research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
ISSN: 2052-2525

Conformation–aggregation interplay in the simplest aliphatic ethers probed under high pressure

crossmark logo

aFaculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, Poznan 61-614, Poland, bFaculty of Chemistry, University of Opole, Oleska 48, Opole 45-052, Poland, and cInstitut für Mineralogie und Kristallographie, Universität Wien, Josef-Holaubek-Platz 2, Wien A-1090, Austria
*Correspondence e-mail: marcinp@amu.edu.pl

Edited by L. R. MacGillivray, University of Iowa, USA (Received 21 August 2023; accepted 16 November 2023)

The structures of the simplest symmetric primary ethers [(CnH2n+1)2O, n = 1–3] determined under high pressure revealed their conformational preferences and intermolecular interactions. In three new polymorphs of di­ethyl ether (C2H5)2O, high pressure promotes intermolecular CH⋯O contacts and enforces a conversion from the transtrans conformer present in the α, β and γ phases to the transgauche conformer, which is higher in energy by 6.4 kJ mol−1, in the δ phase. Two new polymorphs of di­methyl ether (CH3)2O display analogous transformations of the CH⋯O bonds. The crystal structure of di-n-propyl ether (C3H7)2O, determined for the first time, is remarkably stable over the whole pressure range investigated from 1.70 up to 5.30 GPa.

1. Introduction

Pressure can drastically affect the association of molecules, i.e. one of the most essential properties of solvents (Boldyreva, 2008[Boldyreva, E. V. (2008). Acta Cryst. A64, 218-231.]; Fabbiani & Pulham, 2006[Fabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932-942.]; Resnati et al., 2015[Resnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675-690.]). Ethoxy­ethane [di­ethyl ether, (C2H5)2O, hereafter DEE] is a solvent commonly used in chemical practice and has also previously been applied as a general anaesthetic. Raman spectroscopy (Taga et al., 2006[Taga, K., Kawasaki, K., Yamamoto, Y., Yoshida, T., Ohno, K. & Matsuura, H. (2006). J. Mol. Struct. 788, 159-175.]) was used to demonstrate that, in the gaseous and liquid states, the transtrans (TT) conformer prevails over the transgauche conformers (TG+, TG), which are less stable by ca 6.4 kJ mol−1. For over a century, DEE has been known to freeze as stable and metastable polymorphs, melting at 157 and 150 K, respectively (Timmermans, 1911[Timmermans, J. (1911). Bull. Soc. Chim. Belg. 25, 300-327.]). The melting temperatures, 156.92 K for the stable form and 149.86 K for the metastable form, and the heats of fusion were precisely determined by Counsell et al. (1971[Counsell, J. F., Lee, D. A. & Martin, J. F. (1971). J. Chem. Soc. A, pp. 313.]). In the stable α phase, determined by André et al. (1972[André, D., Fourme, R. & Zechmeister, K. (1972). Acta Cryst. B28, 2389-2395.]) in the space group P212121 with Z = 8, the molecules assume the TT conformation. The crystal structure of the metastable form was not determined, but its vibrational spectra indicated that there are two independent molecules, both in the TT conformation (Durig & Church, 1981[Durig, J. R. & Church, J. S. (1981). Mol. Cryst. Liq. Cryst. 69, 217-240.]). The existence of the metastable modification and the tendency of DEE to vitrify were explained in terms of the fairly loose structure of the α phase, and hence the low value of stabil­ization energy compared with the amorphous state (André et al., 1972[André, D., Fourme, R. & Zechmeister, K. (1972). Acta Cryst. B28, 2389-2395.]).

In the literature, there is much less information about the structure, interactions and properties of other aliphatic ethers. Di­methyl ether (DME) freezes at 93 K and its crystal structure was determined by Vojinović et al. (2004[Vojinović, K., Losehand, U. & Mitzel, N. W. (2004). Dalton Trans. pp. 2578-2581.]). The crystal structure of di-n-propyl ether (DPE) had not been determined. It was established that in the structure of tetra­hydro­furan, a cyclic analogue of DEE, molecular aggregation is stabilized by CH⋯O interactions, which are strongly enhanced under high pressure (Dziubek et al., 2010[Dziubek, K. F., Jęczmiński, D. & Katrusiak, A. (2010). J. Phys. Chem. Lett. 1, 844-849.]; Chang et al., 2005[Chang, H.-C., Jiang, J.-C., Chuang, C.-W., Lin, J.-S., Lai, W.-W., Yang, Y.-C. & Lin, S. H. (2005). Chem. Phys. Lett. 410, 42-48.]). Such CH⋯O contacts are sterically hindered in the TT conformers, present in the structure of the α phase of DEE. Therefore, acyclic ethers such as DEE and higher ones are expected to change their TT conformations under high pressure. In the simplest ether DME, the molecular structure can be modified owing to the C—O—C angle and the methyl group rotations, whereas the intermolecular interactions can be changed by a rearrangements of molecules. Here, we describe the effect of high pressure on the crystal structure of DEE, and we also studied DME and DPE in order to obtain more general information about the role of molecular structure with respect to the interactions and aggregation for this class of compounds.

2. Experimental

DME (≥99.9%), DEE (≥99%) and DPE (≥99%), all purchased from Merck, were used as delivered. All three ethers were crystallized in situ in a modified Merrill–Bassett diamond-anvil cell (DAC) (Bassett, 2009[Bassett, W. A. (2009). High. Press. Res. 29, 163-186.]). In each experiment, the DAC was equipped with a 0.3 mm-thick steel gasket with a hole 0.4 mm in diameter. At 295 K, DME, DEE and DPE froze at 2.95, 1.50 and 1.35 GPa, respectively, in the form of polycrystalline masses filling the volume of the DAC chamber. Single crystals were obtained under isochoric conditions (Fig. 1[link]): the DAC containing the squeezed polycrystalline mass of the ether sample was heated with a hot-air gun until all but one grain melted. Then the DAC was slowly cooled to room temperature and the single crystal grew to eventually fill the whole chamber. The temperature inside the DAC was measured using an infrared thermometer. The pressure was calibrated by the ruby fluorescence method (Mao et al., 1986[Mao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673-4676.]) before and after the X-ray diffraction measurements using a Photon Control spectrometer with an accuracy of 0.02 GPa. The experimental details and progress in growing the single crystals are shown in Figs. S1–S18 of the supporting information.

[Figure 1]
Figure 1
Single crystals grown in situ in the DAC. (a) β-DME at 3.90 GPa and 349 K, (b) γ-DME at 4.50 GPa and 359 K, (c) γ-DME at 5.60 GPa and 372 K, (d) β-DEE at 1.85 GPa and 327 K, (e) β-DEE at 2.45 GPa and 349 K, (f) γ-DEE at 2.65 GPa and 340 K, (g) δ-DEE at 2.80 GPa and 377 K, (h) δ-DEE at 3.45 GPa and 413 K, and (i) α-DPE at 2.10 GPa and 344 K.

The KUMA KM4-CCD diffractometer was used for the high-pressure X-ray diffraction studies. The DAC was centred by the gasket-shadow method (Budzianowski & Katrusiak, 2004[Budzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 101-112. Dordrecht: Kluwer Academic Publishers.]). The CrysAlisPro suite was used for data collection, determination of the UB matrices and unit-cell parameters, and data reductions (Rigaku Oxford Diffraction, 2019[Rigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.]). For all data, we accounted for the Lorentz, polarization and absorption effects. The programs SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) within the OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) GUI were used to solve the structures by direct methods and refine the models by full-matrix least-squares on F2. Anisotropic displacement parameters were applied for non-hydrogen atoms, but the isotropic thermal parameters were occasionally retained for atoms with unreasonable anisotropic factors or for lower-quality datasets. Hydrogen atoms were located from the molecular geometry, with the C—H distances equal to 0.97 Å (–CH2–) or 0.96 Å (–CH3) and their Uiso factors constrained to 1.2 or 1.5 times that of Ueq of the carriers. The crystal and experimental data are summarized in Table 1[link] and Tables S1–S4 of the supporting information.

Table 1
Selected crystal data of high-pressure phases of DME, DEE and DPE at 295 K (cf detailed data of all 20 determinations in Tables S1–S4)

  β DME γ DME β DEE γ DEE δ DEE α DPE
P (GPa) 3.30 (2) 4.50 (2) 1.85 (2) 2.65 (2) 2.80 (2) 1.70 (2)
Space group P21/c P1 P21/c I2/a P1 P21/c
a (Å) 5.5541 (4) 4.3394 (12) 6.8268 (3) 7.7073 (12) 5.1196 (4) 9.416 (4)
b (Å) 6.6179 (11) 8.414 (2) 8.1428 (17) 4.0885 (4) 5.6659 (10) 4.1817 (3)
c (Å) 6.964 (3) 12.821 (6) 7.7731 (3) 13.233 (2) 7.2999 (4) 15.579 (7)
α (°) 90 90.55 (4) 90 90 97.275 (8) 90
β (°) 103.84 (2) 93.89 (6) 93.443 (4) 93.793 (16) 102.728 (6) 101.23 (5)
γ (°) 90 90.83 (2) 90 90 96.747 (10) 90
V3) 248.56 (12) 467.0 (3) 431.32 (9) 416.07 (10) 202.56 (4) 601.7 (4)
Z, Z 4, 1 8, 4 4, 1 4, 0.5 2, 1 4, 1
Dx (g cm−3) 1.231 1.311 1.141 1.183 1.215 1.128
R1 [F2 > 2σ(F2)] 0.0708 0.0554 0.0353 0.0371 0.0388 0.0455

A conformational analysis of the isolated DEE molecule in the gas phase was performed with the ab initio approach of the density functional theory (DFT) with the B3LYP/6–311++g(2d,2p) method using GAUSSIAN 16W (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16W, Revision C.01, Gaussian, Inc. Wallingford, CT, USA.]). The potential energy Ep map has been created as a function of the torsion angles C2—C1—O1—C3 and C4—C3—O1—C1 with a step of 30° (Dennington et al., 2016[Dennington, R., Keith, T. & Millam, J. (2016). GaussView. Version 6.1. Semichem Inc., Shawnee Mission, KS, USA.]). The methyl hydrogen atoms (constraint AFIX 137) deviate by up to ca 8° in the H—C—C—O torsion angles for DEE compared with those obtained from the geometry optimization for the isolated molecule by GAUSSIAN 16W. The structure of DEE in the γ phase best agrees with the calculations, and the largest difference was observed for the δ phase.

3. Results and discussion

The lowest pressure for investigating the structure of the simplest primary ethers was chosen, about 0.3 GPa above their freezing pressure points, to ensure the stability of the single-crystal samples during the X-ray diffraction data collection experiments. The maximum pressure was the result of reaching the mechanical or thermal limitation of the DAC during the procedure to obtain the single crystals. The molecular volumes of the ethers studied as a function of pressure are plotted in Fig. 2[link].

[Figure 2]
Figure 2
Molecular volume (V/Z) of DME, DEE and DPE plotted as a function of pressure: solid high-pressure (circles, this work) and low-temperature [diamonds (André et al., 1972[André, D., Fourme, R. & Zechmeister, K. (1972). Acta Cryst. B28, 2389-2395.]; Vojinović et al., 2004[Vojinović, K., Losehand, U. & Mitzel, N. W. (2004). Dalton Trans. pp. 2578-2581.])] phases as well as liquid DEE [triangles (Bridgman, 1913[Bridgman, P. W. (1913). Proc. Am. Acad. Arts Sci. 49, 3-114.])]. Open circles indicate the Vm values estimated at the freezing-pressure points. The vertical dashed lines mark the solid–solid transition pressure points (this work). The ambient- and high-pressure points at 295 K are joined by dashed lines. The solid lines between points are guides for the eye only. The estimated standard deviations are smaller than the plotted symbols.

We have established that DEE freezes at 1.50 GPa when isothermally compressed at 295 K. Therefore, the single crystal was grown under isochoric conditions from the liquid in a DAC at 1.85 GPa (Fig. 1[link]). The new β phase, built of TT conformers, is stable up to 2.65 GPa, when the γ phase, also built of the TT conformers, is formed. At even higher pressure, the DEE molecules adopt the TG conformation and the δ phase is formed, investigated between 2.80 and 4.90 GPa (Fig. 2[link]). In the TG conformers, the reduced steric hindrance around the oxygen atom facilitates the formation of a larger number of CH⋯O contacts. When releasing pressure, the δ phase transforms to the β phase below 2.70 GPa.

In DME, the steric hindrance around the oxygen atom is smaller and the number of H⋯O contacts increases without conformational transformations. At 0.1 MPa and 93 K, DME crystallizes in the centrosymmetric α phase of the tetragonal space group P42/n (Vojinović et al., 2004[Vojinović, K., Losehand, U. & Mitzel, N. W. (2004). Dalton Trans. pp. 2578-2581.]). At 3.30 GPa and 295 K, DME forms the centrosymmetric β phase in the space group P21/c, and then, with increasing pressure, to 4.40 GPa, it transforms to the γ phase of the space-group symmetry P1 (Fig. 2[link]). In DPE, the conformation is important for the molecular aggregation. The crystal structure of DPE at 0.1 MPa and low temperature has not yet been reported. At high pressure and 295 K, DPE crystallizes in the centrosymmetric space group P21/c. It was found that this phase (α phase) is stable from 1.70 to 5.30 GPa at least.

Our quantum-mechanical computations performed with Gaussian (Frisch et al., 2019[Chang, H.-C., Jiang, J.-C., Chuang, C.-W., Lin, J.-S., Lai, W.-W., Yang, Y.-C. & Lin, S. H. (2005). Chem. Phys. Lett. 410, 42-48.]) show that the idealized TT conformer (τ1 = τ2 = 180°) is 8.72 kJ mol−1 more stable than the idealized TG conformers (τ1 = 180°, τ2 = ±60°). This Ep difference is somewhat larger than that previously determined by the B3LYP/6–311+G** method (Taga et al., 2006[Taga, K., Kawasaki, K., Yamamoto, Y., Yoshida, T., Ohno, K. & Matsuura, H. (2006). J. Mol. Struct. 788, 159-175.]). Owing to the crystal-field effects, the Ep difference calculated by us between the TT and TG conformers present in the β (τ1 = 172.47°, τ2 = 179.45°) and δ (τ1 = 177.70°, τ2 = −77.55°) DEE phases is 6.43 kJ mol−1 and between the γ (τ1 = τ2 = 168.53°) and δ phases it is 5.12 kJ mol−1. Therefore, the volume reductions of 2.54 and 2.74 Å3 for the βδ and γδ phase transitions, respectively, at 2.70 GPa, associated with the work component of the Gibbs free energies equal to 4.13 and 4.45 kJ mol−1, is consistent with the energy gain of the system for a transition involving conformational changes. When assuming the initial density of the liquid at 293 K (0.7134 g cm−3), the work performed on the sample to 2.70 GPa amounts to about 59 kJ mol−1, which is commensurate with the energy of the Ep barrier equal to about 11.3 kJ mol−1 in the Ep map in Fig. 3[link].

[Figure 3]
Figure 3
Potential energy (Ep) map as a function of the torsion angles C4—C3—O1—C1 (τ1) and C2—C1—O1—C3 (τ2) for the isolated DEE molecule, with Ep = 0 for the TT conformer. The conformers present in the crystalline state for β DEE (square), γ DEE (circle) and δ DEE (triangle) are indicated in yellow.

According to intermolecular distances, the cohesion forces in DME, DEE and DPE crystals are dominated by CH⋯O bonds (Figs. 4[link], 5[link] and S19–S26). The approaching hydrogen atoms are roughly (within about 30°) grouped about the directions of the lone-electron pairs of oxygen atoms. For the β and γ phases of DEE, only the methyl hydrogen atoms participate in the hydrogen bonds, whereas in the α and δ phases of DEE, there are both methyl and methyl­ene hydrogen donors. The CH⋯O bonds aggregate the molecules into different and characteristic architectures of rings (α DME), chains (α DEE, γ DEE, α DPE), ribbons (δ DEE), sheets (β DME, β DEE) and a three-dimensional pattern (γ DME). In DME, the number of CH⋯O contacts that are shorter than the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) increases with pressure, hence the three-dimensional aggregation patterns are promoted. This relation does not apply for the DEE polymorphs.

[Figure 4]
Figure 4
Patterns of the CH⋯O bonds (dotted lines) in the structures of the DEE polymorphs (a) α, (b) β, (c) γ and (d) δ. The symmetry-independent structural units (0.5, 1 and 2 molecules) are indicated in green.
[Figure 5]
Figure 5
Evolution of the intermolecular distances for the different phases of DME (red), DEE (green) and DPE (blue) with pressure. The two shortest distances for the two types of interactions are presented: full shapes represent H⋯H and empty shapes represent H⋯O distances. The black horizontal lines show the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) of hydrogen and oxygen (2.72 Å) and of hydrogen and hydrogen (2.4 Å); the vertical dashed lines mark the limits of the pressure stability ranges of individual crystal phases. The estimated standard deviations are smaller than the plotted symbols.

The four phases of DEE clearly reveal the systematic transformation of patterns of intermolecular interactions at high pressure. The initial compression of H⋯H contacts and the small compression of H⋯O contacts between the α, β and γ phases are reversed in the δ phase, where the conformational change increases the access to the oxygen atom (Fig. S20). It promotes the formation of CH⋯O contacts at high pressure. The CH⋯O bonded molecules in the β, γ and δ phases are attracted with intermolecular interaction energies of about −12.0, −11.4 and −9.9 kJ mol−1, respectively compared with about −4 kJ mol−1 for the molecules with H⋯H contacts only (Gavezzotti, 1994[Gavezzotti, A. (1994). Acc. Chem. Res. 27, 309-314.]; Gavezzotti & Filippini, 1994[Gavezzotti, A. & Filippini, G. (1994). J. Phys. Chem. 98, 4831-4837.]).

4. Conclusions

The interplay of preferences for the CH⋯O bond and low-Ep conformation govern the aggregation in solid phases of simple aliphatic ethers. We have found six new polymorphs: the β and γ phases of DME; the β, γ and δ phases of DEE; and the α phase of DPE. The conformational conversions can regulate access to the oxygen atom, and in this way can increase the number of stronger CH⋯O bonds and reduce the number of weak H⋯H contacts. Consequently, we observed a higher compressibility of CH⋯O distances in δ DEE compared with the compressibility of H⋯H within this phase. Though high pressure has proved to be a useful tool for inducing conformational changes in simple molecular compounds, it also shows the energetic landscape of thermally activated conformational conversions in liquids. Cohesion forces, molecular conformations and aggregation in the crystal structures of simple ethers still require further studies by theoretical methods. There are also asymmetric ethers, which can provide additional information about the structure–property relations of ethers, however their applications and availability are limited.

Supporting information


Computing details top

dimethyl ether (dimethyl_ether_phase_beta_3_30GPa) top
Crystal data top
C2H6OF(000) = 104
Mr = 46.07Dx = 1.231 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5541 (4) ÅCell parameters from 653 reflections
b = 6.6179 (11) Åθ = 5.2–25.9°
c = 6.964 (3) ŵ = 0.10 mm1
β = 103.835 (19)°T = 295 K
V = 248.56 (12) Å3Disc, colourless
Z = 40.30 × 0.29 × 0.25 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
132 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.065
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 25.9°, θmin = 5.2°
Tmin = 0.008, Tmax = 1.000h = 66
850 measured reflectionsk = 77
147 independent reflectionsl = 44
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.071 w = 1/[σ2(Fo2) + (0.1102P)2 + 0.2366P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.193(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.19 e Å3
147 reflectionsΔρmin = 0.17 e Å3
31 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 1.1 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7278 (6)0.3356 (6)0.1855 (8)0.043 (3)
C10.9093 (9)0.1818 (8)0.2325 (13)0.047 (4)
H110.9170670.1101060.1142800.071*
H120.8660400.0896810.3253030.071*
H131.0678670.2412680.2896660.071*
C20.4941 (10)0.2536 (8)0.0858 (17)0.050 (5)
H220.5060930.1989300.0392150.076*
H230.3708850.3582700.0645450.076*
H210.4480080.1484530.1649910.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.035 (2)0.035 (4)0.057 (10)0.0002 (13)0.003 (3)0.0003 (16)
C10.039 (3)0.031 (6)0.071 (15)0.006 (2)0.011 (4)0.004 (3)
C20.041 (3)0.030 (6)0.075 (17)0.002 (2)0.003 (4)0.001 (2)
Geometric parameters (Å, º) top
O1—C11.415 (6)C1—H130.9600
O1—C21.425 (7)C2—H220.9600
C1—H110.9600C2—H230.9600
C1—H120.9600C2—H210.9600
C1—O1—C2110.7 (4)O1—C2—H22109.5
O1—C1—H11109.5O1—C2—H23109.5
O1—C1—H12109.5O1—C2—H21109.5
O1—C1—H13109.5H22—C2—H23109.5
H11—C1—H12109.5H22—C2—H21109.5
H11—C1—H13109.5H23—C2—H21109.5
H12—C1—H13109.5
dimethyl ether (dimethyl_ether_phase_beta_3_90GPa) top
Crystal data top
C2H6OF(000) = 104
Mr = 46.07Dx = 1.267 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5277 (4) ÅCell parameters from 488 reflections
b = 6.527 (10) Åθ = 7.6–25.7°
c = 6.8941 (5) ŵ = 0.10 mm1
β = 103.869 (6)°T = 295 K
V = 241.5 (4) Å3Disc, colourless
Z = 40.33 × 0.33 × 0.24 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
99 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.031
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 25.7°, θmin = 7.6°
Tmin = 0.082, Tmax = 1.000h = 66
634 measured reflectionsk = 11
107 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.1005P)2 + 0.168P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
107 reflectionsΔρmax = 0.17 e Å3
15 parametersΔρmin = 0.12 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7270 (4)0.3359 (18)0.1847 (3)0.0310 (15)*
C10.9078 (7)0.178 (2)0.2323 (6)0.0309 (16)*
H110.9107950.1018710.1136390.046*
H120.8659880.0875410.3293190.046*
H131.0688870.2369690.2861650.046*
C20.4939 (7)0.252 (2)0.0882 (6)0.0278 (16)*
H220.5044220.1938130.0374920.042*
H230.3697490.3577470.0655830.042*
H210.4491390.1469970.1707230.042*
Geometric parameters (Å, º) top
O1—C11.419 (16)C1—H130.9600
O1—C21.411 (9)C2—H220.9600
C1—H110.9600C2—H230.9600
C1—H120.9600C2—H210.9600
C2—O1—C1109.8 (12)O1—C2—H22109.5
O1—C1—H11109.5O1—C2—H23109.5
O1—C1—H12109.5O1—C2—H21109.5
O1—C1—H13109.5H22—C2—H23109.5
H11—C1—H12109.5H22—C2—H21109.5
H11—C1—H13109.5H23—C2—H21109.5
H12—C1—H13109.5
dimethyl ether (dimethyl_ether_phase_beta_4_30GPa) top
Crystal data top
C2H6OF(000) = 104
Mr = 46.07Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5073 (4) ÅCell parameters from 560 reflections
b = 6.493 (5) Åθ = 6.1–25.5°
c = 6.8431 (8) ŵ = 0.10 mm1
β = 103.848 (8)°T = 295 K
V = 237.58 (19) Å3Disc, colourless
Z = 40.38 × 0.38 × 0.23 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
118 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.030
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.1°, θmin = 6.1°
Tmin = 0.031, Tmax = 1.000h = 66
721 measured reflectionsk = 33
129 independent reflectionsl = 77
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.1045P)2 + 0.0355P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max < 0.001
S = 1.18Δρmax = 0.14 e Å3
129 reflectionsΔρmin = 0.11 e Å3
31 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 1.1 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7272 (3)0.3391 (10)0.1848 (3)0.024 (5)
C10.9077 (5)0.1760 (14)0.2313 (5)0.031 (5)
H110.9084940.1001370.1110700.046*
H120.8645820.0853860.3286850.046*
H131.0706010.2332580.2854150.046*
C20.4927 (5)0.2529 (10)0.0854 (5)0.020 (6)
H220.5083260.1858910.0361090.031*
H230.3698890.3602980.0529700.031*
H210.4417580.1542110.1721400.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (15)0.008 (14)0.038 (2)0.0004 (16)0.0069 (10)0.0007 (10)
C10.026 (2)0.031 (18)0.037 (3)0.006 (2)0.0104 (14)0.006 (2)
C20.027 (2)0.008 (18)0.026 (3)0.003 (2)0.0058 (12)0.0012 (16)
Geometric parameters (Å, º) top
O1—C11.435 (10)C1—H130.9600
O1—C21.422 (5)C2—H220.9600
C1—H110.9600C2—H230.9600
C1—H120.9600C2—H210.9600
C2—O1—C1108.5 (6)O1—C2—H22109.5
O1—C1—H11109.5O1—C2—H23109.5
O1—C1—H12109.5O1—C2—H21109.5
O1—C1—H13109.5H22—C2—H23109.5
H11—C1—H12109.5H22—C2—H21109.5
H11—C1—H13109.5H23—C2—H21109.5
H12—C1—H13109.5
dimethyl ether (dimethyl_ether_phase_gamma_4_50GPa) top
Crystal data top
C2H6OZ = 8
Mr = 46.07F(000) = 208
Triclinic, P1Dx = 1.311 Mg m3
a = 4.3394 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.414 (2) ÅCell parameters from 1331 reflections
c = 12.821 (6) Åθ = 4.7–25.7°
α = 90.55 (4)°µ = 0.10 mm1
β = 93.89 (6)°T = 295 K
γ = 90.83 (2)°Disc, colourless
V = 467.0 (3) Å30.34 × 0.32 × 0.22 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
481 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.034
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.2°, θmin = 4.9°
Tmin = 0.508, Tmax = 1.000h = 55
2659 measured reflectionsk = 1010
556 independent reflectionsl = 56
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0885P)2 + 0.3224P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
556 reflectionsΔρmax = 0.15 e Å3
117 parametersΔρmin = 0.14 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2353 (9)0.8266 (5)0.0051 (11)0.062 (9)
C10.0287 (9)0.7298 (5)0.0134 (10)0.044 (8)
H130.0438450.6769380.0802410.065*
H110.2078590.7936600.0065480.065*
H120.0161690.6520570.0410420.065*
C20.2688 (14)0.9025 (8)0.0925 (17)0.065 (14)
H230.4502440.9695630.0959800.098*
H210.2885920.8242680.1464770.098*
H220.0906640.9659590.1022160.098*
O20.8338 (5)0.5159 (3)0.1951 (6)0.053 (7)
C30.5369 (8)0.4961 (6)0.1440 (10)0.050 (9)
H330.5389920.4098850.0944560.075*
H310.4801340.5920400.1081560.075*
H320.3899090.4727960.1946240.075*
C40.8463 (10)0.6574 (5)0.2578 (12)0.061 (11)
H420.7888250.7464780.2148360.092*
H431.0524620.6737820.2884110.092*
H410.7059540.6470510.3121440.092*
O30.7072 (5)0.0121 (3)0.2903 (6)0.043 (6)
C50.4487 (9)0.0198 (6)0.3482 (11)0.068 (11)
H510.2628560.0069750.3042540.103*
H520.4493900.0526240.4065280.103*
H530.4577950.1269450.3732620.103*
C60.6947 (12)0.1668 (6)0.2465 (11)0.056 (11)
H620.5139070.1743740.1993850.083*
H630.8756500.1857740.2089930.083*
H610.6861020.2446590.3013740.083*
O40.2707 (5)0.3082 (3)0.4954 (7)0.042 (7)
C70.0047 (8)0.2104 (5)0.5040 (10)0.040 (8)
H730.0340230.1445020.5644760.060*
H710.0277070.1445520.4425710.060*
H720.1721110.2760060.5108120.060*
C80.2335 (9)0.4051 (5)0.4043 (10)0.050 (10)
H810.0475440.4650730.4066990.076*
H820.2207630.3385910.3428610.076*
H830.4073070.4766760.4022760.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0247 (17)0.034 (2)0.13 (3)0.0098 (18)0.004 (4)0.003 (7)
C10.0222 (18)0.030 (2)0.08 (3)0.0062 (15)0.001 (4)0.002 (6)
C20.028 (3)0.033 (3)0.13 (4)0.000 (3)0.004 (7)0.029 (10)
O20.0233 (14)0.0224 (16)0.11 (2)0.0011 (10)0.014 (3)0.006 (5)
C30.0206 (18)0.030 (2)0.10 (3)0.0018 (14)0.006 (4)0.007 (6)
C40.040 (2)0.030 (3)0.11 (3)0.0015 (18)0.002 (6)0.004 (8)
O30.0262 (14)0.0219 (15)0.080 (18)0.0001 (10)0.005 (3)0.010 (4)
C50.0226 (19)0.032 (2)0.15 (3)0.0008 (16)0.005 (5)0.016 (8)
C60.047 (3)0.030 (3)0.09 (3)0.003 (2)0.009 (5)0.024 (8)
O40.0239 (14)0.0280 (17)0.07 (2)0.0059 (11)0.001 (3)0.014 (5)
C70.0251 (19)0.025 (2)0.07 (3)0.0064 (15)0.009 (4)0.013 (6)
C80.038 (2)0.027 (2)0.08 (3)0.0053 (17)0.008 (5)0.015 (7)
Geometric parameters (Å, º) top
O1—C11.393 (5)O3—C51.411 (10)
O1—C21.40 (3)O3—C61.423 (6)
C1—H130.9600C5—H510.9600
C1—H110.9600C5—H520.9600
C1—H120.9600C5—H530.9600
C2—H230.9600C6—H620.9600
C2—H210.9600C6—H630.9600
C2—H220.9600C6—H610.9600
O2—C31.412 (7)O4—C71.419 (4)
O2—C41.428 (12)O4—C81.432 (11)
C3—H330.9600C7—H730.9600
C3—H310.9600C7—H710.9600
C3—H320.9600C7—H720.9600
C4—H420.9600C8—H810.9600
C4—H430.9600C8—H820.9600
C4—H410.9600C8—H830.9600
C1—O1—C2111.0 (13)C5—O3—C6111.5 (5)
O1—C1—H13109.5O3—C5—H51109.5
O1—C1—H11109.5O3—C5—H52109.5
O1—C1—H12109.5O3—C5—H53109.5
H13—C1—H11109.5H51—C5—H52109.5
H13—C1—H12109.5H51—C5—H53109.5
H11—C1—H12109.5H52—C5—H53109.5
O1—C2—H23109.5O3—C6—H62109.5
O1—C2—H21109.5O3—C6—H63109.5
O1—C2—H22109.5O3—C6—H61109.5
H23—C2—H21109.5H62—C6—H63109.5
H23—C2—H22109.5H62—C6—H61109.5
H21—C2—H22109.5H63—C6—H61109.5
C3—O2—C4110.1 (4)C7—O4—C8110.2 (5)
O2—C3—H33109.5O4—C7—H73109.5
O2—C3—H31109.5O4—C7—H71109.5
O2—C3—H32109.5O4—C7—H72109.5
H33—C3—H31109.5H73—C7—H71109.5
H33—C3—H32109.5H73—C7—H72109.5
H31—C3—H32109.5H71—C7—H72109.5
O2—C4—H42109.5O4—C8—H81109.5
O2—C4—H43109.5O4—C8—H82109.5
O2—C4—H41109.5O4—C8—H83109.5
H42—C4—H43109.5H81—C8—H82109.5
H42—C4—H41109.5H81—C8—H83109.5
H43—C4—H41109.5H82—C8—H83109.5
dimethyl ether (dimethyl_ether_phase_gamma_5_60GPa) top
Crystal data top
C2H6OZ = 8
Mr = 46.07F(000) = 208
Triclinic, P1Dx = 1.346 Mg m3
a = 4.2888 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3045 (18) ÅCell parameters from 1388 reflections
c = 12.7912 (13) Åθ = 4.9–25.6°
α = 90.249 (12)°µ = 0.10 mm1
β = 93.92 (2)°T = 295 K
γ = 90.14 (3)°Disc, colourless
V = 454.5 (2) Å30.37 × 0.35 × 0.21 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
486 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.031
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.3°, θmin = 4.8°
Tmin = 0.788, Tmax = 1.000h = 22
2631 measured reflectionsk = 109
559 independent reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.117 w = 1/[σ2(Fo2) + (0.0699P)2 + 2.7136P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.260(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.23 e Å3
559 reflectionsΔρmin = 0.19 e Å3
58 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.12 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.242 (3)0.8248 (9)0.0022 (4)0.0355 (18)*
C10.044 (6)0.7338 (16)0.0090 (7)0.044 (3)*
H130.0901940.6986470.0799910.066*
H110.2113650.8003210.0124190.066*
H120.0221790.6417980.0360220.066*
C20.253 (5)0.9101 (16)0.0956 (7)0.035 (2)*
H230.4015320.9966400.0943030.053*
H210.3150570.8377550.1515330.053*
H220.0501270.9528730.1064700.053*
O20.839 (4)0.5131 (9)0.1969 (4)0.0355 (19)*
C30.583 (6)0.4931 (16)0.1409 (8)0.044 (3)*
H330.5970370.3979730.0986450.066*
H310.5458750.5848120.0964260.066*
H320.4139760.4815680.1858310.066*
C40.826 (5)0.6641 (14)0.2545 (7)0.033 (2)*
H420.7368330.7460380.2089760.050*
H431.0334120.6956400.2795890.050*
H410.6992240.6504120.3127830.050*
O30.711 (4)0.0119 (9)0.2914 (4)0.039 (2)*
C50.423 (6)0.0119 (17)0.3472 (8)0.048 (3)*
H510.2614970.0568760.3173840.072*
H520.4647300.0141000.4199920.072*
H530.3575160.1222330.3402260.072*
C60.678 (6)0.1662 (14)0.2479 (7)0.038 (2)*
H620.5091870.1655410.1944790.057*
H630.8679470.1966600.2177500.057*
H610.6329190.2420270.3017080.057*
O40.274 (4)0.3116 (10)0.4989 (4)0.0381 (19)*
C70.032 (6)0.2154 (16)0.5048 (7)0.038 (3)*
H730.0125300.1432500.5633440.058*
H710.0723040.1545420.4413140.058*
H720.2015290.2883770.5134430.058*
C80.222 (6)0.4120 (15)0.4061 (6)0.033 (2)*
H810.1112140.5073950.4237670.050*
H820.1019130.3530070.3526480.050*
H830.4200490.4416280.3806460.050*
Geometric parameters (Å, º) top
O1—C11.44 (2)O3—C51.48 (3)
O1—C21.433 (11)O3—C61.403 (15)
C1—H130.9600C5—H510.9600
C1—H110.9600C5—H520.9600
C1—H120.9600C5—H530.9600
C2—H230.9600C6—H620.9600
C2—H210.9600C6—H630.9600
C2—H220.9600C6—H610.9600
O2—C31.28 (3)O4—C71.543 (19)
O2—C41.455 (13)O4—C81.459 (13)
C3—H330.9600C7—H730.9600
C3—H310.9600C7—H710.9600
C3—H320.9600C7—H720.9600
C4—H420.9600C8—H810.9600
C4—H430.9600C8—H820.9600
C4—H410.9600C8—H830.9600
C2—O1—C1106.6 (11)C6—O3—C5104.3 (15)
O1—C1—H13109.5O3—C5—H51109.5
O1—C1—H11109.5O3—C5—H52109.5
O1—C1—H12109.5O3—C5—H53109.5
H13—C1—H11109.5H51—C5—H52109.5
H13—C1—H12109.5H51—C5—H53109.5
H11—C1—H12109.5H52—C5—H53109.5
O1—C2—H23109.5O3—C6—H62109.5
O1—C2—H21109.5O3—C6—H63109.5
O1—C2—H22109.5O3—C6—H61109.5
H23—C2—H21109.5H62—C6—H63109.5
H23—C2—H22109.5H62—C6—H61109.5
H21—C2—H22109.5H63—C6—H61109.5
C3—O2—C4109.2 (16)C8—O4—C7104.7 (11)
O2—C3—H33109.5O4—C7—H73109.5
O2—C3—H31109.5O4—C7—H71109.5
O2—C3—H32109.5O4—C7—H72109.5
H33—C3—H31109.5H73—C7—H71109.5
H33—C3—H32109.5H73—C7—H72109.5
H31—C3—H32109.5H71—C7—H72109.5
O2—C4—H42109.5O4—C8—H81109.5
O2—C4—H43109.5O4—C8—H82109.5
O2—C4—H41109.5O4—C8—H83109.5
H42—C4—H43109.5H81—C8—H82109.5
H42—C4—H41109.5H81—C8—H83109.5
H43—C4—H41109.5H82—C8—H83109.5
dimethyl ether (dimethyl_ether_phase_gamma_7_30GPa) top
Crystal data top
C2H6OZ = 8
Mr = 46.07F(000) = 208
Triclinic, P1Dx = 1.396 Mg m3
a = 4.250 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.198 (3) ÅCell parameters from 842 reflections
c = 12.6105 (19) Åθ = 5.0–23.5°
α = 90.641 (19)°µ = 0.11 mm1
β = 93.97 (3)°T = 295 K
γ = 90.04 (5)°Disc, colourless
V = 438.3 (4) Å30.40 × 0.38 × 0.20 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
389 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.042
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.1°, θmin = 4.9°
Tmin = 0.768, Tmax = 1.000h = 22
2349 measured reflectionsk = 99
523 independent reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.079 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.6787P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.187(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.16 e Å3
523 reflectionsΔρmin = 0.14 e Å3
118 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.15 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.240 (3)0.8292 (9)0.0037 (4)0.082 (12)
C10.041 (5)0.7358 (14)0.0105 (6)0.048 (16)
H130.1421190.7439040.0807350.073*
H110.1807020.7764480.0404110.073*
H120.0081360.6237540.0043020.073*
C20.250 (5)0.9124 (13)0.0985 (6)0.038 (14)
H230.4134370.9935630.1016860.057*
H210.2928710.8348450.1540950.057*
H220.0505830.9638520.1073540.057*
O20.845 (3)0.5126 (8)0.1935 (4)0.034 (10)
C30.552 (5)0.5002 (13)0.1409 (7)0.037 (14)
H330.5424840.4030310.0975640.056*
H310.5151650.5937090.0966050.056*
H320.3942480.4951810.1915920.056*
C40.863 (5)0.6591 (12)0.2548 (7)0.075 (16)
H420.7834700.7480820.2119660.112*
H431.0783330.6801520.2788830.112*
H410.7384390.6481190.3150950.112*
O30.714 (4)0.0122 (9)0.2895 (4)0.085 (11)
C50.429 (6)0.0141 (15)0.3470 (7)0.066 (17)
H510.2456330.0129620.3017790.099*
H520.4370700.0539870.4095280.099*
H530.4176460.1264550.3670760.099*
C60.680 (5)0.1709 (12)0.2492 (8)0.063 (16)
H620.5106430.1725080.1946180.094*
H630.8721580.2037800.2198850.094*
H610.6328940.2448600.3055070.094*
O40.261 (3)0.3117 (8)0.4976 (4)0.042 (11)
C70.009 (5)0.2107 (14)0.5049 (6)0.058 (17)
H730.0054060.1560500.5719740.088*
H710.0178600.1312590.4482320.088*
H720.1956900.2765610.4993770.088*
C80.234 (6)0.4113 (12)0.4053 (6)0.059 (16)
H810.0678850.4894040.4120510.088*
H820.1856150.3439220.3435050.088*
H830.4292150.4674530.3982300.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.15 (3)0.046 (6)0.049 (3)0.043 (15)0.012 (6)0.005 (3)
C10.05 (4)0.044 (9)0.048 (5)0.02 (2)0.009 (8)0.000 (5)
C20.03 (4)0.030 (8)0.056 (5)0.009 (17)0.004 (9)0.004 (5)
O20.03 (3)0.021 (5)0.048 (3)0.006 (11)0.001 (6)0.005 (3)
C30.03 (4)0.037 (8)0.044 (4)0.005 (17)0.014 (9)0.003 (4)
C40.13 (4)0.029 (7)0.057 (5)0.024 (18)0.019 (9)0.004 (5)
O30.16 (3)0.044 (6)0.050 (3)0.045 (13)0.002 (6)0.008 (3)
C50.09 (5)0.050 (9)0.061 (5)0.01 (2)0.001 (11)0.007 (6)
C60.11 (4)0.029 (7)0.054 (5)0.002 (18)0.000 (9)0.005 (5)
O40.03 (3)0.042 (6)0.051 (3)0.010 (13)0.005 (6)0.004 (3)
C70.09 (5)0.045 (9)0.041 (4)0.02 (2)0.019 (9)0.005 (4)
C80.10 (4)0.022 (7)0.052 (5)0.007 (18)0.004 (9)0.002 (4)
Geometric parameters (Å, º) top
O1—C11.416 (16)O3—C51.47 (2)
O1—C21.449 (11)O3—C61.406 (12)
C1—H130.9600C5—H510.9600
C1—H110.9600C5—H520.9600
C1—H120.9600C5—H530.9600
C2—H230.9600C6—H620.9600
C2—H210.9600C6—H630.9600
C2—H220.9600C6—H610.9600
O2—C31.37 (2)O4—C71.421 (15)
O2—C41.420 (11)O4—C81.427 (9)
C3—H330.9600C7—H730.9600
C3—H310.9600C7—H710.9600
C3—H320.9600C7—H720.9600
C4—H420.9600C8—H810.9600
C4—H430.9600C8—H820.9600
C4—H410.9600C8—H830.9600
C1—O1—C2106.0 (11)C6—O3—C5104.5 (14)
O1—C1—H13109.5O3—C5—H51109.5
O1—C1—H11109.5O3—C5—H52109.5
O1—C1—H12109.5O3—C5—H53109.5
H13—C1—H11109.5H51—C5—H52109.5
H13—C1—H12109.5H51—C5—H53109.5
H11—C1—H12109.5H52—C5—H53109.5
O1—C2—H23109.5O3—C6—H62109.5
O1—C2—H21109.5O3—C6—H63109.5
O1—C2—H22109.5O3—C6—H61109.5
H23—C2—H21109.5H62—C6—H63109.5
H23—C2—H22109.5H62—C6—H61109.5
H21—C2—H22109.5H63—C6—H61109.5
C3—O2—C4109.5 (14)C7—O4—C8111.8 (10)
O2—C3—H33109.5O4—C7—H73109.5
O2—C3—H31109.5O4—C7—H71109.5
O2—C3—H32109.5O4—C7—H72109.5
H33—C3—H31109.5H73—C7—H71109.5
H33—C3—H32109.5H73—C7—H72109.5
H31—C3—H32109.5H71—C7—H72109.5
O2—C4—H42109.5O4—C8—H81109.5
O2—C4—H43109.5O4—C8—H82109.5
O2—C4—H41109.5O4—C8—H83109.5
H42—C4—H43109.5H81—C8—H82109.5
H42—C4—H41109.5H81—C8—H83109.5
H43—C4—H41109.5H82—C8—H83109.5
diethyl ether (diethyl_ether_phase_beta_1_85GPa) top
Crystal data top
C4H10OF(000) = 168
Mr = 74.12Dx = 1.141 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8268 (3) ÅCell parameters from 1485 reflections
b = 8.1428 (17) Åθ = 4.6–25.7°
c = 7.7731 (3) ŵ = 0.08 mm1
β = 93.443 (4)°T = 295 K
V = 431.32 (9) Å3Disc, colourless
Z = 40.37 × 0.36 × 0.27 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
352 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.024
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.4°, θmin = 4.6°
Tmin = 0.147, Tmax = 1.000h = 88
2198 measured reflectionsk = 55
386 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.0373P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
386 reflectionsΔρmax = 0.10 e Å3
48 parametersΔρmin = 0.11 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17812 (13)0.3152 (3)0.16798 (12)0.0291 (11)
C10.0752 (2)0.4539 (4)0.23017 (19)0.0298 (12)
H110.0342610.5256990.1351000.036*
H120.1599110.5156890.3112580.036*
C20.1009 (2)0.3922 (4)0.3172 (2)0.0394 (11)
H210.1812210.3276880.2372350.059*
H230.1753770.4837140.3555830.059*
H220.0587070.3255810.4143830.059*
C30.3451 (2)0.3672 (4)0.08199 (19)0.0382 (12)
H310.4243050.4408010.1555810.046*
H320.3040250.4257120.0227450.046*
C40.4627 (3)0.2191 (4)0.0393 (2)0.0327 (12)
H420.3844510.1481720.0357820.049*
H410.5016680.1612540.1433950.049*
H430.5773250.2527980.0171710.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (9)0.018 (4)0.0399 (7)0.0026 (6)0.0114 (5)0.0034 (6)
C10.0316 (10)0.026 (4)0.0319 (7)0.0014 (10)0.0015 (6)0.0041 (9)
C20.0280 (11)0.051 (4)0.0397 (8)0.0040 (9)0.0092 (7)0.0051 (11)
C30.0262 (11)0.055 (4)0.0348 (8)0.0023 (10)0.0094 (8)0.0036 (11)
C40.0295 (11)0.033 (4)0.0365 (8)0.0013 (9)0.0063 (7)0.0027 (10)
Geometric parameters (Å, º) top
O1—C11.430 (3)C2—H220.9600
O1—C31.421 (2)C3—H310.9700
C1—H110.9700C3—H320.9700
C1—H120.9700C3—C41.497 (4)
C1—C21.501 (3)C4—H420.9600
C2—H210.9600C4—H410.9600
C2—H230.9600C4—H430.9600
C3—O1—C1110.3 (2)O1—C3—H31110.0
O1—C1—H11110.1O1—C3—H32110.0
O1—C1—H12110.1O1—C3—C4108.7 (3)
O1—C1—C2108.1 (3)H31—C3—H32108.3
H11—C1—H12108.4C4—C3—H31110.0
C2—C1—H11110.1C4—C3—H32110.0
C2—C1—H12110.1C3—C4—H42109.5
C1—C2—H21109.5C3—C4—H41109.5
C1—C2—H23109.5C3—C4—H43109.5
C1—C2—H22109.5H42—C4—H41109.5
H21—C2—H23109.5H42—C4—H43109.5
H21—C2—H22109.5H41—C4—H43109.5
H23—C2—H22109.5
C1—O1—C3—C4172.74 (12)C3—O1—C1—C2179.15 (10)
diethyl ether (diethyl_ether_phase_beta_2_15GPa) top
Crystal data top
C4H10OF(000) = 168
Mr = 74.12Dx = 1.161 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.7948 (3) ÅCell parameters from 1468 reflections
b = 8.0952 (12) Åθ = 4.6–26.6°
c = 7.7259 (2) ŵ = 0.08 mm1
β = 93.621 (3)°T = 295 K
V = 424.12 (7) Å3Dosc, colourless
Z = 40.38 × 0.34 × 0.26 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
353 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.025
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.6°, θmin = 4.6°
Tmin = 0.183, Tmax = 1.000h = 88
2208 measured reflectionsk = 55
386 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.0332P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
386 reflectionsΔρmax = 0.09 e Å3
48 parametersΔρmin = 0.09 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17730 (13)0.3155 (3)0.16712 (12)0.0317 (9)
C10.0747 (2)0.4556 (3)0.23053 (18)0.0282 (10)
H110.0332840.5284000.1353430.034*
H120.1601170.5170920.3126640.034*
C20.1022 (2)0.3919 (3)0.31758 (18)0.0336 (8)
H210.1839290.3289160.2359310.050*
H230.1762670.4833150.3586490.050*
H220.0593700.3227890.4136690.050*
C30.3452 (2)0.3685 (4)0.08107 (18)0.0343 (10)
H310.4249900.4421460.1555770.041*
H320.3039010.4276920.0242150.041*
C40.4633 (2)0.2178 (4)0.0378 (2)0.0346 (10)
H420.3848430.1476700.0393030.052*
H410.5006640.1585720.1423670.052*
H430.5796180.2514310.0172720.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0277 (8)0.032 (3)0.0369 (6)0.0021 (5)0.0127 (5)0.0041 (6)
C10.0293 (9)0.025 (4)0.0301 (7)0.0019 (8)0.0024 (6)0.0012 (8)
C20.0298 (10)0.034 (3)0.0377 (8)0.0044 (8)0.0089 (7)0.0047 (9)
C30.0279 (11)0.044 (4)0.0321 (8)0.0019 (9)0.0088 (8)0.0033 (8)
C40.0283 (10)0.042 (4)0.0345 (7)0.0011 (9)0.0078 (7)0.0044 (9)
Geometric parameters (Å, º) top
O1—C11.434 (3)C2—H220.9600
O1—C31.423 (2)C3—H310.9700
C1—H110.9700C3—H320.9700
C1—H120.9700C3—C41.509 (4)
C1—C21.505 (3)C4—H420.9600
C2—H210.9600C4—H410.9600
C2—H230.9600C4—H430.9600
C3—O1—C1110.0 (2)O1—C3—H31110.1
O1—C1—H11110.2O1—C3—H32110.1
O1—C1—H12110.2O1—C3—C4108.2 (3)
O1—C1—C2107.5 (2)H31—C3—H32108.4
H11—C1—H12108.5C4—C3—H31110.1
C2—C1—H11110.2C4—C3—H32110.1
C2—C1—H12110.2C3—C4—H42109.5
C1—C2—H21109.5C3—C4—H41109.5
C1—C2—H23109.5C3—C4—H43109.5
C1—C2—H22109.5H42—C4—H41109.5
H21—C2—H23109.5H42—C4—H43109.5
H21—C2—H22109.5H41—C4—H43109.5
H23—C2—H22109.5
C1—O1—C3—C4172.54 (12)C3—O1—C1—C2179.20 (9)
diethyl ether (diethyl_ether_phase_beta_2_45GPa) top
Crystal data top
C4H10OF(000) = 168
Mr = 74.12Dx = 1.176 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.7759 (3) ÅCell parameters from 1419 reflections
b = 8.0552 (14) Åθ = 4.6–26.3°
c = 7.6873 (2) ŵ = 0.08 mm1
β = 93.713 (3)°T = 295 K
V = 418.70 (8) Å3Disc, colourless
Z = 40.39 × 0.36 × 0.25 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
346 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.025
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.5°, θmin = 4.9°
Tmin = 0.207, Tmax = 1.000h = 88
2154 measured reflectionsk = 55
377 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.0273P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
377 reflectionsΔρmax = 0.12 e Å3
48 parametersΔρmin = 0.11 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17681 (14)0.3159 (3)0.16662 (13)0.0312 (12)
C10.0741 (3)0.4562 (4)0.23044 (19)0.0241 (12)
H110.0324700.5294280.1348220.029*
H120.1600600.5179480.3129580.029*
C20.1030 (2)0.3927 (4)0.3180 (2)0.0326 (11)
H210.1842240.3280730.2364810.049*
H230.1779300.4847730.3576530.049*
H220.0598450.3245910.4156430.049*
C30.3452 (2)0.3678 (5)0.0805 (2)0.0333 (12)
H310.4251570.4419930.1552870.040*
H320.3039050.4271430.0254820.040*
C40.4639 (3)0.2183 (4)0.0373 (2)0.0313 (13)
H420.3854060.1471740.0398920.047*
H410.5023760.1590880.1424150.047*
H430.5798390.2527220.0184460.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0273 (10)0.032 (4)0.0362 (7)0.0022 (6)0.0123 (6)0.0041 (6)
C10.0291 (10)0.015 (4)0.0288 (8)0.0005 (9)0.0021 (7)0.0023 (9)
C20.0297 (12)0.034 (4)0.0349 (8)0.0036 (10)0.0088 (8)0.0045 (10)
C30.0274 (14)0.042 (5)0.0313 (9)0.0014 (11)0.0096 (9)0.0030 (10)
C40.0287 (12)0.033 (5)0.0324 (8)0.0032 (10)0.0062 (7)0.0057 (10)
Geometric parameters (Å, º) top
O1—C11.431 (3)C2—H220.9600
O1—C31.419 (2)C3—H310.9700
C1—H110.9700C3—H320.9700
C1—H120.9700C3—C41.497 (4)
C1—C21.503 (3)C4—H420.9600
C2—H210.9600C4—H410.9600
C2—H230.9600C4—H430.9600
C3—O1—C1110.5 (3)O1—C3—H31109.9
O1—C1—H11110.2O1—C3—H32109.9
O1—C1—H12110.2O1—C3—C4109.0 (3)
O1—C1—C2107.7 (3)H31—C3—H32108.3
H11—C1—H12108.5C4—C3—H31109.9
C2—C1—H11110.2C4—C3—H32109.9
C2—C1—H12110.2C3—C4—H42109.5
C1—C2—H21109.5C3—C4—H41109.5
C1—C2—H23109.5C3—C4—H43109.5
C1—C2—H22109.5H42—C4—H41109.5
H21—C2—H23109.5H42—C4—H43109.5
H21—C2—H22109.5H41—C4—H43109.5
H23—C2—H22109.5
C1—O1—C3—C4172.31 (13)C3—O1—C1—C2179.37 (10)
diethyl ether (diethyl_ether_phase_beta_2_65GPa) top
Crystal data top
C4H10OF(000) = 168
Mr = 74.12Dx = 1.185 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.7612 (3) ÅCell parameters from 1414 reflections
b = 8.0271 (15) Åθ = 4.6–26.3°
c = 7.6687 (3) ŵ = 0.08 mm1
β = 93.784 (4)°T = 295 K
V = 415.29 (8) Å3Disc, colourless
Z = 40.40 × 0.37 × 0.24 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
342 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.022
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.4°, θmin = 4.9°
Tmin = 0.140, Tmax = 1.000h = 87
2120 measured reflectionsk = 55
375 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0819P)2 + 0.0302P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
375 reflectionsΔρmax = 0.14 e Å3
48 parametersΔρmin = 0.15 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17622 (14)0.3155 (3)0.16649 (13)0.0278 (11)
C10.0735 (3)0.4566 (4)0.22999 (19)0.0268 (13)
H110.0315270.5297660.1338550.032*
H120.1598580.5188820.3123730.032*
C20.1039 (2)0.3932 (4)0.3183 (2)0.0319 (11)
H210.1862430.3290730.2365840.048*
H230.1781580.4858340.3587690.048*
H220.0604850.3243790.4157310.048*
C30.3450 (2)0.3690 (5)0.0800 (2)0.0334 (13)
H310.4251380.4434310.1551300.040*
H320.3033220.4285840.0262190.040*
C40.4637 (3)0.2176 (4)0.0368 (2)0.0291 (13)
H420.3846570.1464190.0404280.044*
H410.5020920.1583270.1423620.044*
H430.5800880.2516390.0190550.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (9)0.024 (4)0.0350 (7)0.0023 (5)0.0111 (6)0.0031 (6)
C10.0255 (10)0.028 (4)0.0274 (8)0.0015 (10)0.0024 (7)0.0028 (9)
C20.0266 (12)0.037 (4)0.0331 (8)0.0024 (9)0.0077 (8)0.0035 (10)
C30.0249 (13)0.046 (5)0.0299 (9)0.0011 (10)0.0087 (9)0.0026 (10)
C40.0268 (12)0.030 (5)0.0309 (8)0.0017 (10)0.0053 (7)0.0030 (10)
Geometric parameters (Å, º) top
O1—C11.431 (3)C2—H220.9600
O1—C31.424 (2)C3—H310.9700
C1—H110.9700C3—H320.9700
C1—H120.9700C3—C41.505 (5)
C1—C21.504 (3)C4—H420.9600
C2—H210.9600C4—H410.9600
C2—H230.9600C4—H430.9600
C3—O1—C1110.0 (3)O1—C3—H31110.0
O1—C1—H11110.2O1—C3—H32110.0
O1—C1—H12110.2O1—C3—C4108.3 (3)
O1—C1—C2107.7 (3)H31—C3—H32108.4
H11—C1—H12108.5C4—C3—H31110.0
C2—C1—H11110.2C4—C3—H32110.0
C2—C1—H12110.2C3—C4—H42109.5
C1—C2—H21109.5C3—C4—H41109.5
C1—C2—H23109.5C3—C4—H43109.5
C1—C2—H22109.5H42—C4—H41109.5
H21—C2—H23109.5H42—C4—H43109.5
H21—C2—H22109.5H41—C4—H43109.5
H23—C2—H22109.5
C1—O1—C3—C4172.46 (12)C3—O1—C1—C2179.44 (10)
diethyl ether (diethyl_ether_phase_gamma_2_65GPa) top
Crystal data top
C4H10OF(000) = 168
Mr = 74.12Dx = 1.183 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 7.7073 (12) ÅCell parameters from 695 reflections
b = 4.0885 (4) Åθ = 5.2–26.4°
c = 13.233 (2) ŵ = 0.08 mm1
β = 93.793 (16)°T = 295 K
V = 416.07 (10) Å3Disc, colourless
Z = 40.40 × 0.36 × 0.24 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
202 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.013
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.4°, θmin = 5.2°
Tmin = 0.752, Tmax = 1.000h = 78
1160 measured reflectionsk = 44
223 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.1653P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
223 reflectionsΔρmax = 0.09 e Å3
25 parametersΔρmin = 0.11 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2500000.1448 (3)0.0000000.0334 (9)
C10.1949 (3)0.3422 (4)0.08002 (14)0.0321 (9)
H110.1166280.5109540.0528540.039*
H120.2948010.4479060.1145140.039*
C20.1045 (3)0.1352 (4)0.15316 (15)0.0364 (9)
H230.0668410.2697190.2070060.055*
H220.1829740.0292390.1806960.055*
H210.0054090.0319630.1188260.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0415 (18)0.0255 (10)0.0337 (14)0.0000.0053 (13)0.000
C10.0345 (18)0.0284 (11)0.0335 (16)0.0015 (6)0.0021 (15)0.0043 (6)
C20.0362 (19)0.0371 (12)0.0361 (16)0.0006 (7)0.0035 (15)0.0072 (6)
Geometric parameters (Å, º) top
O1—C1i1.418 (2)C1—C21.493 (3)
O1—C11.418 (2)C2—H230.9600
C1—H110.9700C2—H220.9600
C1—H120.9700C2—H210.9600
C1i—O1—C1110.64 (18)C1—C2—H23109.5
O1—C1—H11109.7C1—C2—H22109.5
O1—C1—H12109.7C1—C2—H21109.5
O1—C1—C2109.69 (14)H23—C2—H22109.5
H11—C1—H12108.2H23—C2—H21109.5
C2—C1—H11109.7H22—C2—H21109.5
C2—C1—H12109.7
C1i—O1—C1—C2168.50 (15)
Symmetry code: (i) x+1/2, y, z.
diethyl ether (diethyl_ether_phase_delta_2_80GPa) top
Crystal data top
C4H10OZ = 2
Mr = 74.12F(000) = 84
Triclinic, P1Dx = 1.215 Mg m3
a = 5.1196 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.6659 (10) ÅCell parameters from 846 reflections
c = 7.2999 (4) Åθ = 5.1–26.1°
α = 97.275 (8)°µ = 0.08 mm1
β = 102.728 (6)°T = 295 K
γ = 96.747 (10)°Disc, colourless
V = 202.56 (4) Å30.36 × 0.36 × 0.23 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
225 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.014
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.1°, θmin = 5.1°
Tmin = 0.675, Tmax = 1.000h = 66
1217 measured reflectionsk = 44
244 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.0893P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
244 reflectionsΔρmax = 0.09 e Å3
48 parametersΔρmin = 0.08 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5029 (7)0.2073 (11)0.3190 (3)0.042 (4)
C10.5498 (12)0.4352 (18)0.2653 (4)0.043 (6)
H110.6280130.4222590.1555050.052*
H120.6767720.5436410.3685040.052*
C20.2856 (8)0.5336 (14)0.2175 (4)0.041 (5)
H210.1676480.4351230.1067010.061*
H230.3198990.6954400.1928970.061*
H220.2011880.5328480.3226110.061*
C30.7439 (8)0.0987 (13)0.3593 (3)0.045 (5)
H310.7172000.0271650.4347450.054*
H320.8922910.2189570.4340440.054*
C40.8197 (10)0.0082 (16)0.1798 (3)0.052 (5)
H410.6791330.1354630.1097030.079*
H430.9867590.0712690.2136960.079*
H420.8409570.1145650.1026100.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.031 (3)0.071 (11)0.0349 (11)0.026 (6)0.0132 (13)0.017 (2)
C10.036 (4)0.072 (17)0.0281 (14)0.026 (9)0.0093 (17)0.012 (3)
C20.036 (4)0.060 (15)0.0327 (12)0.024 (8)0.0094 (14)0.012 (2)
C30.038 (4)0.074 (13)0.0291 (12)0.036 (7)0.0065 (14)0.009 (2)
C40.044 (4)0.086 (15)0.0344 (13)0.036 (8)0.0125 (16)0.008 (3)
Geometric parameters (Å, º) top
O1—C11.405 (13)C2—H220.9600
O1—C31.432 (3)C3—H310.9700
C1—H110.9700C3—H320.9700
C1—H120.9700C3—C41.521 (3)
C1—C21.510 (3)C4—H410.9600
C2—H210.9600C4—H430.9600
C2—H230.9600C4—H420.9600
C1—O1—C3112.5 (5)O1—C3—H31109.1
O1—C1—H11109.8O1—C3—H32109.1
O1—C1—H12109.8O1—C3—C4112.51 (18)
O1—C1—C2109.5 (7)H31—C3—H32107.8
H11—C1—H12108.2C4—C3—H31109.1
C2—C1—H11109.8C4—C3—H32109.1
C2—C1—H12109.8C3—C4—H41109.5
C1—C2—H21109.5C3—C4—H43109.5
C1—C2—H23109.5C3—C4—H42109.5
C1—C2—H22109.5H41—C4—H43109.5
H21—C2—H23109.5H41—C4—H42109.5
H21—C2—H22109.5H43—C4—H42109.5
H23—C2—H22109.5
C1—O1—C3—C477.9 (7)C3—O1—C1—C2177.7 (2)
diethyl ether (diethyl_ether_phase_delta_3_45GPa) top
Crystal data top
C4H10OZ = 2
Mr = 74.12F(000) = 84
Triclinic, P1Dx = 1.242 Mg m3
a = 5.0809 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.6329 (10) ÅCell parameters from 828 reflections
c = 7.2451 (10) Åθ = 5.1–26.0°
α = 97.382 (13)°µ = 0.09 mm1
β = 102.749 (10)°T = 295 K
γ = 97.002 (11)°Disc, colourless
V = 198.13 (5) Å30.37 × 0.37 × 0.22 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
218 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.018
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.1°, θmin = 5.1°
Tmin = 0.036, Tmax = 1.000h = 66
1179 measured reflectionsk = 54
243 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.101H-atom parameters constrained
wR(F2) = 0.361 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.79(Δ/σ)max < 0.001
243 reflectionsΔρmax = 0.30 e Å3
23 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5037 (8)0.2114 (12)0.3175 (4)0.0284 (16)*
C10.5525 (13)0.442 (2)0.2643 (7)0.0307 (17)*
H110.6314280.4299830.1538230.037*
H120.6799080.5516430.3689520.037*
C20.2846 (12)0.5367 (19)0.2166 (9)0.0303 (17)*
H210.1737720.4469660.0975110.045*
H230.3185150.7049990.2053120.045*
H220.1910930.5184510.3167220.045*
C30.7420 (11)0.0974 (16)0.3593 (7)0.0279 (17)*
H310.7093140.0297120.4336820.033*
H320.8935080.2159390.4367650.033*
C40.8200 (11)0.0114 (16)0.1783 (6)0.0311 (17)*
H410.6792820.1412560.1080490.047*
H430.9892650.0726540.2133730.047*
H420.8404800.1113120.0998320.047*
Geometric parameters (Å, º) top
O1—C11.410 (14)C2—H220.9600
O1—C31.431 (4)C3—H310.9700
C1—H110.9700C3—H320.9700
C1—H120.9700C3—C41.528 (6)
C1—C21.508 (5)C4—H410.9600
C2—H210.9600C4—H430.9600
C2—H230.9600C4—H420.9600
C1—O1—C3113.9 (7)O1—C3—H31109.1
O1—C1—H11110.0O1—C3—H32109.1
O1—C1—H12110.0O1—C3—C4112.5 (4)
O1—C1—C2108.5 (8)H31—C3—H32107.8
H11—C1—H12108.4C4—C3—H31109.1
C2—C1—H11110.0C4—C3—H32109.1
C2—C1—H12110.0C3—C4—H41109.5
C1—C2—H21109.5C3—C4—H43109.5
C1—C2—H23109.5C3—C4—H42109.5
C1—C2—H22109.5H41—C4—H43109.5
H21—C2—H23109.5H41—C4—H42109.5
H21—C2—H22109.5H43—C4—H42109.5
H23—C2—H22109.5
C1—O1—C3—C477.6 (7)C3—O1—C1—C2177.7 (2)
diethyl ether (diethyl_ether_phase_delta_3_70GPa) top
Crystal data top
C4H10OZ = 2
Mr = 74.12F(000) = 84
Triclinic, P1Dx = 1.252 Mg m3
a = 5.072 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.629 (2) ÅCell parameters from 822 reflections
c = 7.215 (5) Åθ = 3.7–27.7°
α = 97.43 (5)°µ = 0.09 mm1
β = 102.91 (6)°T = 295 K
γ = 97.15 (5)°Disc, colourless
V = 196.6 (2) Å30.38 × 0.38 × 0.21 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
177 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.038
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.7°, θmin = 3.7°
Tmin = 0.216, Tmax = 1.000h = 55
1025 measured reflectionsk = 77
199 independent reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0907P)2 + 0.0311P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
199 reflectionsΔρmax = 0.09 e Å3
23 parametersΔρmin = 0.10 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5003 (10)0.2063 (3)0.3186 (9)0.0240 (8)*
C10.5440 (16)0.4379 (5)0.2617 (14)0.0224 (8)*
H110.6198860.4242280.1494050.027*
H120.6741850.5493340.3650250.027*
C20.2853 (16)0.5315 (6)0.2166 (13)0.0257 (9)*
H210.1645950.4311910.1045630.039*
H230.3190560.6946280.1918370.039*
H220.2021900.5300860.3237080.039*
C30.7453 (17)0.0991 (5)0.3606 (15)0.0253 (9)*
H310.7192880.0274350.4371500.030*
H320.8957430.2217370.4360150.030*
C40.8184 (17)0.0086 (6)0.1773 (15)0.0267 (10)*
H410.6796560.1426170.1097320.040*
H430.9918350.0640440.2102000.040*
H420.8299000.1131550.0964280.040*
Geometric parameters (Å, º) top
O1—C11.423 (6)C2—H220.9600
O1—C31.437 (9)C3—H310.9700
C1—H110.9700C3—H320.9700
C1—H120.9700C3—C41.524 (8)
C1—C21.460 (11)C4—H410.9600
C2—H210.9600C4—H430.9600
C2—H230.9600C4—H420.9600
C1—O1—C3113.2 (3)O1—C3—H31109.3
O1—C1—H11109.7O1—C3—H32109.3
O1—C1—H12109.7O1—C3—C4111.7 (9)
O1—C1—C2109.9 (3)H31—C3—H32107.9
H11—C1—H12108.2C4—C3—H31109.3
C2—C1—H11109.7C4—C3—H32109.3
C2—C1—H12109.7C3—C4—H41109.5
C1—C2—H21109.5C3—C4—H43109.5
C1—C2—H23109.5C3—C4—H42109.5
C1—C2—H22109.5H41—C4—H43109.5
H21—C2—H23109.5H41—C4—H42109.5
H21—C2—H22109.5H43—C4—H42109.5
H23—C2—H22109.5
C1—O1—C3—C477.6 (5)C3—O1—C1—C2178.5 (6)
diethyl ether (diethyl_ether_phase_delta_4_90GPa) top
Crystal data top
C4H10OZ = 2
Mr = 74.12F(000) = 84
Triclinic, P1Dx = 1.293 Mg m3
a = 5.0182 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.575 (3) ÅCell parameters from 655 reflections
c = 7.136 (3) Åθ = 4.4–27.9°
α = 97.36 (4)°µ = 0.09 mm1
β = 102.81 (3)°T = 295 K
γ = 97.72 (4)°Disc, colourless
V = 190.31 (14) Å30.40 × 0.40 × 0.20 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
153 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.095
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.9°, θmin = 4.4°
Tmin = 0.136, Tmax = 1.000h = 55
944 measured reflectionsk = 66
195 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.1287P)2 + 0.0085P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
195 reflectionsΔρmax = 0.12 e Å3
23 parametersΔρmin = 0.12 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4987 (12)0.2042 (9)0.3204 (7)0.0254 (10)*
C10.545 (2)0.4379 (17)0.2630 (13)0.0256 (12)*
H110.6231290.4240730.1499480.031*
H120.6770560.5509310.3677200.031*
C20.281 (2)0.5333 (18)0.2156 (13)0.0302 (13)*
H210.1559210.4269960.1059770.045*
H230.3162700.6951250.1842230.045*
H220.2005980.5396330.3257450.045*
C30.747 (2)0.1009 (15)0.3620 (11)0.0254 (12)*
H310.7232070.0263090.4406910.030*
H320.8987710.2272370.4366530.030*
C40.818 (2)0.0086 (16)0.1748 (13)0.0320 (12)*
H410.6866680.1538690.1136000.048*
H431.0011990.0495460.2059570.048*
H420.8123740.1092100.0875020.048*
Geometric parameters (Å, º) top
O1—C11.421 (8)C2—H220.9600
O1—C31.429 (6)C3—H310.9700
C1—H110.9700C3—H320.9700
C1—H120.9700C3—C41.533 (8)
C1—C21.479 (8)C4—H410.9600
C2—H210.9600C4—H430.9600
C2—H230.9600C4—H420.9600
C1—O1—C3112.1 (5)O1—C3—H31109.3
O1—C1—H11109.7O1—C3—H32109.3
O1—C1—H12109.7O1—C3—C4111.5 (7)
O1—C1—C2110.0 (7)H31—C3—H32108.0
H11—C1—H12108.2C4—C3—H31109.3
C2—C1—H11109.7C4—C3—H32109.3
C2—C1—H12109.7C3—C4—H41109.5
C1—C2—H21109.5C3—C4—H43109.5
C1—C2—H23109.5C3—C4—H42109.5
C1—C2—H22109.5H41—C4—H43109.5
H21—C2—H23109.5H41—C4—H42109.5
H21—C2—H22109.5H43—C4—H42109.5
H23—C2—H22109.5
C1—O1—C3—C478.2 (7)C3—O1—C1—C2178.2 (7)
dipropyl ether (dipropyl_ether_phase_alpha_1_70GPa) top
Crystal data top
C6H14OF(000) = 232
Mr = 102.17Dx = 1.128 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.416 (4) ÅCell parameters from 1225 reflections
b = 4.1817 (3) Åθ = 5.0–24.3°
c = 15.579 (7) ŵ = 0.07 mm1
β = 101.23 (5)°T = 295 K
V = 601.7 (4) Å3Disc, colourless
Z = 40.39 × 0.37 × 0.25 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
286 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.025
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.4°, θmin = 5.1°
Tmin = 0.507, Tmax = 1.000h = 88
3001 measured reflectionsk = 55
386 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.1115P)2 + 0.0052P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
386 reflectionsΔρmax = 0.10 e Å3
66 parametersΔρmin = 0.09 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4584 (3)0.8467 (3)0.1317 (2)0.060 (4)
C10.3752 (5)0.7145 (5)0.0533 (3)0.058 (5)
H110.3811950.4829540.0552190.070*
H120.4127140.7884370.0030690.070*
C20.2192 (5)0.8192 (5)0.0453 (3)0.055 (5)
H220.2153421.0495770.0516840.066*
H210.1786360.7222020.0916870.066*
C30.1296 (7)0.7211 (5)0.0435 (4)0.070 (5)
H330.0331050.8040500.0493200.105*
H310.1259590.4921130.0476130.105*
H320.1734110.8057420.0894360.105*
C40.6010 (5)0.7224 (6)0.1490 (3)0.054 (5)
H410.6512280.7881870.1031950.065*
H420.5974590.4905430.1494710.065*
C50.6821 (5)0.8410 (5)0.2361 (3)0.057 (5)
H520.6368770.7578030.2823390.068*
H510.6769591.0725950.2375910.068*
C60.8394 (6)0.7377 (5)0.2520 (4)0.064 (6)
H630.8903350.8307680.3055500.096*
H610.8825440.8079610.2042950.096*
H620.8448930.5088010.2562520.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.049 (5)0.0445 (10)0.071 (5)0.0031 (10)0.025 (5)0.0060 (11)
C10.055 (7)0.0386 (12)0.065 (7)0.0009 (15)0.026 (7)0.0007 (16)
C20.045 (7)0.0441 (13)0.066 (7)0.0021 (16)0.014 (7)0.0012 (17)
C30.060 (7)0.0557 (14)0.076 (7)0.0001 (17)0.032 (7)0.0025 (18)
C40.041 (7)0.0416 (13)0.067 (7)0.0010 (14)0.019 (7)0.0046 (16)
C50.049 (6)0.0449 (12)0.065 (6)0.0004 (16)0.018 (6)0.0025 (18)
C60.051 (8)0.0605 (15)0.066 (7)0.0066 (18)0.025 (7)0.0095 (19)
Geometric parameters (Å, º) top
O1—C11.428 (4)C3—H320.9600
O1—C41.416 (5)C4—H410.9700
C1—H110.9700C4—H420.9700
C1—H120.9700C4—C51.505 (4)
C1—C21.514 (7)C5—H520.9700
C2—H220.9700C5—H510.9700
C2—H210.9700C5—C61.516 (7)
C2—C31.530 (5)C6—H630.9600
C3—H330.9600C6—H610.9600
C3—H310.9600C6—H620.9600
C4—O1—C1111.3 (4)O1—C4—H41109.6
O1—C1—H11110.0O1—C4—H42109.6
O1—C1—H12110.0O1—C4—C5110.3 (4)
O1—C1—C2108.7 (4)H41—C4—H42108.1
H11—C1—H12108.3C5—C4—H41109.6
C2—C1—H11110.0C5—C4—H42109.6
C2—C1—H12110.0C4—C5—H52109.4
C1—C2—H22109.5C4—C5—H51109.4
C1—C2—H21109.5C4—C5—C6111.2 (5)
C1—C2—C3110.7 (5)H52—C5—H51108.0
H22—C2—H21108.1C6—C5—H52109.4
C3—C2—H22109.5C6—C5—H51109.4
C3—C2—H21109.5C5—C6—H63109.5
C2—C3—H33109.5C5—C6—H61109.5
C2—C3—H31109.5C5—C6—H62109.5
C2—C3—H32109.5H63—C6—H61109.5
H33—C3—H31109.5H63—C6—H62109.5
H33—C3—H32109.5H61—C6—H62109.5
H31—C3—H32109.5
O1—C1—C2—C3172.4 (3)C1—O1—C4—C5174.7 (4)
O1—C4—C5—C6174.4 (3)C4—O1—C1—C2172.0 (3)
dipropyl ether (dipropyl_ether_phase_alpha_2_10GPa) top
Crystal data top
C6H14OF(000) = 232
Mr = 102.17Dx = 1.159 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.368 (8) ÅCell parameters from 1024 reflections
b = 4.1229 (4) Åθ = 5.1–24.5°
c = 15.434 (4) ŵ = 0.08 mm1
β = 100.84 (6)°T = 295 K
V = 585.5 (6) Å3Disc, colourless
Z = 40.39 × 0.38 × 0.24 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
287 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.030
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.5°, θmin = 5.1°
Tmin = 0.517, Tmax = 1.000h = 66
2850 measured reflectionsk = 55
383 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.3061P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
383 reflectionsΔρmax = 0.10 e Å3
66 parametersΔρmin = 0.10 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4584 (5)0.8479 (5)0.1318 (2)0.060 (4)
C10.3745 (8)0.7127 (7)0.0543 (3)0.050 (5)
H110.3797920.4778860.0573130.060*
H120.4127710.7828710.0032530.060*
C20.2200 (8)0.8189 (7)0.0454 (3)0.051 (6)
H220.2167101.0527440.0517550.061*
H210.1781570.7222360.0922110.061*
C30.1293 (10)0.7207 (8)0.0443 (3)0.067 (6)
H330.0306400.7904860.0476200.100*
H310.1317470.4892620.0505470.100*
H320.1688370.8211130.0906950.100*
C40.6019 (8)0.7218 (7)0.1489 (3)0.052 (6)
H410.6526550.7901340.1026950.062*
H420.5984040.4866370.1488550.062*
C50.6824 (8)0.8402 (7)0.2367 (3)0.057 (6)
H520.6368470.7536640.2832530.069*
H510.6768551.0749570.2387380.069*
C60.8411 (8)0.7362 (8)0.2522 (3)0.068 (6)
H630.8914900.8260820.3068520.101*
H610.8850900.8130850.2046820.101*
H620.8469180.5038210.2548600.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.071 (9)0.0434 (13)0.052 (3)0.0061 (17)0.019 (5)0.0083 (11)
C10.063 (12)0.0385 (17)0.041 (3)0.002 (3)0.011 (6)0.0000 (16)
C20.063 (13)0.0423 (18)0.043 (4)0.000 (3)0.003 (7)0.0001 (16)
C30.091 (13)0.050 (2)0.047 (4)0.002 (3)0.016 (7)0.0013 (18)
C40.059 (12)0.0393 (18)0.048 (4)0.001 (3)0.012 (6)0.0046 (16)
C50.069 (13)0.0419 (17)0.051 (4)0.001 (3)0.016 (7)0.0003 (17)
C60.083 (13)0.051 (2)0.055 (4)0.003 (3)0.023 (7)0.0028 (18)
Geometric parameters (Å, º) top
O1—C11.416 (4)C3—H320.9600
O1—C41.419 (8)C4—H410.9700
C1—H110.9700C4—H420.9700
C1—H120.9700C4—C51.504 (4)
C1—C21.493 (10)C5—H520.9700
C2—H220.9700C5—H510.9700
C2—H210.9700C5—C61.523 (9)
C2—C31.536 (4)C6—H630.9600
C3—H330.9600C6—H610.9600
C3—H310.9600C6—H620.9600
C1—O1—C4111.6 (4)O1—C4—H41109.6
O1—C1—H11109.7O1—C4—H42109.6
O1—C1—H12109.7O1—C4—C5110.2 (5)
O1—C1—C2109.7 (5)H41—C4—H42108.1
H11—C1—H12108.2C5—C4—H41109.6
C2—C1—H11109.7C5—C4—H42109.6
C2—C1—H12109.7C4—C5—H52109.4
C1—C2—H22109.3C4—C5—H51109.4
C1—C2—H21109.3C4—C5—C6111.1 (5)
C1—C2—C3111.6 (6)H52—C5—H51108.0
H22—C2—H21108.0C6—C5—H52109.4
C3—C2—H22109.3C6—C5—H51109.4
C3—C2—H21109.3C5—C6—H63109.5
C2—C3—H33109.5C5—C6—H61109.5
C2—C3—H31109.5C5—C6—H62109.5
C2—C3—H32109.5H63—C6—H61109.5
H33—C3—H31109.5H63—C6—H62109.5
H33—C3—H32109.5H61—C6—H62109.5
H31—C3—H32109.5
O1—C1—C2—C3171.5 (4)C1—O1—C4—C5173.4 (4)
O1—C4—C5—C6174.2 (4)C4—O1—C1—C2172.7 (4)
dipropyl ether (dipropyl_ether_phase_alpha_2_80GPa) top
Crystal data top
C6H14OF(000) = 232
Mr = 102.17Dx = 1.202 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.293 (7) ÅCell parameters from 1241 reflections
b = 4.0686 (2) Åθ = 5.2–25.5°
c = 15.1855 (10) ŵ = 0.08 mm1
β = 100.35 (3)°T = 295 K
V = 564.8 (4) Å3Disc, colourless
Z = 40.46 × 0.43 × 0.23 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
282 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.027
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.6°, θmin = 5.2°
Tmin = 0.715, Tmax = 1.000h = 44
2881 measured reflectionsk = 55
356 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.095P)2 + 0.1072P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
356 reflectionsΔρmax = 0.09 e Å3
66 parametersΔρmin = 0.12 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4592 (8)0.8515 (6)0.13181 (16)0.048 (5)
C10.3710 (14)0.7144 (8)0.0534 (3)0.057 (7)
H110.3758370.4764280.0565910.069*
H120.4087630.7835970.0008410.069*
C20.2183 (15)0.8207 (9)0.0454 (3)0.059 (8)
H220.2150891.0577620.0515050.070*
H210.1764150.7239910.0934910.070*
C30.1275 (10)0.7202 (6)0.04411 (19)0.061 (6)
H330.0305150.8083170.0491940.091*
H310.1225540.4848450.0478210.091*
H320.1721520.8041950.0918160.091*
C40.6028 (12)0.7222 (8)0.1489 (2)0.049 (7)
H410.6542020.7883140.1014890.059*
H420.5986060.4840450.1495220.059*
C50.6839 (15)0.8434 (9)0.2368 (3)0.047 (9)
H520.6371620.7599270.2844760.056*
H510.6793311.0814720.2380590.056*
C60.8413 (16)0.7369 (10)0.2531 (3)0.070 (9)
H630.8908330.8270790.3087760.104*
H610.8872680.8143270.2052280.104*
H620.8463200.5013710.2556740.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.070 (16)0.0361 (14)0.0318 (16)0.001 (2)0.008 (4)0.0059 (9)
C10.11 (2)0.0296 (18)0.0280 (19)0.004 (3)0.010 (6)0.0011 (13)
C20.11 (3)0.035 (2)0.035 (2)0.001 (3)0.012 (6)0.0029 (14)
C30.109 (19)0.0418 (16)0.0286 (18)0.006 (3)0.002 (5)0.0006 (10)
C40.08 (2)0.0324 (18)0.028 (2)0.006 (4)0.001 (6)0.0039 (13)
C50.07 (3)0.034 (2)0.033 (2)0.002 (3)0.002 (7)0.0017 (13)
C60.13 (3)0.044 (2)0.030 (2)0.002 (4)0.006 (7)0.0046 (15)
Geometric parameters (Å, º) top
O1—C11.432 (10)C3—H320.9600
O1—C41.414 (14)C4—H410.9700
C1—H110.9700C4—H420.9700
C1—H120.9700C4—C51.495 (10)
C1—C21.468 (19)C5—H520.9700
C2—H220.9700C5—H510.9700
C2—H210.9700C5—C61.50 (2)
C2—C31.522 (10)C6—H630.9600
C3—H330.9600C6—H610.9600
C3—H310.9600C6—H620.9600
C4—O1—C1112.8 (5)O1—C4—H41109.6
O1—C1—H11109.5O1—C4—H42109.6
O1—C1—H12109.5O1—C4—C5110.4 (5)
O1—C1—C2110.8 (4)H41—C4—H42108.1
H11—C1—H12108.1C5—C4—H41109.6
C2—C1—H11109.5C5—C4—H42109.6
C2—C1—H12109.5C4—C5—H52109.3
C1—C2—H22109.3C4—C5—H51109.3
C1—C2—H21109.3C4—C5—C6111.8 (5)
C1—C2—C3111.6 (4)H52—C5—H51107.9
H22—C2—H21108.0C6—C5—H52109.3
C3—C2—H22109.3C6—C5—H51109.3
C3—C2—H21109.3C5—C6—H63109.5
C2—C3—H33109.5C5—C6—H61109.5
C2—C3—H31109.5C5—C6—H62109.5
C2—C3—H32109.5H63—C6—H61109.5
H33—C3—H31109.5H63—C6—H62109.5
H33—C3—H32109.5H61—C6—H62109.5
H31—C3—H32109.5
O1—C1—C2—C3171.5 (2)C1—O1—C4—C5173.3 (3)
O1—C4—C5—C6174.6 (5)C4—O1—C1—C2172.1 (4)
dipropyl ether (dipropyl_ether_phase_alpha_3_85GPa) top
Crystal data top
C6H14OF(000) = 232
Mr = 102.17Dx = 1.249 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.198 (9) ÅCell parameters from 1140 reflections
b = 4.0064 (3) Åθ = 5.2–24.9°
c = 14.9459 (15) ŵ = 0.08 mm1
β = 99.54 (4)°T = 295 K
V = 543.1 (5) Å3Disc, colourless
Z = 40.38 × 0.36 × 0.22 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
281 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.030
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.5°, θmin = 5.3°
Tmin = 0.650, Tmax = 1.000h = 44
2785 measured reflectionsk = 55
347 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.017P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
347 reflectionsΔρmax = 0.06 e Å3
66 parametersΔρmin = 0.06 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4590 (6)0.8573 (4)0.13140 (11)0.032 (3)
C10.3718 (9)0.7137 (6)0.05340 (17)0.038 (5)
H110.3768980.4722710.0577710.045*
H120.4105120.7803730.0004370.045*
C20.2172 (11)0.8215 (6)0.04531 (19)0.040 (5)
H220.2138521.0623640.0512460.049*
H210.1741940.7242330.0943210.049*
C30.1266 (7)0.7189 (4)0.04495 (14)0.038 (4)
H330.0301790.8167850.0508660.056*
H310.1178140.4801410.0473870.056*
H320.1744560.7948640.0935980.056*
C40.6039 (8)0.7236 (5)0.14848 (16)0.033 (5)
H410.6562530.7879940.0999480.039*
H420.5987150.4818100.1495530.039*
C50.6864 (10)0.8467 (6)0.23728 (17)0.041 (6)
H510.6827881.0886140.2382990.049*
H520.6388020.7642340.2861610.049*
C60.8428 (10)0.7367 (7)0.25265 (18)0.037 (5)
H630.8928490.8285150.3087170.055*
H610.8896710.8130540.2036030.055*
H620.8469290.4974510.2555610.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.028 (10)0.0343 (10)0.0316 (10)0.0025 (15)0.005 (3)0.0050 (6)
C10.061 (15)0.0259 (12)0.0248 (13)0.002 (2)0.004 (4)0.0016 (9)
C20.061 (16)0.0286 (13)0.0321 (15)0.005 (2)0.009 (4)0.0007 (9)
C30.044 (12)0.0368 (11)0.0302 (13)0.0008 (18)0.001 (3)0.0003 (7)
C40.040 (15)0.0298 (12)0.0263 (15)0.004 (2)0.001 (4)0.0037 (8)
C50.063 (18)0.0299 (13)0.0285 (14)0.004 (2)0.005 (4)0.0028 (9)
C60.041 (18)0.0367 (16)0.0287 (15)0.005 (3)0.004 (4)0.0030 (9)
Geometric parameters (Å, º) top
O1—C11.423 (7)C3—H320.9600
O1—C41.419 (9)C4—H410.9700
C1—H110.9700C4—H420.9700
C1—H120.9700C4—C51.499 (6)
C1—C21.472 (14)C5—H510.9700
C2—H220.9700C5—H520.9700
C2—H210.9700C5—C61.485 (13)
C2—C31.520 (7)C6—H630.9600
C3—H330.9600C6—H610.9600
C3—H310.9600C6—H620.9600
C4—O1—C1112.3 (3)O1—C4—H41109.4
O1—C1—H11109.5O1—C4—H42109.4
O1—C1—H12109.5O1—C4—C5111.0 (4)
O1—C1—C2110.8 (3)H41—C4—H42108.0
H11—C1—H12108.1C5—C4—H41109.4
C2—C1—H11109.5C5—C4—H42109.4
C2—C1—H12109.5C4—C5—H51109.2
C1—C2—H22109.2C4—C5—H52109.2
C1—C2—H21109.2H51—C5—H52107.9
C1—C2—C3111.9 (3)C6—C5—C4112.0 (4)
H22—C2—H21107.9C6—C5—H51109.2
C3—C2—H22109.2C6—C5—H52109.2
C3—C2—H21109.2C5—C6—H63109.5
C2—C3—H33109.5C5—C6—H61109.5
C2—C3—H31109.5C5—C6—H62109.5
C2—C3—H32109.5H63—C6—H61109.5
H33—C3—H31109.5H63—C6—H62109.5
H33—C3—H32109.5H61—C6—H62109.5
H31—C3—H32109.5
O1—C1—C2—C3170.71 (15)C1—O1—C4—C5172.7 (2)
O1—C4—C5—C6174.5 (4)C4—O1—C1—C2171.8 (3)
dipropyl ether (dipropyl_ether_phase_alpha_5_30GPa) top
Crystal data top
C6H14OF(000) = 232
Mr = 102.17Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.099 (12) ÅCell parameters from 1024 reflections
b = 3.9465 (3) Åθ = 5.3–26.1°
c = 14.649 (8) ŵ = 0.09 mm1
β = 98.32 (10)°T = 295 K
V = 520.5 (7) Å3Disc, colourless
Z = 40.44 × 0.40 × 0.21 mm
Data collection top
KUMA KM4-CCD, Eos
diffractometer
232 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.035
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.3°, θmin = 5.4°
Tmin = 0.725, Tmax = 1.000h = 77
2594 measured reflectionsk = 44
310 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.3422P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
310 reflectionsΔρmax = 0.10 e Å3
66 parametersΔρmin = 0.08 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4627 (19)0.8650 (7)0.1325 (8)0.050 (9)
C10.371 (3)0.7166 (10)0.0531 (12)0.023 (12)
H120.4099120.7808010.0025780.028*
H110.3751520.4716180.0580450.028*
C20.217 (2)0.8244 (10)0.0454 (9)0.049 (11)
H220.2131161.0690160.0512350.059*
H210.1722360.7266980.0957600.059*
C30.127 (2)0.7196 (10)0.0455 (8)0.046 (10)
H330.0296150.8200620.0509860.069*
H310.1173000.4772800.0476070.069*
H320.1758530.7950270.0955380.069*
C40.605 (3)0.7270 (11)0.1482 (13)0.033 (14)
H410.6585360.7895940.0978570.040*
H420.5984530.4818670.1493040.040*
C50.693 (2)0.8507 (9)0.2395 (8)0.044 (11)
H510.6911231.0963900.2409380.052*
H520.6449990.7686280.2902710.052*
C60.846 (2)0.7360 (12)0.2521 (9)0.066 (10)
H630.8967180.8217680.3094380.100*
H610.8938930.8174750.2021880.100*
H620.8482480.4928310.2530030.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.07 (2)0.0270 (14)0.056 (9)0.006 (5)0.034 (14)0.002 (3)
C10.01 (3)0.0240 (18)0.037 (17)0.001 (10)0.00 (2)0.000 (6)
C20.07 (3)0.0260 (18)0.059 (12)0.005 (5)0.042 (18)0.001 (3)
C30.07 (3)0.0302 (19)0.039 (11)0.004 (6)0.021 (16)0.002 (4)
C40.02 (4)0.0253 (19)0.055 (17)0.007 (10)0.02 (2)0.006 (6)
C50.08 (3)0.0245 (18)0.028 (10)0.006 (5)0.015 (17)0.004 (3)
C60.12 (3)0.030 (2)0.064 (12)0.008 (6)0.053 (17)0.005 (4)
Geometric parameters (Å, º) top
O1—C11.46 (4)C3—H320.9600
O1—C41.40 (4)C4—H410.9700
C1—H120.9700C4—H420.9700
C1—H110.9700C4—C51.53 (4)
C1—C21.45 (4)C5—H510.9700
C2—H220.9700C5—H520.9700
C2—H210.9700C5—C61.45 (3)
C2—C31.52 (3)C6—H630.9600
C3—H330.9600C6—H610.9600
C3—H310.9600C6—H620.9600
C4—O1—C1112.9 (6)O1—C4—H41109.2
O1—C1—H12109.1O1—C4—H42109.2
O1—C1—H11109.1O1—C4—C5111.8 (6)
H12—C1—H11107.9H41—C4—H42107.9
C2—C1—O1112.4 (5)C5—C4—H41109.2
C2—C1—H12109.1C5—C4—H42109.2
C2—C1—H11109.1C4—C5—H51109.2
C1—C2—H22109.1C4—C5—H52109.2
C1—C2—H21109.1H51—C5—H52107.9
C1—C2—C3112.3 (6)C6—C5—C4112.2 (6)
H22—C2—H21107.9C6—C5—H51109.2
C3—C2—H22109.1C6—C5—H52109.2
C3—C2—H21109.1C5—C6—H63109.5
C2—C3—H33109.5C5—C6—H61109.5
C2—C3—H31109.5C5—C6—H62109.5
C2—C3—H32109.5H63—C6—H61109.5
H33—C3—H31109.5H63—C6—H62109.5
H33—C3—H32109.5H61—C6—H62109.5
H31—C3—H32109.5
O1—C1—C2—C3170.2 (4)C1—O1—C4—C5172.0 (4)
O1—C4—C5—C6174.3 (4)C4—O1—C1—C2171.4 (4)
 

Funding information

This study was supported by the National Science Centre, Poland (grant No. 2020/37/B/ST4/00982).

References

First citationAndré, D., Fourme, R. & Zechmeister, K. (1972). Acta Cryst. B28, 2389–2395.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBassett, W. A. (2009). High. Press. Res. 29, 163–186.  Web of Science CrossRef CAS Google Scholar
First citationBoldyreva, E. V. (2008). Acta Cryst. A64, 218–231.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBridgman, P. W. (1913). Proc. Am. Acad. Arts Sci. 49, 3–114.  CrossRef Google Scholar
First citationBudzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 101–112. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationChang, H.-C., Jiang, J.-C., Chuang, C.-W., Lin, J.-S., Lai, W.-W., Yang, Y.-C. & Lin, S. H. (2005). Chem. Phys. Lett. 410, 42–48.  Web of Science CrossRef CAS Google Scholar
First citationCounsell, J. F., Lee, D. A. & Martin, J. F. (1971). J. Chem. Soc. A, pp. 313.  Google Scholar
First citationDennington, R., Keith, T. & Millam, J. (2016). GaussView. Version 6.1. Semichem Inc., Shawnee Mission, KS, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDurig, J. R. & Church, J. S. (1981). Mol. Cryst. Liq. Cryst. 69, 217–240.  CrossRef CAS Web of Science Google Scholar
First citationDziubek, K. F., Jęczmiński, D. & Katrusiak, A. (2010). J. Phys. Chem. Lett. 1, 844–849.  Web of Science CrossRef CAS Google Scholar
First citationFabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932–942.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16W, Revision C.01, Gaussian, Inc. Wallingford, CT, USA.  Google Scholar
First citationGavezzotti, A. (1994). Acc. Chem. Res. 27, 309–314.  CrossRef CAS Web of Science Google Scholar
First citationGavezzotti, A. & Filippini, G. (1994). J. Phys. Chem. 98, 4831–4837.  CrossRef CAS Web of Science Google Scholar
First citationMao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673–4676.  CrossRef CAS Web of Science Google Scholar
First citationResnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675–690.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaga, K., Kawasaki, K., Yamamoto, Y., Yoshida, T., Ohno, K. & Matsuura, H. (2006). J. Mol. Struct. 788, 159–175.  Web of Science CrossRef CAS Google Scholar
First citationTimmermans, J. (1911). Bull. Soc. Chim. Belg. 25, 300–327.  Google Scholar
First citationVojinović, K., Losehand, U. & Mitzel, N. W. (2004). Dalton Trans. pp. 2578–2581.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
ISSN: 2052-2525