research papers
A new polymorph of white phosphorus at ambient conditions
aInstitut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077 Lower Saxony, Germany, bInstitut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, Göttingen, 37077 Lower Saxony, Germany, cLehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany, and dResearch Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
*Correspondence e-mail: rherbst@chemie.uni-goettingen.de
Dedicated to Professor George Sheldrick on the occasion of his 80th birthday.
Phosphorus exists in several different allotropes: white, red, violet and black. For industrial and academic applications, white phosphorus is the most important. So far, three polymorphs of white phosphorus, all consisting of P4 tetrahedra, have been described. Among these, β-P4 crystallizes in the P1 and γ-P4 in the C2/m. α-P4 forms soft plastic crystals with a proposed structure in the cubic I43m with the lattice constant a = 18.51 (3) Å, consisting of 58 rotationally disordered tetrahedra and thus is similar to the structure of α-Mn. Here we present a new polymorph, δ-P4. It crystallizes as a sixfold twin with the cell dimensions a = 18.302 (2), b = 18.302 (2), c = 36.441 (3) Å in the P212121 with 29 P4 tetrahedra in the The arrangement resembles the structure of α-Mn, but δ-P4 differs from α-P4. DFT calculations show δ-P4 to be metastable at a similar energy level to that of γ-P4.
Keywords: white phosphorus; twinning; polymorphs; allotropes.
1. Introduction
Phosphorus exists in several different modifications: white, red, violet and black (Fig. 1). Its affinity for oxygen is high, so it exists in nature mainly as phosphates, containing the PO43– anion. This is difficult to activate chemically in contrast to white phosphorus P4, which spontaneously ignites when exposed to air. This makes the element a versatile reagent in organophosphorus chemistry (Iaroshenko, 2019; Donath et al., 2022; Grützmacher, 2022).
The different modifications of phosphorus vary markedly in their physical properties and chemical reactivity. The most stable modification at room temperature is polymeric black phosphorus Pn. This polymorph has semiconducting properties. It displays a layered structure consisting of anellated chair-shaped six-membered rings (Fig. 1, left). At ambient pressure it crystallizes in the Cmca with a = 3.31, b = 10.50 and c = 4.38 Å (Hultgren et al., 1935; Brown & Rundqvist, 1965). Under increasing pressure, it undergoes several phase transitions (Jamieson, 1963; Kikegawa & Iwasaki, 1983; Kikegawa et al., 1987; Scelta et al., 2017; Marqués et al., 2008; Akahama et al., 1999; Sugimoto et al., 2012); for example, at room temperature the first at ∼5 GPa leads to the R3m with a = 3.38 and c = 8.81 Å. Fibrous red phosphorus crystallizes in the P1 with a = 12.198, b = 12.986, c = 7.075 Å, and α = 116.99, β = 106.31, γ = 97.91° (Fig. 1, right) (Ruck et al., 2005). It consists of tubes with pentagonal cross-sections. The tubes are built from cages of eight or nine phosphorus atoms connected by dumbbells of two phosphorus atoms, and interconnect to form a double tube. This is similar to the structure of violet or Hittorf's phosphorus, which crystallizes in the P2/c with a = 9.21, b = 9.15, c = 22.60 Å and β = 106.1° (Fig. 1, bottom) (Thurn & Krebs, 1969; Zhang et al., 2020). Zhang et al. (2020) stated that their structure differs slightly from the structure described by Thurn & Krebs (1969) and discussed the differences [e.g. different space groups (P2/n and P2/c), c axes and ß angles]; however, both structures can be transformed into each other by the matrix −100 0−10 101, hence there is no difference between them but they are identical.
Recently, another structure has been described (Cicirello et al., 2023) in the C2/c with eleven phosphorus atoms in the asymmetric unit.1 The red and violet Pn structures differ only in the orientation of the two tubes relative to each other: they are perpendicular to each other in the violet modification and parallel in the red polymorph. Although white phosphorus is the most toxic and reactive modification, it is a major source for industrial and academic applications (Donath et al., 2022). To date, three modifications of white phosphorus have been described in the literature (Simon et al., 1997). Though the structures for β-P4 (Simon et al., 1987) and γ-P4 (Okudera et al., 2005) are unequivocal, no structural data are available for α-P4. γ-P4 is the stable low-temperature form and crystallizes in the C2/m with a = 9.1709 (5), b = 8.3385 (5), c = 5.4336 (2) Å and β = 90.311 (3)° with four formula units per cell (Z = 4) (Okudera et al., 2005). It transforms into the intermediate modification β-P4, which crystallizes in the P1 with a = 5.4788 (5), b = 10.7862 (11), c = 10.9616 (11) Å, α = 94.285 (8), β = 99.653 (7), γ = 100.680 (7)° and Z = 6 (Simon et al., 1987). The room-temperature form α-P4 has been described as a plastic crystal (Simon et al., 1997). As early as 1930, a powder photograph taken at −35°C was interpreted in terms of a cubic cell with a = 7.17 Å (Natta & Passerini, 1930). However, this key structure – `a riddle, wrapped in a mystery, inside an enigma' – remained unsolved. In 1952 single-crystal data were collected in the cubic system with a = 18.51 (3) Å, assuming the I43m, but the structure was never solved, which was attributed to rotational disorder (Corbridge & Lowe, 1952). As the most reasonable approximation, it was assumed that the centroids of the P4 tetrahedra are arranged similar to the atomic positions of the 58 Mn atoms in the complicated structure of α-Mn (von Schnering, 1981). The most recent verdict is that crystallographic investigations are hampered by a partial transition to red phosphorus or that a high degree of thermal motion precludes a (Simon et al., 1997).
2. Experimental
In the course of a synthesis involving the activation of white phosphorus, we discovered a new polymorph of phosphorus P4, which we introduce in this publication as δ-P4. Diffraction data were collected from an apparently cubic crystal with a = 36 Å at 100 K. We assumed at first that the data corresponded to the proposed reaction product, not the starting material. The diffraction pattern indicated Fig. 2(a) shows every second reflection to be missing in every second line. This can be interpreted as a threefold twin, and all reflections can be indexed with three different orientations and cell constants of approximately a = 18.3, b = 18.3, c = 36.5 Å and α = β = γ = 90° [Figs. 2(b)–2(d)]. These cell constants suggest a tetragonal However, the data derived by integration with these three orientation matrices, with subsequent detwinning assuming 4/m symmetry, showed only orthorhombic symmetry and hinted at additional that mimicks tetragonal symmetry. This means that there are six twin domains, because each of the three domains has an additional domain, generated by reducing the crystallographic fourfold symmetry to twofold symmetry.
Consequently, the integration was repeated, now using six orientation matrices. The matrices of the twin laws are given in the supporting information. After detwinning, the could be determined unequivocally to be P212121. The structure could be solved in this (Sheldrick, 2008) and refined as a sixfold twin without any disorder (Sheldrick, 2015b; Sevvana et al., 2019). The converged to R1 [I > 2σ(I)] = 0.0363. More details can be found in the supporting information.
With these results in hand, we attempted to find suitable crystallization conditions for this new polymorph. The first trials using CS2 as the solvent led to soft plastic crystals, as already described in the literature as α-P4. They diffracted weakly to a resolution of ca 1.6 Å. The cell constants suggested cubic symmetry with a = 18.7 Å and the structure could not be solved. Crystallization from dry, degassed hexane gave colourless block-shaped single crystals (see Fig. 3) which were identified as the δ-polymorph we had just investigated. The crystals were again twinned, and of the same quality as before, leading to the same ordered structure with similar quality indicators (see Table S1 of the supporting information).
3. Results
In the literature, the α-P4 polymorph is described as a cubic structure with a = 18.51 (3) Å in the most probable I43m. The similarity to α-Mn was mentioned (von Schnering, 1981). In our δ-P4 structure, one axis is doubled and the others are slightly shorter compared with these observations. However, the arrangement of the P4 tetrahedra indeed resembles the structure of α-Mn, which crystallizes in I43m (see Fig. 4) (Oberteuffer & Ibers, 1970). The cubic symmetry forces the packing to be identical along all three axes (Fig. 4, left), whereas they are very similar in the new orthorhombic δ-P4 modification (Fig. 4, right). This can be visualized using the centroids of the δ-P4 tetrahedra (Fig. 4, centre).
The 4 tetrahedra. A Z′ value as high as 29 might lead one to think of modulation. However, the typical signs of modulation (strong central reflections with weaker satellites) were absent from the diffraction pattern. Additionally, we note the similarity to the non-modulated structure of α-Mn with similar environments of the Mn atoms and the P4 tetrahedra. In α-Mn there are four independent Mn atoms with different and environments (Types I–IV) corresponding to 58 atoms in the Two belong to Type I [Fig. 5(a)], eight to Type II [Fig. 5(b)], 24 to Type III [Fig. 5(c)] and 24 to Type IV [Fig. 5(d)]. Similar environments can be observed for the P4 units of the δ-P4 structure: thus there is one tetrahedron of Type I [Fig. 5(e)], four of Type II [Fig. 5(f)], 12 of Type III [Fig. 5(g)] and 12 of Type IV [Fig. 5(h)], exactly half as many of each type as for α-Mn, coordinated in the same way as in α-Mn (see Figs. 5 and 6 and the supporting information). Therefore, our new δ-P4 polymorph indeed resembles α-Mn, as commented by von Schnering (1981), but it is definitely different from the α-P4 form discussed in previous publications (Simon et al., 1997, 1987; Corbridge & Lowe, 1952).
consists of 29 PThe P4 tetrahedra of Types I [Fig. 6(c)] and II [Fig. 6(d)] are surrounded by 16 further tetrahedra, and the resulting global polyhedron can be described as a distorted and truncated tetrahedron [Fig. 6(a)] with 4 tetrahedra above the sixfold planes [Fig. 6(b)]. The distortion is higher for Type II. The tetrahedra of Type IV [Fig. 6(h)] are coordinated by 12 further tetrahedra, leading to a distorted icosahedron [Fig. 6(g)], whereas the polyhedron of the Type III tetrahedra [Fig. 6(f)], with 13, can be described as a hexagonal antiprism with one corner missing and capped by two tetrahedra above and below [Fig. 6(e)].
Our new polymorph δ-P4 and the old α-P4 are correlated in the following way: in both the P4-tetrahedra probably show an overall structural pattern reminiscent of α-Mn, provided that only the centroids of the tetrahedra are taken into account. Compared with α-P4, in the new δ-P4 polymorph all 29 tetrahedra in the are ordered (rather than disordered), one cell axis is doubled, the cell is primitive and not I-centred, and the symmetry is reduced from cubic to orthorhombic. None of the tetrahedra are related by translational or rotational symmetry. In α-Mn and presumably also in α-P4 there are only 29/24 atoms or tetrahedra, respectively, in the Therefore, severe rotational P4-disorder is introduced, permitting only low-resolution diffraction data for α-P4. The reduction of symmetry in δ-P4 is accompanied by A further distinction can be found in the densities, with a value of 1.96 g cm–3 for δ-P4 at 100 K but only 1.83 g cm−3 at 100 K in α-P4, based on the data we collected from the soft plastic crystals (see above), assuming 58 tetrahedra in a unit cell.
With the new δ-P4 polymorph stable at ambient conditions, its energetic relationships to the other known polymorphs remained to be determined. Accordingly, the relative stabilities of the different polymorphs of phosphorus have been computed by density-functional theory (DFT) methods, employing the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) (Perdew et al., 1996, 1997). Since dispersion corrections are known to be important for elemental phosphorus (Aykol et al., 2017), not only uncorrected PBE calculations but also D3 and D3/BJ dispersion corrections, as developed by Grimme and coworkers, have been performed (Grimme, 2006; Grimme et al., 2010, 2011).
Taking black phosphorus as the reference, the relative binding energies (Table S2) show that the correct order of stability can only be achieved by including dispersion corrections, in agreement with previous work (Aykol et al., 2017). Further, the energetic ordering of γ-P4 and δ-P4 changes from PBE to PBE-D3, but the absolute value of the energy difference is very small. Becke–Johnson (BJ) damping increases the energy difference significantly. Consistent with previous theoretical studies (Aykol et al., 2017; Bachhuber et al., 2014) on a number of the polymorphs, the D3 and D3/BJ values show that the individual P4 moieties are held together by resulting in metastable γ-P4 and δ-P4 polymorphs.
4. Conclusions
We have determined the α-Mn. This similarity has already been described for α-P4 (von Schnering, 1981). However, many other aspects of α-P4 do not apply to our crystals of the new δ-P4 polymorph. While the former crystallizes from CS2, the latter crystallizes from dry, degassed hexane. The structure of cubic α-P4 is precluded by rotational disorder, but the orthorhombic δ-P4 polymorph was refined without disorder despite serious Additionally, the two forms differ in their densities. From DFT calculations it can be concluded that γ-P4 and δ-P4 are metastable and that the of δ-P4 is energetically favourable. The description of the new polymorph significantly extends our knowledge of phosphorus.
of a new polymorph of white phosphorus which resembles the structure of5. Related literature
The following references are cited in the supporting information: Belsky et al. (2002); Bruker (2021a,b); Herbst-Irmer (2016); Kottke & Stalke (1993); Kresse & Furthmüller (1996); Kresse & Joubert (1999); Schulz et al. (2009); Sheldrick (2015a,c).
Supporting information
https://doi.org/10.1107/S2052252523009247/lt5062sup1.cif
contains datablocks twin5, twin5_2. DOI:Structure factors: contains datablock twin5. DOI: https://doi.org/10.1107/S2052252523009247/lt5062twin5sup2.hkl
Structure factors: contains datablock twin5_2. DOI: https://doi.org/10.1107/S2052252523009247/lt5062twin5_2sup3.hkl
Supporting figures and tables. DOI: https://doi.org/10.1107/S2052252523009247/lt5062sup4.pdf
For both structures, data collection: APEX2 v2012.2; cell
SAINT V8.40A; data reduction: SAINT V8.40A; program(s) used to solve structure: SHELXT(G.M.Sheldrick,Acta Cryst.(2015)A71,3-8); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2018); molecular graphics: XP Version 5.1; software used to prepare material for publication: XP Version 5.1.P4 | F(000) = 6960 |
Mr = 123.88 | Dx = 1.955 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 18.302 (2) Å | Cell parameters from 2191 reflections |
b = 18.302 (2) Å | θ = 3.6–23.6° |
c = 36.441 (3) Å | µ = 1.56 mm−1 |
V = 12206 (2) Å3 | T = 100 K |
Z = 116 | Needle, white |
Bruker Smart APEX II Quazar diffractometer | 11974 reflections with I > 2σ(I) |
Radiation source: INCOATEC Microsource | Rint = 0.072 |
ω scans | θmax = 25.9°, θmin = 1.7° |
Absorption correction: multi-scan TWINABS 2012/1: M. Sevvana, M. Ruf, I. Uson, G. M. Sheldrick, R. Herbst-Irmer, Acta Crystallogr. 2019, D75, 1040-1050. | h = −22→22 |
Tmin = 0.548, Tmax = 0.745 | k = −22→22 |
52805 measured reflections | l = −44→44 |
12639 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0394P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.036 | (Δ/σ)max < 0.001 |
wR(F2) = 0.084 | Δρmax = 0.48 e Å−3 |
S = 1.01 | Δρmin = −0.43 e Å−3 |
12639 reflections | Absolute structure: No quotients, so Flack parameter determined by classical intensity fit |
1050 parameters | Absolute structure parameter: −10 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 6-component twin. |
x | y | z | Uiso*/Ueq | ||
P2 | 0.68177 (18) | 0.42353 (17) | 0.55252 (7) | 0.0403 (7) | |
P1 | 0.74685 (16) | 0.36490 (17) | 0.51248 (8) | 0.0386 (7) | |
P3 | 0.63485 (16) | 0.33071 (15) | 0.52337 (8) | 0.0362 (6) | |
P4 | 0.65595 (17) | 0.43267 (17) | 0.49444 (7) | 0.0383 (7) | |
P5 | 0.54742 (15) | 0.42321 (19) | 0.40569 (8) | 0.0409 (7) | |
P6 | 0.48195 (15) | 0.36781 (18) | 0.44772 (7) | 0.0365 (7) | |
P7 | 0.44171 (16) | 0.37502 (16) | 0.39158 (7) | 0.0337 (6) | |
P8 | 0.44664 (17) | 0.47313 (17) | 0.42561 (8) | 0.0393 (7) | |
P9 | 0.53440 (15) | 0.58501 (19) | 0.34372 (8) | 0.0429 (8) | |
P10 | 0.44931 (19) | 0.51946 (15) | 0.31800 (8) | 0.0387 (7) | |
P11 | 0.46307 (15) | 0.63425 (15) | 0.30285 (7) | 0.0294 (6) | |
P12 | 0.42101 (17) | 0.60595 (18) | 0.35669 (7) | 0.0385 (7) | |
P13 | 0.49812 (16) | 0.13866 (18) | 0.51577 (8) | 0.0416 (7) | |
P14 | 0.4353 (3) | 0.23715 (17) | 0.52480 (10) | 0.0670 (12) | |
P15 | 0.40267 (18) | 0.13581 (19) | 0.54999 (9) | 0.0505 (8) | |
P16 | 0.49789 (17) | 0.1915 (2) | 0.56946 (8) | 0.0474 (8) | |
P17 | 0.46941 (15) | 0.43406 (16) | 0.54670 (8) | 0.0358 (6) | |
P18 | 0.40472 (17) | 0.52269 (18) | 0.52336 (8) | 0.0410 (7) | |
P19 | 0.35190 (16) | 0.42164 (17) | 0.54120 (8) | 0.0412 (7) | |
P20 | 0.39628 (17) | 0.49658 (16) | 0.58154 (7) | 0.0375 (7) | |
P21 | 0.58186 (17) | 0.58978 (17) | 0.57495 (8) | 0.0431 (7) | |
P22 | 0.66719 (15) | 0.60208 (17) | 0.61597 (7) | 0.0343 (6) | |
P23 | 0.61051 (19) | 0.69799 (15) | 0.59494 (9) | 0.0447 (7) | |
P24 | 0.55370 (16) | 0.6220 (2) | 0.63064 (8) | 0.0467 (8) | |
P25 | 0.55714 (17) | 0.41683 (17) | 0.64453 (8) | 0.0392 (7) | |
P26 | 0.60626 (19) | 0.31182 (17) | 0.63044 (8) | 0.0454 (7) | |
P27 | 0.67426 (16) | 0.40223 (19) | 0.64962 (8) | 0.0423 (7) | |
P28 | 0.60062 (17) | 0.34706 (17) | 0.68746 (7) | 0.0399 (7) | |
P29 | 0.37721 (16) | 0.30823 (16) | 0.62703 (7) | 0.0358 (6) | |
P30 | 0.34752 (17) | 0.19799 (15) | 0.64432 (7) | 0.0353 (6) | |
P31 | 0.41800 (15) | 0.26538 (15) | 0.67917 (7) | 0.0324 (6) | |
P32 | 0.30266 (16) | 0.29233 (18) | 0.67317 (8) | 0.0402 (7) | |
P33 | 0.67379 (18) | 0.5952 (2) | 0.76895 (8) | 0.0466 (8) | |
P34 | 0.70161 (18) | 0.60333 (17) | 0.71098 (8) | 0.0388 (7) | |
P35 | 0.61043 (17) | 0.53554 (15) | 0.72848 (8) | 0.0398 (7) | |
P36 | 0.60126 (19) | 0.65370 (15) | 0.73176 (9) | 0.0429 (7) | |
P37 | 0.47806 (16) | 0.05387 (18) | 0.66609 (9) | 0.0444 (8) | |
P38 | 0.5789 (2) | 0.1035 (2) | 0.64915 (9) | 0.0617 (11) | |
P39 | 0.5807 (2) | 0.00991 (17) | 0.68526 (9) | 0.0489 (8) | |
P40 | 0.54415 (18) | 0.11571 (19) | 0.70522 (8) | 0.0443 (8) | |
P41 | 0.17607 (16) | 0.69538 (18) | 0.32990 (7) | 0.0396 (7) | |
P42 | 0.19039 (16) | 0.67100 (16) | 0.27197 (6) | 0.0331 (6) | |
P43 | 0.28089 (15) | 0.71504 (16) | 0.30399 (8) | 0.0354 (6) | |
P44 | 0.24440 (17) | 0.60284 (15) | 0.31298 (9) | 0.0391 (7) | |
P45 | 0.23686 (18) | 0.3131 (2) | 0.28912 (9) | 0.0482 (8) | |
P46 | 0.35295 (16) | 0.33174 (17) | 0.29714 (8) | 0.0370 (6) | |
P47 | 0.27413 (18) | 0.39696 (16) | 0.32792 (10) | 0.0457 (8) | |
P48 | 0.28857 (17) | 0.28106 (17) | 0.34044 (8) | 0.0390 (7) | |
P49 | 0.73488 (16) | 0.5918 (2) | 0.24454 (10) | 0.0531 (9) | |
P50 | 0.6338 (2) | 0.54279 (18) | 0.26300 (9) | 0.0541 (9) | |
P51 | 0.6315 (2) | 0.63807 (17) | 0.22816 (9) | 0.0462 (8) | |
P52 | 0.66644 (17) | 0.53278 (17) | 0.20590 (8) | 0.0389 (7) | |
P53 | 0.48855 (18) | 0.91299 (17) | 0.35195 (9) | 0.0436 (7) | |
P54 | 0.44309 (19) | 0.80410 (18) | 0.34800 (9) | 0.0504 (9) | |
P55 | 0.37444 (16) | 0.89481 (17) | 0.36506 (8) | 0.0390 (7) | |
P56 | 0.45829 (17) | 0.8540 (2) | 0.40118 (7) | 0.0446 (8) | |
P57 | 0.56281 (18) | 0.68308 (16) | 0.43163 (7) | 0.0391 (7) | |
P58 | 0.64675 (15) | 0.67716 (16) | 0.47360 (9) | 0.0393 (7) | |
P59 | 0.53698 (17) | 0.71126 (16) | 0.48800 (8) | 0.0375 (7) | |
P60 | 0.55836 (16) | 0.59736 (14) | 0.47307 (8) | 0.0364 (6) | |
P61 | 0.54742 (17) | 0.88270 (17) | 0.54566 (8) | 0.0391 (7) | |
P62 | 0.58727 (17) | 0.98685 (16) | 0.56687 (9) | 0.0434 (8) | |
P63 | 0.5619 (2) | 0.89806 (18) | 0.60414 (8) | 0.0531 (9) | |
P64 | 0.47540 (16) | 0.95585 (18) | 0.57609 (9) | 0.0416 (7) | |
P65 | 0.35203 (16) | 0.66028 (17) | 0.45248 (7) | 0.0365 (6) | |
P66 | 0.26392 (16) | 0.61667 (15) | 0.41854 (7) | 0.0341 (6) | |
P67 | 0.30206 (14) | 0.72835 (13) | 0.41007 (6) | 0.0261 (5) | |
P68 | 0.24110 (17) | 0.70134 (17) | 0.45933 (7) | 0.0386 (7) | |
P69 | 0.87726 (17) | 0.64293 (15) | 0.50906 (7) | 0.0350 (6) | |
P70 | 0.88837 (17) | 0.52717 (15) | 0.52227 (8) | 0.0403 (7) | |
P71 | 0.78957 (16) | 0.58647 (17) | 0.53752 (7) | 0.0369 (7) | |
P72 | 0.81149 (16) | 0.56144 (16) | 0.47995 (7) | 0.0345 (6) | |
P73 | 0.20487 (15) | 0.55520 (16) | 0.52229 (7) | 0.0339 (6) | |
P74 | 0.10164 (17) | 0.51003 (16) | 0.54074 (8) | 0.0379 (7) | |
P75 | 0.12320 (17) | 0.62625 (14) | 0.54671 (8) | 0.0369 (7) | |
P76 | 0.18145 (18) | 0.54816 (16) | 0.58104 (7) | 0.0392 (7) | |
P77 | 0.42122 (17) | 0.72448 (19) | 0.56798 (9) | 0.0468 (8) | |
P78 | 0.3070 (2) | 0.7105 (2) | 0.55787 (9) | 0.0533 (9) | |
P79 | 0.3440 (2) | 0.79491 (15) | 0.59508 (8) | 0.0476 (8) | |
P80 | 0.35289 (17) | 0.68012 (15) | 0.61066 (7) | 0.0357 (6) | |
P81 | 0.71511 (16) | 0.25520 (17) | 0.42804 (8) | 0.0390 (7) | |
P82 | 0.60456 (16) | 0.21580 (19) | 0.43742 (8) | 0.0429 (7) | |
P83 | 0.6836 (2) | 0.14935 (16) | 0.40738 (9) | 0.0464 (8) | |
P84 | 0.63880 (19) | 0.2481 (2) | 0.38226 (8) | 0.0487 (8) | |
P85 | 0.40694 (17) | 0.45836 (15) | 0.70896 (8) | 0.0391 (7) | |
P86 | 0.32527 (16) | 0.50228 (16) | 0.67092 (7) | 0.0355 (6) | |
P87 | 0.40635 (15) | 0.57478 (15) | 0.69538 (7) | 0.0337 (6) | |
P88 | 0.32015 (15) | 0.52895 (16) | 0.72931 (6) | 0.0305 (6) | |
P89 | 0.15416 (16) | 0.41462 (16) | 0.72445 (8) | 0.0374 (7) | |
P90 | 0.13555 (15) | 0.46859 (17) | 0.67178 (7) | 0.0354 (6) | |
P91 | 0.04319 (15) | 0.44001 (16) | 0.70657 (8) | 0.0354 (6) | |
P92 | 0.11693 (16) | 0.52732 (15) | 0.72297 (8) | 0.0354 (6) | |
P93 | 0.72622 (18) | 0.81516 (19) | 0.31442 (9) | 0.0468 (8) | |
P94 | 0.65432 (19) | 0.7841 (2) | 0.35885 (8) | 0.0505 (9) | |
P95 | 0.70892 (18) | 0.70059 (16) | 0.32710 (8) | 0.0421 (7) | |
P96 | 0.62189 (16) | 0.76508 (16) | 0.30209 (7) | 0.0360 (6) | |
P97 | 0.46653 (17) | 0.79532 (18) | 0.67294 (7) | 0.0417 (7) | |
P98 | 0.3977 (2) | 0.87455 (18) | 0.70134 (9) | 0.0484 (8) | |
P99 | 0.4038 (2) | 0.76422 (18) | 0.72145 (9) | 0.0540 (9) | |
P100 | 0.49626 (18) | 0.8364 (3) | 0.72689 (9) | 0.0632 (11) | |
P101 | 0.80958 (15) | 0.52033 (17) | 0.37073 (8) | 0.0375 (7) | |
P102 | 0.70339 (15) | 0.55096 (14) | 0.39246 (7) | 0.0288 (6) | |
P103 | 0.74766 (17) | 0.44324 (15) | 0.40384 (8) | 0.0362 (6) | |
P104 | 0.71095 (16) | 0.47019 (18) | 0.34871 (7) | 0.0393 (7) | |
P105 | 0.19926 (15) | 0.36154 (15) | 0.48318 (7) | 0.0314 (6) | |
P106 | 0.29692 (15) | 0.31307 (16) | 0.45916 (9) | 0.0391 (7) | |
P107 | 0.19925 (18) | 0.32839 (18) | 0.42603 (7) | 0.0402 (7) | |
P108 | 0.26338 (16) | 0.42341 (15) | 0.44330 (9) | 0.0399 (7) | |
P109 | 0.56409 (18) | 0.36300 (17) | 0.30628 (8) | 0.0425 (7) | |
P110 | 0.5394 (2) | 0.25943 (17) | 0.28090 (11) | 0.0544 (9) | |
P111 | 0.64781 (17) | 0.30547 (18) | 0.27623 (9) | 0.0455 (8) | |
P112 | 0.5569 (2) | 0.3549 (2) | 0.24732 (9) | 0.0608 (10) | |
P113 | 0.47395 (17) | 0.07852 (16) | 0.40167 (8) | 0.0405 (7) | |
P114 | 0.41388 (19) | 0.16892 (19) | 0.42576 (8) | 0.0459 (8) | |
P115 | 0.44365 (19) | 0.17071 (18) | 0.36774 (8) | 0.0452 (8) | |
P116 | 0.36047 (18) | 0.0945 (2) | 0.38716 (9) | 0.0494 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P2 | 0.0588 (19) | 0.0410 (16) | 0.0211 (13) | 0.0001 (15) | 0.0048 (12) | −0.0076 (12) |
P1 | 0.0310 (15) | 0.0406 (16) | 0.0442 (16) | 0.0081 (13) | 0.0083 (12) | 0.0030 (14) |
P3 | 0.0380 (16) | 0.0247 (13) | 0.0458 (16) | −0.0035 (12) | 0.0032 (13) | 0.0001 (12) |
P4 | 0.0442 (17) | 0.0396 (16) | 0.0309 (14) | 0.0055 (14) | −0.0054 (12) | 0.0132 (13) |
P5 | 0.0266 (14) | 0.0587 (19) | 0.0375 (15) | −0.0140 (14) | 0.0103 (12) | −0.0055 (15) |
P6 | 0.0312 (15) | 0.0539 (18) | 0.0245 (13) | −0.0003 (13) | −0.0040 (11) | 0.0113 (13) |
P7 | 0.0396 (16) | 0.0386 (15) | 0.0228 (12) | −0.0103 (13) | −0.0079 (11) | −0.0040 (12) |
P8 | 0.0440 (18) | 0.0333 (15) | 0.0405 (16) | −0.0037 (13) | 0.0086 (13) | −0.0095 (13) |
P9 | 0.0228 (15) | 0.066 (2) | 0.0395 (16) | 0.0115 (14) | −0.0099 (12) | −0.0065 (15) |
P10 | 0.057 (2) | 0.0271 (14) | 0.0319 (14) | −0.0025 (14) | −0.0059 (13) | −0.0017 (12) |
P11 | 0.0351 (15) | 0.0271 (13) | 0.0259 (12) | 0.0038 (12) | 0.0006 (11) | 0.0008 (11) |
P12 | 0.0385 (17) | 0.0496 (18) | 0.0275 (13) | 0.0195 (14) | 0.0083 (12) | 0.0025 (13) |
P13 | 0.0367 (16) | 0.0591 (19) | 0.0289 (14) | 0.0058 (15) | 0.0119 (12) | −0.0068 (14) |
P14 | 0.130 (4) | 0.0263 (16) | 0.0443 (19) | 0.022 (2) | −0.025 (2) | 0.0025 (14) |
P15 | 0.0411 (18) | 0.0528 (19) | 0.0576 (19) | −0.0235 (16) | 0.0219 (15) | −0.0139 (16) |
P16 | 0.0353 (17) | 0.074 (2) | 0.0333 (15) | 0.0012 (16) | −0.0142 (12) | −0.0167 (16) |
P17 | 0.0292 (15) | 0.0344 (15) | 0.0439 (16) | 0.0078 (12) | −0.0009 (12) | −0.0048 (13) |
P18 | 0.0450 (17) | 0.0474 (17) | 0.0304 (14) | 0.0060 (14) | 0.0079 (12) | 0.0188 (13) |
P19 | 0.0327 (16) | 0.0376 (16) | 0.0532 (18) | −0.0078 (13) | −0.0098 (13) | −0.0063 (14) |
P20 | 0.0519 (18) | 0.0395 (16) | 0.0211 (12) | −0.0006 (14) | 0.0084 (12) | −0.0098 (12) |
P21 | 0.0452 (18) | 0.0409 (17) | 0.0431 (16) | 0.0022 (14) | −0.0131 (14) | −0.0186 (14) |
P22 | 0.0259 (14) | 0.0471 (17) | 0.0298 (13) | 0.0054 (13) | −0.0013 (11) | 0.0040 (12) |
P23 | 0.0564 (19) | 0.0216 (13) | 0.0560 (19) | −0.0080 (14) | −0.0043 (15) | 0.0062 (13) |
P24 | 0.0306 (16) | 0.076 (2) | 0.0337 (15) | 0.0103 (16) | 0.0103 (12) | 0.0168 (16) |
P25 | 0.0408 (17) | 0.0344 (15) | 0.0422 (16) | 0.0051 (13) | −0.0024 (13) | 0.0074 (13) |
P26 | 0.058 (2) | 0.0386 (17) | 0.0397 (16) | −0.0012 (15) | 0.0068 (14) | −0.0145 (14) |
P27 | 0.0305 (15) | 0.065 (2) | 0.0312 (14) | −0.0139 (15) | 0.0003 (12) | 0.0032 (14) |
P28 | 0.0457 (18) | 0.0501 (18) | 0.0238 (13) | −0.0035 (15) | 0.0020 (12) | 0.0091 (13) |
P29 | 0.0469 (17) | 0.0365 (15) | 0.0241 (12) | −0.0074 (13) | 0.0016 (12) | 0.0091 (12) |
P30 | 0.0475 (17) | 0.0273 (14) | 0.0311 (13) | −0.0096 (13) | −0.0064 (12) | −0.0052 (11) |
P31 | 0.0324 (15) | 0.0348 (15) | 0.0300 (13) | −0.0065 (12) | −0.0089 (11) | 0.0022 (11) |
P32 | 0.0360 (16) | 0.0531 (18) | 0.0315 (14) | 0.0012 (14) | 0.0072 (12) | −0.0124 (13) |
P33 | 0.0501 (19) | 0.066 (2) | 0.0240 (14) | −0.0059 (17) | −0.0057 (13) | −0.0090 (14) |
P34 | 0.0489 (18) | 0.0379 (15) | 0.0297 (14) | 0.0009 (14) | 0.0080 (12) | 0.0005 (12) |
P35 | 0.0438 (17) | 0.0274 (14) | 0.0483 (17) | −0.0057 (13) | −0.0078 (13) | −0.0043 (13) |
P36 | 0.055 (2) | 0.0268 (14) | 0.0470 (17) | 0.0043 (14) | 0.0100 (15) | 0.0018 (13) |
P37 | 0.0293 (16) | 0.0495 (19) | 0.0545 (19) | 0.0013 (14) | −0.0114 (13) | −0.0203 (16) |
P38 | 0.079 (3) | 0.071 (2) | 0.0347 (16) | −0.035 (2) | 0.0125 (17) | 0.0061 (16) |
P39 | 0.061 (2) | 0.0355 (17) | 0.0505 (18) | 0.0139 (15) | −0.0220 (16) | −0.0052 (14) |
P40 | 0.0424 (18) | 0.0533 (19) | 0.0372 (15) | 0.0104 (15) | −0.0074 (13) | −0.0234 (15) |
P41 | 0.0414 (17) | 0.0562 (19) | 0.0211 (12) | 0.0081 (15) | 0.0063 (12) | −0.0021 (13) |
P42 | 0.0361 (15) | 0.0456 (16) | 0.0177 (11) | −0.0017 (13) | −0.0057 (10) | −0.0034 (11) |
P43 | 0.0308 (15) | 0.0343 (15) | 0.0412 (16) | −0.0071 (12) | −0.0034 (12) | 0.0011 (13) |
P44 | 0.0392 (17) | 0.0262 (14) | 0.0518 (17) | −0.0002 (13) | −0.0101 (14) | 0.0045 (13) |
P45 | 0.0389 (18) | 0.062 (2) | 0.0436 (17) | 0.0036 (16) | −0.0163 (14) | −0.0065 (16) |
P46 | 0.0295 (15) | 0.0451 (17) | 0.0363 (14) | −0.0043 (13) | 0.0073 (12) | 0.0002 (13) |
P47 | 0.0479 (19) | 0.0293 (15) | 0.060 (2) | 0.0059 (14) | 0.0045 (16) | −0.0068 (15) |
P48 | 0.0470 (18) | 0.0391 (16) | 0.0311 (14) | 0.0041 (14) | 0.0035 (12) | 0.0119 (13) |
P49 | 0.0233 (15) | 0.076 (2) | 0.060 (2) | −0.0016 (16) | −0.0034 (13) | −0.0346 (18) |
P50 | 0.077 (3) | 0.0470 (19) | 0.0378 (16) | −0.0111 (18) | 0.0236 (16) | 0.0062 (15) |
P51 | 0.063 (2) | 0.0322 (15) | 0.0431 (17) | 0.0058 (15) | −0.0188 (15) | −0.0029 (14) |
P52 | 0.0439 (17) | 0.0427 (17) | 0.0302 (14) | −0.0023 (14) | −0.0004 (12) | −0.0159 (13) |
P53 | 0.0435 (18) | 0.0358 (16) | 0.0515 (18) | −0.0103 (14) | 0.0174 (14) | 0.0101 (14) |
P54 | 0.056 (2) | 0.0396 (17) | 0.0558 (19) | −0.0126 (16) | 0.0173 (16) | −0.0255 (15) |
P55 | 0.0295 (15) | 0.0403 (16) | 0.0472 (17) | 0.0043 (13) | −0.0027 (12) | 0.0153 (14) |
P56 | 0.0402 (17) | 0.071 (2) | 0.0231 (13) | 0.0012 (16) | −0.0039 (12) | 0.0072 (14) |
P57 | 0.061 (2) | 0.0357 (15) | 0.0209 (12) | −0.0018 (14) | −0.0072 (12) | −0.0028 (12) |
P58 | 0.0277 (15) | 0.0360 (15) | 0.0543 (18) | −0.0034 (12) | −0.0082 (13) | 0.0044 (14) |
P59 | 0.0481 (18) | 0.0318 (15) | 0.0325 (14) | 0.0046 (13) | 0.0142 (13) | −0.0054 (12) |
P60 | 0.0410 (17) | 0.0215 (13) | 0.0466 (16) | −0.0035 (12) | −0.0012 (13) | 0.0024 (12) |
P61 | 0.0448 (17) | 0.0405 (16) | 0.0319 (14) | 0.0005 (14) | 0.0037 (12) | −0.0202 (13) |
P62 | 0.0403 (18) | 0.0331 (16) | 0.0569 (19) | −0.0140 (14) | 0.0123 (14) | −0.0026 (14) |
P63 | 0.092 (3) | 0.0398 (17) | 0.0276 (15) | 0.0175 (18) | −0.0098 (16) | 0.0090 (13) |
P64 | 0.0251 (15) | 0.0543 (19) | 0.0455 (17) | 0.0074 (14) | 0.0015 (12) | −0.0072 (15) |
P65 | 0.0341 (15) | 0.0447 (16) | 0.0308 (14) | 0.0054 (13) | −0.0083 (12) | 0.0046 (13) |
P66 | 0.0421 (16) | 0.0244 (13) | 0.0357 (15) | −0.0110 (12) | −0.0002 (12) | −0.0020 (12) |
P67 | 0.0324 (14) | 0.0232 (12) | 0.0228 (12) | −0.0046 (11) | 0.0043 (10) | 0.0049 (10) |
P68 | 0.0450 (17) | 0.0428 (17) | 0.0279 (13) | 0.0068 (14) | 0.0184 (12) | 0.0024 (12) |
P69 | 0.0498 (18) | 0.0268 (13) | 0.0285 (13) | −0.0126 (13) | 0.0044 (12) | 0.0004 (11) |
P70 | 0.0503 (18) | 0.0284 (14) | 0.0422 (16) | 0.0140 (13) | −0.0128 (14) | 0.0002 (13) |
P71 | 0.0393 (16) | 0.0436 (17) | 0.0279 (14) | −0.0082 (13) | 0.0122 (11) | −0.0086 (13) |
P72 | 0.0402 (16) | 0.0421 (16) | 0.0213 (12) | −0.0013 (13) | −0.0061 (11) | −0.0055 (11) |
P73 | 0.0316 (15) | 0.0396 (15) | 0.0305 (13) | 0.0039 (12) | 0.0075 (11) | −0.0042 (12) |
P74 | 0.0406 (17) | 0.0331 (15) | 0.0400 (15) | −0.0140 (13) | −0.0020 (12) | 0.0038 (12) |
P75 | 0.0501 (18) | 0.0241 (13) | 0.0366 (15) | 0.0135 (13) | 0.0059 (13) | −0.0019 (12) |
P76 | 0.061 (2) | 0.0349 (15) | 0.0219 (13) | −0.0048 (15) | −0.0087 (12) | 0.0073 (11) |
P77 | 0.0338 (17) | 0.057 (2) | 0.0491 (18) | 0.0128 (15) | 0.0182 (14) | 0.0135 (16) |
P78 | 0.055 (2) | 0.059 (2) | 0.0461 (18) | −0.0214 (17) | −0.0268 (15) | 0.0041 (16) |
P79 | 0.081 (2) | 0.0231 (14) | 0.0387 (15) | 0.0130 (15) | 0.0053 (16) | −0.0052 (13) |
P80 | 0.0526 (18) | 0.0300 (14) | 0.0247 (13) | 0.0018 (13) | 0.0055 (12) | 0.0120 (11) |
P81 | 0.0385 (17) | 0.0418 (17) | 0.0366 (15) | −0.0168 (14) | 0.0031 (12) | −0.0043 (13) |
P82 | 0.0302 (16) | 0.064 (2) | 0.0344 (15) | −0.0051 (15) | 0.0056 (12) | 0.0126 (15) |
P83 | 0.064 (2) | 0.0242 (14) | 0.0509 (17) | −0.0055 (14) | −0.0020 (16) | −0.0018 (13) |
P84 | 0.051 (2) | 0.066 (2) | 0.0292 (14) | 0.0085 (17) | −0.0005 (13) | 0.0188 (15) |
P85 | 0.0464 (18) | 0.0285 (14) | 0.0425 (16) | 0.0125 (13) | −0.0022 (13) | 0.0043 (12) |
P86 | 0.0385 (16) | 0.0503 (17) | 0.0178 (12) | −0.0049 (13) | −0.0038 (11) | −0.0026 (12) |
P87 | 0.0365 (16) | 0.0299 (14) | 0.0346 (14) | −0.0103 (12) | 0.0018 (12) | 0.0072 (12) |
P88 | 0.0294 (14) | 0.0433 (16) | 0.0189 (12) | −0.0014 (12) | 0.0037 (10) | −0.0014 (11) |
P89 | 0.0349 (16) | 0.0363 (15) | 0.0409 (15) | 0.0058 (13) | −0.0064 (12) | 0.0150 (13) |
P90 | 0.0333 (15) | 0.0529 (18) | 0.0201 (12) | 0.0019 (13) | 0.0044 (11) | 0.0033 (12) |
P91 | 0.0237 (14) | 0.0418 (16) | 0.0406 (15) | −0.0064 (12) | −0.0014 (11) | 0.0114 (13) |
P92 | 0.0393 (16) | 0.0314 (14) | 0.0356 (14) | −0.0009 (12) | 0.0001 (12) | −0.0106 (12) |
P93 | 0.0460 (18) | 0.0492 (18) | 0.0452 (17) | −0.0205 (16) | −0.0054 (14) | 0.0195 (15) |
P94 | 0.057 (2) | 0.072 (2) | 0.0220 (13) | 0.0095 (18) | 0.0071 (13) | −0.0133 (15) |
P95 | 0.056 (2) | 0.0313 (15) | 0.0390 (16) | 0.0082 (14) | −0.0073 (14) | −0.0014 (13) |
P96 | 0.0355 (16) | 0.0432 (16) | 0.0294 (13) | −0.0026 (13) | −0.0081 (11) | −0.0026 (12) |
P97 | 0.0482 (18) | 0.0510 (18) | 0.0260 (13) | 0.0042 (15) | 0.0051 (12) | −0.0138 (13) |
P98 | 0.059 (2) | 0.0414 (17) | 0.0452 (17) | 0.0240 (16) | 0.0082 (15) | 0.0127 (14) |
P99 | 0.086 (3) | 0.0353 (16) | 0.0407 (17) | −0.0120 (17) | 0.0149 (17) | 0.0023 (14) |
P100 | 0.0305 (17) | 0.116 (3) | 0.0434 (18) | −0.0032 (19) | −0.0065 (14) | −0.036 (2) |
P101 | 0.0247 (15) | 0.0429 (16) | 0.0448 (16) | −0.0057 (13) | 0.0054 (12) | −0.0069 (13) |
P102 | 0.0302 (14) | 0.0230 (12) | 0.0333 (13) | 0.0082 (11) | −0.0026 (11) | −0.0042 (11) |
P103 | 0.0488 (18) | 0.0289 (14) | 0.0310 (14) | 0.0080 (13) | −0.0022 (12) | 0.0086 (12) |
P104 | 0.0366 (16) | 0.0565 (19) | 0.0247 (13) | −0.0009 (14) | −0.0069 (11) | −0.0152 (13) |
P105 | 0.0363 (15) | 0.0333 (14) | 0.0247 (12) | −0.0006 (12) | 0.0087 (11) | −0.0038 (11) |
P106 | 0.0264 (15) | 0.0298 (14) | 0.0610 (19) | 0.0094 (12) | 0.0059 (13) | 0.0137 (14) |
P107 | 0.0494 (18) | 0.0489 (18) | 0.0223 (13) | −0.0007 (15) | −0.0034 (12) | −0.0045 (12) |
P108 | 0.0370 (16) | 0.0274 (14) | 0.0554 (18) | 0.0034 (13) | 0.0123 (13) | 0.0163 (13) |
P109 | 0.055 (2) | 0.0420 (17) | 0.0308 (14) | 0.0041 (15) | 0.0077 (13) | −0.0169 (13) |
P110 | 0.048 (2) | 0.0282 (15) | 0.087 (3) | −0.0124 (14) | 0.0106 (18) | −0.0088 (16) |
P111 | 0.0301 (15) | 0.0527 (19) | 0.0538 (18) | 0.0035 (14) | 0.0101 (14) | −0.0050 (16) |
P112 | 0.072 (3) | 0.083 (3) | 0.0276 (15) | 0.000 (2) | −0.0109 (15) | 0.0154 (17) |
P113 | 0.0434 (17) | 0.0350 (15) | 0.0433 (16) | 0.0099 (13) | −0.0074 (13) | −0.0013 (13) |
P114 | 0.0509 (19) | 0.0528 (19) | 0.0340 (15) | 0.0013 (16) | 0.0103 (14) | −0.0193 (14) |
P115 | 0.062 (2) | 0.0443 (18) | 0.0290 (14) | 0.0010 (16) | −0.0009 (14) | 0.0115 (13) |
P116 | 0.0370 (17) | 0.068 (2) | 0.0431 (17) | −0.0089 (17) | −0.0064 (14) | −0.0088 (16) |
P2—P1 | 2.168 (4) | P58—P59 | 2.168 (4) |
P2—P4 | 2.175 (4) | P58—P60 | 2.180 (4) |
P2—P3 | 2.180 (4) | P59—P60 | 2.190 (4) |
P1—P4 | 2.177 (4) | P61—P63 | 2.166 (4) |
P1—P3 | 2.179 (4) | P61—P62 | 2.182 (4) |
P3—P4 | 2.178 (4) | P61—P64 | 2.182 (4) |
P5—P8 | 2.183 (4) | P62—P64 | 2.151 (4) |
P5—P7 | 2.187 (4) | P62—P63 | 2.168 (4) |
P5—P6 | 2.193 (4) | P63—P64 | 2.160 (5) |
P6—P7 | 2.178 (4) | P65—P68 | 2.179 (4) |
P6—P8 | 2.187 (4) | P65—P66 | 2.183 (4) |
P7—P8 | 2.184 (4) | P65—P67 | 2.186 (4) |
P9—P12 | 2.163 (4) | P66—P67 | 2.182 (4) |
P9—P11 | 2.176 (4) | P66—P68 | 2.188 (4) |
P9—P10 | 2.178 (4) | P67—P68 | 2.171 (3) |
P10—P12 | 2.182 (4) | P69—P71 | 2.172 (4) |
P10—P11 | 2.187 (4) | P69—P70 | 2.182 (4) |
P11—P12 | 2.171 (4) | P69—P72 | 2.191 (4) |
P13—P15 | 2.147 (4) | P70—P72 | 2.180 (4) |
P13—P14 | 2.164 (5) | P70—P71 | 2.181 (4) |
P13—P16 | 2.182 (4) | P71—P72 | 2.185 (4) |
P14—P15 | 2.154 (5) | P73—P74 | 2.169 (4) |
P14—P16 | 2.159 (5) | P73—P75 | 2.172 (4) |
P15—P16 | 2.140 (4) | P73—P76 | 2.187 (4) |
P17—P20 | 2.171 (4) | P74—P75 | 2.174 (4) |
P17—P19 | 2.172 (4) | P74—P76 | 2.186 (4) |
P17—P18 | 2.181 (4) | P75—P76 | 2.178 (4) |
P18—P20 | 2.179 (4) | P77—P78 | 2.138 (5) |
P18—P19 | 2.186 (4) | P77—P79 | 2.152 (4) |
P19—P20 | 2.168 (4) | P77—P80 | 2.155 (4) |
P21—P23 | 2.174 (4) | P78—P79 | 2.164 (5) |
P21—P22 | 2.174 (4) | P78—P80 | 2.172 (4) |
P21—P24 | 2.176 (4) | P79—P80 | 2.182 (4) |
P22—P24 | 2.175 (4) | P81—P83 | 2.157 (4) |
P22—P23 | 2.178 (4) | P81—P82 | 2.175 (4) |
P23—P24 | 2.170 (4) | P81—P84 | 2.180 (4) |
P25—P27 | 2.168 (4) | P82—P83 | 2.184 (5) |
P25—P28 | 2.171 (4) | P82—P84 | 2.187 (4) |
P25—P26 | 2.183 (4) | P83—P84 | 2.185 (4) |
P26—P28 | 2.178 (4) | P85—P88 | 2.178 (4) |
P26—P27 | 2.185 (4) | P85—P87 | 2.188 (4) |
P27—P28 | 2.177 (4) | P85—P86 | 2.191 (4) |
P29—P30 | 2.183 (4) | P86—P87 | 2.181 (4) |
P29—P31 | 2.187 (4) | P86—P88 | 2.185 (3) |
P29—P32 | 2.185 (4) | P87—P88 | 2.173 (4) |
P30—P32 | 2.182 (4) | P89—P92 | 2.173 (4) |
P30—P31 | 2.190 (4) | P89—P91 | 2.183 (4) |
P31—P32 | 2.179 (4) | P89—P90 | 2.185 (4) |
P33—P35 | 2.171 (4) | P90—P91 | 2.177 (4) |
P33—P36 | 2.178 (5) | P90—P92 | 2.180 (4) |
P33—P34 | 2.178 (4) | P91—P92 | 2.175 (4) |
P34—P35 | 2.175 (4) | P93—P96 | 2.165 (4) |
P34—P36 | 2.190 (4) | P93—P94 | 2.162 (4) |
P35—P36 | 2.172 (4) | P93—P95 | 2.170 (4) |
P37—P38 | 2.148 (5) | P94—P95 | 2.162 (4) |
P37—P39 | 2.159 (4) | P94—P96 | 2.180 (4) |
P37—P40 | 2.186 (4) | P95—P96 | 2.182 (4) |
P38—P40 | 2.152 (5) | P97—P100 | 2.174 (4) |
P38—P39 | 2.160 (5) | P97—P98 | 2.182 (4) |
P39—P40 | 2.174 (4) | P97—P99 | 2.183 (4) |
P41—P43 | 2.168 (4) | P98—P100 | 2.147 (5) |
P41—P42 | 2.174 (3) | P98—P99 | 2.151 (4) |
P41—P44 | 2.194 (4) | P99—P100 | 2.156 (5) |
P42—P44 | 2.183 (4) | P101—P102 | 2.172 (4) |
P42—P43 | 2.181 (4) | P101—P103 | 2.175 (4) |
P43—P44 | 2.184 (4) | P101—P104 | 2.178 (4) |
P45—P46 | 2.172 (4) | P102—P103 | 2.171 (4) |
P45—P48 | 2.177 (4) | P102—P104 | 2.178 (4) |
P45—P47 | 2.195 (5) | P103—P104 | 2.175 (4) |
P46—P48 | 2.177 (4) | P105—P107 | 2.169 (4) |
P46—P47 | 2.183 (4) | P105—P106 | 2.179 (4) |
P47—P48 | 2.186 (4) | P105—P108 | 2.184 (4) |
P49—P51 | 2.158 (5) | P106—P107 | 2.175 (4) |
P49—P50 | 2.163 (5) | P106—P108 | 2.188 (4) |
P49—P52 | 2.172 (4) | P107—P108 | 2.190 (4) |
P50—P51 | 2.157 (5) | P109—P111 | 2.158 (4) |
P50—P52 | 2.172 (4) | P109—P110 | 2.157 (4) |
P51—P52 | 2.186 (4) | P109—P112 | 2.158 (4) |
P53—P54 | 2.164 (4) | P110—P112 | 2.158 (5) |
P53—P56 | 2.166 (4) | P110—P111 | 2.162 (5) |
P53—P55 | 2.168 (4) | P111—P112 | 2.167 (5) |
P54—P56 | 2.160 (4) | P113—P116 | 2.163 (4) |
P54—P55 | 2.173 (5) | P113—P115 | 2.164 (4) |
P55—P56 | 2.155 (4) | P113—P114 | 2.172 (4) |
P57—P58 | 2.170 (4) | P114—P115 | 2.183 (4) |
P57—P59 | 2.170 (4) | P114—P116 | 2.189 (4) |
P57—P60 | 2.179 (4) | P115—P116 | 2.183 (5) |
P1—P2—P4 | 60.17 (13) | P58—P59—P57 | 60.04 (13) |
P1—P2—P3 | 60.18 (13) | P58—P59—P60 | 60.02 (13) |
P4—P2—P3 | 60.01 (13) | P57—P59—P60 | 59.98 (13) |
P2—P1—P4 | 60.09 (13) | P58—P60—P57 | 59.73 (14) |
P2—P1—P3 | 60.19 (14) | P58—P60—P59 | 59.51 (14) |
P4—P1—P3 | 59.99 (13) | P57—P60—P59 | 59.56 (12) |
P4—P3—P1 | 59.94 (13) | P63—P61—P62 | 59.82 (15) |
P4—P3—P2 | 59.89 (13) | P63—P61—P64 | 59.59 (14) |
P1—P3—P2 | 59.63 (13) | P62—P61—P64 | 59.06 (14) |
P1—P4—P3 | 60.07 (13) | P64—P62—P63 | 60.02 (16) |
P1—P4—P2 | 59.75 (13) | P64—P62—P61 | 60.45 (14) |
P3—P4—P2 | 60.11 (13) | P63—P62—P61 | 59.71 (14) |
P8—P5—P7 | 59.97 (13) | P64—P63—P61 | 60.57 (14) |
P8—P5—P6 | 59.97 (13) | P64—P63—P62 | 59.60 (14) |
P7—P5—P6 | 59.64 (12) | P61—P63—P62 | 60.47 (14) |
P7—P6—P8 | 60.05 (13) | P62—P64—P63 | 60.38 (16) |
P7—P6—P5 | 60.05 (13) | P62—P64—P61 | 60.48 (14) |
P8—P6—P5 | 59.78 (14) | P63—P64—P61 | 59.83 (14) |
P6—P7—P8 | 60.17 (14) | P68—P65—P66 | 60.19 (13) |
P6—P7—P5 | 60.31 (13) | P68—P65—P67 | 59.64 (12) |
P8—P7—P5 | 59.91 (14) | P66—P65—P67 | 59.92 (12) |
P5—P8—P7 | 60.12 (14) | P67—P66—P65 | 60.09 (12) |
P5—P8—P6 | 60.25 (14) | P67—P66—P68 | 59.57 (12) |
P7—P8—P6 | 59.78 (13) | P65—P66—P68 | 59.81 (13) |
P12—P9—P11 | 60.03 (12) | P68—P67—P66 | 60.35 (13) |
P12—P9—P10 | 60.36 (14) | P68—P67—P65 | 60.03 (13) |
P11—P9—P10 | 60.30 (13) | P66—P67—P65 | 59.99 (12) |
P9—P10—P12 | 59.48 (14) | P67—P68—P65 | 60.33 (12) |
P9—P10—P11 | 59.81 (13) | P67—P68—P66 | 60.08 (12) |
P12—P10—P11 | 59.58 (13) | P65—P68—P66 | 60.00 (13) |
P12—P11—P9 | 59.68 (13) | P71—P69—P70 | 60.11 (14) |
P12—P11—P10 | 60.11 (13) | P71—P69—P72 | 60.09 (12) |
P9—P11—P10 | 59.89 (14) | P70—P69—P72 | 59.80 (13) |
P9—P12—P11 | 60.29 (13) | P72—P70—P69 | 60.29 (13) |
P9—P12—P10 | 60.16 (14) | P72—P70—P71 | 60.13 (13) |
P11—P12—P10 | 60.32 (13) | P69—P70—P71 | 59.72 (13) |
P15—P13—P14 | 59.95 (17) | P69—P71—P70 | 60.16 (13) |
P15—P13—P16 | 59.23 (14) | P69—P71—P72 | 60.37 (13) |
P14—P13—P16 | 59.59 (15) | P70—P71—P72 | 59.91 (13) |
P15—P14—P16 | 59.48 (16) | P70—P72—P71 | 59.96 (13) |
P15—P14—P13 | 59.64 (14) | P70—P72—P69 | 59.90 (13) |
P16—P14—P13 | 60.64 (15) | P71—P72—P69 | 59.54 (12) |
P16—P15—P13 | 61.21 (14) | P74—P73—P75 | 60.12 (13) |
P16—P15—P14 | 60.39 (17) | P74—P73—P76 | 60.23 (13) |
P13—P15—P14 | 60.41 (17) | P75—P73—P76 | 59.96 (13) |
P15—P16—P14 | 60.12 (17) | P73—P74—P75 | 60.01 (13) |
P15—P16—P13 | 59.56 (14) | P73—P74—P76 | 60.30 (13) |
P14—P16—P13 | 59.78 (14) | P75—P74—P76 | 59.95 (13) |
P20—P17—P19 | 59.91 (13) | P73—P75—P74 | 59.88 (13) |
P20—P17—P18 | 60.08 (13) | P73—P75—P76 | 60.37 (13) |
P19—P17—P18 | 60.28 (14) | P74—P75—P76 | 60.29 (13) |
P20—P18—P17 | 59.73 (13) | P75—P76—P74 | 59.76 (13) |
P20—P18—P19 | 59.58 (13) | P75—P76—P73 | 59.67 (12) |
P17—P18—P19 | 59.66 (13) | P74—P76—P73 | 59.47 (13) |
P20—P19—P17 | 60.02 (13) | P78—P77—P79 | 60.59 (16) |
P20—P19—P18 | 60.05 (13) | P78—P77—P80 | 60.78 (15) |
P17—P19—P18 | 60.06 (14) | P79—P77—P80 | 60.89 (14) |
P19—P20—P17 | 60.07 (13) | P77—P78—P79 | 60.03 (16) |
P19—P20—P18 | 60.37 (14) | P77—P78—P80 | 59.99 (14) |
P17—P20—P18 | 60.19 (13) | P79—P78—P80 | 60.44 (14) |
P23—P21—P22 | 60.13 (14) | P77—P79—P78 | 59.38 (16) |
P23—P21—P24 | 59.84 (15) | P77—P79—P80 | 59.61 (14) |
P22—P21—P24 | 60.03 (13) | P78—P79—P80 | 59.95 (14) |
P21—P22—P24 | 60.03 (14) | P77—P80—P78 | 59.23 (15) |
P21—P22—P23 | 59.95 (14) | P77—P80—P79 | 59.50 (14) |
P24—P22—P23 | 59.78 (14) | P78—P80—P79 | 59.61 (14) |
P24—P23—P21 | 60.11 (15) | P83—P81—P82 | 60.53 (15) |
P24—P23—P22 | 60.05 (13) | P83—P81—P84 | 60.50 (15) |
P21—P23—P22 | 59.92 (13) | P82—P81—P84 | 60.29 (14) |
P23—P24—P22 | 60.17 (14) | P81—P82—P83 | 59.33 (14) |
P23—P24—P21 | 60.06 (14) | P81—P82—P84 | 59.96 (14) |
P22—P24—P21 | 59.95 (13) | P83—P82—P84 | 59.99 (14) |
P27—P25—P28 | 60.22 (14) | P81—P83—P82 | 60.14 (14) |
P27—P25—P26 | 60.30 (15) | P81—P83—P84 | 60.26 (15) |
P28—P25—P26 | 60.04 (14) | P82—P83—P84 | 60.08 (14) |
P28—P26—P25 | 59.69 (13) | P81—P84—P83 | 59.25 (14) |
P28—P26—P27 | 59.84 (13) | P81—P84—P82 | 59.75 (13) |
P25—P26—P27 | 59.51 (14) | P83—P84—P82 | 59.93 (15) |
P25—P27—P28 | 59.94 (13) | P88—P85—P87 | 59.70 (13) |
P25—P27—P26 | 60.19 (14) | P88—P85—P86 | 60.02 (12) |
P28—P27—P26 | 59.92 (14) | P87—P85—P86 | 59.75 (13) |
P25—P28—P27 | 59.83 (13) | P87—P86—P88 | 59.69 (12) |
P25—P28—P26 | 60.26 (14) | P87—P86—P85 | 60.04 (13) |
P27—P28—P26 | 60.24 (14) | P88—P86—P85 | 59.68 (12) |
P30—P29—P31 | 60.17 (12) | P88—P87—P86 | 60.25 (12) |
P30—P29—P32 | 59.95 (13) | P88—P87—P85 | 59.92 (13) |
P31—P29—P32 | 59.78 (13) | P86—P87—P85 | 60.21 (13) |
P32—P30—P29 | 60.08 (13) | P87—P88—P85 | 60.37 (13) |
P32—P30—P31 | 59.78 (13) | P87—P88—P86 | 60.07 (12) |
P29—P30—P31 | 60.02 (12) | P85—P88—P86 | 60.30 (13) |
P32—P31—P29 | 60.06 (13) | P92—P89—P91 | 59.92 (13) |
P32—P31—P30 | 59.92 (13) | P92—P89—P90 | 60.01 (13) |
P29—P31—P30 | 59.82 (12) | P91—P89—P90 | 59.78 (12) |
P31—P32—P30 | 60.30 (13) | P91—P90—P92 | 59.91 (13) |
P31—P32—P29 | 60.15 (13) | P91—P90—P89 | 60.06 (13) |
P30—P32—P29 | 59.97 (13) | P92—P90—P89 | 59.71 (13) |
P35—P33—P36 | 59.93 (13) | P90—P91—P92 | 60.11 (13) |
P35—P33—P34 | 60.02 (14) | P90—P91—P89 | 60.17 (13) |
P36—P33—P34 | 60.36 (14) | P92—P91—P89 | 59.82 (13) |
P35—P34—P33 | 59.82 (14) | P89—P92—P91 | 60.27 (13) |
P35—P34—P36 | 59.69 (13) | P89—P92—P90 | 60.28 (13) |
P33—P34—P36 | 59.83 (14) | P91—P92—P90 | 59.98 (13) |
P33—P35—P36 | 60.21 (15) | P96—P93—P94 | 60.50 (14) |
P33—P35—P34 | 60.16 (13) | P96—P93—P95 | 60.43 (14) |
P36—P35—P34 | 60.50 (14) | P94—P93—P95 | 59.86 (15) |
P35—P36—P33 | 59.85 (14) | P95—P94—P93 | 60.26 (15) |
P35—P36—P34 | 59.81 (14) | P95—P94—P96 | 60.34 (14) |
P33—P36—P34 | 59.81 (14) | P93—P94—P96 | 59.82 (14) |
P38—P37—P39 | 60.19 (17) | P94—P95—P93 | 59.88 (16) |
P38—P37—P40 | 59.53 (15) | P94—P95—P96 | 60.24 (14) |
P39—P37—P40 | 60.04 (14) | P93—P95—P96 | 59.66 (14) |
P37—P38—P40 | 61.11 (15) | P93—P96—P95 | 59.90 (14) |
P37—P38—P39 | 60.17 (16) | P93—P96—P94 | 59.69 (14) |
P40—P38—P39 | 60.56 (16) | P95—P96—P94 | 59.42 (14) |
P37—P39—P38 | 59.64 (17) | P100—P97—P98 | 59.06 (15) |
P37—P39—P40 | 60.58 (14) | P100—P97—P99 | 59.32 (16) |
P38—P39—P40 | 59.54 (16) | P98—P97—P99 | 59.03 (14) |
P38—P40—P39 | 59.90 (17) | P100—P98—P99 | 60.22 (18) |
P38—P40—P37 | 59.36 (15) | P100—P98—P97 | 60.28 (14) |
P39—P40—P37 | 59.38 (14) | P99—P98—P97 | 60.50 (15) |
P43—P41—P42 | 60.29 (13) | P98—P99—P100 | 59.80 (18) |
P43—P41—P44 | 60.09 (14) | P98—P99—P97 | 60.46 (14) |
P42—P41—P44 | 59.99 (13) | P100—P99—P97 | 60.13 (15) |
P41—P42—P44 | 60.47 (13) | P98—P100—P99 | 59.98 (16) |
P41—P42—P43 | 59.73 (13) | P98—P100—P97 | 60.66 (15) |
P44—P42—P43 | 60.07 (13) | P99—P100—P97 | 60.55 (15) |
P41—P43—P42 | 59.98 (12) | P102—P101—P103 | 59.93 (13) |
P41—P43—P44 | 60.53 (14) | P102—P101—P104 | 60.10 (13) |
P42—P43—P44 | 60.03 (13) | P103—P101—P104 | 59.95 (13) |
P42—P44—P43 | 59.90 (13) | P103—P102—P101 | 60.10 (13) |
P42—P44—P41 | 59.55 (12) | P103—P102—P104 | 60.00 (13) |
P43—P44—P41 | 59.37 (14) | P101—P102—P104 | 60.09 (13) |
P46—P45—P48 | 60.08 (13) | P102—P103—P101 | 59.97 (13) |
P46—P45—P47 | 59.97 (14) | P102—P103—P104 | 60.16 (13) |
P48—P45—P47 | 59.99 (14) | P101—P103—P104 | 60.10 (13) |
P45—P46—P48 | 60.07 (14) | P103—P104—P101 | 59.95 (13) |
P45—P46—P47 | 60.55 (15) | P103—P104—P102 | 59.84 (12) |
P48—P46—P47 | 60.18 (14) | P101—P104—P102 | 59.82 (13) |
P46—P47—P48 | 59.78 (13) | P107—P105—P106 | 60.03 (14) |
P46—P47—P45 | 59.48 (14) | P107—P105—P108 | 60.41 (14) |
P48—P47—P45 | 59.58 (14) | P106—P105—P108 | 60.20 (12) |
P46—P48—P45 | 59.85 (14) | P107—P106—P105 | 59.76 (13) |
P46—P48—P47 | 60.04 (14) | P107—P106—P108 | 60.26 (14) |
P45—P48—P47 | 60.43 (15) | P105—P106—P108 | 60.02 (12) |
P51—P49—P50 | 59.91 (16) | P105—P107—P106 | 60.21 (13) |
P51—P49—P52 | 60.66 (14) | P105—P107—P108 | 60.14 (13) |
P50—P49—P52 | 60.14 (14) | P106—P107—P108 | 60.17 (13) |
P51—P50—P49 | 59.92 (16) | P105—P108—P106 | 59.78 (13) |
P51—P50—P52 | 60.66 (15) | P105—P108—P107 | 59.45 (12) |
P49—P50—P52 | 60.13 (14) | P106—P108—P107 | 59.57 (14) |
P50—P51—P49 | 60.18 (17) | P111—P109—P110 | 60.15 (15) |
P50—P51—P52 | 60.01 (14) | P111—P109—P112 | 60.29 (16) |
P49—P51—P52 | 60.00 (14) | P110—P109—P112 | 60.01 (17) |
P50—P52—P49 | 59.72 (15) | P109—P110—P112 | 60.01 (15) |
P50—P52—P51 | 59.33 (14) | P109—P110—P111 | 59.94 (14) |
P49—P52—P51 | 59.34 (14) | P112—P110—P111 | 60.22 (16) |
P54—P53—P56 | 59.84 (15) | P109—P111—P110 | 59.91 (15) |
P54—P53—P55 | 60.20 (15) | P109—P111—P112 | 59.85 (15) |
P56—P53—P55 | 59.65 (13) | P110—P111—P112 | 59.79 (17) |
P56—P54—P53 | 60.12 (14) | P109—P112—P110 | 59.99 (16) |
P56—P54—P55 | 59.67 (14) | P109—P112—P111 | 59.86 (14) |
P53—P54—P55 | 59.98 (14) | P110—P112—P111 | 60.00 (16) |
P56—P55—P53 | 60.13 (14) | P116—P113—P115 | 60.60 (15) |
P56—P55—P54 | 59.87 (15) | P116—P113—P114 | 60.66 (15) |
P53—P55—P54 | 59.82 (15) | P115—P113—P114 | 60.48 (14) |
P55—P56—P54 | 60.46 (15) | P113—P114—P115 | 59.59 (14) |
P55—P56—P53 | 60.22 (14) | P113—P114—P116 | 59.47 (14) |
P54—P56—P53 | 60.04 (14) | P115—P114—P116 | 59.91 (15) |
P58—P57—P59 | 59.94 (14) | P113—P115—P114 | 59.94 (14) |
P58—P57—P60 | 60.15 (13) | P113—P115—P116 | 59.67 (15) |
P59—P57—P60 | 60.46 (13) | P114—P115—P116 | 60.17 (15) |
P59—P58—P57 | 60.02 (14) | P113—P116—P115 | 59.72 (15) |
P59—P58—P60 | 60.48 (14) | P113—P116—P114 | 59.87 (14) |
P57—P58—P60 | 60.12 (13) | P115—P116—P114 | 59.92 (14) |
P4 | Dx = 1.958 Mg m−3 |
Mr = 123.88 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9646 reflections |
a = 18.298 (2) Å | θ = 3.7–23.2° |
b = 18.298 (2) Å | µ = 1.56 mm−1 |
c = 36.408 (3) Å | T = 100 K |
V = 12190 (2) Å3 | Block, white |
Z = 116 | 0.21 × 0.18 × 0.17 mm |
F(000) = 6960 |
Bruker Smart APEX II Quazar diffractometer | 13145 reflections with I > 2σ(I) |
Radiation source: INCOATEC Microsource | Rint = 0.097 |
ω scans | θmax = 26.1°, θmin = 1.1° |
Absorption correction: multi-scan TWINABS 2012/1: M. Sevvana, M. Ruf, I. Uson, G. M. Sheldrick, R. Herbst-Irmer, Acta Crystallogr. 2019, D75, 1040-1050. | h = −22→22 |
Tmin = 0.669, Tmax = 0.745 | k = −22→22 |
340118 measured reflections | l = −45→45 |
13397 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.025P)2 + 11.1353P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.034 | (Δ/σ)max = 0.001 |
wR(F2) = 0.077 | Δρmax = 0.66 e Å−3 |
S = 1.13 | Δρmin = −0.41 e Å−3 |
13397 reflections | Absolute structure: No quotients, so Flack parameter determined by classical intensity fit |
1050 parameters | Absolute structure parameter: 10 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 6-component twin. |
x | y | z | Uiso*/Ueq | ||
P2 | 0.68193 (18) | 0.42339 (17) | 0.55247 (8) | 0.0426 (7) | |
P1 | 0.74694 (15) | 0.36619 (16) | 0.51204 (9) | 0.0409 (7) | |
P3 | 0.63598 (16) | 0.33093 (15) | 0.52255 (9) | 0.0416 (7) | |
P4 | 0.65632 (17) | 0.43413 (17) | 0.49466 (8) | 0.0413 (7) | |
P5 | 0.54712 (15) | 0.4213 (2) | 0.40673 (9) | 0.0466 (8) | |
P6 | 0.48099 (15) | 0.3657 (2) | 0.44801 (8) | 0.0450 (8) | |
P7 | 0.44252 (16) | 0.37410 (17) | 0.39160 (7) | 0.0359 (6) | |
P8 | 0.44630 (17) | 0.47110 (18) | 0.42650 (9) | 0.0438 (7) | |
P9 | 0.53411 (16) | 0.5833 (2) | 0.34405 (9) | 0.0526 (9) | |
P10 | 0.4481 (2) | 0.51862 (16) | 0.31846 (9) | 0.0470 (8) | |
P11 | 0.46279 (15) | 0.63299 (15) | 0.30328 (8) | 0.0339 (6) | |
P12 | 0.42123 (18) | 0.60507 (19) | 0.35725 (8) | 0.0456 (8) | |
P13 | 0.49723 (19) | 0.1406 (2) | 0.51543 (9) | 0.0531 (9) | |
P14 | 0.4287 (4) | 0.23611 (19) | 0.52553 (11) | 0.099 (2) | |
P15 | 0.4046 (2) | 0.1347 (2) | 0.55102 (12) | 0.0639 (10) | |
P16 | 0.49689 (18) | 0.1942 (2) | 0.56872 (9) | 0.0600 (10) | |
P17 | 0.46934 (14) | 0.43413 (16) | 0.54594 (8) | 0.0378 (6) | |
P18 | 0.40476 (17) | 0.52362 (18) | 0.52354 (8) | 0.0433 (7) | |
P19 | 0.35207 (16) | 0.42211 (16) | 0.54011 (9) | 0.0444 (7) | |
P20 | 0.39564 (17) | 0.49553 (16) | 0.58117 (7) | 0.0389 (7) | |
P21 | 0.58125 (17) | 0.58915 (17) | 0.57521 (9) | 0.0448 (7) | |
P22 | 0.66728 (14) | 0.60279 (17) | 0.61532 (8) | 0.0349 (6) | |
P23 | 0.61027 (18) | 0.69796 (15) | 0.59398 (10) | 0.0469 (7) | |
P24 | 0.55463 (15) | 0.6234 (2) | 0.63057 (9) | 0.0476 (8) | |
P25 | 0.55593 (17) | 0.41746 (16) | 0.64460 (9) | 0.0403 (6) | |
P26 | 0.6054 (2) | 0.31309 (18) | 0.63042 (9) | 0.0503 (8) | |
P27 | 0.67299 (16) | 0.40380 (19) | 0.64997 (8) | 0.0458 (8) | |
P28 | 0.59963 (18) | 0.34847 (19) | 0.68763 (8) | 0.0449 (7) | |
P29 | 0.37638 (16) | 0.30901 (16) | 0.62797 (7) | 0.0370 (6) | |
P30 | 0.34818 (16) | 0.19842 (14) | 0.64472 (7) | 0.0348 (6) | |
P31 | 0.41777 (14) | 0.26546 (15) | 0.67978 (7) | 0.0318 (6) | |
P32 | 0.30231 (16) | 0.29179 (18) | 0.67390 (8) | 0.0420 (7) | |
P33 | 0.67525 (19) | 0.5952 (2) | 0.76892 (8) | 0.0479 (8) | |
P34 | 0.70270 (17) | 0.60286 (16) | 0.71069 (8) | 0.0390 (6) | |
P35 | 0.61116 (17) | 0.53550 (15) | 0.72863 (9) | 0.0425 (7) | |
P36 | 0.60238 (19) | 0.65337 (16) | 0.73171 (9) | 0.0463 (7) | |
P37 | 0.47725 (16) | 0.05276 (18) | 0.66664 (9) | 0.0459 (8) | |
P38 | 0.5762 (3) | 0.1052 (2) | 0.64872 (10) | 0.0670 (12) | |
P39 | 0.58171 (19) | 0.01175 (18) | 0.68452 (10) | 0.0515 (8) | |
P40 | 0.54305 (17) | 0.11518 (19) | 0.70545 (9) | 0.0459 (8) | |
P41 | 0.17725 (16) | 0.69682 (19) | 0.33045 (8) | 0.0433 (7) | |
P42 | 0.19013 (15) | 0.67127 (16) | 0.27260 (7) | 0.0351 (6) | |
P43 | 0.28127 (15) | 0.71471 (16) | 0.30392 (8) | 0.0370 (6) | |
P44 | 0.24365 (16) | 0.60333 (15) | 0.31363 (9) | 0.0405 (7) | |
P45 | 0.23498 (18) | 0.3119 (2) | 0.28982 (9) | 0.0503 (8) | |
P46 | 0.35167 (16) | 0.33114 (17) | 0.29708 (8) | 0.0394 (6) | |
P47 | 0.2729 (2) | 0.39608 (17) | 0.32840 (11) | 0.0522 (8) | |
P48 | 0.28827 (17) | 0.28082 (17) | 0.34063 (8) | 0.0423 (7) | |
P49 | 0.73439 (16) | 0.5937 (2) | 0.24397 (12) | 0.0686 (13) | |
P50 | 0.6346 (2) | 0.5433 (2) | 0.26343 (10) | 0.0633 (11) | |
P51 | 0.6303 (2) | 0.63708 (17) | 0.22939 (10) | 0.0520 (9) | |
P52 | 0.66592 (18) | 0.53336 (18) | 0.20687 (9) | 0.0449 (7) | |
P53 | 0.48795 (18) | 0.91310 (18) | 0.35140 (10) | 0.0502 (8) | |
P54 | 0.4431 (2) | 0.80384 (18) | 0.34799 (10) | 0.0564 (10) | |
P55 | 0.37356 (15) | 0.89397 (18) | 0.36430 (9) | 0.0441 (7) | |
P56 | 0.45768 (18) | 0.8555 (2) | 0.40048 (8) | 0.0504 (8) | |
P57 | 0.56286 (18) | 0.68461 (17) | 0.43159 (7) | 0.0402 (7) | |
P58 | 0.64725 (15) | 0.67739 (16) | 0.47300 (9) | 0.0400 (6) | |
P59 | 0.53756 (16) | 0.71207 (15) | 0.48785 (7) | 0.0359 (6) | |
P60 | 0.55829 (16) | 0.59843 (14) | 0.47241 (9) | 0.0388 (6) | |
P61 | 0.54727 (18) | 0.88279 (17) | 0.54563 (8) | 0.0418 (7) | |
P62 | 0.58513 (18) | 0.98767 (17) | 0.56658 (10) | 0.0491 (8) | |
P63 | 0.5638 (3) | 0.8989 (2) | 0.60409 (9) | 0.0644 (11) | |
P64 | 0.47511 (16) | 0.95344 (19) | 0.57725 (10) | 0.0497 (8) | |
P65 | 0.35304 (16) | 0.66060 (17) | 0.45289 (8) | 0.0384 (6) | |
P66 | 0.26476 (16) | 0.61660 (14) | 0.41922 (8) | 0.0360 (6) | |
P67 | 0.30294 (14) | 0.72751 (13) | 0.41028 (7) | 0.0285 (5) | |
P68 | 0.24213 (17) | 0.70123 (17) | 0.45982 (8) | 0.0414 (7) | |
P69 | 0.87911 (18) | 0.64286 (15) | 0.50918 (8) | 0.0393 (7) | |
P70 | 0.88901 (18) | 0.52706 (15) | 0.52178 (9) | 0.0449 (7) | |
P71 | 0.79080 (16) | 0.58636 (17) | 0.53768 (8) | 0.0396 (7) | |
P72 | 0.81281 (16) | 0.56309 (17) | 0.47985 (7) | 0.0377 (6) | |
P73 | 0.20355 (14) | 0.55421 (16) | 0.52206 (7) | 0.0348 (6) | |
P74 | 0.10137 (16) | 0.50859 (16) | 0.54034 (8) | 0.0403 (6) | |
P75 | 0.12261 (17) | 0.62511 (14) | 0.54659 (8) | 0.0380 (6) | |
P76 | 0.18102 (19) | 0.54712 (16) | 0.58075 (7) | 0.0421 (7) | |
P77 | 0.42031 (17) | 0.72513 (19) | 0.56740 (9) | 0.0475 (8) | |
P78 | 0.3058 (2) | 0.7097 (2) | 0.55867 (10) | 0.0571 (9) | |
P79 | 0.3428 (2) | 0.79428 (14) | 0.59559 (9) | 0.0462 (8) | |
P80 | 0.35411 (17) | 0.67986 (14) | 0.61089 (7) | 0.0359 (6) | |
P81 | 0.71373 (17) | 0.25538 (17) | 0.42757 (9) | 0.0454 (8) | |
P82 | 0.60428 (16) | 0.2137 (2) | 0.43680 (9) | 0.0480 (8) | |
P83 | 0.6854 (2) | 0.14932 (16) | 0.40728 (10) | 0.0510 (8) | |
P84 | 0.6387 (2) | 0.2460 (2) | 0.38195 (9) | 0.0552 (9) | |
P85 | 0.40564 (18) | 0.45886 (16) | 0.70959 (9) | 0.0440 (7) | |
P86 | 0.32541 (15) | 0.50330 (17) | 0.67088 (7) | 0.0371 (6) | |
P87 | 0.40751 (16) | 0.57469 (16) | 0.69554 (8) | 0.0385 (6) | |
P88 | 0.32014 (14) | 0.53060 (17) | 0.72929 (7) | 0.0341 (6) | |
P89 | 0.15537 (16) | 0.41418 (16) | 0.72413 (8) | 0.0410 (7) | |
P90 | 0.13613 (15) | 0.46889 (17) | 0.67218 (7) | 0.0376 (6) | |
P91 | 0.04405 (15) | 0.43933 (18) | 0.70695 (9) | 0.0424 (7) | |
P92 | 0.11706 (16) | 0.52622 (16) | 0.72341 (8) | 0.0392 (6) | |
P93 | 0.72680 (19) | 0.8137 (2) | 0.31418 (10) | 0.0599 (10) | |
P94 | 0.6558 (2) | 0.7867 (3) | 0.35852 (9) | 0.0619 (11) | |
P95 | 0.7079 (2) | 0.70090 (18) | 0.32765 (10) | 0.0563 (9) | |
P96 | 0.62154 (16) | 0.76614 (17) | 0.30224 (8) | 0.0393 (6) | |
P97 | 0.46768 (17) | 0.79666 (18) | 0.67273 (8) | 0.0440 (7) | |
P98 | 0.39662 (19) | 0.87282 (18) | 0.70122 (9) | 0.0510 (8) | |
P99 | 0.4077 (3) | 0.76394 (17) | 0.72179 (10) | 0.0674 (12) | |
P100 | 0.49665 (18) | 0.8396 (3) | 0.72633 (10) | 0.0749 (14) | |
P101 | 0.80869 (14) | 0.52075 (17) | 0.37024 (9) | 0.0412 (7) | |
P102 | 0.70251 (14) | 0.54980 (14) | 0.39273 (7) | 0.0309 (5) | |
P103 | 0.74864 (17) | 0.44341 (16) | 0.40403 (8) | 0.0410 (7) | |
P104 | 0.71064 (16) | 0.4678 (2) | 0.34950 (8) | 0.0448 (7) | |
P105 | 0.19830 (15) | 0.36137 (15) | 0.48276 (7) | 0.0339 (6) | |
P106 | 0.29493 (16) | 0.31266 (16) | 0.45840 (10) | 0.0439 (7) | |
P107 | 0.19682 (19) | 0.32738 (19) | 0.42581 (8) | 0.0463 (7) | |
P108 | 0.26139 (16) | 0.42255 (16) | 0.44247 (10) | 0.0463 (8) | |
P109 | 0.5633 (2) | 0.3623 (2) | 0.30646 (9) | 0.0526 (8) | |
P110 | 0.5388 (2) | 0.25963 (18) | 0.28011 (12) | 0.0614 (10) | |
P111 | 0.64707 (16) | 0.30627 (19) | 0.27591 (10) | 0.0495 (8) | |
P112 | 0.5559 (2) | 0.3563 (3) | 0.24778 (10) | 0.0695 (11) | |
P113 | 0.47279 (17) | 0.07781 (16) | 0.40130 (9) | 0.0442 (7) | |
P114 | 0.41221 (19) | 0.1683 (2) | 0.42489 (9) | 0.0533 (8) | |
P115 | 0.4428 (2) | 0.1694 (2) | 0.36703 (9) | 0.0511 (8) | |
P116 | 0.35910 (18) | 0.0933 (2) | 0.38677 (10) | 0.0567 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P2 | 0.0570 (18) | 0.0447 (16) | 0.0260 (13) | 0.0025 (14) | 0.0062 (13) | −0.0105 (12) |
P1 | 0.0283 (13) | 0.0418 (15) | 0.0526 (17) | 0.0109 (12) | 0.0081 (12) | 0.0030 (14) |
P3 | 0.0405 (16) | 0.0242 (13) | 0.0602 (19) | −0.0020 (12) | −0.0016 (14) | 0.0002 (13) |
P4 | 0.0439 (16) | 0.0439 (16) | 0.0361 (15) | 0.0078 (14) | −0.0043 (13) | 0.0167 (13) |
P5 | 0.0228 (13) | 0.069 (2) | 0.0483 (17) | −0.0132 (14) | 0.0092 (12) | −0.0114 (16) |
P6 | 0.0290 (14) | 0.076 (2) | 0.0303 (14) | 0.0062 (14) | −0.0040 (11) | 0.0110 (15) |
P7 | 0.0401 (15) | 0.0447 (16) | 0.0230 (12) | −0.0127 (13) | −0.0060 (11) | −0.0082 (11) |
P8 | 0.0385 (16) | 0.0421 (16) | 0.0507 (17) | −0.0009 (13) | 0.0082 (14) | −0.0171 (14) |
P9 | 0.0270 (14) | 0.079 (2) | 0.0522 (19) | 0.0144 (16) | −0.0140 (13) | −0.0069 (18) |
P10 | 0.071 (2) | 0.0269 (14) | 0.0428 (17) | −0.0053 (14) | −0.0123 (16) | −0.0035 (12) |
P11 | 0.0328 (14) | 0.0339 (14) | 0.0352 (14) | 0.0041 (11) | 0.0006 (11) | −0.0015 (11) |
P12 | 0.0448 (17) | 0.0550 (19) | 0.0370 (15) | 0.0198 (15) | 0.0112 (13) | −0.0054 (14) |
P13 | 0.0487 (18) | 0.073 (2) | 0.0376 (17) | −0.0011 (17) | 0.0134 (14) | −0.0146 (16) |
P14 | 0.214 (6) | 0.0271 (16) | 0.057 (2) | 0.041 (3) | −0.050 (3) | −0.0018 (16) |
P15 | 0.054 (2) | 0.055 (2) | 0.083 (3) | −0.0252 (17) | 0.0385 (19) | −0.0176 (19) |
P16 | 0.0337 (16) | 0.100 (3) | 0.0461 (18) | −0.0036 (18) | −0.0141 (14) | −0.029 (2) |
P17 | 0.0237 (12) | 0.0374 (15) | 0.0523 (17) | 0.0073 (11) | −0.0011 (12) | −0.0084 (13) |
P18 | 0.0419 (15) | 0.0516 (17) | 0.0364 (15) | 0.0070 (14) | 0.0104 (12) | 0.0216 (13) |
P19 | 0.0305 (14) | 0.0321 (14) | 0.071 (2) | −0.0078 (12) | −0.0083 (14) | −0.0094 (14) |
P20 | 0.0509 (17) | 0.0397 (15) | 0.0261 (13) | 0.0005 (13) | 0.0110 (12) | −0.0064 (11) |
P21 | 0.0442 (16) | 0.0421 (16) | 0.0482 (17) | 0.0023 (14) | −0.0158 (14) | −0.0211 (13) |
P22 | 0.0221 (12) | 0.0478 (16) | 0.0348 (14) | 0.0042 (12) | −0.0037 (11) | 0.0012 (12) |
P23 | 0.0490 (17) | 0.0233 (13) | 0.068 (2) | −0.0064 (13) | 0.0022 (16) | 0.0078 (14) |
P24 | 0.0279 (14) | 0.074 (2) | 0.0411 (16) | 0.0115 (15) | 0.0110 (12) | 0.0203 (16) |
P25 | 0.0404 (15) | 0.0332 (14) | 0.0474 (16) | 0.0047 (13) | −0.0014 (13) | 0.0096 (12) |
P26 | 0.063 (2) | 0.0397 (16) | 0.0476 (17) | −0.0051 (15) | 0.0064 (16) | −0.0178 (14) |
P27 | 0.0318 (14) | 0.066 (2) | 0.0391 (15) | −0.0199 (15) | 0.0024 (12) | −0.0011 (14) |
P28 | 0.0460 (17) | 0.0576 (19) | 0.0311 (14) | −0.0033 (15) | 0.0048 (13) | 0.0056 (13) |
P29 | 0.0399 (15) | 0.0385 (15) | 0.0326 (13) | −0.0075 (12) | 0.0004 (12) | 0.0125 (12) |
P30 | 0.0451 (15) | 0.0236 (12) | 0.0358 (14) | −0.0084 (12) | −0.0048 (12) | −0.0066 (10) |
P31 | 0.0292 (13) | 0.0323 (13) | 0.0339 (13) | −0.0050 (11) | −0.0105 (11) | 0.0052 (11) |
P32 | 0.0326 (14) | 0.0548 (18) | 0.0386 (15) | 0.0041 (13) | 0.0060 (12) | −0.0161 (14) |
P33 | 0.0537 (18) | 0.066 (2) | 0.0239 (13) | −0.0016 (17) | −0.0091 (13) | −0.0063 (13) |
P34 | 0.0439 (16) | 0.0373 (15) | 0.0358 (14) | −0.0006 (13) | 0.0090 (12) | 0.0008 (12) |
P35 | 0.0411 (16) | 0.0274 (13) | 0.0590 (19) | −0.0076 (12) | −0.0063 (14) | −0.0081 (13) |
P36 | 0.0555 (19) | 0.0309 (14) | 0.0526 (18) | 0.0084 (14) | 0.0141 (15) | 0.0000 (13) |
P37 | 0.0287 (14) | 0.0512 (18) | 0.0578 (19) | 0.0050 (13) | −0.0115 (13) | −0.0246 (16) |
P38 | 0.087 (3) | 0.073 (3) | 0.0412 (18) | −0.041 (2) | 0.0139 (19) | 0.0029 (17) |
P39 | 0.054 (2) | 0.0418 (17) | 0.0590 (19) | 0.0215 (15) | −0.0238 (16) | −0.0046 (15) |
P40 | 0.0377 (16) | 0.0586 (19) | 0.0415 (16) | 0.0110 (14) | −0.0095 (13) | −0.0263 (15) |
P41 | 0.0398 (15) | 0.0603 (19) | 0.0299 (14) | 0.0109 (14) | 0.0116 (12) | −0.0024 (14) |
P42 | 0.0325 (13) | 0.0487 (16) | 0.0239 (12) | −0.0007 (12) | −0.0059 (11) | −0.0061 (11) |
P43 | 0.0308 (14) | 0.0354 (14) | 0.0450 (16) | −0.0092 (11) | −0.0047 (12) | 0.0020 (12) |
P44 | 0.0347 (15) | 0.0292 (13) | 0.0576 (18) | −0.0043 (12) | −0.0126 (13) | 0.0043 (13) |
P45 | 0.0398 (16) | 0.058 (2) | 0.0534 (19) | 0.0055 (15) | −0.0185 (15) | −0.0068 (16) |
P46 | 0.0319 (14) | 0.0437 (16) | 0.0425 (15) | −0.0039 (12) | 0.0087 (12) | −0.0044 (13) |
P47 | 0.0520 (19) | 0.0349 (16) | 0.070 (2) | 0.0085 (14) | 0.0049 (17) | −0.0076 (16) |
P48 | 0.0473 (17) | 0.0414 (16) | 0.0383 (15) | 0.0038 (13) | 0.0023 (13) | 0.0139 (13) |
P49 | 0.0219 (14) | 0.100 (3) | 0.083 (3) | −0.0048 (17) | 0.0007 (15) | −0.057 (2) |
P50 | 0.092 (3) | 0.0488 (19) | 0.0495 (19) | −0.004 (2) | 0.031 (2) | 0.0086 (16) |
P51 | 0.064 (2) | 0.0312 (15) | 0.061 (2) | 0.0098 (15) | −0.0274 (17) | −0.0067 (14) |
P52 | 0.0455 (17) | 0.0452 (17) | 0.0440 (16) | 0.0027 (14) | −0.0069 (13) | −0.0199 (14) |
P53 | 0.0464 (18) | 0.0373 (16) | 0.067 (2) | −0.0126 (14) | 0.0255 (16) | 0.0094 (15) |
P54 | 0.063 (2) | 0.0341 (16) | 0.073 (2) | −0.0163 (15) | 0.0243 (18) | −0.0330 (16) |
P55 | 0.0262 (14) | 0.0469 (17) | 0.0593 (19) | 0.0066 (13) | −0.0010 (13) | 0.0210 (15) |
P56 | 0.0413 (16) | 0.075 (2) | 0.0353 (16) | −0.0005 (16) | −0.0061 (13) | 0.0056 (15) |
P57 | 0.0549 (18) | 0.0397 (15) | 0.0260 (13) | −0.0008 (14) | −0.0053 (12) | −0.0032 (12) |
P58 | 0.0237 (12) | 0.0345 (14) | 0.0617 (19) | −0.0030 (11) | −0.0085 (12) | 0.0001 (14) |
P59 | 0.0402 (15) | 0.0334 (14) | 0.0340 (14) | 0.0042 (12) | 0.0148 (12) | −0.0075 (11) |
P60 | 0.0374 (15) | 0.0189 (12) | 0.0600 (18) | −0.0043 (11) | −0.0062 (13) | −0.0004 (12) |
P61 | 0.0462 (16) | 0.0426 (16) | 0.0366 (15) | −0.0029 (13) | 0.0051 (13) | −0.0193 (13) |
P62 | 0.0473 (18) | 0.0382 (16) | 0.062 (2) | −0.0221 (14) | 0.0197 (16) | −0.0084 (15) |
P63 | 0.110 (3) | 0.049 (2) | 0.0338 (16) | 0.030 (2) | −0.0162 (19) | 0.0076 (14) |
P64 | 0.0240 (14) | 0.059 (2) | 0.066 (2) | 0.0033 (14) | 0.0039 (14) | −0.0212 (17) |
P65 | 0.0355 (14) | 0.0454 (16) | 0.0342 (14) | 0.0051 (13) | −0.0117 (12) | 0.0045 (12) |
P66 | 0.0428 (15) | 0.0194 (12) | 0.0457 (16) | −0.0109 (11) | 0.0017 (13) | −0.0009 (11) |
P67 | 0.0350 (13) | 0.0243 (12) | 0.0261 (12) | −0.0041 (10) | 0.0037 (10) | 0.0057 (10) |
P68 | 0.0445 (16) | 0.0450 (16) | 0.0346 (14) | 0.0091 (14) | 0.0154 (12) | 0.0031 (13) |
P69 | 0.0537 (18) | 0.0280 (13) | 0.0362 (14) | −0.0135 (13) | 0.0091 (13) | 0.0000 (11) |
P70 | 0.0528 (18) | 0.0267 (13) | 0.0552 (18) | 0.0145 (13) | −0.0166 (15) | 0.0020 (13) |
P71 | 0.0392 (15) | 0.0447 (16) | 0.0348 (14) | −0.0101 (13) | 0.0142 (12) | −0.0117 (13) |
P72 | 0.0404 (15) | 0.0469 (16) | 0.0257 (13) | 0.0014 (13) | −0.0079 (11) | −0.0083 (12) |
P73 | 0.0278 (13) | 0.0416 (15) | 0.0349 (13) | 0.0027 (11) | 0.0094 (11) | −0.0028 (12) |
P74 | 0.0355 (15) | 0.0388 (15) | 0.0465 (16) | −0.0122 (12) | −0.0016 (12) | 0.0023 (13) |
P75 | 0.0463 (16) | 0.0251 (13) | 0.0427 (15) | 0.0165 (12) | 0.0025 (13) | −0.0021 (12) |
P76 | 0.0607 (19) | 0.0367 (15) | 0.0289 (14) | −0.0047 (14) | −0.0086 (13) | 0.0074 (11) |
P77 | 0.0342 (16) | 0.0534 (19) | 0.0548 (19) | 0.0086 (14) | 0.0174 (14) | 0.0133 (16) |
P78 | 0.055 (2) | 0.059 (2) | 0.057 (2) | −0.0144 (17) | −0.0329 (17) | −0.0001 (17) |
P79 | 0.073 (2) | 0.0203 (13) | 0.0451 (16) | 0.0116 (14) | 0.0083 (16) | −0.0041 (12) |
P80 | 0.0525 (17) | 0.0280 (13) | 0.0273 (13) | 0.0071 (12) | 0.0071 (12) | 0.0102 (11) |
P81 | 0.0414 (16) | 0.0415 (16) | 0.0532 (18) | −0.0228 (14) | 0.0127 (14) | −0.0093 (14) |
P82 | 0.0268 (14) | 0.074 (2) | 0.0434 (17) | −0.0053 (14) | 0.0061 (12) | 0.0179 (16) |
P83 | 0.064 (2) | 0.0293 (15) | 0.0598 (19) | −0.0058 (15) | 0.0013 (17) | 0.0019 (14) |
P84 | 0.0503 (19) | 0.078 (2) | 0.0371 (16) | 0.0100 (18) | −0.0018 (14) | 0.0240 (16) |
P85 | 0.0504 (18) | 0.0289 (14) | 0.0526 (18) | 0.0126 (13) | −0.0029 (15) | 0.0065 (13) |
P86 | 0.0352 (14) | 0.0543 (18) | 0.0218 (12) | −0.0056 (13) | −0.0010 (11) | −0.0034 (12) |
P87 | 0.0377 (15) | 0.0357 (14) | 0.0419 (15) | −0.0128 (12) | 0.0015 (12) | 0.0121 (12) |
P88 | 0.0261 (12) | 0.0531 (17) | 0.0230 (12) | −0.0020 (12) | 0.0031 (10) | −0.0046 (11) |
P89 | 0.0357 (14) | 0.0397 (15) | 0.0477 (16) | 0.0025 (12) | −0.0057 (13) | 0.0222 (13) |
P90 | 0.0315 (14) | 0.0556 (18) | 0.0256 (12) | 0.0003 (13) | 0.0063 (11) | 0.0030 (12) |
P91 | 0.0245 (13) | 0.0493 (17) | 0.0533 (18) | −0.0072 (12) | −0.0011 (12) | 0.0134 (14) |
P92 | 0.0378 (15) | 0.0363 (15) | 0.0436 (16) | −0.0010 (12) | 0.0026 (12) | −0.0106 (13) |
P93 | 0.0459 (18) | 0.070 (2) | 0.064 (2) | −0.0318 (18) | −0.0074 (16) | 0.0318 (19) |
P94 | 0.055 (2) | 0.099 (3) | 0.0319 (15) | 0.017 (2) | 0.0010 (14) | −0.0237 (18) |
P95 | 0.077 (2) | 0.0350 (16) | 0.056 (2) | 0.0098 (17) | −0.0244 (19) | −0.0008 (15) |
P96 | 0.0368 (14) | 0.0483 (16) | 0.0327 (14) | −0.0032 (13) | −0.0114 (12) | −0.0062 (12) |
P97 | 0.0461 (17) | 0.0554 (19) | 0.0306 (14) | 0.0091 (15) | 0.0021 (13) | −0.0148 (14) |
P98 | 0.0529 (19) | 0.0474 (18) | 0.0527 (19) | 0.0251 (16) | 0.0122 (15) | 0.0133 (15) |
P99 | 0.125 (4) | 0.0289 (15) | 0.0484 (19) | −0.008 (2) | 0.026 (2) | 0.0031 (14) |
P100 | 0.0280 (15) | 0.143 (4) | 0.054 (2) | −0.003 (2) | −0.0086 (15) | −0.045 (2) |
P101 | 0.0244 (13) | 0.0416 (16) | 0.0577 (18) | −0.0064 (12) | 0.0124 (12) | −0.0069 (14) |
P102 | 0.0264 (12) | 0.0265 (12) | 0.0398 (14) | 0.0100 (10) | −0.0004 (11) | −0.0034 (11) |
P103 | 0.0529 (18) | 0.0323 (14) | 0.0377 (15) | 0.0077 (13) | 0.0012 (13) | 0.0084 (12) |
P104 | 0.0347 (15) | 0.069 (2) | 0.0312 (14) | −0.0014 (14) | −0.0107 (12) | −0.0220 (14) |
P105 | 0.0362 (14) | 0.0333 (13) | 0.0322 (13) | −0.0006 (11) | 0.0120 (11) | −0.0044 (11) |
P106 | 0.0288 (13) | 0.0300 (14) | 0.073 (2) | 0.0119 (11) | 0.0086 (14) | 0.0179 (14) |
P107 | 0.0551 (19) | 0.0563 (19) | 0.0275 (14) | 0.0014 (16) | −0.0022 (13) | −0.0022 (13) |
P108 | 0.0387 (16) | 0.0288 (14) | 0.072 (2) | 0.0075 (12) | 0.0181 (15) | 0.0183 (14) |
P109 | 0.057 (2) | 0.056 (2) | 0.0452 (17) | 0.0040 (16) | 0.0103 (15) | −0.0237 (15) |
P110 | 0.051 (2) | 0.0323 (16) | 0.101 (3) | −0.0137 (15) | 0.013 (2) | −0.0116 (18) |
P111 | 0.0281 (14) | 0.0558 (19) | 0.065 (2) | 0.0011 (14) | 0.0099 (14) | −0.0013 (16) |
P112 | 0.081 (3) | 0.087 (3) | 0.0410 (18) | 0.003 (2) | −0.0203 (18) | 0.0202 (19) |
P113 | 0.0421 (16) | 0.0331 (15) | 0.0574 (19) | 0.0127 (13) | −0.0093 (14) | 0.0021 (13) |
P114 | 0.0505 (19) | 0.058 (2) | 0.0518 (18) | 0.0030 (16) | 0.0153 (16) | −0.0215 (16) |
P115 | 0.062 (2) | 0.055 (2) | 0.0368 (16) | 0.0044 (17) | −0.0012 (15) | 0.0177 (14) |
P116 | 0.0361 (16) | 0.079 (3) | 0.0550 (19) | −0.0065 (17) | −0.0068 (15) | −0.0075 (18) |
P2—P1 | 2.163 (4) | P58—P59 | 2.173 (4) |
P2—P4 | 2.165 (4) | P58—P60 | 2.177 (4) |
P2—P3 | 2.181 (4) | P59—P60 | 2.187 (4) |
P1—P3 | 2.164 (4) | P61—P63 | 2.170 (4) |
P1—P4 | 2.167 (4) | P61—P64 | 2.177 (4) |
P3—P4 | 2.176 (4) | P61—P62 | 2.178 (4) |
P5—P7 | 2.171 (4) | P62—P64 | 2.144 (4) |
P5—P8 | 2.180 (4) | P62—P63 | 2.158 (5) |
P5—P6 | 2.182 (4) | P63—P64 | 2.141 (5) |
P6—P8 | 2.177 (5) | P65—P68 | 2.176 (4) |
P6—P7 | 2.177 (4) | P65—P67 | 2.178 (4) |
P7—P8 | 2.184 (4) | P65—P66 | 2.182 (4) |
P9—P12 | 2.158 (4) | P66—P67 | 2.171 (3) |
P9—P11 | 2.176 (4) | P66—P68 | 2.180 (4) |
P9—P10 | 2.179 (5) | P67—P68 | 2.173 (4) |
P10—P12 | 2.177 (4) | P69—P70 | 2.176 (4) |
P10—P11 | 2.181 (4) | P69—P72 | 2.178 (4) |
P11—P12 | 2.168 (4) | P69—P71 | 2.181 (4) |
P13—P15 | 2.137 (4) | P70—P72 | 2.170 (4) |
P13—P16 | 2.174 (4) | P70—P71 | 2.177 (4) |
P13—P14 | 2.183 (6) | P71—P72 | 2.185 (4) |
P14—P15 | 2.121 (6) | P73—P74 | 2.153 (4) |
P14—P16 | 2.148 (5) | P73—P75 | 2.162 (4) |
P15—P16 | 2.111 (5) | P73—P76 | 2.180 (4) |
P17—P19 | 2.167 (4) | P74—P75 | 2.179 (4) |
P17—P20 | 2.174 (4) | P74—P76 | 2.188 (4) |
P17—P18 | 2.178 (4) | P75—P76 | 2.174 (4) |
P18—P20 | 2.167 (4) | P77—P78 | 2.137 (5) |
P18—P19 | 2.178 (4) | P77—P80 | 2.159 (4) |
P19—P20 | 2.162 (4) | P77—P79 | 2.161 (4) |
P21—P22 | 2.162 (4) | P78—P79 | 2.158 (5) |
P21—P24 | 2.166 (4) | P78—P80 | 2.166 (4) |
P21—P23 | 2.171 (4) | P79—P80 | 2.176 (4) |
P22—P24 | 2.168 (4) | P81—P83 | 2.140 (4) |
P22—P23 | 2.174 (4) | P81—P84 | 2.162 (5) |
P23—P24 | 2.162 (4) | P81—P82 | 2.169 (4) |
P25—P28 | 2.165 (4) | P82—P84 | 2.176 (4) |
P25—P27 | 2.165 (4) | P82—P83 | 2.178 (5) |
P25—P26 | 2.175 (4) | P83—P84 | 2.170 (5) |
P26—P28 | 2.184 (4) | P85—P88 | 2.165 (4) |
P26—P27 | 2.189 (4) | P85—P87 | 2.181 (4) |
P27—P28 | 2.170 (4) | P85—P86 | 2.191 (4) |
P29—P30 | 2.176 (4) | P86—P87 | 2.184 (4) |
P29—P32 | 2.176 (4) | P86—P88 | 2.187 (4) |
P29—P31 | 2.183 (4) | P87—P88 | 2.172 (4) |
P30—P32 | 2.180 (4) | P89—P92 | 2.167 (4) |
P30—P31 | 2.181 (4) | P89—P90 | 2.169 (4) |
P31—P32 | 2.177 (4) | P89—P91 | 2.180 (4) |
P33—P35 | 2.173 (4) | P90—P92 | 2.168 (4) |
P33—P36 | 2.179 (5) | P90—P91 | 2.176 (4) |
P33—P34 | 2.183 (4) | P91—P92 | 2.161 (4) |
P34—P35 | 2.180 (4) | P93—P94 | 2.130 (5) |
P34—P36 | 2.193 (4) | P93—P95 | 2.150 (5) |
P35—P36 | 2.166 (4) | P93—P96 | 2.158 (4) |
P37—P38 | 2.150 (5) | P94—P95 | 2.153 (5) |
P37—P39 | 2.154 (4) | P94—P96 | 2.176 (4) |
P37—P40 | 2.180 (4) | P95—P96 | 2.185 (4) |
P38—P39 | 2.152 (5) | P97—P100 | 2.169 (4) |
P38—P40 | 2.160 (5) | P97—P98 | 2.170 (4) |
P39—P40 | 2.159 (4) | P97—P99 | 2.180 (5) |
P41—P43 | 2.159 (4) | P98—P100 | 2.134 (5) |
P41—P42 | 2.171 (4) | P98—P99 | 2.138 (4) |
P41—P44 | 2.186 (4) | P99—P100 | 2.143 (6) |
P42—P43 | 2.171 (4) | P101—P103 | 2.173 (4) |
P42—P44 | 2.176 (4) | P101—P104 | 2.174 (4) |
P43—P44 | 2.180 (4) | P101—P102 | 2.175 (4) |
P45—P48 | 2.167 (4) | P102—P103 | 2.161 (4) |
P45—P46 | 2.180 (4) | P102—P104 | 2.180 (4) |
P45—P47 | 2.198 (5) | P103—P104 | 2.150 (4) |
P46—P48 | 2.170 (4) | P105—P107 | 2.165 (4) |
P46—P47 | 2.188 (4) | P105—P106 | 2.170 (4) |
P47—P48 | 2.174 (4) | P105—P108 | 2.177 (4) |
P49—P51 | 2.131 (5) | P106—P107 | 2.169 (4) |
P49—P52 | 2.148 (4) | P106—P108 | 2.181 (4) |
P49—P50 | 2.165 (5) | P107—P108 | 2.190 (5) |
P50—P51 | 2.119 (5) | P109—P112 | 2.143 (5) |
P50—P52 | 2.145 (5) | P109—P111 | 2.153 (4) |
P51—P52 | 2.168 (4) | P109—P110 | 2.157 (5) |
P53—P56 | 2.148 (5) | P110—P112 | 2.148 (5) |
P53—P54 | 2.165 (4) | P110—P111 | 2.163 (5) |
P53—P55 | 2.174 (4) | P111—P112 | 2.161 (5) |
P54—P56 | 2.148 (5) | P113—P115 | 2.159 (4) |
P54—P55 | 2.166 (5) | P113—P116 | 2.165 (4) |
P55—P56 | 2.145 (4) | P113—P114 | 2.170 (4) |
P57—P59 | 2.159 (4) | P114—P115 | 2.180 (5) |
P57—P58 | 2.162 (4) | P114—P116 | 2.181 (5) |
P57—P60 | 2.169 (4) | P115—P116 | 2.191 (5) |
P1—P2—P4 | 60.09 (13) | P57—P59—P58 | 59.87 (13) |
P1—P2—P3 | 59.78 (14) | P57—P59—P60 | 59.85 (13) |
P4—P2—P3 | 60.09 (14) | P58—P59—P60 | 59.89 (12) |
P2—P1—P3 | 60.53 (14) | P57—P60—P58 | 59.68 (14) |
P2—P1—P4 | 60.01 (13) | P57—P60—P59 | 59.43 (12) |
P3—P1—P4 | 60.32 (13) | P58—P60—P59 | 59.74 (13) |
P1—P3—P4 | 59.90 (13) | P63—P61—P64 | 59.01 (16) |
P1—P3—P2 | 59.69 (14) | P63—P61—P62 | 59.52 (16) |
P4—P3—P2 | 59.60 (13) | P64—P61—P62 | 58.98 (14) |
P2—P4—P1 | 59.89 (13) | P64—P62—P63 | 59.69 (18) |
P2—P4—P3 | 60.31 (14) | P64—P62—P61 | 60.48 (14) |
P1—P4—P3 | 59.79 (13) | P63—P62—P61 | 60.04 (16) |
P7—P5—P8 | 60.26 (13) | P64—P63—P62 | 59.83 (16) |
P7—P5—P6 | 60.00 (13) | P64—P63—P61 | 60.66 (15) |
P8—P5—P6 | 59.87 (14) | P62—P63—P61 | 60.43 (15) |
P8—P6—P7 | 60.23 (14) | P63—P64—P62 | 60.49 (18) |
P8—P6—P5 | 60.02 (15) | P63—P64—P61 | 60.32 (15) |
P7—P6—P5 | 59.75 (14) | P62—P64—P61 | 60.54 (14) |
P5—P7—P6 | 60.24 (14) | P68—P65—P67 | 59.87 (12) |
P5—P7—P8 | 60.07 (14) | P68—P65—P66 | 60.05 (13) |
P6—P7—P8 | 59.89 (15) | P67—P65—P66 | 59.72 (12) |
P6—P8—P5 | 60.11 (15) | P67—P66—P68 | 59.92 (12) |
P6—P8—P7 | 59.89 (14) | P67—P66—P65 | 60.06 (12) |
P5—P8—P7 | 59.67 (14) | P68—P66—P65 | 59.85 (14) |
P12—P9—P11 | 60.04 (13) | P66—P67—P68 | 60.26 (13) |
P12—P9—P10 | 60.26 (16) | P66—P67—P65 | 60.21 (13) |
P11—P9—P10 | 60.12 (13) | P68—P67—P65 | 60.01 (13) |
P12—P10—P9 | 59.39 (15) | P67—P68—P65 | 60.12 (12) |
P12—P10—P11 | 59.67 (14) | P67—P68—P66 | 59.82 (12) |
P9—P10—P11 | 59.86 (14) | P65—P68—P66 | 60.10 (13) |
P12—P11—P9 | 59.57 (14) | P70—P69—P72 | 59.80 (13) |
P12—P11—P10 | 60.07 (14) | P70—P69—P71 | 59.98 (14) |
P9—P11—P10 | 60.02 (16) | P72—P69—P71 | 60.18 (13) |
P9—P12—P11 | 60.39 (14) | P72—P70—P69 | 60.14 (13) |
P9—P12—P10 | 60.35 (15) | P72—P70—P71 | 60.35 (13) |
P11—P12—P10 | 60.26 (14) | P69—P70—P71 | 60.13 (13) |
P15—P13—P16 | 58.63 (16) | P70—P71—P69 | 59.89 (14) |
P15—P13—P14 | 58.8 (2) | P70—P71—P72 | 59.66 (13) |
P16—P13—P14 | 59.08 (17) | P69—P71—P72 | 59.84 (13) |
P15—P14—P16 | 59.26 (19) | P70—P72—P69 | 60.05 (13) |
P15—P14—P13 | 59.52 (16) | P70—P72—P71 | 59.99 (14) |
P16—P14—P13 | 60.27 (18) | P69—P72—P71 | 59.98 (12) |
P16—P15—P14 | 61.0 (2) | P74—P73—P75 | 60.67 (13) |
P16—P15—P13 | 61.58 (16) | P74—P73—P76 | 60.65 (14) |
P14—P15—P13 | 61.7 (2) | P75—P73—P76 | 60.09 (13) |
P15—P16—P14 | 59.7 (2) | P73—P74—P75 | 59.87 (13) |
P15—P16—P13 | 59.79 (16) | P73—P74—P76 | 60.29 (13) |
P14—P16—P13 | 60.65 (17) | P75—P74—P76 | 59.71 (13) |
P19—P17—P20 | 59.74 (13) | P73—P75—P76 | 60.37 (13) |
P19—P17—P18 | 60.16 (14) | P73—P75—P74 | 59.46 (13) |
P20—P17—P18 | 59.72 (13) | P76—P75—P74 | 60.35 (13) |
P20—P18—P17 | 60.05 (13) | P75—P76—P73 | 59.54 (12) |
P20—P18—P19 | 59.69 (14) | P75—P76—P74 | 59.95 (14) |
P17—P18—P19 | 59.68 (13) | P73—P76—P74 | 59.06 (13) |
P20—P19—P17 | 60.28 (13) | P78—P77—P80 | 60.56 (15) |
P20—P19—P18 | 59.89 (13) | P78—P77—P79 | 60.28 (16) |
P17—P19—P18 | 60.15 (14) | P80—P77—P79 | 60.51 (13) |
P19—P20—P18 | 60.41 (15) | P77—P78—P79 | 60.40 (16) |
P19—P20—P17 | 59.98 (13) | P77—P78—P80 | 60.21 (14) |
P18—P20—P17 | 60.23 (13) | P79—P78—P80 | 60.43 (14) |
P22—P21—P24 | 60.11 (13) | P78—P79—P77 | 59.32 (16) |
P22—P21—P23 | 60.22 (14) | P78—P79—P80 | 59.97 (14) |
P24—P21—P23 | 59.79 (15) | P77—P79—P80 | 59.70 (13) |
P21—P22—P24 | 60.04 (14) | P77—P80—P78 | 59.23 (15) |
P21—P22—P23 | 60.10 (14) | P77—P80—P79 | 59.79 (14) |
P24—P22—P23 | 59.73 (14) | P78—P80—P79 | 59.60 (15) |
P24—P23—P21 | 59.99 (15) | P83—P81—P84 | 60.59 (16) |
P24—P23—P22 | 60.00 (13) | P83—P81—P82 | 60.71 (16) |
P21—P23—P22 | 59.68 (13) | P84—P81—P82 | 60.32 (15) |
P23—P24—P21 | 60.21 (14) | P81—P82—P84 | 59.67 (15) |
P23—P24—P22 | 60.27 (14) | P81—P82—P83 | 58.98 (14) |
P21—P24—P22 | 59.84 (13) | P84—P82—P83 | 59.79 (15) |
P28—P25—P27 | 60.13 (14) | P81—P83—P84 | 60.20 (16) |
P28—P25—P26 | 60.41 (15) | P81—P83—P82 | 60.31 (15) |
P27—P25—P26 | 60.57 (15) | P84—P83—P82 | 60.06 (15) |
P25—P26—P28 | 59.56 (14) | P81—P84—P83 | 59.22 (15) |
P25—P26—P27 | 59.49 (14) | P81—P84—P82 | 60.02 (14) |
P28—P26—P27 | 59.49 (14) | P83—P84—P82 | 60.15 (15) |
P25—P27—P28 | 59.93 (14) | P88—P85—P87 | 59.97 (13) |
P25—P27—P26 | 59.94 (15) | P88—P85—P86 | 60.26 (12) |
P28—P27—P26 | 60.13 (14) | P87—P85—P86 | 59.94 (13) |
P25—P28—P27 | 59.94 (14) | P87—P86—P88 | 59.59 (12) |
P25—P28—P26 | 60.03 (15) | P87—P86—P85 | 59.79 (13) |
P27—P28—P26 | 60.38 (14) | P88—P86—P85 | 59.26 (13) |
P30—P29—P32 | 60.13 (13) | P88—P87—P85 | 59.65 (14) |
P30—P29—P31 | 60.04 (12) | P88—P87—P86 | 60.27 (12) |
P32—P29—P31 | 59.94 (13) | P85—P87—P86 | 60.28 (14) |
P29—P30—P32 | 59.93 (13) | P85—P88—P87 | 60.38 (13) |
P29—P30—P31 | 60.16 (12) | P85—P88—P86 | 60.48 (13) |
P32—P30—P31 | 59.91 (12) | P87—P88—P86 | 60.15 (13) |
P32—P31—P30 | 60.02 (13) | P92—P89—P90 | 60.01 (13) |
P32—P31—P29 | 59.85 (13) | P92—P89—P91 | 59.63 (13) |
P30—P31—P29 | 59.80 (12) | P90—P89—P91 | 60.04 (13) |
P29—P32—P31 | 60.21 (13) | P92—P90—P89 | 59.95 (14) |
P29—P32—P30 | 59.93 (13) | P92—P90—P91 | 59.67 (14) |
P31—P32—P30 | 60.06 (13) | P89—P90—P91 | 60.23 (13) |
P35—P33—P36 | 59.69 (14) | P92—P91—P90 | 59.99 (13) |
P35—P33—P34 | 60.05 (14) | P92—P91—P89 | 59.88 (14) |
P36—P33—P34 | 60.37 (14) | P90—P91—P89 | 59.73 (13) |
P35—P34—P33 | 59.73 (14) | P91—P92—P89 | 60.49 (14) |
P35—P34—P36 | 59.37 (13) | P91—P92—P90 | 60.34 (14) |
P33—P34—P36 | 59.71 (15) | P89—P92—P90 | 60.04 (14) |
P36—P35—P33 | 60.29 (15) | P94—P93—P95 | 60.40 (18) |
P36—P35—P34 | 60.62 (14) | P94—P93—P96 | 60.97 (15) |
P33—P35—P34 | 60.22 (14) | P95—P93—P96 | 60.96 (15) |
P35—P36—P33 | 60.02 (15) | P93—P94—P95 | 60.26 (18) |
P35—P36—P34 | 60.01 (14) | P93—P94—P96 | 60.15 (15) |
P33—P36—P34 | 59.92 (14) | P95—P94—P96 | 60.64 (15) |
P38—P37—P39 | 59.99 (18) | P93—P95—P94 | 59.33 (18) |
P38—P37—P40 | 59.86 (16) | P93—P95—P96 | 59.69 (15) |
P39—P37—P40 | 59.77 (14) | P94—P95—P96 | 60.19 (15) |
P37—P38—P39 | 60.09 (16) | P93—P96—P94 | 58.88 (16) |
P37—P38—P40 | 60.74 (16) | P93—P96—P95 | 59.34 (16) |
P39—P38—P40 | 60.09 (17) | P94—P96—P95 | 59.18 (15) |
P38—P39—P37 | 59.92 (18) | P100—P97—P98 | 58.93 (16) |
P38—P39—P40 | 60.14 (17) | P100—P97—P99 | 59.03 (18) |
P37—P39—P40 | 60.70 (14) | P98—P97—P99 | 58.88 (15) |
P39—P40—P38 | 59.76 (17) | P100—P98—P99 | 60.2 (2) |
P39—P40—P37 | 59.53 (14) | P100—P98—P97 | 60.52 (15) |
P38—P40—P37 | 59.40 (16) | P99—P98—P97 | 60.80 (16) |
P43—P41—P42 | 60.19 (13) | P98—P99—P100 | 59.82 (19) |
P43—P41—P44 | 60.22 (13) | P98—P99—P97 | 60.32 (15) |
P42—P41—P44 | 59.94 (13) | P100—P99—P97 | 60.23 (17) |
P41—P42—P43 | 59.65 (13) | P98—P100—P99 | 59.98 (17) |
P41—P42—P44 | 60.38 (14) | P98—P100—P97 | 60.55 (15) |
P43—P42—P44 | 60.19 (12) | P99—P100—P97 | 60.74 (16) |
P41—P43—P42 | 60.16 (13) | P103—P101—P104 | 59.28 (14) |
P41—P43—P44 | 60.49 (14) | P103—P101—P102 | 59.62 (13) |
P42—P43—P44 | 60.02 (13) | P104—P101—P102 | 60.16 (13) |
P42—P44—P43 | 59.79 (13) | P103—P102—P101 | 60.17 (13) |
P42—P44—P41 | 59.68 (13) | P103—P102—P104 | 59.38 (14) |
P43—P44—P41 | 59.29 (14) | P101—P102—P104 | 59.92 (13) |
P48—P45—P46 | 59.88 (14) | P104—P103—P102 | 60.74 (14) |
P48—P45—P47 | 59.74 (15) | P104—P103—P101 | 60.38 (14) |
P46—P45—P47 | 59.97 (14) | P102—P103—P101 | 60.22 (13) |
P48—P46—P45 | 59.75 (14) | P103—P104—P101 | 60.34 (14) |
P48—P46—P47 | 59.85 (14) | P103—P104—P102 | 59.88 (13) |
P45—P46—P47 | 60.41 (15) | P101—P104—P102 | 59.92 (13) |
P48—P47—P46 | 59.65 (14) | P107—P105—P106 | 60.05 (14) |
P48—P47—P45 | 59.42 (15) | P107—P105—P108 | 60.59 (15) |
P46—P47—P45 | 59.62 (14) | P106—P105—P108 | 60.24 (12) |
P45—P48—P46 | 60.37 (14) | P107—P106—P105 | 59.87 (13) |
P45—P48—P47 | 60.84 (16) | P107—P106—P108 | 60.46 (15) |
P46—P48—P47 | 60.50 (15) | P105—P106—P108 | 60.04 (13) |
P51—P49—P52 | 60.88 (15) | P105—P107—P106 | 60.08 (14) |
P51—P49—P50 | 59.09 (17) | P105—P107—P108 | 59.97 (14) |
P52—P49—P50 | 59.65 (16) | P106—P107—P108 | 60.04 (14) |
P51—P50—P52 | 61.11 (16) | P105—P108—P106 | 59.72 (13) |
P51—P50—P49 | 59.64 (18) | P105—P108—P107 | 59.44 (13) |
P52—P50—P49 | 59.78 (16) | P106—P108—P107 | 59.49 (14) |
P50—P51—P49 | 61.3 (2) | P112—P109—P111 | 60.39 (17) |
P50—P51—P52 | 60.05 (16) | P112—P109—P110 | 59.94 (19) |
P49—P51—P52 | 59.96 (15) | P111—P109—P110 | 60.26 (16) |
P50—P52—P49 | 60.57 (18) | P112—P110—P109 | 59.72 (17) |
P50—P52—P51 | 58.84 (16) | P112—P110—P111 | 60.16 (17) |
P49—P52—P51 | 59.16 (16) | P109—P110—P111 | 59.79 (15) |
P56—P53—P54 | 59.76 (16) | P109—P111—P112 | 59.58 (17) |
P56—P53—P55 | 59.51 (14) | P109—P111—P110 | 59.96 (16) |
P54—P53—P55 | 59.90 (15) | P112—P111—P110 | 59.58 (18) |
P56—P54—P53 | 59.72 (15) | P109—P112—P110 | 60.34 (18) |
P56—P54—P55 | 59.62 (14) | P109—P112—P111 | 60.02 (16) |
P53—P54—P55 | 60.25 (14) | P110—P112—P111 | 60.27 (17) |
P56—P55—P54 | 59.78 (16) | P115—P113—P116 | 60.89 (16) |
P56—P55—P53 | 59.64 (15) | P115—P113—P114 | 60.46 (16) |
P54—P55—P53 | 59.85 (15) | P116—P113—P114 | 60.39 (16) |
P55—P56—P53 | 60.85 (15) | P113—P114—P115 | 59.52 (15) |
P55—P56—P54 | 60.60 (17) | P113—P114—P116 | 59.69 (15) |
P53—P56—P54 | 60.52 (16) | P115—P114—P116 | 60.33 (16) |
P59—P57—P58 | 60.39 (14) | P113—P115—P114 | 60.01 (15) |
P59—P57—P60 | 60.71 (13) | P113—P115—P116 | 59.68 (15) |
P58—P57—P60 | 60.34 (13) | P114—P115—P116 | 59.85 (16) |
P57—P58—P59 | 59.74 (13) | P113—P116—P114 | 59.92 (15) |
P57—P58—P60 | 59.97 (14) | P113—P116—P115 | 59.43 (15) |
P59—P58—P60 | 60.37 (13) | P114—P116—P115 | 59.82 (16) |
Footnotes
1The cell parameters are nearly identical to the structure refined in P2/n with P21 in the by Zhang et al. (2020) and hence to Thurn & Krebs (1969). The data quality of Cicirello et al. (2023) is very poor. In the Checkcif report there are several A alerts, e.g. no anisotropic max residual density of 4.65 e Å−3, wR2 = 0.49. It is possible to refine the coordinates of the structure deposited by Zhang et al. (2020) against the data deposited by Cicirello et al. (2023). Of course, half of the data are then missing and 5 of the 21 P atoms adopt negative Uiso values. However, wR2 reaches 0.29 and the highest residual density is 2.09 e Å−3. Therefore, there is reasonable doubt whether this is really a new structure and whether P11 is indeed the content of the rather than P21 as in the original structure by Thurn & Krebs (1969).
Funding information
DS and JB thank GRK BENCh, which is funded by the Deutsche Forschungsgemeinschaft, German Research Foundation (grant No. 389479699/GRK2455).
References
Akahama, Y., Kobayashi, M. & Kawamura, H. (1999). Phys. Rev. B, 59, 8520–8525. CrossRef CAS Google Scholar
Aykol, M., Doak, J. W. & Wolverton, C. (2017). Phys. Rev. B, 95, 214115. CrossRef Google Scholar
Bachhuber, F., von Appen, J., Dronskowski, R., Schmidt, P., Nilges, T., Pfitzner, A. & Weihrich, R. (2014). Angew. Chem. Int. Ed. 53, 11629–11633. CrossRef CAS Google Scholar
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brown, A. & Rundqvist, S. (1965). Acta Cryst. 19, 684–685. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Bruker (2016). RLATT. Bruker Nano Inc. Madison, WI, USA. Google Scholar
Bruker (2021a). APEX4, version 2021.10-0. Bruker Nano Inc. Madison, WI, USA. Google Scholar
Bruker (2021b). SAINT, version 8.40A. Bruker Nano Inc. Madison, WI, USA: WI, USA. Google Scholar
Cicirello, G., Wang, M., Sam, Q. P., Hart, J. L., Williams, N. L., Yin, H., Cha, J. J. & Wang, J. (2023). J. Am. Chem. Soc. 145, 8218–8230. CrossRef CAS PubMed Google Scholar
Corbridge, D. E. C. & Lowe, E. J. (1952). Nature, 170, 629. CrossRef Google Scholar
Donath, M., Schwedtmann, K., Schneider, T., Hennersdorf, F., Bauzá, A., Frontera, A. & Weigand, J. J. (2022). Nat. Chem. 14, 384–391. CrossRef CAS PubMed Google Scholar
Grimme, S. (2006). J. Comput. Chem. 27, 1787–1799. Web of Science CrossRef PubMed CAS Google Scholar
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104. Web of Science CrossRef PubMed Google Scholar
Grimme, S., Ehrlich, S. & Goerigk, L. (2011). J. Comput. Chem. 32, 1456–1465. Web of Science CrossRef CAS PubMed Google Scholar
Grützmacher, H. (2022). Nat. Chem. 14, 362–364. PubMed Google Scholar
Herbst-Irmer, R. (2016). Z. Kristallogr. 231, 573–581. CAS Google Scholar
Hultgren, R., Gingrich, N. S. & Warren, B. E. (1935). J. Chem. Phys. 3, 351–355. CrossRef ICSD CAS Google Scholar
V. Iaroshenko (2019). Editor. Organophosphorus Chemistry: from Molecules to Applications: Wiley-VCH. Google Scholar
Jamieson, J. C. (1963). Science, 139, 1291–1292. CrossRef PubMed CAS Google Scholar
Kikegawa, T. & Iwasaki, H. (1983). Acta Cryst. B39, 158–164. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Kikegawa, T., Iwasaki, H., Fujimura, T., Endo, S., Akahama, Y., Akai, T., Shimomura, O., Yagi, T., Akimoto, S. & Shirotani, I. (1987). J. Appl. Cryst. 20, 406–410. CrossRef CAS IUCr Journals Google Scholar
Kottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615–619. CrossRef Web of Science IUCr Journals Google Scholar
Kresse, G. & Furthmüller, J. (1996). Phys. Rev. B, 54, 11169–11186. CrossRef CAS Web of Science Google Scholar
Kresse, G. & Joubert, D. (1999). Phys. Rev. B, 59, 1758–1775. Web of Science CrossRef CAS Google Scholar
Marqués, M., Ackland, G. J., Lundegaard, L. F., Falconi, S., Hejny, C., McMahon, M. I., Contreras-García, J. & Hanfland, M. (2008). Phys. Rev. B, 78, 054120. Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Natta, G. & Passerini, L. (1930). Nature, 125, 707–708. CrossRef CAS Google Scholar
Oberteuffer, J. A. & Ibers, J. A. (1970). Acta Cryst. B26, 1499–1504. CrossRef IUCr Journals Google Scholar
Okudera, H., Dinnebier, R. E. & Simon, A. (2005). Z. Kristallogr. 220, 259–264. CrossRef CAS Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868. CrossRef PubMed CAS Web of Science Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. (1997). Phys. Rev. Lett. 78, 1396. CrossRef Web of Science Google Scholar
Ruck, M., Hoppe, D., Wahl, B., Simon, P., Wang, Y. & Seifert, G. (2005). Angew. Chem. Int. Ed. 44, 7616–7619. CrossRef CAS Google Scholar
Scelta, D., Baldassarre, A., Serrano–Ruiz, M., Dziubek, K., Cairns, A. B., Peruzzini, M., Bini, R. & Ceppatelli, M. (2017). Angew. Chem. Int. Ed. 56, 14135–14140. CrossRef CAS Google Scholar
Schnering, H. G. von (1981). Angew. Chem. Int. Ed. Engl. 20, 33–51. Google Scholar
Schulz, T., Meindl, K., Leusser, D., Stern, D., Graf, J., Michaelsen, C., Ruf, M., Sheldrick, G. M. & Stalke, D. (2009). J. Appl. Cryst. 42, 885–891. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. (2019). Acta Cryst. D75, 1040–1050. Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015c). XPREP. University of Göttingen. Google Scholar
Simon, A., Borrmann, H. & Craubner, H. (1987). Phosphorous Sulfur Relat. Elem. 30, 507–510. CrossRef CAS Google Scholar
Simon, A., Borrmann, H. & Horakh, J. (1997). Chem. Ber. 130, 1235–1240. CrossRef CAS Google Scholar
Sugimoto, T., Akahama, Y., Fujihisa, H., Ozawa, Y., Fukui, H., Hirao, N. & Ohishi, Y. (2012). Phys. Rev. B, 86, 024109. CrossRef Google Scholar
Thurn, H. & Krebs, H. (1969). Acta Cryst. B25, 125–135. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Zhang, L., Huang, H., Zhang, B., Gu, M., Zhao, D., Zhao, X., Li, L., Zhou, J., Wu, K., Cheng, Y. & Zhang, J. (2020). Angew. Chem. Int. Ed. 59, 1074–1080. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.