research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 10| Part 6| November 2023| Pages 671-677
ISSN: 2052-2525

A new route for the syntheses of coordination polymers using magnetic influence: syntheses, crystal structures and fluorescence properties

crossmark logo

aLiaoning Petrochemical University, Fushun, Liaoning 113001, People's Republic of China
*Correspondence e-mail: guanlei@lnpu.edu.cn

Edited by M. Eddaoudi, King Abdullah University, Saudi Arabia (Received 18 October 2022; accepted 2 September 2023; online 18 September 2023)

Five coordination polymers [TM1(absa)(H2O)4]n and [TM2(absa)(bipy)(H2O)]n [TM1 = Zn (1), Co (2); TM2 = Zn (3), Co (4), Cu (5); Na2absa = 5,5′-azobissalicylic acid disodium salt; bipy = 4,4′-bipyride] were synthesized by solvent evaporation under a magnetic field. It is evident that magnetic fields bring significant and noticeable changes to the absa2− ligand orientation and the component movement behaviors to construct coordination polymers. The absa2− ligands bind to the metal ions in bridging coordination mode through the carboxyl­ate groups, in addition to the bipy molecules adopting bridging modes. Photoluminescence measurements indicate that the emissions of compounds 15 are at 626, 600, 632, 658 and 682 nm in the solid state, respectively.

1. Introduction

The self-assembly of coordination compounds is induced by the coordination bonds between metal cations and ligands, as well as various weak intermolecular interactions, such as hydrogen bonding and ππ interactions etc. (Chen & Liu, 2015[Chen, X. M. & Liu, G. (2015). Chem. Eur. J. 8, 4811-4817.]; Robson, 2000[Robson, R. (2000). J. Chem. Soc. Dalton Trans. pp. 3735-3744.]; Byrne et al., 2008[Byrne, P., Lloyd, G. O., Anderson, K. M., Clarke, N. & Steed, J. W. (2008). Chem. Commun. pp. 3720-3722.]; Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]; Huang, 2003[Huang, L. M. (2003). Microporous Mesoporous Mater. 58, 105-114.]). The self-assembly of these components in solution can construct varied coordination polymers and form diverse topological networks with high dimensionalities (Erxleben, 2003[Erxleben, A. (2003). Coord. Chem. Rev. 246, 203-228.]; Ghosh & Bharadwaj, 2004[Ghosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293-2298.]; He et al., 2009[He, Y. K., An, H. Y. & Han, Z. (2009). Solid State Sci. 11, 49-55.]). However, functional groups, coordination modes, charges and acidity have great effects on the final architectures, in addition to the ligands and metal cations (Kirillov, 2011[Kirillov, A. M. (2011). Coord. Chem. Rev. 255, 1603-1622.]; Zaworotko, 2010[Zaworotko, M. J. (2010). J. Am. Chem. Soc. 132, 7821-7821.]; Bitzer & Kleist, 2019[Bitzer, J. & Kleist, W. (2019). Chem. Eur. J. 25, 1866-1882.]). Therefore, the final structrual topologies induced by the weak interactions are not always unambiguously predictable and controllable. Recently, efforts have been focused on reliable synthetic strategies with the aim of obtaining predictable architectures with unusual topologies and physical properties (Lee et al., 2017[Lee, E., Seo, S., Lee, S. S. & Lindoy, L. F. (2017). Coord. Chem. Rev. 348, 121-170.]; Williams et al., 2007[Williams, K. A., Boydston, A. J. & Bielawski, C. W. (2007). Chem. Soc. Rev. 36, 729-744.]). The magnetic field acts as a special driving force. The dynamical properties of the aqueous solution and colloidal system are changed under a magnetic field (Sheibani et al., 2003[Sheibani, H., Dost, S., Sakai, S. & Lent, B. (2003). J. Cryst. Growth, 258, 283-295.]). Additionally, the phase equilibrium relationships between components are broken (Hermann et al., 2013[Hermann, R., Gerbeth, G. & Priede, J. (2013). Eur. Phys. J. Spec. Top. 220, 227-241.]; Gelfgat, 1999[Gelfgat, Y. M. (1999). J. Cryst. Growth, 198-199, 165-169.]). Therefore, the use of magnetic influence has received considerable attention and has been applied in many fields, such as nanomaterials, biomedicine, environmental protection, metallurgy and semiconductors (Lin et al., 2014[Lin, D., Deng, B. W., Sassman, S. A., Hu, Y. W., Suslov, S. & Cheng, G. J. (2014). RSC Adv. 4, 18621-18626.]; Serantes et al., 2018[Serantes, D., Chantrell, R., Gavilán, H., Morales, M. D. P., Chubykalo-Fesenko, O., Baldomir, D. & Satoh, A. (2018). Phys. Chem. Chem. Phys. 20, 30445-30454.]; Cépas et al., 2002[Cépas, O., McKenzie, R. H. & Merino, J. (2002). Phys. Rev. B, 65, 100502.]). It has been found that a magnetic field has unexpected effects on the crystallization behavior of drug molecules, preparation of nano-materials, growth of bulk single crystals and the processes of chemical reactions (Hermann et al., 2013[Hermann, R., Gerbeth, G. & Priede, J. (2013). Eur. Phys. J. Spec. Top. 220, 227-241.]; Ronco & Ferraudi, 1990[Ronco, S. & Ferraudi, G. (1990). J. Chem. Soc. Dalton Trans. pp. 887-889.]). Consequently, our strategy – in order to gain control of and utilize the weak intermolecular interactions in solution – is to employ a controllable magnetic field as a driving force for constructing target products.

Herein, Na2absa was employed as the ligand in the design and construction of various architectures. It has three distinctive characteristics: (1) four functional groups, which can present a diverse number of potential coordination modes, allowing for the formation of diverse topologies; (2) a rigid and long molecular structure, which can give rise to the formation of interpenetrating frameworks; and (3) a π-conjugate system, which can provide a π-surface for intermolecular interactions and can be easily affected by a magnetic field. When the Na2absa ligand was used in combination with the rigid 4,4′-bi­pyridine (bipy) building block, five transition metal coordination polymers were synthesized via solvent evaporation under a magnetic field (see below).

[Scheme 1]

2. Experimental

2.1. Materials and general measurements

The reagents and solvents employed were commercially available and used as received without further purification. Single-crystal X-ray diffraction data were collected with a Rigaku Saturn 70 CCD, a Bruker APEX-II diffractometer or a Bruker D8 VENTURE TXS PHOTON 100 equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å) using either the ω or the φω scan mode. Elemental analyses of carbon, hydrogen and nitro­gen were performed with a Perkin Elmer 240C elemental analyzer. The infrared spectra were measured by a Magna-IR 750 spectrophotometer in the 4000–400 cm−1 region (KBr pellet). Thermogravimetric analyses (TGA) were carried out on a NETZSCH STA 449C unit at a heating rate of 10°C min−1 under a nitro­gen atmosphere. Photoluminescence analyses were performed on a Perkin Elemer LS55 fluorescence spectrometer.

2.2. Syntheses of Na2absa ligand

5,5′-azobissalicylic acid (H2absa) was synthesized using procedures described in the literature (Kenawy et al., 2010[Kenawy, E. R., el-R, , Al-Deyab, S. S. & El-Newehy, M. H. (2010). Molecules, 15, 2257-2268.]). Sodium hydroxide solution (10%) was added dropwise to H2absa (0.302 g, 1 mmol) with stirring to a pH value of 5, and the reaction mixture was further stirred for 1 h at room temperature. The product was recrystallized three times and colorless crystals were collected by filtration and dried under vacuum at room temperature.

2.3. Syntheses of compounds 1 and 2

The corresponding metal nitrates (0.1 mmol) and Na2absa (0.1 mmol) were added to a vessel containing mixed solvent (5 ml of methanol and 10 ml of distilled water). The mixed solution was stirred and heated at 100°C for 3 h under a 1 T magnetic field. The solution obtained was kept in a small vial covered with parafilm at room temperature and left under a magnetic field. Block crystals were obtained after 10 days. For compound 1, IR (KBr, cm−1): 3023, 1579, 1479, 1448, 1328, 1248, 1187, 1079, 828, 789, 720, 577, 473. Calculated for C14H16N2O10Zn (%): C, 38.39; H, 3.66; N, 6.40. Found (%): C, 38.42; H, 3.82; N, 6.46. For compound 2, IR (KBr, cm−1): 3211, 1577, 1330, 1481, 1450, 1385, 1249, 1187, 1140, 1079, 853, 826, 792, 718, 677, 626, 575, 473. Calculated for C14H16N2O10Co (%): C, 38.96; H, 3.71; N, 6.49. Found (%): C, 38.90; H, 3.80; N, 6.55.

2.4. Syntheses of compounds 35

Compounds 35 were synthesized via a similar procedure used to produce compound 1 with the corresponding metal nitrates (0.1 mmol), Na2absa (0.1 mmol) and bipy (0.1 mmol). For compound 3, IR (KBr, cm−1): 3064, 1611, 1569, 1483, 1426, 1385, 1362, 1293, 1258, 1220, 1187, 1073, 832, 805, 783, 722, 642, 587, 457. Calculated for C24H18N4O7Zn (%): C, 53.35; H, 3.33; N, 10.37. Found (%): C, 53.41; H, 3.40; N, 10.35. For compound 4, IR (KBr, cm−1): 3276, 1591, 1560, 1444, 1352, 1265, 1211, 1063, 807, 673, 630, 587, 465. Calculated for C24H18N4O7Co (%): C, 52.23; H, 3.63; N, 10.16. Found (%): C, 52.20; H, 3.65; N, 10.25. For compound 5, IR(KBr, cm−1): 3066, 1569, 1477, 1436, 1379, 1328, 1254, 1185, 1071, 807, 681, 638, 587, 477. Calculated for C24H18N4O7Cu (%): C, 53.54; H, 3.35; N, 10.41. Found (%): C, 53.57; H, 3.46; N, 10.65.

2.5. Crystallographic data and structure refinements

For compounds 1, 6 and 7, the measurement device used was a Rigaku Saturn 70 CCD; scan mode: ω; data collection, cell refinement and data reduction were carried out using CrysAlisPro (Agilent, 2012[Agilent (2012). CryAlisPRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]). For compounds 24, the measurement device was a Bruker APEX-II CCD; scan mode: φω; data collection was carried out using APEX2 (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement and data reduction were carried out using SAINT (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]). For compound 5, the measurement device was a Bruker D8 VENTURE TXS PHOTON 100; scan mode: φω; data collection was carried out using APEX2 (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement and data reduction were carried out using SAINT (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]). For compounds 17, the program used to solve the structure by the dual-space method was SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and the program used to refine the structure was SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Crystallographic data were deposited in the Cambridge Crystallographic Data Centre (CCDC 2210140–2210146). The data can be obtained free of charge from https://www.ccdc.cam.ac.uk/conts/retrieving.html or on request by contacting deposit@ccdc.cam.ac.uk.

3. Results and discussion

3.1. Structural characterization

Single-crystal X-ray analysis reveals that compounds 1 and 2 have similar structures, although their space groups and unit cells are different. Therefore, only the structure of compound 1 is described in detail. Compound 1 crystallizes in the space group P21/c with the monoclinic system (Table S1 of the supporting information). The asymmetric unit comprises one Zn atom, one absa2− ligand and four coordinated water molecules [Fig. 1[link](a)]. Each Zn atom is in a distorted octahedron [Fig. 1[link](b)]. The absa2− ligands bridge with the Zn ions to generate a chain structure through the carboxyl­ate groups in a monodentate coordination fashion [Fig. 1[link](c)]. Note however that both phenol groups of the absa2− ligand are not coordinated to Zn ions which, in the protonated state, balance the charges in compound 1.

[Figure 1]
Figure 1
(a) Molecular structure of compound 1 showing the atomic numbering schemes. All hydrogen atoms, with the exception of H3 and H6, have been omitted for clarity. (b) Coordination configuration of Zn1 ion. (c) One-dimensional chain structure.

The structures of compounds 35 are similar, hence only compound 3, as an example, is described in detail. Single-crystal X-ray analysis revealed that compound 3 crystallizes in the triclinic space group P1 (Table S3). Its asymmetric unit consists of one crystallographically independent Zn atom, one absa2− ligand, one bipy molecule and one coordinated water molecule [Fig. 2[link](a)]. Each Zn atom adopts a distorted square-pyramidal coordination geometry [Fig. 2[link](b)]. The bipy molecule binds to the Zn ions, acting as a typical bridging ligand (Table S4). Each absa2− ligand binds to Zn ions in bridging mode through both monodentate carboxyl­ate groups, leaving both protonated phenol groups uncoordinated. Each bipy molecule bridges with Zn ions to form a wave-like one dimensional chain structure [Fig. 2[link](c)], and the absa2− ligands link these one-dimensional chains to generate a two dimensional network through the coordination of carboxyl­ate groups with Zn ions [Figs. 2[link](d) and 2[link](e)].

[Figure 2]
Figure 2
(a) Molecular structure of compound 3 showing the atomic numbering schemes. All hydrogen atoms, with the exception of H1 and H4, have been omitted for clarity. (b) Coordination configuration of the Zn1 ion. (c) Wave-like one-dimensional chain structure based on bipy molecules and Zn ions. (d) Bridging absa2− ligand. (e) Two-dimensional network. (f) Four-connected framework.

To gain better insight into the framework structure, a topological analysis was carried out. Zn atoms bind to two absa2− and two bipy ligands, and thus can be simplified as four-connected nodes, with the absa2− and bipy ligands acting as connecting rods. The overall topology can be described as a four-connected framework [Fig. 2[link](f)]. From a topological point of view, it exhibits a two-dimensional layered net with the Schläfli symbol (43·63).

3.2. Comparison between compounds 15

Compounds 15 were synthesized by the application of a magnetic field. Compounds 1 and 2 have similar one-dimensional structures, which crystallize in the space group P21/c with the monoclinic system, and space group P43212 with the tetragonal system, respectively. Compounds 35 have similar two-dimensional frameworks, which crystallize in the triclinic space group P1, and monoclinic space group P21/n. Note that their architectures are similar, but there is a slight difference in the lattice packing. Magnetic fields can cause the interesting phenomena observed in this work. Therefore, it is necessary to compare the magnetic field effects in the packings and framework geometries. As reported in the literature, on the one hand, the presence of a magnetic field has a significant influence on the intermolecular interactions of coordination polymers (Zubir et al., 2018[Zubir, M., Nasution, H. I. & Sudarma, T. F. (2018). Russ. J. Appl. Chem. 91, 1867-1873.]). The molecules with π-conjugated systems lie parallel to the substrate for the sample grown under a magnetic field and slightly tilted for the sample without a magnetic field (Kolotovska et al., 2006[Kolotovska, V., Friedrich, M., Zahn, D. R. T. & Salvan, G. (2006). J. Cryst. Growth, 291, 166-174.]); on the other hand, there are noticeable changes in the morphology of irregular agglomerates at zero field to regular crystals with smooth surfaces under a magnetic field (Zubir et al., 2016[Zubir, M., Hamasaki, A., Iiyama, T., Ohta, A., Ohki, H. & Ozeki, S. (2016). Chem. Lett. 45, 362-364.]). Therefore, in contrast to zero magnetic field, a magnetic field can bring crystal orientation and morphology changes of coordination polymers, and increase the symmetry of crystal structures (Zubir et al., 2018[Zubir, M., Nasution, H. I. & Sudarma, T. F. (2018). Russ. J. Appl. Chem. 91, 1867-1873.]). In addition, single-crystal X-ray analyses reveal that the average bond lengths of Zn—O and Co—O in compounds 1 and 2 are 2.091 and 2.179 Å (Table S2), and 2.012 Å (Zn—O) and 2.114 Å (Co—O) in compounds 3 and 4 (Table S4), respectively. Magnetic fields can strengthen the bonding interaction through induction interactions (Hong et al., 2019[Hong, D. L., Luo, Y. H., He, X. T., He, C., Zheng, Z. Y., Su, S., Wang, C., Wang, J. Y., Chen, C. & Sun, B. (2019). J. Phys. Chem. C, 123, 15230-15235.]). As a consequence, Zn—O and Co—O bonds in compounds 3 and 4 are stronger than those in compounds 1 and 2. This phenomenon may be attributed to the different interactions of the magnetic field with paramagnetic centers and antimagnetic organic molecules (Hong et al., 2019[Hong, D. L., Luo, Y. H., He, X. T., He, C., Zheng, Z. Y., Su, S., Wang, C., Wang, J. Y., Chen, C. & Sun, B. (2019). J. Phys. Chem. C, 123, 15230-15235.]), which provide an effective pathway for structural design of molecules, and even desired physical–chemical properties.

3.3. Influence of magnetic fields

Magnetic fields have been applied in materials research fields and achieved unexpected results (Gelfgat, 1999[Gelfgat, Y. M. (1999). J. Cryst. Growth, 198-199, 165-169.]; Lin et al., 2014[Lin, D., Deng, B. W., Sassman, S. A., Hu, Y. W., Suslov, S. & Cheng, G. J. (2014). RSC Adv. 4, 18621-18626.]; Serantes et al., 2018[Serantes, D., Chantrell, R., Gavilán, H., Morales, M. D. P., Chubykalo-Fesenko, O., Baldomir, D. & Satoh, A. (2018). Phys. Chem. Chem. Phys. 20, 30445-30454.]). Introduction of a magnetic field can cause changes in magnetic orientation, mass-transport and concentration. In the preparation and self-assembly behavior, it can play an important role in increasing the directionality and collision probability of moving microparticles, and hence generate new materials (Xing et al., 2009[Xing, G., Jia, S. L. & Shi, Z. Q. (2009). Carbon, 47, 2112-2142.], 2007[Xing, G., Jia, S. L. & Shi, Z. (2007). Carbon, 45, 2584-2588.]). Consequently, the morphologies, structures, sizes and properties of materials can be drastically modified, and the purity and crystallinity of materials have both shown marked improvement (Xing et al., 2007[Xing, G., Jia, S. L. & Shi, Z. (2007). Carbon, 45, 2584-2588.]; Wu et al., 2005[Wu, M. Z., Xiong, Y., Jia, Y. S., Niu, H. L., Qi, H. P., Ye, J. & Chen, Q. (2005). Chem. Phys. Lett. 401, 374-379.]). The induction of the magnetic field is suggested to be a promising method for the preparation of novel structures. Therefore, we propose the introduction of a magnetic field into the crystal synthetic approach.

As is known, water is an important polar solvent for chemical reactions, in which electrolytes can be dissolved to form anions and cations (Li et al., 2008[Li, H. X., Xiong, M. W., Zhang, F., Huang, J. L. & Chai, W. (2008). J. Phys. Chem. C, 112, 6366-6371.]). In solution, ligand and metal cations are affected by the thermal movement of water molecules around them, and they move and collide irregularly. Therefore, the self-assembly of ligands and metal cations was induced by the intermolecular weak interactions and coordination bonds to construct the coordinaiton compounds (Lu et al., 2003[Lu, T. B., Xiang, H., Luck, R. L., Mao, Z. W., Chen, X. M. & Ji, L. (2003). Inorg. Chim. Acta, 355, 229-241.]). However, it is emphasized that the different structural characteristics of the coordination polymers can be mainly attributed to two main factors in this work. On the one hand, magnetic effect is essential for the well aligned orientation of aromatic ligand molecules (Morii et al., 2005[Morii, N., Kido, G., Konakahara, T. & Morii, H. (2005). Biomacromolecules, 6, 3259-3266.], 2004[Morii, N., Kido, G., Suzuki, H., Nimori, S. & Morii, H. (2004). Biomacromolecules, 5, 2297-2307.]). In addition, a constant magnetic field influences both nucleation and growth of crystals of coordination polymers in a convection-free environment (Gavira & García-Ruiz, 2009[Gavira, J. A. & García-Ruiz, J. M. (2009). Cryst. Growth Des. 9, 2610-2615.]). When the linear magnetic field is applied, the planes of the π-system in aromatic ligands are theoretically expected to orientate only perpendicular to the magnetic field in divergent directions, and the movement behaviors of metal cations and ligand anions are changed. The orientation and movement behaviors under a magnetic field can make the collision probability of the components in the specific direction much higher than other directions, which in turn affects the packing and coordination modes of the ligands with the metal cations (Li et al., 2017[Li, J. X., Wang, Y. J., Wei, Q. P., Xie, Y. N., Long, H. Y., Deng, Z. J., Ma, L., Yu, Z. M., Jiang, Y. L., Hu, N. X. & Zhou, K. (2017). Surf. Coat. Technol. 324, 413-418.]). It would be preferable to generate crystal nucleation to grow a specific structure (Gavira & García-Ruiz, 2009[Gavira, J. A. & García-Ruiz, J. M. (2009). Cryst. Growth Des. 9, 2610-2615.]). With the evaporation of the solvent, crystal nucleii can gradually precipitate from solution and grow into block crystals suitable for single-crystal X-ray diffraction.

In order to better explain the result, we conducted comparative experiments. Under zero magnetic field, (H2absa)·(bipy) (6) is separated from the solution, where the absa2− ligand and bipy molecule are uncoordinated from the metal ions [Fig. 3[link](a) and Table S5]. This may be attributed to the fact that the carboxyl­ate groups in the H2absa ligand are protonated and bind to fewer metal centers.

[Figure 3]
Figure 3
Molecular structures of (a) compound 6 and (b) compound 7 (mononuclear N-donor coordination compound) showing the atomic numbering schemes.

With the increase of the magnetic field to 0.3 T, phen molecules, acting as chelated terminated ligands, prefer to coordinate with metal ions and occupy all coordination sites, in contrast to absa2− ligands; thus a mononuclear coordination compound with N-donor ligands [Zn(phen)3]·(absa)·7H2O (7) was obtained [Fig. 3[link](b) and Table S5]. Under a 1 T magnetic field, the absa2− ligands can resist irregular movement to a certain extent, and tend to be perpendicular to the magnetic field. Thus, they gain the opportunity to approach metal ions to form one-dimensional chains. When bipy is added under magnetic field, the absa2− ligand is perpendicular to the magnetic field, which makes the ligand coordinate with metal ions in a certain direction, generating a two-dimensional net.

Very few block crystals of compounds 15 were isolated. Many attempts were made to obtain more crystals by improving the reaction conditions, but were unsuccessful. Because not enough samples were available, additional measurements were not performed, but thermogravimetric analyses and photoluminescence properties were studied. The effect of magnetic field on the types of structures are rather complicated and difficult to discuss. However, it is worth noting that the metal sources and the auxiliary ligands also play an important role. The orientation of the absa2− ligand in a magnetic field will affect its coordination mode in compounds 1 and 2 relative to compounds 6 and 7. The presence of a high magnetic field and bipy facilitates the formation of high-dimensional coordination polymers such as compounds 35. However, much more systematic work is needed to further elucidate the magnetic field effect, which can influence and induce the formation of the resultant coordination compounds. It is also anticipated that further new types of coordination polymers can be designed by this synthetic method.

3.4. Thermogravimetric analyses

To investigate the thermal stability of compounds 15, TGA was performed under a nitro­gen atmosphere at the heating rate of 10°C min−1 between 25 and 900°C (Fig. 4[link]). The TGA curves of compounds 1 and 2 exhibit the first weight losses of 16.7 and 16.6% in the temperature ranges 25–156°C and 25–189°C, which correspond to the release of coordinated water molecules (calculated 16.5 and 16.7%, respectively). The second weight losses in the temperature ranges 156–900°C and 189–900°C correspond to the pyrolysis of the absa2− ligands. Up to 900°C, the thermogravimetric curves still show downward trends. The residues may be the metal oxide. For compounds 35, the weight losses in the temperature ranges 25–315°C, 25–220°C and 25–237°C amount to 3.4, 6.7 and 3.4%, which can be attributed to the removal of the coordinated water molecules (calculated 3.3, 6.5 and 3.3%, respectively). The weight losses of 29.0, 28.5 and 29.5% in the temperature ranges 315–371°C, 220–313°C and 237–280°C correspond to the loss of the bipy molecules (calculated 28.9, 28.3 and 29.0%, respectively). The weight losses in the temperature ranges 371–900°C, 313–900°C and 280–900°C correspond to the decomposing of the absa2− ligands. Up to 900°C, the thermogravimetric curves still show downward trends. The residues may be the metal oxide.

[Figure 4]
Figure 4
TGA curves of compounds 15.

3.5. Photoluminescence properties

Luminescent coordination polymers are currently of great interest because of their applications in photochemistry, chemical sensors and luminescent displays (Allendorf et al., 2009[Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330-1352.]). To establish the relationship between the crystal structures and their fluorescence properties, the solid fluorescence spectra of compounds 15 as well as the free Na2absa ligand for comparison were measured at room temperature (Fig. 5[link]). Compounds 15 exhibit photoluminescence emissions at 626, 600, 632, 658 and 682 nm, respectively, which are similar to those of the free Na2absa ligand with an emission maximum at 612 nm. The observed emissions in compounds 15 are probably caused by ππ* intra-ligand transitions of the Na2absa ligand (Cheng et al., 2012[Cheng, P. C., Yeh, C. W., Hsu, W., Chen, T. R., Wang, H. W., Chen, J. D. & Wang, J. (2012). Cryst. Growth Des. 12, 943-953.]). The observed red and blue shifts of the emissions maximum between compounds 15 and the Na2absa ligand were mainly attributed to the coordination of ligands with metal ions (Zhang et al., 2014[Zhang, K. L., Zhong, Z. Y., Zhang, L., Jing, C. Y., Daniels, L. M. & Walton, R. I. (2014). Dalton Trans. 43, 11597-11610.]). However, it is found that the emission intensity of compound 3 is much higher than those of compounds 1, 2, 4 and 5. This indicates that the zinc compound 3 shows better photoluminescence properties than the others. Whereas the emission intensities of compounds 1, 2, 4 and 5 are much lower than those of the free Na2absa ligand, which indicates that the emission of the Na2absa ligand was quenched to some extent.

[Figure 5]
Figure 5
Solid-state emission spectra of Na2absa and compounds 15 at room temperature.

The magnetic field assisted self-assembly based on transition metal ions and the absa2− ligand in the presence and absence of nitro­gen donor molecules leads to the formation of coordination polymers with different characteristics. They feature one-dimensional and two-dimensional structures with different space groups, respectively. The progressive structural characteristics result from the distinct orientation of ligands and the movement behavior of components, leading to packing in certain directions as a consequence of the effects of magnetic fields. In addition, compounds 15 exhibit broad fluorescent emission bands at 626, 600, 632, 658 and 682 nm, respectively.

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for compound_1, compound_7; Bruker APEX2 for compound_2, compound_3, compound_4; Bruker BIS V6.2.1 for compound_6. Cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for compound_1, compound_7; Bruker SAINT for compound_2, compound_3, compound_4; SAINT V8.40A (Bruker, 2019) for compound_5; SAINT V8.40B (Bruker, 2019) for compound_6. Data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for compound_1, compound_7; Bruker SAINT for compound_2, compound_3, compound_4; SAINT V8.40A (Bruker, 2019) for compound_5; SAINT V8.40B (Bruker, 2019) for compound_6. Program(s) used to solve structure: ShelXT (Sheldrick, 2015) for compound_1, compound_7; SHELXT 2014/5 (Sheldrick, 2014) for compound_2, compound_3, compound_4; SHELXT 2018/2 (Sheldrick, 2018) for compound_5, compound_6. Program(s) used to refine structure: SHELXL (Sheldrick, 2015) for compound_1, compound_7; SHELXL2018/3 (Sheldrick, 2018) for compound_2, compound_3, compound_4; SHELXL 2018/3 (Sheldrick, 2015) for compound_5, compound_6. Molecular graphics: Olex2 (Dolomanov et al., 2009) for compound_1, compound_7; Bruker SHELXTL for compound_2, compound_3, compound_4; Olex2 1.5 (Dolomanov et al., 2009) for compound_5, compound_6. Software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) for compound_1, compound_7; Bruker SHELXTL for compound_2, compound_3, compound_4; Olex2 1.5 (Dolomanov et al., 2009) for compound_5, compound_6.

(compound_1) top
Crystal data top
C14H16N2O10ZnF(000) = 896
Mr = 437.66Dx = 1.754 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4322 (4) ÅCell parameters from 9870 reflections
b = 11.3669 (4) Åθ = 2.2–32.6°
c = 16.0822 (7) ŵ = 1.54 mm1
β = 106.000 (4)°T = 113 K
V = 1657.46 (12) Å3Block
Z = 40.16 × 0.13 × 0.1 mm
Data collection top
Rigaku Saturn 70 CCD
diffractometer
5723 independent reflections
Radiation source: rotating anode, Enhance (Mo) X-ray Source4485 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.059
ω scansθmax = 32.9°, θmin = 2.2°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018)
h = 1311
Tmin = 0.884, Tmax = 1.000k = 1716
20581 measured reflectionsl = 1624
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0358P)2 + 3.7399P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
5723 reflectionsΔρmax = 0.75 e Å3
249 parametersΔρmin = 0.72 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.71670 (3)0.85603 (3)0.71303 (2)0.01242 (9)
O10.0455 (3)0.0658 (2)0.70155 (14)0.0261 (5)
O20.2294 (2)0.04024 (19)0.61803 (13)0.0192 (4)
O30.3223 (3)0.0015 (2)0.45694 (14)0.0226 (5)
H30.3176220.0344330.5043940.034*
O40.4711 (2)0.63801 (19)0.68015 (13)0.0207 (4)
O50.5831 (2)0.75968 (18)0.60942 (13)0.0154 (4)
O60.5262 (3)0.7537 (2)0.44596 (14)0.0241 (5)
H60.5623840.7802800.4960680.036*
O70.6684 (2)0.74267 (19)0.80659 (13)0.0186 (4)
H7A0.5884500.6999880.7835580.028*
H7B0.6420010.7823810.8476270.028*
O80.5346 (2)0.96219 (19)0.70788 (14)0.0204 (4)
H8A0.4919820.9831810.6549930.031*
H8B0.5624201.0285290.7340640.031*
O90.8400 (2)0.95781 (18)0.81462 (13)0.0166 (4)
H9A0.8719360.9146490.8595300.025*
H9B0.9056860.9995490.7976600.025*
O100.8936 (2)0.74928 (19)0.71271 (13)0.0193 (4)
H10A0.8743680.7048330.6663040.029*
H10B0.9093080.6976220.7547430.029*
N10.0917 (3)0.3586 (2)0.50390 (15)0.0148 (4)
N20.1229 (3)0.3948 (2)0.43677 (15)0.0132 (4)
C10.1304 (3)0.0405 (2)0.62948 (18)0.0171 (5)
C20.1223 (3)0.1075 (2)0.55099 (18)0.0147 (5)
C30.2184 (3)0.0837 (2)0.46904 (18)0.0155 (5)
C40.2113 (3)0.1511 (3)0.39742 (18)0.0175 (5)
H40.2756790.1340380.3420080.021*
C50.1120 (3)0.2417 (2)0.40670 (18)0.0157 (5)
H50.1096400.2881270.3579820.019*
C60.0141 (3)0.2661 (2)0.48784 (18)0.0138 (5)
C70.0210 (3)0.1988 (3)0.55858 (18)0.0167 (5)
H70.0450130.2153940.6135980.020*
C80.2248 (3)0.4888 (2)0.44629 (17)0.0138 (5)
C90.2452 (3)0.5323 (3)0.36895 (18)0.0168 (5)
H90.1906040.4994360.3153640.020*
C100.3437 (4)0.6222 (3)0.36961 (19)0.0205 (6)
H100.3550700.6521010.3166540.025*
C110.4266 (3)0.6692 (2)0.44810 (18)0.0159 (5)
C120.4059 (3)0.6271 (2)0.52670 (17)0.0119 (5)
C130.3058 (3)0.5370 (2)0.52482 (17)0.0131 (5)
H130.2922290.5079260.5774770.016*
C140.4918 (3)0.6768 (2)0.61184 (17)0.0132 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01450 (16)0.01217 (14)0.00977 (15)0.00169 (12)0.00196 (11)0.00064 (11)
O10.0312 (12)0.0287 (12)0.0135 (10)0.0177 (10)0.0023 (9)0.0042 (9)
O20.0202 (10)0.0199 (10)0.0151 (10)0.0099 (8)0.0008 (8)0.0035 (8)
O30.0252 (11)0.0234 (11)0.0151 (10)0.0144 (9)0.0016 (9)0.0043 (8)
O40.0285 (12)0.0216 (10)0.0107 (9)0.0101 (9)0.0034 (8)0.0018 (8)
O50.0177 (10)0.0157 (9)0.0126 (9)0.0082 (7)0.0036 (7)0.0030 (7)
O60.0317 (12)0.0290 (12)0.0121 (10)0.0204 (10)0.0069 (9)0.0029 (8)
O70.0224 (11)0.0219 (10)0.0122 (9)0.0065 (8)0.0056 (8)0.0012 (8)
O80.0203 (11)0.0207 (10)0.0165 (10)0.0026 (8)0.0014 (8)0.0060 (8)
O90.0186 (10)0.0176 (9)0.0126 (9)0.0021 (8)0.0027 (8)0.0003 (7)
O100.0259 (11)0.0187 (10)0.0129 (9)0.0056 (8)0.0049 (8)0.0014 (8)
N10.0154 (11)0.0156 (10)0.0130 (10)0.0050 (9)0.0034 (9)0.0005 (8)
N20.0140 (11)0.0148 (10)0.0099 (10)0.0050 (8)0.0019 (8)0.0002 (8)
C10.0200 (14)0.0151 (12)0.0147 (13)0.0046 (10)0.0025 (11)0.0044 (10)
C20.0153 (13)0.0150 (12)0.0124 (12)0.0038 (10)0.0013 (10)0.0022 (9)
C30.0153 (13)0.0154 (12)0.0142 (12)0.0051 (10)0.0012 (10)0.0002 (10)
C40.0179 (13)0.0235 (14)0.0089 (11)0.0063 (11)0.0001 (10)0.0002 (10)
C50.0183 (13)0.0159 (12)0.0120 (12)0.0043 (10)0.0028 (10)0.0020 (9)
C60.0151 (12)0.0132 (11)0.0130 (12)0.0040 (9)0.0037 (10)0.0004 (9)
C70.0191 (14)0.0194 (13)0.0103 (12)0.0074 (11)0.0018 (10)0.0011 (10)
C80.0142 (12)0.0146 (12)0.0130 (12)0.0044 (9)0.0044 (10)0.0020 (9)
C90.0207 (14)0.0186 (13)0.0108 (12)0.0073 (11)0.0040 (10)0.0024 (10)
C100.0281 (16)0.0226 (14)0.0109 (13)0.0110 (12)0.0057 (11)0.0001 (10)
C110.0184 (13)0.0176 (13)0.0124 (12)0.0062 (10)0.0051 (10)0.0002 (10)
C120.0132 (12)0.0111 (11)0.0116 (11)0.0032 (9)0.0038 (9)0.0015 (9)
C130.0152 (12)0.0134 (11)0.0108 (12)0.0033 (9)0.0039 (10)0.0004 (9)
C140.0149 (12)0.0119 (11)0.0125 (12)0.0020 (9)0.0029 (10)0.0004 (9)
Geometric parameters (Å, º) top
Zn1—O2i2.100 (2)N1—C61.422 (3)
Zn1—O52.0991 (19)N2—C81.416 (3)
Zn1—O72.124 (2)C1—C21.494 (4)
Zn1—O82.082 (2)C2—C31.405 (4)
Zn1—O92.077 (2)C2—C71.393 (4)
Zn1—O102.064 (2)C3—C41.401 (4)
O1—C11.247 (4)C4—H40.9500
O2—C11.286 (3)C4—C51.372 (4)
O3—H30.8400C5—H50.9500
O3—C31.353 (3)C5—C61.403 (4)
O4—C141.248 (3)C6—C71.388 (4)
O5—C141.284 (3)C7—H70.9500
O6—H60.8400C8—C91.400 (4)
O6—C111.350 (3)C8—C131.396 (4)
O7—H7A0.8871C9—H90.9500
O7—H7B0.8897C9—C101.379 (4)
O8—H8A0.8680C10—H100.9500
O8—H8B0.8683C10—C111.395 (4)
O9—H9A0.8562C11—C121.414 (4)
O9—H9B0.8809C12—C131.388 (3)
O10—H10A0.8777C12—C141.496 (4)
O10—H10B0.8766C13—H130.9500
N1—N21.264 (3)
O2i—Zn1—O7176.64 (9)C7—C2—C3118.4 (3)
O5—Zn1—O2i85.87 (8)O3—C3—C2121.8 (2)
O5—Zn1—O792.68 (8)O3—C3—C4118.1 (2)
O8—Zn1—O2i90.46 (9)C4—C3—C2120.1 (2)
O8—Zn1—O587.87 (8)C3—C4—H4119.8
O8—Zn1—O792.52 (9)C5—C4—C3120.5 (3)
O9—Zn1—O2i93.68 (8)C5—C4—H4119.8
O9—Zn1—O5177.00 (8)C4—C5—H5119.9
O9—Zn1—O787.92 (8)C4—C5—C6120.3 (3)
O9—Zn1—O889.17 (8)C6—C5—H5119.9
O10—Zn1—O2i88.30 (9)C5—C6—N1124.3 (2)
O10—Zn1—O590.00 (8)C7—C6—N1116.6 (2)
O10—Zn1—O788.66 (9)C7—C6—C5119.0 (2)
O10—Zn1—O8177.61 (8)C2—C7—H7119.2
O10—Zn1—O992.96 (8)C6—C7—C2121.7 (3)
C1—O2—Zn1ii127.46 (18)C6—C7—H7119.2
C3—O3—H3109.5C9—C8—N2115.2 (2)
C14—O5—Zn1128.28 (17)C13—C8—N2125.5 (2)
C11—O6—H6109.5C13—C8—C9119.3 (2)
Zn1—O7—H7A111.1C8—C9—H9119.6
Zn1—O7—H7B112.1C10—C9—C8120.8 (3)
H7A—O7—H7B102.0C10—C9—H9119.6
Zn1—O8—H8A110.6C9—C10—H10120.0
Zn1—O8—H8B110.4C9—C10—C11119.9 (3)
H8A—O8—H8B103.5C11—C10—H10120.0
Zn1—O9—H9A109.6O6—C11—C10118.0 (2)
Zn1—O9—H9B110.2O6—C11—C12122.1 (2)
H9A—O9—H9B117.1C10—C11—C12119.9 (2)
Zn1—O10—H10A111.3C11—C12—C14121.1 (2)
Zn1—O10—H10B110.9C13—C12—C11119.4 (2)
H10A—O10—H10B102.8C13—C12—C14119.5 (2)
N2—N1—C6113.7 (2)C8—C13—H13119.7
N1—N2—C8117.7 (2)C12—C13—C8120.6 (2)
O1—C1—O2123.6 (3)C12—C13—H13119.7
O1—C1—C2119.9 (3)O4—C14—O5123.7 (3)
O2—C1—C2116.6 (2)O4—C14—C12119.7 (2)
C3—C2—C1121.6 (2)O5—C14—C12116.6 (2)
C7—C2—C1120.0 (2)
Zn1ii—O2—C1—O13.0 (5)C3—C2—C7—C60.4 (5)
Zn1ii—O2—C1—C2175.53 (19)C3—C4—C5—C61.5 (5)
Zn1—O5—C14—O41.9 (4)C4—C5—C6—N1179.5 (3)
Zn1—O5—C14—C12177.40 (17)C4—C5—C6—C71.2 (4)
O1—C1—C2—C3178.3 (3)C5—C6—C7—C20.2 (4)
O1—C1—C2—C70.7 (5)C6—N1—N2—C8178.5 (2)
O2—C1—C2—C30.3 (4)C7—C2—C3—O3178.2 (3)
O2—C1—C2—C7178.0 (3)C7—C2—C3—C40.1 (4)
O3—C3—C4—C5177.4 (3)C8—C9—C10—C111.3 (5)
O6—C11—C12—C13177.6 (3)C9—C8—C13—C120.1 (4)
O6—C11—C12—C141.5 (4)C9—C10—C11—O6177.3 (3)
N1—N2—C8—C9174.5 (3)C9—C10—C11—C122.1 (5)
N1—N2—C8—C137.1 (4)C10—C11—C12—C131.7 (4)
N1—C6—C7—C2178.7 (3)C10—C11—C12—C14179.2 (3)
N2—N1—C6—C520.5 (4)C11—C12—C13—C80.6 (4)
N2—N1—C6—C7161.1 (3)C11—C12—C14—O4180.0 (3)
N2—C8—C9—C10178.7 (3)C11—C12—C14—O50.6 (4)
N2—C8—C13—C12178.2 (3)C13—C8—C9—C100.3 (4)
C1—C2—C3—O30.5 (5)C13—C12—C14—O41.0 (4)
C1—C2—C3—C4177.6 (3)C13—C12—C14—O5179.7 (2)
C1—C2—C7—C6177.4 (3)C14—C12—C13—C8179.7 (3)
C2—C3—C4—C50.8 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z.
(compound_2) top
Crystal data top
C14H16CoN2O10Dx = 1.792 Mg m3
Mr = 431.22Ga Kα radiation, λ = 1.34139 Å
Tetragonal, P43212Cell parameters from 9881 reflections
a = 10.2539 (5) Åθ = 4.0–54.0°
c = 30.4058 (15) ŵ = 6.27 mm1
V = 3196.9 (3) Å3T = 193 K
Z = 8Block
F(000) = 1768
Data collection top
Bruker APEX-II CCD
diffractometer
Rint = 0.040
φ and ω scansθmax = 54.0°, θmin = 4.0°
30178 measured reflectionsh = 1212
2881 independent reflectionsk = 1112
2787 reflections with I > 2σ(I)l = 3636
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3162P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max = 0.001
S = 0.86Δρmax = 0.31 e Å3
2881 reflectionsΔρmin = 0.54 e Å3
255 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.104 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5005 (3)0.2026 (3)0.54785 (10)0.0281 (7)
C20.5247 (3)0.2754 (3)0.50580 (10)0.0270 (6)
C30.6211 (3)0.3681 (3)0.50400 (10)0.0272 (7)
H30.6706240.3861670.5296810.033*
C40.5764 (3)0.4071 (4)0.42769 (10)0.0310 (7)
H4A0.5956840.4509690.4009500.037*
C50.4785 (4)0.3160 (4)0.42866 (10)0.0330 (7)
H50.4301690.2978230.4027270.040*
C60.4497 (3)0.2501 (3)0.46753 (11)0.0285 (7)
C70.6480 (3)0.4362 (3)0.46549 (11)0.0279 (7)
C81.0943 (3)0.8511 (3)0.48915 (11)0.0292 (7)
C91.0760 (3)0.7769 (3)0.52726 (10)0.0266 (7)
C101.0120 (4)0.8317 (3)0.45261 (11)0.0314 (7)
H101.0226200.8841540.4271000.038*
C110.9173 (3)0.7385 (3)0.45350 (11)0.0285 (7)
H110.8623530.7263220.4286840.034*
C120.9009 (3)0.6605 (3)0.49091 (10)0.0281 (7)
C131.1526 (3)0.8060 (3)0.56813 (10)0.0283 (7)
C140.9791 (3)0.6820 (3)0.52757 (11)0.0287 (7)
H140.9661420.6309020.5532700.034*
Co010.31615 (5)0.03980 (5)0.60770 (2)0.03031 (18)
N10.7448 (3)0.5336 (3)0.46104 (9)0.0285 (6)
N20.8033 (3)0.5626 (3)0.49590 (9)0.0285 (6)
O10.3531 (3)0.1613 (3)0.46736 (8)0.0370 (6)
H10.3405530.1341260.4930790.056*
O20.3964 (2)0.1338 (3)0.54986 (7)0.0315 (5)
O30.5804 (2)0.2116 (2)0.57861 (7)0.0339 (6)
O41.1898 (3)0.9402 (3)0.48558 (8)0.0378 (6)
H41.2273830.9486580.5099710.057*
O51.1248 (3)0.7516 (3)0.60343 (7)0.0357 (6)
O61.2428 (3)0.8912 (2)0.56407 (7)0.0329 (5)
O70.5120 (2)0.0180 (3)0.62459 (9)0.0384 (6)
H7A0.5564350.0965820.6320120.075 (18)*
H7B0.5594320.0234940.6020230.09 (2)*
O80.3354 (2)0.2021 (2)0.65554 (8)0.0358 (5)
H8A0.3878140.2102640.6810110.065 (16)*
H8B0.2613780.2554660.6597140.064 (16)*
O90.2338 (3)0.0725 (3)0.66017 (8)0.0371 (6)
H9A0.2503760.0790570.6900680.10 (2)*
H9B0.1640880.1276230.6520620.044 (12)*
O100.1276 (3)0.1425 (3)0.59526 (8)0.0387 (6)
H10A0.1022090.1782120.5673240.16 (4)*
H10B0.0957710.1976690.6171730.052 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0283 (17)0.0232 (15)0.0327 (16)0.0007 (13)0.0023 (13)0.0014 (12)
C20.0267 (16)0.0284 (16)0.0259 (14)0.0008 (12)0.0002 (12)0.0005 (12)
C30.0267 (16)0.0273 (16)0.0277 (15)0.0003 (12)0.0010 (13)0.0002 (13)
C40.0337 (18)0.0318 (18)0.0274 (15)0.0024 (14)0.0017 (14)0.0027 (13)
C50.0376 (18)0.0355 (19)0.0260 (15)0.0062 (15)0.0026 (14)0.0008 (13)
C60.0274 (16)0.0262 (16)0.0318 (15)0.0039 (13)0.0008 (13)0.0003 (13)
C70.0263 (16)0.0268 (16)0.0306 (16)0.0014 (12)0.0013 (13)0.0008 (13)
C80.0294 (16)0.0276 (17)0.0305 (15)0.0032 (13)0.0064 (13)0.0037 (12)
C90.0265 (15)0.0240 (15)0.0295 (15)0.0006 (12)0.0024 (12)0.0019 (12)
C100.0344 (17)0.0311 (18)0.0286 (15)0.0032 (14)0.0032 (13)0.0027 (13)
C110.0275 (16)0.0302 (17)0.0279 (14)0.0004 (13)0.0001 (12)0.0011 (13)
C120.0250 (15)0.0272 (17)0.0320 (16)0.0052 (12)0.0022 (12)0.0005 (13)
C130.0308 (17)0.0245 (15)0.0297 (15)0.0023 (13)0.0006 (13)0.0019 (13)
C140.0294 (16)0.0269 (16)0.0299 (15)0.0027 (13)0.0004 (13)0.0005 (12)
Co010.0310 (3)0.0303 (3)0.0297 (3)0.0025 (2)0.00013 (19)0.00023 (19)
N10.0273 (14)0.0266 (14)0.0316 (13)0.0037 (11)0.0016 (11)0.0015 (11)
N20.0255 (14)0.0298 (14)0.0301 (13)0.0059 (11)0.0001 (11)0.0016 (11)
O10.0346 (13)0.0426 (15)0.0339 (11)0.0185 (11)0.0056 (10)0.0068 (11)
O20.0288 (12)0.0338 (13)0.0320 (11)0.0065 (10)0.0001 (10)0.0056 (10)
O30.0355 (13)0.0366 (14)0.0295 (11)0.0091 (10)0.0049 (9)0.0055 (10)
O40.0439 (15)0.0368 (14)0.0326 (12)0.0177 (12)0.0006 (11)0.0001 (10)
O50.0410 (14)0.0357 (13)0.0306 (11)0.0119 (11)0.0011 (10)0.0012 (10)
O60.0332 (13)0.0333 (13)0.0321 (11)0.0103 (10)0.0029 (10)0.0051 (9)
O70.0292 (12)0.0386 (14)0.0473 (12)0.0048 (11)0.0037 (11)0.0121 (11)
O80.0346 (13)0.0339 (13)0.0390 (12)0.0008 (10)0.0008 (10)0.0080 (11)
O90.0428 (15)0.0398 (14)0.0288 (11)0.0125 (11)0.0015 (10)0.0064 (10)
O100.0361 (14)0.0460 (16)0.0339 (12)0.0102 (11)0.0009 (11)0.0026 (11)
Geometric parameters (Å, º) top
C1—O31.247 (4)C12—C141.391 (5)
C1—O21.281 (4)C12—N21.425 (4)
C1—C21.501 (4)C13—O51.243 (4)
C2—C31.372 (5)C13—O61.278 (4)
C2—C61.419 (4)C14—H140.9500
C3—C71.391 (5)Co01—O92.141 (2)
C3—H30.9500Co01—O6i2.155 (2)
C4—C51.371 (5)Co01—O72.156 (3)
C4—C71.396 (5)Co01—O22.168 (2)
C4—H4A0.9500Co01—O82.219 (2)
C5—C61.394 (5)Co01—O102.234 (3)
C5—H50.9500N1—N21.254 (4)
C6—O11.345 (4)O1—H10.8400
C7—N11.414 (4)O4—H40.8400
C8—O41.343 (4)O7—H7A0.9524
C8—C91.399 (5)O7—H7B0.9428
C8—C101.410 (5)O8—H8A0.9464
C9—C141.391 (5)O8—H8B0.9438
C9—C131.500 (4)O9—H9A0.9272
C10—C111.363 (5)O9—H9B0.9443
C10—H100.9500O10—H10A0.9607
C11—C121.401 (5)O10—H10B0.9329
C11—H110.9500
O3—C1—O2123.5 (3)O6—C13—C9115.8 (3)
O3—C1—C2119.6 (3)C12—C14—C9121.1 (3)
O2—C1—C2116.9 (3)C12—C14—H14119.4
C3—C2—C6119.0 (3)C9—C14—H14119.4
C3—C2—C1119.8 (3)O9—Co01—O6i86.63 (10)
C6—C2—C1121.2 (3)O9—Co01—O792.40 (10)
C2—C3—C7121.6 (3)O6i—Co01—O7106.08 (11)
C2—C3—H3119.2O9—Co01—O2173.41 (10)
C7—C3—H3119.2O6i—Co01—O286.98 (9)
C5—C4—C7120.8 (3)O7—Co01—O287.83 (10)
C5—C4—H4A119.6O9—Co01—O887.12 (10)
C7—C4—H4A119.6O6i—Co01—O8164.68 (10)
C4—C5—C6120.3 (3)O7—Co01—O888.14 (10)
C4—C5—H5119.9O2—Co01—O899.47 (10)
C6—C5—H5119.9O9—Co01—O1092.19 (10)
O1—C6—C5118.8 (3)O6i—Co01—O1085.82 (10)
O1—C6—C2121.8 (3)O7—Co01—O10167.47 (11)
C5—C6—C2119.4 (3)O2—Co01—O1088.93 (10)
C3—C7—C4118.8 (3)O8—Co01—O1080.46 (9)
C3—C7—N1125.1 (3)N2—N1—C7115.0 (3)
C4—C7—N1116.2 (3)N1—N2—C12114.4 (3)
O4—C8—C9122.3 (3)C6—O1—H1109.5
O4—C8—C10118.0 (3)C1—O2—Co01126.9 (2)
C9—C8—C10119.7 (3)C8—O4—H4109.5
C14—C9—C8118.8 (3)C13—O6—Co01ii132.5 (2)
C14—C9—C13120.5 (3)Co01—O7—H7A137.3
C8—C9—C13120.5 (3)Co01—O7—H7B100.5
C11—C10—C8120.7 (3)H7A—O7—H7B107.9
C11—C10—H10119.7Co01—O8—H8A130.8
C8—C10—H10119.7Co01—O8—H8B116.8
C10—C11—C12120.1 (3)H8A—O8—H8B107.2
C10—C11—H11119.9Co01—O9—H9A134.2
C12—C11—H11119.9Co01—O9—H9B115.2
C14—C12—C11119.4 (3)H9A—O9—H9B110.6
C14—C12—N2115.5 (3)Co01—O10—H10A124.3
C11—C12—N2124.9 (3)Co01—O10—H10B117.9
O5—C13—O6123.9 (3)H10A—O10—H10B107.8
O5—C13—C9120.4 (3)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z.
(compound_3) top
Crystal data top
C24H18N4O7ZnZ = 2
Mr = 539.79F(000) = 552
Triclinic, P1Dx = 1.623 Mg m3
a = 8.5332 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6081 (2) ÅCell parameters from 6442 reflections
c = 14.1363 (3) Åθ = 2.2–27.5°
α = 95.320 (1)°µ = 1.17 mm1
β = 97.103 (1)°T = 296 K
γ = 104.473 (1)°Block
V = 1104.36 (4) Å3
Data collection top
Bruker APEX-II CCD
diffractometer
Rint = 0.023
φ and ω scansθmax = 27.5°, θmin = 2.2°
10598 measured reflectionsh = 1110
5032 independent reflectionsk = 1212
4595 reflections with I > 2σ(I)l = 1817
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.1P)2 + 0.0429P]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
5032 reflectionsΔρmax = 0.37 e Å3
329 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5674 (2)1.10974 (19)0.82554 (14)0.0254 (4)
C20.5129 (2)0.97067 (18)0.75871 (14)0.0251 (4)
C30.5672 (2)0.96144 (19)0.67025 (14)0.0268 (4)
H30.6387241.0417140.6528420.032*
C40.4048 (2)0.8486 (2)0.78426 (14)0.0291 (4)
C50.3471 (3)0.7217 (2)0.71925 (16)0.0333 (4)
H50.2709270.6426980.7346670.040*
C60.5150 (2)0.8323 (2)0.60731 (14)0.0291 (4)
C70.4033 (3)0.7142 (2)0.63260 (16)0.0335 (4)
H70.3663650.6289390.5900550.040*
C80.6748 (2)0.77068 (19)0.34414 (14)0.0264 (4)
H80.5843480.6989770.3535920.032*
C90.8849 (2)0.8633 (2)0.24911 (14)0.0284 (4)
C100.7461 (2)0.75494 (19)0.26219 (13)0.0252 (4)
C110.7370 (2)0.8925 (2)0.41241 (14)0.0289 (4)
C120.8692 (3)1.0028 (2)0.39558 (16)0.0359 (5)
H120.9072951.0868540.4391610.043*
C130.9429 (3)0.9883 (2)0.31582 (16)0.0370 (5)
H131.0314991.0615990.3060540.044*
C140.6786 (2)0.6239 (2)0.18901 (14)0.0281 (4)
C150.0432 (2)0.50909 (19)0.45701 (13)0.0243 (4)
C160.0376 (2)0.6210 (2)0.40246 (15)0.0320 (4)
H160.0214330.6866210.4189120.038*
C170.1192 (3)0.6358 (2)0.32365 (15)0.0315 (4)
H170.1149190.7128250.2890300.038*
C180.1341 (3)0.4153 (2)0.42803 (17)0.0366 (5)
H180.1436040.3393330.4626140.044*
C190.2102 (3)0.4358 (2)0.34757 (17)0.0366 (5)
H190.2687600.3709140.3289450.044*
C200.0421 (2)0.0743 (2)0.02414 (14)0.0311 (4)
C210.0442 (3)0.1765 (3)0.0384 (2)0.0560 (8)
H210.1566150.1527280.0179940.067*
C220.2823 (3)0.2596 (2)0.0950 (2)0.0474 (6)
H220.3955700.2880650.1122110.057*
C230.2091 (3)0.1191 (2)0.0521 (2)0.0529 (7)
H230.2727420.0548680.0421420.064*
C240.0370 (3)0.3143 (3)0.0832 (2)0.0579 (8)
H240.0233930.3811160.0931780.069*
N10.5710 (2)0.81029 (18)0.51817 (13)0.0329 (4)
N20.6770 (2)0.91598 (18)0.50026 (12)0.0318 (4)
N30.20428 (19)0.54373 (17)0.29516 (12)0.0276 (3)
N40.1985 (2)0.35557 (17)0.11265 (12)0.0308 (4)
O10.3569 (2)0.84804 (16)0.87148 (12)0.0417 (4)
H10.4005940.9265810.9039880.063*
O20.52890 (19)1.10987 (15)0.90867 (11)0.0362 (3)
O30.64975 (17)1.21878 (13)0.79361 (10)0.0289 (3)
O40.96520 (19)0.85050 (17)0.17435 (11)0.0381 (3)
H40.9287110.7690080.1445080.057*
O50.7651 (2)0.59960 (16)0.12695 (11)0.0412 (4)
O60.54004 (16)0.54045 (14)0.19438 (11)0.0308 (3)
O70.3046 (2)0.61047 (15)0.02535 (11)0.0416 (4)
H7A0.3030540.5536270.0244930.043 (7)*
H7B0.3523220.6952610.0151460.058 (9)*
Zn10.31938 (2)0.56970 (2)0.16666 (2)0.02466 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0276 (8)0.0236 (8)0.0240 (9)0.0049 (6)0.0067 (7)0.0011 (7)
C20.0304 (9)0.0218 (8)0.0223 (9)0.0064 (6)0.0041 (7)0.0005 (7)
C30.0330 (9)0.0232 (8)0.0233 (9)0.0061 (7)0.0065 (7)0.0007 (7)
C40.0337 (9)0.0267 (8)0.0257 (10)0.0051 (7)0.0075 (7)0.0016 (7)
C50.0361 (10)0.0232 (8)0.0359 (11)0.0002 (7)0.0053 (8)0.0022 (8)
C60.0363 (9)0.0268 (8)0.0231 (9)0.0092 (7)0.0035 (7)0.0034 (7)
C70.0397 (11)0.0243 (9)0.0314 (11)0.0046 (8)0.0011 (8)0.0050 (8)
C80.0282 (8)0.0265 (8)0.0229 (9)0.0061 (7)0.0030 (7)0.0012 (7)
C90.0332 (9)0.0281 (9)0.0217 (9)0.0045 (7)0.0043 (7)0.0016 (7)
C100.0276 (8)0.0252 (8)0.0208 (9)0.0057 (7)0.0013 (6)0.0010 (7)
C110.0334 (9)0.0305 (9)0.0214 (9)0.0089 (7)0.0030 (7)0.0038 (7)
C120.0428 (11)0.0281 (9)0.0296 (11)0.0014 (8)0.0031 (8)0.0080 (8)
C130.0397 (11)0.0321 (10)0.0304 (11)0.0044 (8)0.0052 (8)0.0024 (8)
C140.0356 (9)0.0264 (8)0.0207 (9)0.0072 (7)0.0023 (7)0.0005 (7)
C150.0259 (8)0.0246 (8)0.0205 (9)0.0026 (6)0.0066 (7)0.0003 (6)
C160.0389 (10)0.0349 (10)0.0289 (10)0.0168 (8)0.0137 (8)0.0076 (8)
C170.0411 (10)0.0302 (9)0.0284 (10)0.0129 (8)0.0135 (8)0.0091 (7)
C180.0511 (12)0.0299 (9)0.0384 (12)0.0173 (9)0.0223 (10)0.0134 (8)
C190.0500 (11)0.0310 (10)0.0375 (12)0.0181 (8)0.0225 (9)0.0077 (8)
C200.0403 (10)0.0235 (9)0.0228 (10)0.0038 (8)0.0072 (8)0.0003 (7)
C210.0316 (11)0.0433 (13)0.080 (2)0.0072 (9)0.0231 (12)0.0298 (13)
C220.0399 (11)0.0267 (10)0.0640 (17)0.0037 (8)0.0160 (10)0.0078 (10)
C230.0501 (14)0.0261 (10)0.0710 (19)0.0116 (9)0.0242 (12)0.0121 (11)
C240.0324 (11)0.0435 (13)0.085 (2)0.0029 (9)0.0190 (12)0.0344 (13)
N10.0429 (9)0.0298 (8)0.0242 (9)0.0089 (7)0.0066 (7)0.0048 (6)
N20.0388 (9)0.0334 (8)0.0209 (8)0.0086 (7)0.0040 (6)0.0043 (6)
N30.0323 (8)0.0250 (7)0.0252 (8)0.0050 (6)0.0094 (6)0.0011 (6)
N40.0357 (8)0.0254 (7)0.0259 (9)0.0017 (6)0.0091 (6)0.0035 (6)
O10.0533 (9)0.0327 (7)0.0326 (9)0.0050 (7)0.0195 (7)0.0010 (6)
O20.0516 (9)0.0283 (7)0.0241 (7)0.0001 (6)0.0154 (6)0.0035 (5)
O30.0393 (7)0.0205 (6)0.0255 (7)0.0032 (5)0.0128 (6)0.0017 (5)
O40.0423 (8)0.0396 (8)0.0263 (8)0.0011 (6)0.0115 (6)0.0016 (6)
O50.0486 (9)0.0376 (8)0.0311 (8)0.0001 (6)0.0164 (7)0.0108 (6)
O60.0314 (7)0.0234 (6)0.0336 (8)0.0042 (5)0.0020 (5)0.0040 (5)
O70.0699 (11)0.0238 (7)0.0223 (7)0.0005 (7)0.0048 (7)0.0031 (5)
Zn10.02956 (14)0.02018 (14)0.02160 (15)0.00200 (9)0.00729 (9)0.00268 (9)
Geometric parameters (Å, º) top
C1—O21.259 (2)C15—C15i1.499 (3)
C1—O31.262 (2)C16—C171.385 (3)
C1—C21.497 (2)C16—H160.9300
C2—C31.389 (3)C17—N31.341 (2)
C2—C41.406 (2)C17—H170.9300
C3—C61.396 (2)C18—C191.384 (3)
C3—H30.9300C18—H180.9300
C4—O11.346 (2)C19—N31.337 (3)
C4—C51.398 (3)C19—H190.9300
C5—C71.372 (3)C20—C231.377 (3)
C5—H50.9300C20—C211.382 (3)
C6—C71.394 (3)C20—C20ii1.486 (3)
C6—N11.418 (2)C21—C241.382 (3)
C7—H70.9300C21—H210.9300
C8—C101.387 (2)C22—N41.325 (3)
C8—C111.392 (2)C22—C231.384 (3)
C8—H80.9300C22—H220.9300
C9—O41.341 (2)C23—H230.9300
C9—C131.398 (3)C24—N41.336 (3)
C9—C101.412 (2)C24—H240.9300
C10—C141.495 (2)N1—N21.248 (2)
C11—C121.402 (3)N3—Zn12.1747 (16)
C11—N21.421 (2)N4—Zn12.0816 (16)
C12—C131.370 (3)O1—H10.8200
C12—H120.9300O3—Zn1iii1.9998 (13)
C13—H130.9300O4—H40.8200
C14—O51.256 (2)O6—Zn11.9699 (14)
C14—O61.267 (2)O7—Zn12.0658 (16)
C15—C161.387 (3)O7—H7A0.8471
C15—C181.393 (3)O7—H7B0.8489
O2—C1—O3124.89 (16)N3—C17—H17118.6
O2—C1—C2118.32 (16)C16—C17—H17118.6
O3—C1—C2116.79 (16)C19—C18—C15119.72 (19)
C3—C2—C4119.31 (17)C19—C18—H18120.1
C3—C2—C1120.27 (16)C15—C18—H18120.1
C4—C2—C1120.42 (17)N3—C19—C18123.57 (18)
C2—C3—C6120.37 (18)N3—C19—H19118.2
C2—C3—H3119.8C18—C19—H19118.2
C6—C3—H3119.8C23—C20—C21116.96 (18)
O1—C4—C5117.98 (17)C23—C20—C20ii122.1 (2)
O1—C4—C2121.92 (17)C21—C20—C20ii120.8 (2)
C5—C4—C2120.08 (18)C24—C21—C20119.8 (2)
C7—C5—C4119.68 (18)C24—C21—H21120.1
C7—C5—H5120.2C20—C21—H21120.1
C4—C5—H5120.2N4—C22—C23123.0 (2)
C7—C6—C3119.37 (18)N4—C22—H22118.5
C7—C6—N1116.30 (17)C23—C22—H22118.5
C3—C6—N1124.31 (18)C20—C23—C22120.0 (2)
C5—C7—C6121.07 (18)C20—C23—H23120.0
C5—C7—H7119.5C22—C23—H23120.0
C6—C7—H7119.5N4—C24—C21122.9 (2)
C10—C8—C11120.77 (17)N4—C24—H24118.6
C10—C8—H8119.6C21—C24—H24118.6
C11—C8—H8119.6N2—N1—C6114.43 (16)
O4—C9—C13118.06 (17)N1—N2—C11114.53 (16)
O4—C9—C10122.14 (17)C19—N3—C17116.99 (17)
C13—C9—C10119.79 (18)C19—N3—Zn1122.77 (12)
C8—C10—C9119.24 (16)C17—N3—Zn1120.21 (13)
C8—C10—C14120.54 (16)C22—N4—C24117.36 (18)
C9—C10—C14120.21 (16)C22—N4—Zn1120.55 (14)
C8—C11—C12119.15 (18)C24—N4—Zn1121.55 (15)
C8—C11—N2125.03 (17)C4—O1—H1109.5
C12—C11—N2115.82 (16)C1—O3—Zn1iii130.25 (11)
C13—C12—C11120.90 (17)C9—O4—H4109.5
C13—C12—H12119.5C14—O6—Zn1130.06 (13)
C11—C12—H12119.5Zn1—O7—H7A128.5
C12—C13—C9119.99 (18)Zn1—O7—H7B117.0
C12—C13—H13120.0H7A—O7—H7B106.9
C9—C13—H13120.0O6—Zn1—O3iii104.64 (6)
O5—C14—O6123.23 (17)O6—Zn1—O7103.04 (7)
O5—C14—C10118.03 (16)O3iii—Zn1—O788.49 (6)
O6—C14—C10118.71 (16)O6—Zn1—N496.80 (6)
C16—C15—C18116.47 (17)O3iii—Zn1—N4158.56 (7)
C16—C15—C15i121.6 (2)O7—Zn1—N486.46 (6)
C18—C15—C15i121.9 (2)O6—Zn1—N3108.20 (6)
C17—C16—C15120.45 (17)O3iii—Zn1—N384.07 (5)
C17—C16—H16119.8O7—Zn1—N3148.76 (7)
C15—C16—H16119.8N4—Zn1—N389.52 (6)
N3—C17—C16122.78 (18)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z; (iii) x+1, y+2, z+1.
(compound_4) top
Crystal data top
C24H20CoN4O8Z = 2
Mr = 551.37F(000) = 566
Triclinic, P1Dx = 1.627 Mg m3
a = 7.7901 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0895 (7) ÅCell parameters from 6677 reflections
c = 15.5233 (8) Åθ = 2.7–27.6°
α = 94.751 (2)°µ = 0.82 mm1
β = 101.411 (2)°T = 296 K
γ = 107.809 (2)°Block, red
V = 1125.17 (11) Å3
Data collection top
Bruker APEX-II CCD
diffractometer
Rint = 0.033
φ and ω scansθmax = 27.6°, θmin = 2.2°
10738 measured reflectionsh = 109
5141 independent reflectionsk = 1310
4509 reflections with I > 2σ(I)l = 1920
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.1P)2 + 0.2935P]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max = 0.002
5141 reflectionsΔρmax = 0.54 e Å3
336 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.29366 (3)0.43645 (3)0.83093 (2)0.01750 (11)
O10.23677 (19)0.22458 (15)0.78891 (9)0.0223 (3)
O80.19363 (19)0.38260 (15)0.95166 (8)0.0230 (3)
H8A0.0774680.3987990.9483270.034*
H8B0.1769500.2851820.9555740.034*
O70.5593 (2)0.44591 (17)0.89956 (9)0.0280 (3)
H7A0.6063470.5229980.9478500.042*
H7B0.6406020.4599820.8595700.042*
O60.02493 (19)0.42596 (15)0.22787 (9)0.0231 (3)
O20.1020 (2)0.11573 (16)0.88981 (9)0.0291 (3)
O50.1721 (2)0.34399 (17)0.14311 (9)0.0288 (3)
O30.0739 (2)0.14488 (17)0.85770 (10)0.0310 (3)
H30.0242740.0662100.8873100.047*
O40.4039 (2)0.09281 (19)0.18746 (10)0.0343 (4)
H40.3453390.1682800.1552230.052*
N20.3587 (2)0.65150 (18)0.88238 (10)0.0206 (3)
N10.3758 (2)0.46708 (18)0.70829 (10)0.0202 (3)
N30.1102 (2)0.1710 (2)0.53120 (11)0.0274 (4)
N40.1937 (2)0.0574 (2)0.50741 (11)0.0273 (4)
C60.5887 (3)0.8782 (2)0.93560 (13)0.0239 (4)
H60.7088130.9371480.9393390.029*
C10.4728 (2)0.4928 (2)0.54335 (11)0.0192 (4)
C120.0830 (3)0.0210 (2)0.75482 (12)0.0199 (4)
C110.1467 (3)0.1166 (2)0.81510 (12)0.0206 (4)
C70.4706 (3)0.9279 (2)0.97573 (12)0.0200 (4)
C180.2105 (3)0.2063 (2)0.28124 (12)0.0210 (4)
C190.1579 (3)0.1975 (2)0.36182 (12)0.0218 (4)
H190.0695190.2743920.3743330.026*
C80.2929 (3)0.8324 (2)0.96646 (13)0.0234 (4)
H80.2077700.8589580.9920400.028*
C200.3446 (3)0.0898 (2)0.26314 (13)0.0249 (4)
C130.1276 (3)0.0268 (2)0.67263 (12)0.0223 (4)
H130.1976200.0550040.6556780.027*
C240.1133 (3)0.3348 (2)0.21357 (12)0.0216 (4)
C90.5297 (3)0.7434 (2)0.89063 (13)0.0243 (4)
H90.6122360.7141180.8645090.029*
C210.2359 (3)0.0756 (2)0.42317 (13)0.0252 (4)
C100.2430 (3)0.6991 (2)0.91971 (13)0.0241 (4)
H100.1225920.6387890.9135950.029*
C140.0683 (3)0.1541 (2)0.61535 (13)0.0244 (4)
C220.4175 (3)0.0351 (2)0.32361 (15)0.0316 (5)
H220.5027730.1135830.3107110.038*
C20.3289 (3)0.5563 (2)0.65654 (13)0.0249 (4)
H20.2641000.6112800.6766390.030*
C150.0247 (3)0.1452 (2)0.77917 (13)0.0248 (4)
C30.4686 (3)0.3896 (2)0.67721 (12)0.0243 (4)
H3A0.5004440.3253830.7113760.029*
C40.5200 (3)0.3997 (2)0.59679 (13)0.0251 (4)
H4A0.5859980.3442040.5786930.030*
C230.3626 (3)0.0417 (2)0.40244 (14)0.0307 (5)
H230.4104450.1253000.4424110.037*
C160.0834 (3)0.2727 (2)0.72202 (15)0.0308 (5)
H160.1537950.3548830.7384410.037*
C50.3719 (3)0.5711 (2)0.57478 (13)0.0250 (4)
H50.3335870.6331440.5408170.030*
C170.0365 (3)0.2763 (2)0.64121 (15)0.0303 (5)
H170.0752300.3615490.6032350.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02176 (16)0.01396 (16)0.01565 (15)0.00487 (11)0.00524 (10)0.00198 (10)
O10.0280 (7)0.0151 (7)0.0221 (6)0.0047 (6)0.0078 (5)0.0017 (5)
O80.0282 (7)0.0206 (7)0.0191 (6)0.0065 (6)0.0068 (5)0.0004 (5)
O70.0261 (7)0.0299 (8)0.0244 (7)0.0116 (6)0.0001 (5)0.0106 (6)
O60.0245 (7)0.0195 (7)0.0233 (6)0.0069 (6)0.0036 (5)0.0015 (5)
O20.0427 (9)0.0221 (8)0.0215 (7)0.0074 (7)0.0123 (6)0.0010 (6)
O50.0291 (7)0.0346 (9)0.0226 (7)0.0110 (7)0.0089 (6)0.0041 (6)
O30.0349 (8)0.0249 (8)0.0321 (8)0.0032 (7)0.0170 (6)0.0022 (6)
O40.0366 (9)0.0343 (10)0.0311 (8)0.0056 (7)0.0156 (7)0.0044 (7)
N20.0252 (8)0.0161 (8)0.0197 (7)0.0065 (6)0.0057 (6)0.0016 (6)
N10.0229 (8)0.0196 (8)0.0185 (7)0.0067 (6)0.0073 (6)0.0006 (6)
N30.0317 (9)0.0250 (10)0.0221 (8)0.0083 (7)0.0036 (7)0.0054 (7)
N40.0309 (9)0.0252 (10)0.0216 (8)0.0083 (8)0.0024 (7)0.0060 (7)
C60.0231 (9)0.0171 (10)0.0308 (10)0.0036 (8)0.0111 (8)0.0002 (8)
C10.0216 (9)0.0186 (10)0.0170 (8)0.0063 (7)0.0048 (7)0.0007 (7)
C120.0218 (9)0.0163 (9)0.0198 (8)0.0062 (7)0.0026 (7)0.0021 (7)
C110.0232 (9)0.0201 (10)0.0188 (8)0.0088 (8)0.0045 (7)0.0002 (7)
C70.0252 (9)0.0168 (10)0.0179 (8)0.0075 (8)0.0050 (7)0.0002 (7)
C180.0214 (9)0.0217 (10)0.0197 (8)0.0092 (8)0.0024 (7)0.0004 (7)
C190.0219 (9)0.0220 (10)0.0213 (9)0.0083 (8)0.0037 (7)0.0003 (8)
C80.0227 (9)0.0201 (10)0.0263 (9)0.0066 (8)0.0069 (7)0.0037 (8)
C200.0232 (9)0.0276 (11)0.0242 (9)0.0101 (8)0.0041 (7)0.0028 (8)
C130.0248 (9)0.0172 (10)0.0225 (9)0.0057 (8)0.0041 (7)0.0007 (7)
C240.0216 (9)0.0251 (10)0.0204 (8)0.0123 (8)0.0038 (7)0.0006 (7)
C90.0279 (10)0.0182 (10)0.0280 (9)0.0070 (8)0.0125 (8)0.0008 (8)
C210.0254 (10)0.0255 (11)0.0214 (9)0.0082 (8)0.0012 (7)0.0027 (8)
C100.0236 (9)0.0192 (10)0.0279 (9)0.0057 (8)0.0074 (7)0.0030 (8)
C140.0261 (10)0.0211 (10)0.0230 (9)0.0074 (8)0.0032 (7)0.0050 (8)
C220.0282 (10)0.0238 (11)0.0348 (11)0.0006 (8)0.0031 (8)0.0023 (9)
C20.0327 (10)0.0228 (10)0.0264 (9)0.0143 (8)0.0142 (8)0.0060 (8)
C150.0241 (9)0.0219 (10)0.0279 (9)0.0071 (8)0.0074 (8)0.0005 (8)
C30.0305 (10)0.0274 (11)0.0207 (9)0.0156 (9)0.0081 (7)0.0063 (8)
C40.0310 (10)0.0294 (11)0.0224 (9)0.0185 (9)0.0094 (8)0.0047 (8)
C230.0310 (11)0.0221 (11)0.0297 (10)0.0032 (9)0.0011 (8)0.0051 (9)
C160.0322 (11)0.0170 (10)0.0385 (11)0.0014 (8)0.0100 (9)0.0006 (9)
C50.0337 (10)0.0243 (11)0.0247 (9)0.0153 (9)0.0126 (8)0.0099 (8)
C170.0318 (11)0.0195 (11)0.0331 (10)0.0056 (9)0.0027 (9)0.0084 (9)
Geometric parameters (Å, º) top
Co1—O12.0655 (14)C12—C151.406 (3)
Co1—O6i2.0783 (13)C12—C111.493 (3)
Co1—O72.1016 (14)C7—C81.396 (3)
Co1—N22.1173 (17)C7—C7iii1.473 (4)
Co1—N12.1418 (15)C18—C191.395 (3)
Co1—O82.2142 (13)C18—C201.404 (3)
O1—C111.250 (2)C18—C241.489 (3)
O8—H8A0.9600C19—C211.381 (3)
O8—H8B0.9600C19—H190.9300
O7—H7A0.9600C8—C101.375 (3)
O7—H7B0.9600C8—H80.9300
O6—C241.256 (2)C20—C221.396 (3)
O2—C111.275 (2)C13—C141.393 (3)
O5—C241.274 (2)C13—H130.9300
O3—C151.348 (2)C9—H90.9300
O3—H30.8200C21—C231.397 (3)
O4—C201.346 (2)C10—H100.9300
O4—H40.8200C14—C171.394 (3)
N2—C101.344 (2)C22—C231.377 (3)
N2—C91.345 (3)C22—H220.9300
N1—C31.338 (2)C2—C51.383 (3)
N1—C21.340 (3)C2—H20.9300
N3—N41.258 (3)C15—C161.394 (3)
N3—C141.417 (2)C3—C41.387 (3)
N4—C211.421 (2)C3—H3A0.9300
C6—C91.372 (3)C4—H4A0.9300
C6—C71.393 (3)C23—H230.9300
C6—H60.9300C16—C171.375 (3)
C1—C41.387 (3)C16—H160.9300
C1—C51.396 (3)C5—H50.9300
C1—C1ii1.494 (3)C17—H170.9300
C12—C131.388 (3)
O1—Co1—O6i92.02 (6)C18—C19—H19119.7
O1—Co1—O788.63 (6)C10—C8—C7120.37 (17)
O6i—Co1—O7175.67 (5)C10—C8—H8119.8
O1—Co1—N2176.31 (5)C7—C8—H8119.8
O6i—Co1—N290.26 (6)O4—C20—C22117.9 (2)
O7—Co1—N288.88 (6)O4—C20—C18122.06 (19)
O1—Co1—N185.42 (6)C22—C20—C18119.99 (19)
O6i—Co1—N191.05 (6)C12—C13—C14120.50 (19)
O7—Co1—N193.27 (6)C12—C13—H13119.8
N2—Co1—N197.44 (6)C14—C13—H13119.8
O1—Co1—O889.16 (5)O6—C24—O5123.70 (18)
O6i—Co1—O887.31 (5)O6—C24—C18118.35 (16)
O7—Co1—O888.41 (5)O5—C24—C18117.92 (18)
N2—Co1—O888.05 (6)N2—C9—C6123.38 (17)
N1—Co1—O8174.28 (6)N2—C9—H9118.3
C11—O1—Co1131.94 (12)C6—C9—H9118.3
Co1—O8—H8A109.5C19—C21—C23119.47 (19)
Co1—O8—H8B109.4C19—C21—N4124.73 (19)
H8A—O8—H8B109.5C23—C21—N4115.78 (19)
Co1—O7—H7A109.4N2—C10—C8123.53 (18)
Co1—O7—H7B109.3N2—C10—H10118.2
H7A—O7—H7B109.5C8—C10—H10118.2
C24—O6—Co1i121.29 (12)C13—C14—C17119.45 (18)
C15—O3—H3109.5C13—C14—N3124.56 (19)
C20—O4—H4109.5C17—C14—N3115.98 (18)
C10—N2—C9116.30 (17)C23—C22—C20119.7 (2)
C10—N2—Co1122.33 (14)C23—C22—H22120.2
C9—N2—Co1120.71 (13)C20—C22—H22120.2
C3—N1—C2116.63 (16)N1—C2—C5123.50 (18)
C3—N1—Co1120.32 (13)N1—C2—H2118.3
C2—N1—Co1122.92 (13)C5—C2—H2118.3
N4—N3—C14114.18 (18)O3—C15—C16118.18 (19)
N3—N4—C21113.69 (18)O3—C15—C12121.46 (18)
C9—C6—C7120.73 (18)C16—C15—C12120.36 (18)
C9—C6—H6119.6N1—C3—C4123.51 (17)
C7—C6—H6119.6N1—C3—H3A118.2
C4—C1—C5116.48 (16)C4—C3—H3A118.2
C4—C1—C1ii121.4 (2)C3—C4—C1119.98 (17)
C5—C1—C1ii122.2 (2)C3—C4—H4A120.0
C13—C12—C15119.14 (18)C1—C4—H4A120.0
C13—C12—C11119.77 (18)C22—C23—C21120.9 (2)
C15—C12—C11121.08 (16)C22—C23—H23119.6
O1—C11—O2124.45 (18)C21—C23—H23119.6
O1—C11—C12118.43 (16)C17—C16—C15119.6 (2)
O2—C11—C12117.10 (17)C17—C16—H16120.2
C6—C7—C8115.66 (17)C15—C16—H16120.2
C6—C7—C7iii122.1 (2)C2—C5—C1119.87 (17)
C8—C7—C7iii122.2 (2)C2—C5—H5120.1
C19—C18—C20119.25 (18)C1—C5—H5120.1
C19—C18—C24119.29 (18)C16—C17—C14121.0 (2)
C20—C18—C24121.30 (17)C16—C17—H17119.5
C21—C19—C18120.61 (19)C14—C17—H17119.5
C21—C19—H19119.7
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+2.
(compound_5) top
Crystal data top
C24H18CuN4O7F(000) = 1100
Mr = 537.96Dx = 1.628 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2074 (4) ÅCell parameters from 7226 reflections
b = 16.8579 (7) Åθ = 2.3–27.3°
c = 18.3599 (7) ŵ = 1.05 mm1
β = 100.371 (2)°T = 193 K
V = 2194.31 (17) Å3Block
Z = 40.12 × 0.1 × 0.1 mm
Data collection top
Bruker D8 VENTURE PHOTON 100
diffractometer
5029 independent reflections
φ and ω scans3908 reflections with I > 2σ(I)
Absorption correction: multi-scan
TWINABS-2012/1 (Bruker,2012) was used for absorption correction.
For component 1: wR2(int) was 0.0959 before and 0.0602 after correction.
For component 2: wR2(int) was 0.1292 before and 0.0614 after correction. The Ratio of minimum to maximum transmission is 0.91.
Final HKLF 4 output contains 37521 reflections, Rint = 0.0700 (18065 with I > 3sig(I), Rint = 0.0528)
Rint = 0.070
Tmin = 0.677, Tmax = 0.746θmax = 27.5°, θmin = 2.3°
5029 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0294P)2 + 3.8358P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5029 reflectionsΔρmax = 0.46 e Å3
330 parametersΔρmin = 0.40 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.31864 (6)0.13366 (2)0.56014 (2)0.01895 (11)
O10.1531 (4)0.80474 (12)0.59486 (12)0.0314 (6)
H10.1629900.8492790.5754130.047*
O20.2185 (4)0.90228 (12)0.49903 (12)0.0300 (5)
O30.3640 (3)0.86371 (11)0.40781 (11)0.0235 (5)
O40.4051 (4)0.23068 (12)0.26640 (12)0.0337 (6)
H40.4072680.1897690.2926630.051*
O50.3408 (4)0.14754 (11)0.37808 (11)0.0274 (5)
O60.2953 (3)0.21160 (11)0.48056 (10)0.0225 (5)
O70.2913 (5)0.05100 (12)0.48581 (12)0.0422 (7)
H7A0.2961160.0001390.4922790.063*
H7B0.3145790.0578590.4413500.063*
N10.2867 (4)0.05079 (13)0.63624 (13)0.0202 (5)
N20.2011 (4)0.27376 (13)0.87150 (13)0.0203 (5)
N30.2905 (4)0.49503 (14)0.43245 (14)0.0271 (6)
N40.3065 (4)0.56390 (14)0.40765 (14)0.0248 (6)
C10.2108 (5)0.60767 (17)0.52548 (17)0.0249 (7)
H1A0.1960630.5542200.5398140.030*
C20.1742 (5)0.66830 (17)0.57055 (17)0.0263 (7)
H20.1350240.6568290.6161370.032*
C30.1945 (5)0.74732 (16)0.54935 (16)0.0219 (6)
C40.2556 (4)0.76464 (16)0.48269 (15)0.0187 (6)
C50.2825 (5)0.84879 (16)0.46076 (16)0.0206 (6)
C60.2918 (5)0.70206 (16)0.43742 (16)0.0202 (6)
H60.3317330.7130380.3918950.024*
C70.2699 (5)0.62406 (16)0.45825 (16)0.0211 (6)
C80.3221 (5)0.43178 (16)0.38594 (16)0.0223 (6)
C90.3695 (5)0.43772 (17)0.31509 (17)0.0275 (7)
H90.3841220.4883780.2941800.033*
C100.3946 (5)0.37009 (18)0.27617 (17)0.0286 (7)
H100.4239840.3743950.2279190.034*
C110.3773 (5)0.29488 (16)0.30674 (16)0.0225 (6)
C120.3342 (4)0.28837 (16)0.37813 (15)0.0191 (6)
C130.3081 (5)0.35729 (16)0.41634 (16)0.0208 (6)
H130.2797980.3532710.4647790.025*
C140.3229 (4)0.20963 (16)0.41438 (16)0.0194 (6)
C150.4322 (5)0.02308 (17)0.68509 (16)0.0233 (6)
H150.5531670.0459580.6861590.028*
C160.4145 (5)0.03747 (17)0.73418 (17)0.0247 (7)
H160.5205540.0544740.7691570.030*
C170.2387 (5)0.07336 (16)0.73176 (15)0.0194 (6)
C180.0875 (5)0.04497 (16)0.68016 (15)0.0210 (6)
H180.0342290.0678040.6767170.025*
C190.1170 (5)0.01695 (16)0.63391 (16)0.0208 (6)
H190.0129510.0362510.5991670.025*
C200.2181 (4)0.14158 (16)0.78110 (15)0.0200 (6)
C210.3230 (5)0.14507 (17)0.85224 (16)0.0242 (6)
H210.4027040.1021610.8712550.029*
C220.3106 (5)0.21167 (17)0.89526 (16)0.0226 (6)
H220.3832110.2132820.9438530.027*
C230.0956 (5)0.26939 (17)0.80348 (16)0.0248 (7)
H230.0146510.3125260.7862560.030*
C240.0996 (5)0.20466 (17)0.75735 (16)0.0238 (7)
H240.0216930.2035590.7097620.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0332 (2)0.00974 (15)0.01522 (17)0.00102 (15)0.00776 (14)0.00005 (13)
O10.0544 (17)0.0172 (10)0.0270 (12)0.0021 (11)0.0192 (12)0.0036 (9)
O20.0509 (16)0.0120 (9)0.0308 (12)0.0009 (10)0.0176 (11)0.0013 (8)
O30.0322 (13)0.0172 (9)0.0223 (10)0.0001 (9)0.0087 (9)0.0041 (8)
O40.0617 (18)0.0191 (10)0.0249 (12)0.0049 (11)0.0201 (12)0.0006 (9)
O50.0475 (15)0.0145 (10)0.0223 (11)0.0025 (9)0.0122 (10)0.0013 (8)
O60.0418 (14)0.0137 (9)0.0144 (10)0.0002 (9)0.0111 (9)0.0006 (7)
O70.097 (2)0.0130 (10)0.0205 (11)0.0106 (13)0.0210 (13)0.0030 (8)
N10.0311 (16)0.0136 (11)0.0168 (12)0.0004 (10)0.0069 (11)0.0011 (9)
N20.0312 (16)0.0142 (11)0.0179 (12)0.0000 (10)0.0111 (11)0.0002 (9)
N30.0411 (18)0.0114 (11)0.0304 (14)0.0003 (11)0.0108 (13)0.0007 (10)
N40.0338 (17)0.0132 (11)0.0284 (13)0.0014 (11)0.0079 (12)0.0013 (10)
C10.0320 (19)0.0159 (13)0.0276 (16)0.0038 (13)0.0075 (14)0.0061 (11)
C20.036 (2)0.0206 (14)0.0239 (15)0.0007 (14)0.0100 (14)0.0053 (12)
C30.0278 (18)0.0169 (13)0.0219 (14)0.0003 (12)0.0065 (13)0.0004 (11)
C40.0240 (16)0.0147 (12)0.0182 (13)0.0001 (11)0.0058 (12)0.0029 (10)
C50.0270 (17)0.0142 (13)0.0201 (14)0.0003 (12)0.0031 (12)0.0003 (10)
C60.0244 (17)0.0152 (13)0.0211 (14)0.0004 (12)0.0047 (13)0.0018 (10)
C70.0268 (17)0.0131 (12)0.0234 (14)0.0002 (12)0.0046 (12)0.0005 (11)
C80.0298 (18)0.0128 (12)0.0251 (15)0.0005 (12)0.0070 (13)0.0005 (11)
C90.037 (2)0.0182 (14)0.0278 (16)0.0012 (13)0.0082 (15)0.0081 (12)
C100.044 (2)0.0235 (15)0.0219 (15)0.0043 (15)0.0143 (14)0.0067 (12)
C110.0299 (19)0.0171 (13)0.0218 (14)0.0025 (12)0.0080 (13)0.0004 (11)
C120.0258 (17)0.0138 (12)0.0186 (14)0.0003 (12)0.0061 (12)0.0020 (10)
C130.0292 (17)0.0157 (13)0.0188 (13)0.0004 (12)0.0074 (12)0.0023 (10)
C140.0239 (17)0.0145 (12)0.0204 (14)0.0002 (12)0.0054 (12)0.0006 (10)
C150.0265 (18)0.0196 (13)0.0239 (15)0.0039 (13)0.0047 (13)0.0034 (11)
C160.0281 (19)0.0222 (14)0.0235 (15)0.0002 (13)0.0039 (13)0.0078 (12)
C170.0291 (18)0.0148 (12)0.0158 (13)0.0002 (12)0.0077 (12)0.0006 (10)
C180.0266 (17)0.0170 (13)0.0195 (14)0.0021 (12)0.0046 (13)0.0010 (11)
C190.0265 (17)0.0162 (13)0.0190 (14)0.0007 (12)0.0021 (12)0.0010 (10)
C200.0228 (16)0.0187 (13)0.0193 (13)0.0004 (12)0.0058 (12)0.0040 (11)
C210.0283 (18)0.0208 (14)0.0230 (15)0.0047 (13)0.0033 (13)0.0019 (11)
C220.0256 (18)0.0227 (14)0.0194 (14)0.0029 (13)0.0034 (13)0.0044 (11)
C230.039 (2)0.0178 (13)0.0171 (14)0.0062 (13)0.0045 (13)0.0005 (11)
C240.0337 (19)0.0228 (14)0.0148 (13)0.0050 (13)0.0040 (13)0.0011 (11)
Geometric parameters (Å, º) top
Cu1—O3i2.257 (2)C6—H60.9500
Cu1—O61.9496 (19)C6—C71.386 (4)
Cu1—O71.935 (2)C8—C91.407 (4)
Cu1—N12.018 (2)C8—C131.385 (4)
Cu1—N2ii2.024 (2)C9—H90.9500
O1—H10.8400C9—C101.375 (4)
O1—C31.347 (3)C10—H100.9500
O2—C51.279 (3)C10—C111.401 (4)
O3—C51.249 (3)C11—C121.405 (4)
O4—H40.8400C12—C131.387 (4)
O4—C111.347 (3)C12—C141.494 (4)
O5—C141.260 (3)C13—H130.9500
O6—C141.267 (3)C15—H150.9500
O7—H7A0.8701C15—C161.383 (4)
O7—H7B0.8701C16—H160.9500
N1—C151.336 (4)C16—C171.397 (4)
N1—C191.343 (4)C17—C181.394 (4)
N2—C221.336 (4)C17—C201.488 (4)
N2—C231.342 (4)C18—H180.9500
N3—N41.260 (3)C18—C191.386 (4)
N3—C81.410 (4)C19—H190.9500
N4—C71.432 (3)C20—C211.388 (4)
C1—H1A0.9500C20—C241.384 (4)
C1—C21.370 (4)C21—H210.9500
C1—C71.404 (4)C21—C221.385 (4)
C2—H20.9500C22—H220.9500
C2—C31.403 (4)C23—H230.9500
C3—C41.404 (4)C23—C241.385 (4)
C4—C51.497 (4)C24—H240.9500
C4—C61.396 (4)
O6—Cu1—O3i97.40 (9)C8—C9—H9120.1
O6—Cu1—N1168.57 (11)C10—C9—C8119.9 (3)
O6—Cu1—N2ii86.49 (8)C10—C9—H9120.1
O7—Cu1—O3i99.65 (11)C9—C10—H10119.6
O7—Cu1—O688.43 (8)C9—C10—C11120.8 (3)
O7—Cu1—N188.86 (9)C11—C10—H10119.6
O7—Cu1—N2ii169.39 (12)O4—C11—C10118.3 (2)
N1—Cu1—O3i94.00 (9)O4—C11—C12122.0 (2)
N1—Cu1—N2ii94.30 (9)C10—C11—C12119.7 (3)
N2ii—Cu1—O3i90.24 (9)C11—C12—C14121.6 (2)
C3—O1—H1109.5C13—C12—C11118.6 (2)
C5—O3—Cu1i113.4 (2)C13—C12—C14119.7 (2)
C11—O4—H4109.5C8—C13—C12122.0 (3)
C14—O6—Cu1133.95 (18)C8—C13—H13119.0
Cu1—O7—H7A128.4C12—C13—H13119.0
Cu1—O7—H7B123.6O5—C14—O6125.3 (2)
H7A—O7—H7B104.5O5—C14—C12118.9 (2)
C15—N1—Cu1122.2 (2)O6—C14—C12115.8 (2)
C15—N1—C19118.3 (2)N1—C15—H15118.6
C19—N1—Cu1119.2 (2)N1—C15—C16122.8 (3)
C22—N2—Cu1iii120.3 (2)C16—C15—H15118.6
C22—N2—C23117.6 (2)C15—C16—H16120.4
C23—N2—Cu1iii121.9 (2)C15—C16—C17119.3 (3)
N4—N3—C8116.3 (2)C17—C16—H16120.4
N3—N4—C7112.2 (2)C16—C17—C20120.3 (3)
C2—C1—H1A119.8C18—C17—C16117.8 (3)
C2—C1—C7120.4 (3)C18—C17—C20121.9 (3)
C7—C1—H1A119.8C17—C18—H18120.4
C1—C2—H2120.0C19—C18—C17119.2 (3)
C1—C2—C3120.0 (3)C19—C18—H18120.4
C3—C2—H2120.0N1—C19—C18122.6 (3)
O1—C3—C2117.7 (2)N1—C19—H19118.7
O1—C3—C4122.1 (2)C18—C19—H19118.7
C2—C3—C4120.3 (3)C21—C20—C17120.6 (3)
C3—C4—C5120.5 (2)C24—C20—C17121.7 (3)
C6—C4—C3118.9 (2)C24—C20—C21117.7 (3)
C6—C4—C5120.6 (2)C20—C21—H21120.3
O2—C5—C4116.3 (2)C22—C21—C20119.4 (3)
O3—C5—O2123.5 (3)C22—C21—H21120.3
O3—C5—C4120.1 (2)N2—C22—C21123.0 (3)
C4—C6—H6119.7N2—C22—H22118.5
C7—C6—C4120.6 (3)C21—C22—H22118.5
C7—C6—H6119.7N2—C23—H23118.6
C1—C7—N4123.5 (2)N2—C23—C24122.8 (3)
C6—C7—N4116.7 (2)C24—C23—H23118.6
C6—C7—C1119.8 (3)C20—C24—C23119.5 (3)
C9—C8—N3126.8 (3)C20—C24—H24120.3
C13—C8—N3114.2 (2)C23—C24—H24120.3
C13—C8—C9119.0 (3)
Cu1i—O3—C5—O295.4 (3)C7—C1—C2—C30.4 (5)
Cu1i—O3—C5—C484.4 (3)C8—N3—N4—C7179.3 (3)
Cu1—O6—C14—O514.9 (5)C8—C9—C10—C111.3 (5)
Cu1—O6—C14—C12165.2 (2)C9—C8—C13—C121.9 (5)
Cu1—N1—C15—C16175.5 (2)C9—C10—C11—O4179.4 (3)
Cu1—N1—C19—C18174.4 (2)C9—C10—C11—C120.1 (5)
Cu1iii—N2—C22—C21176.9 (2)C10—C11—C12—C130.6 (5)
Cu1iii—N2—C23—C24176.5 (2)C10—C11—C12—C14177.2 (3)
O1—C3—C4—C51.8 (5)C11—C12—C13—C80.4 (5)
O1—C3—C4—C6178.5 (3)C11—C12—C14—O54.5 (5)
O4—C11—C12—C13179.8 (3)C11—C12—C14—O6175.5 (3)
O4—C11—C12—C142.0 (5)C13—C8—C9—C102.3 (5)
N1—C15—C16—C171.9 (4)C13—C12—C14—O5177.7 (3)
N2—C23—C24—C200.7 (5)C13—C12—C14—O62.3 (5)
N3—N4—C7—C14.0 (5)C14—C12—C13—C8178.3 (3)
N3—N4—C7—C6177.3 (3)C15—N1—C19—C180.2 (4)
N3—C8—C9—C10179.6 (3)C15—C16—C17—C181.1 (4)
N3—C8—C13—C12179.8 (3)C15—C16—C17—C20176.6 (3)
N4—N3—C8—C90.1 (5)C16—C17—C18—C190.1 (4)
N4—N3—C8—C13178.3 (3)C16—C17—C20—C2135.4 (4)
C1—C2—C3—O1178.7 (3)C16—C17—C20—C24142.4 (3)
C1—C2—C3—C41.2 (5)C17—C18—C19—N10.5 (4)
C2—C1—C7—N4178.5 (3)C17—C20—C21—C22175.7 (3)
C2—C1—C7—C60.2 (5)C17—C20—C24—C23175.3 (3)
C2—C3—C4—C5178.4 (3)C18—C17—C20—C21147.0 (3)
C2—C3—C4—C61.3 (5)C18—C17—C20—C2435.2 (4)
C3—C4—C5—O210.9 (5)C19—N1—C15—C161.5 (4)
C3—C4—C5—O3168.9 (3)C20—C17—C18—C19177.7 (3)
C3—C4—C6—C70.7 (5)C20—C21—C22—N20.0 (5)
C4—C6—C7—N4178.8 (3)C21—C20—C24—C232.5 (5)
C4—C6—C7—C10.0 (5)C22—N2—C23—C241.5 (4)
C5—C4—C6—C7179.0 (3)C23—N2—C22—C211.9 (4)
C6—C4—C5—O2169.4 (3)C24—C20—C21—C222.2 (4)
C6—C4—C5—O310.8 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2.
(compound_6) top
Crystal data top
C14H10N2O6·C10H8N2F(000) = 952
Mr = 458.42Dx = 1.535 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.020 (2) ÅCell parameters from 5123 reflections
b = 11.953 (2) Åθ = 2.6–27.5°
c = 14.174 (3) ŵ = 0.11 mm1
β = 103.163 (7)°T = 173 K
V = 1983.1 (7) Å3Block, yellow
Z = 40.13 × 0.12 × 0.1 mm
Data collection top
Bruker D8 VENTURE TXS PHOTON 100
diffractometer
2265 independent reflections
Radiation source: TXS, Rotaing Anode2018 reflections with I > 2σ(I)
Helios Multi-layer Optic monochromatorRint = 0.044
Detector resolution: 7.41 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω and φ shutterless scansh = 1515
Absorption correction: multi-scan
SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.1143 before and 0.0755 after correction. The Ratio of minimum to maximum transmission is 0.8020. The λ/2 correction factor is Not present.
k = 1315
Tmin = 0.598, Tmax = 0.746l = 1817
8494 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0574P)2 + 2.5838P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2265 reflectionsΔρmax = 0.46 e Å3
156 parametersΔρmin = 0.30 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.36324 (10)0.81196 (9)0.63879 (8)0.0248 (3)
H30.3744630.8266480.5837470.037*
O10.36932 (11)0.47222 (10)0.69729 (9)0.0267 (3)
H10.3766170.5059120.6470400.040*
O20.37628 (11)0.63667 (10)0.58761 (8)0.0271 (3)
N20.26505 (12)0.77148 (11)0.96418 (10)0.0212 (3)
N10.08896 (11)0.64280 (11)0.52963 (10)0.0211 (3)
C0060.34105 (12)0.66265 (12)0.74344 (10)0.0179 (3)
C30.01783 (12)0.63359 (12)0.70325 (10)0.0175 (3)
C90.29295 (13)0.69211 (13)0.89863 (11)0.0196 (3)
C20.06464 (13)0.53973 (13)0.66828 (11)0.0201 (3)
H20.0721550.4711690.7030590.024*
C10.10004 (13)0.54805 (13)0.58194 (11)0.0215 (3)
H1A0.1333100.4844660.5589970.026*
C100.31330 (13)0.73399 (13)0.81278 (11)0.0188 (3)
H100.3082900.8122710.8009830.023*
C110.36153 (13)0.70458 (13)0.65015 (11)0.0197 (3)
C60.34743 (13)0.54658 (13)0.76164 (11)0.0203 (3)
C40.00581 (13)0.73082 (13)0.64804 (12)0.0210 (3)
H40.0269800.7958050.6691970.025*
C50.04180 (14)0.73231 (13)0.56234 (12)0.0220 (3)
H50.0328810.7991420.5251110.026*
C70.32848 (14)0.50520 (13)0.84912 (12)0.0244 (4)
H70.3340700.4271080.8617700.029*
C80.30197 (14)0.57621 (14)0.91657 (12)0.0235 (3)
H80.2896170.5471720.9757350.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0397 (7)0.0206 (6)0.0188 (6)0.0011 (5)0.0165 (5)0.0019 (4)
O10.0376 (7)0.0198 (6)0.0251 (6)0.0029 (5)0.0121 (5)0.0028 (4)
O20.0423 (7)0.0230 (6)0.0202 (6)0.0010 (5)0.0161 (5)0.0036 (4)
N20.0271 (7)0.0231 (7)0.0153 (6)0.0006 (5)0.0087 (5)0.0014 (5)
N10.0232 (6)0.0241 (7)0.0175 (6)0.0022 (5)0.0080 (5)0.0022 (5)
C0060.0205 (7)0.0191 (7)0.0151 (7)0.0014 (5)0.0059 (5)0.0003 (6)
C30.0181 (7)0.0205 (7)0.0154 (7)0.0016 (5)0.0067 (5)0.0011 (5)
C90.0230 (7)0.0213 (7)0.0159 (7)0.0012 (6)0.0073 (6)0.0005 (6)
C20.0223 (7)0.0197 (7)0.0194 (7)0.0009 (6)0.0072 (6)0.0015 (6)
C10.0241 (7)0.0214 (7)0.0208 (8)0.0001 (6)0.0091 (6)0.0037 (6)
C100.0236 (7)0.0188 (7)0.0154 (7)0.0021 (5)0.0072 (6)0.0010 (5)
C110.0230 (7)0.0219 (7)0.0156 (7)0.0009 (6)0.0073 (6)0.0009 (6)
C60.0211 (7)0.0201 (7)0.0203 (7)0.0006 (6)0.0061 (6)0.0014 (6)
C40.0256 (8)0.0200 (7)0.0198 (8)0.0020 (6)0.0104 (6)0.0000 (6)
C50.0276 (8)0.0225 (8)0.0180 (8)0.0004 (6)0.0091 (6)0.0020 (6)
C70.0304 (8)0.0178 (7)0.0265 (9)0.0014 (6)0.0099 (7)0.0048 (6)
C80.0282 (8)0.0243 (8)0.0198 (7)0.0000 (6)0.0095 (6)0.0060 (6)
Geometric parameters (Å, º) top
O3—H30.8400C3—C41.390 (2)
O3—C111.294 (2)C9—C101.388 (2)
O1—H10.8400C9—C81.408 (2)
O1—C61.3418 (18)C2—H20.9500
O2—C111.2440 (19)C2—C11.388 (2)
N2—N2i1.262 (3)C1—H1A0.9500
N2—C91.421 (2)C10—H100.9500
N1—C11.344 (2)C6—C71.401 (2)
N1—C51.342 (2)C4—H40.9500
C006—C101.398 (2)C4—C51.379 (2)
C006—C111.486 (2)C5—H50.9500
C006—C61.410 (2)C7—H70.9500
C3—C3ii1.483 (3)C7—C81.369 (2)
C3—C21.396 (2)C8—H80.9500
C11—O3—H3109.5C9—C10—C006120.95 (14)
C6—O1—H1109.5C9—C10—H10119.5
N2i—N2—C9114.08 (16)O3—C11—C006117.11 (13)
C5—N1—C1118.56 (13)O2—C11—O3123.33 (14)
C10—C006—C11122.29 (13)O2—C11—C006119.56 (14)
C10—C006—C6118.91 (13)O1—C6—C006122.57 (14)
C6—C006—C11118.78 (13)O1—C6—C7117.67 (14)
C2—C3—C3ii122.64 (10)C7—C6—C006119.75 (14)
C4—C3—C3ii119.27 (9)C3—C4—H4120.2
C4—C3—C2118.08 (13)C5—C4—C3119.56 (14)
C10—C9—N2116.58 (13)C5—C4—H4120.2
C10—C9—C8119.44 (14)N1—C5—C4122.41 (15)
C8—C9—N2123.98 (14)N1—C5—H5118.8
C3—C2—H2120.5C4—C5—H5118.8
C1—C2—C3119.01 (14)C6—C7—H7119.7
C1—C2—H2120.5C8—C7—C6120.64 (14)
N1—C1—C2122.36 (14)C8—C7—H7119.7
N1—C1—H1A118.8C9—C8—H8119.9
C2—C1—H1A118.8C7—C8—C9120.29 (14)
C006—C10—H10119.5C7—C8—H8119.9
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x, y, z+3/2.
(compound_7) top
Crystal data top
2(C18H12N3Zn0.5)·C14H8N2O6·8(H2O)F(000) = 2184
Mr = 1050.33Dx = 1.481 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 14.1895 (10) ÅCell parameters from 8395 reflections
b = 14.8309 (9) Åθ = 2.0–31.5°
c = 22.4020 (15) ŵ = 0.60 mm1
β = 92.676 (6)°T = 113 K
V = 4709.2 (5) Å3Block
Z = 40.12 × 0.1 × 0.07 mm
Data collection top
Rigaku Saturn 70 CCD
diffractometer
9636 independent reflections
Radiation source: rotating anode, Enhance (Mo) X-ray Source5147 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.141
ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018)
h = 1717
Tmin = 0.719, Tmax = 1.000k = 1818
41394 measured reflectionsl = 2825
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.54 e Å3
9636 reflectionsΔρmin = 0.53 e Å3
692 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
11 restraintsExtinction coefficient: 0.00074 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.5000000.65366 (4)0.7500000.01980 (19)
N10.3549 (2)0.6747 (2)0.71688 (14)0.0200 (8)
N20.4446 (2)0.7491 (2)0.81368 (14)0.0189 (8)
N30.5294 (2)0.5410 (2)0.69362 (14)0.0185 (8)
C10.3122 (3)0.6399 (3)0.66819 (18)0.0251 (11)
H10.3484250.6046420.6422980.030*
C20.2161 (3)0.6528 (3)0.65316 (19)0.0278 (11)
H20.1877380.6260640.6182260.033*
C30.1642 (3)0.7047 (3)0.68988 (19)0.0288 (11)
H30.0993080.7151360.6800440.035*
C40.2062 (3)0.7426 (3)0.74207 (19)0.0232 (10)
C50.1571 (3)0.7969 (3)0.7832 (2)0.0327 (12)
H50.0917630.8083560.7754750.039*
C60.2008 (3)0.8324 (3)0.8327 (2)0.0310 (12)
H60.1657520.8671640.8595070.037*
C70.2995 (3)0.8179 (3)0.84490 (18)0.0225 (10)
C80.3492 (3)0.8542 (3)0.89495 (19)0.0294 (11)
H80.3175680.8898530.9230160.035*
C90.4433 (3)0.8378 (3)0.90276 (19)0.0293 (11)
H90.4777370.8623330.9363370.035*
C100.4894 (3)0.7850 (3)0.86164 (18)0.0247 (10)
H100.5551430.7742460.8680300.030*
C110.3503 (3)0.7658 (3)0.80533 (18)0.0214 (10)
C120.3021 (3)0.7256 (3)0.75328 (17)0.0182 (9)
C130.5584 (3)0.5412 (3)0.63822 (18)0.0252 (11)
H130.5699230.5977250.6200060.030*
C140.5728 (3)0.4634 (3)0.60524 (19)0.0293 (11)
H140.5926150.4670410.5653900.035*
C150.5580 (3)0.3818 (3)0.63119 (19)0.0287 (11)
H150.5675430.3278960.6093410.034*
C160.5285 (3)0.3771 (3)0.69043 (19)0.0254 (11)
C170.5152 (3)0.4590 (3)0.71977 (16)0.0189 (10)
C180.5138 (3)0.2951 (3)0.72166 (18)0.0333 (12)
H180.5237540.2392460.7021260.040*
Zn20.0000001.12863 (4)0.7500000.02063 (19)
N40.0560 (2)1.0307 (2)0.68826 (14)0.0211 (8)
N50.1448 (2)1.1066 (2)0.78459 (15)0.0201 (8)
N60.0281 (2)1.2412 (2)0.80654 (14)0.0197 (8)
C190.0125 (3)0.9942 (3)0.64081 (18)0.0273 (11)
H190.0525761.0071410.6333050.033*
C200.0568 (3)0.9379 (3)0.6012 (2)0.0364 (12)
H200.0226680.9136600.5674630.044*
C210.1498 (4)0.9179 (3)0.6115 (2)0.0380 (13)
H210.1808760.8792790.5848710.046*
C220.1996 (3)0.9543 (3)0.6614 (2)0.0307 (12)
C230.2967 (3)0.9371 (3)0.6760 (2)0.0373 (13)
H230.3311340.8991540.6506480.045*
C240.3410 (3)0.9734 (3)0.7250 (2)0.0388 (13)
H240.4057220.9601890.7336220.047*
C250.2920 (3)1.0313 (3)0.7640 (2)0.0268 (11)
C260.3336 (3)1.0711 (3)0.8159 (2)0.0343 (12)
H260.3978891.0594100.8270660.041*
C270.2817 (3)1.1261 (3)0.8497 (2)0.0343 (12)
H270.3092841.1526530.8849610.041*
C280.1872 (3)1.1436 (3)0.83263 (18)0.0254 (11)
H280.1522031.1834300.8563260.031*
C290.1965 (3)1.0509 (3)0.75021 (19)0.0220 (10)
C300.1489 (3)1.0111 (3)0.69906 (19)0.0220 (10)
C310.0557 (3)1.2407 (3)0.86244 (17)0.0218 (10)
H310.0668281.1841480.8807780.026*
C320.0691 (3)1.3190 (3)0.89557 (19)0.0272 (11)
H320.0878701.3154550.9356590.033*
C330.0548 (3)1.4011 (3)0.86937 (19)0.0240 (10)
H330.0637141.4552300.8910480.029*
C340.0268 (3)1.4042 (3)0.80995 (18)0.0207 (10)
C350.0142 (3)1.3227 (3)0.78021 (17)0.0187 (10)
C360.0124 (3)1.4876 (3)0.77886 (17)0.0278 (11)
H360.0204631.5432980.7989890.033*
O10.3508 (2)0.4803 (2)0.53204 (13)0.0377 (9)
O20.3809 (2)0.3466 (2)0.48989 (13)0.0334 (8)
O30.3550 (2)0.20452 (19)0.54282 (13)0.0365 (8)
H3A0.3660000.2397580.5146260.055*
O40.1468 (2)0.30910 (18)0.99840 (13)0.0290 (8)
O50.1148 (2)0.44528 (19)1.03344 (13)0.0350 (8)
O60.1408 (2)0.58456 (18)0.97470 (12)0.0308 (8)
H6A0.1249620.5525041.0034760.046*
N70.2337 (2)0.3660 (2)0.78496 (16)0.0251 (9)
N80.2527 (2)0.4073 (2)0.73763 (15)0.0238 (9)
C370.3517 (3)0.3967 (3)0.5330 (2)0.0301 (11)
C380.3224 (3)0.3467 (3)0.58730 (18)0.0202 (10)
C390.3266 (3)0.2524 (3)0.58994 (19)0.0251 (10)
C400.3036 (3)0.2077 (3)0.64203 (18)0.0265 (11)
H400.3045070.1436360.6434660.032*
C410.2797 (3)0.2565 (3)0.69145 (18)0.0238 (10)
H410.2660060.2257370.7272380.029*
C420.2753 (3)0.3500 (3)0.68960 (18)0.0216 (10)
C430.2961 (3)0.3938 (3)0.63740 (18)0.0220 (10)
H430.2923490.4577390.6357680.026*
C440.2126 (3)0.4256 (3)0.83285 (18)0.0203 (10)
C450.1924 (3)0.3859 (3)0.88614 (18)0.0228 (10)
H450.1949250.3220830.8894800.027*
C460.1684 (3)0.4366 (3)0.93528 (18)0.0213 (10)
C470.1662 (3)0.5309 (3)0.92937 (18)0.0219 (10)
C480.1887 (3)0.5716 (3)0.87565 (18)0.0252 (10)
H480.1887920.6354730.8724810.030*
C490.2107 (3)0.5197 (3)0.82723 (18)0.0245 (10)
H490.2243620.5474560.7904020.029*
C500.1417 (3)0.3939 (3)0.99285 (19)0.0259 (11)
O70.3122 (2)0.7821 (2)0.5323 (2)0.0644 (12)
H7A0.359 (2)0.745 (3)0.531 (2)0.097*
H7B0.2613 (18)0.762 (3)0.514 (2)0.097*
O80.4321 (2)0.6445 (2)0.53618 (16)0.0373 (9)
H8A0.4889470.6425080.5283430.056*
H8B0.4082320.5965790.5339420.056*
O90.1910 (2)0.99113 (19)0.95939 (12)0.0403 (9)
H9A0.2412061.0130660.9727150.060*
H9B0.1557261.0293160.9555050.060*
O100.1001 (2)0.8498 (2)1.01039 (14)0.0491 (10)
H10A0.1372720.8908690.9969210.074*
H10B0.0909820.8056490.9860510.074*
O110.4726 (2)1.0599 (2)0.57585 (17)0.0444 (10)
H11A0.5193691.0599630.5624800.067*
H11B0.4366501.1028230.5675020.067*
O120.37175 (19)0.9449 (2)0.49660 (13)0.0410 (9)
H12A0.3971640.9687800.5279070.061*
H12B0.3577440.8903200.5039770.061*
O130.0852 (2)0.8564 (2)0.45740 (16)0.0412 (9)
H13A0.111 (2)0.8055 (16)0.467 (2)0.062*
H13B0.0257 (10)0.859 (3)0.464 (2)0.062*
O140.0146 (2)0.7224 (2)0.57162 (16)0.0432 (9)
H14A0.053 (2)0.679 (2)0.565 (2)0.065*
H14B0.0393 (15)0.717 (3)0.556 (2)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0216 (4)0.0188 (4)0.0190 (4)0.0000.0018 (3)0.000
N10.022 (2)0.0185 (19)0.020 (2)0.0025 (16)0.0012 (16)0.0025 (15)
N20.020 (2)0.0146 (19)0.022 (2)0.0014 (15)0.0007 (16)0.0009 (15)
N30.015 (2)0.022 (2)0.019 (2)0.0038 (15)0.0004 (15)0.0028 (15)
C10.034 (3)0.020 (2)0.022 (3)0.006 (2)0.004 (2)0.0010 (19)
C20.029 (3)0.028 (3)0.026 (3)0.009 (2)0.009 (2)0.004 (2)
C30.026 (3)0.025 (3)0.034 (3)0.006 (2)0.005 (2)0.007 (2)
C40.018 (3)0.022 (2)0.029 (3)0.0027 (19)0.001 (2)0.006 (2)
C50.024 (3)0.032 (3)0.042 (3)0.002 (2)0.003 (2)0.001 (2)
C60.025 (3)0.029 (3)0.040 (3)0.009 (2)0.008 (2)0.000 (2)
C70.028 (3)0.017 (2)0.023 (3)0.0030 (19)0.005 (2)0.0019 (18)
C80.036 (3)0.027 (3)0.026 (3)0.003 (2)0.005 (2)0.004 (2)
C90.040 (3)0.019 (2)0.030 (3)0.003 (2)0.003 (2)0.008 (2)
C100.030 (3)0.017 (2)0.027 (3)0.001 (2)0.000 (2)0.0004 (19)
C110.024 (3)0.014 (2)0.026 (3)0.0001 (18)0.000 (2)0.0062 (18)
C120.024 (3)0.014 (2)0.017 (2)0.0035 (18)0.0043 (19)0.0057 (17)
C130.027 (3)0.027 (3)0.022 (3)0.002 (2)0.002 (2)0.0000 (19)
C140.027 (3)0.039 (3)0.023 (3)0.007 (2)0.004 (2)0.006 (2)
C150.021 (3)0.032 (3)0.032 (3)0.009 (2)0.004 (2)0.015 (2)
C160.016 (3)0.028 (3)0.032 (3)0.005 (2)0.005 (2)0.006 (2)
C170.015 (2)0.021 (2)0.020 (2)0.0043 (18)0.0070 (19)0.0021 (17)
C180.030 (3)0.018 (2)0.051 (3)0.004 (2)0.005 (3)0.005 (2)
Zn20.0221 (4)0.0168 (4)0.0233 (4)0.0000.0038 (3)0.000
N40.022 (2)0.0182 (19)0.023 (2)0.0014 (16)0.0042 (17)0.0011 (15)
N50.020 (2)0.0158 (18)0.026 (2)0.0037 (15)0.0053 (17)0.0013 (15)
N60.020 (2)0.0196 (19)0.019 (2)0.0004 (15)0.0028 (16)0.0001 (15)
C190.034 (3)0.022 (2)0.026 (3)0.002 (2)0.001 (2)0.007 (2)
C200.044 (3)0.028 (3)0.037 (3)0.002 (2)0.001 (3)0.007 (2)
C210.057 (4)0.021 (3)0.038 (3)0.006 (2)0.018 (3)0.009 (2)
C220.035 (3)0.020 (2)0.038 (3)0.007 (2)0.011 (2)0.004 (2)
C230.035 (3)0.025 (3)0.053 (4)0.011 (2)0.011 (3)0.005 (2)
C240.022 (3)0.031 (3)0.064 (4)0.009 (2)0.010 (3)0.013 (3)
C250.020 (3)0.020 (2)0.040 (3)0.0011 (19)0.001 (2)0.013 (2)
C260.022 (3)0.036 (3)0.045 (3)0.003 (2)0.001 (2)0.018 (2)
C270.033 (3)0.035 (3)0.034 (3)0.010 (2)0.004 (2)0.011 (2)
C280.030 (3)0.025 (3)0.021 (3)0.005 (2)0.000 (2)0.002 (2)
C290.023 (3)0.014 (2)0.029 (3)0.0013 (19)0.007 (2)0.0111 (19)
C300.024 (3)0.012 (2)0.030 (3)0.0011 (19)0.007 (2)0.0036 (18)
C310.020 (3)0.025 (2)0.021 (3)0.0041 (19)0.004 (2)0.0007 (19)
C320.027 (3)0.035 (3)0.020 (3)0.007 (2)0.003 (2)0.001 (2)
C330.020 (3)0.021 (2)0.031 (3)0.0051 (19)0.004 (2)0.009 (2)
C340.018 (3)0.017 (2)0.027 (3)0.0008 (18)0.005 (2)0.0020 (19)
C350.014 (2)0.018 (2)0.024 (2)0.0005 (18)0.0024 (19)0.0026 (17)
C360.027 (3)0.020 (2)0.036 (3)0.003 (2)0.006 (2)0.0080 (19)
O10.040 (2)0.033 (2)0.040 (2)0.0072 (16)0.0048 (16)0.0126 (16)
O20.036 (2)0.041 (2)0.0245 (19)0.0049 (16)0.0139 (15)0.0042 (15)
O30.054 (2)0.0284 (19)0.028 (2)0.0069 (17)0.0167 (17)0.0008 (14)
O40.0335 (19)0.0150 (16)0.038 (2)0.0014 (14)0.0000 (15)0.0022 (13)
O50.054 (2)0.0273 (18)0.0249 (19)0.0049 (16)0.0100 (16)0.0004 (14)
O60.046 (2)0.0264 (18)0.0207 (18)0.0080 (16)0.0053 (15)0.0035 (14)
N70.020 (2)0.029 (2)0.026 (2)0.0029 (16)0.0000 (17)0.0035 (17)
N80.016 (2)0.029 (2)0.027 (2)0.0004 (16)0.0012 (17)0.0019 (17)
C370.018 (3)0.038 (3)0.033 (3)0.000 (2)0.002 (2)0.009 (2)
C380.014 (2)0.023 (2)0.025 (3)0.0007 (18)0.0015 (19)0.0072 (19)
C390.025 (3)0.024 (2)0.027 (3)0.003 (2)0.007 (2)0.002 (2)
C400.039 (3)0.016 (2)0.024 (3)0.001 (2)0.000 (2)0.0024 (19)
C410.025 (3)0.025 (3)0.022 (3)0.003 (2)0.005 (2)0.0062 (19)
C420.020 (3)0.022 (2)0.022 (3)0.0012 (19)0.0006 (19)0.0061 (19)
C430.018 (3)0.016 (2)0.031 (3)0.0009 (18)0.004 (2)0.0003 (19)
C440.012 (2)0.023 (2)0.026 (3)0.0017 (18)0.0012 (19)0.0053 (19)
C450.015 (2)0.024 (2)0.029 (3)0.0029 (19)0.001 (2)0.004 (2)
C460.018 (2)0.023 (2)0.023 (3)0.0035 (19)0.0001 (19)0.0031 (19)
C470.021 (3)0.026 (2)0.019 (3)0.0010 (19)0.0012 (19)0.0026 (19)
C480.029 (3)0.018 (2)0.029 (3)0.001 (2)0.003 (2)0.0004 (19)
C490.021 (3)0.028 (3)0.025 (3)0.001 (2)0.003 (2)0.001 (2)
C500.020 (3)0.028 (3)0.028 (3)0.001 (2)0.009 (2)0.001 (2)
O70.024 (2)0.027 (2)0.141 (4)0.0029 (17)0.005 (2)0.001 (2)
O80.032 (2)0.029 (2)0.051 (2)0.0007 (16)0.0048 (18)0.0122 (17)
O90.035 (2)0.034 (2)0.052 (2)0.0050 (16)0.0077 (17)0.0090 (16)
O100.059 (3)0.040 (2)0.049 (2)0.0076 (18)0.0053 (19)0.0126 (17)
O110.036 (2)0.049 (2)0.049 (3)0.0118 (19)0.0051 (19)0.0004 (19)
O120.035 (2)0.032 (2)0.056 (2)0.0045 (15)0.0023 (17)0.0033 (16)
O130.042 (2)0.035 (2)0.046 (2)0.0018 (17)0.0022 (19)0.0023 (17)
O140.042 (2)0.035 (2)0.055 (2)0.0125 (17)0.0193 (19)0.0137 (17)
Geometric parameters (Å, º) top
Zn1—N12.178 (3)C25—C261.409 (6)
Zn1—N1i2.178 (3)C25—C291.407 (5)
Zn1—N22.182 (3)C26—H260.9500
Zn1—N2i2.182 (3)C26—C271.355 (6)
Zn1—N3i2.148 (3)C27—H270.9500
Zn1—N32.148 (3)C27—C281.402 (6)
N1—C11.327 (5)C28—H280.9500
N1—C121.361 (5)C29—C301.430 (5)
N2—C101.334 (5)C31—H310.9500
N2—C111.366 (5)C31—C321.396 (5)
N3—C131.326 (4)C32—H320.9500
N3—C171.368 (5)C32—C331.371 (5)
C1—H10.9500C33—H330.9500
C1—C21.402 (5)C33—C341.407 (5)
C2—H20.9500C34—C351.395 (5)
C2—C31.366 (5)C34—C361.439 (5)
C3—H30.9500C35—C35ii1.430 (7)
C3—C41.405 (5)C36—C36ii1.356 (7)
C4—C51.429 (5)C36—H360.9500
C4—C121.395 (5)O1—C371.241 (5)
C5—H50.9500O2—C371.301 (5)
C5—C61.352 (6)O3—H3A0.8400
C6—H60.9500O3—C391.349 (5)
C6—C71.431 (6)O4—C501.265 (5)
C7—C81.404 (6)O5—C501.260 (5)
C7—C111.401 (5)O6—H6A0.8400
C8—H80.9500O6—C471.352 (4)
C8—C91.360 (6)N7—N81.264 (4)
C9—H90.9500N7—C441.432 (5)
C9—C101.395 (5)N8—C421.419 (5)
C10—H100.9500C37—C381.500 (5)
C11—C121.452 (5)C38—C391.401 (5)
C13—H130.9500C38—C431.388 (5)
C13—C141.390 (5)C39—C401.394 (5)
C14—H140.9500C40—H400.9500
C14—C151.363 (6)C40—C411.379 (5)
C15—H150.9500C41—H410.9500
C15—C161.412 (5)C41—C421.390 (5)
C16—C171.398 (5)C42—C431.382 (5)
C16—C181.424 (5)C43—H430.9500
C17—C17i1.441 (7)C44—C451.373 (5)
C18—C18i1.347 (8)C44—C491.402 (5)
C18—H180.9500C45—H450.9500
Zn2—N42.181 (3)C45—C461.389 (5)
Zn2—N4ii2.181 (3)C46—C471.404 (5)
Zn2—N52.187 (3)C46—C501.502 (5)
Zn2—N5ii2.187 (3)C47—C481.397 (5)
Zn2—N62.145 (3)C48—H480.9500
Zn2—N6ii2.145 (3)C48—C491.377 (5)
N4—C191.320 (5)C49—H490.9500
N4—C301.361 (5)O7—H7A0.862 (10)
N5—C281.327 (5)O7—H7B0.864 (10)
N5—C291.365 (5)O8—H8A0.83 (4)
N6—C311.329 (4)O8—H8B0.7881
N6—C351.364 (4)O9—H9A0.8267
C19—H190.9500O9—H9B0.7578
C19—C201.390 (5)O10—H10A0.8696
C20—H200.9500O10—H10B0.8576
C20—C211.361 (6)O11—H11A0.74 (4)
C21—H210.9500O11—H11B0.8317
C21—C221.402 (6)O12—H12A0.8511
C22—C231.424 (6)O12—H12B0.8509
C22—C301.413 (5)O13—H13A0.864 (10)
C23—H230.9500O13—H13B0.864 (10)
C23—C241.351 (6)O14—H14A0.851 (10)
C24—H240.9500O14—H14B0.857 (10)
C24—C251.428 (6)
N1—Zn1—N1i163.54 (16)C19—C20—H20120.4
N1i—Zn1—N2i76.49 (12)C21—C20—C19119.2 (4)
N1—Zn1—N276.49 (12)C21—C20—H20120.4
N1i—Zn1—N292.75 (12)C20—C21—H21120.0
N1—Zn1—N2i92.75 (12)C20—C21—C22119.9 (4)
N2i—Zn1—N299.11 (16)C22—C21—H21120.0
N3—Zn1—N1i96.04 (12)C21—C22—C23124.1 (4)
N3i—Zn1—N196.04 (12)C21—C22—C30117.0 (4)
N3—Zn1—N196.75 (12)C30—C22—C23118.9 (4)
N3i—Zn1—N1i96.75 (12)C22—C23—H23119.2
N3—Zn1—N2i91.98 (12)C24—C23—C22121.6 (4)
N3—Zn1—N2167.21 (12)C24—C23—H23119.2
N3i—Zn1—N2i167.21 (12)C23—C24—H24119.5
N3i—Zn1—N291.98 (12)C23—C24—C25121.0 (4)
N3—Zn1—N3i77.79 (17)C25—C24—H24119.5
C1—N1—Zn1127.8 (3)C26—C25—C24124.0 (4)
C1—N1—C12117.7 (4)C29—C25—C24118.8 (4)
C12—N1—Zn1114.4 (3)C29—C25—C26117.2 (4)
C10—N2—Zn1127.8 (3)C25—C26—H26120.1
C10—N2—C11117.7 (4)C27—C26—C25119.8 (4)
C11—N2—Zn1114.1 (3)C27—C26—H26120.1
C13—N3—Zn1128.7 (3)C26—C27—H27120.1
C13—N3—C17117.5 (3)C26—C27—C28119.8 (5)
C17—N3—Zn1113.8 (2)C28—C27—H27120.1
N1—C1—H1118.5N5—C28—C27122.5 (4)
N1—C1—C2123.1 (4)N5—C28—H28118.8
C2—C1—H1118.5C27—C28—H28118.8
C1—C2—H2120.7N5—C29—C25122.6 (4)
C3—C2—C1118.5 (4)N5—C29—C30117.2 (4)
C3—C2—H2120.7C25—C29—C30120.2 (4)
C2—C3—H3119.8N4—C30—C22122.5 (4)
C2—C3—C4120.5 (4)N4—C30—C29118.1 (4)
C4—C3—H3119.8C22—C30—C29119.4 (4)
C3—C4—C5124.1 (4)N6—C31—H31118.4
C12—C4—C3116.7 (4)N6—C31—C32123.3 (4)
C12—C4—C5119.1 (4)C32—C31—H31118.4
C4—C5—H5119.0C31—C32—H32120.5
C6—C5—C4121.9 (4)C33—C32—C31119.0 (4)
C6—C5—H5119.0C33—C32—H32120.5
C5—C6—H6119.8C32—C33—H33120.4
C5—C6—C7120.4 (4)C32—C33—C34119.2 (4)
C7—C6—H6119.8C34—C33—H33120.4
C8—C7—C6123.1 (4)C33—C34—C36122.6 (4)
C11—C7—C6119.3 (4)C35—C34—C33118.1 (4)
C11—C7—C8117.6 (4)C35—C34—C36119.3 (4)
C7—C8—H8120.4N6—C35—C34122.4 (4)
C9—C8—C7119.2 (4)N6—C35—C35ii117.5 (2)
C9—C8—H8120.4C34—C35—C35ii120.0 (2)
C8—C9—H9119.9C34—C36—H36119.7
C8—C9—C10120.2 (4)C36ii—C36—C34120.7 (2)
C10—C9—H9119.9C36ii—C36—H36119.7
N2—C10—C9122.4 (4)C39—O3—H3A109.5
N2—C10—H10118.8C47—O6—H6A109.5
C9—C10—H10118.8N8—N7—C44112.9 (3)
N2—C11—C7122.9 (4)N7—N8—C42114.2 (3)
N2—C11—C12117.2 (4)O1—C37—O2124.2 (4)
C7—C11—C12119.9 (4)O1—C37—C38120.3 (4)
N1—C12—C4123.5 (4)O2—C37—C38115.5 (4)
N1—C12—C11117.2 (4)C39—C38—C37121.0 (4)
C4—C12—C11119.3 (4)C43—C38—C37120.2 (4)
N3—C13—H13118.1C43—C38—C39118.7 (4)
N3—C13—C14123.7 (4)O3—C39—C38120.4 (4)
C14—C13—H13118.1O3—C39—C40119.6 (4)
C13—C14—H14120.6C40—C39—C38120.0 (4)
C15—C14—C13118.7 (4)C39—C40—H40120.1
C15—C14—H14120.6C41—C40—C39119.9 (4)
C14—C15—H15119.9C41—C40—H40120.1
C14—C15—C16120.2 (4)C40—C41—H41119.6
C16—C15—H15119.9C40—C41—C42120.9 (4)
C15—C16—C18124.1 (4)C42—C41—H41119.6
C17—C16—C15116.9 (4)C41—C42—N8125.9 (4)
C17—C16—C18119.0 (4)C43—C42—N8115.2 (4)
N3—C17—C16123.0 (4)C43—C42—C41118.9 (4)
N3—C17—C17i117.3 (2)C38—C43—H43119.2
C16—C17—C17i119.7 (2)C42—C43—C38121.6 (4)
C16—C18—H18119.4C42—C43—H43119.2
C18i—C18—C16121.3 (2)C45—C44—N7116.5 (4)
C18i—C18—H18119.4C45—C44—C49120.1 (4)
N4ii—Zn2—N496.46 (17)C49—C44—N7123.4 (4)
N4—Zn2—N576.19 (12)C44—C45—H45119.1
N4ii—Zn2—N592.27 (12)C44—C45—C46121.7 (4)
N4ii—Zn2—N5ii76.19 (13)C46—C45—H45119.1
N4—Zn2—N5ii92.27 (12)C45—C46—C47118.0 (4)
N5ii—Zn2—N5162.80 (16)C45—C46—C50122.2 (4)
N6ii—Zn2—N493.48 (12)C47—C46—C50119.7 (4)
N6—Zn2—N4ii93.49 (12)O6—C47—C46121.4 (4)
N6ii—Zn2—N4ii167.56 (12)O6—C47—C48118.2 (4)
N6—Zn2—N4167.56 (12)C48—C47—C46120.4 (4)
N6ii—Zn2—N5ii96.01 (12)C47—C48—H48119.8
N6ii—Zn2—N597.36 (12)C49—C48—C47120.4 (4)
N6—Zn2—N5ii97.36 (12)C49—C48—H48119.8
N6—Zn2—N596.02 (12)C44—C49—H49120.3
N6ii—Zn2—N677.73 (17)C48—C49—C44119.3 (4)
C19—N4—Zn2127.8 (3)C48—C49—H49120.3
C19—N4—C30117.9 (4)O4—C50—C46119.2 (4)
C30—N4—Zn2114.1 (3)O5—C50—O4123.3 (4)
C28—N5—Zn2127.5 (3)O5—C50—C46117.5 (4)
C28—N5—C29118.2 (4)H7A—O7—H7B112.7 (18)
C29—N5—Zn2114.2 (3)H8A—O8—H8B111.8
C31—N6—Zn2128.5 (3)H9A—O9—H9B107.5
C31—N6—C35117.9 (3)H10A—O10—H10B112.9
C35—N6—Zn2113.6 (2)H11A—O11—H11B117.3
N4—C19—H19118.3H12A—O12—H12B109.3
N4—C19—C20123.5 (4)H13A—O13—H13B113.4 (18)
C20—C19—H19118.3H14A—O14—H14B115.6 (18)
Zn1—N1—C1—C2175.3 (3)C21—C22—C30—C29179.3 (4)
Zn1—N1—C12—C4176.1 (3)C22—C23—C24—C250.5 (7)
Zn1—N1—C12—C115.7 (4)C23—C22—C30—N4179.9 (4)
Zn1—N2—C10—C9172.8 (3)C23—C22—C30—C291.0 (6)
Zn1—N2—C11—C7173.5 (3)C23—C24—C25—C26179.7 (4)
Zn1—N2—C11—C125.4 (4)C23—C24—C25—C290.7 (6)
Zn1—N3—C13—C14178.2 (3)C24—C25—C26—C27179.2 (4)
Zn1—N3—C17—C16178.8 (3)C24—C25—C29—N5179.1 (4)
Zn1—N3—C17—C17i1.0 (6)C24—C25—C29—C302.0 (6)
N1—C1—C2—C31.0 (6)C25—C26—C27—C280.6 (6)
N2—C11—C12—N10.2 (5)C25—C29—C30—N4178.7 (3)
N2—C11—C12—C4178.4 (3)C25—C29—C30—C222.1 (6)
N3—C13—C14—C151.1 (7)C26—C25—C29—N50.5 (6)
C1—N1—C12—C40.2 (6)C26—C25—C29—C30178.4 (4)
C1—N1—C12—C11178.0 (3)C26—C27—C28—N51.5 (6)
C1—C2—C3—C41.2 (6)C28—N5—C29—C250.3 (6)
C2—C3—C4—C5179.4 (4)C28—N5—C29—C30179.3 (3)
C2—C3—C4—C121.0 (6)C29—N5—C28—C271.4 (6)
C3—C4—C5—C6179.6 (4)C29—C25—C26—C270.4 (6)
C3—C4—C12—N10.4 (6)C30—N4—C19—C200.7 (6)
C3—C4—C12—C11177.7 (3)C30—C22—C23—C240.3 (7)
C4—C5—C6—C71.3 (7)C31—N6—C35—C340.7 (6)
C5—C4—C12—N1179.9 (4)C31—N6—C35—C35ii179.1 (4)
C5—C4—C12—C112.0 (6)C31—C32—C33—C340.2 (6)
C5—C6—C7—C8178.9 (4)C32—C33—C34—C350.4 (6)
C5—C6—C7—C110.6 (6)C32—C33—C34—C36178.6 (4)
C6—C7—C8—C9179.3 (4)C33—C34—C35—N60.1 (6)
C6—C7—C11—N2179.8 (4)C33—C34—C35—C35ii180.0 (4)
C6—C7—C11—C121.3 (6)C33—C34—C36—C36ii178.5 (5)
C7—C8—C9—C100.4 (6)C35—N6—C31—C321.3 (6)
C7—C11—C12—N1179.2 (4)C35—C34—C36—C36ii0.5 (7)
C7—C11—C12—C42.6 (6)C36—C34—C35—N6178.9 (4)
C8—C7—C11—N20.3 (6)C36—C34—C35—C35ii1.0 (7)
C8—C7—C11—C12179.2 (4)O1—C37—C38—C39177.5 (4)
C8—C9—C10—N20.2 (6)O1—C37—C38—C431.5 (6)
C10—N2—C11—C70.5 (6)O2—C37—C38—C390.3 (6)
C10—N2—C11—C12179.4 (3)O2—C37—C38—C43175.7 (4)
C11—N2—C10—C90.3 (6)O3—C39—C40—C41176.4 (4)
C11—C7—C8—C90.2 (6)O6—C47—C48—C49177.0 (4)
C12—N1—C1—C20.5 (6)N7—N8—C42—C411.5 (6)
C12—C4—C5—C60.0 (6)N7—N8—C42—C43179.9 (4)
C13—N3—C17—C161.0 (6)N7—C44—C45—C46178.3 (4)
C13—N3—C17—C17i179.3 (4)N7—C44—C49—C48179.4 (4)
C13—C14—C15—C160.0 (6)N8—N7—C44—C45179.1 (3)
C14—C15—C16—C170.4 (6)N8—N7—C44—C491.7 (6)
C14—C15—C16—C18178.2 (4)N8—C42—C43—C38177.9 (3)
C15—C16—C17—N30.0 (6)C37—C38—C39—O31.6 (6)
C15—C16—C17—C17i179.8 (4)C37—C38—C39—C40176.7 (4)
C15—C16—C18—C18i179.6 (5)C37—C38—C43—C42175.3 (4)
C17—N3—C13—C141.5 (6)C38—C39—C40—C412.0 (7)
C17—C16—C18—C18i1.0 (8)C39—C38—C43—C420.8 (6)
C18—C16—C17—N3178.8 (4)C39—C40—C41—C422.0 (7)
C18—C16—C17—C17i1.5 (7)C40—C41—C42—N8179.1 (4)
Zn2—N4—C19—C20174.4 (3)C40—C41—C42—C430.5 (6)
Zn2—N4—C30—C22175.3 (3)C41—C42—C43—C380.9 (6)
Zn2—N4—C30—C293.9 (4)C43—C38—C39—O3177.7 (4)
Zn2—N5—C28—C27178.3 (3)C43—C38—C39—C400.6 (6)
Zn2—N5—C29—C25177.7 (3)C44—N7—N8—C42179.2 (3)
Zn2—N5—C29—C303.4 (4)C44—C45—C46—C470.7 (6)
Zn2—N6—C31—C32178.0 (3)C44—C45—C46—C50177.0 (4)
Zn2—N6—C35—C34178.7 (3)C45—C44—C49—C480.2 (6)
Zn2—N6—C35—C35ii1.5 (6)C45—C46—C47—O6178.1 (4)
N4—C19—C20—C210.6 (7)C45—C46—C47—C480.7 (6)
N5—C29—C30—N40.3 (5)C45—C46—C50—O44.6 (6)
N5—C29—C30—C22178.9 (4)C45—C46—C50—O5175.2 (4)
N6—C31—C32—C331.1 (6)C46—C47—C48—C491.9 (6)
C19—N4—C30—C220.4 (6)C47—C46—C50—O4177.8 (4)
C19—N4—C30—C29179.6 (3)C47—C46—C50—O52.4 (6)
C19—C20—C21—C220.2 (7)C47—C48—C49—C441.6 (6)
C20—C21—C22—C23179.8 (4)C49—C44—C45—C460.9 (6)
C20—C21—C22—C300.0 (7)C50—C46—C47—O60.3 (6)
C21—C22—C23—C24179.4 (4)C50—C46—C47—C48178.5 (4)
C21—C22—C30—N40.1 (6)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z+3/2.
 

Funding information

Funding was provided by the Basic Scientific Research Project of the Universities from the Department of Education of Liaoning Province (grant Nos. LJKZ0371; LJKMZ20220738).

References

First citationAgilent (2012). CryAlisPRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBitzer, J. & Kleist, W. (2019). Chem. Eur. J. 25, 1866–1882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrne, P., Lloyd, G. O., Anderson, K. M., Clarke, N. & Steed, J. W. (2008). Chem. Commun. pp. 3720–3722.  Web of Science CSD CrossRef Google Scholar
First citationCépas, O., McKenzie, R. H. & Merino, J. (2002). Phys. Rev. B, 65, 100502.  Google Scholar
First citationChen, X. M. & Liu, G. (2015). Chem. Eur. J. 8, 4811–4817.  CrossRef Google Scholar
First citationCheng, P. C., Yeh, C. W., Hsu, W., Chen, T. R., Wang, H. W., Chen, J. D. & Wang, J. (2012). Cryst. Growth Des. 12, 943–953.  Web of Science CSD CrossRef CAS Google Scholar
First citationErxleben, A. (2003). Coord. Chem. Rev. 246, 203–228.  Web of Science CrossRef CAS Google Scholar
First citationGavira, J. A. & García-Ruiz, J. M. (2009). Cryst. Growth Des. 9, 2610–2615.  Web of Science CrossRef CAS Google Scholar
First citationGelfgat, Y. M. (1999). J. Cryst. Growth, 198–199, 165–169.  Web of Science CrossRef Google Scholar
First citationGhosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293–2298.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHe, Y. K., An, H. Y. & Han, Z. (2009). Solid State Sci. 11, 49–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationHermann, R., Gerbeth, G. & Priede, J. (2013). Eur. Phys. J. Spec. Top. 220, 227–241.  Web of Science CrossRef CAS Google Scholar
First citationHong, D. L., Luo, Y. H., He, X. T., He, C., Zheng, Z. Y., Su, S., Wang, C., Wang, J. Y., Chen, C. & Sun, B. (2019). J. Phys. Chem. C, 123, 15230–15235.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, L. M. (2003). Microporous Mesoporous Mater. 58, 105–114.  Web of Science CrossRef CAS Google Scholar
First citationKenawy, E. R., el-R, , Al-Deyab, S. S. & El-Newehy, M. H. (2010). Molecules, 15, 2257–2268.  Google Scholar
First citationKirillov, A. M. (2011). Coord. Chem. Rev. 255, 1603–1622.  Web of Science CrossRef CAS Google Scholar
First citationKolotovska, V., Friedrich, M., Zahn, D. R. T. & Salvan, G. (2006). J. Cryst. Growth, 291, 166–174.  Web of Science CrossRef CAS Google Scholar
First citationLee, E., Seo, S., Lee, S. S. & Lindoy, L. F. (2017). Coord. Chem. Rev. 348, 121–170.  Web of Science CrossRef CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, H. X., Xiong, M. W., Zhang, F., Huang, J. L. & Chai, W. (2008). J. Phys. Chem. C, 112, 6366–6371.  Web of Science CrossRef CAS Google Scholar
First citationLi, J. X., Wang, Y. J., Wei, Q. P., Xie, Y. N., Long, H. Y., Deng, Z. J., Ma, L., Yu, Z. M., Jiang, Y. L., Hu, N. X. & Zhou, K. (2017). Surf. Coat. Technol. 324, 413–418.  Web of Science CrossRef CAS Google Scholar
First citationLin, D., Deng, B. W., Sassman, S. A., Hu, Y. W., Suslov, S. & Cheng, G. J. (2014). RSC Adv. 4, 18621–18626.  Web of Science CrossRef CAS Google Scholar
First citationLu, T. B., Xiang, H., Luck, R. L., Mao, Z. W., Chen, X. M. & Ji, L. (2003). Inorg. Chim. Acta, 355, 229–241.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorii, N., Kido, G., Konakahara, T. & Morii, H. (2005). Biomacromolecules, 6, 3259–3266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorii, N., Kido, G., Suzuki, H., Nimori, S. & Morii, H. (2004). Biomacromolecules, 5, 2297–2307.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRobson, R. (2000). J. Chem. Soc. Dalton Trans. pp. 3735–3744.  Web of Science CrossRef Google Scholar
First citationRonco, S. & Ferraudi, G. (1990). J. Chem. Soc. Dalton Trans. pp. 887–889.  CrossRef Web of Science Google Scholar
First citationSerantes, D., Chantrell, R., Gavilán, H., Morales, M. D. P., Chubykalo-Fesenko, O., Baldomir, D. & Satoh, A. (2018). Phys. Chem. Chem. Phys. 20, 30445–30454.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheibani, H., Dost, S., Sakai, S. & Lent, B. (2003). J. Cryst. Growth, 258, 283–295.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWilliams, K. A., Boydston, A. J. & Bielawski, C. W. (2007). Chem. Soc. Rev. 36, 729–744.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, M. Z., Xiong, Y., Jia, Y. S., Niu, H. L., Qi, H. P., Ye, J. & Chen, Q. (2005). Chem. Phys. Lett. 401, 374–379.  Web of Science CrossRef CAS Google Scholar
First citationXing, G., Jia, S. L. & Shi, Z. (2007). Carbon, 45, 2584–2588.  Web of Science CrossRef CAS Google Scholar
First citationXing, G., Jia, S. L. & Shi, Z. Q. (2009). Carbon, 47, 2112–2142.  Google Scholar
First citationZaworotko, M. J. (2010). J. Am. Chem. Soc. 132, 7821–7821.  CrossRef CAS Google Scholar
First citationZhang, K. L., Zhong, Z. Y., Zhang, L., Jing, C. Y., Daniels, L. M. & Walton, R. I. (2014). Dalton Trans. 43, 11597–11610.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZubir, M., Hamasaki, A., Iiyama, T., Ohta, A., Ohki, H. & Ozeki, S. (2016). Chem. Lett. 45, 362–364.  Web of Science CrossRef CAS Google Scholar
First citationZubir, M., Nasution, H. I. & Sudarma, T. F. (2018). Russ. J. Appl. Chem. 91, 1867–1873.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 10| Part 6| November 2023| Pages 671-677
ISSN: 2052-2525