3—C4—C5—C61.6 (4)
O1—C2—C7—C6179.8 (2)C3—C4—C5—C8A177.0 (3)
O8—C19—C18—C17178.7 (2)C3—C4—C5—C8B174.6 (4)
O10—C21—C22—C17179.6 (2)C18—C17—C22—C210.6 (4)
O10—C23—C24—C2551.6 (3)C27—C26—C31—C300.7 (4)
O12—C29—C28—O110.6 (3)C27—C26—C23—O1070.0 (3)
O12—C29—C28—C27179.9 (2)C27—C26—C23—C2456.8 (3)
O12—C29—C30—C31179.9 (2)C30—C29—C28—O11179.8 (2)
O11—C28—C27—C26179.7 (2)C30—C29—C28—C270.2 (3)
O2—C3—C4—C5179.4 (2)C10—C11—C16—O53.1 (4)
O9—C25—C24—C23158.3 (3)C10—C11—C16—C15177.8 (2)
O6—C14—C15—C16179.0 (2)C10—C11—C12—O33.4 (4)
O6—C14—C13—C12179.2 (2)C10—C11—C12—C13176.0 (2)
O5—C16—C15—C14178.5 (2)C26—C23—C24—C25175.2 (2)
O4—C10—C9A—C8A153.5 (5)C4—C5—C8A—O373.9 (5)
O4—C10—C9B—C8B153.0 (10)C4—C5—C8A—C9A47.1 (7)
C20—C21—C22—C171.5 (4)C4—C5—C8B—O3113.5 (9)
C20—C19—C18—C170.4 (4)C4—C5—C8B—C9B122.2 (13)
C20—C25—C24—C2324.6 (4)C31—C26—C23—O10107.8 (3)
C21—O10—C23—C26179.4 (2)C31—C26—C23—C24125.4 (3)
C21—O10—C23—C2451.4 (3)C7—C2—C3—O2177.7 (2)
C21—C20—C19—O8179.4 (2)C7—C2—C3—C41.8 (3)
C21—C20—C19—C182.4 (4)C7—C6—C5—C41.4 (4)
C21—C20—C25—O9173.2 (2)C7—C6—C5—C8A177.3 (3)
C21—C20—C25—C243.8 (4)C7—C6—C5—C8B172.5 (6)
C29—C28—C27—C260.2 (3)C32—O12—C29—C28161.1 (2)
C29—C30—C31—C260.8 (4)C32—O12—C29—C3018.5 (3)
C19—C20—C21—O10179.0 (2)C23—O10—C21—C2021.8 (3)
C19—C20—C21—C223.0 (4)C23—O10—C21—C22160.1 (2)
C19—C20—C25—O91.4 (4)C23—C26—C31—C30177.1 (2)
C19—C20—C25—C24178.4 (2)C1—O1—C2—C3140.3 (2)
C28—C29—C30—C310.5 (4)C1—O1—C2—C741.4 (3)
C28—C27—C26—C310.4 (4)C6—C5—C8A—O3104.7 (5)
C28—C27—C26—C23177.4 (2)C6—C5—C8A—C9A134.2 (6)
C11—C16—C15—C142.4 (4)C6—C5—C8B—O361.2 (13)
C11—C12—C13—C141.2 (4)C6—C5—C8B—C9B63.1 (14)
C11—C10—C9A—C8A33.9 (8)C5—C8A—C9A—C10175.2 (5)
C11—C10—C9B—C8B44.9 (18)C5—C8B—C9B—C10173.1 (11)
C2—C3—C4—C50.0 (3)C8A—O3—C12—C1121.3 (5)
C2—C7—C6—C50.3 (4)C8A—O3—C12—C13159.2 (4)
C16—C11—C12—O3179.5 (2)Na1i—O1—C2—C330.2 (2)
C16—C11—C12—C130.0 (4)Na1i—O1—C2—C7148.1 (2)
C16—C11—C10—O41.2 (4)Na1ii—O12—C29—C2826.1 (2)
C16—C11—C10—C9A171.2 (5)Na1ii—O12—C29—C30154.3 (2)
C16—C11—C10—C9B162.7 (11)Na1ii—O11—C28—C2927.7 (3)
C15—C14—C13—C120.5 (4)Na1ii—O11—C28—C27151.84 (18)
C12—O3—C8A—C5174.7 (3)Na1i—O2—C3—C230.8 (2)
C12—O3—C8A—C9A52.0 (7)Na1i—O2—C3—C4148.70 (19)
C12—O3—C8B—C5162.8 (5)Na1—O9—C25—C20178.1 (6)
C12—O3—C8B—C9B44.7 (19)Na1—O9—C25—C245.0 (10)
C12—C11—C16—O5179.2 (2)Na1—O4—C10—C11132.4 (4)
C12—C11—C16—C151.8 (3)Na1—O4—C10—C9A55.6 (8)
C12—C11—C10—O4177.0 (2)Na1—O4—C10—C9B28.3 (14)
C12—C11—C10—C9A4.6 (6)Na1—O1E—C2E—C1E138.7 (3)
C12—C11—C10—C9B21.4 (11)C8B—O3—C12—C1113.9 (10)
C13—C14—C15—C161.2 (4)C8B—O3—C12—C13165.5 (10)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
(HESNA_H2O) top
Crystal data top
C16H15NaO7F(000) = 712
Mr = 342.27Dx = 1.546 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.0666 (4) ÅCell parameters from 5942 reflections
b = 13.2714 (4) Åθ = 3.1–27.5°
c = 10.0412 (3) ŵ = 0.15 mm1
β = 94.430 (1)°T = 150 K
V = 1470.34 (8) Å3Block, clear colourless
Z = 40.02 × 0.02 × 0.02 mm
Data collection top
Bruker APEX-II CCD
diffractometer
3368 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs2734 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.024
Detector resolution: 7.9 pixels mm-1θmax = 27.5°, θmin = 2.6°
φ and ω scansh = 1014
Absorption correction: multi-scan
SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0429 before and 0.0383 after correction. The Ratio of minimum to maximum transmission is 0.9516. The λ/2 correction factor is Not present.
k = 1717
Tmin = 0.710, Tmax = 0.746l = 1312
14984 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0519P)2 + 1.526P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3368 reflectionsΔρmax = 0.55 e Å3
234 parametersΔρmin = 0.59 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.27927 (7)0.12994 (6)1.14130 (8)0.0246 (2)
O20.62761 (13)0.66225 (11)0.55484 (14)0.0261 (3)
O60.27002 (14)0.28888 (10)1.22094 (13)0.0255 (3)
O30.26690 (13)0.49816 (10)0.84055 (13)0.0226 (3)
O10.50551 (12)0.62392 (11)0.32801 (13)0.0241 (3)
O1W0.07959 (13)0.11781 (11)1.05300 (15)0.0289 (3)
H1WA0.0346970.0930991.1130450.043*
H1WB0.0501750.1781151.0370070.043*
O50.03894 (14)0.58715 (12)1.21296 (15)0.0288 (3)
O40.04464 (15)0.70155 (12)1.01009 (15)0.0335 (4)
C120.22684 (17)0.47787 (14)0.96503 (18)0.0196 (4)
C150.15060 (18)0.43622 (15)1.21765 (19)0.0231 (4)
H150.1245610.4218961.3036090.028*
C110.15097 (17)0.54853 (15)1.02503 (19)0.0200 (4)
C30.50881 (18)0.64095 (14)0.56105 (19)0.0221 (4)
C160.11308 (17)0.52264 (15)1.15251 (19)0.0220 (4)
C130.26303 (18)0.39009 (15)1.02639 (19)0.0218 (4)
H130.3114440.3435780.9821140.026*
C20.44081 (18)0.62097 (14)0.43955 (19)0.0215 (4)
C140.22819 (18)0.36815 (15)1.15700 (19)0.0216 (4)
C40.4528 (2)0.63647 (15)0.6794 (2)0.0265 (4)
H40.4987960.6490610.7615940.032*
C70.31936 (19)0.59961 (16)0.4393 (2)0.0286 (5)
H70.2730950.5870150.3573720.034*
C10.4402 (2)0.60257 (17)0.2027 (2)0.0288 (5)
H1A0.4960570.6036360.1316500.043*
H1B0.3770810.6536000.1843600.043*
H1C0.4026290.5358530.2063750.043*
C100.11332 (19)0.63971 (16)0.9599 (2)0.0258 (4)
C60.2636 (2)0.59636 (17)0.5600 (2)0.0328 (5)
H60.1793910.5820990.5594620.039*
C50.3304 (2)0.61379 (16)0.6797 (2)0.0306 (5)
C90.1592 (2)0.65784 (18)0.8252 (2)0.0346 (5)
H9A0.0889600.6789820.7645440.042*
H9B0.2150860.7160860.8341390.042*
C8A0.2778 (2)0.60574 (17)0.8144 (2)0.0213 (5)0.85
H8A0.3378740.6347470.8834980.026*0.85
H20.662 (2)0.6789 (18)0.6305 (18)0.026*
H50.024 (2)0.6361 (15)1.159 (2)0.026*
C8B0.2178 (13)0.5825 (11)0.7615 (14)0.027 (3)0.15
H8B0.1560870.5530730.6945100.032*0.15
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0224 (4)0.0259 (4)0.0255 (4)0.0010 (3)0.0017 (3)0.0017 (3)
O20.0255 (7)0.0341 (8)0.0182 (7)0.0041 (6)0.0017 (6)0.0005 (6)
O60.0348 (8)0.0223 (7)0.0189 (6)0.0005 (6)0.0015 (6)0.0009 (6)
O30.0281 (7)0.0198 (7)0.0205 (7)0.0015 (5)0.0069 (5)0.0009 (5)
O10.0226 (7)0.0323 (8)0.0173 (6)0.0052 (6)0.0008 (5)0.0013 (6)
O1W0.0263 (8)0.0301 (8)0.0312 (8)0.0036 (6)0.0069 (6)0.0033 (6)
O50.0304 (8)0.0323 (8)0.0244 (7)0.0069 (6)0.0077 (6)0.0027 (6)
O40.0388 (9)0.0301 (8)0.0324 (8)0.0124 (7)0.0088 (7)0.0005 (6)
C120.0187 (9)0.0233 (9)0.0167 (8)0.0023 (7)0.0004 (7)0.0010 (7)
C150.0234 (9)0.0293 (10)0.0168 (9)0.0036 (8)0.0022 (7)0.0019 (8)
C110.0177 (9)0.0224 (9)0.0200 (9)0.0016 (7)0.0015 (7)0.0020 (7)
C30.0272 (10)0.0173 (9)0.0220 (9)0.0019 (7)0.0033 (8)0.0022 (7)
C160.0182 (9)0.0266 (10)0.0212 (9)0.0016 (7)0.0018 (7)0.0061 (8)
C130.0225 (9)0.0219 (9)0.0209 (9)0.0006 (7)0.0020 (7)0.0028 (7)
C20.0243 (10)0.0182 (9)0.0226 (9)0.0017 (7)0.0054 (7)0.0022 (7)
C140.0231 (9)0.0210 (9)0.0203 (9)0.0044 (7)0.0012 (7)0.0015 (7)
C40.0347 (11)0.0224 (10)0.0229 (10)0.0040 (8)0.0062 (8)0.0040 (8)
C70.0252 (10)0.0282 (10)0.0324 (11)0.0038 (8)0.0012 (8)0.0004 (9)
C10.0297 (11)0.0344 (11)0.0215 (10)0.0047 (9)0.0036 (8)0.0014 (8)
C100.0273 (10)0.0256 (10)0.0245 (10)0.0027 (8)0.0028 (8)0.0014 (8)
C60.0233 (10)0.0304 (11)0.0463 (13)0.0012 (9)0.0128 (9)0.0060 (10)
C50.0363 (12)0.0245 (10)0.0329 (11)0.0070 (9)0.0143 (9)0.0076 (9)
C90.0419 (13)0.0307 (11)0.0325 (12)0.0106 (10)0.0109 (10)0.0088 (9)
C8A0.0223 (12)0.0199 (11)0.0222 (11)0.0010 (9)0.0045 (10)0.0009 (9)
C8B0.021 (7)0.036 (8)0.021 (6)0.006 (6)0.005 (6)0.002 (6)
Geometric parameters (Å, º) top
Na1—O2i2.3320 (16)C11—C101.423 (3)
Na1—O62.2610 (16)C3—C21.408 (3)
Na1—O3ii2.6370 (16)C3—C41.383 (3)
Na1—O1i2.3791 (16)C13—H130.9500
Na1—O1W2.3222 (17)C13—C141.425 (3)
Na1—C6ii3.113 (2)C2—C71.373 (3)
O2—C31.351 (2)C4—H40.9500
O2—H20.851 (16)C4—C51.388 (3)
O6—C141.299 (2)C7—H70.9500
O3—C121.385 (2)C7—C61.403 (3)
O3—C8A1.458 (3)C1—H1A0.9800
O3—C8B1.453 (14)C1—H1B0.9800
O1—C21.376 (2)C1—H1C0.9800
O1—C11.430 (2)C10—C91.500 (3)
O1W—H1WA0.8742C6—H60.9500
O1W—H1WB0.8741C6—C51.381 (3)
O5—C161.361 (2)C5—C8A1.517 (3)
O5—H50.853 (16)C5—C8B1.600 (14)
O4—C101.251 (3)C9—H9A0.9900
C12—C111.423 (3)C9—H9B0.9900
C12—C131.364 (3)C9—C8A1.496 (3)
C15—H150.9500C9—C8B1.376 (15)
C15—C161.369 (3)C8A—H8A1.0000
C15—C141.416 (3)C8B—H8B1.0000
C11—C161.420 (3)
O2i—Na1—O3ii144.24 (6)C7—C2—C3119.84 (19)
O2i—Na1—O1i67.19 (5)O6—C14—C15120.59 (18)
O2i—Na1—C6ii88.59 (6)O6—C14—C13120.59 (18)
O6—Na1—O2i99.33 (6)C15—C14—C13118.79 (18)
O6—Na1—O3ii109.07 (5)C3—C4—H4119.6
O6—Na1—O1i93.31 (6)C3—C4—C5120.8 (2)
O6—Na1—O1W97.58 (6)C5—C4—H4119.6
O6—Na1—C6ii171.68 (7)C2—C7—H7120.0
O3ii—Na1—C6ii64.65 (6)C2—C7—C6120.1 (2)
O1i—Na1—O3ii89.44 (5)C6—C7—H7120.0
O1i—Na1—C6ii92.10 (6)O1—C1—H1A109.5
O1W—Na1—O2i99.20 (6)O1—C1—H1B109.5
O1W—Na1—O3ii98.13 (6)O1—C1—H1C109.5
O1W—Na1—O1i163.88 (6)H1A—C1—H1B109.5
O1W—Na1—C6ii78.51 (6)H1A—C1—H1C109.5
Na1iii—O2—H2127.3 (16)H1B—C1—H1C109.5
C3—O2—Na1iii119.71 (12)O4—C10—C11122.56 (19)
C3—O2—H2112.4 (16)O4—C10—C9121.11 (19)
C14—O6—Na1127.22 (12)C11—C10—C9116.33 (18)
C12—O3—Na1iv126.77 (11)Na1iv—C6—H681.0
C12—O3—C8A112.94 (15)C7—C6—Na1iv103.69 (14)
C12—O3—C8B120.7 (6)C7—C6—H6119.9
C8B—O3—Na1iv97.0 (6)C5—C6—Na1iv85.31 (13)
C2—O1—Na1iii118.32 (12)C5—C6—C7120.3 (2)
C2—O1—C1116.80 (16)C5—C6—H6119.9
C1—O1—Na1iii123.62 (12)C4—C5—C8A117.3 (2)
Na1—O1W—H1WA109.7C4—C5—C8B148.9 (6)
Na1—O1W—H1WB109.7C6—C5—C4119.5 (2)
H1WA—O1W—H1WB104.3C6—C5—C8A123.2 (2)
C16—O5—H5106.8 (16)C6—C5—C8B91.0 (6)
O3—C12—C11119.64 (17)C10—C9—H9A107.2
C13—C12—O3118.08 (17)C10—C9—H9B107.2
C13—C12—C11122.28 (18)H9A—C9—H9B106.8
C16—C15—H15120.0C8A—C9—C10110.57 (19)
C16—C15—C14120.04 (18)C8B—C9—C10120.4 (6)
C14—C15—H15120.0C8B—C9—H9A107.2
C16—C11—C12116.57 (17)C8B—C9—H9B107.2
C16—C11—C10121.61 (18)O3—C8A—C5105.81 (17)
C10—C11—C12121.82 (17)O3—C8A—C9110.73 (19)
O2—C3—C2117.15 (17)O3—C8A—H8A108.2
O2—C3—C4123.40 (18)C5—C8A—H8A108.2
C4—C3—C2119.44 (19)C9—C8A—C5115.6 (2)
O5—C16—C15119.02 (18)C9—C8A—H8A108.2
O5—C16—C11118.70 (18)O3—C8B—C5102.0 (9)
C15—C16—C11122.26 (18)O3—C8B—H8B105.9
C12—C13—H13120.0C5—C8B—H8B105.9
C12—C13—C14119.96 (18)C9—C8B—O3118.4 (10)
C14—C13—H13120.0C9—C8B—C5117.6 (10)
O1—C2—C3115.02 (17)C9—C8B—H8B105.9
C7—C2—O1125.14 (18)
Na1iii—O2—C3—C213.7 (2)C3—C4—C5—C8A177.25 (19)
Na1iii—O2—C3—C4165.28 (15)C3—C4—C5—C8B166.9 (11)
Na1—O6—C14—C15135.04 (16)C16—C15—C14—O6175.99 (18)
Na1—O6—C14—C1347.2 (2)C16—C15—C14—C131.8 (3)
Na1iv—O3—C12—C11137.93 (14)C16—C11—C10—O40.5 (3)
Na1iv—O3—C12—C1342.6 (2)C16—C11—C10—C9179.67 (19)
Na1iv—O3—C8A—C516.0 (2)C13—C12—C11—C160.7 (3)
Na1iv—O3—C8A—C9109.93 (17)C13—C12—C11—C10179.73 (19)
Na1iv—O3—C8B—C569.8 (7)C2—C3—C4—C50.8 (3)
Na1iv—O3—C8B—C9159.4 (10)C2—C7—C6—Na1iv93.1 (2)
Na1iii—O1—C2—C311.5 (2)C2—C7—C6—C50.5 (3)
Na1iii—O1—C2—C7167.87 (16)C14—C15—C16—O5179.73 (17)
Na1iv—C6—C5—C4104.35 (19)C14—C15—C16—C111.1 (3)
Na1iv—C6—C5—C8A73.3 (2)C4—C3—C2—O1177.86 (17)
Na1iv—C6—C5—C8B69.2 (5)C4—C3—C2—C71.5 (3)
O2—C3—C2—O11.1 (2)C4—C5—C8A—O3102.3 (2)
O2—C3—C2—C7179.49 (18)C4—C5—C8A—C9134.8 (2)
O2—C3—C4—C5179.73 (19)C4—C5—C8B—O348.6 (16)
O3—C12—C11—C16179.82 (16)C4—C5—C8B—C982.6 (14)
O3—C12—C11—C100.8 (3)C7—C6—C5—C41.2 (3)
O3—C12—C13—C14177.33 (17)C7—C6—C5—C8A176.4 (2)
O1—C2—C7—C6178.45 (19)C7—C6—C5—C8B172.3 (6)
O4—C10—C9—C8A153.2 (2)C1—O1—C2—C3179.11 (17)
O4—C10—C9—C8B169.3 (8)C1—O1—C2—C70.2 (3)
C12—O3—C8A—C5176.19 (17)C10—C11—C16—O50.0 (3)
C12—O3—C8A—C957.9 (2)C10—C11—C16—C15178.60 (19)
C12—O3—C8B—C5149.5 (4)C10—C9—C8A—O356.6 (3)
C12—O3—C8B—C918.7 (14)C10—C9—C8A—C5176.8 (2)
C12—C11—C16—O5179.02 (16)C10—C9—C8B—O318.6 (14)
C12—C11—C16—C152.4 (3)C10—C9—C8B—C5141.9 (7)
C12—C11—C10—O4178.48 (19)C6—C5—C8A—O375.4 (3)
C12—C11—C10—C90.7 (3)C6—C5—C8A—C947.5 (3)
C12—C13—C14—O6174.38 (18)C6—C5—C8B—O3120.4 (8)
C12—C13—C14—C153.4 (3)C6—C5—C8B—C9108.3 (10)
C11—C12—C13—C142.1 (3)C8A—O3—C12—C1128.8 (2)
C11—C10—C9—C8A27.6 (3)C8A—O3—C12—C13150.73 (19)
C11—C10—C9—C8B9.9 (8)C8B—O3—C12—C119.6 (8)
C3—C2—C7—C60.9 (3)C8B—O3—C12—C13170.9 (7)
C3—C4—C5—C60.6 (3)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

The authors would like to thank Dr Bai-Qiao Song for helpful discussions on crystal structure refinement. The authors declare no conflict of interest.

Funding information

The following funding is acknowledged: Science Foundation Ireland (bursary no. 12/RC/2275_P2; 16/IA/4624).

References

First citationAakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationAgrawal, P. K., Agrawal, C. & Blunden, G. (2021). Nat. Prod. Commun. 16, 1–12.  Google Scholar
First citationAitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147–2152.  Web of Science CrossRef CAS Google Scholar
First citationAlmansa, C., Mercè, R., Tesson, N., Farran, J., Tomàs, J. & Plata-Salamán, C. R. (2017). Cryst. Growth Des. 17, 1884–1892.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlmarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896.  Web of Science CrossRef Google Scholar
First citationArts, I. C. W. (2008). J. Nutr. 138, 1561S–1566S.  CrossRef PubMed CAS Google Scholar
First citationBabu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 2662–2679.  Web of Science CrossRef CAS Google Scholar
First citationBerge, S. M., Bighley, L. D. & Monkhouse, D. C. (1977). J. Pharm. Sci. 66, 1–19.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBhattacharya, S. P. K. S. & Zaworotko, M. J. (2018). The role of hydrogen bonding in co-crystals. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationBis, J. A., Vishweshwar, P., Weyna, D. & Zaworotko, M. J. (2007). Mol. Pharm. 4, 401–416.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514–11603.  CrossRef CAS PubMed Google Scholar
First citationBraga, D., Grepioni, F., Maini, L., Prosperi, S., Gobetto, R. & Chierotti, M. R. (2010). Chem. Commun. 46, 7715–7717.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., Grepioni, F. & Shemchuk, O. (2018). CrystEngComm, 20, 2212–2220.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrn, S. R., Zografi, G. & Chen, X. S. (2017). Solid-state profiles of pharmaceutical materials. Hoboken, NJ: Wiley.  Google Scholar
First citationChadha, K., Karan, M., Bhalla, Y., Chadha, R., Khullar, S., Mandal, S. & Vasisht, K. (2017). Cryst. Growth Des. 17, 2386–2405.  CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuggirala, N. K., Smith, A. J., Wojtas, Ł., Shytle, R. D. & Zaworotko, M. J. (2014). Cryst. Growth Des. 14, 6135–6142.  CSD CrossRef CAS Google Scholar
First citationDuggirala, N. K., Wood, G. P. F., Fischer, A., Wojtas, Ł., Perry, M. L. & Zaworotko, M. J. (2015). Cryst. Growth Des. 15, 4341–4354.  Web of Science CSD CrossRef CAS Google Scholar
First citationGould, P. L. (1986). Int. J. Pharm. 33, 201–217.  CrossRef CAS Web of Science Google Scholar
First citationGrepioni, F., Casali, L., Fiore, C., Mazzei, L., Sun, R., Shemchuk, O. & Braga, D. (2022). Dalton Trans. 51, 7390–7400.  CrossRef CAS PubMed Google Scholar
First citationHaleblian, J. & McCrone, W. (1969). J. Pharm. Sci. 58, 911–929.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHaskins, M. M., Lusi, M. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 3333–3342.  CSD CrossRef CAS PubMed Google Scholar
First citationHealy, A. M., Worku, Z. A., Kumar, D. & Madi, A. M. (2017). Adv. Drug Deliv. Rev. 117, 25–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHertog, M. G. L. (1996). Proc. Nutr. Soc. 55, 385–397.  CrossRef CAS PubMed Google Scholar
First citationHörter, D. & Dressman, J. B. (1997). Adv. Drug Deliv. Rev. 25, 3–14.  Google Scholar
First citationHuynh-Ba, K. (2008). Handbook of stability testing in pharmaceutical development: Regulations, methodologies, and best practices. Springer: New York.  Google Scholar
First citationIkram, M., Muhammad, T., Rehman, S. U., Khan, A., Jo, M. G., Ali, T. & Kim, M. O. (2019). Mol. Neurobiol. 56, 6293–6309.  CrossRef CAS PubMed Google Scholar
First citationJin, S., Haskins, M. M., Andaloussi, Y. H., Ouyang, R., Gong, J. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 6390–6397.  CSD CrossRef CAS PubMed Google Scholar
First citationJin, S., Sanii, R., Song, B.-Q. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 4582–4591.  CSD CrossRef CAS PubMed Google Scholar
First citationKálmán, A., Párkányi, L. & Argay, G. (1993). Acta Cryst. B49, 1039–1049.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKanaze, F. I., Bounartzi, M. I., Georgarakis, M. & Niopas, I. (2007). Eur. J. Clin. Nutr. 61, 472–477.  CrossRef PubMed CAS Google Scholar
First citationKavanagh, O. N., Croker, D. M., Walker, G. M. & Zaworotko, M. J. (2019). Drug Discovery Today, 24, 796–804.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKavuru, P., Aboarayes, D., Arora, K. K., Clarke, H. D., Kennedy, A., Marshall, L., Ong, T. T., Perman, J., Pujari, T., Wojtas, Ł. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 3568–3584.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhankari, R. K. & Grant, D. J. W. (1995). Thermochim. Acta, 248, 61–79.  CrossRef CAS Web of Science Google Scholar
First citationkheradmand, E., Hajizadeh Moghaddam, A. & Zare, M. (2018). Biomed. Pharmacother. 97, 1096–1101.  CrossRef CAS PubMed Google Scholar
First citationKhezri, M. R., Ghasemnejad-Berenji, M. & Moloodsouri, D. (2022). J. Food Biochem. 46, e14212.  CrossRef PubMed Google Scholar
First citationKreevoy, M. M., Marimanikkuppam, S., Young, V. G., Baran, J., Szafran, M., Schultz, A. J. & Trouw, F. (1998). Ber. Bunsenges. Phys. Chem. 102, 370–376.  CrossRef CAS Google Scholar
First citationLiu, L. & Chen, J. (2008). J. Chem. Eng. Data, 53, 1649–1650.  CrossRef CAS Google Scholar
First citationLiu, Y., Yang, F., Zhao, X., Wang, S., Yang, Q. & Zhang, X. (2022). Pharmaceutics, 14, 94–107.  CrossRef CAS PubMed Google Scholar
First citationMiller, J. M., Collman, B. M., Greene, L. R., Grant, D. J. & Blackburn, A. C. (2005). Pharm. Dev. Technol. 10, 291–297.  PubMed CAS Google Scholar
First citationMorris, K. R., Fakes, M. G., Thakur, A. B., Newman, A. W., Singh, A. K., Venit, J. J., Spagnuolo, C. J. & Serajuddin, A. T. M. (1994). Int. J. Pharm. 105, 209–217.  CrossRef CAS Google Scholar
First citationMukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514–2524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNangia, A. K. & Desiraju, G. R. (2022). Angew. Chem. 134, e202207484.  CrossRef Google Scholar
First citationPanche, A. N., Diwan, A. D. & Chandra, S. R. (2016). J. Nutr. Sci. 5, e47.  CrossRef PubMed Google Scholar
First citationParhiz, H., Roohbakhsh, A., Soltani, F., Rezaee, R. & Iranshahi, M. (2015). Phytother. Res. 29, 323–331.  CrossRef CAS PubMed Google Scholar
First citationPetruševski, G., Naumov, P., Jovanovski, G. & Ng, S. W. (2008). Inorg. Chem. Commun. 11, 81–84.  Google Scholar
First citationPudipeddi, M. & Serajuddin, A. T. M. (2005). J. Pharm. Sci. 94, 929–939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEuropean Medicines Agency (2015). Reflection paper on the use of cocrystals of active substances in medicinal products. London: European Medicines Agency. https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-cocrystals-active-substances-medicinal-products_en.pdf  Google Scholar
First citationRoohbakhsh, A., Parhiz, H., Soltani, F., Rezaee, R. & Iranshahi, M. (2015). Life Sci. 124, 64–74.  CrossRef CAS PubMed Google Scholar
First citationShan, N., Perry, M. L., Weyna, D. R. & Zaworotko, M. J. (2014). Expert Opin. Drug Metab. Toxicol. 10, 1255–1271.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShattock, A. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShemchuk, O., Grepioni, F. & Braga, D. (2020). CrystEngComm, 22, 5613–5619.  CSD CrossRef Google Scholar
First citationShemchuk, O., Song, L., Robeyns, K., Braga, D., Grepioni, F. & Leyssens, T. (2018). Chem. Commun. 54, 10890–10892.  Web of Science CSD CrossRef CAS Google Scholar
First citationShemchuk, O., Spoletti, E., Braga, D. & Grepioni, F. (2021). Cryst. Growth Des. 21, 3438–3448.  CSD CrossRef CAS Google Scholar
First citationSmith, A. J., Kim, S. H., Duggirala, N. K., Jin, J., Wojtas, L., Ehrhart, J., Giunta, B., Tan, J., Zaworotko, M. J. & Shytle, R. D. (2013). Mol. Pharm. 10, 4728–4738.  CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSohel, M., Sultana, H., Sultana, T., Al Amin, M., Aktar, S., Ali, M. C., Rahim, Z. B., Hossain, M. A., Al Mamun, A., Amin, M. N. & Dash, R. (2022). Heliyon, 8, E08815.  CrossRef PubMed Google Scholar
First citationStahl, P. H. & Wermuth, C. G. (2002). Handbook of pharmaceutical salts: Properties, selection and use. Weinheim: Wiley-VCH.  Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationThakuria, R., Delori, A., Jones, W., Lipert, M. P., Roy, L. & Rodríguez-Hornedo, N. (2013). Int. J. Pharm. 453, 101–125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUS Food and Drug Administration (2018). Guidance for industry: Regulatory classification of pharmaceutical co-crystals guideline for industry. https://www.fda.gov/files/drugs/published/Regulatory-Classification-of-Pharmaceutical-Co-Crystals.pdf  Google Scholar
First citationWalsh, R. D. B., Bradner, M. W., Fleischman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186–187.  Web of Science CSD CrossRef Google Scholar
First citationWang, B., Li, L., Jin, P., Li, M. & Li, J. (2017). Exp. Ther. Med. 14, 2255–2260.  CrossRef CAS PubMed Google Scholar
First citationWang, J., Dai, X.-L., Lu, T.-B. & Chen, J.-M. (2021). Cryst. Growth Des. 21, 838–846.  CSD CrossRef CAS Google Scholar
First citationWood, P. A., Oliveira, M. A., Zink, A. & Hickey, M. B. (2012). CrystEngComm, 14, 2413–2421.  Web of Science CrossRef CAS Google Scholar
First citationZarebczan, B., Pinchot, S. N., Kunnimalaiyaan, M. & Chen, H. (2011). Am. J. Surg. 201, 329–333.  CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Li, Y., Liu, L., Guo, Q., Sa, R., Zhang, M. & Lou, B. (2022). Cryst. Growth Des. 22, 1073–1082.  CSD CrossRef CAS Google Scholar
First citationZhang, Y., Yang, R., Yin, H.-M., Zhou, B., Hong, M., Zhu, B., Qi, M.-H. & Ren, G.-B. (2021). J. Mol. Struct. 1252, 132150–132161.  CSD CrossRef Google Scholar
First citationZhang, Y., Zhu, B., Ji, W.-J., Guo, C.-Y., Hong, M., Qi, M.-H. & Ren, G.-B. (2021). Cryst. Growth Des. 21, 2720–2733.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 10| Part 3| May 2023| Pages 329-340
ISSN: 2052-2525