research papers
Conformation–aggregation interplay in the simplest aliphatic
probed under high pressureaFaculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, Poznan 61-614, Poland, bFaculty of Chemistry, University of Opole, Oleska 48, Opole 45-052, Poland, and cInstitut für Mineralogie und Kristallographie, Universität Wien, Josef-Holaubek-Platz 2, Wien A-1090, Austria
*Correspondence e-mail: marcinp@amu.edu.pl
The structures of the simplest symmetric primary nH2n+1)2O, n = 1–3] determined under high pressure revealed their conformational preferences and intermolecular interactions. In three new polymorphs of diethyl ether (C2H5)2O, high pressure promotes intermolecular CH⋯O contacts and enforces a conversion from the trans–trans conformer present in the α, β and γ phases to the trans–gauche conformer, which is higher in energy by 6.4 kJ mol−1, in the δ phase. Two new polymorphs of dimethyl ether (CH3)2O display analogous transformations of the CH⋯O bonds. The of di-n-propyl ether (C3H7)2O, determined for the first time, is remarkably stable over the whole pressure range investigated from 1.70 up to 5.30 GPa.
[(CKeywords: conformation–aggregation interplay; aliphatic ethers; in situ crystallization; high pressure.
1. Introduction
Pressure can drastically affect the association of molecules, i.e. one of the most essential properties of solvents (Boldyreva, 2008; Fabbiani & Pulham, 2006; Resnati et al., 2015). Ethoxyethane [diethyl ether, (C2H5)2O, hereafter DEE] is a solvent commonly used in chemical practice and has also previously been applied as a general anaesthetic. Raman spectroscopy (Taga et al., 2006) was used to demonstrate that, in the gaseous and liquid states, the trans–trans (TT) conformer prevails over the trans–gauche conformers (TG+, TG−), which are less stable by ca 6.4 kJ mol−1. For over a century, DEE has been known to freeze as stable and metastable polymorphs, melting at 157 and 150 K, respectively (Timmermans, 1911). The melting temperatures, 156.92 K for the stable form and 149.86 K for the metastable form, and the heats of fusion were precisely determined by Counsell et al. (1971). In the stable α phase, determined by André et al. (1972) in the P212121 with Z = 8, the molecules assume the TT conformation. The of the metastable form was not determined, but its vibrational spectra indicated that there are two independent molecules, both in the TT conformation (Durig & Church, 1981). The existence of the metastable modification and the tendency of DEE to vitrify were explained in terms of the fairly loose structure of the α phase, and hence the low value of stabilization energy compared with the amorphous state (André et al., 1972).
In the literature, there is much less information about the structure, interactions and properties of other aliphatic et al. (2004). The of di-n-propyl ether (DPE) had not been determined. It was established that in the structure of tetrahydrofuran, a cyclic analogue of DEE, molecular aggregation is stabilized by CH⋯O interactions, which are strongly enhanced under high pressure (Dziubek et al., 2010; Chang et al., 2005). Such CH⋯O contacts are sterically hindered in the TT conformers, present in the structure of the α phase of DEE. Therefore, acyclic such as DEE and higher ones are expected to change their TT conformations under high pressure. In the simplest ether DME, the molecular structure can be modified owing to the C—O—C angle and the methyl group rotations, whereas the intermolecular interactions can be changed by a rearrangements of molecules. Here, we describe the effect of high pressure on the of DEE, and we also studied DME and DPE in order to obtain more general information about the role of molecular structure with respect to the interactions and aggregation for this class of compounds.
Dimethyl ether (DME) freezes at 93 K and its was determined by Vojinović2. Experimental
DME (≥99.9%), DEE (≥99%) and DPE (≥99%), all purchased from Merck, were used as delivered. All three in situ in a modified Merrill–Bassett diamond-anvil cell (DAC) (Bassett, 2009). In each experiment, the DAC was equipped with a 0.3 mm-thick steel gasket with a hole 0.4 mm in diameter. At 295 K, DME, DEE and DPE froze at 2.95, 1.50 and 1.35 GPa, respectively, in the form of polycrystalline masses filling the volume of the DAC chamber. Single crystals were obtained under isochoric conditions (Fig. 1): the DAC containing the squeezed polycrystalline mass of the ether sample was heated with a hot-air gun until all but one grain melted. Then the DAC was slowly cooled to room temperature and the single crystal grew to eventually fill the whole chamber. The temperature inside the DAC was measured using an infrared thermometer. The pressure was calibrated by the ruby fluorescence method (Mao et al., 1986) before and after the X-ray diffraction measurements using a Photon Control spectrometer with an accuracy of 0.02 GPa. The experimental details and progress in growing the single crystals are shown in Figs. S1–S18 of the supporting information.
were crystallizedThe KUMA KM4-CCD diffractometer was used for the high-pressure X-ray diffraction studies. The DAC was centred by the gasket-shadow method (Budzianowski & Katrusiak, 2004). The CrysAlisPro suite was used for data collection, determination of the UB matrices and unit-cell parameters, and data reductions (Rigaku Oxford Diffraction, 2019). For all data, we accounted for the and absorption effects. The programs SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) within the OLEX2 (Dolomanov et al., 2009) GUI were used to solve the structures by and refine the models by full-matrix least-squares on F2. Anisotropic displacement parameters were applied for non-hydrogen atoms, but the isotropic thermal parameters were occasionally retained for atoms with unreasonable anisotropic factors or for lower-quality datasets. Hydrogen atoms were located from the molecular geometry, with the C—H distances equal to 0.97 Å (–CH2–) or 0.96 Å (–CH3) and their Uiso factors constrained to 1.2 or 1.5 times that of Ueq of the carriers. The crystal and experimental data are summarized in Table 1 and Tables S1–S4 of the supporting information.
|
A ab initio approach of the density functional theory (DFT) with the B3LYP/6–311++g(2d,2p) method using GAUSSIAN 16W (Frisch et al., 2016). The Ep map has been created as a function of the torsion angles C2—C1—O1—C3 and C4—C3—O1—C1 with a step of 30° (Dennington et al., 2016). The methyl hydrogen atoms (constraint AFIX 137) deviate by up to ca 8° in the H—C—C—O torsion angles for DEE compared with those obtained from the geometry optimization for the isolated molecule by GAUSSIAN 16W. The structure of DEE in the γ phase best agrees with the calculations, and the largest difference was observed for the δ phase.
of the isolated DEE molecule in the gas phase was performed with the3. Results and discussion
The lowest pressure for investigating the structure of the simplest primary .
was chosen, about 0.3 GPa above their freezing pressure points, to ensure the stability of the single-crystal samples during the X-ray diffraction data collection experiments. The maximum pressure was the result of reaching the mechanical or thermal limitation of the DAC during the procedure to obtain the single crystals. The molecular volumes of the studied as a function of pressure are plotted in Fig. 2We have established that DEE freezes at 1.50 GPa when isothermally compressed at 295 K. Therefore, the single crystal was grown under isochoric conditions from the liquid in a DAC at 1.85 GPa (Fig. 1). The new β phase, built of TT conformers, is stable up to 2.65 GPa, when the γ phase, also built of the TT conformers, is formed. At even higher pressure, the DEE molecules adopt the TG conformation and the δ phase is formed, investigated between 2.80 and 4.90 GPa (Fig. 2). In the TG conformers, the reduced around the oxygen atom facilitates the formation of a larger number of CH⋯O contacts. When releasing pressure, the δ phase transforms to the β phase below 2.70 GPa.
In DME, the α phase of the tetragonal P42/n (Vojinović et al., 2004). At 3.30 GPa and 295 K, DME forms the centrosymmetric β phase in the P21/c, and then, with increasing pressure, to 4.40 GPa, it transforms to the γ phase of the space-group symmetry P1 (Fig. 2). In DPE, the conformation is important for the molecular aggregation. The of DPE at 0.1 MPa and low temperature has not yet been reported. At high pressure and 295 K, DPE crystallizes in the centrosymmetric P21/c. It was found that this phase (α phase) is stable from 1.70 to 5.30 GPa at least.
around the oxygen atom is smaller and the number of H⋯O contacts increases without conformational transformations. At 0.1 MPa and 93 K, DME crystallizes in the centrosymmetricOur quantum-mechanical computations performed with Gaussian (Frisch et al., 2019) show that the idealized TT conformer (τ1 = τ2 = 180°) is 8.72 kJ mol−1 more stable than the idealized TG conformers (τ1 = 180°, τ2 = ±60°). This Ep difference is somewhat larger than that previously determined by the B3LYP/6–311+G** method (Taga et al., 2006). Owing to the crystal-field effects, the Ep difference calculated by us between the TT and TG conformers present in the β (τ1 = 172.47°, τ2 = 179.45°) and δ (τ1 = 177.70°, τ2 = −77.55°) DEE phases is 6.43 kJ mol−1 and between the γ (τ1 = τ2 = 168.53°) and δ phases it is 5.12 kJ mol−1. Therefore, the volume reductions of 2.54 and 2.74 Å3 for the β–δ and γ–δ phase transitions, respectively, at 2.70 GPa, associated with the work component of the Gibbs free energies equal to 4.13 and 4.45 kJ mol−1, is consistent with the energy gain of the system for a transition involving conformational changes. When assuming the initial density of the liquid at 293 K (0.7134 g cm−3), the work performed on the sample to 2.70 GPa amounts to about 59 kJ mol−1, which is commensurate with the energy of the Ep barrier equal to about 11.3 kJ mol−1 in the Ep map in Fig. 3.
According to intermolecular distances, the cohesion forces in DME, DEE and DPE crystals are dominated by CH⋯O bonds (Figs. 4, 5 and S19–S26). The approaching hydrogen atoms are roughly (within about 30°) grouped about the directions of the lone-electron pairs of oxygen atoms. For the β and γ phases of DEE, only the methyl hydrogen atoms participate in the hydrogen bonds, whereas in the α and δ phases of DEE, there are both methyl and methylene hydrogen donors. The CH⋯O bonds aggregate the molecules into different and characteristic architectures of rings (α DME), chains (α DEE, γ DEE, α DPE), ribbons (δ DEE), sheets (β DME, β DEE) and a three-dimensional pattern (γ DME). In DME, the number of CH⋯O contacts that are shorter than the sum of the van der Waals radii (Bondi, 1964) increases with pressure, hence the three-dimensional aggregation patterns are promoted. This relation does not apply for the DEE polymorphs.
The four phases of DEE clearly reveal the systematic transformation of patterns of intermolecular interactions at high pressure. The initial compression of H⋯H contacts and the small compression of H⋯O contacts between the α, β and γ phases are reversed in the δ phase, where the conformational change increases the access to the oxygen atom (Fig. S20). It promotes the formation of CH⋯O contacts at high pressure. The CH⋯O bonded molecules in the β, γ and δ phases are attracted with intermolecular interaction energies of about −12.0, −11.4 and −9.9 kJ mol−1, respectively compared with about −4 kJ mol−1 for the molecules with H⋯H contacts only (Gavezzotti, 1994; Gavezzotti & Filippini, 1994).
4. Conclusions
The interplay of preferences for the CH⋯O bond and low-Ep conformation govern the aggregation in solid phases of simple aliphatic We have found six new polymorphs: the β and γ phases of DME; the β, γ and δ phases of DEE; and the α phase of DPE. The conformational conversions can regulate access to the oxygen atom, and in this way can increase the number of stronger CH⋯O bonds and reduce the number of weak H⋯H contacts. Consequently, we observed a higher compressibility of CH⋯O distances in δ DEE compared with the compressibility of H⋯H within this phase. Though high pressure has proved to be a useful tool for inducing conformational changes in simple molecular compounds, it also shows the energetic landscape of thermally activated conformational conversions in liquids. Cohesion forces, molecular conformations and aggregation in the crystal structures of simple still require further studies by theoretical methods. There are also asymmetric which can provide additional information about the structure–property relations of however their applications and availability are limited.
Supporting information
https://doi.org/10.1107/S2052252523009995/lq5055sup1.cif
contains datablocks global, dimethyl_ether_phase_beta_3_30GPa, dimethyl_ether_phase_beta_3_90GPa, dimethyl_ether_phase_beta_4_30GPa, dimethyl_ether_phase_gamma_4_50GPa, dimethyl_ether_phase_gamma_5_60GPa, dimethyl_ether_phase_gamma_7_30GPa, diethyl_ether_phase_beta_1_85GPa, diethyl_ether_phase_beta_2_15GPa, diethyl_ether_phase_beta_2_45GPa, diethyl_ether_phase_beta_2_65GPa, diethyl_ether_phase_gamma_2_65GPa, diethyl_ether_phase_delta_2_80GPa, diethyl_ether_phase_delta_3_45GPa, diethyl_ether_phase_delta_3_70GPa, diethyl_ether_phase_delta_4_90GPa, dipropyl_ether_phase_alpha_1_70GPa, dipropyl_ether_phase_alpha_2_10GPa, dipropyl_ether_phase_alpha_2_80GPa, dipropyl_ether_phase_alpha_3_85GPa, dipropyl_ether_phase_alpha_5_30GPa. DOI:Supporting figures and tables. DOI: https://doi.org/10.1107/S2052252523009995/lq5055sup2.pdf
C2H6O | F(000) = 104 |
Mr = 46.07 | Dx = 1.231 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5541 (4) Å | Cell parameters from 653 reflections |
b = 6.6179 (11) Å | θ = 5.2–25.9° |
c = 6.964 (3) Å | µ = 0.10 mm−1 |
β = 103.835 (19)° | T = 295 K |
V = 248.56 (12) Å3 | Disc, colourless |
Z = 4 | 0.30 × 0.29 × 0.25 mm |
KUMA KM4-CCD, Eos diffractometer | 132 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.065 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 25.9°, θmin = 5.2° |
Tmin = 0.008, Tmax = 1.000 | h = −6→6 |
850 measured reflections | k = −7→7 |
147 independent reflections | l = −4→4 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.071 | w = 1/[σ2(Fo2) + (0.1102P)2 + 0.2366P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.193 | (Δ/σ)max < 0.001 |
S = 1.20 | Δρmax = 0.19 e Å−3 |
147 reflections | Δρmin = −0.17 e Å−3 |
31 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 1.1 (7) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7278 (6) | 0.3356 (6) | 0.1855 (8) | 0.043 (3) | |
C1 | 0.9093 (9) | 0.1818 (8) | 0.2325 (13) | 0.047 (4) | |
H11 | 0.917067 | 0.110106 | 0.114280 | 0.071* | |
H12 | 0.866040 | 0.089681 | 0.325303 | 0.071* | |
H13 | 1.067867 | 0.241268 | 0.289666 | 0.071* | |
C2 | 0.4941 (10) | 0.2536 (8) | 0.0858 (17) | 0.050 (5) | |
H22 | 0.506093 | 0.198930 | −0.039215 | 0.076* | |
H23 | 0.370885 | 0.358270 | 0.064545 | 0.076* | |
H21 | 0.448008 | 0.148453 | 0.164991 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.035 (2) | 0.035 (4) | 0.057 (10) | −0.0002 (13) | 0.003 (3) | −0.0003 (16) |
C1 | 0.039 (3) | 0.031 (6) | 0.071 (15) | 0.006 (2) | 0.011 (4) | 0.004 (3) |
C2 | 0.041 (3) | 0.030 (6) | 0.075 (17) | 0.002 (2) | 0.003 (4) | −0.001 (2) |
O1—C1 | 1.415 (6) | C1—H13 | 0.9600 |
O1—C2 | 1.425 (7) | C2—H22 | 0.9600 |
C1—H11 | 0.9600 | C2—H23 | 0.9600 |
C1—H12 | 0.9600 | C2—H21 | 0.9600 |
C1—O1—C2 | 110.7 (4) | O1—C2—H22 | 109.5 |
O1—C1—H11 | 109.5 | O1—C2—H23 | 109.5 |
O1—C1—H12 | 109.5 | O1—C2—H21 | 109.5 |
O1—C1—H13 | 109.5 | H22—C2—H23 | 109.5 |
H11—C1—H12 | 109.5 | H22—C2—H21 | 109.5 |
H11—C1—H13 | 109.5 | H23—C2—H21 | 109.5 |
H12—C1—H13 | 109.5 |
C2H6O | F(000) = 104 |
Mr = 46.07 | Dx = 1.267 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5277 (4) Å | Cell parameters from 488 reflections |
b = 6.527 (10) Å | θ = 7.6–25.7° |
c = 6.8941 (5) Å | µ = 0.10 mm−1 |
β = 103.869 (6)° | T = 295 K |
V = 241.5 (4) Å3 | Disc, colourless |
Z = 4 | 0.33 × 0.33 × 0.24 mm |
KUMA KM4-CCD, Eos diffractometer | 99 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.031 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 25.7°, θmin = 7.6° |
Tmin = 0.082, Tmax = 1.000 | h = −6→6 |
634 measured reflections | k = −1→1 |
107 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.069 | H-atom parameters constrained |
wR(F2) = 0.172 | w = 1/[σ2(Fo2) + (0.1005P)2 + 0.168P] where P = (Fo2 + 2Fc2)/3 |
S = 1.19 | (Δ/σ)max < 0.001 |
107 reflections | Δρmax = 0.17 e Å−3 |
15 parameters | Δρmin = −0.12 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7270 (4) | 0.3359 (18) | 0.1847 (3) | 0.0310 (15)* | |
C1 | 0.9078 (7) | 0.178 (2) | 0.2323 (6) | 0.0309 (16)* | |
H11 | 0.910795 | 0.101871 | 0.113639 | 0.046* | |
H12 | 0.865988 | 0.087541 | 0.329319 | 0.046* | |
H13 | 1.068887 | 0.236969 | 0.286165 | 0.046* | |
C2 | 0.4939 (7) | 0.252 (2) | 0.0882 (6) | 0.0278 (16)* | |
H22 | 0.504422 | 0.193813 | −0.037492 | 0.042* | |
H23 | 0.369749 | 0.357747 | 0.065583 | 0.042* | |
H21 | 0.449139 | 0.146997 | 0.170723 | 0.042* |
O1—C1 | 1.419 (16) | C1—H13 | 0.9600 |
O1—C2 | 1.411 (9) | C2—H22 | 0.9600 |
C1—H11 | 0.9600 | C2—H23 | 0.9600 |
C1—H12 | 0.9600 | C2—H21 | 0.9600 |
C2—O1—C1 | 109.8 (12) | O1—C2—H22 | 109.5 |
O1—C1—H11 | 109.5 | O1—C2—H23 | 109.5 |
O1—C1—H12 | 109.5 | O1—C2—H21 | 109.5 |
O1—C1—H13 | 109.5 | H22—C2—H23 | 109.5 |
H11—C1—H12 | 109.5 | H22—C2—H21 | 109.5 |
H11—C1—H13 | 109.5 | H23—C2—H21 | 109.5 |
H12—C1—H13 | 109.5 |
C2H6O | F(000) = 104 |
Mr = 46.07 | Dx = 1.288 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5073 (4) Å | Cell parameters from 560 reflections |
b = 6.493 (5) Å | θ = 6.1–25.5° |
c = 6.8431 (8) Å | µ = 0.10 mm−1 |
β = 103.848 (8)° | T = 295 K |
V = 237.58 (19) Å3 | Disc, colourless |
Z = 4 | 0.38 × 0.38 × 0.23 mm |
KUMA KM4-CCD, Eos diffractometer | 118 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.030 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.1°, θmin = 6.1° |
Tmin = 0.031, Tmax = 1.000 | h = −6→6 |
721 measured reflections | k = −3→3 |
129 independent reflections | l = −7→7 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.053 | w = 1/[σ2(Fo2) + (0.1045P)2 + 0.0355P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.140 | (Δ/σ)max < 0.001 |
S = 1.18 | Δρmax = 0.14 e Å−3 |
129 reflections | Δρmin = −0.11 e Å−3 |
31 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 1.1 (3) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7272 (3) | 0.3391 (10) | 0.1848 (3) | 0.024 (5) | |
C1 | 0.9077 (5) | 0.1760 (14) | 0.2313 (5) | 0.031 (5) | |
H11 | 0.908494 | 0.100137 | 0.111070 | 0.046* | |
H12 | 0.864582 | 0.085386 | 0.328685 | 0.046* | |
H13 | 1.070601 | 0.233258 | 0.285415 | 0.046* | |
C2 | 0.4927 (5) | 0.2529 (10) | 0.0854 (5) | 0.020 (6) | |
H22 | 0.508326 | 0.185891 | −0.036109 | 0.031* | |
H23 | 0.369889 | 0.360298 | 0.052970 | 0.031* | |
H21 | 0.441758 | 0.154211 | 0.172140 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0257 (15) | 0.008 (14) | 0.038 (2) | 0.0004 (16) | 0.0069 (10) | 0.0007 (10) |
C1 | 0.026 (2) | 0.031 (18) | 0.037 (3) | 0.006 (2) | 0.0104 (14) | 0.006 (2) |
C2 | 0.027 (2) | 0.008 (18) | 0.026 (3) | 0.003 (2) | 0.0058 (12) | −0.0012 (16) |
O1—C1 | 1.435 (10) | C1—H13 | 0.9600 |
O1—C2 | 1.422 (5) | C2—H22 | 0.9600 |
C1—H11 | 0.9600 | C2—H23 | 0.9600 |
C1—H12 | 0.9600 | C2—H21 | 0.9600 |
C2—O1—C1 | 108.5 (6) | O1—C2—H22 | 109.5 |
O1—C1—H11 | 109.5 | O1—C2—H23 | 109.5 |
O1—C1—H12 | 109.5 | O1—C2—H21 | 109.5 |
O1—C1—H13 | 109.5 | H22—C2—H23 | 109.5 |
H11—C1—H12 | 109.5 | H22—C2—H21 | 109.5 |
H11—C1—H13 | 109.5 | H23—C2—H21 | 109.5 |
H12—C1—H13 | 109.5 |
C2H6O | Z = 8 |
Mr = 46.07 | F(000) = 208 |
Triclinic, P1 | Dx = 1.311 Mg m−3 |
a = 4.3394 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.414 (2) Å | Cell parameters from 1331 reflections |
c = 12.821 (6) Å | θ = 4.7–25.7° |
α = 90.55 (4)° | µ = 0.10 mm−1 |
β = 93.89 (6)° | T = 295 K |
γ = 90.83 (2)° | Disc, colourless |
V = 467.0 (3) Å3 | 0.34 × 0.32 × 0.22 mm |
KUMA KM4-CCD, Eos diffractometer | 481 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.034 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.2°, θmin = 4.9° |
Tmin = 0.508, Tmax = 1.000 | h = −5→5 |
2659 measured reflections | k = −10→10 |
556 independent reflections | l = −5→6 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.155 | w = 1/[σ2(Fo2) + (0.0885P)2 + 0.3224P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
556 reflections | Δρmax = 0.15 e Å−3 |
117 parameters | Δρmin = −0.14 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2353 (9) | 0.8266 (5) | −0.0051 (11) | 0.062 (9) | |
C1 | −0.0287 (9) | 0.7298 (5) | −0.0134 (10) | 0.044 (8) | |
H13 | −0.043845 | 0.676938 | −0.080241 | 0.065* | |
H11 | −0.207859 | 0.793660 | −0.006548 | 0.065* | |
H12 | −0.016169 | 0.652057 | 0.041042 | 0.065* | |
C2 | 0.2688 (14) | 0.9025 (8) | 0.0925 (17) | 0.065 (14) | |
H23 | 0.450244 | 0.969563 | 0.095980 | 0.098* | |
H21 | 0.288592 | 0.824268 | 0.146477 | 0.098* | |
H22 | 0.090664 | 0.965959 | 0.102216 | 0.098* | |
O2 | 0.8338 (5) | 0.5159 (3) | 0.1951 (6) | 0.053 (7) | |
C3 | 0.5369 (8) | 0.4961 (6) | 0.1440 (10) | 0.050 (9) | |
H33 | 0.538992 | 0.409885 | 0.094456 | 0.075* | |
H31 | 0.480134 | 0.592040 | 0.108156 | 0.075* | |
H32 | 0.389909 | 0.472796 | 0.194624 | 0.075* | |
C4 | 0.8463 (10) | 0.6574 (5) | 0.2578 (12) | 0.061 (11) | |
H42 | 0.788825 | 0.746478 | 0.214836 | 0.092* | |
H43 | 1.052462 | 0.673782 | 0.288411 | 0.092* | |
H41 | 0.705954 | 0.647051 | 0.312144 | 0.092* | |
O3 | 0.7072 (5) | 0.0121 (3) | 0.2903 (6) | 0.043 (6) | |
C5 | 0.4487 (9) | −0.0198 (6) | 0.3482 (11) | 0.068 (11) | |
H51 | 0.262856 | −0.006975 | 0.304254 | 0.103* | |
H52 | 0.449390 | 0.052624 | 0.406528 | 0.103* | |
H53 | 0.457795 | −0.126945 | 0.373262 | 0.103* | |
C6 | 0.6947 (12) | 0.1668 (6) | 0.2465 (11) | 0.056 (11) | |
H62 | 0.513907 | 0.174374 | 0.199385 | 0.083* | |
H63 | 0.875650 | 0.185774 | 0.208993 | 0.083* | |
H61 | 0.686102 | 0.244659 | 0.301374 | 0.083* | |
O4 | 0.2707 (5) | 0.3082 (3) | 0.4954 (7) | 0.042 (7) | |
C7 | 0.0047 (8) | 0.2104 (5) | 0.5040 (10) | 0.040 (8) | |
H73 | 0.034023 | 0.144502 | 0.564476 | 0.060* | |
H71 | −0.027707 | 0.144552 | 0.442571 | 0.060* | |
H72 | −0.172111 | 0.276006 | 0.510812 | 0.060* | |
C8 | 0.2335 (9) | 0.4051 (5) | 0.4043 (10) | 0.050 (10) | |
H81 | 0.047544 | 0.465073 | 0.406699 | 0.076* | |
H82 | 0.220763 | 0.338591 | 0.342861 | 0.076* | |
H83 | 0.407307 | 0.476676 | 0.402276 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0247 (17) | 0.034 (2) | 0.13 (3) | −0.0098 (18) | −0.004 (4) | 0.003 (7) |
C1 | 0.0222 (18) | 0.030 (2) | 0.08 (3) | −0.0062 (15) | −0.001 (4) | 0.002 (6) |
C2 | 0.028 (3) | 0.033 (3) | 0.13 (4) | 0.000 (3) | 0.004 (7) | 0.029 (10) |
O2 | 0.0233 (14) | 0.0224 (16) | 0.11 (2) | 0.0011 (10) | −0.014 (3) | 0.006 (5) |
C3 | 0.0206 (18) | 0.030 (2) | 0.10 (3) | −0.0018 (14) | −0.006 (4) | 0.007 (6) |
C4 | 0.040 (2) | 0.030 (3) | 0.11 (3) | −0.0015 (18) | −0.002 (6) | 0.004 (8) |
O3 | 0.0262 (14) | 0.0219 (15) | 0.080 (18) | −0.0001 (10) | 0.005 (3) | 0.010 (4) |
C5 | 0.0226 (19) | 0.032 (2) | 0.15 (3) | −0.0008 (16) | −0.005 (5) | 0.016 (8) |
C6 | 0.047 (3) | 0.030 (3) | 0.09 (3) | −0.003 (2) | −0.009 (5) | 0.024 (8) |
O4 | 0.0239 (14) | 0.0280 (17) | 0.07 (2) | −0.0059 (11) | 0.001 (3) | 0.014 (5) |
C7 | 0.0251 (19) | 0.025 (2) | 0.07 (3) | −0.0064 (15) | −0.009 (4) | 0.013 (6) |
C8 | 0.038 (2) | 0.027 (2) | 0.08 (3) | −0.0053 (17) | −0.008 (5) | 0.015 (7) |
O1—C1 | 1.393 (5) | O3—C5 | 1.411 (10) |
O1—C2 | 1.40 (3) | O3—C6 | 1.423 (6) |
C1—H13 | 0.9600 | C5—H51 | 0.9600 |
C1—H11 | 0.9600 | C5—H52 | 0.9600 |
C1—H12 | 0.9600 | C5—H53 | 0.9600 |
C2—H23 | 0.9600 | C6—H62 | 0.9600 |
C2—H21 | 0.9600 | C6—H63 | 0.9600 |
C2—H22 | 0.9600 | C6—H61 | 0.9600 |
O2—C3 | 1.412 (7) | O4—C7 | 1.419 (4) |
O2—C4 | 1.428 (12) | O4—C8 | 1.432 (11) |
C3—H33 | 0.9600 | C7—H73 | 0.9600 |
C3—H31 | 0.9600 | C7—H71 | 0.9600 |
C3—H32 | 0.9600 | C7—H72 | 0.9600 |
C4—H42 | 0.9600 | C8—H81 | 0.9600 |
C4—H43 | 0.9600 | C8—H82 | 0.9600 |
C4—H41 | 0.9600 | C8—H83 | 0.9600 |
C1—O1—C2 | 111.0 (13) | C5—O3—C6 | 111.5 (5) |
O1—C1—H13 | 109.5 | O3—C5—H51 | 109.5 |
O1—C1—H11 | 109.5 | O3—C5—H52 | 109.5 |
O1—C1—H12 | 109.5 | O3—C5—H53 | 109.5 |
H13—C1—H11 | 109.5 | H51—C5—H52 | 109.5 |
H13—C1—H12 | 109.5 | H51—C5—H53 | 109.5 |
H11—C1—H12 | 109.5 | H52—C5—H53 | 109.5 |
O1—C2—H23 | 109.5 | O3—C6—H62 | 109.5 |
O1—C2—H21 | 109.5 | O3—C6—H63 | 109.5 |
O1—C2—H22 | 109.5 | O3—C6—H61 | 109.5 |
H23—C2—H21 | 109.5 | H62—C6—H63 | 109.5 |
H23—C2—H22 | 109.5 | H62—C6—H61 | 109.5 |
H21—C2—H22 | 109.5 | H63—C6—H61 | 109.5 |
C3—O2—C4 | 110.1 (4) | C7—O4—C8 | 110.2 (5) |
O2—C3—H33 | 109.5 | O4—C7—H73 | 109.5 |
O2—C3—H31 | 109.5 | O4—C7—H71 | 109.5 |
O2—C3—H32 | 109.5 | O4—C7—H72 | 109.5 |
H33—C3—H31 | 109.5 | H73—C7—H71 | 109.5 |
H33—C3—H32 | 109.5 | H73—C7—H72 | 109.5 |
H31—C3—H32 | 109.5 | H71—C7—H72 | 109.5 |
O2—C4—H42 | 109.5 | O4—C8—H81 | 109.5 |
O2—C4—H43 | 109.5 | O4—C8—H82 | 109.5 |
O2—C4—H41 | 109.5 | O4—C8—H83 | 109.5 |
H42—C4—H43 | 109.5 | H81—C8—H82 | 109.5 |
H42—C4—H41 | 109.5 | H81—C8—H83 | 109.5 |
H43—C4—H41 | 109.5 | H82—C8—H83 | 109.5 |
C2H6O | Z = 8 |
Mr = 46.07 | F(000) = 208 |
Triclinic, P1 | Dx = 1.346 Mg m−3 |
a = 4.2888 (17) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.3045 (18) Å | Cell parameters from 1388 reflections |
c = 12.7912 (13) Å | θ = 4.9–25.6° |
α = 90.249 (12)° | µ = 0.10 mm−1 |
β = 93.92 (2)° | T = 295 K |
γ = 90.14 (3)° | Disc, colourless |
V = 454.5 (2) Å3 | 0.37 × 0.35 × 0.21 mm |
KUMA KM4-CCD, Eos diffractometer | 486 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.031 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.3°, θmin = 4.8° |
Tmin = 0.788, Tmax = 1.000 | h = −2→2 |
2631 measured reflections | k = −10→9 |
559 independent reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.117 | w = 1/[σ2(Fo2) + (0.0699P)2 + 2.7136P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.260 | (Δ/σ)max < 0.001 |
S = 1.14 | Δρmax = 0.23 e Å−3 |
559 reflections | Δρmin = −0.19 e Å−3 |
58 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.12 (5) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.242 (3) | 0.8248 (9) | −0.0022 (4) | 0.0355 (18)* | |
C1 | −0.044 (6) | 0.7338 (16) | −0.0090 (7) | 0.044 (3)* | |
H13 | −0.090194 | 0.698647 | −0.079991 | 0.066* | |
H11 | −0.211365 | 0.800321 | 0.012419 | 0.066* | |
H12 | −0.022179 | 0.641798 | 0.036022 | 0.066* | |
C2 | 0.253 (5) | 0.9101 (16) | 0.0956 (7) | 0.035 (2)* | |
H23 | 0.401532 | 0.996640 | 0.094303 | 0.053* | |
H21 | 0.315057 | 0.837755 | 0.151533 | 0.053* | |
H22 | 0.050127 | 0.952873 | 0.106470 | 0.053* | |
O2 | 0.839 (4) | 0.5131 (9) | 0.1969 (4) | 0.0355 (19)* | |
C3 | 0.583 (6) | 0.4931 (16) | 0.1409 (8) | 0.044 (3)* | |
H33 | 0.597037 | 0.397973 | 0.098645 | 0.066* | |
H31 | 0.545875 | 0.584812 | 0.096426 | 0.066* | |
H32 | 0.413976 | 0.481568 | 0.185831 | 0.066* | |
C4 | 0.826 (5) | 0.6641 (14) | 0.2545 (7) | 0.033 (2)* | |
H42 | 0.736833 | 0.746038 | 0.208976 | 0.050* | |
H43 | 1.033412 | 0.695640 | 0.279589 | 0.050* | |
H41 | 0.699224 | 0.650412 | 0.312783 | 0.050* | |
O3 | 0.711 (4) | 0.0119 (9) | 0.2914 (4) | 0.039 (2)* | |
C5 | 0.423 (6) | −0.0119 (17) | 0.3472 (8) | 0.048 (3)* | |
H51 | 0.261497 | 0.056876 | 0.317384 | 0.072* | |
H52 | 0.464730 | 0.014100 | 0.419992 | 0.072* | |
H53 | 0.357516 | −0.122233 | 0.340226 | 0.072* | |
C6 | 0.678 (6) | 0.1662 (14) | 0.2479 (7) | 0.038 (2)* | |
H62 | 0.509187 | 0.165541 | 0.194479 | 0.057* | |
H63 | 0.867947 | 0.196660 | 0.217750 | 0.057* | |
H61 | 0.632919 | 0.242027 | 0.301708 | 0.057* | |
O4 | 0.274 (4) | 0.3116 (10) | 0.4989 (4) | 0.0381 (19)* | |
C7 | −0.032 (6) | 0.2154 (16) | 0.5048 (7) | 0.038 (3)* | |
H73 | −0.012530 | 0.143250 | 0.563344 | 0.058* | |
H71 | −0.072304 | 0.154542 | 0.441314 | 0.058* | |
H72 | −0.201529 | 0.288377 | 0.513443 | 0.058* | |
C8 | 0.222 (6) | 0.4120 (15) | 0.4061 (6) | 0.033 (2)* | |
H81 | 0.111214 | 0.507395 | 0.423767 | 0.050* | |
H82 | 0.101913 | 0.353007 | 0.352648 | 0.050* | |
H83 | 0.420049 | 0.441628 | 0.380646 | 0.050* |
O1—C1 | 1.44 (2) | O3—C5 | 1.48 (3) |
O1—C2 | 1.433 (11) | O3—C6 | 1.403 (15) |
C1—H13 | 0.9600 | C5—H51 | 0.9600 |
C1—H11 | 0.9600 | C5—H52 | 0.9600 |
C1—H12 | 0.9600 | C5—H53 | 0.9600 |
C2—H23 | 0.9600 | C6—H62 | 0.9600 |
C2—H21 | 0.9600 | C6—H63 | 0.9600 |
C2—H22 | 0.9600 | C6—H61 | 0.9600 |
O2—C3 | 1.28 (3) | O4—C7 | 1.543 (19) |
O2—C4 | 1.455 (13) | O4—C8 | 1.459 (13) |
C3—H33 | 0.9600 | C7—H73 | 0.9600 |
C3—H31 | 0.9600 | C7—H71 | 0.9600 |
C3—H32 | 0.9600 | C7—H72 | 0.9600 |
C4—H42 | 0.9600 | C8—H81 | 0.9600 |
C4—H43 | 0.9600 | C8—H82 | 0.9600 |
C4—H41 | 0.9600 | C8—H83 | 0.9600 |
C2—O1—C1 | 106.6 (11) | C6—O3—C5 | 104.3 (15) |
O1—C1—H13 | 109.5 | O3—C5—H51 | 109.5 |
O1—C1—H11 | 109.5 | O3—C5—H52 | 109.5 |
O1—C1—H12 | 109.5 | O3—C5—H53 | 109.5 |
H13—C1—H11 | 109.5 | H51—C5—H52 | 109.5 |
H13—C1—H12 | 109.5 | H51—C5—H53 | 109.5 |
H11—C1—H12 | 109.5 | H52—C5—H53 | 109.5 |
O1—C2—H23 | 109.5 | O3—C6—H62 | 109.5 |
O1—C2—H21 | 109.5 | O3—C6—H63 | 109.5 |
O1—C2—H22 | 109.5 | O3—C6—H61 | 109.5 |
H23—C2—H21 | 109.5 | H62—C6—H63 | 109.5 |
H23—C2—H22 | 109.5 | H62—C6—H61 | 109.5 |
H21—C2—H22 | 109.5 | H63—C6—H61 | 109.5 |
C3—O2—C4 | 109.2 (16) | C8—O4—C7 | 104.7 (11) |
O2—C3—H33 | 109.5 | O4—C7—H73 | 109.5 |
O2—C3—H31 | 109.5 | O4—C7—H71 | 109.5 |
O2—C3—H32 | 109.5 | O4—C7—H72 | 109.5 |
H33—C3—H31 | 109.5 | H73—C7—H71 | 109.5 |
H33—C3—H32 | 109.5 | H73—C7—H72 | 109.5 |
H31—C3—H32 | 109.5 | H71—C7—H72 | 109.5 |
O2—C4—H42 | 109.5 | O4—C8—H81 | 109.5 |
O2—C4—H43 | 109.5 | O4—C8—H82 | 109.5 |
O2—C4—H41 | 109.5 | O4—C8—H83 | 109.5 |
H42—C4—H43 | 109.5 | H81—C8—H82 | 109.5 |
H42—C4—H41 | 109.5 | H81—C8—H83 | 109.5 |
H43—C4—H41 | 109.5 | H82—C8—H83 | 109.5 |
C2H6O | Z = 8 |
Mr = 46.07 | F(000) = 208 |
Triclinic, P1 | Dx = 1.396 Mg m−3 |
a = 4.250 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.198 (3) Å | Cell parameters from 842 reflections |
c = 12.6105 (19) Å | θ = 5.0–23.5° |
α = 90.641 (19)° | µ = 0.11 mm−1 |
β = 93.97 (3)° | T = 295 K |
γ = 90.04 (5)° | Disc, colourless |
V = 438.3 (4) Å3 | 0.40 × 0.38 × 0.20 mm |
KUMA KM4-CCD, Eos diffractometer | 389 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.042 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.1°, θmin = 4.9° |
Tmin = 0.768, Tmax = 1.000 | h = −2→2 |
2349 measured reflections | k = −9→9 |
523 independent reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.079 | w = 1/[σ2(Fo2) + (0.0557P)2 + 1.6787P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.187 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.16 e Å−3 |
523 reflections | Δρmin = −0.14 e Å−3 |
118 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.15 (4) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.240 (3) | 0.8292 (9) | −0.0037 (4) | 0.082 (12) | |
C1 | −0.041 (5) | 0.7358 (14) | −0.0105 (6) | 0.048 (16) | |
H13 | −0.142119 | 0.743904 | −0.080735 | 0.073* | |
H11 | −0.180702 | 0.776448 | 0.040411 | 0.073* | |
H12 | 0.008136 | 0.623754 | 0.004302 | 0.073* | |
C2 | 0.250 (5) | 0.9124 (13) | 0.0985 (6) | 0.038 (14) | |
H23 | 0.413437 | 0.993563 | 0.101686 | 0.057* | |
H21 | 0.292871 | 0.834845 | 0.154095 | 0.057* | |
H22 | 0.050583 | 0.963852 | 0.107354 | 0.057* | |
O2 | 0.845 (3) | 0.5126 (8) | 0.1935 (4) | 0.034 (10) | |
C3 | 0.552 (5) | 0.5002 (13) | 0.1409 (7) | 0.037 (14) | |
H33 | 0.542484 | 0.403031 | 0.097564 | 0.056* | |
H31 | 0.515165 | 0.593709 | 0.096605 | 0.056* | |
H32 | 0.394248 | 0.495181 | 0.191592 | 0.056* | |
C4 | 0.863 (5) | 0.6591 (12) | 0.2548 (7) | 0.075 (16) | |
H42 | 0.783470 | 0.748082 | 0.211966 | 0.112* | |
H43 | 1.078333 | 0.680152 | 0.278883 | 0.112* | |
H41 | 0.738439 | 0.648119 | 0.315095 | 0.112* | |
O3 | 0.714 (4) | 0.0122 (9) | 0.2895 (4) | 0.085 (11) | |
C5 | 0.429 (6) | −0.0141 (15) | 0.3470 (7) | 0.066 (17) | |
H51 | 0.245633 | 0.012962 | 0.301779 | 0.099* | |
H52 | 0.437070 | 0.053987 | 0.409528 | 0.099* | |
H53 | 0.417646 | −0.126455 | 0.367076 | 0.099* | |
C6 | 0.680 (5) | 0.1709 (12) | 0.2492 (8) | 0.063 (16) | |
H62 | 0.510643 | 0.172508 | 0.194618 | 0.094* | |
H63 | 0.872158 | 0.203780 | 0.219885 | 0.094* | |
H61 | 0.632894 | 0.244860 | 0.305507 | 0.094* | |
O4 | 0.261 (3) | 0.3117 (8) | 0.4976 (4) | 0.042 (11) | |
C7 | −0.009 (5) | 0.2107 (14) | 0.5049 (6) | 0.058 (17) | |
H73 | 0.005406 | 0.156050 | 0.571974 | 0.088* | |
H71 | −0.017860 | 0.131259 | 0.448232 | 0.088* | |
H72 | −0.195690 | 0.276561 | 0.499377 | 0.088* | |
C8 | 0.234 (6) | 0.4113 (12) | 0.4053 (6) | 0.059 (16) | |
H81 | 0.067885 | 0.489404 | 0.412051 | 0.088* | |
H82 | 0.185615 | 0.343922 | 0.343505 | 0.088* | |
H83 | 0.429215 | 0.467453 | 0.398230 | 0.088* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.15 (3) | 0.046 (6) | 0.049 (3) | −0.043 (15) | −0.012 (6) | 0.005 (3) |
C1 | 0.05 (4) | 0.044 (9) | 0.048 (5) | −0.02 (2) | 0.009 (8) | 0.000 (5) |
C2 | 0.03 (4) | 0.030 (8) | 0.056 (5) | 0.009 (17) | −0.004 (9) | −0.004 (5) |
O2 | 0.03 (3) | 0.021 (5) | 0.048 (3) | 0.006 (11) | 0.001 (6) | −0.005 (3) |
C3 | 0.03 (4) | 0.037 (8) | 0.044 (4) | −0.005 (17) | 0.014 (9) | −0.003 (4) |
C4 | 0.13 (4) | 0.029 (7) | 0.057 (5) | −0.024 (18) | −0.019 (9) | 0.004 (5) |
O3 | 0.16 (3) | 0.044 (6) | 0.050 (3) | −0.045 (13) | 0.002 (6) | 0.008 (3) |
C5 | 0.09 (5) | 0.050 (9) | 0.061 (5) | −0.01 (2) | 0.001 (11) | 0.007 (6) |
C6 | 0.11 (4) | 0.029 (7) | 0.054 (5) | −0.002 (18) | 0.000 (9) | −0.005 (5) |
O4 | 0.03 (3) | 0.042 (6) | 0.051 (3) | −0.010 (13) | 0.005 (6) | 0.004 (3) |
C7 | 0.09 (5) | 0.045 (9) | 0.041 (4) | −0.02 (2) | 0.019 (9) | −0.005 (4) |
C8 | 0.10 (4) | 0.022 (7) | 0.052 (5) | 0.007 (18) | 0.004 (9) | −0.002 (4) |
O1—C1 | 1.416 (16) | O3—C5 | 1.47 (2) |
O1—C2 | 1.449 (11) | O3—C6 | 1.406 (12) |
C1—H13 | 0.9600 | C5—H51 | 0.9600 |
C1—H11 | 0.9600 | C5—H52 | 0.9600 |
C1—H12 | 0.9600 | C5—H53 | 0.9600 |
C2—H23 | 0.9600 | C6—H62 | 0.9600 |
C2—H21 | 0.9600 | C6—H63 | 0.9600 |
C2—H22 | 0.9600 | C6—H61 | 0.9600 |
O2—C3 | 1.37 (2) | O4—C7 | 1.421 (15) |
O2—C4 | 1.420 (11) | O4—C8 | 1.427 (9) |
C3—H33 | 0.9600 | C7—H73 | 0.9600 |
C3—H31 | 0.9600 | C7—H71 | 0.9600 |
C3—H32 | 0.9600 | C7—H72 | 0.9600 |
C4—H42 | 0.9600 | C8—H81 | 0.9600 |
C4—H43 | 0.9600 | C8—H82 | 0.9600 |
C4—H41 | 0.9600 | C8—H83 | 0.9600 |
C1—O1—C2 | 106.0 (11) | C6—O3—C5 | 104.5 (14) |
O1—C1—H13 | 109.5 | O3—C5—H51 | 109.5 |
O1—C1—H11 | 109.5 | O3—C5—H52 | 109.5 |
O1—C1—H12 | 109.5 | O3—C5—H53 | 109.5 |
H13—C1—H11 | 109.5 | H51—C5—H52 | 109.5 |
H13—C1—H12 | 109.5 | H51—C5—H53 | 109.5 |
H11—C1—H12 | 109.5 | H52—C5—H53 | 109.5 |
O1—C2—H23 | 109.5 | O3—C6—H62 | 109.5 |
O1—C2—H21 | 109.5 | O3—C6—H63 | 109.5 |
O1—C2—H22 | 109.5 | O3—C6—H61 | 109.5 |
H23—C2—H21 | 109.5 | H62—C6—H63 | 109.5 |
H23—C2—H22 | 109.5 | H62—C6—H61 | 109.5 |
H21—C2—H22 | 109.5 | H63—C6—H61 | 109.5 |
C3—O2—C4 | 109.5 (14) | C7—O4—C8 | 111.8 (10) |
O2—C3—H33 | 109.5 | O4—C7—H73 | 109.5 |
O2—C3—H31 | 109.5 | O4—C7—H71 | 109.5 |
O2—C3—H32 | 109.5 | O4—C7—H72 | 109.5 |
H33—C3—H31 | 109.5 | H73—C7—H71 | 109.5 |
H33—C3—H32 | 109.5 | H73—C7—H72 | 109.5 |
H31—C3—H32 | 109.5 | H71—C7—H72 | 109.5 |
O2—C4—H42 | 109.5 | O4—C8—H81 | 109.5 |
O2—C4—H43 | 109.5 | O4—C8—H82 | 109.5 |
O2—C4—H41 | 109.5 | O4—C8—H83 | 109.5 |
H42—C4—H43 | 109.5 | H81—C8—H82 | 109.5 |
H42—C4—H41 | 109.5 | H81—C8—H83 | 109.5 |
H43—C4—H41 | 109.5 | H82—C8—H83 | 109.5 |
C4H10O | F(000) = 168 |
Mr = 74.12 | Dx = 1.141 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8268 (3) Å | Cell parameters from 1485 reflections |
b = 8.1428 (17) Å | θ = 4.6–25.7° |
c = 7.7731 (3) Å | µ = 0.08 mm−1 |
β = 93.443 (4)° | T = 295 K |
V = 431.32 (9) Å3 | Disc, colourless |
Z = 4 | 0.37 × 0.36 × 0.27 mm |
KUMA KM4-CCD, Eos diffractometer | 352 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.024 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.4°, θmin = 4.6° |
Tmin = 0.147, Tmax = 1.000 | h = −8→8 |
2198 measured reflections | k = −5→5 |
386 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0644P)2 + 0.0373P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
386 reflections | Δρmax = 0.10 e Å−3 |
48 parameters | Δρmin = −0.11 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.17812 (13) | 0.3152 (3) | 0.16798 (12) | 0.0291 (11) | |
C1 | 0.0752 (2) | 0.4539 (4) | 0.23017 (19) | 0.0298 (12) | |
H11 | 0.034261 | 0.525699 | 0.135100 | 0.036* | |
H12 | 0.159911 | 0.515689 | 0.311258 | 0.036* | |
C2 | −0.1009 (2) | 0.3922 (4) | 0.3172 (2) | 0.0394 (11) | |
H21 | −0.181221 | 0.327688 | 0.237235 | 0.059* | |
H23 | −0.175377 | 0.483714 | 0.355583 | 0.059* | |
H22 | −0.058707 | 0.325581 | 0.414383 | 0.059* | |
C3 | 0.3451 (2) | 0.3672 (4) | 0.08199 (19) | 0.0382 (12) | |
H31 | 0.424305 | 0.440801 | 0.155581 | 0.046* | |
H32 | 0.304025 | 0.425712 | −0.022745 | 0.046* | |
C4 | 0.4627 (3) | 0.2191 (4) | 0.0393 (2) | 0.0327 (12) | |
H42 | 0.384451 | 0.148172 | −0.035782 | 0.049* | |
H41 | 0.501668 | 0.161254 | 0.143395 | 0.049* | |
H43 | 0.577325 | 0.252798 | −0.017171 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0302 (9) | 0.018 (4) | 0.0399 (7) | −0.0026 (6) | 0.0114 (5) | −0.0034 (6) |
C1 | 0.0316 (10) | 0.026 (4) | 0.0319 (7) | 0.0014 (10) | 0.0015 (6) | −0.0041 (9) |
C2 | 0.0280 (11) | 0.051 (4) | 0.0397 (8) | 0.0040 (9) | 0.0092 (7) | −0.0051 (11) |
C3 | 0.0262 (11) | 0.055 (4) | 0.0348 (8) | −0.0023 (10) | 0.0094 (8) | 0.0036 (11) |
C4 | 0.0295 (11) | 0.033 (4) | 0.0365 (8) | −0.0013 (9) | 0.0063 (7) | −0.0027 (10) |
O1—C1 | 1.430 (3) | C2—H22 | 0.9600 |
O1—C3 | 1.421 (2) | C3—H31 | 0.9700 |
C1—H11 | 0.9700 | C3—H32 | 0.9700 |
C1—H12 | 0.9700 | C3—C4 | 1.497 (4) |
C1—C2 | 1.501 (3) | C4—H42 | 0.9600 |
C2—H21 | 0.9600 | C4—H41 | 0.9600 |
C2—H23 | 0.9600 | C4—H43 | 0.9600 |
C3—O1—C1 | 110.3 (2) | O1—C3—H31 | 110.0 |
O1—C1—H11 | 110.1 | O1—C3—H32 | 110.0 |
O1—C1—H12 | 110.1 | O1—C3—C4 | 108.7 (3) |
O1—C1—C2 | 108.1 (3) | H31—C3—H32 | 108.3 |
H11—C1—H12 | 108.4 | C4—C3—H31 | 110.0 |
C2—C1—H11 | 110.1 | C4—C3—H32 | 110.0 |
C2—C1—H12 | 110.1 | C3—C4—H42 | 109.5 |
C1—C2—H21 | 109.5 | C3—C4—H41 | 109.5 |
C1—C2—H23 | 109.5 | C3—C4—H43 | 109.5 |
C1—C2—H22 | 109.5 | H42—C4—H41 | 109.5 |
H21—C2—H23 | 109.5 | H42—C4—H43 | 109.5 |
H21—C2—H22 | 109.5 | H41—C4—H43 | 109.5 |
H23—C2—H22 | 109.5 | ||
C1—O1—C3—C4 | 172.74 (12) | C3—O1—C1—C2 | 179.15 (10) |
C4H10O | F(000) = 168 |
Mr = 74.12 | Dx = 1.161 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7948 (3) Å | Cell parameters from 1468 reflections |
b = 8.0952 (12) Å | θ = 4.6–26.6° |
c = 7.7259 (2) Å | µ = 0.08 mm−1 |
β = 93.621 (3)° | T = 295 K |
V = 424.12 (7) Å3 | Dosc, colourless |
Z = 4 | 0.38 × 0.34 × 0.26 mm |
KUMA KM4-CCD, Eos diffractometer | 353 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.025 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.6°, θmin = 4.6° |
Tmin = 0.183, Tmax = 1.000 | h = −8→8 |
2208 measured reflections | k = −5→5 |
386 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0569P)2 + 0.0332P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max < 0.001 |
386 reflections | Δρmax = 0.09 e Å−3 |
48 parameters | Δρmin = −0.09 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.17730 (13) | 0.3155 (3) | 0.16712 (12) | 0.0317 (9) | |
C1 | 0.0747 (2) | 0.4556 (3) | 0.23053 (18) | 0.0282 (10) | |
H11 | 0.033284 | 0.528400 | 0.135343 | 0.034* | |
H12 | 0.160117 | 0.517092 | 0.312664 | 0.034* | |
C2 | −0.1022 (2) | 0.3919 (3) | 0.31758 (18) | 0.0336 (8) | |
H21 | −0.183929 | 0.328916 | 0.235931 | 0.050* | |
H23 | −0.176267 | 0.483315 | 0.358649 | 0.050* | |
H22 | −0.059370 | 0.322789 | 0.413669 | 0.050* | |
C3 | 0.3452 (2) | 0.3685 (4) | 0.08107 (18) | 0.0343 (10) | |
H31 | 0.424990 | 0.442146 | 0.155577 | 0.041* | |
H32 | 0.303901 | 0.427692 | −0.024215 | 0.041* | |
C4 | 0.4633 (2) | 0.2178 (4) | 0.0378 (2) | 0.0346 (10) | |
H42 | 0.384843 | 0.147670 | −0.039303 | 0.052* | |
H41 | 0.500664 | 0.158572 | 0.142367 | 0.052* | |
H43 | 0.579618 | 0.251431 | −0.017272 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0277 (8) | 0.032 (3) | 0.0369 (6) | −0.0021 (5) | 0.0127 (5) | −0.0041 (6) |
C1 | 0.0293 (9) | 0.025 (4) | 0.0301 (7) | 0.0019 (8) | 0.0024 (6) | −0.0012 (8) |
C2 | 0.0298 (10) | 0.034 (3) | 0.0377 (8) | 0.0044 (8) | 0.0089 (7) | −0.0047 (9) |
C3 | 0.0279 (11) | 0.044 (4) | 0.0321 (8) | −0.0019 (9) | 0.0088 (8) | 0.0033 (8) |
C4 | 0.0283 (10) | 0.042 (4) | 0.0345 (7) | −0.0011 (9) | 0.0078 (7) | −0.0044 (9) |
O1—C1 | 1.434 (3) | C2—H22 | 0.9600 |
O1—C3 | 1.423 (2) | C3—H31 | 0.9700 |
C1—H11 | 0.9700 | C3—H32 | 0.9700 |
C1—H12 | 0.9700 | C3—C4 | 1.509 (4) |
C1—C2 | 1.505 (3) | C4—H42 | 0.9600 |
C2—H21 | 0.9600 | C4—H41 | 0.9600 |
C2—H23 | 0.9600 | C4—H43 | 0.9600 |
C3—O1—C1 | 110.0 (2) | O1—C3—H31 | 110.1 |
O1—C1—H11 | 110.2 | O1—C3—H32 | 110.1 |
O1—C1—H12 | 110.2 | O1—C3—C4 | 108.2 (3) |
O1—C1—C2 | 107.5 (2) | H31—C3—H32 | 108.4 |
H11—C1—H12 | 108.5 | C4—C3—H31 | 110.1 |
C2—C1—H11 | 110.2 | C4—C3—H32 | 110.1 |
C2—C1—H12 | 110.2 | C3—C4—H42 | 109.5 |
C1—C2—H21 | 109.5 | C3—C4—H41 | 109.5 |
C1—C2—H23 | 109.5 | C3—C4—H43 | 109.5 |
C1—C2—H22 | 109.5 | H42—C4—H41 | 109.5 |
H21—C2—H23 | 109.5 | H42—C4—H43 | 109.5 |
H21—C2—H22 | 109.5 | H41—C4—H43 | 109.5 |
H23—C2—H22 | 109.5 | ||
C1—O1—C3—C4 | 172.54 (12) | C3—O1—C1—C2 | 179.20 (9) |
C4H10O | F(000) = 168 |
Mr = 74.12 | Dx = 1.176 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7759 (3) Å | Cell parameters from 1419 reflections |
b = 8.0552 (14) Å | θ = 4.6–26.3° |
c = 7.6873 (2) Å | µ = 0.08 mm−1 |
β = 93.713 (3)° | T = 295 K |
V = 418.70 (8) Å3 | Disc, colourless |
Z = 4 | 0.39 × 0.36 × 0.25 mm |
KUMA KM4-CCD, Eos diffractometer | 346 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.025 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.5°, θmin = 4.9° |
Tmin = 0.207, Tmax = 1.000 | h = −8→8 |
2154 measured reflections | k = −5→5 |
377 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0773P)2 + 0.0273P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
377 reflections | Δρmax = 0.12 e Å−3 |
48 parameters | Δρmin = −0.11 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.17681 (14) | 0.3159 (3) | 0.16662 (13) | 0.0312 (12) | |
C1 | 0.0741 (3) | 0.4562 (4) | 0.23044 (19) | 0.0241 (12) | |
H11 | 0.032470 | 0.529428 | 0.134822 | 0.029* | |
H12 | 0.160060 | 0.517948 | 0.312958 | 0.029* | |
C2 | −0.1030 (2) | 0.3927 (4) | 0.3180 (2) | 0.0326 (11) | |
H21 | −0.184224 | 0.328073 | 0.236481 | 0.049* | |
H23 | −0.177930 | 0.484773 | 0.357653 | 0.049* | |
H22 | −0.059845 | 0.324591 | 0.415643 | 0.049* | |
C3 | 0.3452 (2) | 0.3678 (5) | 0.0805 (2) | 0.0333 (12) | |
H31 | 0.425157 | 0.441993 | 0.155287 | 0.040* | |
H32 | 0.303905 | 0.427143 | −0.025482 | 0.040* | |
C4 | 0.4639 (3) | 0.2183 (4) | 0.0373 (2) | 0.0313 (13) | |
H42 | 0.385406 | 0.147174 | −0.039892 | 0.047* | |
H41 | 0.502376 | 0.159088 | 0.142415 | 0.047* | |
H43 | 0.579839 | 0.252722 | −0.018446 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0273 (10) | 0.032 (4) | 0.0362 (7) | −0.0022 (6) | 0.0123 (6) | −0.0041 (6) |
C1 | 0.0291 (10) | 0.015 (4) | 0.0288 (8) | 0.0005 (9) | 0.0021 (7) | −0.0023 (9) |
C2 | 0.0297 (12) | 0.034 (4) | 0.0349 (8) | 0.0036 (10) | 0.0088 (8) | −0.0045 (10) |
C3 | 0.0274 (14) | 0.042 (5) | 0.0313 (9) | −0.0014 (11) | 0.0096 (9) | 0.0030 (10) |
C4 | 0.0287 (12) | 0.033 (5) | 0.0324 (8) | −0.0032 (10) | 0.0062 (7) | −0.0057 (10) |
O1—C1 | 1.431 (3) | C2—H22 | 0.9600 |
O1—C3 | 1.419 (2) | C3—H31 | 0.9700 |
C1—H11 | 0.9700 | C3—H32 | 0.9700 |
C1—H12 | 0.9700 | C3—C4 | 1.497 (4) |
C1—C2 | 1.503 (3) | C4—H42 | 0.9600 |
C2—H21 | 0.9600 | C4—H41 | 0.9600 |
C2—H23 | 0.9600 | C4—H43 | 0.9600 |
C3—O1—C1 | 110.5 (3) | O1—C3—H31 | 109.9 |
O1—C1—H11 | 110.2 | O1—C3—H32 | 109.9 |
O1—C1—H12 | 110.2 | O1—C3—C4 | 109.0 (3) |
O1—C1—C2 | 107.7 (3) | H31—C3—H32 | 108.3 |
H11—C1—H12 | 108.5 | C4—C3—H31 | 109.9 |
C2—C1—H11 | 110.2 | C4—C3—H32 | 109.9 |
C2—C1—H12 | 110.2 | C3—C4—H42 | 109.5 |
C1—C2—H21 | 109.5 | C3—C4—H41 | 109.5 |
C1—C2—H23 | 109.5 | C3—C4—H43 | 109.5 |
C1—C2—H22 | 109.5 | H42—C4—H41 | 109.5 |
H21—C2—H23 | 109.5 | H42—C4—H43 | 109.5 |
H21—C2—H22 | 109.5 | H41—C4—H43 | 109.5 |
H23—C2—H22 | 109.5 | ||
C1—O1—C3—C4 | 172.31 (13) | C3—O1—C1—C2 | 179.37 (10) |
C4H10O | F(000) = 168 |
Mr = 74.12 | Dx = 1.185 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7612 (3) Å | Cell parameters from 1414 reflections |
b = 8.0271 (15) Å | θ = 4.6–26.3° |
c = 7.6687 (3) Å | µ = 0.08 mm−1 |
β = 93.784 (4)° | T = 295 K |
V = 415.29 (8) Å3 | Disc, colourless |
Z = 4 | 0.40 × 0.37 × 0.24 mm |
KUMA KM4-CCD, Eos diffractometer | 342 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.022 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.4°, θmin = 4.9° |
Tmin = 0.140, Tmax = 1.000 | h = −8→7 |
2120 measured reflections | k = −5→5 |
375 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0819P)2 + 0.0302P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
375 reflections | Δρmax = 0.14 e Å−3 |
48 parameters | Δρmin = −0.15 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.17622 (14) | 0.3155 (3) | 0.16649 (13) | 0.0278 (11) | |
C1 | 0.0735 (3) | 0.4566 (4) | 0.22999 (19) | 0.0268 (13) | |
H11 | 0.031527 | 0.529766 | 0.133855 | 0.032* | |
H12 | 0.159858 | 0.518882 | 0.312373 | 0.032* | |
C2 | −0.1039 (2) | 0.3932 (4) | 0.3183 (2) | 0.0319 (11) | |
H21 | −0.186243 | 0.329073 | 0.236584 | 0.048* | |
H23 | −0.178158 | 0.485834 | 0.358769 | 0.048* | |
H22 | −0.060485 | 0.324379 | 0.415731 | 0.048* | |
C3 | 0.3450 (2) | 0.3690 (5) | 0.0800 (2) | 0.0334 (13) | |
H31 | 0.425138 | 0.443431 | 0.155130 | 0.040* | |
H32 | 0.303322 | 0.428584 | −0.026219 | 0.040* | |
C4 | 0.4637 (3) | 0.2176 (4) | 0.0368 (2) | 0.0291 (13) | |
H42 | 0.384657 | 0.146419 | −0.040428 | 0.044* | |
H41 | 0.502092 | 0.158327 | 0.142362 | 0.044* | |
H43 | 0.580088 | 0.251639 | −0.019055 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0255 (9) | 0.024 (4) | 0.0350 (7) | −0.0023 (5) | 0.0111 (6) | −0.0031 (6) |
C1 | 0.0255 (10) | 0.028 (4) | 0.0274 (8) | 0.0015 (10) | 0.0024 (7) | −0.0028 (9) |
C2 | 0.0266 (12) | 0.037 (4) | 0.0331 (8) | 0.0024 (9) | 0.0077 (8) | −0.0035 (10) |
C3 | 0.0249 (13) | 0.046 (5) | 0.0299 (9) | −0.0011 (10) | 0.0087 (9) | 0.0026 (10) |
C4 | 0.0268 (12) | 0.030 (5) | 0.0309 (8) | −0.0017 (10) | 0.0053 (7) | −0.0030 (10) |
O1—C1 | 1.431 (3) | C2—H22 | 0.9600 |
O1—C3 | 1.424 (2) | C3—H31 | 0.9700 |
C1—H11 | 0.9700 | C3—H32 | 0.9700 |
C1—H12 | 0.9700 | C3—C4 | 1.505 (5) |
C1—C2 | 1.504 (3) | C4—H42 | 0.9600 |
C2—H21 | 0.9600 | C4—H41 | 0.9600 |
C2—H23 | 0.9600 | C4—H43 | 0.9600 |
C3—O1—C1 | 110.0 (3) | O1—C3—H31 | 110.0 |
O1—C1—H11 | 110.2 | O1—C3—H32 | 110.0 |
O1—C1—H12 | 110.2 | O1—C3—C4 | 108.3 (3) |
O1—C1—C2 | 107.7 (3) | H31—C3—H32 | 108.4 |
H11—C1—H12 | 108.5 | C4—C3—H31 | 110.0 |
C2—C1—H11 | 110.2 | C4—C3—H32 | 110.0 |
C2—C1—H12 | 110.2 | C3—C4—H42 | 109.5 |
C1—C2—H21 | 109.5 | C3—C4—H41 | 109.5 |
C1—C2—H23 | 109.5 | C3—C4—H43 | 109.5 |
C1—C2—H22 | 109.5 | H42—C4—H41 | 109.5 |
H21—C2—H23 | 109.5 | H42—C4—H43 | 109.5 |
H21—C2—H22 | 109.5 | H41—C4—H43 | 109.5 |
H23—C2—H22 | 109.5 | ||
C1—O1—C3—C4 | 172.46 (12) | C3—O1—C1—C2 | 179.44 (10) |
C4H10O | F(000) = 168 |
Mr = 74.12 | Dx = 1.183 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7073 (12) Å | Cell parameters from 695 reflections |
b = 4.0885 (4) Å | θ = 5.2–26.4° |
c = 13.233 (2) Å | µ = 0.08 mm−1 |
β = 93.793 (16)° | T = 295 K |
V = 416.07 (10) Å3 | Disc, colourless |
Z = 4 | 0.40 × 0.36 × 0.24 mm |
KUMA KM4-CCD, Eos diffractometer | 202 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.013 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.4°, θmin = 5.2° |
Tmin = 0.752, Tmax = 1.000 | h = −7→8 |
1160 measured reflections | k = −4→4 |
223 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0545P)2 + 0.1653P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
223 reflections | Δρmax = 0.09 e Å−3 |
25 parameters | Δρmin = −0.11 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.250000 | 0.1448 (3) | 0.000000 | 0.0334 (9) | |
C1 | 0.1949 (3) | 0.3422 (4) | 0.08002 (14) | 0.0321 (9) | |
H11 | 0.116628 | 0.510954 | 0.052854 | 0.039* | |
H12 | 0.294801 | 0.447906 | 0.114514 | 0.039* | |
C2 | 0.1045 (3) | 0.1352 (4) | 0.15316 (15) | 0.0364 (9) | |
H23 | 0.066841 | 0.269719 | 0.207006 | 0.055* | |
H22 | 0.182974 | −0.029239 | 0.180696 | 0.055* | |
H21 | 0.005409 | 0.031963 | 0.118826 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0415 (18) | 0.0255 (10) | 0.0337 (14) | 0.000 | 0.0053 (13) | 0.000 |
C1 | 0.0345 (18) | 0.0284 (11) | 0.0335 (16) | 0.0015 (6) | 0.0021 (15) | −0.0043 (6) |
C2 | 0.0362 (19) | 0.0371 (12) | 0.0361 (16) | 0.0006 (7) | 0.0035 (15) | −0.0072 (6) |
O1—C1i | 1.418 (2) | C1—C2 | 1.493 (3) |
O1—C1 | 1.418 (2) | C2—H23 | 0.9600 |
C1—H11 | 0.9700 | C2—H22 | 0.9600 |
C1—H12 | 0.9700 | C2—H21 | 0.9600 |
C1i—O1—C1 | 110.64 (18) | C1—C2—H23 | 109.5 |
O1—C1—H11 | 109.7 | C1—C2—H22 | 109.5 |
O1—C1—H12 | 109.7 | C1—C2—H21 | 109.5 |
O1—C1—C2 | 109.69 (14) | H23—C2—H22 | 109.5 |
H11—C1—H12 | 108.2 | H23—C2—H21 | 109.5 |
C2—C1—H11 | 109.7 | H22—C2—H21 | 109.5 |
C2—C1—H12 | 109.7 | ||
C1i—O1—C1—C2 | 168.50 (15) |
Symmetry code: (i) −x+1/2, y, −z. |
C4H10O | Z = 2 |
Mr = 74.12 | F(000) = 84 |
Triclinic, P1 | Dx = 1.215 Mg m−3 |
a = 5.1196 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 5.6659 (10) Å | Cell parameters from 846 reflections |
c = 7.2999 (4) Å | θ = 5.1–26.1° |
α = 97.275 (8)° | µ = 0.08 mm−1 |
β = 102.728 (6)° | T = 295 K |
γ = 96.747 (10)° | Disc, colourless |
V = 202.56 (4) Å3 | 0.36 × 0.36 × 0.23 mm |
KUMA KM4-CCD, Eos diffractometer | 225 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.014 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.1°, θmin = 5.1° |
Tmin = 0.675, Tmax = 1.000 | h = −6→6 |
1217 measured reflections | k = −4→4 |
244 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0403P)2 + 0.0893P] where P = (Fo2 + 2Fc2)/3 |
S = 1.18 | (Δ/σ)max < 0.001 |
244 reflections | Δρmax = 0.09 e Å−3 |
48 parameters | Δρmin = −0.08 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5029 (7) | 0.2073 (11) | 0.3190 (3) | 0.042 (4) | |
C1 | 0.5498 (12) | 0.4352 (18) | 0.2653 (4) | 0.043 (6) | |
H11 | 0.628013 | 0.422259 | 0.155505 | 0.052* | |
H12 | 0.676772 | 0.543641 | 0.368504 | 0.052* | |
C2 | 0.2856 (8) | 0.5336 (14) | 0.2175 (4) | 0.041 (5) | |
H21 | 0.167648 | 0.435123 | 0.106701 | 0.061* | |
H23 | 0.319899 | 0.695440 | 0.192897 | 0.061* | |
H22 | 0.201188 | 0.532848 | 0.322611 | 0.061* | |
C3 | 0.7439 (8) | 0.0987 (13) | 0.3593 (3) | 0.045 (5) | |
H31 | 0.717200 | −0.027165 | 0.434745 | 0.054* | |
H32 | 0.892291 | 0.218957 | 0.434044 | 0.054* | |
C4 | 0.8197 (10) | −0.0082 (16) | 0.1798 (3) | 0.052 (5) | |
H41 | 0.679133 | −0.135463 | 0.109703 | 0.079* | |
H43 | 0.986759 | −0.071269 | 0.213696 | 0.079* | |
H42 | 0.840957 | 0.114565 | 0.102610 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.031 (3) | 0.071 (11) | 0.0349 (11) | 0.026 (6) | 0.0132 (13) | 0.017 (2) |
C1 | 0.036 (4) | 0.072 (17) | 0.0281 (14) | 0.026 (9) | 0.0093 (17) | 0.012 (3) |
C2 | 0.036 (4) | 0.060 (15) | 0.0327 (12) | 0.024 (8) | 0.0094 (14) | 0.012 (2) |
C3 | 0.038 (4) | 0.074 (13) | 0.0291 (12) | 0.036 (7) | 0.0065 (14) | 0.009 (2) |
C4 | 0.044 (4) | 0.086 (15) | 0.0344 (13) | 0.036 (8) | 0.0125 (16) | 0.008 (3) |
O1—C1 | 1.405 (13) | C2—H22 | 0.9600 |
O1—C3 | 1.432 (3) | C3—H31 | 0.9700 |
C1—H11 | 0.9700 | C3—H32 | 0.9700 |
C1—H12 | 0.9700 | C3—C4 | 1.521 (3) |
C1—C2 | 1.510 (3) | C4—H41 | 0.9600 |
C2—H21 | 0.9600 | C4—H43 | 0.9600 |
C2—H23 | 0.9600 | C4—H42 | 0.9600 |
C1—O1—C3 | 112.5 (5) | O1—C3—H31 | 109.1 |
O1—C1—H11 | 109.8 | O1—C3—H32 | 109.1 |
O1—C1—H12 | 109.8 | O1—C3—C4 | 112.51 (18) |
O1—C1—C2 | 109.5 (7) | H31—C3—H32 | 107.8 |
H11—C1—H12 | 108.2 | C4—C3—H31 | 109.1 |
C2—C1—H11 | 109.8 | C4—C3—H32 | 109.1 |
C2—C1—H12 | 109.8 | C3—C4—H41 | 109.5 |
C1—C2—H21 | 109.5 | C3—C4—H43 | 109.5 |
C1—C2—H23 | 109.5 | C3—C4—H42 | 109.5 |
C1—C2—H22 | 109.5 | H41—C4—H43 | 109.5 |
H21—C2—H23 | 109.5 | H41—C4—H42 | 109.5 |
H21—C2—H22 | 109.5 | H43—C4—H42 | 109.5 |
H23—C2—H22 | 109.5 | ||
C1—O1—C3—C4 | −77.9 (7) | C3—O1—C1—C2 | 177.7 (2) |
C4H10O | Z = 2 |
Mr = 74.12 | F(000) = 84 |
Triclinic, P1 | Dx = 1.242 Mg m−3 |
a = 5.0809 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 5.6329 (10) Å | Cell parameters from 828 reflections |
c = 7.2451 (10) Å | θ = 5.1–26.0° |
α = 97.382 (13)° | µ = 0.09 mm−1 |
β = 102.749 (10)° | T = 295 K |
γ = 97.002 (11)° | Disc, colourless |
V = 198.13 (5) Å3 | 0.37 × 0.37 × 0.22 mm |
KUMA KM4-CCD, Eos diffractometer | 218 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.018 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.1°, θmin = 5.1° |
Tmin = 0.036, Tmax = 1.000 | h = −6→6 |
1179 measured reflections | k = −5→4 |
243 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.101 | H-atom parameters constrained |
wR(F2) = 0.361 | w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.79 | (Δ/σ)max < 0.001 |
243 reflections | Δρmax = 0.30 e Å−3 |
23 parameters | Δρmin = −0.29 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5037 (8) | 0.2114 (12) | 0.3175 (4) | 0.0284 (16)* | |
C1 | 0.5525 (13) | 0.442 (2) | 0.2643 (7) | 0.0307 (17)* | |
H11 | 0.631428 | 0.429983 | 0.153823 | 0.037* | |
H12 | 0.679908 | 0.551643 | 0.368952 | 0.037* | |
C2 | 0.2846 (12) | 0.5367 (19) | 0.2166 (9) | 0.0303 (17)* | |
H21 | 0.173772 | 0.446966 | 0.097511 | 0.045* | |
H23 | 0.318515 | 0.704999 | 0.205312 | 0.045* | |
H22 | 0.191093 | 0.518451 | 0.316722 | 0.045* | |
C3 | 0.7420 (11) | 0.0974 (16) | 0.3593 (7) | 0.0279 (17)* | |
H31 | 0.709314 | −0.029712 | 0.433682 | 0.033* | |
H32 | 0.893508 | 0.215939 | 0.436765 | 0.033* | |
C4 | 0.8200 (11) | −0.0114 (16) | 0.1783 (6) | 0.0311 (17)* | |
H41 | 0.679282 | −0.141256 | 0.108049 | 0.047* | |
H43 | 0.989265 | −0.072654 | 0.213373 | 0.047* | |
H42 | 0.840480 | 0.111312 | 0.099832 | 0.047* |
O1—C1 | 1.410 (14) | C2—H22 | 0.9600 |
O1—C3 | 1.431 (4) | C3—H31 | 0.9700 |
C1—H11 | 0.9700 | C3—H32 | 0.9700 |
C1—H12 | 0.9700 | C3—C4 | 1.528 (6) |
C1—C2 | 1.508 (5) | C4—H41 | 0.9600 |
C2—H21 | 0.9600 | C4—H43 | 0.9600 |
C2—H23 | 0.9600 | C4—H42 | 0.9600 |
C1—O1—C3 | 113.9 (7) | O1—C3—H31 | 109.1 |
O1—C1—H11 | 110.0 | O1—C3—H32 | 109.1 |
O1—C1—H12 | 110.0 | O1—C3—C4 | 112.5 (4) |
O1—C1—C2 | 108.5 (8) | H31—C3—H32 | 107.8 |
H11—C1—H12 | 108.4 | C4—C3—H31 | 109.1 |
C2—C1—H11 | 110.0 | C4—C3—H32 | 109.1 |
C2—C1—H12 | 110.0 | C3—C4—H41 | 109.5 |
C1—C2—H21 | 109.5 | C3—C4—H43 | 109.5 |
C1—C2—H23 | 109.5 | C3—C4—H42 | 109.5 |
C1—C2—H22 | 109.5 | H41—C4—H43 | 109.5 |
H21—C2—H23 | 109.5 | H41—C4—H42 | 109.5 |
H21—C2—H22 | 109.5 | H43—C4—H42 | 109.5 |
H23—C2—H22 | 109.5 | ||
C1—O1—C3—C4 | −77.6 (7) | C3—O1—C1—C2 | 177.7 (2) |
C4H10O | Z = 2 |
Mr = 74.12 | F(000) = 84 |
Triclinic, P1 | Dx = 1.252 Mg m−3 |
a = 5.072 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 5.629 (2) Å | Cell parameters from 822 reflections |
c = 7.215 (5) Å | θ = 3.7–27.7° |
α = 97.43 (5)° | µ = 0.09 mm−1 |
β = 102.91 (6)° | T = 295 K |
γ = 97.15 (5)° | Disc, colourless |
V = 196.6 (2) Å3 | 0.38 × 0.38 × 0.21 mm |
KUMA KM4-CCD, Eos diffractometer | 177 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.038 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 27.7°, θmin = 3.7° |
Tmin = 0.216, Tmax = 1.000 | h = −5→5 |
1025 measured reflections | k = −7→7 |
199 independent reflections | l = −7→7 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.141 | w = 1/[σ2(Fo2) + (0.0907P)2 + 0.0311P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max < 0.001 |
199 reflections | Δρmax = 0.09 e Å−3 |
23 parameters | Δρmin = −0.10 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5003 (10) | 0.2063 (3) | 0.3186 (9) | 0.0240 (8)* | |
C1 | 0.5440 (16) | 0.4379 (5) | 0.2617 (14) | 0.0224 (8)* | |
H11 | 0.619886 | 0.424228 | 0.149405 | 0.027* | |
H12 | 0.674185 | 0.549334 | 0.365025 | 0.027* | |
C2 | 0.2853 (16) | 0.5315 (6) | 0.2166 (13) | 0.0257 (9)* | |
H21 | 0.164595 | 0.431191 | 0.104563 | 0.039* | |
H23 | 0.319056 | 0.694628 | 0.191837 | 0.039* | |
H22 | 0.202190 | 0.530086 | 0.323708 | 0.039* | |
C3 | 0.7453 (17) | 0.0991 (5) | 0.3606 (15) | 0.0253 (9)* | |
H31 | 0.719288 | −0.027435 | 0.437150 | 0.030* | |
H32 | 0.895743 | 0.221737 | 0.436015 | 0.030* | |
C4 | 0.8184 (17) | −0.0086 (6) | 0.1773 (15) | 0.0267 (10)* | |
H41 | 0.679656 | −0.142617 | 0.109732 | 0.040* | |
H43 | 0.991835 | −0.064044 | 0.210200 | 0.040* | |
H42 | 0.829900 | 0.113155 | 0.096428 | 0.040* |
O1—C1 | 1.423 (6) | C2—H22 | 0.9600 |
O1—C3 | 1.437 (9) | C3—H31 | 0.9700 |
C1—H11 | 0.9700 | C3—H32 | 0.9700 |
C1—H12 | 0.9700 | C3—C4 | 1.524 (8) |
C1—C2 | 1.460 (11) | C4—H41 | 0.9600 |
C2—H21 | 0.9600 | C4—H43 | 0.9600 |
C2—H23 | 0.9600 | C4—H42 | 0.9600 |
C1—O1—C3 | 113.2 (3) | O1—C3—H31 | 109.3 |
O1—C1—H11 | 109.7 | O1—C3—H32 | 109.3 |
O1—C1—H12 | 109.7 | O1—C3—C4 | 111.7 (9) |
O1—C1—C2 | 109.9 (3) | H31—C3—H32 | 107.9 |
H11—C1—H12 | 108.2 | C4—C3—H31 | 109.3 |
C2—C1—H11 | 109.7 | C4—C3—H32 | 109.3 |
C2—C1—H12 | 109.7 | C3—C4—H41 | 109.5 |
C1—C2—H21 | 109.5 | C3—C4—H43 | 109.5 |
C1—C2—H23 | 109.5 | C3—C4—H42 | 109.5 |
C1—C2—H22 | 109.5 | H41—C4—H43 | 109.5 |
H21—C2—H23 | 109.5 | H41—C4—H42 | 109.5 |
H21—C2—H22 | 109.5 | H43—C4—H42 | 109.5 |
H23—C2—H22 | 109.5 | ||
C1—O1—C3—C4 | −77.6 (5) | C3—O1—C1—C2 | 178.5 (6) |
C4H10O | Z = 2 |
Mr = 74.12 | F(000) = 84 |
Triclinic, P1 | Dx = 1.293 Mg m−3 |
a = 5.0182 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 5.575 (3) Å | Cell parameters from 655 reflections |
c = 7.136 (3) Å | θ = 4.4–27.9° |
α = 97.36 (4)° | µ = 0.09 mm−1 |
β = 102.81 (3)° | T = 295 K |
γ = 97.72 (4)° | Disc, colourless |
V = 190.31 (14) Å3 | 0.40 × 0.40 × 0.20 mm |
KUMA KM4-CCD, Eos diffractometer | 153 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.095 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 27.9°, θmin = 4.4° |
Tmin = 0.136, Tmax = 1.000 | h = −5→5 |
944 measured reflections | k = −6→6 |
195 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.182 | w = 1/[σ2(Fo2) + (0.1287P)2 + 0.0085P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
195 reflections | Δρmax = 0.12 e Å−3 |
23 parameters | Δρmin = −0.12 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4987 (12) | 0.2042 (9) | 0.3204 (7) | 0.0254 (10)* | |
C1 | 0.545 (2) | 0.4379 (17) | 0.2630 (13) | 0.0256 (12)* | |
H11 | 0.623129 | 0.424073 | 0.149948 | 0.031* | |
H12 | 0.677056 | 0.550931 | 0.367720 | 0.031* | |
C2 | 0.281 (2) | 0.5333 (18) | 0.2156 (13) | 0.0302 (13)* | |
H21 | 0.155921 | 0.426996 | 0.105977 | 0.045* | |
H23 | 0.316270 | 0.695125 | 0.184223 | 0.045* | |
H22 | 0.200598 | 0.539633 | 0.325745 | 0.045* | |
C3 | 0.747 (2) | 0.1009 (15) | 0.3620 (11) | 0.0254 (12)* | |
H31 | 0.723207 | −0.026309 | 0.440691 | 0.030* | |
H32 | 0.898771 | 0.227237 | 0.436653 | 0.030* | |
C4 | 0.818 (2) | −0.0086 (16) | 0.1748 (13) | 0.0320 (12)* | |
H41 | 0.686668 | −0.153869 | 0.113600 | 0.048* | |
H43 | 1.001199 | −0.049546 | 0.205957 | 0.048* | |
H42 | 0.812374 | 0.109210 | 0.087502 | 0.048* |
O1—C1 | 1.421 (8) | C2—H22 | 0.9600 |
O1—C3 | 1.429 (6) | C3—H31 | 0.9700 |
C1—H11 | 0.9700 | C3—H32 | 0.9700 |
C1—H12 | 0.9700 | C3—C4 | 1.533 (8) |
C1—C2 | 1.479 (8) | C4—H41 | 0.9600 |
C2—H21 | 0.9600 | C4—H43 | 0.9600 |
C2—H23 | 0.9600 | C4—H42 | 0.9600 |
C1—O1—C3 | 112.1 (5) | O1—C3—H31 | 109.3 |
O1—C1—H11 | 109.7 | O1—C3—H32 | 109.3 |
O1—C1—H12 | 109.7 | O1—C3—C4 | 111.5 (7) |
O1—C1—C2 | 110.0 (7) | H31—C3—H32 | 108.0 |
H11—C1—H12 | 108.2 | C4—C3—H31 | 109.3 |
C2—C1—H11 | 109.7 | C4—C3—H32 | 109.3 |
C2—C1—H12 | 109.7 | C3—C4—H41 | 109.5 |
C1—C2—H21 | 109.5 | C3—C4—H43 | 109.5 |
C1—C2—H23 | 109.5 | C3—C4—H42 | 109.5 |
C1—C2—H22 | 109.5 | H41—C4—H43 | 109.5 |
H21—C2—H23 | 109.5 | H41—C4—H42 | 109.5 |
H21—C2—H22 | 109.5 | H43—C4—H42 | 109.5 |
H23—C2—H22 | 109.5 | ||
C1—O1—C3—C4 | −78.2 (7) | C3—O1—C1—C2 | 178.2 (7) |
C6H14O | F(000) = 232 |
Mr = 102.17 | Dx = 1.128 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.416 (4) Å | Cell parameters from 1225 reflections |
b = 4.1817 (3) Å | θ = 5.0–24.3° |
c = 15.579 (7) Å | µ = 0.07 mm−1 |
β = 101.23 (5)° | T = 295 K |
V = 601.7 (4) Å3 | Disc, colourless |
Z = 4 | 0.39 × 0.37 × 0.25 mm |
KUMA KM4-CCD, Eos diffractometer | 286 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.025 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.4°, θmin = 5.1° |
Tmin = 0.507, Tmax = 1.000 | h = −8→8 |
3001 measured reflections | k = −5→5 |
386 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.151 | w = 1/[σ2(Fo2) + (0.1115P)2 + 0.0052P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
386 reflections | Δρmax = 0.10 e Å−3 |
66 parameters | Δρmin = −0.09 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4584 (3) | 0.8467 (3) | 0.1317 (2) | 0.060 (4) | |
C1 | 0.3752 (5) | 0.7145 (5) | 0.0533 (3) | 0.058 (5) | |
H11 | 0.381195 | 0.482954 | 0.055219 | 0.070* | |
H12 | 0.412714 | 0.788437 | 0.003069 | 0.070* | |
C2 | 0.2192 (5) | 0.8192 (5) | 0.0453 (3) | 0.055 (5) | |
H22 | 0.215342 | 1.049577 | 0.051684 | 0.066* | |
H21 | 0.178636 | 0.722202 | 0.091687 | 0.066* | |
C3 | 0.1296 (7) | 0.7211 (5) | −0.0435 (4) | 0.070 (5) | |
H33 | 0.033105 | 0.804050 | −0.049320 | 0.105* | |
H31 | 0.125959 | 0.492113 | −0.047613 | 0.105* | |
H32 | 0.173411 | 0.805742 | −0.089436 | 0.105* | |
C4 | 0.6010 (5) | 0.7224 (6) | 0.1490 (3) | 0.054 (5) | |
H41 | 0.651228 | 0.788187 | 0.103195 | 0.065* | |
H42 | 0.597459 | 0.490543 | 0.149471 | 0.065* | |
C5 | 0.6821 (5) | 0.8410 (5) | 0.2361 (3) | 0.057 (5) | |
H52 | 0.636877 | 0.757803 | 0.282339 | 0.068* | |
H51 | 0.676959 | 1.072595 | 0.237591 | 0.068* | |
C6 | 0.8394 (6) | 0.7377 (5) | 0.2520 (4) | 0.064 (6) | |
H63 | 0.890335 | 0.830768 | 0.305550 | 0.096* | |
H61 | 0.882544 | 0.807961 | 0.204295 | 0.096* | |
H62 | 0.844893 | 0.508801 | 0.256252 | 0.096* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.049 (5) | 0.0445 (10) | 0.071 (5) | 0.0031 (10) | −0.025 (5) | −0.0060 (11) |
C1 | 0.055 (7) | 0.0386 (12) | 0.065 (7) | −0.0009 (15) | −0.026 (7) | 0.0007 (16) |
C2 | 0.045 (7) | 0.0441 (13) | 0.066 (7) | 0.0021 (16) | −0.014 (7) | −0.0012 (17) |
C3 | 0.060 (7) | 0.0557 (14) | 0.076 (7) | −0.0001 (17) | −0.032 (7) | 0.0025 (18) |
C4 | 0.041 (7) | 0.0416 (13) | 0.067 (7) | 0.0010 (14) | −0.019 (7) | 0.0046 (16) |
C5 | 0.049 (6) | 0.0449 (12) | 0.065 (6) | 0.0004 (16) | −0.018 (6) | 0.0025 (18) |
C6 | 0.051 (8) | 0.0605 (15) | 0.066 (7) | −0.0066 (18) | −0.025 (7) | 0.0095 (19) |
O1—C1 | 1.428 (4) | C3—H32 | 0.9600 |
O1—C4 | 1.416 (5) | C4—H41 | 0.9700 |
C1—H11 | 0.9700 | C4—H42 | 0.9700 |
C1—H12 | 0.9700 | C4—C5 | 1.505 (4) |
C1—C2 | 1.514 (7) | C5—H52 | 0.9700 |
C2—H22 | 0.9700 | C5—H51 | 0.9700 |
C2—H21 | 0.9700 | C5—C6 | 1.516 (7) |
C2—C3 | 1.530 (5) | C6—H63 | 0.9600 |
C3—H33 | 0.9600 | C6—H61 | 0.9600 |
C3—H31 | 0.9600 | C6—H62 | 0.9600 |
C4—O1—C1 | 111.3 (4) | O1—C4—H41 | 109.6 |
O1—C1—H11 | 110.0 | O1—C4—H42 | 109.6 |
O1—C1—H12 | 110.0 | O1—C4—C5 | 110.3 (4) |
O1—C1—C2 | 108.7 (4) | H41—C4—H42 | 108.1 |
H11—C1—H12 | 108.3 | C5—C4—H41 | 109.6 |
C2—C1—H11 | 110.0 | C5—C4—H42 | 109.6 |
C2—C1—H12 | 110.0 | C4—C5—H52 | 109.4 |
C1—C2—H22 | 109.5 | C4—C5—H51 | 109.4 |
C1—C2—H21 | 109.5 | C4—C5—C6 | 111.2 (5) |
C1—C2—C3 | 110.7 (5) | H52—C5—H51 | 108.0 |
H22—C2—H21 | 108.1 | C6—C5—H52 | 109.4 |
C3—C2—H22 | 109.5 | C6—C5—H51 | 109.4 |
C3—C2—H21 | 109.5 | C5—C6—H63 | 109.5 |
C2—C3—H33 | 109.5 | C5—C6—H61 | 109.5 |
C2—C3—H31 | 109.5 | C5—C6—H62 | 109.5 |
C2—C3—H32 | 109.5 | H63—C6—H61 | 109.5 |
H33—C3—H31 | 109.5 | H63—C6—H62 | 109.5 |
H33—C3—H32 | 109.5 | H61—C6—H62 | 109.5 |
H31—C3—H32 | 109.5 | ||
O1—C1—C2—C3 | 172.4 (3) | C1—O1—C4—C5 | −174.7 (4) |
O1—C4—C5—C6 | −174.4 (3) | C4—O1—C1—C2 | 172.0 (3) |
C6H14O | F(000) = 232 |
Mr = 102.17 | Dx = 1.159 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.368 (8) Å | Cell parameters from 1024 reflections |
b = 4.1229 (4) Å | θ = 5.1–24.5° |
c = 15.434 (4) Å | µ = 0.08 mm−1 |
β = 100.84 (6)° | T = 295 K |
V = 585.5 (6) Å3 | Disc, colourless |
Z = 4 | 0.39 × 0.38 × 0.24 mm |
KUMA KM4-CCD, Eos diffractometer | 287 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.030 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.5°, θmin = 5.1° |
Tmin = 0.517, Tmax = 1.000 | h = −6→6 |
2850 measured reflections | k = −5→5 |
383 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.142 | w = 1/[σ2(Fo2) + (0.0676P)2 + 0.3061P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
383 reflections | Δρmax = 0.10 e Å−3 |
66 parameters | Δρmin = −0.10 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4584 (5) | 0.8479 (5) | 0.1318 (2) | 0.060 (4) | |
C1 | 0.3745 (8) | 0.7127 (7) | 0.0543 (3) | 0.050 (5) | |
H11 | 0.379792 | 0.477886 | 0.057313 | 0.060* | |
H12 | 0.412771 | 0.782871 | 0.003253 | 0.060* | |
C2 | 0.2200 (8) | 0.8189 (7) | 0.0454 (3) | 0.051 (6) | |
H22 | 0.216710 | 1.052744 | 0.051755 | 0.061* | |
H21 | 0.178157 | 0.722236 | 0.092211 | 0.061* | |
C3 | 0.1293 (10) | 0.7207 (8) | −0.0443 (3) | 0.067 (6) | |
H33 | 0.030640 | 0.790486 | −0.047620 | 0.100* | |
H31 | 0.131747 | 0.489262 | −0.050547 | 0.100* | |
H32 | 0.168837 | 0.821113 | −0.090695 | 0.100* | |
C4 | 0.6019 (8) | 0.7218 (7) | 0.1489 (3) | 0.052 (6) | |
H41 | 0.652655 | 0.790134 | 0.102695 | 0.062* | |
H42 | 0.598404 | 0.486637 | 0.148855 | 0.062* | |
C5 | 0.6824 (8) | 0.8402 (7) | 0.2367 (3) | 0.057 (6) | |
H52 | 0.636847 | 0.753664 | 0.283253 | 0.069* | |
H51 | 0.676855 | 1.074957 | 0.238738 | 0.069* | |
C6 | 0.8411 (8) | 0.7362 (8) | 0.2522 (3) | 0.068 (6) | |
H63 | 0.891490 | 0.826082 | 0.306852 | 0.101* | |
H61 | 0.885090 | 0.813085 | 0.204682 | 0.101* | |
H62 | 0.846918 | 0.503821 | 0.254860 | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.071 (9) | 0.0434 (13) | 0.052 (3) | 0.0061 (17) | −0.019 (5) | −0.0083 (11) |
C1 | 0.063 (12) | 0.0385 (17) | 0.041 (3) | 0.002 (3) | −0.011 (6) | 0.0000 (16) |
C2 | 0.063 (13) | 0.0423 (18) | 0.043 (4) | 0.000 (3) | −0.003 (7) | −0.0001 (16) |
C3 | 0.091 (13) | 0.050 (2) | 0.047 (4) | 0.002 (3) | −0.016 (7) | −0.0013 (18) |
C4 | 0.059 (12) | 0.0393 (18) | 0.048 (4) | −0.001 (3) | −0.012 (6) | 0.0046 (16) |
C5 | 0.069 (13) | 0.0419 (17) | 0.051 (4) | −0.001 (3) | −0.016 (7) | 0.0003 (17) |
C6 | 0.083 (13) | 0.051 (2) | 0.055 (4) | −0.003 (3) | −0.023 (7) | 0.0028 (18) |
O1—C1 | 1.416 (4) | C3—H32 | 0.9600 |
O1—C4 | 1.419 (8) | C4—H41 | 0.9700 |
C1—H11 | 0.9700 | C4—H42 | 0.9700 |
C1—H12 | 0.9700 | C4—C5 | 1.504 (4) |
C1—C2 | 1.493 (10) | C5—H52 | 0.9700 |
C2—H22 | 0.9700 | C5—H51 | 0.9700 |
C2—H21 | 0.9700 | C5—C6 | 1.523 (9) |
C2—C3 | 1.536 (4) | C6—H63 | 0.9600 |
C3—H33 | 0.9600 | C6—H61 | 0.9600 |
C3—H31 | 0.9600 | C6—H62 | 0.9600 |
C1—O1—C4 | 111.6 (4) | O1—C4—H41 | 109.6 |
O1—C1—H11 | 109.7 | O1—C4—H42 | 109.6 |
O1—C1—H12 | 109.7 | O1—C4—C5 | 110.2 (5) |
O1—C1—C2 | 109.7 (5) | H41—C4—H42 | 108.1 |
H11—C1—H12 | 108.2 | C5—C4—H41 | 109.6 |
C2—C1—H11 | 109.7 | C5—C4—H42 | 109.6 |
C2—C1—H12 | 109.7 | C4—C5—H52 | 109.4 |
C1—C2—H22 | 109.3 | C4—C5—H51 | 109.4 |
C1—C2—H21 | 109.3 | C4—C5—C6 | 111.1 (5) |
C1—C2—C3 | 111.6 (6) | H52—C5—H51 | 108.0 |
H22—C2—H21 | 108.0 | C6—C5—H52 | 109.4 |
C3—C2—H22 | 109.3 | C6—C5—H51 | 109.4 |
C3—C2—H21 | 109.3 | C5—C6—H63 | 109.5 |
C2—C3—H33 | 109.5 | C5—C6—H61 | 109.5 |
C2—C3—H31 | 109.5 | C5—C6—H62 | 109.5 |
C2—C3—H32 | 109.5 | H63—C6—H61 | 109.5 |
H33—C3—H31 | 109.5 | H63—C6—H62 | 109.5 |
H33—C3—H32 | 109.5 | H61—C6—H62 | 109.5 |
H31—C3—H32 | 109.5 | ||
O1—C1—C2—C3 | 171.5 (4) | C1—O1—C4—C5 | −173.4 (4) |
O1—C4—C5—C6 | −174.2 (4) | C4—O1—C1—C2 | 172.7 (4) |
C6H14O | F(000) = 232 |
Mr = 102.17 | Dx = 1.202 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.293 (7) Å | Cell parameters from 1241 reflections |
b = 4.0686 (2) Å | θ = 5.2–25.5° |
c = 15.1855 (10) Å | µ = 0.08 mm−1 |
β = 100.35 (3)° | T = 295 K |
V = 564.8 (4) Å3 | Disc, colourless |
Z = 4 | 0.46 × 0.43 × 0.23 mm |
KUMA KM4-CCD, Eos diffractometer | 282 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.027 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.6°, θmin = 5.2° |
Tmin = 0.715, Tmax = 1.000 | h = −4→4 |
2881 measured reflections | k = −5→5 |
356 independent reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.145 | w = 1/[σ2(Fo2) + (0.095P)2 + 0.1072P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
356 reflections | Δρmax = 0.09 e Å−3 |
66 parameters | Δρmin = −0.12 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4592 (8) | 0.8515 (6) | 0.13181 (16) | 0.048 (5) | |
C1 | 0.3710 (14) | 0.7144 (8) | 0.0534 (3) | 0.057 (7) | |
H11 | 0.375837 | 0.476428 | 0.056591 | 0.069* | |
H12 | 0.408763 | 0.783597 | 0.000841 | 0.069* | |
C2 | 0.2183 (15) | 0.8207 (9) | 0.0454 (3) | 0.059 (8) | |
H22 | 0.215089 | 1.057762 | 0.051505 | 0.070* | |
H21 | 0.176415 | 0.723991 | 0.093491 | 0.070* | |
C3 | 0.1275 (10) | 0.7202 (6) | −0.04411 (19) | 0.061 (6) | |
H33 | 0.030515 | 0.808317 | −0.049194 | 0.091* | |
H31 | 0.122554 | 0.484845 | −0.047821 | 0.091* | |
H32 | 0.172152 | 0.804195 | −0.091816 | 0.091* | |
C4 | 0.6028 (12) | 0.7222 (8) | 0.1489 (2) | 0.049 (7) | |
H41 | 0.654202 | 0.788314 | 0.101489 | 0.059* | |
H42 | 0.598606 | 0.484045 | 0.149522 | 0.059* | |
C5 | 0.6839 (15) | 0.8434 (9) | 0.2368 (3) | 0.047 (9) | |
H52 | 0.637162 | 0.759927 | 0.284476 | 0.056* | |
H51 | 0.679331 | 1.081472 | 0.238059 | 0.056* | |
C6 | 0.8413 (16) | 0.7369 (10) | 0.2531 (3) | 0.070 (9) | |
H63 | 0.890833 | 0.827079 | 0.308776 | 0.104* | |
H61 | 0.887268 | 0.814327 | 0.205228 | 0.104* | |
H62 | 0.846320 | 0.501371 | 0.255674 | 0.104* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.070 (16) | 0.0361 (14) | 0.0318 (16) | 0.001 (2) | −0.008 (4) | −0.0059 (9) |
C1 | 0.11 (2) | 0.0296 (18) | 0.0280 (19) | −0.004 (3) | 0.010 (6) | −0.0011 (13) |
C2 | 0.11 (3) | 0.035 (2) | 0.035 (2) | 0.001 (3) | 0.012 (6) | −0.0029 (14) |
C3 | 0.109 (19) | 0.0418 (16) | 0.0286 (18) | −0.006 (3) | 0.002 (5) | −0.0006 (10) |
C4 | 0.08 (2) | 0.0324 (18) | 0.028 (2) | 0.006 (4) | 0.001 (6) | 0.0039 (13) |
C5 | 0.07 (3) | 0.034 (2) | 0.033 (2) | −0.002 (3) | 0.002 (7) | 0.0017 (13) |
C6 | 0.13 (3) | 0.044 (2) | 0.030 (2) | −0.002 (4) | 0.006 (7) | 0.0046 (15) |
O1—C1 | 1.432 (10) | C3—H32 | 0.9600 |
O1—C4 | 1.414 (14) | C4—H41 | 0.9700 |
C1—H11 | 0.9700 | C4—H42 | 0.9700 |
C1—H12 | 0.9700 | C4—C5 | 1.495 (10) |
C1—C2 | 1.468 (19) | C5—H52 | 0.9700 |
C2—H22 | 0.9700 | C5—H51 | 0.9700 |
C2—H21 | 0.9700 | C5—C6 | 1.50 (2) |
C2—C3 | 1.522 (10) | C6—H63 | 0.9600 |
C3—H33 | 0.9600 | C6—H61 | 0.9600 |
C3—H31 | 0.9600 | C6—H62 | 0.9600 |
C4—O1—C1 | 112.8 (5) | O1—C4—H41 | 109.6 |
O1—C1—H11 | 109.5 | O1—C4—H42 | 109.6 |
O1—C1—H12 | 109.5 | O1—C4—C5 | 110.4 (5) |
O1—C1—C2 | 110.8 (4) | H41—C4—H42 | 108.1 |
H11—C1—H12 | 108.1 | C5—C4—H41 | 109.6 |
C2—C1—H11 | 109.5 | C5—C4—H42 | 109.6 |
C2—C1—H12 | 109.5 | C4—C5—H52 | 109.3 |
C1—C2—H22 | 109.3 | C4—C5—H51 | 109.3 |
C1—C2—H21 | 109.3 | C4—C5—C6 | 111.8 (5) |
C1—C2—C3 | 111.6 (4) | H52—C5—H51 | 107.9 |
H22—C2—H21 | 108.0 | C6—C5—H52 | 109.3 |
C3—C2—H22 | 109.3 | C6—C5—H51 | 109.3 |
C3—C2—H21 | 109.3 | C5—C6—H63 | 109.5 |
C2—C3—H33 | 109.5 | C5—C6—H61 | 109.5 |
C2—C3—H31 | 109.5 | C5—C6—H62 | 109.5 |
C2—C3—H32 | 109.5 | H63—C6—H61 | 109.5 |
H33—C3—H31 | 109.5 | H63—C6—H62 | 109.5 |
H33—C3—H32 | 109.5 | H61—C6—H62 | 109.5 |
H31—C3—H32 | 109.5 | ||
O1—C1—C2—C3 | 171.5 (2) | C1—O1—C4—C5 | −173.3 (3) |
O1—C4—C5—C6 | −174.6 (5) | C4—O1—C1—C2 | 172.1 (4) |
C6H14O | F(000) = 232 |
Mr = 102.17 | Dx = 1.249 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.198 (9) Å | Cell parameters from 1140 reflections |
b = 4.0064 (3) Å | θ = 5.2–24.9° |
c = 14.9459 (15) Å | µ = 0.08 mm−1 |
β = 99.54 (4)° | T = 295 K |
V = 543.1 (5) Å3 | Disc, colourless |
Z = 4 | 0.38 × 0.36 × 0.22 mm |
KUMA KM4-CCD, Eos diffractometer | 281 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.030 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.5°, θmin = 5.3° |
Tmin = 0.650, Tmax = 1.000 | h = −4→4 |
2785 measured reflections | k = −5→5 |
347 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0571P)2 + 0.017P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
347 reflections | Δρmax = 0.06 e Å−3 |
66 parameters | Δρmin = −0.06 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4590 (6) | 0.8573 (4) | 0.13140 (11) | 0.032 (3) | |
C1 | 0.3718 (9) | 0.7137 (6) | 0.05340 (17) | 0.038 (5) | |
H11 | 0.376898 | 0.472271 | 0.057771 | 0.045* | |
H12 | 0.410512 | 0.780373 | −0.000437 | 0.045* | |
C2 | 0.2172 (11) | 0.8215 (6) | 0.04531 (19) | 0.040 (5) | |
H22 | 0.213852 | 1.062364 | 0.051246 | 0.049* | |
H21 | 0.174194 | 0.724233 | 0.094321 | 0.049* | |
C3 | 0.1266 (7) | 0.7189 (4) | −0.04495 (14) | 0.038 (4) | |
H33 | 0.030179 | 0.816785 | −0.050866 | 0.056* | |
H31 | 0.117814 | 0.480141 | −0.047387 | 0.056* | |
H32 | 0.174456 | 0.794864 | −0.093598 | 0.056* | |
C4 | 0.6039 (8) | 0.7236 (5) | 0.14848 (16) | 0.033 (5) | |
H41 | 0.656253 | 0.787994 | 0.099948 | 0.039* | |
H42 | 0.598715 | 0.481810 | 0.149553 | 0.039* | |
C5 | 0.6864 (10) | 0.8467 (6) | 0.23728 (17) | 0.041 (6) | |
H51 | 0.682788 | 1.088614 | 0.238299 | 0.049* | |
H52 | 0.638802 | 0.764234 | 0.286161 | 0.049* | |
C6 | 0.8428 (10) | 0.7367 (7) | 0.25265 (18) | 0.037 (5) | |
H63 | 0.892849 | 0.828515 | 0.308717 | 0.055* | |
H61 | 0.889671 | 0.813054 | 0.203603 | 0.055* | |
H62 | 0.846929 | 0.497451 | 0.255561 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.028 (10) | 0.0343 (10) | 0.0316 (10) | 0.0025 (15) | −0.005 (3) | −0.0050 (6) |
C1 | 0.061 (15) | 0.0259 (12) | 0.0248 (13) | −0.002 (2) | 0.004 (4) | −0.0016 (9) |
C2 | 0.061 (16) | 0.0286 (13) | 0.0321 (15) | 0.005 (2) | 0.009 (4) | −0.0007 (9) |
C3 | 0.044 (12) | 0.0368 (11) | 0.0302 (13) | 0.0008 (18) | 0.001 (3) | 0.0003 (7) |
C4 | 0.040 (15) | 0.0298 (12) | 0.0263 (15) | 0.004 (2) | −0.001 (4) | 0.0037 (8) |
C5 | 0.063 (18) | 0.0299 (13) | 0.0285 (14) | 0.004 (2) | 0.005 (4) | 0.0028 (9) |
C6 | 0.041 (18) | 0.0367 (16) | 0.0287 (15) | −0.005 (3) | −0.004 (4) | 0.0030 (9) |
O1—C1 | 1.423 (7) | C3—H32 | 0.9600 |
O1—C4 | 1.419 (9) | C4—H41 | 0.9700 |
C1—H11 | 0.9700 | C4—H42 | 0.9700 |
C1—H12 | 0.9700 | C4—C5 | 1.499 (6) |
C1—C2 | 1.472 (14) | C5—H51 | 0.9700 |
C2—H22 | 0.9700 | C5—H52 | 0.9700 |
C2—H21 | 0.9700 | C5—C6 | 1.485 (13) |
C2—C3 | 1.520 (7) | C6—H63 | 0.9600 |
C3—H33 | 0.9600 | C6—H61 | 0.9600 |
C3—H31 | 0.9600 | C6—H62 | 0.9600 |
C4—O1—C1 | 112.3 (3) | O1—C4—H41 | 109.4 |
O1—C1—H11 | 109.5 | O1—C4—H42 | 109.4 |
O1—C1—H12 | 109.5 | O1—C4—C5 | 111.0 (4) |
O1—C1—C2 | 110.8 (3) | H41—C4—H42 | 108.0 |
H11—C1—H12 | 108.1 | C5—C4—H41 | 109.4 |
C2—C1—H11 | 109.5 | C5—C4—H42 | 109.4 |
C2—C1—H12 | 109.5 | C4—C5—H51 | 109.2 |
C1—C2—H22 | 109.2 | C4—C5—H52 | 109.2 |
C1—C2—H21 | 109.2 | H51—C5—H52 | 107.9 |
C1—C2—C3 | 111.9 (3) | C6—C5—C4 | 112.0 (4) |
H22—C2—H21 | 107.9 | C6—C5—H51 | 109.2 |
C3—C2—H22 | 109.2 | C6—C5—H52 | 109.2 |
C3—C2—H21 | 109.2 | C5—C6—H63 | 109.5 |
C2—C3—H33 | 109.5 | C5—C6—H61 | 109.5 |
C2—C3—H31 | 109.5 | C5—C6—H62 | 109.5 |
C2—C3—H32 | 109.5 | H63—C6—H61 | 109.5 |
H33—C3—H31 | 109.5 | H63—C6—H62 | 109.5 |
H33—C3—H32 | 109.5 | H61—C6—H62 | 109.5 |
H31—C3—H32 | 109.5 | ||
O1—C1—C2—C3 | 170.71 (15) | C1—O1—C4—C5 | −172.7 (2) |
O1—C4—C5—C6 | −174.5 (4) | C4—O1—C1—C2 | 171.8 (3) |
C6H14O | F(000) = 232 |
Mr = 102.17 | Dx = 1.304 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.099 (12) Å | Cell parameters from 1024 reflections |
b = 3.9465 (3) Å | θ = 5.3–26.1° |
c = 14.649 (8) Å | µ = 0.09 mm−1 |
β = 98.32 (10)° | T = 295 K |
V = 520.5 (7) Å3 | Disc, colourless |
Z = 4 | 0.44 × 0.40 × 0.21 mm |
KUMA KM4-CCD, Eos diffractometer | 232 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.035 |
Absorption correction: multi-scan CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | θmax = 26.3°, θmin = 5.4° |
Tmin = 0.725, Tmax = 1.000 | h = −7→7 |
2594 measured reflections | k = −4→4 |
310 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0445P)2 + 0.3422P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
310 reflections | Δρmax = 0.10 e Å−3 |
66 parameters | Δρmin = −0.08 e Å−3 |
6 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The diamond-anvil cell (DAC) imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4627 (19) | 0.8650 (7) | 0.1325 (8) | 0.050 (9) | |
C1 | 0.371 (3) | 0.7166 (10) | 0.0531 (12) | 0.023 (12) | |
H12 | 0.409912 | 0.780801 | −0.002578 | 0.028* | |
H11 | 0.375152 | 0.471618 | 0.058045 | 0.028* | |
C2 | 0.217 (2) | 0.8244 (10) | 0.0454 (9) | 0.049 (11) | |
H22 | 0.213116 | 1.069016 | 0.051235 | 0.059* | |
H21 | 0.172236 | 0.726698 | 0.095760 | 0.059* | |
C3 | 0.127 (2) | 0.7196 (10) | −0.0455 (8) | 0.046 (10) | |
H33 | 0.029615 | 0.820062 | −0.050986 | 0.069* | |
H31 | 0.117300 | 0.477280 | −0.047607 | 0.069* | |
H32 | 0.175853 | 0.795027 | −0.095538 | 0.069* | |
C4 | 0.605 (3) | 0.7270 (11) | 0.1482 (13) | 0.033 (14) | |
H41 | 0.658536 | 0.789594 | 0.097857 | 0.040* | |
H42 | 0.598453 | 0.481867 | 0.149304 | 0.040* | |
C5 | 0.693 (2) | 0.8507 (9) | 0.2395 (8) | 0.044 (11) | |
H51 | 0.691123 | 1.096390 | 0.240938 | 0.052* | |
H52 | 0.644999 | 0.768628 | 0.290271 | 0.052* | |
C6 | 0.846 (2) | 0.7360 (12) | 0.2521 (9) | 0.066 (10) | |
H63 | 0.896718 | 0.821768 | 0.309438 | 0.100* | |
H61 | 0.893893 | 0.817475 | 0.202188 | 0.100* | |
H62 | 0.848248 | 0.492831 | 0.253003 | 0.100* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.07 (2) | 0.0270 (14) | 0.056 (9) | 0.006 (5) | 0.034 (14) | −0.002 (3) |
C1 | 0.01 (3) | 0.0240 (18) | 0.037 (17) | 0.001 (10) | 0.00 (2) | 0.000 (6) |
C2 | 0.07 (3) | 0.0260 (18) | 0.059 (12) | 0.005 (5) | 0.042 (18) | 0.001 (3) |
C3 | 0.07 (3) | 0.0302 (19) | 0.039 (11) | −0.004 (6) | 0.021 (16) | −0.002 (4) |
C4 | 0.02 (4) | 0.0253 (19) | 0.055 (17) | 0.007 (10) | 0.02 (2) | 0.006 (6) |
C5 | 0.08 (3) | 0.0245 (18) | 0.028 (10) | 0.006 (5) | 0.015 (17) | 0.004 (3) |
C6 | 0.12 (3) | 0.030 (2) | 0.064 (12) | 0.008 (6) | 0.053 (17) | 0.005 (4) |
O1—C1 | 1.46 (4) | C3—H32 | 0.9600 |
O1—C4 | 1.40 (4) | C4—H41 | 0.9700 |
C1—H12 | 0.9700 | C4—H42 | 0.9700 |
C1—H11 | 0.9700 | C4—C5 | 1.53 (4) |
C1—C2 | 1.45 (4) | C5—H51 | 0.9700 |
C2—H22 | 0.9700 | C5—H52 | 0.9700 |
C2—H21 | 0.9700 | C5—C6 | 1.45 (3) |
C2—C3 | 1.52 (3) | C6—H63 | 0.9600 |
C3—H33 | 0.9600 | C6—H61 | 0.9600 |
C3—H31 | 0.9600 | C6—H62 | 0.9600 |
C4—O1—C1 | 112.9 (6) | O1—C4—H41 | 109.2 |
O1—C1—H12 | 109.1 | O1—C4—H42 | 109.2 |
O1—C1—H11 | 109.1 | O1—C4—C5 | 111.8 (6) |
H12—C1—H11 | 107.9 | H41—C4—H42 | 107.9 |
C2—C1—O1 | 112.4 (5) | C5—C4—H41 | 109.2 |
C2—C1—H12 | 109.1 | C5—C4—H42 | 109.2 |
C2—C1—H11 | 109.1 | C4—C5—H51 | 109.2 |
C1—C2—H22 | 109.1 | C4—C5—H52 | 109.2 |
C1—C2—H21 | 109.1 | H51—C5—H52 | 107.9 |
C1—C2—C3 | 112.3 (6) | C6—C5—C4 | 112.2 (6) |
H22—C2—H21 | 107.9 | C6—C5—H51 | 109.2 |
C3—C2—H22 | 109.1 | C6—C5—H52 | 109.2 |
C3—C2—H21 | 109.1 | C5—C6—H63 | 109.5 |
C2—C3—H33 | 109.5 | C5—C6—H61 | 109.5 |
C2—C3—H31 | 109.5 | C5—C6—H62 | 109.5 |
C2—C3—H32 | 109.5 | H63—C6—H61 | 109.5 |
H33—C3—H31 | 109.5 | H63—C6—H62 | 109.5 |
H33—C3—H32 | 109.5 | H61—C6—H62 | 109.5 |
H31—C3—H32 | 109.5 | ||
O1—C1—C2—C3 | 170.2 (4) | C1—O1—C4—C5 | −172.0 (4) |
O1—C4—C5—C6 | −174.3 (4) | C4—O1—C1—C2 | 171.4 (4) |
Funding information
This study was supported by the National Science Centre, Poland (grant No. 2020/37/B/ST4/00982).
References
André, D., Fourme, R. & Zechmeister, K. (1972). Acta Cryst. B28, 2389–2395. CSD CrossRef IUCr Journals Web of Science Google Scholar
Bassett, W. A. (2009). High. Press. Res. 29, 163–186. Web of Science CrossRef CAS Google Scholar
Boldyreva, E. V. (2008). Acta Cryst. A64, 218–231. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bridgman, P. W. (1913). Proc. Am. Acad. Arts Sci. 49, 3–114. CrossRef Google Scholar
Budzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 101–112. Dordrecht: Kluwer Academic Publishers. Google Scholar
Chang, H.-C., Jiang, J.-C., Chuang, C.-W., Lin, J.-S., Lai, W.-W., Yang, Y.-C. & Lin, S. H. (2005). Chem. Phys. Lett. 410, 42–48. Web of Science CrossRef CAS Google Scholar
Counsell, J. F., Lee, D. A. & Martin, J. F. (1971). J. Chem. Soc. A, pp. 313. Google Scholar
Dennington, R., Keith, T. & Millam, J. (2016). GaussView. Version 6.1. Semichem Inc., Shawnee Mission, KS, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Durig, J. R. & Church, J. S. (1981). Mol. Cryst. Liq. Cryst. 69, 217–240. CrossRef CAS Web of Science Google Scholar
Dziubek, K. F., Jęczmiński, D. & Katrusiak, A. (2010). J. Phys. Chem. Lett. 1, 844–849. Web of Science CrossRef CAS Google Scholar
Fabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932–942. Web of Science CrossRef PubMed CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16W, Revision C.01, Gaussian, Inc. Wallingford, CT, USA. Google Scholar
Gavezzotti, A. (1994). Acc. Chem. Res. 27, 309–314. CrossRef CAS Web of Science Google Scholar
Gavezzotti, A. & Filippini, G. (1994). J. Phys. Chem. 98, 4831–4837. CrossRef CAS Web of Science Google Scholar
Mao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673–4676. CrossRef CAS Web of Science Google Scholar
Resnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675–690. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Rigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, UK. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Taga, K., Kawasaki, K., Yamamoto, Y., Yoshida, T., Ohno, K. & Matsuura, H. (2006). J. Mol. Struct. 788, 159–175. Web of Science CrossRef CAS Google Scholar
Timmermans, J. (1911). Bull. Soc. Chim. Belg. 25, 300–327. Google Scholar
Vojinović, K., Losehand, U. & Mitzel, N. W. (2004). Dalton Trans. pp. 2578–2581. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.