research papers
A deep learning solution for crystallographic structure determination
^{a}Department of Computer Science, Rice University, Houston, Texas, USA, ^{b}Department of Biosciences, Rice University, Houston, Texas, USA, ^{c}Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA, and ^{d}Department of Chemistry, Rice University, Houston, Texas, USA
^{*}Correspondence email: georgep@rice.edu
The general de novo solution of the crystallographic is difficult and only possible under certain conditions. This paper develops an initial pathway to a deep learning neural network approach for the in protein crystallography, based on a synthetic dataset of small fragments derived from a large well curated subset of solved structures in the Protein Data Bank (PDB). In particular, electrondensity estimates of simple artificial systems are produced directly from corresponding Patterson maps using a convolutional neural network architecture as a proof of concept.
1. Introduction
Proteins are an important class of organic macromolecules in living systems as they are the driving force behind the vast majority of cellular processes. Determining the structure of a protein is one of the classic problems in biology, as a protein's function is specified by its structure. In essence, proteins are polymers of relatively small organic molecules called amino acids, of which there are 20 that are considered to be in the standard set. However, these underlying polypeptide chains always fold into complex threedimensional structures (as well as potential complexes) to form their active conformations; for example see Petsko & Ringe (2008). Thus, biologists would like to have a standard method for experimentally determining and viewing a protein's overall structure.
1.1. Crystallographic phase problem
Xray crystallography has been the most commonly used method to determine protein structure for over 60 years (Berman et al., 2004). In review, an Xray crystallography experiment measures a diffraction pattern which consists of a set of spots, e.g. on a detector surface. Each spot (known as a reflection) is denoted by three indices h, k, l, known as These correspond to sets of parallel planes within the protein crystal's that contributed to producing the reflections, and the set of possible h, k, l values is determined by the radial extent of the observed diffraction pattern. Any reflection has an underlying mathematical representation, known as a dependent on the locations and scattering factors of all the atoms within the crystal's unit cell,
where the scattering factor and location of atom j are f_{j} and (x_{j}, y_{j}, z_{j}), respectively. A F(h, k, l) has both an amplitude and a phase component (denoted by ϕ) and thus can be considered a complex number. Furthermore, suppose we knew both components of the structure factors corresponding to all of the reflections within a crystal's diffraction pattern. Then, in order to produce an accurate estimate of the electron density ρ at any point (x, y, z) within the crystal's we would only need to take an inverse Fourier transform of all of these structure factors,
where V is the volume of the The amplitude F(h, k, l) of any is easy to determine, as it is simply proportional to the square root of the measured intensity of the corresponding reflection. Unfortunately, it is impossible to determine directly the phase ϕ(h, k, l) of a and this is what is well known as the crystallographic see for example Lattman & Loll (2008).
A few methods of varying popularity have been developed for solving the crystallographic ; Jin et al., 2020). Also, for small molecules that diffract to true atomic resolution, of solving the are available (Karle & Hauptman, 1950). However, this method does not work for protein crystallography except in the rarest of cases, as the requirement that atoms be completely resolved as separate objects is rarely attainable. If this does not hold, then the probabilistic principle on which these methods are dependent (Sayre, 1952) also does not hold.
for determining protein structures. The three most commonly used methods are and (Lattman & Loll, 2008There have also been several methods developed that attempt to solve the problem of determining phase information given direct access only to intensity measurements in a more general setting (Fienup, 1982), better known as phase retrieval in noncrystallographic contexts. However, none have seen widespread use in the Xray crystallography context as they either assume a more continuous sampling of intensities than possible in our setting, or were developed for use in specific noncrystallographic fields of physics (Guo et al., 2021; Kappeler et al., 2017; Rivenson et al., 2018). The most well known of these is probably the iterative nonconvex Gerchberg–Saxton (GS) (Zalevsky et al., 1996; Fienup, 1982) algorithm, which has been applied in various optical settings such as However, it has not been applied to crystallography since it requires more input measurements than would be available. Fienup (1982) also extended the GS algorithm to work better in settings similar to Xray crystallography. Similar methods to that developed by Fienup have occasionally been applied to solve the crystallographic but only in special cases where the crystals have very high solvent content (He & Su, 2015; He et al., 2016a; Kingston & Millane, 2022).
1.2. Patterson methods
Many of the commonly used procedures to solve the ). It has long been known as a useful tool for crystallographers, although traditionally it has not been used to solve the crystallographic directly for large molecules such as proteins. Our project aims to provide a method of solving structures via direct interpretation of applications.
of Xray crystallography make use of another mathematical representation called a (Patterson, 1934Essentially, the i.e. ignored),
is a simplified variation of the Fourier transform from structure factors to electron density, in which all amplitudes are squared and all phases are set to zero (Locations in the Patterson u, v, w to distinguish them from locations in the true as the two have the exact same dimensions. A simplification using Euler's formula then gives the most common form of the
are usually denoted by indicesApplying the u, v, w creates what is known as a which is periodic with the same dimensions as the crystal's The can be computed without direct access to any phase information of the structure factors. Thus, a can be obtained directly from diffraction data without the need for additional experiments or outside information. These Patterson maps, which are formally autocorrelations of the corresponding electron densities, can be considered threedimensional images that capture indirect information about the structure within the corresponding protein crystal's unit cell.
over all unitcell locationsTherefore, Patterson maps are natural inputs into a well known class of machine learning models. If we can provide Patterson maps as inputs into such a machine learning framework and obtain suitably accurate electrondensity map predictions, then we can bypass the crystallographic
and potentially save time and effort.It can be shown that a ), as shown in Fig. 1. Furthermore, the height of any such peak is proportional to the product of the atomic numbers of the two atoms in the corresponding atomic pair. This means that if a protein crystal contains n atoms in its the resulting will contain order n^{2} peaks within its This, along with substantial peak overlap, means that Patterson maps for large organic molecules such as proteins are considered to be uninterpretable for humans. Furthermore, given the nature of Patterson vectors, Patterson maps are invariant to translation of the entire contents of the original crystal's unit cell.
will have peaks (which are also called Patterson vectors) at positions corresponding to interatomic vectors within the original crystal's (Lattman & Loll, 20081.3. Machine learning formulation
We want to generate predictions of the values at all locations (x, y, z) of an electrondensity map given the values at all locations (u, v, w) of the corresponding Due to the complexity of such a transformation, we would not want to solve some optimization problem to determine all of its aspects explicitly ourselves. Instead, we want to automate its specification by making use of supervised parametric machine learning. This technique, based on the statistical principle of empirical risk minimization, involves a computer system automatically optimizing (`learning') the parameters (often called weights) of a transformation , where x denotes an input into the transformation (Goodfellow et al., 2016). In our case, this is a This optimization is done in an iterative procedure where the predictions given the current parameter values are compared with the true values via a loss function , where y denotes the desired output corresponding to input x. In our case, this is the corresponding true electrondensity map. Formally, given a set of n input/output examples (x_{i}, y_{i}), the aim is to find parameter values such that
The parameter values can be updated by an optimization algorithm, such as the classic stochastic gradient descent (Robbins, 1951). This entire process is called training.
In particular, we are making use of what is now the most commonly used machine learning architecture – that of the neural network. Neural networks allow us to express a complex overall transformation as a composition of simpler, often standardized, transformations. These constituent functions are known as layers, and the output of one layer is passed through a nonlinear activation function before being given to the next one. In the simplest and earliest developed layer, the fully connected (FC) one, any output of the layer depends on all of the layer inputs (Goodfellow et al., 2016). However, this results in very slow training for large neural networks.
Since the inputs we work with have a 3D shape and their elements have spatial meaning, we can instead make use of 3D convolutional layers as our default layers. Such layers enforce both sparse connectivity and weight sharing. A location in the output of a convolutional layer only depends on a relatively small spatially localized subset of the input locations. Also, the weights that these input values are multiplied by are shared across all output locations (Goodfellow et al., 2016). Recently, several convolutional deep neural network approaches have been developed for phase retrieval within various fields of optics in order to bypass the demanding computational requirements of modern convex programming methods. One project (Kappeler et al., 2017) used a very simple convolutional neural network with only three convolutional layers to perform phase retrieval in the Fourier ptychography setting. Meanwhile, another report (Rivenson et al., 2018) used a more complex model architecture, consisting of several convolutional networks with residual blocks in parallel, to reconstruct holographic images from corresponding hologram intensities. In both the Kappeler and Rivenson models, multiple similar input intensities are given to the machine learning model, unlike our approach which is to provide a single input Patterson map.
The only previous work directly related to our particular line of inquiry of applying machine learning to solve the ). He determined several potential issues that could arise from the inherent properties of Patterson maps, which then lead to ambiguity in their interpretation. We have either addressed these issues or found that we could ignore them to a certain extent.
of Xray crystallography using Patterson maps was done by David Hurwitz, who used a simple 3D convolutional model to predict the locations of randomly positioned sets of `atoms' within a 3D space given the corresponding Patterson maps (Hurwitz, 2020In this project, we have devised a deep learning approach for the direct interpretation of simple Patterson maps. We developed a standardized procedure for generating datasets with examples consisting of calculated electron densities of short adjacent et al., 2000) entries. We trained a convolutional neural network model on several such datasets, where the inputs to our model are Patterson maps and the predictions are electron densities, and have obtained successful results on a few initial datasets. We found that several difficulties arising during training on Patterson maps of randomly placed atoms can be alleviated due to the innate structural properties of natural amino acid residues. Overall, we have designed a new deep learning approach to bypass the and have achieved a successful solution on simple dipeptide examples.
and their corresponding Patterson maps, derived from existing Protein Data Bank (PDB; Berman2. Methods
2.1. Choice of model architecture
Because of the shape of our et al., 2020) and are often referred to as encoders. But we do not want our model to produce just one or a vector of values for a given input. Instead, we want to produce outputs of the same dimensionality as our inputs. Therefore, a natural choice of model architecture is the Unet, which was first introduced for a biosciences application (Ronneberger et al., 2015) and is an example of an encoder–decoder network. In particular, almost all layers of our model are convolutional, except for those that perform downsampling and upsampling operations.
inputs and electrondensity outputs, we use the well known convolutional neural network model architecture. Such models are most commonly used for image recognition and classification purposes. Thereby, they usually contain some FC layers at the very end of the model (WangThus, our current model architecture is an extension of the architecture proposed by Hurwitz. Although it is a 3D convolutional Unet as well, we also make use of residual connections (He et al., 2016b) which have seen widespread use in convolutional neural networks. It is divided into three phases and is implemented in the PyTorch machine learning framework (Paszke et al., 2019) for the Python programming language. A representation of the model, in which the depth dimension of the Patterson and electrondensity maps is not displayed, is shown in Fig. 2.
2.2. Detailed description of current model architecture
The phases of our model are the Encoding, Learning Features and Decoding phases. The Encoding phase consists of two 7×7×7 convolutional layers, both followed by batch normalization and a ReLU activation. Afterwards, a max pooling operation with kernel size 2×2×2 and stride 2 is used to reduce the height, width and depth dimensions by a factor of 2. The Learning Features phase consists of a sequence of several residual blocks. Each of these blocks consists of a 7×7×7 convolutional layer with batch normalization and ReLU activation, followed by another 7×7×7 convolutional layer with batch normalization but no activation. [In later versions of our model, we introduced a squeeze and excitation block (Hu et al., 2018) at this point, applied with the channel dimension reduced by a factor of 2. This is a method to reweight each channel based on the global information present in the channel.] The residual skip connection is then applied, followed by a ReLU activation. At the end of this phase, a naive upsampling operation is used to increase the height, width and depth dimensions by a factor of 2, restoring the original dimensions. The Decoding phase consists of two 5×5×5 convolutional layers. The first is followed by batch normalization and a ReLU activation, while the second produces the model predictions. Since all elements of the target outputs were constrained to be in the range [−1, 1], we apply a final tanh activation function after this layer. There are about three million trainable parameters in our original convolutional Unet model. See the supporting information for more details on the model architecture.
In all convolutional layers, the input is `same' padded to preserve dimensionality. The convolutional layers in the Encoding and Learning Features phases are padded using PyTorch's circular padding scheme to account for the periodic nature of the input Patterson maps. Furthermore, all convolutional layers were initialized using the kaiming_normal function of the default torch.nn module, which uses the He initialization scheme with a normal distribution (He et al., 2015). Also, all convolutional layers except the last have multiple output channels. Currently, all inputs and outputs to the convolutional neural network are assumed to be of a constant cubic size. The loss function used to compare our model's output predictions with the true electrondensity maps was the meansquared error function. Given an input p, a corresponding electrondensity map e and current model parameters ,
2.3. Datasets and data generation process
We generated several synthetic datasets that we used to train and test our machine learning model. All of the input and output maps we generated for our datasets were derived from actual PDB entries of proteins solved by Xray crystallography (Berman et al., 2004). A total of ∼24 000 such protein structures were curated, based on criteria such as sequence length, to form the basis for the examples of all our datasets. For each of these, nonprotein atoms in the PDB file were removed, and then dipeptides of adjacent amino acid residues were randomly extracted to a new file with a fixed Since one issue leading to potential ambiguity in interpreting Patterson maps is their invariance to translation of the corresponding electron density (Hurwitz, 2020), we decided to center each such dipeptide according to its center of mass in its Although this meant that our model's predicted electron densities would always be roughly centered in the we did not consider this to be a particular issue with respect to realism. Structure factors for each of the dipeptide examples were then generated to 1.5 Å resolution, and electrondensity and Patterson maps for each example were obtained from those structure factors. These maps were then converted into PyTorch tensors. Finally, we normalized the values in each of the tensors to be in the range [−1, 1] after determining the maximum and minimum values present in each. Additional details of our data generation process can be found in the supporting information.
Another issue brought up by Hurwitz regarding ambiguity in ). One method to address this ambiguity is always to combine a set of atoms with the set of its centrosymmetryrelated atoms into a single example output. However, this workaround requires additional postprocessing to separate the original and centrosymmetric densities for each of the model's predictions. But here we are working with molecular structures rather than randomly placed data, so we can exploit certain known properties. In particular, we know that all proteinogenic amino acids are found in only one possible enantiomeric configuration (Helmenstine, 2021). Although the mirrorimage symmetry of enantiomers is not exactly the same as centrosymmetry, we still hypothesized that the fixed of amino acids was close enough to cause our model to learn a standard stereochemistry, thus allowing us to use individual dipeptide electron densities instead of applying Hurwitz's workaround.
interpretation is the fact that an electron density will always have the exact same as its corresponding centrosymmetryrelated electron density (Hurwitz, 20202.4. Training and analysis
We used the Pearson x_{i} and y_{i} of the predicted and actual electrondensity map tensors, respectively, as well as their average values and :
as an additional metric to compare our model's predictions with the corresponding desired electron densities during training. This metric involves all of the relevant elementsWe also performed phase error analysis for our model's posttraining predictions using the cphasematch program of the CCP4 program suite (Cowtan, 2011; Agirre et al., 2023). We performed all our training runs on a single NVIDIA GeForce GTX Titan GPU, making use of PyTorch's CUDA library (NVIDIA et al., 2020).
3. Results
3.1. Dialanine experiments
As in previous work (Hurwitz, 2020), we have implemented cases using synthetic training and test sets for the successful interpretation of Patterson functions using a convolutional neural network (CNN). As stated above, these are generated from a few thousand instances of dipeptide configurations taken from a randomly selected set of PDB entries. For our first dataset, referred to here as Dataset 1a, we converted the extracted dipeptides to dialanine by truncation at the C_{β} atom and renaming. This was done to simplify the initial problem, as alanine is among the smallest and simplest proteinogenic amino acids. To simplify the problem further, we placed all of the dialanines in a P1 with cubic dimensions. We also considered Hurwitz's suggestion for eliminating yet another source of ambiguity in interpretation – the fact that, since a is periodic and its peaks correspond to vectors, it can be ambiguous from which corner of the a originates (Hurwitz, 2020). Thus, for this initial dataset, we artificially enlarged the unit cells of our dialanine examples with enough empty space on all sides so that any in the resulting Patterson maps could only originate from the corner that it is closest to.
A total of 28 470 training and 3147 validation/test examples of unitcell size 20 × 20 × 20 Å were generated. As already stated, the loss function was originally the simple meansquare error between the predicted maps and the original electrondensity maps. We also calculated the average Pearson
between the central 6 × 6 × 6 Å regions of the learned and original electrondensity maps over the set of validation examples after every training epoch, as the remaining portions of the maps were empty.Following tests using a learning rate finder tool, we settled on a final learning rate schedule of a 0.86 Adam optimizer (Kingma & Ba, 2015), predictions on the test set were created using the learned weights. The CNN was able to produce correct solutions, as demonstrated by comparison of the predictions with the corresponding known electron densities (Fig. 3). The median for these test set predictions relative to the corresponding known dialanine densities after training was over 0.9, indicating success. This also more or less confirmed our hypothesis about centrosymmetryinduced ambiguity in interpretation.
for the first 12 training epochs, followed by a 0.9991 for the remaining epochs. After training for 1000 epochs with a batch size of 146 (effectively 438 due to gradient accumulation) using theHowever, actual crystallographic protein structures are not surrounded by empty space, so we knew that continuing to eliminate ambiguity completely in the ).
origin by surrounding our dipeptides with significant amounts of empty space would not be a viable option if we wanted our model to work on realworld data. Since organic molecules are structured rather than consisting of randomly placed atoms, we predicted that our model could handle some ambiguity in the origin after greatly reducing the amount of empty space we introduced. This hypothesis was shown to be correct by the high correlations in all the tests we performed. In fact, reducing the cell size and thus making the origin definition harder actually helped the training efficacy for Dataset 1b, although for 1b the training set size was also increased, which is also likely to have contributed to the improved performance (see Table 1

Starting with Dataset 1b, we calculated correlation coefficients using the entire boxes rather than only the central regions, as accounting for a significant amount of surrounding empty space was no longer necessary. For both Datasets 1a and 1b, we calculated the average phase error over all predictions on validation set examples at various resolutions and created the plot shown on the left in Fig. 4. There are clearly better phase error results on the predictions for Dataset 1b. Since the average phase errors remain low even at high resolution, we conclude that our model's predictions on Dataset 1b match even the finer details of the corresponding actual electron densities in general. This is not surprising given the simple structure of alanine residues. For both datasets, we also created a plot of the fraction of validation set predictions for which the phase error is <60° at various ranges of resolution, as shown on the right in Fig. 4. For Dataset 1a, we see a gradual decrease in this fraction at higher bins of resolution. However, for Dataset 1b we still have a very high fraction of predictions with phase error <60°, even at the highest ranges of resolution. Also, for both datasets the fraction of predictions with low phase error is very high at the lowest bins of resolution. Overall, this shows that the model is able to reproduce the general shape of the desired electron densities on both datasets, but is able to produce higherresolution predictions (i.e. it more accurately generates finer details) after training on Dataset 1b.
3.2. Dipeptide experiment
After our initial success on the dialanine datasets, we switched to Dataset 2, consisting of dipeptide examples where each dipeptide could be any of the 20 standard proteinogenic amino acids rather than just alanine. The examples we produced for Dataset 2 were slightly larger than for the dialanine datasets, at 12 × 12 × 12 Å, to limit the number of dipeptides containing larger amino acids that would be rejected due to spatial clashes with neighboring unit cells. As a result of this greatly increased variability in our examples, this is considered to be a much more difficult problem. With the same model as we used in the dialanine experiments, we found that the validation set metrics plateaued after relatively few training epochs. Thus, we decided to increase our model complexity and thereby address the increased problem complexity.
The improvement was done by increasing the number of channels in our convolutional layers. Layers with 23 original channels were increased to 25 channels and layers with 25 original channels were increased to 30. We increased the number of residual blocks in the Learning Features phase from seven to eight. We also introduced squeeze and excitation blocks into the residual blocks and switched to the AdamW optimizer (Loshchilov & Hutter, 2019) with a weight decay parameter of 3 × 10^{−2}. Furthermore, we began augmenting the loss function by adding 1 minus the calculated Pearson to the MSE loss for each training example to produce a weighted combined loss function (with the weight heavily in favor of the MSE loss). We also experimented with introducing Inception v1 modules (Szegedy et al., 2015) in place of simple convolutional layers in our residual blocks, but found slightly worse performance than without. This suggests that, given our current problem, the 7×7×7 kernels we use in the Learning Features phase are the optimal size.
We also further increased the size of both the training and validation sets for this dataset, which ended up with 424 096 training and 47 126 test examples. After training for 200 epochs with a batch size of 58 (effectively 928), we obtained a median test set Pearson .
of about 0.87, also indicating success. We also slightly modified the learning rate schedule, which now has a 0.91 for the first 18 epochs and a 0.9989 afterwards. Several examples of predictions made by the trained model on Dataset 2 are shown in Fig. 5After performing phase error analysis on the posttraining validation set predictions for this dataset, we once again plotted average prediction phase errors against resolution, as shown in Fig. 6. This plot shows that, in this much more difficult problem, the current model has difficulty reproducing the finer details of the corresponding electron densities. This was expected as we are now working with all of the possible proteinogenic amino acid residues, almost all of which are considerably more complex in structure than alanine. We also generated another plot of the fraction of predictions with phase error <60° at various ranges of resolution, also shown in Fig. 6. The fraction begins decreasing at lower resolution bins than for Dataset 1a, which shows that phase errors tend to become higher than 60° at lower ranges of resolution than those for the dialanine dataset predictions. However, it also shows that only a very small fraction of the predictions can be considered completely unusable. The model is still able to reproduce the overall shape of the desired electron density the vast majority of the time. A summary of our experimental results, including median Pearson correlation coefficients and median phase errors of validation set predictions after training, is shown in Table 1.
4. Challenges and limitations
We have shown that, at least for simple cases, our CNNbased approach is viable for directly determining structures from Patterson maps. Our eventual goal is to design an algorithmic approach for bypassing the crystallographic
that goes beyond our synthetic cases to more realistic ones. Several challenges will have to be overcome along the way, some of which have some theoretical bases for implementation and some of which need algorithmic development. We also expect that scalability will be a challenge. We may have to look into recent advances in convolutional model architecture or even begin implementing custom convolutional layers. These concerns may also lead us to pursue alternative or novel model architectures in place of our current convolutional Unet setup, which may in turn lead us to approach our problem from a different angle than predicting electron densities from corresponding Patterson maps.We found that, unlike what was suggested in related work (Hurwitz, 2020), we do not need to disallow ambiguity in the origin completely when working with our simulated peptide data. However, our most recent datasets still have more empty space around the electron densities than would be considered realistic. Thus, we want to see if our model continues to be able to train as we increase the realism of our datasets.
The current model architecture, along with our current dataset sizes, already requires significant training time overhead with our current computing resources. However, true protein crystal unit cells are still substantially larger than those of the examples in the datasets we have developed. It is also known that convolutional layers scale poorly (order n^{3}) with input size (Notchenko et al., 2018). Thus, we understand that scaling our model to solve realistic protein structures will be a challenge and may require introducing sparsity into our convolutional layers, as in previous work (Notchenko et al., 2018). Alternatively, or in addition, we may have to begin using dilated convolutions (Yu & Koltun, 2016) in our convolutional layers, which we previously did not consider to be beneficial for our unique problem.
Our synthetic datasets currently incorporate many simplifying limitations. For example, we trained our model on examples that all have the same cubic unitcell sizes, but realworld density maps obviously can have different sizes. Although there are methods to include differently sized inputs in CNNs (He et al., 2014), this is even simpler in our case as we use a Unet architecture that does not end with one or more fully connected layers. Thus, we will not need to change our model architecture to allow for inputs and corresponding outputs of varying rectangular unitcell sizes. On the other hand, the PyTorch framework requires that all examples within a batch must have the same size, so we need to find a workaround for this issue. Furthermore, our current data generation process assumes that all unitcell angles are exactly 90°. We will also eventually want to create datasets with variable true unitcell angles (the generated PyTorch tensors will still be rectangular) to see if our model can also be robust to this kind of variation, and potentially implement changes to address this.
All of the experiments performed thus far have been in P1, with no internal symmetry considered. Methods that best include cyclic and dihedral symmetries in CNNs with minimal increases in effective parameters need to be explored. We will adapt our fabricated test cases to include C2, C4, D2 and/or D4 symmetries, e.g. by modifying the convolutional layers in our neural network and verifying their functionality in solving Patterson maps.
We can also look to introduce additional known data to help our model, which currently only takes entire Patterson maps as input. This is in stark contrast to the approach of AlphaFold2, the most important recent related result (Jumper et al., 2021; Tunyasuvunakool et al., 2021). In particular, we do not currently make any use of the actual identities and order of the amino acid residues in each example. We could embed sequence data and other information in a 3D tensor and thus provide more than one channel to our model inputs. For example, since convolutional models are known to be robust to the rotational orientation of their inputs (Goodfellow et al., 2016), we could provide the n most common rotamers of the in an example as additional channels.
Another direction we could pursue is to replace some phases of our current convolutional Unet model with new architectures. Although they can be considered to be 3D images, Patterson maps do not actually exhibit any spatial locality, so immediately performing convolution on them may not be the most theoretically sound approach. Thus, we could replace the Encoding phase, or both the Encoding and Learning Features phases, with a 3D vision transformer model (Chen et al., 2021). Additionally, using simple convolutional layers to produce our model outputs could be the reason why our predicted electron densities tend to be too smooth and lacking in finer details. To address this, we can replace the decoding phase of our model with a diffusion decoder (Ramesh et al., 2022) or even another transformer.
Finally, for the proofofconcept work described here, we do not claim that our approach is the best way of actually solving new simple crystal structures. Our resolution is slightly worse than that required for most SHELXT (Sheldrick, 2015). It seems that could also work. Our longer term goal is to develop a machine learning framework for larger scale, more difficult cases.
but in fact we could solve a couple of trial examples using5. Conclusion
Overall, we have solved Patterson maps from synthetic datasets consisting of short
derived from existing PDB entries. This was achieved by the successful training of a convolutional Unet neural network. We have shown the viability of such an approach for solving the structures of simple systems, and have also identified several potential avenues for further research on using neural networks to help solve the crystallographic phase problem.6. Related literature
For further literature related to the supporting information, see Eastman et al. (2017), Read & Schierbeek (1988), Winn et al. (2011) and Wojdyr (2022).
Supporting information
Additional details of the process. DOI: https://doi.org/10.1107/S2052252523004293/mf5063sup1.pdf
Footnotes
‡These authors contributed equally.
Acknowledgements
We thank Chen Dun for helpful discussions.
Funding information
Funding for this research was provided by: Welch Foundation (grant No. C2118 to George N. Phillips Jr and Anastasios Kyrillidis); National Science Foundation, Directorate for Biological Sciences (grant No. 1231306 to George N. Phillips Jr); Rice University (Faculty Initiative award to George N. Phillips Jr and Anastasios Kyrillidis); NSF FET:Small (award no. 1907936); NSF MLWiNS CNS (award no. 2003137, in collaboration with Intel); NSF CMMI (award no. 2037545); NSF CAREER (award no. 2145629); a Rice InterDisciplinary Excellence Award (IDEA); an Amazon Research Award; a Microsoft Research Award.
References
Agirre, J., Atanasova, M., Bagdonas, H., Ballard, C. B., Baslé, A., BeilstenEdmands, J., Borges, R. J., Brown, D. G., BurgosMármol, J. J., Berrisford, J. M., Bond, P. S., Caballero, I., Catapano, L., Chojnowski, G., Cook, A. G., Cowtan, K. D., Croll, T. I., Debreczeni, J. É., Devenish, N. E., Dodson, E. J., Drevon, T. R., Emsley, P., Evans, G., Evans, P. R., Fando, M., Foadi, J., FuentesMontero, L., Garman, E. F., Gerstel, M., Gildea, R. J., Hatti, K., Hekkelman, M. L., Heuser, P., Hoh, S. W., Hough, M. A., Jenkins, H. T., Jiménez, E., Joosten, R. P., Keegan, R. M., Keep, N., Krissinel, E. B., Kolenko, P., Kovalevskiy, O., Lamzin, V. S., Lawson, D. M., Lebedev, A. A., Leslie, A. G. W., Lohkamp, B., Long, F., Malý, M., McCoy, A. J., McNicholas, S. J., Medina, A., Millán, C., Murray, J. W., Murshudov, G. N., Nicholls, R. A., Noble, M. E. M., Oeffner, R., Pannu, N. S., Parkhurst, J. M., Pearce, N., Pereira, J., Perrakis, A., Powell, H. R., Read, R. J., Rigden, D. J., Rochira, W., Sammito, M., Sánchez Rodríguez, F., Sheldrick, G. M., Shelley, K. L., Simkovic, F., Simpkin, A. J., Skubak, P., Sobolev, E., Steiner, R. A., Stevenson, K., Tews, I., Thomas, J. M. H., Thorn, A., Valls, J. T., Uski, V., Usón, I., Vagin, A., Velankar, S., Vollmar, M., Walden, H., Waterman, D., Wilson, K. S., Winn, M. D., Winter, G., Wojdyr, M. & Yamashita, K. (2023). Acta Cryst. D79, 449–461. CrossRef IUCr Journals Google Scholar
Berman, H., Henrick, K. & Nakamura, H. (2004). Nat. Struct. Mol. Biol. 10, 980. CrossRef Google Scholar
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Chen, J., He, Y., Frey, E. C., Li, Y. & Du, Y. (2021). arXiv: 2104.06468. Google Scholar
Cowtan, K. (2011). cphasematch. https://www.ccp4.ac.uk/html/cphasematch.html. Google Scholar
Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L.P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R. & Pande, V. S. (2017). PLoS Comput. Biol. 13, e1005659. Web of Science CrossRef PubMed Google Scholar
Fienup, J. R. (1982). Appl. Opt. 21, 2758–2769. CrossRef CAS PubMed Web of Science Google Scholar
Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. Cambridge, Massachusetts, USA: MIT Press. https://www.deeplearningbook.org. Google Scholar
Guo, Y., Wu, Y., Li, Y., Rao, X. & Rao, C. (2022). Mon. Not. R. Astron. Soc. 510, 4347–4354. CrossRef Google Scholar
He, H., Fang, H., Miller, M. D., Phillips, G. N. & Su, W.P. (2016a). Acta Cryst. A72, 539–547. CrossRef IUCr Journals Google Scholar
He, H. & Su, W.P. (2015). Acta Cryst. A71, 92–98. Web of Science CrossRef IUCr Journals Google Scholar
He, K., Zhang, X., Ren, S. & Sun, J. (2014). Computer Vision – ECCV 2014, pp. 346–361. Cham: Springer International Publishing. Google Scholar
He, K., Zhang, X., Ren, S. & Sun, J. (2015). IEEE International Conference on Computer Vision (ICCV 2015), pp. 1026–1034. New York: IEEE Press. Google Scholar
He, K., Zhang, X., Ren, S. & Sun, J. (2016b). IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 770–778. New York: IEEE Press. Google Scholar
Helmenstine, A. M. (2021). Amino Acid Chirality. https://www.thoughtco.com/aminoacidchirality4009939. Google Scholar
Hu, J., Shen, L. & Sun, G. (2018). IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp. 7132–7141. New York: IEEE Press. Google Scholar
Hurwitz, D. (2020). arXiv: 2003.13767. Google Scholar
Jin, S., Miller, M. D., Chen, M., Schafer, N. P., Lin, X., Chen, X., Phillips, G. N. & Wolynes, P. G. (2020). IUCrJ, 7, 1168–1178. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., RomeraParedes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021). Nature, 596, 583–589. Web of Science CrossRef CAS PubMed Google Scholar
Kappeler, A., Ghosh, S., Holloway, J., Cossairt, O. & Katsaggelos, A. (2017). IEEE International Conference on Image Processing (ICIP 2017), pp. 1712–1716. New York: IEEE Press. Google Scholar
Karle, J. & Hauptman, H. (1950). Acta Cryst. 3, 181–187. CrossRef IUCr Journals Web of Science Google Scholar
Kingma, D. P. & Ba, J. (2015). arXiv:1412.6980. Google Scholar
Kingston, R. L. & Millane, R. P. (2022). IUCrJ, 9, 648–665. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Lattman, E. & Loll, P. (2008). Protein Crystallography. Baltimore, Maryland, USA: Johns Hopkins University Press. Google Scholar
LeNail, A. (2019). J. Open Source Software, 4(33), 747. Google Scholar
Loshchilov, I. & Hutter, F. (2019). 7th International Conference on Learning Representations (ICLR 2019), New Orleans, Louisiana, USA, 6–9 May 2019. https://openreview.net/forum?id=Bkg6RiCqY7. Google Scholar
Notchenko, A., Kapushev, Y. & Burnaev, E. (2018). Analysis of Images, Social Networks and Texts, pp. 245–254. Cham: Springer International Publishing. Google Scholar
NVIDIA , Vingelmann, P. & Fitzek, F. H. (2020). CUDA. Release 10.2.89. https://developer.nvidia.com/cudatoolkit. Google Scholar
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S. (2019). Adv. Neural Inf. Process. Syst. 32, 8024–8035. Google Scholar
Patterson, A. L. (1934). Phys. Rev. 46, 372–376. CrossRef CAS Google Scholar
Petsko, G. & Ringe, D. (2008). Protein Structure and Function. Oxford University Press. Google Scholar
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. (2022). arXiv:2204.06125. Google Scholar
Read, R. J. & Schierbeek, A. J. (1988). J. Appl. Cryst. 21, 490–495. CrossRef CAS Web of Science IUCr Journals Google Scholar
Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D. & Ozcan, A. (2018). Light Sci. Appl. 7, 17141–17141. CrossRef CAS PubMed Google Scholar
Robbins, H. E. & Monro, S. (1951). Ann. Math. Stat. 22, 400–407. CrossRef Google Scholar
Ronneberger, O., Fischer, P. & Brox, T. (2015). Medical Image Computing and ComputerAssisted Intervention – MICCAI 2015, edited by N. Navab, J. Hornegger, W. M. Wells & A. F. Frangi, pp. 234–241. Cham: Springer International Publishing. Google Scholar
Sayre, D. (1952). Acta Cryst. 5, 60–65. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. & Rabinovich, A. (2015). IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), pp. 1–9. New York: IEEE Press. Google Scholar
Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A., Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A., Potapenko, A., Ballard, A. J., RomeraParedes, B., Nikolov, S., Jain, R., Clancy, E., Reiman, D., Petersen, S., Senior, A. W., Kavukcuoglu, K., Birney, E., Kohli, P., Jumper, J. & Hassabis, D. (2021). Nature, 596, 590–596. Web of Science CrossRef CAS PubMed Google Scholar
Wang, H., Yang, W., Wang, J., Wang, R., Lan, L. & Geng, M. (2020). Proceedings of the 28th ACM International Conference on Multimedia, pp. 2409–2418. New York: Association for Computing Machinery. Google Scholar
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson, K. S. (2011). Acta Cryst. D67, 235–242. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wojdyr, M. (2022). J. Open Source Software, 7, 4200. Google Scholar
Yu, F. & Koltun, V. (2016). arXiv:1511.07122. Google Scholar
Zalevsky, Z., Dorsch, R. G. & Mendlovic, D. (1996). Opt. Lett. 21, 842–844. CrossRef PubMed CAS Google Scholar
This is an openaccess article distributed under the terms of the Creative Commons Attribution (CCBY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.