introduction\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 10| Part 3| May 2023| Pages 248-250
ISSN: 2052-2525

Introduction to the virtual thematic issue on room-temperature biological crystallography1

crossmark logo

aKing's College London, New Hunt's House - Guy's Campus, London SE1 1UL, United Kingdom, and bDepartment of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35131, Italy
*Correspondence e-mail: roberto.steiner@kcl.ac.uk

After many years in which the use of cryogenic conditions (typically around 100 K) represented an almost ubiquitous approach to biological crystallographic studies, there has been a recent resurgence in room temperature (RT) or (near-)physiological temperature experimentation. One of the main advantages of measuring diffraction data at low temperatures is the possibility of mitigating the detrimental effects of radiation-induced damage in macromolecular crystals (Garman & Schneider, 1997[Garman, E. F. & Schneider, T. R. (1997). J. Appl. Cryst. 30, 211-237.]). Although cryo-conditions do not completely abolish global and specific radiation damage (Bui et al., 2014[Bui, S., von Stetten, D., Jambrina, P. G., Prangé, T., Colloc'h, N., de Sanctis, D., Royant, A., Rosta, E. & Steiner, R. A. (2014). Angew. Chem. Int. Ed. 53, 13710-13714.]; Garman, 2010[Garman, E. F. (2010). Acta Cryst. D66, 339-351.]; Ravelli & McSweeney, 2000[Ravelli, R. B. & McSweeney, S. M. (2000). Structure, 8, 315-328.]; Weik et al., 2000[Weik, M., Ravelli, R. B., Kryger, G., McSweeney, S., Raves, M. L., Harel, M., Gros, P., Silman, I., Kroon, J. & Sussman, J. L. (2000). Proc. Natl Acad. Sci. USA, 97, 623-628.]), their use, together with judicious instrument choices, often allow the collection of complete diffraction data from a single crystal without significant loss in resolution. Nowadays, whilst the `one crystal, one data set' experimental format afforded by cryo-temperatures remains popular and practically convenient, advances in multi-crystal serial data collection approaches (SFX and SSX for serial femtosecond and serial synchrotron X-ray crystallography, respectively) and detectors with extremely fast read-out rates allow the measurement of complete datasets at RT with modest radiation-induced damage. These developments offer exciting opportunities as there is an increasing realization that RT or multi-temperature measurements, represent a valid approach to study functionally important conformations that may be hidden at cryogenic temperatures (Fraser et al., 2009[Fraser, J. S., Clarkson, M. W., Degnan, S. C., Erion, R., Kern, D. & Alber, T. (2009). Nature, 462, 669-673.]; Keedy et al., 2018[Keedy, D. A., Hill, Z. B., Biel, J. T., Kang, E., Rettenmaier, T. J., Brandao-Neto, J., Pearce, N. M., von Delft, F., Wells, J. A. & Fraser, J. S. (2018). eLife 7, e36307.]; Keedy et al., 2015[Keedy, D. A., Kenner, L. R., Warkentin, M., Woldeyes, R. A., Hopkins, J. B., Thompson, M. C., Brewster, A. S., Van Benschoten, A. H., Baxter, E. L., Uervirojnangkoorn, M., McPhillips, S. E., Song, J., Alonso-Mori, R., Holton, J. M., Weis, W. I., Brunger, A. T., Soltis, S. M., Lemke, H., Gonzalez, A., Sauter, N. K., Cohen, A. E., van den Bedem, H., Thorne, R. E. & Fraser, J. S. (2015). eLife 4, e07574.]; Keedy et al., 2014[Keedy, D. A., van den Bedem, H., Sivak, D. A., Petsko, G. A., Ringe, D., Wilson, M. A. & Fraser, J. S. (2014). Structure, 22, 899-910.]; Fenwick et al.; 2014[Fenwick, R. B., van den Bedem, H., Fraser, J. S. & Wright, P. E. (2014). Proc. Natl Acad. Sci. USA, 111, E445-E454.]). Also, temperature-dependent differences in protein-ligand interactions including unique binding poses and new binding sites (Skaist Mehlman et al., 2023[Skaist Mehlman, T., Biel, J. T., Azeem, S. M., Nelson, E. R., Hossain, S., Dunnett, L., Paterson, N. G., Douangamath, A., Talon, R., Axford, D., Orins, H., von Delft, F. & Keedy, D. A. (2023). eLife 12, e84632.]) make RT crystallographic studies very relevant for a more complete understanding of protein–ligand interactions that might be important for drug discovery (Fischer et al., 2014[Fischer, M., Coleman, R. G., Fraser, J. S. & Shoichet, B. K. (2014). Nat. Chem. 6, 575-583.]; Fischer et al., 2015[Fischer, M., Shoichet, B. K. & Fraser, J. S. (2015). ChemBioChem, 16, 1560-1564.]). Importantly, RT studies on microcrystals coupled with suitable mixing and/or activation methods can also allow the visualization of reaction intermediates (Olmos et al., 2018[Olmos, J. L. Jr, Pandey, S., Martin-Garcia, J. M., Calvey, G., Katz, A., Knoska, J., Kupitz, C., Hunter, M. S., Liang, M., Oberthuer, D., Yefanov, O., Wiedorn, M., Heyman, M., Holl, M., Pande, K., Barty, A., Miller, M. D., Stern, S., Roy-Chowdhury, S., Coe, J., Nagaratnam, N., Zook, J., Verburgt, J., Norwood, T., Poudyal, I., Xu, D., Koglin, J., Seaberg, M. H., Zhao, Y., Bajt, S., Grant, T., Mariani, V., Nelson, G., Subramanian, G., Bae, E., Fromme, R., Fung, R., Schwander, P., Frank, M., White, T. A., Weierstall, U., Zatsepin, N., Spence, J., Fromme, P., Chapman, H. N., Pollack, L., Tremblay, L., Ourmazd, A., Phillips, G. N. Jr & Schmidt, M. (2018). BMC Biol. 16, 59.]; Butryn et al., 2021[Butryn, A., Simon, P. S., Aller, P., Hinchliffe, P., Massad, R. N., Leen, G., Tooke, C. L., Bogacz, I., Kim, I. S., Bhowmick, A., Brewster, A. S., Devenish, N. E., Brem, J., Kamps, J., Lang, P. A., Rabe, P., Axford, D., Beale, J. H., Davy, B., Ebrahim, A., Orlans, J., Storm, S. L. S., Zhou, T., Owada, S., Tanaka, R., Tono, K., Evans, G., Owen, R. L., Houle, F. A., Sauter, N. K., Schofield, C. J., Spencer, J., Yachandra, V. K., Yano, J., Kern, J. F. & Orville, A. M. (2021). Nat. Commun. 12, 4461.]; Gruhl et al., 2023[Gruhl, T., Weinert, T. & Rodrigues, M. J. (2023). Nature, https://doi.org/10.1038/s41586-023-05863-6.]).

This virtual thematic issue (see https://journals.iucr.org/special_issues/2022/RT/) presents a collection of articles recently published in IUCrJ, Acta Cryst. D Structural Biology and Acta Cryst. F Structural Biology Communications, some of which have been commissioned specifically, that highlight topics and trends in modern RT biological crystallography.

In a review paper, Thorne provides an overview of the key advantages and physical principles of, and methods for, crystallographic data collection at non-cryogenic temperatures (Thorne, 2023[Thorne, R. E. (2023). Acta Cryst. D79, 78-94.]). The paper also discusses some factors relevant to interpreting the resulting data. This review complements another excellent review on practical methods for RT data collection and analysis published recently in Quarterly Reviews of Biophysics (Fischer, 2021[Fischer, M. (2021). Q. Rev. Biophys. 54, e1.]).

A series of original research articles then discuss RT crystallographic work in the context of different biological systems. Metal centres in proteins can be very sensitive to radiation damage thus making standard single crystal RT experiments particularly challenging. Moreno-Chicano and co-workers explored the complementarity of several diffraction techniques to study the multifunctional heme-containing dehaloperoxidase B (DHP-B) globin (Moreno-Chicano et al., 2022[Moreno-Chicano, T., Carey, L. M., Axford, D., Beale, J. H., Doak, R. B., Duyvesteyn, H. M. E., Ebrahim, A., Henning, R. W., Monteiro, D. C. F., Myles, D. A., Owada, S., Sherrell, D. A., Straw, M. L., Šrajer, V., Sugimoto, H., Tono, K., Tosha, T., Tews, I., Trebbin, M., Strange, R. W., Weiss, K. L., Worrall, J. A. R., Meilleur, F., Owen, R. L., Ghiladi, R. A. & Hough, M. A. (2022). IUCrJ, 9, 610-624.]). Aumonier and colleagues used RT time-resolved oscillation crystallography coupled with in crystallo UV–Vis absorption spectroscopy to look at the slow relaxation of a reaction intermediate – a thio-ether covalent bond between the chromophore and a cysteine residue – in the photoreaction of the LOV2 domain of phototropin 2 from Arabidopsis thaliana (Aumonier et al., 2022[Aumonier, S., Engilberge, S., Caramello, N., von Stetten, D., Gotthard, G., Leonard, G. A., Mueller-Dieckmann, C. & Royant, A. (2022). IUCrJ, 9, 756-767.]). Ebrahim and co-workers performed a multi-temperature experiment on the SARS-CoV-2 main protease (Mpro), a promising target for the development of novel antiviral therapeutics (Ebrahim et al., 2022[Ebrahim, A., Riley, B. T., Kumaran, D., Andi, B., Fuchs, M. R., McSweeney, S. & Keedy, D. A. (2022). IUCrJ, 9, 682-694.]). Using multi-copy ensemble models they highlight conformational heterogeneity at various sites including a key substrate-binding loop that may inspire new strategies for antiviral drug development. Sharma and co-workers further explored the theme of conformational variability and allosteric coupling in protein tyrosine phosphatase 1B (PTP1B) by solving its SSX structure in the unliganded state (Sharma et al., 2023[Sharma, S., Ebrahim, A. & Keedy, D. A. (2023). Acta Cryst. F79, 23-30.]) whilst Schneps and colleagues employed SSX on the circadian photoreceptor cryptochrome (CRY) revealing regions of enhanced mobility in loops that have functional importance within this protein family and whose atomic displacement parameters correlate well with those predicted from molecular-dynamics simulations (Schneps et al., 2022[Schneps, C. M., Ganguly, A. & Crane, B. R. (2022). Acta Cryst. D78, 975-985.]). The theme of ligand-binding discrepancies between cryo-cooled and physiological temperature structures is discussed by Huang and co-workers by looking at the interaction of TL00150, a 175.15 Da fragment, with endothia­pepsin using a `temperature-resolved' approach (Huang et al., 2022[Huang, C.-Y., Aumonier, S., Engilberge, S., Eris, D., Smith, K. M. L., Leonarski, F., Wojdyla, J. A., Beale, J. H., Buntschu, D., Pauluhn, A., Sharpe, M. E., Metz, A., Olieric, V. & Wang, M. (2022). Acta Cryst. D78, 964-974.]). Some aspects of radiation damage are considered by Yabukarski and colleagues who employed a panel of well known model systems, to show that radiation damage only modestly increases conformational heterogeneity at RT, suggesting that dynamic information can be obtained from single crystals at near-physiological temperature (Yabukarski et al., 2022[Yabukarski, F., Doukov, T., Mokhtari, D. A., Du, S. & Herschlag, D. (2022). Acta Cryst. D78, 945-963.]). Båth and co-authors employed lipidic cubic phase (LCP) microcrystallization applied to the photosynthetic reaction centre of Blastochloris viridis (Båth et al., 2022[Båth, P., Banacore, A., Börjesson, P., Bosman, R., Wickstrand, C., Safari, C., Dods, R., Ghosh, S., Dahl, P., Ortolani, G., Björg Ulfarsdottir, T., Hammarin, G., García Bonete, M.-J., Vallejos, A., Ostojić, L., Edlund, P., Linse, J.-B., Andersson, R., Nango, E., Owada, S., Tanaka, R., Tono, K., Joti, Y., Nureki, O., Luo, F., James, D., Nass, K., Johnson, P. J. M., Knopp, G., Ozerov, D., Cirelli, C., Milne, C., Iwata, S., Brändén, G. & Neutze, R. (2022). Acta Cryst. D78, 698-708.]). Using X-ray free electron laser (XFEL) radiation they obtained its structure at the 2.25 Å resolution that allowed the visualization of the mobile ubi­quinone potentially facilitating time-resolved diffraction studies of electron-transfer reactions to this co-factor. Finally, Zielinski and co-workers discussed efficient RT SSX experiments carried out on three different proteins of biological relevance using the CFEL TapeDrive, a conveyor-belt-based sample-delivery system (Zielinski et al., 2022[Zielinski, K. A., Prester, A., Andaleeb, H., Bui, S., Yefanov, O., Catapano, L., Henkel, A., Wiedorn, M. O., Lorbeer, O., Crosas, E., Meyer, J., Mariani, V., Domaracky, M., White, T. A., Fleckenstein, H., Sarrou, I., Werner, N., Betzel, C., Rohde, H., Aepfelbacher, M., Chapman, H. N., Perbandt, M., Steiner, R. A. & Oberthuer, D. (2022). IUCrJ, 9, 778-791.]).

The issue also includes a few articles that are a bit more `technical' in their nature. Greisman and colleagues discuss native single anomalous diffraction (SAD) phasing at RT (Greisman et al., 2022[Greisman, J. B., Dalton, K. M., Sheehan, C. J., Klureza, M. A., Kurinov, I. & Hekstra, D. R. (2022). Acta Cryst. D78, 986-996.]) whilst Doukov and co-workers show how high-quality anomalous signal can be collected from single-crystal diffraction data with relatively low occupancy at and above RT (Doukov et al., 2023[Doukov, T., Herschlag, D. & Yabukarski, F. (2023). Acta Cryst. D79, 212-223.]). In the field of synchrotron instrumentation, increasingly more sophisticated developments are happening at sites worldwide. One example is discussed by Okumura and colleagues in their presentation of the setup for in situ crystal data-collection and ligand-screening available at SPring-8 (Okumura et al., 2022[Okumura, H., Sakai, N., Murakami, H., Mizuno, N., Nakamura, Y., Ueno, G., Masunaga, T., Kawamura, T., Baba, S., Hasegawa, K., Yamamoto, M. & Kumasaka, T. (2022). Acta Cryst. F78, 241-251.]).

Hopefully, this virtual thematic issue will encourage the reader to explore additional published work on the topic of RT biological crystallography and, importantly, facilitate the conception and execution of relevant experiments.

Footnotes

1This introduction is being published in the IUCr Journals (Acta Crystallographica Section D Structural Biology, Acta Crystallographica Section F Structural Biology Communications and IUCrJ) that have contributed to this special issue.

References

First citationAumonier, S., Engilberge, S., Caramello, N., von Stetten, D., Gotthard, G., Leonard, G. A., Mueller-Dieckmann, C. & Royant, A. (2022). IUCrJ, 9, 756–767.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationBåth, P., Banacore, A., Börjesson, P., Bosman, R., Wickstrand, C., Safari, C., Dods, R., Ghosh, S., Dahl, P., Ortolani, G., Björg Ulfarsdottir, T., Hammarin, G., García Bonete, M.-J., Vallejos, A., Ostojić, L., Edlund, P., Linse, J.-B., Andersson, R., Nango, E., Owada, S., Tanaka, R., Tono, K., Joti, Y., Nureki, O., Luo, F., James, D., Nass, K., Johnson, P. J. M., Knopp, G., Ozerov, D., Cirelli, C., Milne, C., Iwata, S., Brändén, G. & Neutze, R. (2022). Acta Cryst. D78, 698–708.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBui, S., von Stetten, D., Jambrina, P. G., Prangé, T., Colloc'h, N., de Sanctis, D., Royant, A., Rosta, E. & Steiner, R. A. (2014). Angew. Chem. Int. Ed. 53, 13710–13714.  Web of Science CrossRef CAS Google Scholar
First citationButryn, A., Simon, P. S., Aller, P., Hinchliffe, P., Massad, R. N., Leen, G., Tooke, C. L., Bogacz, I., Kim, I. S., Bhowmick, A., Brewster, A. S., Devenish, N. E., Brem, J., Kamps, J., Lang, P. A., Rabe, P., Axford, D., Beale, J. H., Davy, B., Ebrahim, A., Orlans, J., Storm, S. L. S., Zhou, T., Owada, S., Tanaka, R., Tono, K., Evans, G., Owen, R. L., Houle, F. A., Sauter, N. K., Schofield, C. J., Spencer, J., Yachandra, V. K., Yano, J., Kern, J. F. & Orville, A. M. (2021). Nat. Commun. 12, 4461.  Web of Science CrossRef PubMed Google Scholar
First citationDoukov, T., Herschlag, D. & Yabukarski, F. (2023). Acta Cryst. D79, 212–223.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEbrahim, A., Riley, B. T., Kumaran, D., Andi, B., Fuchs, M. R., McSweeney, S. & Keedy, D. A. (2022). IUCrJ, 9, 682–694.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationFenwick, R. B., van den Bedem, H., Fraser, J. S. & Wright, P. E. (2014). Proc. Natl Acad. Sci. USA, 111, E445–E454.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFischer, M. (2021). Q. Rev. Biophys. 54, e1.  Web of Science CrossRef PubMed Google Scholar
First citationFischer, M., Coleman, R. G., Fraser, J. S. & Shoichet, B. K. (2014). Nat. Chem. 6, 575–583.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFischer, M., Shoichet, B. K. & Fraser, J. S. (2015). ChemBioChem, 16, 1560–1564.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFraser, J. S., Clarkson, M. W., Degnan, S. C., Erion, R., Kern, D. & Alber, T. (2009). Nature, 462, 669–673.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGarman, E. F. (2010). Acta Cryst. D66, 339–351.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarman, E. F. & Schneider, T. R. (1997). J. Appl. Cryst. 30, 211–237.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGreisman, J. B., Dalton, K. M., Sheehan, C. J., Klureza, M. A., Kurinov, I. & Hekstra, D. R. (2022). Acta Cryst. D78, 986–996.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGruhl, T., Weinert, T. & Rodrigues, M. J. (2023). Nature, https://doi.org/10.1038/s41586-023-05863-6.  Google Scholar
First citationHuang, C.-Y., Aumonier, S., Engilberge, S., Eris, D., Smith, K. M. L., Leonarski, F., Wojdyla, J. A., Beale, J. H., Buntschu, D., Pauluhn, A., Sharpe, M. E., Metz, A., Olieric, V. & Wang, M. (2022). Acta Cryst. D78, 964–974.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKeedy, D. A., Hill, Z. B., Biel, J. T., Kang, E., Rettenmaier, T. J., Brandao-Neto, J., Pearce, N. M., von Delft, F., Wells, J. A. & Fraser, J. S. (2018). eLife 7, e36307.  Web of Science CrossRef PubMed Google Scholar
First citationKeedy, D. A., Kenner, L. R., Warkentin, M., Woldeyes, R. A., Hopkins, J. B., Thompson, M. C., Brewster, A. S., Van Benschoten, A. H., Baxter, E. L., Uervirojnangkoorn, M., McPhillips, S. E., Song, J., Alonso-Mori, R., Holton, J. M., Weis, W. I., Brunger, A. T., Soltis, S. M., Lemke, H., Gonzalez, A., Sauter, N. K., Cohen, A. E., van den Bedem, H., Thorne, R. E. & Fraser, J. S. (2015). eLife 4, e07574.  Web of Science CrossRef PubMed Google Scholar
First citationKeedy, D. A., van den Bedem, H., Sivak, D. A., Petsko, G. A., Ringe, D., Wilson, M. A. & Fraser, J. S. (2014). Structure, 22, 899–910.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMoreno-Chicano, T., Carey, L. M., Axford, D., Beale, J. H., Doak, R. B., Duyvesteyn, H. M. E., Ebrahim, A., Henning, R. W., Monteiro, D. C. F., Myles, D. A., Owada, S., Sherrell, D. A., Straw, M. L., Šrajer, V., Sugimoto, H., Tono, K., Tosha, T., Tews, I., Trebbin, M., Strange, R. W., Weiss, K. L., Worrall, J. A. R., Meilleur, F., Owen, R. L., Ghiladi, R. A. & Hough, M. A. (2022). IUCrJ, 9, 610–624.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationOkumura, H., Sakai, N., Murakami, H., Mizuno, N., Nakamura, Y., Ueno, G., Masunaga, T., Kawamura, T., Baba, S., Hasegawa, K., Yamamoto, M. & Kumasaka, T. (2022). Acta Cryst. F78, 241–251.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOlmos, J. L. Jr, Pandey, S., Martin-Garcia, J. M., Calvey, G., Katz, A., Knoska, J., Kupitz, C., Hunter, M. S., Liang, M., Oberthuer, D., Yefanov, O., Wiedorn, M., Heyman, M., Holl, M., Pande, K., Barty, A., Miller, M. D., Stern, S., Roy-Chowdhury, S., Coe, J., Nagaratnam, N., Zook, J., Verburgt, J., Norwood, T., Poudyal, I., Xu, D., Koglin, J., Seaberg, M. H., Zhao, Y., Bajt, S., Grant, T., Mariani, V., Nelson, G., Subramanian, G., Bae, E., Fromme, R., Fung, R., Schwander, P., Frank, M., White, T. A., Weierstall, U., Zatsepin, N., Spence, J., Fromme, P., Chapman, H. N., Pollack, L., Tremblay, L., Ourmazd, A., Phillips, G. N. Jr & Schmidt, M. (2018). BMC Biol. 16, 59.  Google Scholar
First citationRavelli, R. B. & McSweeney, S. M. (2000). Structure, 8, 315–328.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchneps, C. M., Ganguly, A. & Crane, B. R. (2022). Acta Cryst. D78, 975–985.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSharma, S., Ebrahim, A. & Keedy, D. A. (2023). Acta Cryst. F79, 23–30.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkaist Mehlman, T., Biel, J. T., Azeem, S. M., Nelson, E. R., Hossain, S., Dunnett, L., Paterson, N. G., Douangamath, A., Talon, R., Axford, D., Orins, H., von Delft, F. & Keedy, D. A. (2023). eLife 12, e84632.  Web of Science CrossRef PubMed Google Scholar
First citationThorne, R. E. (2023). Acta Cryst. D79, 78–94.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeik, M., Ravelli, R. B., Kryger, G., McSweeney, S., Raves, M. L., Harel, M., Gros, P., Silman, I., Kroon, J. & Sussman, J. L. (2000). Proc. Natl Acad. Sci. USA, 97, 623–628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYabukarski, F., Doukov, T., Mokhtari, D. A., Du, S. & Herschlag, D. (2022). Acta Cryst. D78, 945–963.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZielinski, K. A., Prester, A., Andaleeb, H., Bui, S., Yefanov, O., Catapano, L., Henkel, A., Wiedorn, M. O., Lorbeer, O., Crosas, E., Meyer, J., Mariani, V., Domaracky, M., White, T. A., Fleckenstein, H., Sarrou, I., Werner, N., Betzel, C., Rohde, H., Aepfelbacher, M., Chapman, H. N., Perbandt, M., Steiner, R. A. & Oberthuer, D. (2022). IUCrJ, 9, 778–791.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 10| Part 3| May 2023| Pages 248-250
ISSN: 2052-2525